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Abstract—We are interested in Quantum Annealing (QA), an
algorithm inspired by quantum theory and Simulated Annealing
(SA). It is based on quantum replicas, which explore an energy
surface, and are less prone to be trapped in local minima.
Moreover, kinetic energy helps replicas to find a global minimum.
This method has proved its efficiency for several optimization
problems. We start this study by presenting the application of
QA to a new problem: the Multidimensional Knapsack Problem
(MKP).

We then present a new idea to speed up the quantum annealing
process by detecting the resemblance between replicas. If many
of the replicas exhibit the same properties, our assumption is
that these properties will also be present with a high probability
in a global solution. Consequently, the QA may restrict certain
mutations in order to preserve those similarities. We call this
algorithm Restrictive Quantum Annealing (RQA).

We establish that RQA has better performances than QA
and SA by carrying out an adequate analysis of the RQA
performance, taking the Traveling Salesman Problem (TSP)
and the above-mentioned MKP as references. We also advance
guidelines indicating types of NP-hard problems for which our
algorithm is particularly well adapted.

I. MOTIVATION

Simulated Annealing (SA) is commonly recognized as an
efficient metaheuristic algorithm to solve combinatorial hard
problems by local search. Its principle is typically illustrated
for the NP-hard Traveling Salesman Problem (TSP) [1] be-
cause it performs very well for problems with a distinct global
minimum [2].

The Quantum Annealing (QA) metaheuristic algorithm tries
to incorporate the annealing principle into a quantum repre-
sentation of discrete optimization problems. As reported in the
literature, QA outperforms SA for the TSP [3], [4] and for the
Vertex Coloring Problem (VCP) [5].

QA is still a new approach. As it looks very promising,
we use it for another hard problem. We are interested in a
classical NP-hard problem [6], the Multidimensional Zero-One
Knapsack Problem (MKP), which was already treated with SA
in [7]. By doing this we show a high expressiveness of an Ising
model (see [8]) applied to the combinatorial optimization and
an excellent performance of QA which is obtained thanks to
the tunneling effect.

The second contribution of this article is an improvement
of the performance of QA. In a nutshell, we attempt to
speed up the quantum descent by restraining an area of local
search. We do this by imposing a restriction upon the set of

possible mutations at a given step of the annealing schedule.
If the mutation is about to modify the components of an
intermediate solution considered essential for the quality of a
final result, this mutation is simply abandoned. In other words,
we introduce "a blockade" of elements of states composing a
search space in order to avoid changing them. As the behavior
of the annealed particle is modeled by a set of replicas it
encourages us to consider as crucial these state components
which appear in "sufficiently many" replicas.

As the reader might already notice, our improved QA
with mutation restriction, which we call Restrictive Quantum
Annealing (RQA), is dedicated to hard optimization problems
where a decision can be taken about what part of an interme-
diate solution is liable to appear in a final solution. Therefore,
our next contribution is the identification of a class of hard
optimization problems whose solutions may be obtained with
RQA more quickly than with the regular QA. The above
mentioned TSP and MKP belong to this class.

Dealing with random algorithms, we take care to evaluate
their performance in a thorough manner. As the annealing
metaheuristics require parametrization, we provide guidelines
to find appropriate parameter values. We believe that these
indications could promote the use of QA and our RQA for a
broad scope of combinatorial hard problems.

We start this article with the outline of QA taking the TSP
as an example. That section also allows us to present works
related to QA. Next (Section III), we present QA applied to the
MKP. Our goal is twofold: we show that Ising modeling may
be comfortably adapted to any discrete optimization problem
and we provide a use-case to analyze the performance of SA,
QA, and RQA.

The section defining RQA follows where we explain the
method of identifying problems liable to be treated more
efficiently with RQA than with QA. We show formally that
both the TSP and the MKP are good candidates to be solved
by our RQA. This section also contains a detailed description
of RQA.

Section V includes a performance evaluation of
SA/QA/RQA applied to TSP and MKP instances. The
objective is to eventually affirm that RQA has a better
performance than SA and QA if the running time is large
enough.

This article then ends with a conclusion and a discussion
of possible avenues for further research.



