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We study the k-Canadian Traveller Problem, where the objective is to lead a traveller in an 
undirected weighted graph G from a source s to a target t, knowing that at most k edges 
of the graph are blocked and cannot be traversed. The locations of blockages are unknown 
at the beginning of the walk but a blocked edge is revealed when the traveller visits one 
of its endpoints. There exist graphs for which the competitive ratio of any deterministic 
strategies cannot be smaller than 2k + 1. Conversely, there exists a very simple strategy,
reposition, which achieves this ratio 2k + 1. It consists in successively traversing shortest 
(s, t)-paths and coming back to s when the traveller is blocked.
We refine this analysis by detecting families of graphs for which a smaller competitive ratio 
can be obtained. This paper produces a global analysis to understand the impact of the size 
of the maximum (s, t)-cuts of G on the competitiveness of deterministic strategies. We 
design deterministic strategies achieving a ratio ρk + O (λ), with ρ < 2, for two different 
cut parameters λ. In particular, we propose a strategy called detour with a competitive 
ratio 

√
2k + O (μE

max), where μE
max is the size of the maximum edge (s, t)-cut. Another 

contribution is a strategy called bypass with a competitive ratio 2
3
4 k + O (λV

max), where 
λV

max is the size of the maximum vertex (s, t)-cut of all subgraphs of G . This produces an 
efficient algorithm for outerplanar graphs, which verify λV

max ≤ 2.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Before presenting our contributions, we begin with a summary of the literature related to our study.

1.1. Related work

The k-Canadian Traveller Problem (k-CTP) was defined by Papadimitriou and Yannakakis [16]. It models the travel through 
a graph where some obstacles may appear suddenly. Given an undirected weighted graph G = (V , E,ω) and two of its 
vertices s, t ∈ V , a traveller has to walk from s to t on graph G in the shortest way despite the existence of blocked edges 
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E∗ � E . The traveller does not know which edges are blocked when he begins his walk. He discovers that an edge e = (u, v)

is blocked, i.e. belongs to E∗ , when he visits one of its endpoints u or v . Parameter k is an upper bound on the number of 
blocked edges: |E∗| ≤ k. The k-CTP is PSPACE-complete [2,16]. Variants of the k-CTP have been studied, where either edges 
are blocked with a certain probability [1,2,7] or there are multiple travellers [4,17] or we seek the shortest tour [15].

Graph G = (V , E,ω) is made up of n = |V | vertices and m = |E| edges. Edge weights are given by the function ω : E →
Q+ . Our objective is to make the traveller reach target t with a minimum cost (also called distance), which is the sum of 
the weights of the traversed edges. A pair (G, E∗) is called a road map. All the road maps considered are feasible: there 
exists an (s, t)-path in G\E∗ , the graph G deprived of the obstructed edges E∗ . In other words, there always is a way to 
reach target t from source s despite the blockages.

A solution to the k-CTP is an online algorithm, called a strategy, which guides the traveller through his walk on the 
graph. Its quality can be assessed with competitive analysis [8]. Roughly speaking, the competitive ratio is the quotient 
between the distance actually traversed by the traveller and the distance he would have traversed, knowing which edges 
are blocked before beginning his walk. Westphal [19] proved that no deterministic strategy achieves a competitive ratio 
better than 2k + 1. Said differently, for any deterministic strategy A, there is at least one k-CTP road map for which the 
competitive ratio of A is at least 2k + 1. Two strategies proposed in the literature reach this optimal ratio: reposition [19]
and comparison [20]. Here is how strategy reposition works in simple terms. It consists in trying to traverse the shortest 
(s, t)-path (exploration phase) of G deprived of the blockages revealed: if a blocked edge is found on this path and, hence, 
prevents us from reaching t , we update the set of blocked edges discovered, go back to s (backtracking phase) and restart 
the process until we reach t .

Randomised strategies, i.e. strategies in which choices of direction depend on a random draw, were also studied. West-
phal [19] proved that there is no randomised strategy achieving a ratio lower than k + 1. Bender et al. [3] studied graphs 
composed only of vertex-disjoint (s, t)-paths and proposed a polynomial-time strategy of ratio k + 1. A slight revision of 
this strategy is reported in [18]. Demaine et al. proposed a polynomial-time randomised strategy improving the optimal 
deterministic ratio on general graphs by a o(1) factor [10]. To the best of our knowledge, there is no polynomial-time ran-
domised strategy achieving a competitive ratio ρk + O (1), with ρ < 2, on general graphs. Such a strategy would not be 
memoryless [5]. Finally, Karger and Nikolova [14] studied the case of trees for the stochastic version of the CTP.

1.2. Motivation

A natural question is whether the ratio 2k + 1 can be improved on certain instances. Our objective is to determine 
families of graphs for which the competitive ratio of deterministic strategies could attain ρk + O (1) with ρ < 2. We quickly 
observed that without fixing a condition on the weight function, most well-known families of graphs (bipartite, planar, 
chordal,...) admit worst-case instances for which the competitive ratio 2k + 1 is optimal. Nevertheless, we pursued looking 
for a class of graphs without weight restriction on which we could design a deterministic strategy with ratio ρk + O (1), 
ρ < 2.

In this article, we study the impact of the minimal (s, t)-cuts size on the competitiveness of deterministic strategies. An 
(s, t)-cut is a set of edges or vertices which separates s from t when it is withdrawn from G , and it is minimal whenever 
none of its proper subset is an (s, t)-cut. We design strategies outperforming reposition on graphs where k is larger than 
the size of the largest minimal (s, t)-cuts. We put in evidence a family of graphs which is, in our opinion, of great interest 
for the k-CTP as a competitive ratio of ρk + O (1), ρ < 2, can be achieved on it. Below, we list our results.

1.3. Results

To analyse the influence of minimal (s, t)-cuts on the competitive ratio of deterministic strategies, we define three 
parameters:

• the size of the largest minimal edge (s, t)-cut of G: μE
max,

• the size of the largest minimal vertex (s, t)-cut of G: μV
max,

• the maximum μV
max over all subgraphs of G: λV

max.

For a given graph G , these parameters satisfy μV
max ≤ λV

max ≤ μE
max. For each of them, we study their impact on the compet-

itive ratio of deterministic strategies.
First, we propose a strategy called detour. Its competitive ratio when k > μE

max is 
√

2(k − μE
max) + 2μE

max + 1. As a 
consequence, the ratio of detour can be written 

√
2k + O (μE

max). When k ≤ μE
max, its competitive ratio is 2k + 1, similar to

reposition. This contribution was already introduced in our conference paper [6] whereas all other results below are new.

Theorem 1. For any graph satisfying k > μE
max, there is a strategy, called detour, which guarantees a competitive ratio 

√
2(k −

μE
max) + 2μE

max + 1. Moreover, for k ≤ μE
max, the competitive ratio of detour is at most 2k + 1.
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Fig. 1. A summary of our contributions. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Second, we propose another strategy called bypass. Its competitive ratio when k > λV
max is 2√√

2
(k −λV

max) + 2
√√

2λV
max +

1. It can be written 2
3
4 k + O (λV

max). When k ≤ λV
max, its competitive ratio is 2

√√
2k + 1.

Theorem 2. For any graph satisfying k ≥ λV
max, there is a strategy, called bypass, which guarantees a competitive ratio 2

3
4 (k −λV

max) +
2
√√

2λV
max + 1.

Both detour and bypass are based on the same principles as reposition. However, they contain extra instructions im-
posing the traveller to traverse suitable “detours” and “bypasses” (if they exist), instead of the original paths. Detours and 
bypasses are paths with certain properties and whose cost will guarantee the expected ratio.

In parallel with these results, we show that graphs with λV
max ≥ 3 have K2,3 as a minor. In other words, any graph that 

does not have K2,3 as a minor satisfies λV
max ≤ 2. This is true for outerplanar graphs [9] which are the graphs having a 

planar embedding where all vertices are on the outer face. Therefore, the competitive ratio of bypass strategy is 2
3
4 k + O (1)

on outerplanar graphs.
In summary, we identify two deterministic strategies which achieve ratios ρk + O (λ), ρ < 2, where λ is a cut parameter. 

The competitive slope of detour, 
√

2, is less than the one of bypass, 2
3
4 , however it applies to a smaller set of instances.

In addition to these two strategies, we prove that the parameter μV
max has no impact on the competitiveness of deter-

ministic strategies. Indeed, there are instances with μV
max = 1 for which the competitive ratio 2k + 1 is optimal. It is quite 

unexpected to see that the set of minimal vertex (s, t)-cuts of subgraphs of G allow us to outperform ratio 2k + 1, whereas 
the largest minimal vertex (s, t)-cut of G itself has no impact on it.

Main results. Here is a summary of the main results of the paper.

1. No strategy achieves a ratio smaller than 2k + 1 on graphs satisfying μV
max = 1. (Theorem 4, Section 3)

2. There is a strategy achieving a ratio 
√

2k + O (μE
max). (Theorem 1)

3. There is a strategy achieving a ratio 2
3
4 k + O (λV

max). (Theorem 2)

Fig. 1 represents graphically the evolution of the competitive ratio of detour and bypass as a function of k.
A natural question arises: is there a cut parameter λ, μV

max ≤ λ ≤ λV
max and a strategy such that its competitive ratio 

would be ρk + O (λ), ρ < 2? A positive answer would widen the set of instances for which we can design improved 
strategies. However, we prove in this paper that: considering any unweighted graph satisfying k ≤ λV

max, we can assign it a 
weight function such that the best competitive ratio achievable on it is at least 2k + 1. Therefore, such parameter λ cannot 
exist. This result highlights the fact that λV

max is the lowest cut parameter which has an impact on the competitive ratio 
when considering graphs with bounded cut sizes.
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1.4. Organisation

In Section 2, we present the definitions and notations used in this article. A large part of this section relates to cuts, as 
we remind the proofs of many folklore results dealing with the relationship between edge and vertex (s, t)-cuts. Section 3
provides a detailed analysis of our results. It contains the proof that parameter μV

max has no influence on the competitiveness 
of deterministic strategies. The following sections are dedicated to the two strategies we propose. detour is described in 
Section 4 and we derive its competitive ratio. bypass is presented in Section 5 and its competitive analysis is inspired by 
the one of detour. In brief, Section 4 (resp. Section 5) contains the proof of Theorem 1 (resp. Theorem 2).

