
Improved Deterministic Strategy for the
Canadian Traveller Problem Exploiting Small

Max-(s, t)-Cuts

Pierre Bergé1, Lou Salaün2,3

1 LRI, Université Paris-Sud, Université Paris-Saclay, Orsay France
Pierre.Berge@lri.fr

2 Bell Labs, Nokia Paris-Saclay, 91620 Nozay, France
lou.salaun@nokia-bell-labs.com

3 LTCI, Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France

Abstract. The k-Canadian Traveller Problem consists in finding the
optimal way from a source s to a target t on an undirected weighted
graph G, knowing that at most k edges are blocked. The traveller, guided
by a strategy, sees an edge is blocked when he visits one of its endpoints.
A major result established by Westphal is that the competitive ratio of
any deterministic strategy for this problem is at least 2k+1. reposition
and comparison strategies achieve this bound.

We refine this analysis by focusing on graphs with a maximum (s, t)-
cut size µmax less than k. A strategy called detour is proposed and its
competitive ratio is 2µmax +

√
2(k − µmax) + 1 when µmax < k which

is strictly less than 2k + 1. Moreover, when µmax ≥ k, the competitive
ratio of detour is 2k + 1 and is optimal. Therefore, detour improves
the competitiveness of the deterministic strategies known up to now.

Keywords: Canadian traveller problem · competitive analysis · online
algorithms

1 Introduction

Related work. The k-Canadian Traveller Problem (k-CTP) was defined by
Papadimitriou and Yannakakis [8] and is PSPACE-complete [1, 8]. Given an
undirected weighted graph G and two of its vertices s, t ∈ V , the objective is to
make a traveller walk from s to t on graph G in the most efficient way despite
the existence of some blocked edges E∗ (E. Parameter k is an upper bound of
the number of blocked edges: |E∗| ≤ k. The traveller does not know which edges
are blocked when he begins his walk. He discovers a blocked edge e = (u, v)
when he visits one of its endpoints u or v.

The traveller traverses graph G = (V,E, ω), where n = |V | and m = |E|.
Edge weights are given by the function ω : E → Q+. Our objective is to make
the traveller reach target t with a minimum cost (also called distance), which is
the sum of the weights of edges traversed. A pair (G,E∗) is called a road map.

2 Pierre Bergé1, Lou Salaün2,3

All the road maps considered are feasible: there is an (s, t)-path in G\E∗, the
graph G deprived of the obstructed edges E∗.

A solution to the k-CTP is an online algorithm, called a strategy. Its quality
can be assessed with competitive analysis [4]. Roughly speaking, the competitive
ratio is the quotient between the distance actually traversed by the traveller and
the distance he would have traversed, knowing which edges are blocked before
beginning his walk. Westphal [10] proved that no deterministic strategy achieves
a competitive ratio better than 2k + 1. Said differently, for any deterministic
strategy A, there is at least one k-CTP road map for which the competitive
ratio of A is at least 2k + 1.

Two strategies proposed in the literature reach this optimal ratio: reposi-
tion [10] and comparison [11]. reposition makes the traveller traverse the
shortest (s, t)-path. If there is a blocked edge (u, v) on this path, the traveller
discovers it when he visits vertex u. Then, he comes back to s passing through
the same path. The process starts again on G\E′∗, the graph G deprived of the
blocked edges E′∗ identified until now. comparison is based on a different prin-
ciple: when the traveller discovers a blockage (u, v) and stands on vertex u, he

compares the shortest (u, t)-path P
(u,t)
min (cost ω

(u,t)
min) of G\E′∗ with its shortest

(s, t)-path P
(s,t)
min (cost ω

(s,t)
min). If ω

(s,t)
min ≤ ω

(u,t)
min , the traveller moves as in repo-

sition. If ω
(s,t)
min > ω

(u,t)
min , the traveller traverses the path P

(u,t)
min , etc.

Randomized strategies, i.e. strategies in which choices of direction depend
on a random draw, were also studied. Westphal [10] proved that there is no
randomized strategy achieving a ratio lower than k+ 1. Bender et al. [2] studied
graphs composed only of vertex-disjoint (s, t)-paths and proposed a polynomial-
time strategy of ratio k + 1. A slight revision of that strategy is reported in [9].
To the best of our knowledge, there is no polynomial-time randomized strategy
achieving a competitive ratio smaller than 2k + 1 on general graphs. Such a
strategy would not be memoryless [3].

Contributions. Our work exclusively concerns deterministic strategies. We
establish a relationship between the size µmax of the largest minimal (s, t)-cut
of a graph G and the competitive ratio that can be obtained on G, for any
configuration of blocked edges. Concretely, the competitive ratio of deterministic
strategies on graphs where µmax < k is studied.