II. QA STATE OF THE ART

QA is an optimization algorithm inspired by SA and quan-
tum mechanics. The idea is to use a quantum particle instead
of a classical one as in SA. It is impossible to simulate
a quantum particle with an infinite amount of replicas on
deterministic computers. QA deals with its approximation
based on several classical particles, called replicas, interacting
in response to a kinetic effect. The quantum particle is noted
ω. Each replica corresponds to a configuration ωk (also called
“state”) of the considered instance. As a consequence, QA may
be seen as several SAs launched in parallel with interactions
between annealed particles. Unlike SA, QA does not use a
thermal decrease to find a solution. As the temperature remains
constant, the probability for a particle jumping over a potential
barrier does not change throughout the process. Furthermore,
contrary to parallel SA, the replicas’ states are dependent as
an additional kinetic term is introduced in the function to be
minimized. This kinetic term depends on the structure of each
replica and helps to explore the convex hull shaped by replicas.
A possible way to find a kinetic energy formulation for the
replicas is to represent them as an Ising model [8] and couple
them with the Suzuki-Trotter transform [9].

A. Quantum Annealing Algorithm

QA minimizes an Hamiltonian H(ω), which is the sum
of the potential Hpot(ω) and kinetic Hkin(ω) energies of a
particle, H(ω) = Hpot(ω) +Hkin(ω), where:

Hpot(ω) =
1

P

P∑
k=1

Hpot,k(ω) =
1

P

P∑
k=1

Hpot(ωk) (1)

where P defines the number of replicas. One should note that
each replica has its own potential energy Hpot,k that is the
function to be minimized (for example, the Hamiltonian cycle
length for the TSP in Def. 1 or the utility function for the MKP
in Def. 2). We need then to define Hkin. The kinetic term of the
Hamiltonian can be represented through the Ising model [8]
of the simulated quantum system. As mentioned in [5], a state
is modeled by an Ising matrix S of size N1 ×N2 where N1

and N2 are parameters depending on the problem in question.
By noting S(k) the Ising matrix of the kth replica, the overall
kinetic energy is given by:

Hkin(ω) = −JΓ

N1∑
i=1

N2∑
j=1

P−1∑
k=1

Sij(k)Sij(k+1)+Sij(P )Sij(1),

(2)
where JΓ corresponds to a first order interaction between repli-
cas. Based on [5], we define JΓ as: JΓ = −T2 ln

(
tanh Γ

PT

)
.

Parameter Γ decreases linearly throughout the algorithm from
Γstart to Γend. Consequently, as revealed by Eq. (2), each replica
is coupled with two other neighboring replicas. In order to
understand the interaction principle, one can visualize these
replicas placed on an imaginary circle.

Once these principles posed, we focus on the QA algorithm
(Algorithm 1). We need to select replica i for each iteration

1: Input: Problem p, Γstart, Γend, fixed temperature T,
number of replicas P

2: Output: best known solution ωbest
3: Initialize each replica ω = {ωk}
4: Initialize best solution: ωbest = ω1

5: Initialize Γ: Γ = Γstart
6: repeat
7: Randomly order the replicas
8: for k ← 1 to P do
9: Choose the kth replica ωk

10: Randomly mutate ωk
11: The mutation transforms ωk into ω′k
12: ∆Hpot ← Hpot(ω

′
k) - Hpot(ωk)

13: ∆H ← H(ω′)−H(ω)

14: if ∆Hpot < 0 or ∆H ≤ 0 or e
−∆H

T ≥ random()
then

15: ω ← ω′

16: if Hpot(ω
′
k) < Hpot(ωbest) then

17: ωbest ← ω′k
18: endif
19: endif
20: endfor
21: Decrease Γ

until22: Γ = Γend

23: return Best solution: ωbest
Algorithm 1: Quantum annealing implementation inspired
by [5]

step (line 9). For this replica, we choose a mutation then calcu-
late the ∆Hpot,i brought by this mutation (line 10). If ∆Hpot,i
is negative, we accept the mutation otherwise we compute
∆Hkin (with its neighbors) and we accept the mutation if ∆H
is negative or with the Metropolis probability e−

∆H
T where

∆H = ∆Hpot + ∆Hkin and T is a fixed temperature in QA.
Once each replica has been iterated, we increase JΓ.

