
Rapport de projet Programmation avancée : Taquin

Thomas Ekindy - Paul Nautré
L2 informatique UCA

15 janvier 2021

Chapitre 1

Introduction du sujet

Introduction au Taquin sur Wikipédia :
Le taquin est un jeu solitaire en forme de damier créé vers 18701 aux États-Unis. Sa théorie

mathématique a été publiée par l’American Journal of mathematics pure and applied en 1879. En
1891, son invention fut revendiquée par Sam Loyd, au moment où le jeu connaissait un engouement
considérable, tant aux États-Unis qu’en Europe. Il est composé de 15 petits carreaux numérotés de
1 à 15 qui glissent dans un cadre prévu pour 16. Il consiste à remettre dans l’ordre les 15 carreaux
à partir d’une configuration initiale quelconque.

Le principe a été étendu à toutes sortes d’autres jeux. La plupart sont à base de blocs rectan-
gulaires plutôt que carrés, mais le but est toujours de disposer les blocs d’une façon déterminée par
un nombre minimal de mouvements. Le Rubik’s Cube est aujourd’hui considéré comme l’un des «
descendants » du taquin.

Objectifs :
Notre objectif ici est d’implémenter une version numérique de ce jeu. On aura un damier composé selon une
configuration solvable aléatoire et le joueur pourra en déplacer les pièces selon les règles pour aboutir à la
formation arrangée. Le jeu comptera le nombre de mouvements effectués par le joueur, lui indiquera quand la
partie est terminé et lui proposera de sauvegarder/recharger la configuration à tout moment (ainsi le joueur
pourra progresser et évaluer sa progression). L’interface graphique sera faite avec la SDL mais il sera également
possible de lancer le jeu en mode console. En mode console, il sera possible de choisir la taille du damier (le jeu
est originellement prévu sur une grille 4x4 mais peut être étendu à tout entier).

1

https://wikipedia.org/wiki/Taquin

Chapitre 2

Développement

2.1 Méthode de travail
Nous découpons le développement du projet en deux parties : d’une part l’algorithme qui génère les confi-

gurations, assure la mécanique de jeu, vérifie les solutions de l’utilisateur et assure les fonctionnalité auxiliaires
comme le système de sauvegarde, d’autre part la surcouche graphique qui permet au joueur de visualiser et de
commander le jeu intuitivement. Ces deux parties peuvent être développée simultanément (donc répartie dans
le binôme) si l’on commence par se mettre d’accord sur les interactions qui ont lieu entre l’algorithme et la
surcouche graphique. Par exemple, celui qui créé le bouton "sauvegarder" n’a pas besoin de savoir précisément
comment fonctionne la sauvegarde, il lui suffit de connaître la signature de la fonction correspondante.

2.2 Algorithme

2.2.1 Générateur de configuration
Il faut savoir que sur les D2! configurations possibles du damier (ou D est la dimension), seule la moitié

sont solvables. Il existe un algorithme qui permet de savoir si une configuration donnée est solvable ou non,
mais celui-ci est relativement complexe et il peut en vérité être contourné. En effet, une fois les mouvements
possibles sur le damier bien définie (sous-section suivante), il suffit de partir du damier ordonné (très facile a
générer) et d’effectuer un certains nombres de mouvements aléatoires pour obtenir une configuration aléatoire
nécessairement solvable.

La question est de savoir combien de mouvement aléatoire réaliser pour obtenir des grilles biens mélangées
et peu redondantes. Nous avons effectué quelques tests et nous avons remarqué qu’après 10000 permutations
sur une configuration 4x4, le 1 se retrouvait presque aussi souvent sur la troisième ou quatrième ligne que
sur la première ou deuxième. Nous avons pensé que c’était un critère recevable pour dire que le damier était
suffisamment mélangé. Par ailleurs ce calcul se fait si vite que l’on observe aucun délai à l’œil nu (le nombre de
calculs effectués est seulement proportionnel au nombre de mouvements).

1 i n t ∗∗ melanger (i n t D) {
2

3 // Creat ion du tab leau
4 i n t ∗∗ t = 0 ;
5 t = mal loc (D ∗ s i z e o f (i n t ∗)) ;
6 i f (t == 0) { // Gest ion d ’ e r r eu r
7 f p r i n t f (s tde r r , "Erreur : Echec à l a c r e a t i on du tab leau (niveau 1) \n") ;
8 e x i t (1) ;
9 }

10

11 f o r (i n t i = 0 ; i<D; i++){
12 t [i] = mal loc (D ∗ s i z e o f (i n t)) ;
13 i f (t [i] == 0) { // Gest ion d ’ e r r eu r
14 f p r i n t f (s tde r r , "Erreur : Echec à l a c r e a t i on du tab leau (niveau 2) \n") ;
15 e x i t (1) ;
16 }
17 }
18 // Remplissage ordonn é du tab leau
19 i n t c = 1 ;
20 f o r (i n t i = 0 ; i<D; i++) // Parcours du tab leau
21 f o r (i n t j = 0 ; j<D; j++){
22

23 t [i] [j] = c ; // On p lace chaque case à sa p lace
24 c++;
25 }

2

26

27 // mé lange par permutat ions a l é a t o i r e s
28 i n t n = 10000; // nombre de t e n t a t i v e s de permutation
29 char d ; // deplacement l i g n e et co lonne
30 char d i r e c t i o n [] = "bhdg" ;
31

32 srand (time (NULL)) ; // i n i t i a l i s a t i o n du module a l ea
33

34 f o r (i n t k = 0 ; k<n ; k++){ // n f o i s
35

36 // On f a i t en s o r t e d ’ avo i r un dé placement a l é a t o i r e sur l a l i g n e OU sur l a co lonne (
pas l e s deux)

37 d = d i r e c t i o n [rand () % 4] ; // On c h o i s i une d i r e c t i o n au hasard
38 permuter (t , d , D) ; // On e f f e c t u e l a permutation s i p o s s i b l e
39

40 }
41

42 sauvegarder (t , 0 , D) ;
43 r e turn t ;
44

45 }

../codes/algo.c

2.2.2 Mécanique de jeu
Permutation
Dans le jeu, le joueur peut permuter la case vide et la case à sa gauche, à sa droite, au dessus ou en dessous.
Dans tout les cas, il ne peut la pas sortir du damier. Ainsi, quand il commande un mouvement, le programme
doit trouver la case vide, déterminer si le mouvement est possible, puis, si oui, l’exécuter. C’est très littéralement
ce que fait la fonction permuter. Elle retourne ensuite 1 si une permutation à été effectuée, 0 sinon.

1 i n t permuter (i n t ∗∗ t , char d , i n t D) {
2

3 f o r (i n t i = 0 ; i<D; i++) // Parcours du tab leau
4 f o r (i n t j = 0 ; j<D; j++){
5

6 i f (t [i] [j] == VIDE) { // On trouve l a case à v ide
7

8 i f (d == ’h ’ && i−1 >= 0) { // S i on va en haut
9 t [i] [j] = t [i −1] [j] ; // On permute

10 t [i −1] [j] = VIDE;
11 r e turn 1 ;
12

13 }
14

15 e l s e i f (d == ’b ’ && i+1 < D){ // S i on va en bas
16 t [i] [j] = t [i +1] [j] ; // On permute
17 t [i +1] [j] = VIDE;
18 r e turn 1 ;
19

20 }
21

22 e l s e i f (d == ’ g ’ && j−1 >= 0) { // S i on va a gauche
23 t [i] [j] = t [i] [j −1] ; // On permute
24 t [i] [j −1] = VIDE;
25 r e turn 1 ;
26

27 }
28

29 e l s e i f (d == ’d ’ && j+1 < D){ // S i on va a d r o i t e
30 t [i] [j] = t [i] [j +1] ; // On permute
31 t [i] [j +1] = VIDE;
32 r e turn 1 ;
33

34 }
35

36 e l s e { // S i e l l e n ’ e s t pas dans l e vo i s i n ag e
37 r e turn 0 ; // On ne peut pas permuter
38 }
39 }
40 }
41

42 r e turn 0 ;
43 }

3

../codes/algo.c

Vérification
Chaque mouvement du joueur est susceptible de terminer le jeu (par victoire). Aussi après chaque permutation,
on vérifie si le damier est ordonnée. Pour cela il suffit de le parcourir et de vérifier que chaque case est à sa place
(jusqu’à la case vide en dernière position).