According to the proof of Lemma 2.1 in [10], for any value µ ∈ N∗, there
is at least one graph (made up of vertex-disjoint (s, t)-paths only) such that
µmax = µ and no deterministic strategy has a competitive ratio less than 2k+ 1
on it if µmax ≥ k. In this study, we focus on graphs fulfilling µmax < k: we
assess the competitive ratio of strategies reposition and comparison under
this condition. We devise a more competitive strategy called detour. We list
our contributions:

– For any value µmax ≥ 4, we prove that there is at least one graph with
µmax < k for which both reposition/comparison strategies are (2k + 1)-
competitive.

– We propose a polynomial-time strategy called detour with competitive
ratio 2µmax+

√
2(k−µmax)+1 when µmax < k. It outperforms the competitive

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 3

ratio of the existing deterministic strategies. In brief, ratio 2k + 1 is widely
defeated by a deterministic strategy on graphs G satisfying µmax < k.

Strategy detour is also (2k + 1)-competitive when µmax ≥ k. For this reason,
it becomes the best deterministic strategy known for the k-CTP because it per-
forms as well as reposition/comparison when µmax ≥ k and better than them
when µmax < k.

The organization of this article follows. In Section 2 we remind some defini-
tions related to online algorithms, paths and cuts. Section 3 contains the proof
that reposition and comparison are (2k + 1)-competitive, even if µmax < k.
The detour strategy is described in Section 4 and its competitive ratio is evalu-
ated. We conclude this study in Section 5 and provide some directions for future
research.

2 Preliminaries

We present the definition of the competitive ratio and some notions associated
with paths and cuts.

Competitive ratio. For any set of blocked edges E′∗ ⊆ E∗, ωmin (G,E′∗) is
the cost of the shortest (s, t)-path in graph G\E′∗. Value ωopt = ωmin (G,E∗) is
the optimal offline cost for the road map (G,E∗). Concretely, this corresponds
to the distance the traveller would have traversed if he had known the blockages
in advance.

The competitive ratio is defined in [4]. We denote by ωA (G,E∗) the distance
traversed by the traveller guided by strategy A on graph G from source s to
target t with blocked edges E∗. The competitive ratio cA(G,E∗) of A over a

road map (G,E∗) is defined as cA(G,E∗) = ωA(G,E∗)
ωopt

. The competitive ratio cA

of A is thus:

cA = max
(G,E∗)

cA (G,E∗) (1)

Similarly, we say strategy A is cA-competitive for a family F of graphs (for
example, F = {G : µmax < k}) if it is the maximum of value cA (G,E∗) over
road maps (G,E∗) such that G ∈ F .

Paths. A simple path P is a sequence of pairwise different vertices v1·v2 · · · vi·
vi+1 · · · v`, with departure v1 and arrival v`, such that two successive vertices
(vi, vi+1) are adjacent in G. All paths mentioned in this article are simple. To
improve readability, we abuse notations: v1 ∈ P and (v1, v2) ∈ P mean that
vertex v1 and edge (v1, v2) are on path P , respectively. If vertices u and v belong
to path P , then P (u,v) denotes the section of path P between vertices u and v.
Any path is naturally associated with a direction, from the departure to the
arrival. We say the successor of edge e in P is the edge arriving just after e in
P . The descendants of e are all edges arriving after e in P , i.e. edges further
than u from the departure of P . The predecessor and the ancestors are defined
symmetrically.

4 Pierre Bergé1, Lou Salaün2,3

Graphs may contain several shortest (s, t)-paths. Our algorithm in Section 4
requires to compute one of the shortest (s, t)-paths of any graph in a determin-
istic way. To achieve it, a solution is to associate any vertex with an identifier in
{1, . . . , n}. If two paths have the same distance, we compare their lexicographic
order. Dijkstra’s algorithm [6] is adapted to this extra criterion: for any vertex
v, it stores the shortest path from the start point to v with the smallest lexico-
graphic order. Whenever we refer to “the shortest (u, v)-path”, for any vertices
u and v, this process is executed.

Cuts. A set X ⊆ E is an edge (s, t)-cut if source s and target t are separated
in graph G deprived of edges X. We say that cut X is minimal if none of its
proper subsets X ′ (X is an (s, t)-cut. Let µmax be the maximum cardinality of
a minimal (s, t)-cut:

µmax = max
X minimal
(s,t)−cut

|X| . (2)

Any (s, t)-cut X where |X| > µmax is not minimal. If X is a minimal (s, t)-cut,
graph G\X contains exactly two connected components: one, denoted R(X, s),
contains all vertices reachable from s and another one, denoted R(X, t), all
vertices reachable from t. Largest minimal (s, t)-cuts Xmax, |Xmax| = µmax, are
called max-(s, t)-cuts throughout our study.

3 Competitive ratio of existing strategies when µmax < k

We study the family of graphs satisfying µmax < k. We assess, on such instances,
the competitiveness of the two best deterministic strategies known for now in
the literature. Indeed, reposition and comparison are (2k+1)-competitive for
general graphs. We prove that they do not benefit from the inequality µmax < k.
We begin with reposition strategy.