B. Application to the TSP

The traveling salesman problem could be described as
follows: finding the Hamiltonian cycle of the minimal length
in a weighted graph. Put formally:

Definition 1: Traveling Salesman Problem (TSP)
Input: A weighted graph G of n nodes defined by the
symmetric adjacency matrix D = [dij ], where weight dij is a
distance between nodes i and j.
Objective: Minimize

∑
(i,j)∈r

dij when r is a Hamiltonian cycle

in graph G.
In this context, QA works on a TSP particle for which

replicas ωk are Hamiltonian cycles. If we consider the potential
aspect only (we will handle the kinetic energy explicitly
below), replicas are treated independently, one after another,
and QA behaves like P simulated annealings launched in
parallel. As a consequence, we will define the potential
energy of a replica as the length of the Hamiltonian cycle:
Hpot(ωk) =

∑
(i,j)∈ωk

dij . The global potential energy of our



particle of P replicas is the mean of potential energies of all
the replicas given by Eq. (1).

The mutation used to explore the potential surface is 2-
opt move, introduced in [10]. We explain it by considering
two edges chosen randomly: a↔ b and c↔ d. The pairwise
exchange is performed by replacing these edges by a↔ c and
b ↔ d. Note that this action preserves the Hamiltonian cycle
property. According to [11] and confirmed by our experiments,
this mutation is more efficient than 3-opt move or a swap of
two nodes because its execution only changes two edges of
the initial Hamiltonian cycle while the others modify three or
four edges, respectively.

The kinetic energy, which furthers similarities between
replicas [3], [4], is defined by means of the Ising model. A
Hamiltonian cycle is represented as an n×n symmetric matrix
S whose elements are spins ±1. We fill Sij with +1 when
the edge i ↔ j is present inside the tour, −1 otherwise. For
example, the Hamiltonian cycle 1↔ 4↔ 3↔ 5↔ 2 (n = 5)
is described by:

S =


−1 1 −1 1 −1
1 −1 −1 −1 1

−1 −1 −1 1 1
1 −1 1 −1 −1

−1 1 1 −1 −1


Computing the kinetic energy of the TSP quantum particle,

i.e. the set of P Hamiltonian cycles, means multiplying the
spins of each edge of the coupled replicas. Focusing only
on two Hamiltonian cycles, their coupling contributes to the
global kinetic energy with a quantity −

∑n
i=1

∑n
j=1 SijS

′

ij .
Ultimately, taking into account all the replicas, we apply
Eq. (2).

The kinetic energy may stand for a measure of the similarity
of the Hamiltonian cycles. If all the replicas are identical, the
kinetic energy is minimal. In contrast, if no replicas share an
edge in their Hamiltonian cycles, the kinetic energy reaches
its maximal value: −JΓ

Pn(n−1)
2 ≤ Hkin ≤ JΓ(−Pn(n−1)

2 +
4n). As the algorithm minimizes the Hamiltonian, the replicas
gradually become similar. Thanks to this property, a random
walk over the potential surface can jump over energy barriers.

III. APPLICATION OF QA TO THE MKP
The objective of this section is to introduce the necessary

means to solve the MKP with QA. It is worth being mentioned
because QA can be difficult to apply due to the definition of the
kinetic energy. Furthermore, the use of the Ising model with
the MKP needs to be defined. The Multidimensional Zero-
One Knapsack Problem (MKP) consists in packing n items
into the c-constraint bag with the maximization of the gain.
Put formally:

Definition 2: Multidimensional Zero-One Knapsack
Problem (MKP)
Input:

1) n items to be packed,
2) vector Ui of positive utilities of these items,
3) vector Mj of c positive constraints,
4) matrix [pij ] of size n×c of positive weights; pij indicates

a cost of inserting item i with reference to constraint j.

Objective: Find an assignment x = (xi)1≤i≤n ∈ {0, 1}n that
maximizes:

∑n
i=1 Uixi under the constraints

∑n
i=1 pijxi ≤

Mj ,∀j ∈ J1, cK.
Problem modeling: An MKP replica ωk corresponds to the

list of items which are packed in the bag. It is represented by
an Ising vector v of length n. Technically speaking, it is coded
on spins ±1, not on bits 0/1 as announced in the classical
definition above.

