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Abstract

The Canadian Traveller Problem is a PSPACE-complete optimization problem
where a traveller traverses an undirected weighted graph G from source s to
target t where some edges E∗ are blocked. The traveller does not know which
edges are blocked at the beginning. He discovers them when arriving to one of
their endpoints. The objective is to minimize the distance traversed to reach t.

Westphal proved that no randomized strategy has a competitive ratio smaller
than |E∗|+1. We show, using linear algebra techniques, that this bound cannot
be attained, especially on a specific class of graphs: apex trees. Indeed, no
randomized strategy can be (|E∗|+ 1)-competitive, even on apex trees with
only three simple (s, t)-paths.
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1. Introduction

The Canadian Traveller Problem (CTP) generalizes the Shortest Path Prob-
lem [7]. Given an undirected weighted graph G = (V,E, ω) and two nodes
s, t ∈ V , the objective is to design a strategy which makes a traveller walk
from s to t through G on the shortest path possible. However, edges in set E∗,
E∗ ⊂ E, are blocked. The traveller does not know which edges are blocked when
starting his walk. He discovers a blocked edge, also called blockage, when arriv-
ing to one of its endpoints. We work on feasible instances: blocked edges E∗ do
not disconnect s and t in G, so the traveller is ensured to reach t with a finite
traversed distance. The CTP has been proven PSPACE-complete [1, 7]. This
result is due to uncertainty over blockages. Solutions for the CTP are online
algorithms, commonly called strategies in the literature. In one of its variant,
the k-Canadian Traveller Problem (k-CTP), |E∗| ≤ k for a positive integer k.
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State-of-the-art. The competitive ratio of a strategy, which evaluates its quality,
is the maximum, over all feasible instances, of the ratio of the distance traversed
by the traveller following the strategy and the optimal offline cost [3]. The
optimal offline cost designates the distance the traveller would traverse if he
knew blocked edges from the beginning. It can also be seen as the cost of the
shortest path in graph G\E∗ which is graph G deprived of edges E∗.

There are two classes of strategies: deterministic and randomized. West-
phal [8] proved for the k-CTP that there is no deterministic strategy which
achieves a competitive ratio better than 2k + 1. This ratio is obtained by con-
sidering a graph made of k + 1 simple (s, t)-paths of similar cost, node-disjoint
with exception to nodes s and t, and where k of them are blocked on the edge
adjacent to t. In such an instance, the traveller potentially traverses the open
path last, which produces the ratio 2k + 1. In fact, as this instance verifies
|E∗| = k, this also proves that there is no deterministic strategy with competi-
tive ratio 2 |E∗|+1 for CTP. reposition strategy [8], which repeats an attempt
to reach t through the shortest (s, t)-path and go back to s after the discovery
of a blockage, is optimal, as its competitive ratio is exactly 2 |E∗|+ 1.

The competitiveness of the randomized strategies is evaluated as the maxi-
mal ratio of the mean distance traversed by the traveller following the strategy
and the optimal offline cost. Westphal [8] proved that no randomized algorithm
can attain a ratio smaller than k+ 1 for k-CTP. As the proof consists in taking
the same instance than in the deterministic case, it implies that any randomized
strategy is at best (|E∗|+ 1)-competitive for CTP. However, the identification of
an (|E∗|+ 1)-competitive randomized strategy for CTP (and a k+1-competitive
randomized strategy for k-CTP) has not been achieved yet. The randomized
strategies proposed in the literature [2, 4] are dedicated to two particular cases,
so no conclusion on the competitiveness of randomized strategies in general
can be raised. The following table summarizes the state-of-the-art of CTP and
k-CTP.

Deterministic strategies
CTP k-CTP

Result reposition strategy reposition strategy
is optimal and is optimal and
(2(|E∗|) + 1)-competitive (2k + 1)-competitive

Randomized strategies
CTP k-CTP

Result Any randomized strategy A is Any randomized strategy A is
cA-competitive with cA-competitive with
cA ≥ |E∗|+ 1 cA ≥ k + 1

Open Can we find a strategy which Can we find a strategy which
Question is (|E∗|+ 1)-competitive ? is (k + 1)-competitive ?

Table 1: State-of-the-art and open questions for the CTP and k-CTP in any graph [2, 8]
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Contributions and paper organization. In Section 2, we introduce the notation
and give the definition of CTP and the competitive ratio. In Section 3, we put
in place ε-apex trees which are a subfamily of apex trees, already evoked in [4].
We explain why the optimal randomized strategy over these instances consist
in a randomized variant of reposition strategy. This restrains the study of
randomized strategies over ε-apex trees to randomized reposition strategy,
where the distribution used to select paths needs, however, to be clarified.