1 i n t v e r i f i e r (i n t ∗∗ t , i n t D) {
2

3 i n t c = 1 ;
4

5 f o r (i n t i = 0 ; i<D; i++) // Parcours du tab leau
6 f o r (i n t j = 0 ; j<D; j++){
7

8 i f (t [i] [j] == c) // On v e r i f i e s i chaque case e s t bien à sa p lace
9 c++;

10 e l s e
11 r e turn 0 ; // S i une ne l ’ e s t pas , l e tab leau n ’ e s t pas s o l v é
12 }
13 r e turn 1 ; // Sinon , i l e s t s o l v é
14 }

../codes/algo.c

2.2.3 Sauvegarde
Il était attendu dans le sujet une fonctionnalité impliquant l’utilisation de fichiers. Nous avons donc opté

pour un système de sauvegarde par lequel le joueur peut enregistrer une configuration à un instant donné (il
écrase alors la précédente sauvegarde) et la restaurer plus tard. Lorsqu’une configuration est générée en début
de partie, elle est automatiquement sauvegardée.

Le système se décompose en deux fonctions : une pour écrire la sauvegarde, l’autre pour la restaurer. Les
deux fonctions sont syntaxiquement et sémantiquement très similaires. Il faut noter qu’il serait problématique
d’essayer d’importer une configuration de taille 4x4 depuis un fichier utilisé pour la sauvegarde d’une configu-
ration 5x5 par exemple. Mais si on s’assure de ne jamais avoir ce type d’erreur dans notre programme, on n’a
pas besoin de formater le fichier de façon complexe, on se contente d’écrire une valeur par ligne.

1 void sauvegarder (i n t ∗∗ t , i n t nbCoup , i n t D) {
2 FILE ∗ f = NULL;
3 f = fopen (" sauv . txt " , "w") ; // Creat ion / ouverture du f i c h i e r
4 i f (f == NULL) { // Gest ion d ’ e r r eu r
5 p r i n t f ("Erreur : Echec c r e a t i on de l a sauvegarde \n") ;
6 e x i t (1) ;
7 }
8

9 f p r i n t f (f , "%d\n" , nbCoup) ; // Sauvegarde du nombre de coup
10 f o r (i n t i = 0 ; i<D; i++) // Parcours du tab leau
11 f o r (i n t j = 0 ; j < D; j++)
12 {
13 f p r i n t f (f , "%d\n" , t [i] [j]) ; // é c r i t u r e d ’ une case par l i g n e
14 }
15 f c l o s e (f) ; // Fermeture du f i c h i e r
16 }
17

18

19 i n t r e cha rge r (i n t ∗∗ t , i n t D) {
20 char l i g n e [4] ;
21 FILE ∗ f = NULL;
22 i n t nbCoup ;
23

24 f = fopen (" sauv . txt " , " r ") ; // Ouverture du f i c h i e r
25 i f (f == NULL) { // Gest ion d ’ e r r eu r
26 p r i n t f ("Erreur : Echec c r e a t i on de l a sauvegarde \n") ;
27 e x i t (1) ;
28 }
29

30 f g e t s (l i gne , 4 , f) ; // Ré cuperat ion du nombre de coup
31 s s c an f (l i gne , "%d\n" , &nbCoup) ; // Extract ion de l a va l eur
32

33 f o r (i n t i = 0 ; i<D; i++) // Parcours du tab leau
34 f o r (i n t j = 0 ; j < D; j++)
35 {
36 f g e t s (l i gne , 4 , f) ; // Ré cuperat ion de l a l i g n e correspondante

4

37 s s c an f (l i gne , "%d\n" , &t [i] [j]) ; // Extract ion de l a va l eur
38 }
39 f c l o s e (f) ;
40

41 r e turn nbCoup ; // On retourne l e nombre de coup à l ’ i n s t an t de l a sauvegarde
42

43 }

../codes/algo.c

2.2.4 Fonctions auxiliaires
Libération de la mémoire
Supposons que notre joueur aime beaucoup le jeu et y soit très bon : il pourrait gagner beaucoup de partie à la
suite et donc générer beaucoup de configuration soit demander au programme de créer beaucoup de tableau ce
qui pourrait finir par encombrer considérablement la mémoire de sa machine. Il est donc nécessaires de libérer
la mémoire au fur et à mesure. On veut que à un instant donné, le programme n’exploite qu’une configuration
(une seconde est sauvegardée dans un fichier). Pour cela on créé une fonction qui détruit le tableau à la fin de
chaque partie et qui libère la mémoire correspondante. Ce type de fonction est très classique, le tout est de
l’utiliser au bon moment. On aurait aussi pu avoir un seul tableau qui aurait pris la nouvelle configuration à
chaque début de partie mais il nous semblait plus élégant d’avoir une fonction qui génère, remplit et mélange
un tableau toute seule.

1 void l i b e r e r (i n t ∗∗ t , i n t D) {
2 f o r (i n t i = 0 ; i < D; i++)
3 f r e e (t [i]) ;
4 f r e e (t) ;
5 }

../codes/algo.c

Mode console
On voulait que le jeu soit utilisable en mode graphique ou en mode console. On a donc créé deux fonctions,
chacune correspondant à un mode. L’exécution du mode graphique est détaillée dans la section suivante. Pour
le mode console, on génère une configuration puis on se contente de demander en boucle à l’utilisateur ce
qu’il veut faire (mouvements, sauvegarde, restauration). On affiche à chaque étape le damier (d’où la fonction
d’affichage) et on vérifie à chaque tour si la partie est gagnée. Si oui, on félicite le joueur, on efface la mémoire
et le programme se termine.

1 void conso l e (i n t D) {
2

3 i n t ∗∗ t = melanger (D) ; // Géné ra t i on du tab leau
4 char d ;
5 p r i n t f ("TAQUIN mode conso l e by IZIGANG tm\n") ; // I n s t r u c t i o n s
6 p r i n t f (" c on t r o l e s : \n") ;
7 p r i n t f ("− s : Sauvegarder \n") ;
8 p r i n t f ("− r : Recharger l a sauvegarde \n") ;
9 p r i n t f ("h , b , d , g : Haut , Bas , Droite , Gauche\n") ;

10

11 i n t nbCoup = 0 ; // compteur de coup
12

13 whi le (! v e r i f i e r (t , D)) { // Tant que l e joueur n ’ a pas gagn é
14 p r i n t f ("\n\n") ;
15 a f f i c h e r (t , D) ; // Af f i chage de l a g r i l l e
16 p r i n t f ("\n") ;
17 p r i n t f ("Vers ou a l l e r ? (%d coup) >" ,nbCoup) ; // S a i s i e u t i l i s a t e u r
18 s can f ("%c" ,&d) ;
19

20 i f (d==’ s ’) { // S i sauvegarde
21 sauvegarder (t , nbCoup , D) ; // Sauvegarde
22 p r i n t f ("La g r i l l e à é t é sauvegard é e ! \ n") ;
23 }
24

25 e l s e i f (d ==’ r ’) { // S i r e s t au r a t i o n
26 nbCoup = recha rge r (t ,D) ; // Restaurat ion
27 p r i n t f ("La g r i l l e à é t é recharg é e ! \ n") ;
28 }
29

30 e l s e { // Sinon (mouvement ou fau te de f rappe)
31

32 i f (! permuter (t , d , D)) // Tentat ive de permutation
33 p r i n t f (" permutation impos s ib l e ! \ n") ;
34 nbCoup++; // Inc r é mentation du nombre de coup

5

35 }
36

37 s can f ("%c" ,&d) ;
38 p r i n t f ("%c\n" , d) ;
39 }
40

41 p r i n t f ("\n\nBien jou é ! \n") ; // S i v i c t o i r e , f é l i c i t a t i o n
42 l i b e r e r (t , D) ; // L ibe ra t i on de l a mé moire
43

44 }

../codes/main.c

2.3 Surcouche graphique

2.3.1 Lancement du mode graphique
Initialisations
Le mode graphique est lancé grâce à l’appel de la fonction "graphique". Dans cette fonction nous initialisons
les modules indispensables au bon fonctionnement du jeu, c’est à dire les modules audio et vidéo, le module
permettant d’écrire du texte sur une fenêtre ainsi que le module aléa. Cette fonction va jouer la musique de fond
et faire tourner en boucle la création de l’interface "menu" tant que l’utilisateur n’aura pas demandé l’arrêt
totale du jeu.