For example, for n = 5, vector v(k) = (−1, 1, 1,−1, 1)
represents a configuration of an MKP replica k in which the
items numbered by 2, 3 and 5 are packed in the bag. We use
both of the notations, x(k) and v(k), in the formulæ below.
The potential energy of a replica is opposite to the utility
function from Def. 2 because Hpot is to be minimized. For all
P replicas we get:

Hpot = − 1

P

P∑
k=1

n∑
i=1

Uixi(k) = − 1

P

n∑
i=1

Ui

P∑
k=1

xi(k) (3)

To obtain the global kinetic energy, we multiply the spin
vectors of MKP replicas in a way similar to the one we used
for the matrices in the TSP case, Eq. (2):

Hkin = −JΓ

P−1∑
k=1

n∑
i=1

vi(k)vi(k + 1)−
n∑
i=1

vi(P )vi(1). (4)

The Hkin role is to strengthen similarities existing between
MKP replicas.

Mutation used: According to our prior experience, muta-
tions which modify a configuration as little as possible lead
to efficient annealing processes. For this reason we want our
mutation to take account of one item at a time. When an
insertion of an item is not possible, we opt to exchange it
with another one which has been packed already. We try to
avoid removing an item from the bag because such an action
could significantly decrease the utility value. The mutation is
comprised of three steps:

1) Choose uniformly any item a which is not in the bag.
Insert it into the bag if the constraints are respected.

2) If this insertion violate any of the constraints, choose
uniformly an item b which is inside the bag and try to
exchange a and b.

3) If this exchange is not possible, remove item b from the
bag.

Our mutation is similar to the one proposed in [7] for
the SA algorithm called PROEXC with a slight difference: in
specific situations, PROEXC makes several evaluations of the
Metropolis probability e−

∆H
T per iteration.

IV. A QA IMPROVEMENT: RESTRICTIVE QA

In Section II, we explained the principle of QA is to
decrease a Hamiltonian with potential and kinetic parts. The
kinetic energy allows the different replicas to cross the region
bounded by the quantum particle and to explore possible new
minimizers. Nevertheless, the kinetic energy is not based on
the quality of all the configurations of the particle: it only
focuses on the similarities between these replicas. Given that



0↔ 7↔ 9↔ 8↔ 10↔ 12↔ 6↔ 11↔ 5↔ 4↔ 3↔ 2↔ 13↔ 1 len: 3345
0↔ 1↔ 2↔ 3↔ 4↔ 5↔ 11↔ 13↔ 6↔ 12↔ 7↔ 10↔ 8↔ 9 len: 3457
0↔ 1↔ 13↔ 2↔ 3↔ 4↔ 5↔ 11↔ 6↔ 12↔ 7↔ 10↔ 8↔ 9 len: 3330

Figure 1: Three solutions for burma14

the replicas converges on areas in which the energy is low,
they naturally share more and more likenesses. For example,
we noticed that, for the TSP, Hamiltonian cycles are composed
of the same “key edges”. In Fig. 1 are three configurations
close to the optimal one (obtained through SA) on the small
graph burma14 taken from [12].

One may observe that the edges 8↔ 9, 3↔ 4 and 6↔ 12
appear in all these solutions. This means that there is a natural
convergence due to potential energy only. The problem of an
independent kinetic term is that it forces replicas to be similar
independently of the potential energy value. We would like to
strengthen resemblances due to the “potential convergence” in
order to boost the QA performance.

The main idea of our improvement is to block the elements
that are frequent in the particle by avoiding mutations that will
remove these particular elements. For the TSP, the elements
blocked are edges. If we see the three solutions of burma14
as a quantum particle of three replicas, the edges 8↔ 9, 3↔ 4
and 6↔ 12 will be considered as blocked: any mutation that
tries to remove these edges will be forbidden. For instance, the
following 2-opt move (cf. Section II-B) on the first replica will
not be treated because it would remove the edge 8 ↔ 9: a =
8, b = 9, c = 13, d = 2. For the MKP, the elements blocked are
the items that are packed: a mutation which removes an item
that is packed in a great number of replicas will be forbidden
by RQA.

Such an approach allows us to contract the space of avail-
able mutations. Using RQA requires the definition of a type
of element which we propose as follows:

Definition 3: of an element of an instance
e is an element of an instance if it is a subset of at least one
configuration ω0 for this instance.