Theorem 1. For any k > 4, there is a road map (Gk, E∗,k), µmax = 4, such that
the competitive ratio of reposition on (Gk, E∗,k) is 2k + 1: crep (Gk, E∗,k) =
2k + 1.

Proof. The road map (Gk, E∗,k) is drawn in Fig. 1. Graph Gk has a horizontal
axis of symmetry ∆. On each side, there are dk2 e diamond graphs, i.e. cycles
of length 4, put in series. They are surrounded by two edges, one of weight 1
incident to s and one of weight ε� 1 incident to t. For any diamond graph above
∆, three of its edges are weighted with ε and the bottom left one is weighted
with 3ε. All the top right edges are blocked (red edges in Fig. 1). All diamonds
below ∆ are identical, except for the one closest to s (weights 2ε, ε, 4ε, and ε, see
Fig. 1). If k is even, as in Fig. 1, the top right edges of all diamonds are blocked.
If k is odd, there is no blockage on the diamond below ∆ which is the closest to
t. In this way, there are always k blocked edges in E∗,k and the max-(s, t)-cut
size of Gk is µmax = 4. Let g(k) = 2dk2 e ∈ {k, k + 1}. The cost of the shortest
(s, t)-path in Gk is 1 + (g(k) + 1)ε.

Guided by reposition, the traveller traverses the shortest (s, t)-path which
is above ∆ and is blocked in the first diamond (distance 1+ε). Set E′∗ denotes the

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 5

s t

∆

1

1

ε

3ε

ε

ε

ε

3ε

ε

ε

ε

3ε

ε

ε

4ε

2ε

ε

ε

3ε

ε

ε

ε

3ε

ε

ε

ε

ε

ε

Fig. 1: Graph G6 and blocked edges E∗,6 in red

blocked edges discovered during the execution: for now, |E′∗| = 1. The traveller
comes back to s (distance 1 + ε). The shortest (s, t)-path in graph G\E′∗ is now
below axis ∆ and its cost is 1 + (g(k) + 2)ε as it contains an edge of weight
2ε. The traveller traverses this path and is blocked in the first diamond below
∆ (distance 1 + 2ε). Then, the current shortest (s, t)-path in G\E∗ is above
∆ and its cost is 1 + (g(k) + 3)ε, etc. In summary, the traveller is blocked k
times traversing paths with cost larger than 1 + ε in two directions. The total
distance traversed drep satisfies drep ≥ 2k (1 + ε) + ωopt ≥ (2k + 1)(1 + ε). As
ωopt = 1 + (2g(k) + 1)ε, the competitive ratio of reposition crep is thus:

crep ≥ (2k + 1)
1 + ε

1 + (2g(k) + 1)ε

ε→0−→ 2k + 1.

As ε may tend to zero, there always is a road map on which reposition achieves
a ratio 2k + 1− δ for any arbitrarily small value δ > 0.

This result remains true for any value µmax > 4 as we can artificially add
(s, t)-paths disjoint from Gk which make µmax increase. It suffices to assign
a sufficiently large cost to these paths, so that reposition never makes the
traveller traverse them. Now we focus on comparison strategy.

Theorem 2. For any k > 3, there is a road map (G′k, E
′
∗,k), µmax = 3, such that

the competitive ratio of comparison on (G′k, E
′
∗,k) is 2k+ 1: ccomp(G′k, E

′
∗,k) =

2k + 1.

Proof. Road map (G′k, E
′
∗,k) is drawn in Fig. 2. Axis∆′ is represented to facilitate

the description of G′k. Above ∆′, k−1 diamonds graphs are put in series and are
surrounded as in Gk (see Theorem 1). On each diamond, the edge weights are
ε, except for the bottom left edges weighted with value 1. The top left edges are

blocked. Moreover, the edge incident to t above ∆′ is also blocked, so
∣∣∣E′∗,k∣∣∣ = k.

Below ∆′, there is an open (s, t)-path with cost 1 + 2kε. The shortest (s, t)-path
in G′k is above ∆′ and its cost is 1 + (2k− 1)ε. Graph G′k is such that µmax = 3.

Guided by comparison, the traveller traverses the shortest (s, t)-path and
is blocked when he arrives on the first diamond (distance 1). Then, the cost
of the shortest (s, t)-path in G\E′∗, i.e. 1 + 2kε, is compared with the shortest

6 Pierre Bergé1, Lou Salaün2,3

s t

∆′
1

1

ε

1

ε

ε

ε

1

ε

ε

ε

1

ε

ε

7ε

ε

ε

Fig. 2: Graph G′4 and blocked edges E′∗,4 in red

distance between the current position of the traveller and t, i.e. 1 + (2k − 2)ε.
Since 1 + (2k − 2)ε < 1 + 2kε, the traveller chooses to take the shortest path
between its current position and t, which is above ∆′. He meets a second blockage
when arriving on the second diamond (distance 1 + ε). Then, he makes the
same decision and traverses the diamonds above ∆′. Eventually, when he meets
the last blockage incident to t, he travels back to s and finally passes through
the optimal offline path, below ∆′. The total distance traversed is dcomp =
2 + 2(k − 1)(1 + ε) + 1 + 2kε. The competitive ratio ccomp of comparison
strategy on the road map (G′k, E

′
∗,k) follows:

ccomp =
2 + 2(k − 1)(1 + ε) + 1 + 2kε

1 + 2kε

ε→0−→ 2k + 1.