1 void graphique () {
2

3 i f (SDL_Init (SDL_INIT_VIDEO | SDL_INIT_AUDIO)==−1){ // S i l ’ i n i t i a l i s a t i o n des modules audio
et v ideo é choue

4 f p r i n t f (s tde r r , "Unable to i n i t i a l i z e VIDEO or AUDIO:%s \n" , SDL_GetError ()) ; //On é c r i t un
message d ’ e r r eu r

5 e x i t (EXIT_FAILURE) ; //On so r t du programme
6 }
7

8 i f (TTF_Init ()==−1){ // S i l ’ i n i t i a l i s a t i o n de SDL_Ttf é choue
9 f p r i n t f (s tde r r , "Unable to i n i t i a l i z e TTF: %s \n" ,TTF_GetError ()) ; //On é c r i t un message d ’

e r r eu r
10 e x i t (EXIT_FAILURE) ; //On so r t du programme
11 }
12

13 i f (Mix_OpenAudio (44100 ,MIX_DEFAULT_FORMAT,2 , 256)==−1){// S i l ’ i n i t i a l i s a t i o n de SDL_Mixer é
choue

14 f p r i n t f (s tde r r , "Unable to open an audio with Mixer : %s " ,Mix_GetError ()) ; //On é c r i t un
message d ’ e r r eu r

15 e x i t (EXIT_FAILURE) ; //On so r t du programme
16 }
17

18 srand (time (NULL)) ; //On enc lenche l e module a l ea
19

20 Mix_Music ∗ musique=NULL; //On cr é e un po inteur ve r s une musique
21

22 SDL_Thread∗ threadMusic = SDL_CreateThread (randomMusic , musique) ; //On lance un thread qui va
joue r des musiques a l é a t o i r e s en fond

23

24 i n t stop =0; //On i n i t i a l i s e l a f on c t i on qui va dé c i d e r de s i l e j eu s ’ a r r ê te ou pas
25 whi le (stop ==0|| stop==−1){// S i stop e s t à 0 ou −1 l e j eu cont inue et on r e l an c e menu ()
26 stop=menu() ; //La f onc t i on menu renvo i s o i 0 , s o i −1, s o i 1
27 }
28

29 done = 1 ; //Le jeu e s t termin é donc on met l a va r i a b l e g l oba l e done à 1 pour stopper l e
thread

30

31 SDL_WaitThread(threadMusic ,NULL) ; //On attend que l e thread se stop gr â ce à l a v a r i a b l e done
32

33 Mix_FreeMusic (musique) ; //La musique n ’ e s t p lus u t i l i s é e donc on l i b è re l a mé moire
correspondante

34

35 Mix_Quit () ; //On qu i t t e SDL_Mixer
36 TTF_Quit () ; //On qu i t t e SDL_Ttf
37 SDL_Quit () ; //On qu i t t e SDL_Quit
38 }

../codes/graphique.c

Multi-threading
Pour faire tourner la musique de fond sans cesse il aurait fallut vérifier assez régulièrement si une musique

6

était en train d’être jouée, or si l’utilisateur ne saisie aucune entrée clavier ni souris le programme resterait en
pause et aucune nouvelle musique ne serait jouée après la fin de la précèdente. Utiliser la fonction "PollEvent"
au lieu de "MainEvent" dans la boucle des évènements ferait utiliser le CPU à 100% de performances, ce qui
n’est pas très optimisé. Utiliser "PollEvent" et ajouter un délai dans la boucle des évènements aurait poser un
gros problème en terme de latence pour l’affichage des boutons en surbrillance. Puisque "MainEventTimeout"
n’existe que sur SDL2.0 nous avons dû utiliser le multi-threading pour faire tourner la musique en fond du jeu
sur un thread secondaire. L’état d’une variable "done", exceptionnellement globales aux fonctions graphiques,
est donc modifié par le thread principal et passe de 0 à 1 pour que le fonction du thread secondaire puisse savoir
à quel moment elle doit se terminer.

Thread secondaire
Dans le thread secondaire tournera une fonction ("randomMusic") qui jouera de la musique. Toutes les secondes
elle vérifiera qu’il y a bien une musique qui est en train d’être jouée, si on ne mettait pas ce délai de 1 seconde
le CPU fonctionnerait à 100% pour rien. Cette fonction lit aussi l’état de la variable globale "done" pour savoir
si elle doit se terminer ou non afin de pouvoir terminé le thread principale en toute sécurité.

1 i n t randomMusic (void ∗ musique) {
2 Mix_Music ∗ newMusique = (Mix_Music∗) musique ; //On cas t musique pour pouvoir l ’ u t i l i s e r en

tant que po inteur ve r s une musique
3 Mix_VolumeMusic (65) ; //Le volume de base e s t à 128 , ce qui é t a i t trop f o r t donc on l e met à

65
4 whi le (done==0){ //Tant que done==0 donc tant que l e main thread tourne donc tant que l e j eu

n ’ e s t pas termin é
5 SDL_Delay (1000) ; //On delay pour é v i t e r de f a i r e s o u f f r i r l e CPU avec une bouc le qui se r é

pè te trop v i t e pour r i e n . La bouc le va donc se r épé t e r toute s l e s secondes
6 i f (Mix_PlayingMusic ()==0){// S i aucune musique ne joue actue l l ement
7 char nomFichier [1 4] ; //On cr é e une cha ine de char qui va con t en i r l e chemin d ’ une

nouve l l e musique
8 s p r i n t f (nomFichier , "music/%i .mp3" , rand () %54) ; //On met dans c e t t e cha ine l e chemin d ’ une

nouve l l e musique a l é a to i r e , i l y en a 53 donc on u t i l i s e %54
9 Mix_FreeMusic (newMusique) ; //On l i b è re l a mé moire a l l o u é e par une p o t e n t i e l l e musique

po int é e par newMusique
10 newMusique=NULL; //On s e t l e po inteur à NULL, s i l ’ a l l o c a t i o n de l a l i g n e su ivante ne s ’

e f f e c t u e pas ne po inteur ne po in t e ra pas n ’ importe où
11 newMusique= Mix_LoadMUS(nomFichier) ; //On a l l o u e de l a mémoire , on y met l a musique a l é

a t o i r e et on po inte c e t t e case avec newMusique
12 Mix_PlayMusic (newMusique , 0) ; //On lance l a musique , e l l e ne se r épè te pas
13 }
14 }
15 r e turn 0 ;
16 }

../codes/graphique.c

2.3.2 Affichage et fonctionnement du menu
Initialisations et affichages
Une fois qu’un appel à la fonction "menu" a été effectué, le programme va afficher le menu. Pour se faire, on va
initialiser une fenêtre de menu avec une image de fond, créer une liste de boutons et les afficher sur la fenêtre.
A partir du moment où le menu est affiché, on lance la fonction qui contient la boucle des évènements.

