Rapport de projet Programmation avancée : Taquin

Thomas Ekindy - Paul Nautré
L2 informatique UCA

15 janvier 2021

Chapitre 1

Introduction du sujet

Introduction au Taquin sur Wikipédia :

Le taquin est un jeu solitaire en forme de damier créé vers 18701 aux Etats-Unis. Sa théorie
mathématique a été publiée par [’American Journal of mathematics pure and applied en 1879. En
1891, son invention fut revendiquée par Sam Loyd, au moment ot le jeu connaissait un engouement
considérable, tant aux Etats-Unis qu’en Europe. Il est composé de 15 petits carreaux numérotés de
1 4 15 qui glissent dans un cadre prévu pour 16. Il consiste a remettre dans 'ordre les 15 carreaux
a partir d’une configuration initiale quelconque.

Le principe a été étendu a toutes sortes d’autres jeux. La plupart sont & base de blocs rectan-
gulaires plutot que carrés, mais le but est toujours de disposer les blocs d’une fagon déterminée par
un nombre minimal de mouvements. Le Rubik’s Cube est aujourd’hui considéré comme 1'un des «
descendants » du taquin.

Objectifs :

Notre objectif ici est d’implémenter une version numérique de ce jeu. On aura un damier composé selon une
configuration solvable aléatoire et le joueur pourra en déplacer les piéces selon les régles pour aboutir a la
formation arrangée. Le jeu comptera le nombre de mouvements effectués par le joueur, lui indiquera quand la
partie est terminé et lui proposera de sauvegarder/recharger la configuration a tout moment (ainsi le joueur
pourra progresser et évaluer sa progression). L’interface graphique sera faite avec la SDL mais il sera également
possible de lancer le jeu en mode console. En mode console, il sera possible de choisir la taille du damier (le jeu
est originellement prévu sur une grille 4x4 mais peut étre étendu a tout entier).

https://wikipedia.org/wiki/Taquin

Chapitre 2

Développement

2.1 Meéthode de travail

Nous découpons le développement du projet en deux parties : d’une part ’algorithme qui génére les confi-
gurations, assure la mécanique de jeu, vérifie les solutions de l'utilisateur et assure les fonctionnalité auxiliaires
comme le systéme de sauvegarde, d’autre part la surcouche graphique qui permet au joueur de visualiser et de
commander le jeu intuitivement. Ces deux parties peuvent étre développée simultanément (donc répartie dans
le bindme) si 'on commence par se mettre d’accord sur les interactions qui ont lieu entre l'algorithme et la
surcouche graphique. Par exemple, celui qui créé le bouton "sauvegarder" n’a pas besoin de savoir précisément
comment fonctionne la sauvegarde, il lui suffit de connaitre la signature de la fonction correspondante.

2.2 Algorithme

2.2.1 Générateur de configuration

Il faut savoir que sur les D?! configurations possibles du damier (ou D est la dimension), seule la moitié
sont solvables. Il existe un algorithme qui permet de savoir si une configuration donnée est solvable ou non,
mais celui-ci est relativement complexe et il peut en vérité étre contourné. En effet, une fois les mouvements
possibles sur le damier bien définie (sous-section suivante), il suffit de partir du damier ordonné (trés facile a
générer) et d’effectuer un certains nombres de mouvements aléatoires pour obtenir une configuration aléatoire
nécessairement solvable.

La question est de savoir combien de mouvement aléatoire réaliser pour obtenir des grilles biens mélangées
et peu redondantes. Nous avons effectué quelques tests et nous avons remarqué qu’aprés 10000 permutations
sur une configuration 4x4, le 1 se retrouvait presque aussi souvent sur la troisiéme ou quatriéme ligne que
sur la premiére ou deuxiéme. Nous avons pensé que c’était un critére recevable pour dire que le damier était
suffisamment mélangé. Par ailleurs ce calcul se fait si vite que 1'on observe aucun délai a Uceil nu (le nombre de
calculs effectués est seulement proportionnel au nombre de mouvements).