In Section 4, we determine the competitiveness of randomized strategies over
a set R of five road maps (Gα, E∗) containing an ε-apex tree Gα we designed.
Farkas’ lemma [5] enables to prove that, for any strategy A, its competitive ratio
cannot be smaller or equal to |E∗| + 1 on all road maps of set R. Finally, no
randomized strategy can drop below ratio |E∗|+1, even on ε-apex trees with only
three simple paths (as graph Gα). This gives an answer to the open question of
the CTP in Table 1. In Section 5, we conclude this article by presenting what
can be done for future research.

2. Preliminaries

A traveller traverses an undirected weighted graph G = (V,E, ω), n = |V |
and m = |E|. He starts his walk at source s ∈ V . His objective is to reach
target t ∈ V with a minimum cost (also called distance), which is the sum of
the weights of edges traversed. Set E∗ contains blocked edges, which means
that when the traveller reaches an endpoint of one of these edges, he discovers
that he cannot pass through it. A pair (G,E∗) is called a road map. From now
on, we suppose that any road map (G,E∗) is feasible, i.e. s and t are connected
in graph G\E∗. We study the competitiveness of randomized strategies for the
CTP, which means that |E∗| is unbounded.

We remind the definition of the competitive ratio introduced in [3]. Let
ωA (G,E∗) be the distance traversed by the traveller guided by a given strategy
A on graph G from source s to target t with blocked edges E∗. The shortest
(s, t)-path in G\E∗ is called the optimal offline path of map (G,E∗) and its
cost, noted ωmin (G,E∗), is the optimal offline cost of map (G,E∗). Strategy A
is cA-competitive if, for any road map (G,E∗):

ωA (G,E∗) ≤ cAωmin (G,E∗) + η,

where η is constant. For randomized strategies, it becomes:

E [ωA (G,E∗)] ≤ cAωmin (G,E∗) + η.

Eventually, we recall the description of reposition, as we work on its ran-
domized variants in the remainder. reposition is the optimal deterministic
strategy from the competitive analysis point of view because its competitive
ratio is 2 |E∗| + 1. Starting at source s, the traveller computes the shortest
(s, t)-path in G and traverses it. If he is blocked on this path, he returns to s
and restarts the process over graph G deprived of discovered blocked edges as
many times as necessary until reaching t. reposition can be randomized by the
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use of a certain probability distribution to select an (s, t)-path to be traversed.
Bender et al. [2] built a randomized reposition which is (k + 1)-competitive
over graphs made up uniquely of node-disjoint (s, t)-paths.

3. Randomized strategies for apex trees

Recent works studied the competitiveness of randomized strategies over apex
trees [? 4]. An apex tree is a graph composed of a tree rooted in t and node-
disjoint paths that connect s to nodes of the tree. As optimal strategies have
been established for graphs with exclusively node-disjoint (s, t)-paths [2, 8], the
question of the competitiveness of randomized strategies over apex trees, which
represent a more general family of graphs, is of interest. Demaine et al. proved
that for apex trees in which all simple (s, t)-paths have the same cost, there is a
(|E∗|+ 1)-competitive randomized strategy [4]. The open question is whether a
(|E∗|+ 1)-competitive randomized strategy for apex trees with arbitrary costs
exists. A weaker but also significant result consists in finding a randomized
strategy with competitive ratio k + 1 for the k-CTP targeting apex trees.

We specify a subfamily of apex trees called ε-apex trees (ε-ATs). An ε-AT is
composed of a tree rooted in t whose all edges are of weight ε. Leaves of this
tree are connected to s with node-disjoint paths of arbitrary cost (Figure 1).
We suppose that the traveller traverses an ε-AT G with blocked edges in E∗
belonging to the tree rooted in t (their weight is ε). Let P be the set of simple
(s, t)-paths of G. There is a bijective relation between paths in P and the leaves
of the tree: for any leaf of the tree, there is exactly one simple (s, t)-path passing
through it. We call the memory of the traveller the ordered set:

M = {(e∗a, Qa) , (e∗b , Qb) , . . . , (e
∗
z, Qz)} ,

which indicates the blocked edges that the traveller discovered successively (e∗a
then e∗b , etc.) and the simple (s, t)-path he was traversing at each revelation
(he was traversing Qa when he discovered blockage e∗a). The most competitive
way to traverse an ε-AT is to follow the randomized reposition strategy with
the adequate discrete random variable X which, given the memory M of the
traveller, assigns to remaining open paths in P of the graph a probability to be
chosen. In short:

1. Draw an open (s, t)-path Q ∈ P according to random variable X.

2. If the traveller discovers at node v of Q a blocked edge e∗, append pair
(e∗, Q) to memoryM, go back to s on the shortest (v, s)-path and restart
the process, otherwise terminate.

Indeed, the traveller has no alternative: because of the structure of an ε-
AT, each time the traveller meets a blockage, the only way for him to reach t
with minimum distance is to make a detour via node s. For this reason, the
randomized reposition strategy is the best for ε-ATs.