1 i n t menu () {
2

3 SDL_Surface ∗ s c r e en=i n i t i a l i s a t i o n (0 ,480 ,480) ; //On appe l l e i n i t i a l i s a t i o n () pour cr é er l a
f en ê t r e et l a po in t e r avec s c r e en

4

5 SDL_Surface ∗∗ button = createRect (8 , "button/button") ; //On u t i l i s e c reateRect () pour cr é er
une une l i s t e de 8 s u r f a c e s correspondant aux boutons " nouve l l e p a r t i e " , " r e cha rge r " et "
qu i t t e r " qui s ’ app e l l e r a button . (8 car i l y a l e s images g r i s e s et b l eus)

6

7 setButtonMenu (screen , button) ; // On u t i l i s e c e t t e f on c t i on pour a f f i c h e r l e s boutons sur l ’ é
cran sc r e en

8

9 i n t stop=eventMenu (screen , button) ; //Dans stop on va s t o cke r l a dé c i s i o n du joueur quant au
f a i t d ’ a r r ê t e r l e j eu tota lement (1) ou de j u s t e r e l a n c e r l e menu pour ar r ê t e r l e taquin
(0)

10

11 SDL_FreeSurface (s c r e en) ; //Puisqu ’ on va red é marrer l e menu ou ar r ê t e r l e jeu , on ferme l ’ é
cran donc on l i b è re l a mé moire a l l o u é e par s c r e en pour l ’ é cran

12

13 f r e e Su r f a c e (button , 8) ; //On l i b è re l a mé moire a l l o u é e pour tous l e s boutons dans l a l i s t e
button .

14

7

15 r e turn stop ; //On renvo i e 1 pour ar r ê t e r l e j eu totalement , 0 pour red é marrer l e menu et
j u s t e a r r ê t e r l e taquin

16 }
17

18 SDL_Surface ∗ i n i t i a l i s a t i o n (i n t n , i n t width , i n t he ight) {
19

20 SDL_Surface ∗ s c r e en=NULL; // sc r e en va con t en i r l a f en ê t r e
21 i f ((s c r e en= SDL_SetVideoMode (width , height , 3 2 ,SDL_HWSURFACE))==NULL) {
22 f p r i n t f (s tde r r , "Ok e r r eu r sd l :%s \n" , SDL_GetError ()) ;
23 e x i t (EXIT_FAILURE) ;
24 } // S i on ne parv i ent pas à cr é er l a f en ê t r e on stop l e prog et un message d ’ e r r eu r s ’ envo ie
25

26 SDL_Rect pos ; // Var iab le contenant l a p o s i t i o n de l ’ image de fond de l a f en ê t r e
27 pos . x=0;// coord axe ho r i z on t a l
28 pos . y=0;// coord axe v e r t i c a l
29

30 char nomFichier [2 2] ; // cha ine de char contenant l e chemin ver s l ’ image de fond
31 s p r i n t f (nomFichier , " image/background%i .bmp" ,n) ; // Ec r i tu r e du chemin dans l a cha ine
32 SDL_Surface ∗background=SDL_LoadBMP(nomFichier) ; // Creat ion de l a su r f a c e po intant ve r s l ’

image de fond
33

34 SDL_BlitSurface (background ,NULL, screen ,&pos) ; //Posage de l ’ image de fond au coord [0 ; 0]
35

36 SDL_FreeSurface (background) ; //On l i b è re l a mé moire a l l o u é e pour l ’ image de fond puisqu ’ on l ’
a dé j à pos é

37

38 r e turn sc r e en ; //On renvo i l e po inteur ver s l a f en ê t r e qui c on t i en t dé sormais un fond
39 }
40

41 SDL_Surface∗∗ createRect (i n t n , char debutNom [2 0]) {
42

43 SDL_Surface ∗∗ r e c t=(SDL_Surface ∗∗) mal loc (n∗ s i z e o f (SDL_Surface ∗)) ; //On cr é e une l i s t e de n
s u r f a c e s

44

45 char nomFichier [2 7] ; //Chaine de char contenant l e chemin du type d ’ image que va con t en i r l a
l i s t e r e c t

46

47 f o r (i n t i =0; i<n ; i++){//Pour l e nombre de su r f a c e
48 s p r i n t f (nomFichier , "%s%i .bmp" ,debutNom , i) ; //On met dans l a cha ine l e chemin du type d ’

image que va con t en i r l a l i s t e r e c t
49 r e c t [i]=SDL_LoadBMP(nomFichier) ; //On f a i t po in t e r chaque su r f a c e sur l e u r image

correspondante
50 }
51

52 r e turn r e c t ; //On renvo i l a l i s t e
53 }
54

55 void setButtonMenu (SDL_Surface∗ screen , SDL_Surface∗∗ button) {
56

57 SDL_Rect pos ; // Var iab le contenant l a p o s i t i o n des boutons que l ’ on va p l a c e r
58 pos . x=80; // coord axe ho r i z on t a l
59 pos . y=80; // coord axe v e r t i c a l
60 // Pos i t i on du bouton Nouvel le p a r t i e
61

62 SDL_BlitSurface (button [0] ,NULL, screen ,&pos) ; //Posage du bouton Nouvel le p a r t i e aux dern i è
r e s coordonn é es de pos sur l a f en ê t r e

63

64 pos . y=pos . y+125; // Pos i t i on du bouton Recharger
65

66 SDL_BlitSurface (button [1] ,NULL, screen ,&pos) ; //Posage du bouton Recharger aux dern i è r e s
coordonn é es de pos sur l a f en ê t r e

67

68 pos . y=pos . y+175; // Pos i t i on du bouton Quit te r
69

70 SDL_BlitSurface (button [2] ,NULL, screen ,&pos) ; //Posage du bouton Quit ter aux dern i è r e s
coordonn é es de pos sur l a f en ê t r e

71

72 SDL_Flip (s c r e en) ; //On met en p lace l e s mod i f i c a t i on s pour obt en i r une b e l l e f en ê t r e de menu
73

74 }

../codes/graphique.c

Boucle des événements du menu
Dans la boucle des événements le programme va être mit en pause tant qu’aucune entrée clavier ou souris
n’a été faite par le joueur. Pour rendre l’interface plus vivante nous avons décidé de mettre en surbrillance les
boutons sur lesquels le joueur passe avec la souris ainsi que de jouer un effet sonore lorsqu’il clique sur un des
boutons. Pour savoir sur quel bouton le joueur est passé nous interprétons la position de la souris à l’instant du

8

mouvement de souris et la comparons aux positions des boutons sur l’interface. La surbrillance s’effectue avec
l’utilisation de la fonction "colorButton" et chaque clic est traité par la fonction "clickOnMenu".

1 i n t eventMenu (SDL_Surface∗ screen , SDL_Surface∗∗ button) {
2 i n t stop =0; // Var iab le à 1 s i on ar r ê te tota lement l e jeu , à −1 s i on r e l an c e l e menu
3 i n t x , y ; // Var i ab l e s qui vont comprendre l a p o s i t i o n de l a s o u r i s quand e l l e bouge
4 Mix_Chunk ∗ sonCl i c= NULL; // Pointeur qui va po in t e r sur un e f f e t sonore de c l i c
5 sonCl i c = Mix_LoadWAV(" sound_ef fect /1 .wav") ; //On l e f a i t po in t e r ve r s l ’ e f f e t sonore
6 SDL_Event event ; // Var iab le contenant l ’ input du joueur
7 whi le (stop==0){//Tant qu ’ on ne dé c ide pas d ’ a r r ê te n i de r e l a n c e r l e menu
8 SDL_WaitEvent(&event) ; //On attend que l e joueur i n t e r a g i s s e avec l e j eu
9 switch (event . type) { //On é tud i e tous l e s cas d ’ input

10 case SDL_QUIT: // S i i l ferme d ’ une quelconque fa çon l a f en ê t r e l e j eu s ’ a r r ê te tota lement
11 stop =1;// l e j eu s ’ a r r ê te tota lement
12 break ;
13 case SDL_MOUSEBUTTONDOWN: // S i i l c l i q u e à un endro i t
14 i f (event . button . button==SDL_BUTTON_LEFT){// avec l e bouton gauche de l a s o u r i s
15 stop=clickOnMenu (sonCl ic , event . button . x , event . button . y) ; //On ar r ê te l e programme en

f onc t i on de l ’ end ro i t du c l i c
16 }
17 break ;
18 case SDL_MOUSEMOTION: // S i i l bouge l a s o u r i s
19 x=event . motion . x ; //x con t i en t sa po s i t i o n ho r i z on t a l
20 y=event . motion . y ; //y con t i en t sa po s i t i o n v e r t i c a l
21 i f (x>=80 && x<=400 && y>=80 && y<=144){// s i i l passe sur l e bouton Nouvel le p a r t i e
22 co lorButton (screen , button , 4 , 8 0 , 80) ; //On met l e bouton nouve l l e p a r t i e en bleu
23 }
24