© 0 N O U A W N e

LT T T o S W S g g
A QO N B O © 0N O Ok WM R O

V)
@

int *x melanger (int D){

// Creation du tableau
int *xt = 0;
t = malloc(D * sizeof (intx*));

if (t = 0){ // Gestion d’erreur
fprintf(stderr, "Erreur : Echec & la creation du tableau (niveau 1)\n");
exit (1);

for (int i = 0; i<D; i++){

t[i] = malloc(D % sizeof(int));

if (¢[i] = 0){ // Gestion d’erreur
fprintf(stderr, "Erreur : Echec a la creation du tableau (niveau 2)\n");
exit (1);

// Remplissage ordonné du tableau

int ¢ = 1;

for (int i = 0; i<D; i++) // Parcours du tableau
for (int j = 0; j<D; j++){

t[i][j] = ¢; // On place chaque case a sa place
c++;

26

27 // mélange par permutations aléatoires
28 int n = 10000; // nombre de tentatives de permutation
29 char d; // deplacement ligne et colonne
30 char direction [|] = "bhdg";
31
32 srand (time (NULL)); // initialisation du module alea
33
34 for (int k = 0; k<n; k++){ // n fois
35
36 // On fait en sorte d’avoir un déplacement aléatoire sur la ligne OU sur la colonne (
pas les deux)
37 d = direction [rand() % 4]; // On choisi une direction au hasard
38 permuter (t, d, D); // On effectue la permutation si possible
39
40 }
41
42 sauvegarder(t, 0, D);
43 return t;
44
45
../codes/algo.c
2.2.2 Meécanique de jeu
Permutation
Dans le jeu, le joueur peut permuter la case vide et la case & sa gauche, & sa droite, au dessus ou en dessous.
Dans tout les cas, il ne peut la pas sortir du damier. Ainsi, quand il commande un mouvement, le programme
doit trouver la case vide, déterminer si le mouvement est possible, puis, si oui, I’exécuter. C’est trés littéralement
ce que fait la fonction permuter. Elle retourne ensuite 1 si une permutation a été effectuée, 0 sinon.
1 int permuter(int xxt, char d, int D){
2
3 for (int 1 = 0; i<D; i++) // Parcours du tableau
4 for (int j = 0; j<D; j++){
5
6 if (t[i][j] = VIDE){ // On trouve la case a vide
7
8 if (d = "h’ && i—1>= 0){ // Si on va en haut
9 t[i][j] = t[i—=1][j]; // On permute
10 t[i—1][j] = VIDE;
11 return 1;
12
13 }
14
15 else if (d = 'b’ && i+1 < D){ // Si on va en bas
16 t[i][j] = t[i+1][j]; // On permute
17 t[i+1][j] = VIDE;
18 return 1;
19
20 }
21
22 else if (d = 'g’ && j—1>= 0){ // Si on va a gauche
23 6[i]0§] = ¢[i][j—1]; // On permute
24 t[i][j—1] = VIDE;
25 return 1;
26
27 }
28
29 else if (d = ’d’ && j+1 < D){ // Si on va a droite
30 t[i][j] = t[i][j+1]; // On permute
a1 t[i][j+1] = VIDE;
32 return 1;
33
34 }
35
36 else{ // Si elle n’est pas dans le voisinage
37 return 0; // On ne peut pas permuter
38 }
39 }
40 }
41
42 return 0;
43

../codes/algo.c

Vérification

Chaque mouvement du joueur est susceptible de terminer le jeu (par victoire). Aussi aprés chaque permutation,
on vérifie si le damier est ordonnée. Pour cela il suffit de le parcourir et de vérifier que chaque case est a sa place
(jusqu’a la case vide en derniére position).

1 int verifier (int *xt, int D){
2
3 int ¢ = 1;
4
5 for (int 1 = 0; i<D; i++) // Parcours du tableau
6 for (int j = 0; j<D; j++){
7
8 if (t[i][j] = ¢) // On verifie si chaque case est bien a sa place
9 c++;
10 else
11 return 0; // Si une ne l’est pas, le tableau n’est pas solvé
12 }
13 return 1; // Sinon, il est solvé
14}
../codes/algo.c
2.2.3 Sauvegarde

Il était attendu dans le sujet une fonctionnalité impliquant 1'utilisation de fichiers. Nous avons donc opté
pour un systéme de sauvegarde par lequel le joueur peut enregistrer une configuration & un instant donné (il
écrase alors la précédente sauvegarde) et la restaurer plus tard. Lorsqu’une configuration est générée en début
de partie, elle est automatiquement sauvegardée.

Le systéme se décompose en deux fonctions : une pour écrire la sauvegarde, I’autre pour la restaurer. Les
deux fonctions sont syntaxiquement et sémantiquement trés similaires. Il faut noter qu’il serait problématique
d’essayer d’importer une configuration de taille 4x4 depuis un fichier utilisé pour la sauvegarde d’une configu-
ration 5x5 par exemple. Mais si on s’assure de ne jamais avoir ce type d’erreur dans notre programme, on n’a
pas besoin de formater le fichier de facon complexe, on se contente d’écrire une valeur par ligne.