2. Preliminaries

We begin with a reminder of some graph theory concepts to be used throughout this paper. Then, we present the 
definition of competitive ratio and some notions associated with cuts.

2.1. Graphs and paths

We work on undirected weighted graphs G = (V , E, ω), where n = |V |, m = |E|, and ω : E → Q+ . The notation V (G)

and E(G) may refer to V and E respectively if there is any risk of confusion with another graph. An equal-weight graph is 
such that all ω(e), e ∈ E , are equal.

A subgraph G ′ of G is a graph G ′ = (V ′, E ′, ω′), where V ′ ⊆ V , E ′ ⊆ E ∩ (V ′ × V ′), and ω′ = ω|E ′ . In this case, we use 
the notation G ′ ⊆ G . For any U ⊆ V , we denote by E [U ] the set of edges of G with two endpoints in U . Let G [U ] be the 
subgraph of G induced by U , G [U ] = (U , E [U ]). We denote by G\U the graph deprived of vertices in U : G\U = G [V \U ]. 
Similarly, for any set of edges E ′ ⊆ E , the graph G deprived of E ′ is denoted by G\E ′ = (

V , E\E ′).
We denote by K p,q the complete bipartite graph with an independent set of size p and another of size q. Graph H is a 

minor of graph G if it can be obtained after removing vertices and edges and/or contracting edges in G .
A simple path P is a sequence of pairwise different vertices v1 · v2 · · · vi · vi+1 · · · v� , with departure v1 and arrival v� , 

where two successive vertices (vi, vi+1) are adjacent in G . All paths mentioned in this article are simple: they do not form 
cycles. To improve readability, we abuse notations: v1 ∈ P and (v1, v2) ∈ P mean that vertex v1 and edge (v1, v2) are on 
path P , respectively.

If vertices u and v belong to path P , then P (u,v) denotes the section of path P between vertices u and v . Any path is 
naturally associated with a direction, from the departure to the arrival. We define the successor of edge e in P as the edge 
positioned just after e in P . The descendants of e are all edges positioned after e in P . The predecessor of e is the edge 
positioned just before e and its ancestors are all edges located between the departure and e in P . These notions can also be 
defined naturally for vertices.

Graphs may contain several shortest (s, t)-paths. Our algorithms require to compute only one of these shortest (s, t)-
paths on any graph in a deterministic way. To achieve this, a solution is to associate each vertex with a different identifier 
in {1, . . . ,n}. If two paths have the same distance, we consider their sequence of vertices and compare the lexicographic 
order of their identifiers. Dijkstra’s algorithm [12] is adapted to this extra criterion: for any vertex v , it stores the shortest 
path from the start point to v with the smallest lexicographic order. Whenever we refer to “the shortest (u, v)-path”, for 
any vertices u and v , this procedure is executed.

2.2. Road maps

Let G = (V , E, ω) be a graph and E∗ represents a set of blocked edges. We define below the concept of road maps which 
are the instances of the k-CTP problem.

Definition 1 (Road maps). A pair (G, E∗) is a road map if s and t remain connected in G\E∗ .

In other words, there must be an (s, t)-path in graph G deprived of the blocked edges E∗ . As road maps have been 
defined, we can introduce formally the k-Canadian Traveller Problem.

Definition 2 (k-CTP).
Input: Graph G = (V , E, ω), vertices s, t ∈ V , and a set E∗ of blocked edges which are unknown and such that (G, E∗) is 

a road map.
Objective: Traverse graph G from s to t with minimum distance.

The set of blocked edges E∗ is a hidden input at the beginning of the walk. The traveller discovers whether an edge is 
blocked when visiting one of its endpoints.

With the k-CTP, we say a path is blocked if we know that it contains a blocked edge, i.e. it was already discovered by 
the traveller. We say a path is open if we are sure that it does not contain any blocked edge. That is, an open path is only 
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Fig. 2. Graph Wk , as defined in [19].

made up of edges which have been “revealed” (the traveller has visited one of their endpoints) and are not blocked. Finally, 
we say a path is apparently open if no blocked edge was discovered on it for now. However, it may contain a blocked edge 
which has not been discovered yet.

2.3. Competitive ratio

For any subset of blocked edges E ′∗ ⊆ E∗ , ωmin
(
G, E ′∗

)
is the cost of the shortest (s, t)-path in graph G\E ′∗ . Value ωopt =

ωmin (G, E∗) is the optimal offline cost for the road map (G, E∗). Concretely, this is the distance the traveller would have 
traversed if he had known the blockages in advance.

The competitive ratio is defined in [8]. We denote by ωA (G, E∗) the distance traversed by the traveller guided by strategy 
A on graph G from source s to target t with blocked edges E∗ . The competitive ratio c A(G, E∗) of A over a road map (G, E∗)
is defined as c A(G, E∗) = ωA(G,E∗)

ωopt
. For k ∈N , the competitive ratio c A of A for the k-CTP is:

c A = max
road map (G,E∗)

|E∗|≤k

c A (G, E∗) . (1)

Similarly, we say strategy A is c A,F -competitive for a family F of road maps if it is the maximum value c A (G, E∗) over all 
road maps (G, E∗) such that (G, E∗) ∈F .

Given a graph G , its family of road maps, denoted by F(G), is the set of road maps made up of graph G and any 
configuration E∗ , |E∗| ≤ k, of blocked edges such that s and t remain connected in G\E∗ . Put formally,

F(G) = {(G, E∗) : |E∗| ≤ k and there is an open (s, t)-path in G\E∗} .

Computing the competitive ratio of a strategy A over family F(G) allows us to determine the worst-case performance of A
on graph G . All the strategies proposed in this paper are executed in polynomial time.

We remind the state of the art on the competitive ratio of deterministic strategies for k-CTP. We present here some 
known worst-case road maps, i.e. road maps on which the competitive ratio 2k + O (1) cannot be beaten. Westphal [19]
identified, for any integer k, a family of road maps for which any deterministic strategy achieves at least ratio 2k + 1. These 
road maps are all based upon the graph Wk made up of k + 1 disjoint (s, t)-paths, i.e. they do not share common edge or 
vertex except s and t . Each path has two edges: one with weight 1, another one with weight ε � 1. Family F(Wk) contains 
in particular the road maps composed of graph Wk and a set of k blocked edges among the k + 1 edges of weight ε. Fig. 2
illustrates graphs Wk .

As the k + 1 disjoint (s, t)-paths are indistinguishable, any deterministic strategy has no choice but selecting arbitrarily 
the first path traversed. In this situation, there exists a configuration of blockages such that the only open path is the last 
one visited. In this case, the total distance traversed is 2k + 1 + ε. The optimal offline cost is 1 + ε. Making ε tend to 0 
produces the bound 2k + 1.

Conversely, there are two strategies in the literature achieving the competitive ratio 2k + 1: reposition [19] and com-

parison [20]. The first one is very simple and we describe it briefly as a two-phase algorithm. The traveller traverses the 
shortest (s, t)-path of G (exploration phase). If he is blocked, then he goes back to s via the same path (backtracking phase). 
Then, he restarts this two-phase process on the updated graph G\E ′∗ , which is graph G after removing the blocked edges 
discovered E ′∗ . Until he reaches t , the traveller traverses the shortest (s, t)-path in graph G deprived of the blocked edges 
discovered E ′∗ (exploration) and comes back to s if he is blocked (backtracking).

2.4. Cuts

We begin with the definition of edge cuts. A set X ⊆ E is an edge (s, t)-cut if source s and target t are separated in 
graph G deprived of edges X , i.e. in G\X . In other words, there is no (s, t)-path in G\X . This definition can be extended to 
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Fig. 3. A minimal edge (s, t)-cut X with its source/target sides.
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R(X, t)

s

t

X

N(X, s)

N(X, t)

Fig. 4. Schematic view of some graph G regarding the minimal vertex (s, t)-cut X .

two sets of vertices instead of a single source and target: an edge (A, B)-cut is a set of edges separating the sets of vertices 
A, B ⊆ V , A ∩ B = ∅. Then, we say that cut X is minimal if none of its proper subsets X ′ � X is an (s, t)-cut. Let μE

max be 
the maximum cardinality of a minimal edge (s, t)-cut:

μE
max = max

X⊆E minimal
(s,t)−cut

|X | . (2)

We say a maximum (s, t)-cut of a graph G is one of its largest minimal (s, t)-cuts. By definition, any (s, t)-cut X such 
that |X | > μE

max is not minimal. We know that if X is a minimal (s, t)-cut, then graph G\X contains exactly two connected 
components [11,13] : R(X, s)1 containing s and R(X, t) containing t .

Let N(X, s) (resp. N(X, t)) be the vertices of R(X, s) (resp. R(X, t)) which are adjacent to cut X . Fig. 3 shows a schematic 
view of the notations R(X, ·) and N(X, ·) with a cut X made up of four edges. The vertices in N(X, s) are in blue while the 
vertices in N(X, t) are in red.

Given a vertex set A ⊆ V , we denote by δ(A) the set of edges with one endpoint in A and the other one outside. If A
induces a connected subgraph containing s and not t , then δ(A) is a minimal edge (s, t)-cut. Given a minimal (s, t)-cut X
of G , we have X = δ(R(X, s)).

Now we define vertex cuts. A set X ⊆ V is a vertex (s, t)-cut if s and t are separated in graph G deprived of vertices X , 
i.e. in G\X . As for edges, a minimal vertex (s, t)-cut X is such that no subset X ′ � X is an (s, t)-cut. We denote by μV

max the 
maximum cardinality of a minimal vertex (s, t)-cut:

μV
max = max

X⊆V minimal
(s,t)−cut

|X | .

A minimal vertex (s, t)-cut X may admit more than two connected components, in contrary to the edge case. Among 
them, R(X, s) contains s while R(X, t) contains t . Set N(X, s) (resp. N(X, t)) contains the neighbours of vertices in X
belonging to R(X, s) (resp. R(X, t)).