25 e l s e i f (x>=80 && x<=400 && y>=205 && y<=269){// S i i l passe sur l e bouton Recharger
26 co lorButton (screen , button , 5 , 80 , 205) ; //On met l e bouton Recharger en bleu
27 }
28

29 e l s e i f (x>=80 && x<=400 && y>=380 && y<=444){ // S i i l passe sur l e bouton Quit te r
30 co lorButton (screen , button , 6 , 80 , 380) ; // On met l e bouton Quit te r en bleu
31 }
32 e l s e { //S ’ i l ne passe sur aucun bouton
33 setButtonMenu (screen , button) ; //On r é a f f i c h e tous l e s boutons au cas où c e r t a i n s s e r a i e n t

a f f i c h é s en bleu .
34 }
35 break ;
36

37 de f au l t :
38 break ;
39 }
40 }
41 Mix_FreeChunk(sonCl i c) ; //On l i b è re l a mé moire a l l o u é e pour l e son de c l i c
42 r e turn stop ; // S i on do i t a r r ê t e r tota lement l e j eu on renvo i e 1 , s i on red émarre j u s t e l e

menu on renvo i e −1
43 }

../codes/graphique.c

Gestion des clics sur le menu
On compare donc la position de la souris à l’instant du clic aux positions des boutons sur l’interface avec la
fonction "clickOnMenu". Un son est joué si le joueur a cliqué sur un bouton. Si le clic tombe sur la position du
bouton "Nouvelle partie" on mélange un tableau à l’aide des fonctions de la partie algorithmique du projet et on
lance le jeu de taquin avec ce tableau. Si l’utilisateur a cliqué sur le bouton "Recharger", on utilise également les
fonctions de la partie algorithmique du projet pour recharger un tableau et un nombre de coups sauvegardés et
lancer le jeu de taquin avec ces données. Si l’utilisateur clique sur le bouton quitter, la fonction "clickOnMenu"
retourne qu’il a été décidé qu’il fallait arrêter totalement le jeu. Dans le cas où l’utilisateur clique à un endroit
neutre on retourne à la boucle des événements.

1 i n t clickOnMenu (Mix_Chunk∗ sonCl ic , i n t x , i n t y) {
2 i n t ∗∗ tab=NULL; //On cr é e un po inteur sur un tab leau contenant l a g r i l l e de taquin
3 i n t nbCoups ; // Var iab le contenant l e nombre de coups du joueur
4

5 i f (x>=80 && x<=400 && y>=80 && y<=144){ // S i i l c l i q u e sur l e bouton Nouvel le p a r t i e
6 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On ac t i v e un son de c l i c
7 tab=melanger (4) ; //On met dans tab une nouve l l e g r i l l e mé lang é e de taquin
8 j eu (tab , 0) ; // lance l e j eu de taquin avec l a nouve l l e g r i l l e e t 0 en tant que nombre de

coups
9 r e turn −1;//Renvoi −1 quand l e j eu de taquin se termine de s o r t e à ce que l e menu se

r e l an c e en t i è rement
10 }
11

12 e l s e i f (x>=80 && x<=400 && y>=205 && y<=269){// S i i l c l i q u e sur l e bouton Recharger

9

13 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On lance l e son de c l i c
14 tab=(i n t ∗∗) mal loc (4∗ s i z e o f (i n t ∗)) ; //On a l l o u e de l a p lace pour l a g r i l l e de 4∗4
15 f o r (i n t i =0; i <4; i++){
16 tab [i]=(i n t ∗) mal loc (4∗ s i z e o f (i n t)) ;
17 }
18 nbCoups =recha rge r (tab , 4) ; //On charge l a g r i l l e du contenu du f i c h i e r de sauvegarde de

g r i l l e e t on stock l e nombre de coups de l a sauvegarde dans nbCoups
19 j eu (tab , nbCoups) ; //On lance l e j eu de taquin avec l a g r i l l e recharg é e et l e nombre de

coups correspondant
20 r e turn −1;//Renvoi −1 pour r e l a n c e r l e menu
21 }
22

23 e l s e i f (x>=80 && x<=400 && y>=380 && y<=444){// S i i l c l i q u e sur l e bouton Quit te r
24 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On lance l e son du c l i c
25 r e turn 1 ; //On renvo i e 1 pour terminer tota lement l e j eu
26 }
27

28 e l s e { // S i i l c l i q u e à un endro i t neutre
29 r e turn 0 ; //La bouc le des event cont inue
30 }
31 }

../codes/graphique.c

2.3.3 Affichage et fonctionnement du jeu de taquin
Initialisations et affichages
Comme pour le menu, pour afficher l’interface de jeu de taquin, le programme va initialiser une fenêtre avec une
image de fond, créer une liste de cases représentant la grille, une liste de boutons et afficher cette dernière sur
la fenêtre. La fonction "jeu" va également faire appel à la fonction "synchro" afin de synchroniser les positions
des cases représentant la grille avec le tableau contenant la liste. Une fois que tous les éléments sont affichés on
lancer la boucle des événements du jeu de taquin avec la fonction "eventJeu".

1 void jeu (i n t ∗∗ tab , i n t nbCoups) {
2

3 SDL_Surface ∗ s c r e en=i n i t i a l i s a t i o n (2 ,900 ,480) ; //On i n i t i a l i s e l a f en ê t r e de jeu dans s c r e en
4

5 SDL_Surface ∗∗ r e c t=createRect (16 , " r e c t /") ; //On f a i t po in t e r l e s s u r f a c e s de l a l i s t e r e c t
sur l e s images des ca s e s de l a g r i l l e de taquin

6

7 synchro (screen , rect , tab , nbCoups) ; //On synchron i s e l ’ a f f i c h a g e des images des ca s e s avec l a
g r i l l e de taquin dans tab

8

9 SDL_Surface ∗∗ button = createRect (12 , "button/button") ; //On f a i t po in t e r l e s 12 s u r f a c e s de
button sur es images des boutons Sauvegarder , Recharger et Qui t ter (12 car i l y a l e s
images des boutons en g r i s , b leu et bleu fonc é)

10

11 setButtonJeu (screen , button , tab) ; //On a f f i c h e correctement l e s images des boutons
12

13 eventJeu (screen , rect , button , tab , nbCoups) ; //On lance l a bouc le qui gè re l e s inputs du joueur
durant l e j eu de taquin

14

15 l i b e r e r (tab , 4) ; //Le jeu de taquin e s t termin é donc on l i b è re l a mé moire a l l o u é e pour l e
tab leau

16 f r e e Su r f a c e (button , 1 2) ; //On l i b è re l a mé moire a l l o u é e pour l a l i s t e de s u r f a c e s po intant sur
des images de boutons

17 f r e e Su r f a c e (rect , 1 6) ; //On l i b è re l a mé moire a l l o u é e pour l a l i s t e des images de l a g r i l l e de
taquin

18 SDL_FreeSurface (s c r e en) ; //On l i b è re l a mé moire a l l o u é e pour l ’ image de fond
19

20 }

../codes/graphique.c

1 void setButtonJeu (SDL_Surface∗ screen , SDL_Surface∗∗button , i n t ∗∗ tab) {
2