To benefit from RQA performance improvement, the im-
portant issue is to determine numerous types of elements (i.e.
elements defined by a certain property) on which a blockade
should be set. We formulate two criteria which allow us to
identify the elements which may be efficient. With this defini-
tion, for the TSP, we can imagine several kinds of elements:
edges (e ∈ E with a graph G = (V,E)), couples of edges
(e ∈ E × E) or nodes (e ∈ V ), for example. Taking nodes
as elements for TSP instances would be pointless as all nodes
form an Hamiltonian cycle: they are always present. Edges,
being subject to mutations, are naturally good candidates to be
instance elements. That is why the first criterion we introduce
is the ability for the type of element chosen to affect as
directly as possible the energy of the configurations ω0 for
a given instance. The second aspect, which can be quantified
(see Section IV-A), is the frequency of occurences of a given
element in the configuration: the observed similarities cannot
be due to chance but have to be caused by the minimization

of Hpot. To quantify this aspect, we define the characteristic
probability for an element to be naturally inside any state.

A. Definition and properties of the characteristic probability

We propose a characteristic probability α(e) which allows
us to check if the second criterion is verified. It measures the
probability for e to be in a random configuration for the given
instance. The goal is to determine which value of α may make
the restriction of RQA efficient.

Definition 4: Characteristic probability of the elements
Let us consider an element e and Ω0 the uniform random
variable giving all the configurations of the instance, i.e. the
possible valid solutions to the problem. The characteristic
probability of e, noted α(e), is defined as: α(e) = P (e ∈ Ω0)

If α(e) is small, it means that e appears rarely in any
configuration. If an element with a weak α is frequent in
the quantum particle, this element may be essential to obtain
a good solution. On the contrary, if α ≥ 1

2 , it is probably
observed in several replicas and it would be pointless to block
it in an attempt to improve the annealing.

For any problem, there exists a characteristic probability
provided that the elements concerned are defined. In some
problems, like the TSP, α(e) only depends on the nature of
the problem itself: each edge has the same probability to be, or
not, in any Hamiltonian cycle: αTSP(e) = αTSP. In other cases,
α(e) depends on one or several parameters that are contained
by the element e. With the MKP, the elements are the items
which are packed. The probability for an item to be in the bag
or not depends on the weights of this item and the total number
of items. If the weights are considerably large compared to the
others, it will be more difficult to fill a bag with it. On the
other hand, it will be easier to push it in the bag if the weights
are small. We determine α(e) in both problems:

Proposition 1: The characteristic probability of the TSP:
αTSP = 2

n−1
Proof. We compute the probability for an edge x↔ y to be

in any Hamiltonian cycle r. Any node of cycle r has obviously
two neighbors. The number of possible pair of neighbors is(
n−1

2

)
, n is the number of nodes in the graph. Among these

pairs of nodes, some contain y: [1, y], [2, y],... in total n − 2
pairs in which x can not be included. As a consequence, we
have:

αTSP = n−2

(n−1
2 )

= n−2
(n−1)·(n−2)

2

= 2
n−1

Concerning the MKP, it is difficult to get a formula that
gives α depending on the weights of the item pj , all the
constraints Mj , all the weights of the instance pij and the
number of items n. We thus limit ourselves to a bound and
an approximation. We start by treating the case of the single



constraint knapsack problem (KP). Let us note B as the set
of all acceptable bags for the instance considered, Be is the
subset of B composed by bags containing the item e. Be is
the complement of Be. We express α(e) as:

αKP(e) =
|Be|
|B|

=
|Be|

|Be|+
∣∣Be∣∣ (5)

Proposition 2: The characteristic probability of the KP
satisfies: αKP ≤ 1

2 .
Proof. Let us consider the following function ϕ defined over

the entire Be:
ϕ : Be 7→ Be such that ϕ(X) = X − {e}

Be and Be are finite, ϕ is injective: |Be| ≤
∣∣Be∣∣

αKP(e) =
|Be|

|Be|+
∣∣Be∣∣ ≤ |Be|

|Be|+ |Be|
≤ 1

2

The most straightforward approximation is obtained by
assuming the distribution of weights as concentrated around
the mean. In one dimension, if we note µ the mean of the
weights pi, we can approximate the maximal number of items
in the bag by z = min(n, bMµ c) where n is the total number
of items and M the constraint. Using Eq.(5):

αKP ≈

{ ∑z−1
i=0 (n−1

i )∑z
i=0 (n

i)
if z ≥ 2

1
n if z = 1

Then, looking at all dimensional αKP allows us to interpret
a general tendancy for αMKP. If every αKP is approximately
equal to 1

2 , the implementation of RQA is useless.