Fig. 4 represents these notions in an example. Cutset X and the connected components of graph G\X are drawn. The 
vertices of N(X, s) are represented in blue, the vertices of N(X, t) in red. We draw all edges having exactly one endpoint in 
X . Observe through this example that, for minimal vertex (s, t)-cuts X , we may have X ∪ R(X, s) ∪ R(X, t) �= V .

We define another cut parameter. Let Ymax be the largest minimal vertex (s, t)-cut we can find in all subgraphs of G . We 
denote by λV

max its size.

1 If necessary, the graph considered is added to the notation: R(X, s) = RG (X, s).
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Fig. 5. Gaps between parameters μV
max, λV

max, and μE
max: graphs F4 and J4.

λV
max = max

Y ⊆V minimal
(s,t)−cut of G ′⊆G

|Y | .

If a subgraph G ′ does not contain either s or t , it does not admit a minimal (s, t)-cut and the parameters μE
max and μV

max
of this subgraph are zero. The same conclusion holds if s and t are separated in G ′ .

Inequalities exist between the three cut parameters we introduced. We could define similarly λE
max as the largest minimal 

edge (s, t)-cut among all subgraphs G ′ ⊆ G . However, one can observe that, on any graph G , λE
max = μE

max. This assertion 
stands as a folklore result on cuts. Indeed, any minimal edge (s, t)-cut of a subgraph of G which does not separate s and t
in G can be completed with extra edges to form a minimal edge (s, t)-cut of G . The detailed proof of this statement is left 
to the reader.

We present now an inequality involving the three parameters μV
max, λV

max and μE
max. Observe that the equality established 

above does not hold for vertex cuts.

Lemma 1. μV
max ≤ λV

max ≤ μE
max.

Proof. As G is its own subgraph, we have μV
max ≤ λV

max by definition. Let Ymax be the largest minimal vertex (s, t)-cut in a 
subgraph G ′ of G . We denote by R ′

s (resp. R ′
t ) the source (resp. target) side of Ymax in G ′ .

Let X be the set containing all edges which have one endpoint in Ymax and one in R ′
t . Set X is an edge (s, t)-cut in G ′: 

as any (s, t)-path must pass through cut Ymax, it necessarily traverses one edge of X to reach t . It is also minimal because 
if we re-open one edge of X connecting Ymax and R ′

t , then there exists an open (s, t)-path in G ′ passing through this edge.
For any vertex v ∈ Ymax, there is at least one edge incident to v with another endpoint in R ′

t . Otherwise, set Ymax\ {v}
would be an (s, t)-cut: this is a contradiction with the minimality of Ymax. As a consequence, |Ymax| ≤ |X | and λV

max ≤
λE

max = μE
max. �

The inequalities provided in Lemma 1 can be strict. We can identify two families of graphs, say Fn and Jn , n ∈N such 
that:

(i) μV
max(Fn) = 1, λV

max(Fn) = n and μE
max(Fn) = n + 1,

(ii) μV
max( Jn) = λV

max( Jn) = 1 and μE
max( Jn) = n.

Points (i) and (ii) show that these three parameters can be different. Furthermore, the gap between them can be as large as 
we want. Fig. 5 represents graphs F4 and J4. For Fn , value n is the number of (u, v)-paths of length 2. If we withdraw the 
edge (u, v), the size of the largest minimal vertex (s, t)-cut of the subgraph obtained (drawn in blue) is n, while it is 1 for 
the entire graph. For Jn , value n is the degree of vertex z minus one. The edges incident to z form a minimal (s, t)-cut of 
size n, while the size of the largest minimal vertex (s, t)-cut of any subgraph of Jn is 1.

In the remainder of this paper, we analyse the impact of these three parameters on the competitiveness of deterministic 
strategies for the k-CTP.

3. A cut-based competitive analysis: state of the art and first observations

In this section, we explain why the concept of minimal (s, t)-cut is critical to the competitiveness of deterministic 
strategies for the k-CTP. In particular, we show the impact of parameters μE

max and λV
max defined earlier.

We prove that parameter μV
max has no influence on the competitive ratio: put formally, for any k ≥ 1, there are graphs 

with μV
max = 1 and for which the best competitive ratio obtained by any deterministic strategy is no less than 2k +1. In other 

words, the lower bound 2k +1 cannot be reduced even if the input graph has small maximum vertex (s, t)-cuts. Fortunately, 
we also design two strategies, called detour and bypass which admit respectively a competitive ratio 

√
2k + O (μE

max) and 
2

3
4 k + O (λV

max). So, the lower bound 2k + 1 can be reduced when parameters μE
max and λV

max are small compared to k.
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Fig. 6. The structure of W ∗
k and graph W ∗

3 as an example.

Graphs Wk satisfy the following inequality: k < μV
max = λV

max = μE
max = k +1. The result of [19] can be presented in those 

terms.

Theorem 3 (Competitive ratio of deterministic strategies [19]). For any integer k, there is a graph G such that the best competitive ratio 
achievable by any deterministic strategy on it is 2k + 1. Moreover, it satisfies k < λ, for any λ ∈ {

μV
max, λ

V
max,μ

E
max

}
.

A natural question is whether a better performance can be obtained for graphs fulfilling λ ≤ k, for some λ ∈{
μV

max, λ
V
max,μ

E
max

}
. In particular, we wonder if a smaller competitive bound could be reached for graphs with constant 

λ. This is all the more interesting in that such criterion is fully “topological”, it does not involve the weights of graph G . 
Hence, we focus on the competitiveness of deterministic strategies as a function of the cut parameters we introduced.

Let us begin with parameter μV
max: we show a family of graphs with μV

max = 1 and for which the ratio 2k + 1 cannot be 
improved.

Theorem 4. There is a family of graphs W ∗
k with μV

max = 1 on which any deterministic strategy is at least (2k + 1)-competitive.

Proof. First, we describe graph W ∗
k which is an extension of the graph Wk . Graph W ∗

k without weights is the graph Fk

already introduced in Section 2.4 (see Fig. 5a). We remind that μV
max(Fk) = 1. We fix the weights of edges (s, u) and (v, t)

equal to ε. The weight of edge (u, v) is 2k + 3. The weights of the two-edge (u, v)-paths are defined as in graph Wk: the 
first edge has weight 1, the second one has weight ε (Figs. 6a and 6b).

Second, we analyse the competitive ratio of strategies on the weighted graph W ∗
k . Considering ε � 1, the cost of the 

(s, t)-path passing through (u, v) is larger than the distance needed for the return crossing of all the other (s, t)-paths 
which each have a cost 1 + 3ε. So, the most competitive way to traverse graph W ∗

k is to handle first the paths passing 
through the subgraph Wk . Edges (s, u) and (v, t) are necessarily open, otherwise the road map would not be feasible. The 
best achievable competitive ratio for graph Wk is 2k + 1 + O (ε) if one of its path is open. Assume one (u, v)-path in Wk
is open (then it is the optimal offline path if concatenated with edges (s, u) and (v, t)). Any deterministic strategy may 
traverse the open path last, as in the original graph Wk . As the optimal offline cost is 1 + O (ε), making ε tend to zero 
produces the lower bound 2k + 1. �

We see in this proof that adding edge (u, v) does not improve the competitiveness of deterministic strategies on graph 
Wk because its weight is too large. However, it decreases the size of the maximum vertex (s, t)-cut to 1. This shows that 
parameter μV

max is not relevant to identify families of graphs for which a better ratio can be obtained.
For parameter μE

max, there is a strategy with competitive ratio ρk + O (μE
max), ρ < 2, called detour (Theorem 1). Its 

competitive slope is ρ = √
2.

detour refines reposition: it can also be seen as a two-phase algorithm. As with reposition, the traveller starts by 
traversing the shortest (s, t)-path of the current discovered graph G\E ′∗ (exploration phase). However, during the backtrack-
ing phase (renamed detour-backtracking) instead of going back to s directly, the traveller verifies, on his way back, whether 
certain “detours” exist to reach t . Detours are short paths (to be defined formally) from his current position to t .

detour not only provides a competitive ratio 
√

2k + O (μE
max) for graphs with k ≥ μE

max but also ensures the optimal 
competitive ratio 2k + 1 for general graphs otherwise. In particular, its ratio grows in 

√
2k when k is larger than parameter 

μE
max. As a consequence, detour offers, for now, better guarantees than the existing strategies, reposition and comparison, 

for which the only known worst-case ratio is 2k +1 in all cases. Section 4 is dedicated to the description and the competitive 
analysis of detour.

We also propose a strategy, called bypass, benefiting from small values of λV
max. Its competitive slope is ρ = 2

4√2
= 2

3
4

(Theorem 2).
bypass is in fact detour with an extra instruction; instead of systematically traversing the shortest (s, t)-path during the 

exploration phase, it may select “bypasses”. Bypasses are (s, t)-paths which are not much longer than the shortest one and 
satisfying a certain distance property. Section 5 is dedicated to the description and the competitive analysis of bypass.
228



P. Bergé and L. Salaün Theoretical Computer Science 941 (2023) 221–240
s tε
n

ε
n

ε
n

ε
n

ε
n

1

1

1

X
R H (X, s) R H (X, t)

Fig. 7. Structure of the graph obtained with weight function ωε .

In contrast with detour, strategy bypass does not guarantee a ratio of at most 2k + 1 for graphs satisfying k < λV
max. Its 

competitive ratio can potentially reach 2
√√

2k + 1 on certain graphs.
On one hand, this result is stronger than Theorem 1. Indeed, strategy bypass expands the family of graphs on which we 

can apply a strategy achieving a competitive ratio ρk + O (λ), ρ < 2 and cut parameter λ. On the other hand, the competitive 
slope of bypass is larger than the one of detour.

In the following, we focus on the graphs fulfilling λV
max ≤ 2. bypass guarantees a competitive ratio 2

3
4 k + O (1) on them. 

We prove that the graphs which do not admit K2,3 as a minor satisfy λV
max ≤ 2 and, therefore, benefits from the competi-

tiveness of bypass.

Lemma 2. If λV
max ≥ 3, then K2,3 is a minor of G.