3 SDL_Rect pos ; // Var iab le contenant l e s p o s i t i o n s des boutons que l ’ on va p l a c e r
4 pos . x=540; //Coord axe ho r i z on t a l
5 pos . y=156; // coord axe v e r t i c a l
6 //Coord de l ’ image du bouton sauvegarder
7 i f (v e r i f i e r (tab , 4)==0){// S i l e j eu de taquin n ’ e s t pas encore r é u s s i . S ’ i l e s t r é u s s i on

r eme t t r a i t l ’ image de sauvegarder en g r i s a l o r s qu ’ i l s e r a i t cens é ê t r e g r i s fonc é
8 SDL_BlitSurface (button [3] ,NULL, screen ,&pos) ; //On met l ’ image de sauvegarder en g r i s
9 }

10 pos . y=pos . y+104;
11 //Coord de l ’ image du bouton recha rge r

10

12

13 SDL_BlitSurface (button [1] ,NULL, screen ,&pos) ; //On p lace l ’ image du bouton Recharger en g r i s
14

15 pos . y=pos . y+104; //Coord du bouton Quit te r
16

17 SDL_BlitSurface (button [2] ,NULL, screen ,&pos) ; //On p lace l ’ image du bouton Quit te r en g r i s
18

19 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l
20 }

../codes/graphique.c

Boucle des événements du jeu de taquin
Dès le début de la fonction "eventJeu", qui contient la boucle des événements du jeu de taquin, on vérifie que
la grille chargée ne soit pas déjà ordonnée, si elle l’est, on affiche directement l’écran de réussite sans jouer
d’effet sonore. Une fois dans la boucle, le programme se met en pause tant qu’aucune entrée eclavier ou souris
n’a été faite par le joueur. Les effets sonores et la surbrillance des boutons sont gérés de la même façon que
pour le menu. Si l’utilisateur appuie sur un touche, on vérifie que le jeu de taquin ne soit pas réussi avant
d’effectuer une action. Si le joueur appuie sur une touche directionnelle un effet sonore de permutation se lance
et le programme fait permuter la case juste à gauche, à droite, en haut ou en bas de la case vide avec cette
dernière si cela est possible. Si après la permutation le taquin est réussi alors un écran de succès s’affiche et un
effet sonore correspondant est joué. On fait appel à la fonction "clickOnJeu" dès l’instant où le joueur utilise
le clic gauche de sa souris. S’il clique sur un bouton alors celui arbore une couleur plus foncée, c’est pourquoi
lorsque l’utilisateur relâche le clic gauche on redonne sa couleur bleu au bouton sur lequel se trouve la souris ou
alors on redonne leur couleur normale à tous les boutons si la souris n’est sur aucun bouton.

1 void eventJeu (SDL_Surface∗ screen , SDL_Surface∗∗ rect , SDL_Surface∗∗button , i n t ∗∗ tab , i n t nbCoups) {
2 i n t su c c e s s=v e r i f i e r (tab , 4) ; // Var iab le contenant 1 s i l e j eu de taquin e s t r é us s i , 0 s inon
3 i n t stop =0;// va r i ab l e contenant 1 s i on do i t r e l a n c e r un é cran de menu
4 i n t ∗nbCoupsPoint=&nbCoups ; //On cr é e un po inteur ve r s l e nombre de coups pour pouvoir l e

mod i f i e r dans l e s aut r e s f o n c t i o n s
5 i f (s u c c e s s==1){// S i l e j eu e s t r é u s s i
6 achievement (s c r e en) ; //On a f f i c h e l ’ é cran de succ è s
7 }
8 SDL_Event event ; // Var iab le contenant l e s inputs du joueur
9 Mix_Chunk ∗ sonPermu = Mix_LoadWAV(" sound_ef fect /2 .wav") ; // Pointeur ve r s l ’ e f f e t sonore de

permutation de case
10 Mix_Chunk ∗ sonCl i c = Mix_LoadWAV(" sound_ef fect /1 .wav") ; // Pointeur ve r s l ’ e f f e t sonore de

c l i c
11 Mix_Chunk ∗ sonSuccess = Mix_LoadWAV(" sound_ef fect /3 .wav") ; // Pointeur ve r s l ’ e f f e t sonore de

r é u s s i t e du jeu de taquin
12 i n t x , y ; // Var i ab l e s contenant l a p o s i t i o n de l a s o u r i s quand on l a dé p lace
13 whi le (stop==0){//Tant que stop n ’ e s t pas à 1 on l i t l e s inputs du joueur
14 SDL_WaitEvent(&event) ; // Attente d ’ une entr é e du joueur
15 switch (event . type) {//On é tud i e l e s cas su ivant s
16 case SDL_QUIT: // S i l e joueur ferme l a fen ê t r e
17 stop =1;// l e j eu de taquin s ’ a r r ê te et on r e l an c e un é cran de menu
18 break ;
19 case SDL_KEYDOWN: //S ’ i l appuie sur une touche
20 i f ((s u c c e s s==0) | (v e r i f i e r (tab , 4)==0)) {//S ’ i l n ’ a pas encore r é u s s i l e j eu . On u t i l i s e

l ’ opé ra t eur " |" pour ne pas avo i r à f a i r e trop de c a l c u l s pour r i e n . I l e s t p o s s i b l e que
suc c e s s s o i t à 1 mais que l e taquin ne s o i t pas r é us s i , dans l e cas où on a recharg é une
sauvegarde de g r i l l e a l o r s qu ’ on v i en t de r é u s s i r l e j eu

21 su c c e s s =0;//La g r i l l e n ’ e s t donc pas r é u s s i
22 switch (event . key . keysym . sym) {
23 case SDLK_LEFT: // S i l a touche e s t l a f l è che de gauche
24 i f (permuter (tab , ’ g ’ , 4)==1){//On permute l a case v ide avec l a case j u s t e à sa gauche s i

po s s i b l e , e t s i p o s s i b l e on r en t r e dans l e i f
25 Mix_PlayChannel (−1 ,sonPermu , 0) ; //On joue l e son de permutation
26 ∗nbCoupsPoint = ∗nbCoupsPoint + 1 ; //Le nombre de coups augmente de 1
27 synchro (screen , rect , tab , ∗ nbCoupsPoint) ; //On synchron i s e l e s p o s i t i o n s des images des

ca s e s de l a g r i l l e avec l e s ca s e s de l a g r i l l e
28 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l
29 }
30 break ;
31 case SDLK_RIGHT: // S i l a f l è che e s t l a f l è che de d r o i t e
32 i f (permuter (tab , ’d ’ , 4)==1){//On permute l a case v ide avec l a case j u s t e à sa d r o i t e s i

po s s i b l e , e t s i p o s s i b l e on r en t r e dans l e i f
33 Mix_PlayChannel (−1 ,sonPermu , 0) ; //On joue l e son de permutation
34 ∗nbCoupsPoint = ∗nbCoupsPoint + 1 ; //Le nombre de coups augmente de 1
35 synchro (screen , rect , tab , ∗ nbCoupsPoint) ; //On synchron i s e l e s p o s i t i o n s des images des

ca s e s de l a g r i l l e avec l e s ca s e s de l a g r i l l e
36 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l
37 }
38 break ;