Making ε tend to zero terminates the proof.

The existence of a deterministic strategy achieving a ratio less than 2k+1 on
graphs fulfilling µmax < k is still an open question after the results established
in Theorems 1 and 2. Indeed, we showed that the existing strategies cannot
defeat their global competitive ratio on this particular family of graphs. In the
remainder, we devise a strategy outperforming reposition and comparison
when µmax < k.

4 Detour strategy

We first introduce in Subsection 4.1 a parameterized strategy called α-detour.
It takes as input graph G, source s, target t, and a parameter α ∈ (0, 1). In
Subsection 4.2, we provide an upper bound of its competitive ratio. This bound

is minimized for α =
√
2
2 and is 2µmax +

√
2(k − µmax) + 1 in this case. Strat-

egy detour mentioned earlier corresponds to
√
2
2 -detour. Finally, we provide

the execution time of detour strategy and discuss some of its properties in
Subsection 4.3.

4.1 Description of α-Detour strategy

We present the α-detour strategy in Algorithm 1. Variable pos keeps track of
the traveller’s current position. The idea is to perform successively two phases:

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 7

an exploration followed by a detour-backtracking. The exploration starts when

the traveller is on source s (line 8). He traverses the shortest (s, t)-path P
(s,t)
min

called the exploration path. Its cost ω
(s,t)
min = ωmin(G,E′∗) is stored in ωexp (line 7).

At this point, there are two possibilities:
1) The traveller reaches t and the execution terminates (line 13).

2) The traveller arrives at pos = u and discovers a blocked edge (u, v) ∈ P (s,t)
min .

Then, the detour-backtracking phase begins.

Each exploration followed by a detour-backtracking phase can be seen as a

depth-first search (DFS). When the traveller is blocked on P
(s,t)
min , we ask whether

an α-detour, i.e. a (pos, t)-path with cost at most αωexp, exists. If an α-detour

exists, the traveller traverses the shortest path P
(pos,t)
min from the current position

pos to target t (line 9). Obviously, its cost satisfies ω
(pos,t)
min ≤ αωexp. Otherwise,

the traveller backtracks to the vertex before pos = u on the exploration path
(lines 14-16).

As in a DFS, we use a stack to remember the previous vertices for backtrack-
ing. We denote by Vstack the set of vertices in the stack. We do not allow an

α-detour P
(pos,t)
min to pass through any vertex v ∈ Vstack, since the section P

(v,t)
min

will be considered later on when pos = v. The vertices of an exploration path
traversed by the traveller are naturally put in stack. Moreover, when the trav-

eller is blocked on an α-detour P
(pos,t)
min , the vertices of P

(pos,t)
min from pos to the

endpoint of the blocked edge are put in stack. Finally, if the traveller backtracks
to s, the algorithm goes back to the exploration phase. At this moment, the
stack is empty.

Recall that E′∗ represents the set of discovered blocked edges. Variable G′

contains the graph G deprived of the discovered blockages E′∗ at any moment of
the execution. At each iteration of the while loop, the variables are updated as

follows: if the path P
(u0,t)
min currently traversed (lines 8-9) does not contain any

blockage, then the traveller reaches t, i.e. pos ← t. In this case, the algorithm

terminates since the destination is reached. Otherwise, let P
(u0,t)
min = u0 · · ·ui ·

ui+1 · · ·ur · t, where (ui, ui+1) is its first blocked edge. The traveller’s position is
updated from u0 to ui (line 10). Then, we update E′∗ with the newly discovered
blockages including (ui, ui+1), and G′ ← G\E′∗ (line 12). In addition, we push the
traversed vertices u0, . . . , ui−1 on the stack (except ui) and update accordingly

Vstack ← Vstack∪{u0, . . . , ui−1}. In case there is no α-detour P
(ui,t)
min in G′\Vstack,

the algorithm backtracks by popping ui−1 from the stack and setting pos← ui−1
(lines 14-16).

If α = 0, the algorithm does not take any detour. As a consequence, 0-
detour is equivalent to reposition, as both procedures perform an exploration
phase followed by backtracking without taking any detour. In the following, we
provide an upper bound of α-detour’s competitive ratio.