B. RQA algorithm

RQA starts as the “classical” QA. After a certain number of
iterations, some replicas could have certain number elements
in common. For instance, if we consider the TSP, particular
edges appear in replicas. When the elements are present in a
certain percentage of replicas, we block them. The blockade
will last until the end of the annealing. RQA is described in
Algorithm 2.

In the MKP case, the mutation described in Section III only
replaces one element in the current replica. For the TSP, we
are forced to replace two elements to preserve the Hamiltonian
cycle property. To execute these mutations, we choose the
elements that will be replaced in the replica. They must not
exceed the limit of occurrences in the particle. We define the
blocking frequency f : if an element appears more than df · P e
times in the particle, we block it.

V. EXPERIMENTATION AND RESULTS

We now compare RQA and QA with SA for two TSP
instances, taken from TSPLIB [12] (bier127 and pr1002)
and for two MKP instances (OR500x30_0.75 from [13]
and gk11 from Glover and Kochenbergen which is also used
in [14]).

From the experiments, we extract the potential energy of the
best replica met in the exploration as a function of the iteration
number. Each curve represents the mean of 100 experiments.

1: Input: Problem p, Γstart, Γend, fixed temperature T,
number of replicas P, blockade frequency f

2: Output: best known solution ωbest
3: Initialize each replica ω = {ωk}
4: Initialize best solution: ωbest = ω1

5: Initialize Γ: Γ = Γstart
6: repeat
7: Randomly order the replicas
8: for k = 1..P do
9: Choose the kth replica ωk

10: Choose elements εj in ωk which appears less
than df · P e times in the particle

11: Pick elements ε′j that are not in ωk
12: The mutation transforms ωk into ω′k by turning εj

in ε′j
13: ∆Hpot = Hpot(ω

′
k) - Hpot(ωk)

14: ∆H = H(ω′) - H(ω)

15: if ∆Hpot < 0 or ∆H ≤ 0 or e
−∆H

T ≥ random()
then

16: ω := ω′

17: if Hpot(ω
′
k) < Hpot(ωbest) then

18: ωbest := ω′k
19: endif
20: endif
21: endfor
22: Decrease Γ

until23: Γ = Γend

24: return Best solution: ωbest
Algorithm 2: Restrictive Quantum Annealing algorithm

Confidence intervals computed with a confidence level 0.05
are given in Table I. As the confidence intervals are small
compared to the gaps between the curves, we do not represent
them on graphics to keep the figures neat and comprehensible.

For each algorithm (SA, QA and RQA), we estimate pa-
rameters by launching a preliminary series of experiments.
According to these preparatory runs, we choose the following
values. The thermal function on SA is linearly decreasing from
Tstart to 0. The temperature of QA and RQA is chosen as
TQA =

TSA,start
5 in order to get good performances of QA.

Initial configurations for the TSP (i.e. Hamiltonian cycles) are
selected through an uniform random selection on all possible
tours. For the MKP, initial bags are empties.

The computing time is the same for each algorithm. The
number of iterations for each replica of QA and RQA is
equal to the number of iterations used for SA divided by
P , the number of replicas. We want to find a compromise
between the annealing duration and the number of replicas
used. There are 20 replicas for experiments on bier127
(TSP), 10 replicas for all the other instances. It is justified by
the fact that bier127’s size is only 127 vertices and within
a fixed annealing time the simpler the instance is, the more
we take replicas to catch the global minimizer. The blocking
frequency chosen is 65% for bier127, 80% for pr1002



Figure 2: SA, QA and RQA runs on the TSP bier127

Figure 3: SA, QA and RQA runs on the MKP
OR500×30_0.75

(listed in Table I) and 100% for all MKP instances because α
is higher for this problem.