11

39 case SDLK_UP: // S i l a touche e s t l a f l è che du haut
40 i f (permuter (tab , ’h ’ , 4)==1){//On permute l a case v ide avec l a case j u s t e en haut s i

po s s i b l e , e t s i p o s s i b l e on r en t r e dans l e i f
41 Mix_PlayChannel (−1 ,sonPermu , 0) ; //On joue l e son de permutation
42 ∗nbCoupsPoint = ∗nbCoupsPoint + 1 ; //On in c r émente de 1 l e nombre de coups
43 synchro (screen , rect , tab , ∗ nbCoupsPoint) ; //On synchron i s e l e s p o s i t i o n s des images des

ca s e s de l a g r i l l e avec l e s ca s e s de l a g r i l l e
44 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l
45 }
46 break ;
47 case SDLK_DOWN: // S i l a touche e s t l a f l è che du bas
48 i f (permuter (tab , ’b ’ , 4)==1){//On permute l a case v ide avec l a case j u s t e en bas s i

po s s i b l e , e t s i p o s s i b l e on r en t r e dans l e i f
49 Mix_PlayChannel (−1 ,sonPermu , 0) ; //On joue l e son de permutation
50 ∗nbCoupsPoint = ∗nbCoupsPoint + 1 ; //On in c r émente de 1 l e nombre de coups
51 synchro (screen , rect , tab , ∗ nbCoupsPoint) ; //On synchron i s e l e s p o s i t i o n s des images des

ca s e s de l a g r i l l e avec l e s ca s e s de l a g r i l l e
52 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l
53 }
54 break ;
55 de f au l t :
56 break ;
57 }
58 i f (v e r i f i e r (tab , 4)==1){// S i l e taquin e s t r é u s s i apr è s l a permutation qui v i en t d ’ ê t r e

e f f e c t u é e
59 achievement (s c r e en) ; //On a f f i c h e l ’ é cran de succ è s
60 Mix_PlayChannel (−1 , sonSuccess , 0) ; //On joue l e son de succ è s
61 su c c e s s =1;//On ind ique à l a v a r i a b l e que l e j eu de taquin a é t é r é u s s i
62 }
63 }
64 break ;
65 case SDL_MOUSEBUTTONDOWN: // S i i l c l i q u e sur un bouton de l a s o u r i s
66 i f (event . button . button==SDL_BUTTON_LEFT){// S i i l f a i t un c l i c gauche
67 stop=cl ickOnJeu (screen , rect , button , tab , nbCoupsPoint , sonCl ic , event . button . x , event . button .

y) ; //On r en t r e dans stop l a va l eur retourn é e par l a f on c t i on qui gè re l e s c l i c de l a
s o u r i s pour s avo i r s i l e j eu de taquin se termine

68 }
69 break ;
70 case SDL_MOUSEBUTTONUP: // S i on r e l â che un bouton de s o u r i s
71 i f (event . button . button==SDL_BUTTON_LEFT){// S i on r e l â che l e c l i c gauche
72 x=event . motion . x ; //Coord axe ho r i z on t a l
73 y=event . motion . y ; //Coord axe v e r t i c a l
74 // Pos i t i on de l a s o u r i s au r e l âchement du c l i c
75 i f (x>=540 && x<=860 && y>=156 && y<=220 && succ e s s==0){// S i on c l i q u e sur sauvegarder
76 co lorButton (screen , button ,7 , 540 , 156) ; //On f a i t pas s e r l e bouton du bleu fonc é au bleu
77 }
78

79 e l s e i f (x>=540 && x<=860 && y>=260 && y<=324){// S i on c l i q u e sur Recharger
80 co lorButton (screen , button ,5 , 540 , 260) ; //On f a i t pas s e r l e bouton du bleu fonc é au bleu
81 }
82

83 e l s e i f (x>=540 && x<=860 && y>=364 && y<=428){// S i on c l i q u e sur Quit ter
84 co lorButton (screen , button ,6 , 540 , 364) ; //On f a i t pas s e r l e bouton du bleu fonc é au bleu
85 }
86 e l s e {// S i on c l i c sur un endro i t qui n ’ e s t pas un bouton
87 setButtonJeu (screen , button , tab) ; //On r é a f f i c h e tous l e s boutons au cas où c e r t a i n s

s e r a i e n t a f f i c h é s en bleu fonc é
88 }
89 }
90 break ;
91 case SDL_MOUSEMOTION: // S i on bouge l a s o u r i s
92 x=event . motion . x ; //Coord axe ho r i z on t a l
93 y=event . motion . y ; //Coord axe v e r t i c a l
94 // Pos i t i on de l a s o u r i s
95 i f (x>=540 && x<=860 && y>=156 && y<=220 && succ e s s==0){// S i i l passe sur l e bouton

Sauvegarder et que su c c e s s e s t à 0 , donc que l e j eu n ’ e s t pas encore r é u s s i
96 co lorButton (screen , button ,7 , 540 , 156) ; //On passe du g r i s au bleu sur ce bouton
97 }
98

99 e l s e i f (x>=540 && x<=860 && y>=260 && y<=324){// S i i l passe sur l e bouton Recharger
100 co lorButton (screen , button ,5 , 540 , 260) ; //On passe du g r i s au bleu sur ce bouton
101 }
102

103 e l s e i f (x>=540 && x<=860 && y>=364 && y<=428){// S i i l passe sur l e bouton Quit te r
104 co lorButton (screen , button ,6 , 540 , 364) ; //On passe du g r i s au bleu sur ce bouton
105 }
106 e l s e {//S ’ i l ne passe sur aucun bouton p a r t i c u l i e r
107 setButtonJeu (screen , button , tab) ; //On r é a f f i c h e tous l e s boutons au cas où c e r t a i n s

s e r a i e n t a f f i c h é s en bleu .

12

108 }
109 break ;
110 de f au l t :
111 break ;
112 }
113 }
114 Mix_FreeChunk(sonPermu) ; //On l i b è re l a mé moire a l l o u é e pour l e son de permutation
115 Mix_FreeChunk(sonCl i c) ; //On l i b è re l a mé moire a l l o u é e pour l e son du c l i c
116 Mix_FreeChunk(sonSuccess) ; //On l i b è re l a mé moire a l l o u é e pour l e son de succ è s du jeu de

taquin
117 }

../codes/graphique.c

Gestion des clics sur le jeu de taquin
La fonction "clickOnJeu" gère les clics en partie comme le fait la fonction "clickOnMenu" pour la gestion des
clics sur le menu. La différence majeure vient du fait que quand on clique sur un bouton, ce dernier devient
plus foncé. Si l’utilisateur clique sur le bouton "Sauvegarder", on utilise les fonctions de la partie algorithmique
du projet pour sauvegarder la grille ainsi que le nombre de coups effectués. Si l’utilisateur clique sur le bouton
"Recharger, celà synchronise la grille affichée avec celle rechargée. Si cette dernière est déjà terminé alors on
affiche l’écran de réussite. Si l’utilisateur clique sur le bouton "Quitter" il quitte le jeu de taquin et un menu
est de nouveau crée.

1 i n t c l ickOnJeu (SDL_Surface∗ screen , SDL_Surface∗∗ rect , SDL_Surface∗∗button , i n t ∗∗ tab , i n t ∗nbCoups ,
Mix_Chunk∗ sonCl ic , i n t x , i n t y) {

2

3 i f (x>=540 && x<=860 && y>=156 && y<=220 && v e r i f i e r (tab , 4)==0){ // S i i l c l i q u e sur l e
bouton Sauvegarder

4 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On lance l e son de c l i c
5 sauvegarder (tab , ∗ nbCoups , 4) ; //On sauvegarde l a g r i l l e de taquin a i n s i que l e nombre de

coups pass é en paramè t r e
6 co lorButton (screen , button ,11 , 540 ,156) ; //On a f f i c h e l e bouton Sauvegarder en bleu fonc é (

p r e s s é)
7 r e turn 0 ; //On r e s t e dans l a bouc le d ’ input du joueur
8 }
9

10 e l s e i f (x>=540 && x<=860 && y>=260 && y<=324){// S i i l c l i q u e sur l e bouton Recharger
11 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On joue l e son de c l i c
12 ∗nbCoups=recharge r (tab , 4) ; //On recharge l a g r i l l e e t on met dans l a case mé moire du

nombre de coups l a va l eur du nombre de coups sauvegard é e
13

14 synchro (screen , rect , tab , ∗ nbCoups) ; //On synchron i s e l e s images des ca s e s de l a g r i l l e avec
l a g r i l l e

15 setButtonJeu (screen , button , tab) ; //On remet tous l e s boutons en bleu au cas où l e taquin
s o i t auparavant r é u s s i e t que l e bouton Sauvegarder s o i t b leu fonc é

16

17 i f (v e r i f i e r (tab , 4)==1){// S i l a g r i l l e recharg é e é t a i t r é u s s i e
18 achievement (s c r e en) ; //On a f f i c h e l ’ é cran de r é u s s i t e
19 }
20

21 co lorButton (screen , button ,9 , 540 , 260) ; //On met en bleu fonc é l e bouton Recharger car i l e s t
p r e s s é