Consequently, the optimal randomized strategy over ε-ATs is determined
by the optimality of the distribution of X. We study in the next section the
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Figure 1: An example of ε-AT with four simple (s, t)-paths

competitiveness of randomized strategies over an ε-AT Gα. We prove that,
even with ε-ATs of only three simple paths, no random variable X makes the
randomized reposition have competitive ratio |E∗|+ 1.

4. No randomized strategy can be (|E∗| + 1)-competitive

We prove that any randomized strategy A is cA-competitive with cA >
|E∗|+ 1. We design an ε-AT Gα which depends on parameter

√
2 ≤ α < 3

2 . We
propose a road atlas composed of maps with graph Gα and sets of blocked edges
of cardinality one or two. We build the inequality system Bx ≤ d such that it
has a nonnegative solution iff there is a strategy which is (|E∗|+ 1)-competitive
over R. Thanks to Farkas’ lemma [5, 6], we prove that no nonnegative solution
to this system exists.

Proposition 1 (Farkas’ lemma, Proposition 6.4.3 in [6]). Let B ∈ Rm×l
be a matrix and d ∈ Rm be a vector. The system Bx ≤ d has a nonnegative
solution iff every nonnegative vector y ∈ Rm with yTB ≥ 0T also satisfies
yT d ≥ 0.

Keeping this lemma in mind, we build a system of linear inequalities such
that if there is a nonnegative y ∈ Rm satisfying yTB ≥ 0 and yT d < 0, then
there is no nonnegative vector x such that Bx ≤ d.

Theorem 2. There is no randomized strategy with competitive ratio |E∗| + 1
on ε-ATs even with three simple (s, t)-paths.

Proof. We start by introducing in Figure 2 graph Gα which is an ε-AT com-
posed of three simple (s, t)-paths, noted Qa, Qb, Qc.

We focus on a road atlas R made for Gα composed of five road maps, where
only edges with weight ε� 1 can be blocked. First, we put two road maps into
set mcalr, each one containing one blocked edge which is either (v4, t) or (v5, t):

{(Gα, E∗) : |E∗| = 1, E∗ ⊂ {((v4, t), (v5, t)}} ⊂ R.
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(a) Graph Gα

Path Sequence of nodes

Qa s→ v1 → v2 → v4 → t
Qb s→ v3 → v4 → t
Qc s→ v5 → t

(b) Paths Qa, Qb, and Qc

Figure 2: Graph Gα and its three simple paths Qa, Qb, and Qc

Second, we put three road maps into R, each one containing graph Gα and two
blocked edges among (v2, v4), (v3, v4), and (v5, t):

{(Gα, E∗) : |E∗| = 2, E∗ ⊂ {(v2, v4), (v3, v4), (v5, t)}} ⊂ R.

In the remainder of the proof, we neglect ε involved in calculations, as if ε tends
to zero (weights in a CTP instance must be positive, this is why ε replaces zero).
We make parameter α be in the interval

[√
2, 32
[
.

Let A be a randomized reposition strategy. We note pa, pb, and pc the
probabilities for the traveller to choose path Qa, Qb, and Qc at departures
with strategy A, respectively. They obviously fulfil pa + pb + pc = 1. Let
p (Qb| (v2, v4) , Qa) the probability to select path Qb after discovering blocage
(v2, v4) on path Qa. In other words, set {(v2, v4) , Qa} is the memory of the trav-
eller. We define similarly probabilities p (Qc| (v2, v4) , Qa), p (Qa| (v3, v4) , Qb),
p (Qc| (v3, v4) , Qb), p (Qa| (v5, t) , Qc) and p (Qb| (v5, t) , Qc). Note that the sum
of probabilities with the same condition is equal to 1, for example,

p (Qb| (v2, v4) , Qa) + p (Qc| (v2, v4) , Qa) = 1.

In Table 2, we define six variables x.,. resulting from the conditional proba-
bilities presented above, arranged in a vector xA = (xa,b xa,c xb,a xb,c xc,a xc,b)

T .

Variable Definition
xa,b p (Qb| (v2, v4) , Qa) pa
xa,c p (Qc| (v2, v4) , Qa) pa
xb,a p (Qa| (v3, v4) , Qb) pb
xb,c p (Qc| (v3, v4) , Qb) pb
xc,a p (Qa| (v5, t) , Qc) pc
xc,b p (Qb| (v5, t) , Qc) pc

Table 2: Definition of variables in xA
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We suppose that the competitive ratio of strategy A is |E∗| + 1 and pro-
duce the consequence of this assumption for each road map from R. For road
map (Gα, {(v2, v4), (v3, v4)}), the optimal offline path is Qa with cost α. If the
traveller chooses Qa (he does this with the probability xa,b + xa,c), he reaches t
without discovering any blockage so the competitive ratio is 1. If he first chooses
path Qb or Qc and then Qa (probability xb,a + xc,a), the competitive ratio is
2+α
α . If the traveller traverses path Qa after trying both Qb, Qc (probability
xb,c + xc,b), the competitive ratio is 4+α

α . Vector xA thus fulfils:

(xa,b + xa,c) + (xb,a + xc,a)
2 + α

α
+ (xb,c + xc,b)

4 + α

α
≤ 3.