8 Pierre Bergé1, Lou Salaün2,3

Algorithm 1: The α-detour strategy

1: Input: graph G, source s, target t, parameter α ∈ (0, 1)
2: E′∗ ← ∅; G′ ← G\E′∗; pos← s; u0 ← s; ωexp ← ωmin(G, ∅);
3: stack← Empty Stack; Vstack ← ∅;
4: while true do
5: u0 ← pos;
6: if u0 = s then
7: ωexp ← ωmin(G,E′∗);

8: traverse the shortest (s, t)-path P
(u0,t)

min in G′;

else

9: traverse the shortest (u0, t)-path P
(u0,t)

min in G′\Vstack;
endif

10: update pos;

11: push the vertices visited in P
(u0,t)

min except pos on stack;
12: update E′∗, G

′, and Vstack;
13: if pos = t then break;

14: while pos 6= s and there is no P
(pos,t)

min in G′\Vstack such that

ω
(pos,t)

min ≤ αωexp do
15: pos← pop(stack);
16: Vstack ← Vstack\{pos};

end

end

4.2 Competitive analysis

We denote by P1, . . . , P` the exploration paths P
(s,t)
min such that the distance from

s to the blocked edge discovered on it is greater than α multiplied by their own
cost, i.e. αωi. In other words, the distance di traversed by the traveller on the
exploration paths Pi, 1 ≤ i ≤ `, satisfies di ≥ αωi. Paths Pi are sorted in order
to fulfil ω1 ≤ · · · ≤ ω`. The exploration paths P1,. . . ,P`−1 are blocked, while
path P` can be open. If P` does not contain any blockage, then the algorithm
terminates after the traveller traverses it.

Let us partition P1, . . . , P` into two sequences S1 = P1, . . . , Ph−1 and S2 =
Ph, . . . , P` such that 2αωh−1 < ω` ≤ 2αωh. In the particular case where ω` ≤
2αω1, then h = 1 and the two sets are S1 = ∅ and S2 = P1, . . . , P`. We denote
by G [Ph, . . . , P`] the subgraph of G induced by paths Ph, . . . , P`, i.e. containing
only the vertices and edges of paths Pi, h ≤ i ≤ `.

Theorem 3. The max-(s, t)-cut size induced on graph G [Ph, . . . , P`] is at least
`− h+ 1.

Proof. We denote by bi the blocked edge discovered on Pi, for i ∈ {h, . . . , `}. We
construct inductively a set {eh, . . . , e`} of edges satisfying the following induction
hypotheses, for all i ∈ {h, . . . , `}:

H1(i): {eh, . . . , ei} is a minimal (s, t)-cut of G [Ph, . . . , Pi],

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 9

H2(i): Either ei = bi or ei is an ancestor of bi in Pi,
H3(i): For j ∈ {i+ 1, . . . , `}, Pj cannot pass through ei.

Basis: For i = h, G [Ph, . . . , Pi] contains only one path Ph. We choose eh =
bh, which fulfils H2(h). Since any edge of Ph is a max-(s, t)-cut of G [Ph], it
satisfies H1(h). Statement H3(h) is also true, as eh is blocked.

Inductive step: Assume that H1(i) to H3(i) are true for a certain integer
i in {h, . . . , ` − 1}. We will construct ei+1 and prove the induction hypothe-
ses H1(i+ 1) to H3(i+ 1). For simplicity, we denote sets R({eh, . . . , ei}, s) and
R({eh, . . . , ei}, t) in graph G [Ph, . . . , Pi] by Ri(s) and Ri(t), respectively.

Let P
(v0,vp)
i+1 = v0 · v1 · · · vp be the longest section in Pi+1, starting from

v0 = s, such that v0, . . . , vp ∈ Ri(s) and p ∈ N. Section P
(v0,vp)
i+1 contains at least

vertex v0 = s. For j ∈ {h, . . . , i}, all ancestors of ej in Pj belong to Ri(s), and
all descendants belong to Ri(t). Therefore, according to H2(i), all exploration

paths’ sections of the form P
(s,u)
j are open and equal to the shortest path from

s to u, for u ∈ Ri(s) ∩ Pj and j ∈ {h, . . . , i}. In particular, since P
(v0,vp)
i+1 is the

shortest (v0, vp)-path, we deduce that it is open as vp belongs to some Pj by
definition of Ri(s).