Proof. Let λ = λV
max ≥ 3: we show that graph G admits K2,λ as a minor. As K2,3 is itself a subgraph of K2,λ , then the lemma 

holds.
We describe the steps of deletion and contraction on G in order to obtain K2,λ . Let G ′ be the subgraph of G which 

admits a minimal vertex (s, t)-cut X of size λ. We remove all the edges of G which are not in G ′ . For any vertex x ∈ X , 
since X\ {x} is not an (s, t)-cut in G ′ , there exists at least one (s, t)-path, denoted by P x , which passes through x but not 
through any other element of X . We denote by xs (resp. xt ) the vertex of P x adjacent to x in RG ′ (X, s) (resp. RG ′(X, t)). We 
delete the edges which are not on any path P x , x ∈ X . Moreover, for each x ∈ X , we contract all edges in sections P (s,xs)

x

and P (xt ,t)
x . The edges remaining either connect an element of X with a contracted node in R(X, s) “representing” s or an 

element of X with a contracted node in R(X, t) “representing” t . The graph obtained is a complete bipartite graph K2,λ . �
As a consequence, the competitive ratio of bypass on K2,3-minor-free graphs is 2

3
4 k + O (1). Among them, we find 

outerplanar graphs since K2,3 is one of their forbidden minor [9]. In brief, Theorem 2 and Lemma 2 give us a well-known 
family of graphs, without weight restrictions, for which the bound 2k + 1 is not optimal.

Corollary 1. There is a strategy, called bypass, which achieves a competitive ratio 2
3
4 k +C on outerplanar graphs, where C is a constant.

We conclude this overview with a last result, stating that any unweighted graph satisfying k < λV
max is a worst-case 

graph. Formally, for any graph G such that the number of blocages is less than λV
max, there is an edge weighting of G , with 

some weights ε � 1, such that the best ratio we can obtain on G is 2k + 1 when ε tends to zero.

Theorem 5. For any graph G satisfying k < λV
max and any ε > 0, there is a weighting ωε : E →Q+ such that the competitive ratio of 

any deterministic strategy on the family F(G) is at least 2k+1
1+ε .

Proof. Let H be a subgraph of G and X a maximum vertex (s, t)-cut of H such that |X | = λV
max. Set R H (X, s) is the source 

side of X in H , R H (X, t) is its target side.
We define weights ωε . For all edges with two endpoints in R H (X, s) ∪ R H (X, t), i.e. e ∈ E [R H (X, s)] ∪ E [R H (X, t)], we set 

ωε(e) = ε
n . As cut X is minimal, any vertex x ∈ X is adjacent to both R H (X, s) and R H (X, t), otherwise x would be useless 

for the separation of s and t . For any x ∈ X , we select an arbitrary edge from R(X, s) × {x} and fix its weight to value 1. 
Furthermore, we select an arbitrary edge e of {x} × R(X, t) and fix ωε(e) = ε

n . Finally, the edges of graph H that have not 
been treated yet and the edges in E(G)\E(H) are set to infinite weight: more rigorously, assigning weight (2k + 1)n + 1
is equivalent to setting a weight +∞ as traversing such edges becomes necessarily inefficient. Consequently, we obtain a 
graph (Fig. 7) almost equivalent to Wk , where k + 1 = λV

max.
Suppose that set E∗ contains k ( ε

n )-weighted edges from X × R(X, t). The traveller must pass through X at some point 
to arrive at t . At worst, each attempt to go through vertex x ∈ X ends with a blockage (x, y) with y ∈ R(X, t). As k < λV

max, 
this can occur k times. The distance traversed between each blockagee discovery is longer than 2. After discovering the kth

blocked edge and returning to set R(X, s), the traveller goes to t with a distance of at least 1. Hence, the total worst-case 
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distance traversed is at least 2k + 1 and no deterministic strategy has a competitive ratio lower than 2k+1
ωopt

. With the weight 

function ωε , we have ωopt ≤ 1 + ε. Therefore, the obtained lower bound is 2k+1
1+ε . �

This theorem shows that λV
max is of significant importance in the competitive analysis of the k-CTP. Indeed, all graphs 

satisfying k < λV
max, associated with a certain edge weighting, belong to worst-case road maps. Therefore, there is no hope 

for extending these families of bounded-cut graphs and obtaining a ratio ρk + O (λ), ρ < 2, as in Theorems 1 and 2. Future 
open challenges for bounded-cut graphs are narrowed down to finding strategies with smaller slopes than detour for 
k ≥ μE

max, or bypass, for k ≥ λV
max.

Another consequence of Theorem 5 is that, contrary to outerplanar graphs, many well-known families of graphs do not 
have efficient deterministic strategies if we do not impose weight restrictions. For instance, for any integer k, there exist 
chordal, bipartite, and planar graphs satisfying k < λV

max. For these “topological” families of graphs where the weights can 
take any value, a ratio ρk + O (1), ρ < 2, cannot be achieved by any deterministic strategy. Nevertheless, if we impose equal 
weights for example, i.e. ω(e) = 1 for each e ∈ E , then it might be possible to find efficient strategies for these families.

4. A competitive strategy when μE
max ≤ k

We remind that the objective of this section is to prove Theorem 1. We propose a strategy, called detour, which admits 
a competitive ratio 

√
2k + O (μE

max). First, we introduce in Subsection 4.1 a parameterised strategy called α-detour. It takes 
as input a graph G , source s, target t , and a parameter 0 ≤ α ≤ 1. In Subsection 4.2, we provide an upper bound on its 
competitive ratio. This bound is minimised for α =

√
2

2 and is 2μE
max + √

2(k − μE
max) + 1 in this case. Strategy detour

mentioned earlier corresponds to 
√

2
2 -detour.

4.1. Description of strategy α-detour

We present the α-detour strategy in Algorithm 1. Variable pos keeps track of the traveller’s current position. The idea 
is to perform successively two phases: an exploration followed by a detour-backtracking (replacing the backtracking phase 
of reposition). The exploration starts when the traveller is on source s (line 8). He traverses the shortest (s, t)-path P (s,t)

min

called the exploration path. Its cost ω(s,t)
min = ωmin

(
G, E ′∗

)
is stored in ωexp (line 7). At this point, there are two possibilities: 

(i) the traveller reaches t and the execution terminates (line 13), (ii) the traveller arrives at pos = u and discovers a blocked 
edge (u, v) ∈ P (s,t)

min . All the vertices of the exploration path which have been visited before arriving on u are stored in 
a stack, denoted by the variable stack. Set V stack refers to the set of vertices in the stack (without ordering). Then, the 
detour-backtracking phase begins.

When the traveller is blocked on P (s,t)
min , we ask whether an α-detour exists, i.e. an apparently open (pos, t)-path with cost 

at most αωexp in graph G\V stack. If an α-detour exists, the traveller traverses the shortest path P (pos,t)
min from the current 

position pos to target t in graph G ′\V stack, where G ′ = G\E ′∗ is graph G deprived of the blocked edges already discovered 
E ′∗ (line 9). Obviously, its cost satisfies ω(pos,t)

min ≤ αωexp. Otherwise, the traveller backtracks to the vertex before pos = u on 
the exploration path (lines 14-16) and we withdraw this vertex from stack.

We do not allow an α-detour P (pos,t)
min to pass through any vertex v ∈ V stack, since the section P (v,t)

min will be considered 
later on when pos = v . The vertices of an exploration path traversed by the traveller are naturally put in stack. Moreover, 
when the traveller is blocked on an α-detour P (pos,t)

min , the vertices of P (pos,t)
min from pos to the endpoint of the blocked edge 

visited are put in stack. Finally, if the traveller backtracks to s, the algorithm goes back to the exploration phase. At this 
moment, the stack is empty.

Let E ′∗ denote the set of discovered blocked edges. Variable G ′ contains the graph G deprived of the discovered blockages 
E ′∗ at any moment of the execution. At each iteration of the while loop, the variables are updated as follows: if the path 
P (u0,t)

min currently traversed (lines 8-9) - either an exploration path (u0 = s) or a detour - does not contain any blockage, then 
the traveller reaches t , i.e. pos ← t . In this case, the algorithm terminates since the destination is reached. Otherwise, let 
P (u0,t)

min = u0 · · · ui · ui+1 · · · ur · t , where (ui, ui+1) is its first blocked edge. The traveller’s position is updated from u0 to ui

(line 10). Then, we update E ′∗ with the newly discovered blockages including (ui, ui+1), and G ′ ← G\E ′∗ (line 12). In addition, 
we push the traversed vertices u0, . . . , ui−1 on the stack (except ui) and update accordingly V stack ← V stack ∪ {u0, . . . , ui−1}. 
In case there is no α-detour P (ui ,t)

min in G ′\V stack, the algorithm backtracks by popping ui−1 from the stack and setting 
pos ← ui−1 (lines 14-16), etc.

If α = 0, the algorithm does not take any detour. As a consequence, 0-detour is equivalent to reposition, as both 
procedures perform an exploration phase followed by backtracking without taking any detour. In the following, we provide 
an upper bound of α-detour’s competitive ratio.
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Algorithm 1: The α-detour strategy.

1: Input: graph G , source s, target t , parameter α ∈ (0, 1)

2: E ′∗ ← ∅; G ′ ← G\E ′∗; pos ← s; u0 ← s; ωexp ← ωmin(G,∅);
3: stack ← Empty Stack; V stack ← ∅;
4: while true do
5: u0 ← pos;
6: if u0 = s then
7: ωexp ← ωmin

(
G, E ′∗

)
;

8: traverse the shortest (s, t)-path P (u0,t)
min in G ′; # exploration

else
9: traverse the shortest (u0, t)-path P (u0,t)

min in G ′\V stack; # detour
endif

10: update pos;

11: push the vertices visited in P (u0,t)
min except pos on stack and V stack;

12: update E ′∗ and G ′ ← G\E ′∗;
13: if pos = t then break;

14: while pos �= s and there is no P (pos,t)
min in G ′\V stack such that ω(pos,t)

min ≤ αωexp do
15: pos ← pop(stack);
16: V stack ← V stack\{pos};

end
end

4.2. Competitive analysis of detour

We denote by P1, . . . , P� the exploration paths such that the distance from s to the blocked edge discovered on it is 
greater than α multiplied by their own cost, i.e. αωi . In other words, the distance di traversed by the traveller on the 
exploration path Pi , 1 ≤ i ≤ �, satisfies di ≥ αωi . Paths Pi are sorted in order to fulfil ω1 ≤ · · · ≤ ω� . This corresponds to the 
order in which these paths are traversed. The exploration paths P1,. . . ,P�−1 are necessarily blocked, while path P� may be 
open. If P� does not contain any blockage, then the algorithm terminates after the traveller traverses it. Otherwise, it means 
the traveller is blocked on P� and reaches target t via an α-detour.