A. Performance of SA, QA and RQA

Figures 2 and 3 show that within a reasonable amount of
iterations, the QA metaheuristic performs better than SA. This
behavior for the TSP was already reported in [4], we confirm
it for the MKP. By comparing these curves, we see that in
the MKP case (Fig. 3), QA starts to have better performance
than SA in the early phases of the iteration. This might be
due to the specificity of the problem itself. As QA checks
more valid bags with its different replicas, it has a better
chance to find a more appropriate bag than SA. Moreover,

by matching the similarities between replicas, QA refines them
through the influence of the kinetic energy. On the other hand,
SA’s potential energy decreases quickly in the early iteration
phases on the TSP instance while P parallel explorations slow
RQA down (see Fig. 2). However, during the last iterations of
the process, when an impact of Hkin becomes significant, QA
explores the convex hull formed by the replicas and can find
new minimizers while SA often does not succeed in finding
better solutions from only one state. As a consequence, for the
TSP and the MKP, if the number of iterations is high enough,
QA will outperform SA thanks to the kinetic effect. But, if
the number of iterations is too small, SA will be better than
QA thanks to the fast descent observed at the beginning of the
annealing. This means that, for each instance of the TSP and
the MKP, there is a limit to the number of iterations (which
in our experiments is greater for the TSP than for the MKP)
from which we could assert that QA exceeds SA. The number
of iterations we have at our disposal determines the algorithm
to choose for the TSP and the MKP.

As this may be observed in Fig. 2, QA and RQA start in
the same way, as in the beginning of the annealing, a chance
to have similarities between replicas is very small (as we start
from a random tour, replicas are far from each other). Then,
as the number of iteration increases, certain edges start to be
present in more than one replica, to finally overpass the limit
df · P e and get blocked. RQA’s curve differs from QA’s one
because of the blocking action which speeds up the descent of
the potential energy. The final part of RQA’s curve is almost
parallel to QA’s one, that confirms that the action of the kinetic
energy on the end of both RQA and QA is the same. As for
TSP results, RQA behavior is the same as QA’s in the initial
iterations of the MKP run in Fig. 3. Thanks to the restriction,
RQA overtakes QA to get better results. This is due to RQA’s
tendency to keep the best items untouched. Given that SA
was worse than QA all along the algorithm execution, RQA
is consequently better than SA on OR500×30_0.75 MKP
instance.

B. Overview on larger instances

The experiment concerning a very large instance of the TSP
is depicted in Fig. 5. We hardly used 8 minutes of a standard
PC processor to solve it. The QA results are much worse
than those of SA and RQA as QA would need more time
to overtake the SA potential energy. RQA, however, defeats
SA after a small number of iterations. The results for a large
instance of the MKP presented in Fig. 4 confirm that on the
early annealing stage, useful items have not been selected yet
and RQA behaves as QA. Then as the annealing process goes
on, SA starts its efficient descent phase and tends to catch up
QA, but then, as kinetic energy influence is stronger than that
of the potential energy, QA explores more easily the energy
surface and finds a better solution. As RQA enhances this part
by retaining the best items, it overwhelms both SA and QA
with an early descent more effective than those of QA.

The mean and best results of 100 experiments for each
benchmark are reported in Tables I and II, respectively. Each



TSP MKP
bier127 pr1002 OR500x30_0.75 gk11

SA 120′171 ± 255 267′612 ± 209 −300′762 ± 53 −94′646 ± 6.0
QA 119′956 ± 128 285′728 ± 1013 −300′973 ± 24 −94′665 ± 3.1

RQA 119′081 ± 115 267′364 ± 338 −301′248 ± 17 −94′808 ± 2.6

Table I: Summary of results of Hpot for the benchmarks discussed

Figure 4: Comparing performances of SA and QA and RQA
on MKP gk11

TSP MKP
bier127 pr1002 OR500x30_0.75 gk11

SA 118′336 265′885 −301′242 −94′695
QA 118′815 276′749 −301′217 −94′704

RQA 118′293 264′631 −301′422 −94′832

Table II: Best results

experiment takes less than eight minutes (this maximal time is
for pr1002). We compare it with the results found in the liter-
ature to be sure SA, QA and more particularly RQA are able
to provide efficient results compared with other algorithms.
The website [15] provides the best performance on well-
known TSP benchmarks: 188′282 for bier127 and 259′045
for pr1002. For the MKP, we take results found in [16],
[14]. Let us note that the potential energy obtained on series
of experiments allows us to approach closely performances
of the literature (OR500x30_0.75 the results obtained are
even better than those from [16]). To compare with the hybrid
approach from [14], the mean on 100 results provided by five-
minute experiments on four double-thread cores at 2.4 GHz
for gk11 is 94′808 in Table I, the result is 94′832 (Table II)
while the hybrid algorithm found 95′237 (0.45% gap) with an
order of magnitude of a day.