22 r e turn 0 ; //On r e s t e dans l a bouc le d ’ input du joueur
23 }
24

25 e l s e i f (x>=540 && x<=860 && y>=364 && y<=428){// S i i l c l i q u e sur l e bouton qu i t t e r
26 Mix_PlayChannel (−1 , sonCl ic , 0) ; //On lance l e son de c l i c
27 r e turn 1 ; //On so r t de l a bouc le d ’ input du joueur dans l e but de r e l a n c e r un menu
28 }
29 e l s e {// S i i l ne c l i q u e sur aucun bouton
30 r e turn 0 ; //On r e s t e dans l a bouc le d ’ input du joueur
31 }
32

33

34 }

../codes/graphique.c

Synchronisation de l’interface avec la grille
La fonction de synchronisation, "synchro", lis le tableau qui contient la grille de taquin et affiche les cases de la
grille de façon à ce qu’elles correspondent au tableau. Si un écran de réussite du taquin était précédement affiché
celui est recouvert par une image de fond avant d’afficher les cases de la grille. Cette fonction permet également
d’afficher le nombre de coups effectués par le joueur. On recouvre également le nombre de coups précédemment
affiché en affichant un cadre à la place.

13

1 void synchro (SDL_Surface∗ screen , SDL_Surface∗∗ rect , i n t ∗∗ tab , i n t nbCoups) {
2 SDL_Rect pos ; // Var iab le contenant l e s p o s i t i o n s des d i f f é r en t s é l éments que l ’ on va

po s i t i o nn e r
3 pos . x=0; //Coord axe ho r i z on t a l
4 pos . y=0;//Coord axe v e r t i c a l
5 TTF_Font ∗ font = NULL;
6 f ont = TTF_OpenFont(" font /Adobe_Dia . t t f " ,41) ; // Pointeur po intant sur une p o l i c e de t a i l l e 41
7 i f (f ont == NULL) { // S i f ont n ’ a pas r é u s s i à po in t e r ve r s l a p o l i c e
8 f p r i n t f (s tde r r , "\nUnable to load TTF: %s \n" ,TTF_GetError ()) ; //Message d ’ e r r eu r
9 }

10

11 SDL_Surface ∗ background = SDL_LoadBMP(" image/background1 .bmp") ; // Sur face po intant ve r s une
image de fond

12

13 SDL_Color co lorText ; // cou l eur de l a p o l i c e (blanc)
14 co lorText . r = 255 ;
15 co lorText . g = 255 ;
16 co lorText . b = 255 ;
17

18

19

20 char nbCoupsTxt [3 0] ; //Cha î ne de ca rac t è re contenant l e t ex t e à é c r i r e pour donner l e nombre
de coups

21

22 s p r i n t f (nbCoupsTxt , "Nombre de coups : %i " , nbCoups) ; //On é c r i t à l a f i n du tex t e l e nombre de
coups

23

24 SDL_Surface ∗ nbCoupsTTF = TTF_RenderText_Blended (font , nbCoupsTxt , co lorText) ; // Sur face
po intenant ve r s l ’ image du rendu du tex t e

25

26 SDL_Surface ∗ blocNbCoups = SDL_LoadBMP(" image/nbCoups .bmp") ; // Sur face po intant ve r s l ’ image
de l a case dans l a q u e l l e on va é c r i r e l e t ex t e

27

28 SDL_BlitSurface (background ,NULL, screen ,&pos) ; //On pose l ’ image de fond en [0 ; 0] pour cacher
l ’ é cran de r é u s s i t e du jeu de taquin au cas où i l s o i t a f f i c h é

29

30 pos . x=540;
31 pos . y=62;
32 //Coord de l ’ image de l a case dans l a q u e l l e on va é c r i r e l e t ex t e
33

34 SDL_BlitSurface (blocNbCoups ,NULL, screen ,&pos) ; //On met l ’ image de l a case aux dern i è r e s
coordonn é es

35

36 pos . x=575;
37 pos . y=76;
38 //Coord de l ’ emplacement du tex t e
39 SDL_BlitSurface (nbCoupsTTF ,NULL, screen ,&pos) ; //On p lace l e t ex t e au dern i è r e s coordonn é es
40

41 f o r (i n t i =0; i <4; i++){
42 f o r (i n t j =0; j <4; j++){//Pour toute s l e s ca s e s de l a g r i l l e de taquin
43 pos . x=60+95∗ j ;
44 pos . y=60+95∗ i ;
45 //Coord de l a case [i ; j]
46 SDL_BlitSurface (r e c t [tab [i] [j] −1] ,NULL, screen ,&pos) ; //On p lace l ’ image de l a case en

f onc t i on de l a g r i l l e dans tab
47 }
48 }
49

50 TTF_CloseFont (f ont) ; //On l i b è re l a mé moire a l l o u é e pour po in t e r sur l a p o l i c e
51 SDL_FreeSurface (background) ; //On l i b è re l a mé moire a l l o u é e pour l ’ image de fond
52 SDL_FreeSurface (nbCoupsTTF) ; //On l i b è re l a mé moire a l l o u é e pour l ’ image du tex t e
53

54 }

../codes/graphique.c

2.3.4 Fonctions partagées par le menu et le jeu de taquin
Coloration des boutons
Pour colorer un bouton nous avons décidé de simplement le recouvrir d’une autre image du même bouton mais
avec une différente couleur avec la fonction "colorButton".

1 void co lorButton (SDL_Surface∗ screen , SDL_Surface∗∗button , i n t num, i n t x , i n t y) {
2

3 SDL_Rect pos ; // Var iab le contenant l a p o s i t i o n du bouton que l ’ on va changer de cou l eur
4 pos . x=x ; // Pos i t i on ho r i z on t a l du bouton
5 pos . y=y ; // Pos i t i on v e r t i c a l du bouton

14

6

7 SDL_BlitSurface (button [num] ,NULL, screen ,&pos) ; //On p lace l ’ image en bleu du bouton
8

9 SDL_Flip (s c r e en) ; //On a c t u a l i s e l e v i s u e l du tout
10

11 }

../codes/graphique.c

Libération de la mémoire
La libération des listes d’images se fait avec la fonction "freeSurface" qui libère la mémoire allouée pour chaque
élément de la liste ainsi que la mémoire allouée pour chaque image.

1 void f r e e Su r f a c e (SDL_Surface∗∗ rect , i n t n) {
2 f o r (i n t i =0; i<n ; i++){ //Pour toute s l e s s u r f a c e s de l a l i s t e
3 SDL_FreeSurface (r e c t [i]) ; //On l i b è re l a mé moire a l l o u é e pour ce qui e s t po int é par l e

po inteur de su r f a c e
4 }
5 f r e e (r e c t) ; //On l i b è re l e l a mé moire a l l o u é e par l e po inteur sur l e s po inteur de su r f a c e .
6 }

../codes/graphique.c

15

Chapitre 3

Conclusion

Le programme final respecte les consignes données : On a un jeu de taquin avec des grilles générées aléa-
toirement, des fonctionnalités impliquant l’utilisation de fichiers, une surcouche graphique utilisant la librairie
SDL et le jeu est étendu à sa version généralisée (en mode console exclusivement).
Par ailleurs l’aspect graphique à été particulièrement travaillé, on a essayé de donner une identité visuelle et
auditive adapté à la concentration du joueur.
La répartition des taches a bien marché puisque les deux parties on pu être développées en parallèle. On retient
cependant qu’il aurait été astucieux de se mettre d’accord sur les conventions de nommage avant de commencer
afin d’avoir une plus grande cohérence dans les codes.

16

	Introduction du sujet
	Développement
	Méthode de travail
	Algorithme
	Générateur de configuration
	Mécanique de jeu
	Sauvegarde
	Fonctions auxiliaires

	Surcouche graphique
	Lancement du mode graphique
	Affichage et fonctionnement du menu
	Affichage et fonctionnement du jeu de taquin
	Fonctions partagées par le menu et le jeu de taquin

	Conclusion