From now on, we impose α ≥ 1
2 . Let us partition P1, . . . , P� into two sequences S1 = P1, . . . , Ph−1 and S2 = Ph, . . . , P�

such that 2αωh−1 < ω� ≤ 2αωh . In the particular case where ω� ≤ 2αω1, then h = 1 and the two sets are S1 = ∅ and 
S2 = P1, . . . , P� . We denote by G [Ph, . . . , P�] the subgraph of G induced by paths Ph, . . . , P� , i.e. containing only the vertices 
and edges of paths Pi , h ≤ i ≤ �.

Theorem 6. The size of maximum edge (s, t)-cuts on graph G [Ph, . . . , P�] is at least � − h + 1.

Proof. We denote by bi the blocked edge discovered on Pi , for i ∈ {h, . . . , �}. We construct inductively a set {eh, . . . , e�} of 
edges satisfying the following induction hypotheses, for all i ∈ {h, . . . , �}:

H1(i): {eh, . . . , ei} is a minimal (s, t)-cut of G [Ph, . . . , Pi],
H2(i): Either ei = bi or ei is an ancestor of bi in Pi ,
H3(i): For j ∈ {i + 1, . . . , �}, P j cannot pass through ei .

Basis: For i = h, G [Ph, . . . , Pi] contains only one path Ph . We choose eh = bh , which fulfils H2(h). Since any edge of Ph
is a max-(s, t)-cut of G [Ph], it satisfies H1(h). Statement H3(h) is also true, as eh is blocked.

Inductive step: Assume that H1(i) to H3(i) are true for a certain integer i in {h, . . . , � − 1}. We will construct ei+1 and 
prove the induction hypotheses H1(i + 1) to H3(i + 1). For simplicity, we denote sets R({eh, . . . , ei}, s) and R({eh, . . . , ei}, t)
in graph G [Ph, . . . , Pi] by Ri(s) and Ri(t), respectively.

Let P
(v0,v p)

i+1 = v0 · v1 · · · v p be the longest section in Pi+1, starting from v0 = s, such that v0, . . . , v p ∈ Ri(s). Section 

P
(v0,v p)

i+1 contains at least vertex v0 = s. For j ∈ {h, . . . , i}, all ancestors of e j in P j belong to Ri(s), and all descendants 
belong to Ri(t). Therefore, according to H2(i), all exploration paths’ sections of the form P (s,u)

j are open and equal to the 

shortest path from s to u, for u ∈ Ri(s) ∩ P j and j ∈ {h, . . . , i}. In particular, since P
(v0,v p)

i+1 is the shortest (v0, v p)-path, we 
deduce that it is open as v p belongs to some P j by definition of Ri(s).

According to H3(i), P
(v p ,t)
i+1 is a new path connecting Ri(s) to Ri(t), which does not traverse any edge of the cut 

{eh, . . . , ei}. Furthermore, we show that no vertex in P
(v p+1,t)
i+1 belongs to Ri(s). Indeed, suppose for the sake of contra-

diction that u ∈ P
(v p+1,t)
i+1 and u ∈ Ri(s). There would exist j ∈ {h, . . . , i}, such that P (s,u)

j is the shortest (s, u)-path, and all 
its vertices belong to Ri(s). This contradicts with the fact that P (s,u)

i+1 is also the shortest (s, u)-path and v p+1 /∈ Ri(s), by 
definition. Let v p′ be the first vertex of Pi+1 belonging to Ri(t), i.e. v p′ ∈ Ri(t) and p < p′ . Such a vertex exists as t is 
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s t
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Fig. 8. Cut X = {eh, . . . , ei}, path Pi+1, and vertices v p , v p′−1, v p′ .

a candidate. We derive that P
(v p ,v p′ )
i+1 is a path both connecting Ri(s) to Ri(t) and avoiding cut X . Fig. 8 represents cut 

{eh, . . . , ei}, path Pi+1 and its vertices v p and v p′ .

We fix ei+1 differently depending on the position of bi+1. We already proved that bi+1 /∈ P
(v0,v p)

i+1 , the remaining cases 
are:

• If bi+1 ∈ P
(v p ,v p′ )
i+1 , then we set ei+1 = bi+1. As ei+1 ∈ E∗ , H3(i + 1) is true.

• Otherwise, if bi+1 ∈ P
(v p′ ,t)
i+1 , we select ei+1 = (v p′−1, v p′ ). We prove that the cost of the current shortest (s, v p′ )-path, 

P
(s,v p′ )
i+1 , is at least αωh . Indeed, as vertex v p′ belongs to a certain path P j′ , j′ ∈ {h, . . . , i}, the cost of P

(s,v p′ )
i+1 is at least 

the cost of P
(s,v p′ )
j′ . If we have ω

(s,v p′ )
i+1 ≤ αωh , the distance traversed by the traveller on P j′ is less than αωh ≤ αω j′ , 

as v p′ ∈ Ri(t). This contradicts with the fact that P j′ ∈ {Ph, . . . , P�}. Moreover, after the (i + 1)-th detour-backtracking 
phase, all remaining open (v p′ , t)-paths are longer than αωi+1 ≥ αωh , otherwise they would be α-detours and would 
have been traversed. Therefore, the cost of any exploration (s, t)-path passing through v p′ is greater than αωh +αωi+1 ≥
2αωh . This is impossible since the last exploration path P� satisfies ω� ≤ 2αωh . As a consequence, no exploration path 
passes through v p′ and H3(i + 1) is true.

Both cases fulfil naturally H2(i + 1). It only remains to prove statement H1(i + 1). We showed that P
(v p ,v p′ )
i+1 is the only path 

connecting Ri(s) to Ri(t), and ei+1 ∈ P
(v p ,v p′ )
i+1 . Thus, {eh, . . . , ei+1} is an (s, t)-cut of G [Ph, . . . , Pi+1].

If we re-open edge ei+1, path P
(v p ,v p′ )
i+1 connects Ri(s) to Ri(t). If we re-open e j , j < i +1, there is a path in G [Ph, . . . , Pi]

which connects Ri(s) to Ri(t) independently of P
(v p ,v p′ )
i+1 , according to the minimality of {eh, . . . , ei} in H1(i). As a conse-

quence, no proper subset of {eh, . . . , ei+1} is an (s, t)-cut. Cut {eh, . . . , ei+1} is minimal.
In summary, we derive by induction that {eh, . . . , e�} is a minimal (s, t)-cut of G [Ph, . . . , P�]. Thus, the size of the 

maximum edge (s, t)-cut is at least � − h + 1. �
From λE

max = μE
max, we know that the maximum edge (s, t)-cut size μE

max of G is greater or equal to the size of any 
minimal edge (s, t)-cut of a subgraph of G . As a consequence of Theorem 6, a relationship exists between values �, h, and 
μE

max, which is � − h + 1 ≤ μE
max.

After traversing an exploration path Pi , the traveller performs a detour-backtracking phase. The number of blockages 
discovered during this i-th detour-backtracking phase is denoted by qi . We analyse the cost of traversing Pi and performing 
the i-th detour-backtracking phase in Lemma 3.

Lemma 3. The total cost of both the i-th exploration phase and the i-th detour-backtracking phase is not greater than (2 + 2αqi)ωi .

Proof. The stack in Algorithm 1 ensures that each edge is only traversed twice: first time when moving towards t on an 
exploration path or a detour, and a second time when backtracking. The exploration path costs ωi and each detour costs no 
more than αωi . Besides, the number of detours is at most qi . Hence, the total cost is at most 2ωi +qi2αωi , which concludes 
the proof. �

We denote by k1 (resp. k2) the number of blocked edges discovered during the exploration and detour-backtracking 
phases associated with paths P1, . . . , Ph−1 (resp. Ph, . . . , P�). Let k3 be the number of blockages discovered during the 
other phases, so that k1 + k2 + k3 = k. We derive in Theorem 7 an upper-bound on the competitive ratio as a function of k1, 
k2, k3, and α.
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Theorem 7. The competitive ratio of α-detour is upper-bounded by:

k1

α
+ 2μE

max + 2α(k2 + k3 − μE
max) + 1. (3)

Proof. Since path P� is the shortest (s, t)-path of a certain graph G\E ′∗ where E ′∗ ⊆ E∗ , the offline optimal cost satisfies

ωopt ≥ ω�. (4)

According to Lemma 3, the distance traversed during the exploration and detour-backtracking phases of P1, . . . , Ph−1 is not 
greater than

h−1∑
j=1

(2 + 2αq j)ω j ≤ 2ωh−1

h−1∑
j=1

(1 + q j) = 2k1ωh−1. (5)

Inequality (5) comes from the fact that ω1 ≤ · · · ≤ ωh−1, α ≤ 1 and 
∑h−1

j=1 (1 + q j) = k1.
We evaluate the cost of the phases associated with Ph, . . . , P� . Path P� is either open and traversed in one direction only 

(Case 1) or it is blocked and the traveller reaches t via a detour (Case 2).
Case 1: If P� does not contain any blockage, then the algorithm terminates after traversing it. This final exploration phase 

costs ω� . We have q� = 0 and k2 = ∑�−1
j=h (1 + q j). Given Lemma 3, the cost of the h-th to �-th phases is less than:

�−1∑
j=h

(2 + 2αq j)ω j + ω� =
�−1∑
j=h

(2α + 2αq j)ω j +
�−1∑
j=h

(2 − 2α)ω j + ω�,

≤ 2αk2ω� + (2 − 2α)(� − h)ω� + ω�, (6)

< 2αk2ω� + (2 − 2α)μE
maxω� + ω�, (7)

= 2α(k2 − μE
max)ω� + 2μE

maxω� + ω�.