According to H3(i), P
(vp,t)
i+1 is a new path connecting Ri(s) to Ri(t), which

does not traverse any edge of the cut {eh, . . . , ei}. Furthermore, no vertex in

P
(vp+1,t)
i+1 belongs to Ri(s). Indeed, suppose for the sake of contradiction that

u ∈ P (vp+1,t)
i+1 and u ∈ Ri(s). There would exist j ∈ {h, . . . , i}, such that P

(s,u)
j

is the shortest (s, u)-path, and all its vertices belong to Ri(s). This contradicts

with the fact that P
(s,u)
i+1 is also the shortest (s, u)-path and vp+1 /∈ Ri(s), by

definition. Let vp′ be the first vertex of Pi+1 belonging to Ri(t), i.e. vp′ ∈ Ri(t)
and p < p′. Such a vertex exists as t is a candidate. We derive that P

(vp,vp′)

i+1 is
the unique path both connecting Ri(s) to Ri(t) and avoiding cut X. Figure 3
represents cut {eh, . . . , ei}, path Pi+1 and its vertices vp and vp′ .

s t

vp vp′

vp′−1

Pi+1

X

Ri(s) Ri(t)

Fig. 3: Cut X = {eh, . . . , ei}, path Pi+1, and vertices vp, vp′−1, vp′

We fix ei+1 differently depending on the position of bi+1. We already proved

that bi+1 /∈ P
(v0,vp)
i+1 , the remaining cases are:

10 Pierre Bergé1, Lou Salaün2,3

– If bi+1 ∈ P
(vp,vp′)

i+1 , then we set ei+1 = bi+1. As ei+1 ∈ E∗, H3(i+ 1) is true.

– Otherwise, if bi+1 ∈ P
(vp′ ,t)

i+1 , we choose ei+1 = (vp′−1, vp′). We prove that

the cost of the current shortest (s, vp′)-path, P
(s,vp′)

i+1 , is at least αωh. In-
deed, as vertex vp′ belongs to a certain path Pj′ , j

′ ∈ {h, . . . , i}, the cost of

P
(s,vp′)

i+1 is at least the cost of P
(s,vp′)

j′ . If we have ω
(s,vp′)

i+1 ≤ αωh, the distance
traversed by the traveller on Pj′ is less than αωh ≤ αωj′ , as vp′ ∈ Ri(t).
This contradicts with the fact that Pj′ ∈ {Ph, . . . , P`}. Moreover, after the
(i+ 1)-th detour-backtracking phase, all remaining open (vp′ , t)-paths are
longer than αωi+1 ≥ αωh. Therefore, the cost of any exploration (s, t)-path
passing through vp′ is greater than αωh +αωi+1 ≥ 2αωh. This is impossible
since the last exploration path P` satisfies ω` ≤ 2αωh. As a consequence, no
exploration path passes through vp′ and H3(i+ 1) is true.

Both cases fulfil naturally H2(i+1). It only remains to prove statement H1(i+1).

We showed that P
(vp,vp′)

i+1 is the only path connecting Ri(s) to Ri(t), and ei+1 ∈
P

(vp,vp′)

i+1 . Thus, {eh, . . . , ei+1} is an (s, t)-cut of G [Ph, . . . , Pi+1]. If we re-open

edge ei+1, path P
(vp,vp′)

i+1 connects Ri(s) to Ri(t). If we re-open ej , j < i + 1,
there is a path in G [Ph, . . . , Pi] which connects Ri(s) to Ri(t) independently of

P
(vp,vp′)

i+1 , according to the minimality of {eh, . . . , ei} in H1(i). As a consequence,
no proper subset of {eh, . . . , ei+1} is an (s, t)-cut. Cut {eh, . . . , ei+1} is minimal.

In summary, we derive by induction that {eh, . . . , e`} is a minimal (s, t)-cut
of G [Ph, . . . , P`]. The size of the max-(s, t)-cut is at least `− h+ 1.

The following lemma states that the max-(s, t)-cut size of graphG [Ph, . . . , P`]
cannot exceed the max-(s, t)-cut size of the bigger graph G.

Lemma 1. The max-(s, t)-cut size on graph G [Ph, . . . , P`] is less than or equal
to the max-(s, t)-cut size µmax of the original graph G.

Proof. Let X be one of the max-(s, t)-cuts in graph G [Ph, . . . , P`]. Cut X is
minimal, so no subset X ′ (X is an (s, t)-cut. If X is an (s, t)-cut in G, then
it is also minimal in G as none of its subsets can be an (s, t)-cut. Therefore,
|X| ≤ µmax.

Suppose now that X is not an (s, t)-cut in G. We denote by Y the max-(s, t)-
cut in graph G deprived of edges X, i.e. G\X. Set X ∪ Y is thus a minimal
(s, t)-cut in graph G as Y is minimal in G\X. So, |X| ≤ |X ∪ Y | ≤ µmax. In
both cases, the max-(s, t)-cut size in G [Ph, . . . , P`] is at most µmax.

According to both Theorem 3 and Lemma 1, a relationship exists between
values `, h, and µmax, which is `− h+ 1 ≤ µmax.

After traversing an exploration path Pi, the traveller performs a detour-
backtracking phase. The number of blockages discovered during this i-th detour-
backtracking phase is denoted by qi. We analyse the cost of traversing Pi and
performing the i-th detour-backtracking phase in Lemma 2.

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 11

Lemma 2. The total cost of both the i-th exploration phase and the i-th detour-
backtracking phase is not greater than (2 + 2αqi)ωi.