Figure 5: Comparing performances of SA and QA and RQA
on TSP pr1002

Blck freq Mean ±CI
none 121′060 ± 129
100% 120′490 ± 115
85% 119′590 ± 116
65% 119′150 ± 88
50% 119′315 ± 89
35% 119′440 ± 104

Blck freq Mean ±CI
none 288′700 ± 1059
100% 279′850 ± 663
90% 271′350 ± 440
80% 266′400 ± 285
70% 270′164 ± 324
60% 270′750 ± 402

Table III: Performance of RQA on bier127 (left) and
pr1002 (right) depending on blocking frequency for the TSP

C. Results according to blocking frequency

The blocking frequency defines the number of replicas
in which elements has to blocked (Table III). There is an
optimal frequency for a given experiment which depends not
only on the problem, but on a particular instance and the
number of replicas as well. We tried to determine this optimal
frequency on the two TSP instances bier127 and pr1002,
by launching 100 RQAs with different frequencies. The 95%
confidence interval is noted “CI”.

Regarding pr1002, experiments were made with P = 10
replicas, that is why the values of blocking frequency are sepa-
rated by a 10% step (as a consequence, df · P e in Algorithm 2,
line 10, take all natural numbers between 1 and P ). 20 replicas
were taken for bier127 experiments: the frequencies should



be separated by a 5% step but for clarity of presentation, we
limit ourselves to a selection of frequencies in Table III. These
results illustrate clearly the compromise which has to be made
between a weak blockade which does not allow one to get the
best performance and a strong blockade which does not block
the proper elements and degrades the final potential energy.
This also shows that choosing a high frequency (> 90%) leads
to the QA improvement in any case.

VI. CONCLUSION AND FURTHER WORK

The QA metaheuristic is a new method which has not
reached yet the popularity of the classical SA. We showed
that it is worth of a wider interest as it may be easily adapted
to solve any NP-hard problem. We implemented QA for the
MKP and our experiments affirm that QA outperforms SA.
Our experimental evaluation, done for the MKP and the TSP,
leads to the conclusion that if the number of iterations is
sufficiently large, the QA result is better than that given by
SA.

In order to compensate relatively slow early stage descent of
QA, we propose a method to boost this metaheuristic, RQA.
By reducing the size of the search-space, we quantitatively
improve the quality of the replicas in the early phases of
RQA. The restriction is also advantageous since it brings better
overall results. The mutation restriction was used in the QA
context but it is not excluded that other evolutionary algorithms
might benefit from it as well.

However, the RQA efficiency depends on the problem we
treat. We proposed a means (the characteristic probability)
which allows one to predict whether the mutation restriction
is worth being implemented. Provided a sufficient number of
iteration and with an appropriate value of the characteristic
probability, RQA performs better than both SA and QA.
Furthermore, the efficiency of RQA depends on the blocking
frequency that should be tuned relatively to the number of
replicas used. Anyway, choosing a high blocking frequency
allows one to defeat SA in many cases even if it does not reach
its best performance. The RQA performance was evaluated
on the NP-hard problems MKP and TSP on two benchmarks
each and was always better than both QA and SA. The RQA
improvement is very significant for TSP and MKP and we
assume it could bring better results than SA or QA to other
combinatorial problems.

We think that SAT (Boolean Satisfiability Problem) is
a problem for which RQA is not efficient given that the
characteristic probability is too large and equal to 1

2 . But it
would be particularly interesting to know if it can be efficient
for small values of the characteristic probability (negligible
compared to 1

n ). Concerning this case, the VCP (the reader
is invited to refer to [5] which solved this problem with QA)
could be, for example, a good candidate: elements could be
classes of nodes colored in the same way but it seems to be,
at a first sight, quite hard to implement.
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