We deduce Inequality (6) from ωh ≤ · · · ≤ ω� . By applying Theorem 6 on S2 = Ph, . . . , P� , we derive that � −h ≤ μE
max − 1 <

μE
max in Inequality (7).

Case 2: Suppose that P� is blocked. The �-th exploration and detour-backtracking phases cost at most (2 +2αq�)ω�+αω� . 
Moreover, we have k2 = ∑�

j=h (1 + q j). The distance traversed from the h-th to the �-th phases is not greater than:

�−1∑
j=h

(2 + 2αq j)ω j + (2 + 2αq� + α)ω� =
�∑

j=h

(2 + 2αq j)ω j + αω�,

≤ 2αk2ω� + (2 − 2α)(� − h + 1)ω� + αω�, (8)

≤ 2αk2ω� + (2 − 2α)μE
maxω� + αω�, (9)

≤ 2α(k2 − μE
max)ω� + 2μE

maxω� + ω�. (10)

Inequality (8) follows from ωh ≤ · · · ≤ ω� . We obtain (9) from � − h + 1 ≤ μE
max. Finally, α ≤ 1 implies Eq. (10).

By definition, any path P̂ not in P1, . . . , P� is such that the distance traversed on it is at most α multiplied by its own 
cost ω̂. The distance traversed during the phases which are not associated with P1, . . . , P� is the cost of these exploration 
paths P̂ and their α-detours. As ω̂ ≤ ωopt, this distance is at most 2αk3ωopt. Applying Eq. (4) on the above inequalities, the 
competitive ratio of α-detour admits the following upper-bound:

ωα−detour

ωopt
≤ 2k1ωh−1 + 2α(k2 + k3 − μE

max)ωopt + 2μE
maxωopt + ωopt

ωopt
,

≤ k1ω�

αωopt
+ 2μE

max + 2α(k2 + k3 − μE
max) + 1, (11)

≤ k1

α
+ 2μE

max + 2α(k2 + k3 − μE
max) + 1. (12)

Inequality (11) follows from the partition {S1, S2} which imposes 2αωh−1 < ω� . �
Let cdet(k1, k2, k3, α) denote the value in (12). Parameters k1, k2, and k3 depend on the road map (G, E∗), so only 

α ∈ (0, 1) can be tuned. Value α =
√

2
2 minimises cdet(k1, k2, k3, α) under the condition k1 + k2 + k3 = k for any k > μE

max. 
Formally,
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s t
P

Q
v−

Q

v+
Q

Fig. 9. A bypass Q of the current shortest (s, t)-path P .

√
2

2
= argmin

0≤α≤1
max

k1,k2,k3∈N
k1+k2+k3=k

cdet(k1,k2,k3,α).

Corollary 2. The competitive ratio of detour is at most 2μE
max + √

2(k − μE
max) + 1.

Proof. We obtain this ratio by setting α =
√

2
2 and k1 + k2 + k3 = k in Eq. (3). �

In summary, strategy detour offers the same performance guarantee as reposition for the range μE
max ≥ k but is more 

competitive for the range μE
max < k. The slope of the competitive ratio of detour when k varies is only 

√
2 for μE

max < k.
detour strategy needs to identify the shortest (s, t)-path and (pos, t)-path at any moment of its execution. To achieve it, 

Dijkstra’s algorithm [12] is computed once between two discoveries of blocked edges with t as the start point. Hence, the 
running time of detour is O (k(m + n log n)).

Similarly to reposition and comparison, the execution of detour strategy is independent of the value of k. Thus, it can be 
used when no upper bound on the number of blockages is known and its competitive ratio is 2μE

max +√
2(|E∗|−μE

max) + 1.
detour strategy can be executed without knowing the value μE

max. Indeed, the competitive ratio of detour depends 
on μE

max but no decision is made based on μE
max in Algorithm 1. Consequently, determining μE

max before the execution of
detour only offers a guarantee on the distance to be traversed: it is not necessary to launch this strategy.

5. A competitive strategy when λV
max ≤ k

Strategy bypass, presented in this section, is an extension of the previous strategy detour. Its competitive ratio is 2
3
4 k +

O (λV
max), where λV

max is the size of the largest minimal vertex (s, t)-cut we can find in a subgraph of G .

5.1. Description of strategy bypass

The main difference between bypass and detour is that bypass guides the traveller through a new kind of paths called 
bypasses. Under certain conditions, these paths are traversed instead of the current shortest (s, t)-path. The idea behind this 
additional rule is to avoid multiple passings through the vertices of a minimal vertex (s, t)-cut. We introduce a parameter 
β ≥ 1 which limits the cost of bypasses. If their cost is too large, the competitive ratio of bypass may shoot up. Below, we 
give the definition of bypasses and Fig. 9 represents the introduced notations.

Definition 3 (Bypass Q of the shortest (s, t)-path Pmin). We consider graph G\E ′∗ , where E ′∗ is the set of blocked edges already 
discovered. Let Pmin denote the shortest (s, t)-path in G\E ′∗ . A bypass Q is the concatenation of three sections: a shortest 
(s, v−

Q )-path, an edge (v−
Q , v+

Q ), and a shortest (v+
Q , t)-path such that:

• vertex v+
Q belongs to Pmin: v+

Q ∈ Pmin,
• the cost of Q is at most βωmin: ωQ ≤ βωmin ,

• the cost of the section Q (s,v−
Q ) is at most 1

β
ωmin .

The edge (v−
Q , v+

Q ) of bypass Q is called the transition edge and v+
Q the transition vertex. The shortest (s, t)-path Pmin is 

called the fictive path of Q . As v+
Q ∈ Pmin , sections P

(v+
Q ,t)

min and Q (v+
Q ,t) are identical.

Section Q (s,v+
Q ) is longer than P (s,v+

Q ) . We observe with Definition 3 that Pmin is its own bypass. Considering any edge 
(v−, v+) of Pmin, where ω(P (s,v−)

min ) ≤ 1
β
ωmin, guarantees the conditions listed. The idea of strategy bypass is to traverse 

a bypass Q of Pmin such that the transition vertex v+
Q is as close as possible from target t . As a consequence, the path 

traversed is either Pmin itself or a bypass Q �= Pmin such that the transition vertex v+
Q ∈ Pmin fulfils ω(P (s,v+)

min ) > 1
β
ωmin.

A short description of bypass follows. As detour, it can be divided into two phases: exploration and detour-backtracking. 
The exploration phase is modified as it now allows to traverse bypasses. Strategy bypass makes the traveller traverse, as 
a priority, the bypass Q such that v+ is as close as possible from t . The exploration path is either the current shortest 
Q
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Algorithm 2: The bypass strategy.

1: Input: graph G , source s, target t
2: E ′∗ ← ∅; G ′ ← G\E ′∗; pos ← s; u0 ← s; ωexp ← ωmin(G,∅);
3: stack ← Empty Stack; V stack ← ∅;
4: while true do
5: u0 ← pos;
6: if u0 = s then
7: ωexp ← ωmin

(
G, E ′∗

)
; P (u0,t)

min ← shortest (u0, t)-path in G ′;
8: v+ ← t; bypassfound ← false;
9: while v+ �= s and bypassfound = false do

10: if there is a bypass Q passing through v+ then
11: bypassfound ← true;

else
12: v+ ← predecessor of v+ on P (u0,t)

min ;
endif

end

13: if bypassfound then traverse Q else P (u0,t)
min ;

else
14: traverse the shortest (u0, t)-path P (u0,t)

min in G ′\V stack; # detour
endif

15: update pos; # either t or the endpoint of a blocked edge

16: push the vertices visited in P (u0,t)
min except pos on stack and V stack;

17: update E ′∗ and G ′ ← G\E ′∗;
18: if pos = t then break;

19: while pos �= s and there is no P (pos,t)
min in G ′\V stack such that ω(pos,t)

min ≤ 1
β
ωexp do

20: pos ← pop(stack); V stack ← V stack\{pos};
end

end

(s, t)-path Pmin or one of its bypasses different from Pmin. The detour-backtracking phase follows the same principle as 
with detour: each time the traveller meets a detour, he traverses it. However, the definition of a detour changes. From now 
on, we say a detour is a path from the traveller’s position to target t which is apparently open and with a cost at most 
1
β
ωmin.

Algorithm 2 gives the pseudocode of bypass. Lines 1-5 and 14-20 stay unchanged compared to Algorithm 1 which 
presents detour, except for line 19 where the maximum cost of detours is modified. Lines 6-13 describe the exploration 
phase of bypass. They replace lines 6-8 of Algorithm 1. Indeed, instead of traversing directly the current shortest (s, t)-path,
bypass checks whether some bypass joins Pmin closer to target t .

Once the current shortest (s, t)-path P (s,t)
min = Pmin is computed, the existence of a bypass is verified. For each vertex 

v+ of Pmin, starting from t , we check whether there is a bypass Q such that v+ is the target-side endpoint v+
Q of the 

transition edge. In other words, we check whether there is a bypass Q with some transition edge (v, v+), v ∈ V . This 
verification is given in line 10. We deliberately omitted the details of this procedure in the pseudocode to keep it concise 
and understandable, so we explain it now. For each v+ , we look at all its neighbours v and, for each of them, we check 
whether the concatenation of the shortest (s, v)-path with edge (v, v+) and P (v+,t)

min produces a path fulfilling the conditions 
given by Definition 3. Once a bypass Q is identified, we stop the listing of neighbours and update the boolean bypassfound
← true.

5.2. Competitive analysis of bypass

The starting point of this analysis is similar to the one of detour. The exploration paths P1, . . . , P� are either shortest 
(s, t)-paths or bypasses. We divide the exploration paths P1, . . . , P� in two disjoint sequences: S1 = P1, . . . , Ph−1 and S2 =
Ph, . . . , P� . The distance traversed on each path of S1 is at most the threshold value 1

β
ωopt, while S2 contains all paths on 

which the distance traversed is greater than 1
β
ωopt. As in Section 4.2, paths in S1 and all detours will be seen as “short 

paths”.