Similar linear inequalities can be written for all other road maps in R and vector
xA is a solution of an inequality system B′x ≤ d′, with x ≥ 0:


1 1 2+α

α
4+α
α

2+α
α

4+α
α

2α+ 1 2α+ 3 1 1 2α+ 3 3
2α+ 3 2α+ 1 2α+ 3 3 1 1
α+ 2 α+ 2 3 3 1 1
α α 1 1 2 + α 3




xa,b
xa,c
xb,a
xb,c
xc,a
xc,b

 ≤


3
3
3
2
2

 .

Then, we write this system of inequalities in the canonical form and eliminate
one redundant variable: we take xc,b = 1 −

∑
i,j 6=c,b xi,j . However, we must

preserve the condition xc,b ≥ 0 which is equivalent to
∑
i,j 6=c,b xi,j ≤ 1. This also

ensures that the sum of variables in xA does not exceed 1. Finally, as strategy A
is (|E∗|+ 1)-competitive on road atlas R, vector xcA = (xa,b xa,c xb,a xb,c xc,a)T

is a solution of the canonical system Bx ≤ d, x ≥ 0 (with B ∈ R6×5, d ∈ R6):
− 4
α − 4

α − 2
α 0 − 2

α
2(α− 1) 2α −2 −2 2α
2(α+ 1) 2α 2(α+ 1) 2 0
α+ 1 α+ 1 2 2 0
α− 3 α− 3 −2 −2 α− 1

1 1 1 1 1




xa,b
xa,c
xb,a
xb,c
xc,a

 ≤


2− 4
α

0
2
1
−1
1

 .

We define vector y ∈ R6 such that yT =
(
α(α− 1) 0 0 α+ 1 2 F (α, δ)

)
where F (α, δ) = −2α2 +5α−3−δ(α−1). Polynomial −2α2 +5α−3 is positive
for 1 < α < 3

2 . We set δ > 0 small enough to guarantee F (α, δ) > 0. Therefore,
vector y is nonnegative.

First, we check that yTB ≥ 0T. For this purpose, we note as B1, . . . ,B6

the column vectors of matrix B. We have, indeed
yTB1 = − 4

αα(α− 1) + (1 + α)2 + 2(α− 3) + F (α, δ) = α2 − 2 + F (α, δ) ≥ 0
yTB2 = − 4

αα(α− 1) + (1 + α)2 + 2(α− 3) + F (α, δ) = α2 − 2 + F (α, δ) ≥ 0
yTB3 = − 2

αα(α− 1) + 2α(1 + α)− 4 + F (α, δ) = F (α, δ) ≥ 0
yTB4 = 2(1 + α)− 4 + F (α, δ) = 2(α− 1) + F (α, δ) ≥ 0
yTB5 = − 2

αα(α− 1) + 2(α− 1) + F (α, δ) = F (α, δ) ≥ 0
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Eventually, we obtain that yT d < 0.

yT d = α(α− 1)(2− 4
α ) + 1 + α− 2 + F (α, δ)

= 2α2 − 6α+ 4 + 1 + α− 2− 2α2 + 5α− 3− δ(α− 1) = −δ(α− 1)

Farkas’ lemma yields a contradiction: no probability vector xA is a solution of
our system Bx ≤ d. So, no randomized strategy is (|E∗|+ 1)-competitive.

5. Conclusion

Apex trees, and more particularly ε-ATs represent a family of graphs for
which the competitiveness of randomized strategies over it is a challenging ques-
tion. We proved, by constructing a system of linear inequalities and applying
Farkas’ lemma, that even on a very small ε-AT Gα with three simple (s, t)-paths,
there is no randomized strategy with competitive ratio |E∗|+1. More generally,
this leads to the conclusion that no randomized strategy has a competitive ratio
|E∗|+ 1, which is the lower bound established by Westphal.

Even if we know now that no randomized strategy can be (|E∗|+ 1)-competitive,
the open question for the parameterized variant k-CTP in Table 1 remains unan-
swered. Our technique seem appropriate to determine whether there exists (or
there does not exist) a (k + 1)-competitive strategy over ε-ATs. Future research
could also focus on the evolution of the optimal competitive ratio, as function of
|E∗|, on ε-ATs. Identifying a new lower bound of the competitive ratio, larger
than |E∗|+ 1, would be a significant breakthrough.
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