Proof. The stack in Algorithm 1 ensures that each edge is only traversed twice:
first time when moving towards t on an exploration path or a detour, and a
second time when backtracking. The exploration path costs ωi and each detour
costs no more than αωi. Besides, the number of detours is at most qi. Hence,
the total cost is at most 2ωi + qi2αωi, which concludes the proof.

We denote by k1 (resp. k2) the number of blocked edges discovered during the
exploration and detour-backtracking phases associated with paths P1, . . . , Ph−1
(resp. Ph, . . . , P`). Let k3 be the number of blockages discovered during the other
phases, so that k1 + k2 + k3 = k. We derive in Theorem 4 an upper-bound on
the competitive ratio as a function of k1, k2, k3, and α.

Theorem 4. The competitive ratio of α-detour is upper-bounded by:

k1
α

+ 2µmax + 2α(k2 + k3 − µmax) + 1. (3)

Proof. Since path P` is the shortest (s, t)-path of a certain graph G\E′∗ where
E′∗ ⊆ E∗, the offline optimal cost satisfies

ωopt ≥ ω`. (4)

According to Lemma 2, the distance traversed during the exploration and detour-
backtracking phases of P1, . . . , Ph−1 is not greater than

h−1∑
j=1

(2 + 2αqj)ωj ≤ 2ωh−1

h−1∑
j=1

(1 + qj) = 2k1ωh−1. (5)

Inequality (5) comes from the fact that ω1 ≤ · · · ≤ ωh−1 and
∑h−1
j=1 (1 + qj) = k1.

We evaluate the cost of the phases associated with Ph, . . . , P`. Path P` is
either open and traversed in one direction only (Case 1) or it is blocked and the
traveller reaches t via a detour (Case 2).

Case 1: If P` does not contain any blockage, then the algorithm terminates
after traversing it. This final exploration phase costs ω`. We have q` = 0 and
k2 =

∑`−1
j=h (1 + qj). Given Lemma 2, the cost of the h-th to `-th phases is less

than:

`−1∑
j=h

(2 + 2αqj)ωj + ω` =

`−1∑
j=h

(2α+ 2αqj)ωj +

`−1∑
j=h

(2− 2α)ωj + ω`,

≤ 2αk2ω` + (2− 2α)(`− h)ω` + ω`, (6)

< 2αk2ω` + (2− 2α)µmaxω` + ω`, (7)

= 2α(k2 − µmax)ω` + 2µmaxω` + ω`.

12 Pierre Bergé1, Lou Salaün2,3

We deduce Inequality (6) from ωh ≤ · · · ≤ ω`. By applying Theorem 3 and
Lemma 1 on S2 = Ph, . . . , P`, we derive that ` − h ≤ µmax − 1 < µmax in
Inequality (7).

Case 2: Suppose that P` is blocked. The `-th exploration and detour-backtracking
phases cost at most (2 + 2αq`)ω` +αω`. Moreover, we have k2 =

∑`
j=h (1 + qj).

The distance traversed from the h-th to the `-th phases is not greater than:

`−1∑
j=h

(2 + 2αqj)ωj + (2 + 2αq` + α)ω` =
∑̀
j=h

(2 + 2αqj)ωj + αω`,

≤ 2αk2ω` + (2− 2α)(`− h+ 1)ω` + αω`, (8)

≤ 2αk2ω` + (2− 2α)µmaxω` + αω`, (9)

≤ 2α(k2 − µmax)ω` + 2µmaxω` + ω`. (10)

Inequality (8) follows from ωh ≤ · · · ≤ ω`. We obtain (9) from `−h+1 ≤ µmax.
Finally, α ≤ 1 implies Eq. (10).

Contrary to P1, . . . , P`, some exploration paths P̂ may be such that the
distance traversed on them is at most α multiplied by their own cost ω̂. The
distance traversed during the phases which are not asssociated with P1, . . . , P`
is the cost of these exploration paths P̂ and their α-detours. As ω̂ ≤ ωopt, it is
at most 2αk3ωopt. Applying Eq. (4), the competitive ratio of α-detour admits
the following upper-bound:

ωα−detour
ωopt

≤ 2k1ωh−1 + 2α(k2 + k3 − µmax)ωopt + 2µmaxωopt + ωopt

ωopt
,

≤ k1ω`
αωopt

+ 2µmax + 2α(k2 + k3 − µmax) + 1, (11)

≤ k1
α

+ 2µmax + 2α(k2 + k3 − µmax) + 1. (12)

Inequality (11) follows from the partition {S1, S2} which imposes 2αωh−1 < ω`.

Let cdet(k1, k2, k3, α) denote the value in (12). Parameters k1, k2, and k3
depend on the road map (G,E∗), so only α ∈ (0, 1) can be tuned. Value α =

√
2
2

minimizes cdet(k1, k2, k3, α) under the condition k1+k2+k3 = k for any k > µmax.
Formally,

√
2

2
= argmin

0≤α≤1
max

k1,k2,k3∈N
k1+k2+k3=k

cdet(k1, k2, k3, α)

Corollary 1. The competitive ratio of detour is at most 2µmax +
√

2(k −
µmax) + 1.