To preserve the advantages of strategy detour, the cost of the current shortest (s, t)-path must be at least 
√

2
2 ωopt

when exploring paths in S2. Considering an exploration path of S2, we distinguish two cases. If the exploration path is 
the shortest (s, t)-path in G\E ′∗ , then we want its cost to be at least 

√
2

2 ωopt. To satisfy this condition, we have necessarily 
1
β
ωopt ≥

√
2

2 ωopt, thus β ≤ √
2. Otherwise, if the exploration path is a bypass, its cost is at least 1

β
ωopt, therefore the cost of 

its fictive path can potentially reach ( 1
β
)2ωopt at least. In order to maintain the cost of all fictive paths above 

√
2

2 ωopt, we 

must have β ≤
√√

2 = 2
1
4 . In brief, 1 ≤ β ≤ 2

1
4 . We will see in the remainder that value β = 2

1
4 minimises the competitive 

ratio of bypass.
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Paths Ph, . . . , P� are sorted in the order in which they are considered. However, their weights ωh, . . . , ω� are not nec-
essarily increasing. It may happen that a bypass Pi has a larger cost than the next exploration path Pi+1. In summary, any 
path Pi , h ≤ i ≤ � belongs to one of these categories:

• Type A: path Pi is the current shortest (s, t)-path when the traveller begins his walk on it. We have 1
β
ωopt ≤ ωi ≤ ωopt.

• Type B: path Pi is a bypass. It admits a fictive path Fi , the current shortest (s, t)-path, and Fi �= Pi . The cost of Pi may 
be larger than ωopt. It satisfies 1

β
ωopt ≤ ωi ≤ βωopt. The cost of Fi is such that 

√
2

2 ωopt ≤ ω(Fi) ≤ ωopt.

When the exploration path Pi ∈ S2 is a bypass, then the blocked edge discovered on it is placed after the transition 
vertex.

Lemma 4. Assume Pi ∈ S2 is a B-type exploration path, i.e. a bypass with a fictive path Fi �= Pi . Let (v−, v+) be the transition edge of 
Pi . If Pi is not open, the blocked edge discovered on it belongs to section P (v+,t)

i = F (v+,t)
i .

Proof. For the sake of contradiction, suppose that the traveller is blocked on P (s,v+)
i . The distance traversed by the traveller 

on Pi is thus at most ω(P (s,v−)
i ) ≤ 1

β
ω(Fi), according to Definition 3. As ω(Fi) ≤ ωopt, the distance traversed on Pi is at most 

1
β
ωopt. This is a contradiction with the definition of collection S2 which contains the explorations for which the distance 

traversed on them is greater than 1
β
ωopt. �

As with detour, the competitive analysis of bypass consists in considering a sequence Gh, . . . , G� of subgraphs of G . Each 
subgraph Gi of G , h ≤ i ≤ �, contains the vertices and edges of paths Ph, . . . , Pi . For any h ≤ i ≤ �, we can identify a minimal 
vertex (s, t)-cut Xi on Gi of size |Xi | = i − h + 1. We build this cut Xi incrementally. Each time a new exploration path Pi+1
is considered, we add a vertex xi+1 to the cut Xi such that Xi+1 = {xi+1} ∪ Xi is a minimal vertex (s, t)-cut in Gi+1. This 
way, the source and target sides of Xi , R(Xi, s) and R(Xi, t), are growing when i is increasing. Formally, R(Xi, t) ⊆ R(Xi+1, t)
and R(Xi, s) ⊆ R(Xi+1, s). We use an inductive process to extend the cutset from any index i to i + 1. Below are listed the 
induction hypotheses that will be satisfied by cut Xi = {xh, . . . , xi}, for h ≤ i ≤ �:

H ′
1(i): For any h ≤ j ≤ i, the (s, t)-path P j traversed by the traveller contains exactly one vertex of Xi and it is x j .

H ′
2(i): For any h ≤ j ≤ i, vertex x j is an ancestor of the blocked edge discovered on path P j . That is, the blocked edge 

discovered on P j is on P
(x j ,t)
j , not on P

(s,x j)

j .
H ′

3(i): All vertices v of graph Gi belonging to Xi ∪ R(Xi, t) are such that the cost of the current shortest (s, v)-path (after 
being blocked on Pi ) is larger than 

√
2

2β
ωopt.

Induction hypotheses H ′
1(i) and H ′

2(i) are similar to H1(i) and H2(i), proposed for detour in Section 4. Hypothesis H ′
3(i) is 

a stronger statement than H3(i) and allows us to handle the minimality of vertex (s, t)-cuts.
The base case follows, for which i = h. We prove there is a cut X = {xh} such that the statements H ′

1(h), H ′
2(h) and 

H ′
3(h) are true on the subgraph Gh containing only path Ph .

Theorem 8. There is a vertex xh ∈ Ph which forms a minimal (s, t)-cut Xh = {xh} in Gh and which satisfies the hypotheses H ′
1(h), 

H ′
2(h) and H ′

3(h).

Proof. Let (uh, vh) denote the blocked edge on Ph: uh is the predecessor of vh . We take xh = uh . This way, H ′
1(h) and H ′

2(h)

are clearly satisfied. The set Xh ∪ R(Xh, t) contains uh and its successors. The proof that H ′
3(h) is satisfied depends on the 

nature of Ph .
Type A. Path Ph is the current shortest (s, t)-path. So, ωh = ωmin ≤ ωopt. By definition, the cost of the traversed section 

P (s,uh)

h is larger than 1
β
ωopt. The current distance between s and any vertex v of Xh ∪ R(Xh, t), i.e. any vertex v of P (uh,t)

h , 

is more than 1
β
ωopt >

√
2

2β
ωopt. Throughout the execution of bypass, the distance between s and such v will either stay 

unchanged or increase due to the discovery of certain blockages.

Type B. Path Ph is a bypass of the shortest (s, t)-path Fh = Pmin and ωmin ≥
√

2
2 ωopt. The blocked edge (uh, vh) discovered 

on Ph also belongs to Pmin as it arrives after the transition vertex v+
Ph

of Ph , according to Lemma 4. Let v− and v+ be two 

successive vertices of Fh . If ω(F (s,v−)

h ) ≤ 1
β
ω(Fh), then (v−, v+) is a transition edge of Fh as a bypass of itself. We know 

by construction that v+
Ph

is the transition vertex closest to the target t , therefore it is a descendant of any v− satisfying 
the above inequality. We deduce that the distance from s to v+ on Fh is greater than 1 ω(Fh). By combining this with 
Ph β
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s t

ui+1

u∗
i+1

vi+1

Pi+1

Xi
R(Xi , s) R(Xi , t)

(a) vi+1 is a either u∗
i+1 or one of its descendants

s t

ui+1
u∗

i+1

vi+1

Pi+1

Xi
R(Xi , s) R(Xi , t)

(b) vi+1 is either ui+1 or one of its predecessors

Fig. 10. Position of vi+1 with respect to the blocked edge bi+1 (in red).

ω(Fh) ≥
√

2
2 ωopt and the fact that uh is a descendant of v+

Ph
, we get that the distance between s and uh on Fh is at least √

2
2β

ωopt. Hence, condition H ′
3(h) holds.

It follows that in both cases the distance between s and v ∈ Xh ∪ R(Xh, t) will be greater than 
√

2
2β

ωopt throughout the 
execution of bypass. �

Let us now put in evidence an intermediate property that will be useful to prove the induction step in Theorem 9. It 
states that the vertices in Xi ∪ R(Xi, t), once they are visited by the traveller, cannot be visited anymore.

Lemma 5. Suppose the hypothesis H ′
3(i) holds true for collection Ph, . . . , Pi . Let v ∈ Xi ∪ R(Xi, t) be a vertex visited for the first time 

by the traveller when he traversed a path P j , h ≤ j ≤ i. Then, vertex v will not be visited by the traveller anymore.

Proof. We denote by Pmin[ j] the shortest (s, t)-path after P j is traversed. We know that 
√

2
2 ωopt ≤ ω(Pmin[ j]) ≤ ωopt. We 

suppose by way of contradiction that vertex v is traversed again by the traveller on path Pq , j ≤ q ≤ �.

According to H ′
3(i), the cost of P (s,v)

q is greater than 
√

2
2β

ωopt. Section P (v,t)
q is not identical to section P (v,t)

j as the latter 

contains the blocked edge discovered on P j . Therefore, the cost of P (v,t)
q is greater than 1

β
ω(Pmin[ j]) ≥

√
2

2β
ωopt, otherwise 

it would have been traversed as a detour during the backtracking phase on P j . Hence, we have:

ω(Pq) = ω(P (s,v)
q ) + ω(P (v,t)

q ) >

√
2

2β
ωopt +

√
2

2β
ωopt ≥ βωopt.

The contradiction appears as the cost of path Pq is greater than βωopt. �
Lemma 5 guarantees that each vertex of the cut is visited exactly once. Indeed, vertex xi is visited when the traveller 

traverses Pi as it is an ancestor of the blocked edge on Pi , according to H ′
1(i) and H ′

2(i). As a consequence, it will not be 
traversed anymore on paths Pi+1, . . . , P� . This ensures the minimality of cuts Xh, . . . , X� because, for any cut Xq , q ≥ i, the 
(s, t)-path Pi does not pass through any vertex of Xq\ {xi}.

Lemmas 4 and 5 are used to prove the inductive step in the next theorem which is the keystone of our competitive 
analysis for bypass.

Theorem 9. Assume hypotheses H ′
1(i), H ′

2(i), and H ′
3(i) are satisfied for Xi , h ≤ i ≤ �. There exists a vertex xi+1 such that Xi+1 =

Xi ∪ {xi+1} is an (s, t)-cut satisfying hypotheses H ′
1(i + 1), H ′

2(i + 1) and H ′
3(i + 1).

Proof. We denote by bi+1 = (ui+1, u∗
i+1) the blocked edge to be discovered on Pi+1 by the traveller. The traveller stands on 

vertex ui+1 when this blockage is revealed. Let vi+1 be the closest-to-s vertex of Pi+1 which is in R(Xi, t). We distinguish 
two cases, represented in Fig. 10, depending on the locations of bi+1 and vi+1. In Case 1, the blocked edge of Pi+1 arrives 
“before” vertex vi+1. We show that adding vertex vi+1 into the cut Xi preserves the induction hypotheses. In Case 2, the 
blocked edge Pi+1 arrives “after” vertex vi+1. Depending on the nature of the predecessor v−

i+1 of vi+1 on Pi+1, either the 
induction hypotheses stay true when v−

i+1 is added to the cut or a contradiction appears.
Case 1: First, assume that vi+1 is either u∗

i+1 or one of its descendants (Fig. 10a). In this case, the traveller does not 
reach set R(Xi, t) when he traverses Pi+1. We fix xi+1 = ui+1. With this choice, Xi+1 is an (s, t)-cut as xi+1 belongs to Pi+1, 
condition H ′

2(i + 1) is therefore true. In the following, we will show that Xi+1 = Xi ∪{xi+1} satisfies H ′
1(i + 1) and H ′

3(i + 1).
Set R(Xi, s) only contains vertices which have already been visited by the traveller since they are “before” Xi , and 

consequently before the blockages discovered on their respective exploration paths. As a consequence, vertex ui+1 does not 
belong to R(Xi, s), otherwise the blocked edge bi+1 would have been revealed earlier and Pi+1 would not be the current 
exploration path, which is apparently open. In brief, vertex xi+1 = ui+1 is neither in R(Xi, s) nor in R(Xi, t). Therefore, no 
path P j contains xi+1, for h ≤ j ≤ i. This, in addition to H ′ (i), implies that P j contains exactly one vertex of Xi+1 and it is 
1
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x j . From H ′
3(i) and Lemma 5, we know that Pi+1 does not pass through a vertex of Xi . So, Pi+1 contains exactly one vertex 

of Xi+1 and it is xi+1. In summary, H ′
1(i + 1) holds.

We prove hypothesis H ′
3(i +1) in this paragraph. The vertices that are in Xi+1 ∪ R(Xi+1, t) but not in Xi ∪ R(Xi, t) belong 

to the section P
(u∗

i+1,t)

i+1 . Let us consider two scenarios depending on whether Pi+1 is the current shortest (s, t)-path or a 
bypass:

• If Pi+1 is the current shortest (s, t)-path, then the distance traversed on it must be larger than 1
β
ωopt. So, the cost of 

the shortest path between s and any vertex in P
(ui+1,t)
i+1 is greater than 1

β
ωopt >

√
2

2β
ωopt.

• If Pi+1 is a bypass, the blocked edge bi+1 is also on its fictive path Fi+1, according to Lemma 4. Moreover, the cost of 
the section between s and ui+1 on Fi+1 is greater than 1

β
ω(Fi+1) because the transition vertex of Pi+1 is closer to t

than any transition vertex of Fi+1 as a bypass of itself. As ω(Fi+1) ≥
√

2
2 ωopt, we know that the cost of Fi+1 between s

and ui+1 is larger than 
√

2
2β

ωopt.

It follows from H ′
3(i) that the shortest path between s and any vertex of Xi+1 ∪ R(Xi+1, t) has a cost larger than 

√
2

2β
ωopt, 

i.e. H ′
3(i + 1) is satisfied.

Case 2: We assume here that vi+1 is located before the blockage bi+1 (Fig. 10b). We denote by v−
i+1 the predecessor of 

vi+1 on Pi+1. We fix xi+1 = v−
i+1.

First, we assume that xi+1 = v−
i+1 ∈ R(Xi, s). This means that vertex xi+1 was already visited. Consequently, P

(xi+1,t)
i+1 is 

not a detour, otherwise it would have already been traversed. That is, ω(P
(xi+1,t)
i+1 ) > 1

β
ωmin ≥

√
2

2β
ωopt. Using this, we derive 

the following inequalities:

ω(P
(s,xi+1)

i+1 ) = ωi+1 − ω(P
(xi+1,t)
i+1 ) < βωopt −

√
2

2β
ωopt, (13)

≤
√

2

β
ωopt −

√
2

2β
ωopt ≤

√
2

2β
ωopt ≤ 1

β
ωmin. (14)

The cost of Pi+1 is ωi+1 ≤ βωopt, whether Pi+1 is a shortest path or a bypass, which implies (13). Inequality (14) comes 
from the fact that β ≤

√
2

β
.

Moreover, vertex vi+1, which is in R(Xi, t), the successor of xi+1 on Pi+1, belongs to a former exploration path P j and 
it is located after the blockage on P j , otherwise, it would not be on Pi+1 (Lemma 5). As a conclusion, Pi+1 is a bypass of 
either P j or the fictive path F j (if P j is a bypass) and its transition vertex is closer to t than the transition vertex of P j . 
We obtain a contradiction: Pi+1 should have been traversed during a previous round.

Given this contradiction, we know that v−
i+1 /∈ R(Xi, s). So, it does not belong to Gi . Set Xi+1 = Xi ∪{xi+1} is an (s, t)-cut, 

where each exploration path contains exactly one of its vertices and each element of the cut arrives before the blockage: 
H ′

1(i + 1) and H ′
2(i + 1) are satisfied.

Let P j , h ≤ j ≤ i be the last exploration path traversed containing v−
i+1 but vi+1 was not visited by the traveller on it 

(Lemma 5). We prove by contradiction that if the cost of Pi+1 between s and v−
i+1 is at most 

√
2

2β
ωopt ≤ 1

β
ωmin, then Pi+1

should have been the bypass traversed instead of P j during step j. To justify this assertion, we distinguish two scenarios as 
follows:

• If P j was a shortest (s, t)-path, then Pi+1 would have been its bypass. On the one hand, vi+1 is a descendant of the 
blocked edge (u j, u∗

j ) on P j , since vi+1 was not visited during the exploration of P j . On the other hand, the transition 
vertex of P j (as a bypass on itself) appears before the blocked edge. Hence, the transition vertex of Pi+1, vi+1, is closer 
to t than the transition vertex of P j itself.

• If P j was a bypass of F j , then a similar argument works. Indeed, the transition vertex of P j on F j is located before the 
blocked edge (u j, u∗

j ), so it is an ancestor of vi+1.

In both cases, the transition vertex of Pi+1 is closer to t than the transition vertex of P j itself. This contradiction implies 
H ′

3(i + 1).
In summary, when vi+1 is located before the blocked edge bi+1, we necessarily have v−

i+1 /∈ R(Xi, s) and we proved that 
taking xi+1 = v−

i+1 in this case satisfies the hypotheses H ′
1(i + 1), H ′

2(i + 1), and H ′
3(i + 1). �

This theorem ensures the existence of a minimal vertex (s, t)-cut X = X� of cardinality � − h + 1. As a consequence, 
� − h + 1 ≤ λV

max. The cost of any detour and any exploration path which is not in Ph, . . . , P� is at most 1
β
ωopt. Let k1 be 

the blockages which are on paths Ph, . . . , P� and k2 = k − k1. Now, we can state the competitive ratio of bypass.
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Theorem 10. The competitive ratio of bypass is upper-bounded by:

2βλV
max + 2

β
(k − λV

max) + 1. (15)

As β must be less than or equal to 2
1
4 , the best competitive slope is obtained when β = 2

1
4 =

√√
2 and the competitive ratio is at most:

2

√√
2λV

max + 2
3
4 (k − λV

max) + 1.

Proof. The cost of the traversal of “short paths”, i.e. paths which are not in collection S2 = Ph, . . . , P� , is at most 2
β

k2ωopt. 
The cost of each path in S2 is at most βωopt because of the existence of bypasses. Therefore, the distance traversed on 
paths Ph, . . . , P� is at most 2βk1ωopt. It follows that the total distance traversed is upper-bounded by:

2βk1ωopt + 2

β
k2ωopt + ωopt = 2βk1ωopt + 2

β
(k − k1)ωopt + ωopt,

with an extra term ωopt which is at most the distance traversed on the path when the traveller reaches t . Since k1 = � −
h + 1 ≤ λV

max and β ≥ 1, the total distance is upper-bounded by 2βλV
maxωopt + 2

β
(k −λV

max)ωopt, which gives us Equation (15)
as an upper-bound of the competitive ratio. �
6. Perspectives

Both strategies detour and bypasses achieve a competitive bound asymptotically smaller than the global one 2k + 1
on some families of bounded-cut graphs. A natural improvement of our contributions would be to design strategies with 
smaller competitive slopes, i.e. ρ <

√
2 when μE

max is bounded or ρ <
√√

2 when λV
max is bounded. A significant break-

through would consist in identifying a family of bounded-cut graphs which admits deterministic strategies with a constant 
competitive ratio, i.e. independently of k.

In our study, we focused on outerplanar graphs as they satisfy λV
max ≤ 2. For this reason, bypass performs well on these 

graphs with a competitive slope 
√√

2. We believe that a strategy with a smaller competitive ratio could be designed 
specifically for outerplanar graphs. Indeed, our reasoning only uses the fact that K2,3 is a forbidden minor of outerplanar 
graphs. The inequality λV

max ≤ 2 could suggest the existence of strategies more efficient that the one treated in this article 
achieving ρk + O (λV

max) in general.
An interesting extension of this work would be to expand the list of graph parameters such that, when these parameters 

are small, efficient strategies can be designed. We know from our study that this list contains both cut parameters μE
max and 

λV
max. We wonder if parameters coming from other horizons - different from cuts - could be used to design deterministic 

strategies outperforming ratio 2k + 1. We can already state that some well-known notions on graphs do not belong to this 
list:

• Tree decompositions: the treewidth and pathwidth of the pathological graph Wk are equal to 2 for any k ∈N .
• Degrees: the degeneracy of graph Wk is equal to 2. Moreover, there is a binary apex tree (maximum degree 2) with a 

structure similar to Wk for which ratio 2k + 1 cannot be outperformed [5].
• Planarity: graph Wk is planar bipartite.

For all these parameters, even if they are constant, there is no hope of finding a deterministic strategy with competitive 
slope smaller than 2.

Eventually, the major open question in the field of k-CTP is the existence of a polynomial-time randomised strategy 
with competitive ratio ρk + O (1), ρ < 2 for general graphs. We believe that generalising the algorithm of Bender and 
Westphal [3] for node-disjoint paths is the best approach to answer this question. The difficulty lies in determining an 
implicit representation of the graph on which random draws could be handled recursively, as it was done for simple disjoint 
(s, t)-paths.
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