Proof. We obtain this ratio by setting α =
√
2
2 and k1 + k2 + k3 = k in Eq. (3).

Exploiting Small Max-(s, t)-Cuts for the Canadian Traveller Problem 13

4.3 Discussion

In summary, strategy detour is as competitive as reposition/comparison
for the range µmax ≥ k but more competitive for the range 1 ≤ µmax < k. The
slope of the competitive ratio of detour when k varies is only

√
2 for µmax < k.

Figure 4 gives the shape of the competitive ratios of reposition (in blue) and
detour (in red) as a function of k.

detour strategy needs to identify the shortest (s, t)-paths and (pos, t)-paths
at any moment of its execution. To achieve it, Dijkstra’s algorithm [6] is com-
puted once between two discoveries of blocked edges with t as the start point.
Hence, the running time of detour is O(k(m+ n log n)).

k

comp. ratio

µmax

2µmax + 1

0

2

1

√
2

1

Fig. 4: Competitiveness of reposition (blue) and detour (red) versus k

As for reposition and comparison, the execution of detour strategy is
independent of the value of k. Thus, it can be used when no upper bound on the
number of blockages is known and its competitive ratio is 2µmax +

√
2(|E∗| −

µmax) + 1.

detour strategy can be executed without knowing the value µmax. Indeed,
the competitive ratio of detour depends on µmax but no decision is made
based on µmax in Algorithm 1. In the next paragraph, we explain that value
µmax cannot be computed in polynomial time.

Finding one of the largest minimal (s, t)-cuts Xmax, |Xmax| = µmax is a NP-
hard problem, even for planar graphs [7]. A linear time algorithm computing
µmax exists only for series-parallel graphs [5]. In summary, it is not possible to
evaluate value µmax for any graph in polynomial time, assuming P6=NP. Given
an input graph G, the competitive ratio of detour strategy on any road map
(G,E∗) cannot be predicted fast. The only possibility is thus to execute detour,
which runs in polynomial time, on G directly and then to verify whether a gain
of competitiveness is obtained.

14 Pierre Bergé1, Lou Salaün2,3

5 Conclusion

Even if the global competitiveness of deterministic strategies for the k-CTP
was fully treated by Westphal [10], families of graphs for which a competitive
ratio better than 2k + 1 can be achieved, remained to be identified. In this
context, we designed detour strategy to improve significantly the competitive
ratio obtained on graphs satisfying µmax < k. Its competitive ratio is 2µmax +√

2(k − µmax) + 1.
Some open questions emerge from this study. First, we wonder if a better

strategy exists when µmax < k. In other words, we do not know whether detour
is optimal for this family of graphs. Second, randomized strategies may offer the
opportunity to decrease the ratio obtained with the deterministic framework,
i.e. to go below the slope

√
2 established in Corollary 1. More generally, lots of

strategies with a ratio less than 2k + 1 on certain families of graphs may exist.
We believe that local assessments of the competitive ratio can lead us to defeat
strategy reposition on many kinds of instances.

References

1. Bar-Noy, A., Schieber, B.: The Canadian Traveller Problem. In: Proc. of
ACM/SIAM SODA. pp. 261–270 (1991)

2. Bender, M., Westphal, S.: An optimal randomized online algorithm for the k-
Canadian Traveller Problem on node-disjoint paths. J. Comb. Optim. 30(1), 87–96
(2015)

3. Bergé, P., Hemery, J., Rimmel, A., Tomasik, J.: On the competitiveness of mem-
oryless strategies for the k-Canadian Traveller Problem. In: Proc. of COCOA. pp.
566–576 (2018)

4. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge Univ. Press (1998)

5. Chaourar, B.: A Linear Time Algorithm for a Variant of the MAX CUT Problem
in Series Parallel Graphs. Adv. Operations Research (2017)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

7. Haglin, D.J., Venkatesan, S.M.: Approximation and Intractability Results for the
Maximum Cut Problem and its Variants. IEEE Trans. Computers 40(1), 110–113
(1991)

8. Papadimitriou, C., Yannakakis, M.: Shortest paths without a map. Theor. Comput.
Sci. 84(1), 127–150 (1991)

9. Shiri, D., Salman, F.S.: On the randomized online strategies for the k-Canadian
traveler problem. J. Comb. Opt. pp. 1–14 (2019)

10. Westphal, S.: A note on the k-Canadian Traveller Problem. Inform. Proces. Lett.
106(3), 87–89 (2008)

11. Xu, Y., Hu, M., Su, B., Zhu, B., Zhu, Z.: The Canadian traveller problem and its
competitive analysis. J. Comb. Optim. 18(2), 195–205 (2009)