1 void sauvegarder (int *xt, int nbCoup, int D){

2 FILE « f = NULL;

3 f = fopen("sauv.txt", "w"); // Creation/ouverture du fichier
4 if (f = NULL){ // Gestion d’erreur

5 printf("Erreur : Echec creation de la sauvegarde\n");
6 exit (1);

7

8

9 fprintf(f, "%d\n", nbCoup); //Sauvegarde du nombre de coup
10 for (int i = 0; i<D; i++) // Parcours du tableau

11 for (int j = 0; j < D; j++)

12

13 fprintf(f, "%d\n", t[i][j]); // écriture d’une case par ligne
14

15 fclose(f); // Fermeture du fichier

16}

17

18

19 int recharger(int *xt, int D){

20 char ligne [4];

21 FILE x f = NULL;

22 int nbCoup;

23

24 f = fopen("sauv.txt", "r"); // Ouverture du fichier

25 if (f = NULL){ // Gestion d’erreur

26 printf ("Erreur : Echec creation de la sauvegarde\n'");
27 exit (1);

28

29

30 fgets (ligne, 4, f); // Récuperation du nombre de coup

31 sscanf (ligne , "%d\n", &nbCoup); // Extraction de la valeur
32

33 for (int i = 0; i<D; i++) // Parcours du tableau

34 for (int j = 0; j < D; j++)

35

36 fgets (ligne, 4, f); // Récuperation de la ligne correspondante

37
38

40
41
42
43

sscanf (ligne , "%d\n", &t[i][j]); // Extraction de la valeur

}
fclose (f);

return nbCoup; // On retourne le nombre de coup a 1’instant de la sauvegarde

../codes/algo.c

2.2.4 Fonctions auxiliaires

Libération de la mémoire

Supposons que notre joueur aime beaucoup le jeu et y soit trés bon : il pourrait gagner beaucoup de partie a la
suite et donc générer beaucoup de configuration soit demander au programme de créer beaucoup de tableau ce
qui pourrait finir par encombrer considérablement la mémoire de sa machine. Il est donc nécessaires de libérer
la mémoire au fur et & mesure. On veut que & un instant donné, le programme n’exploite qu’une configuration
(une seconde est sauvegardée dans un fichier). Pour cela on créé une fonction qui détruit le tableau a la fin de
chaque partie et qui libére la mémoire correspondante. Ce type de fonction est trés classique, le tout est de
I'utiliser au bon moment. On aurait aussi pu avoir un seul tableau qui aurait pris la nouvelle configuration a
chaque début de partie mais il nous semblait plus élégant d’avoir une fonction qui génére, remplit et mélange
un tableau toute seule.

1 void liberer (int **xt, int D){
2 for (int i = 0; i < D; i++)
3 free(t[i]);
4 free(t);
5
../codes/algo.c
Mode console
On voulait que le jeu soit utilisable en mode graphique ou en mode console. On a donc créé deux fonctions,
chacune correspondant & un mode. L’exécution du mode graphique est détaillée dans la section suivante. Pour
le mode console, on génére une configuration puis on se contente de demander en boucle & l'utilisateur ce
qu’il veut faire (mouvements, sauvegarde, restauration). On affiche a chaque étape le damier (d’ou la fonction
d’affichage) et on vérifie & chaque tour si la partie est gagnée. Si oui, on félicite le joueur, on efface la mémoire
et le programme se termine.
1 void console(int D){
2
3 int %%t = melanger(D); // Génération du tableau
4 char d;
5 printf(”l~\Q[IN mode console by IZIGANG tm\n"); // Instructions
6 printf("u)ntlol(s : \n");
7 printf("— : Sauvegarder\n");
8 printf("— Recharger la sauvegarde\n");
9 printf("h b d,g : Haut, Bas, Droite, Gauche\n");
10
11 int nbCoup = 0; // compteur de coup
12
13 while (! verifier (t, D)){ // Tant que le joueur n’a pas gagné
14 printf("\n\n");
5 afficher (t, D); // Affichage de la grille

W oW W W W NN NN NNNNNN R e e e
B W N R O © X N0 CR W N R O ©® W N O U

printf("\n");
printf("Vers ou aller ? (%d coup) >",nbCoup); // Saisie utilisateur
scanf ("%c",&d) ;

if (d&='s’){ // Si sauvegarde
sauvegarder (t, nbCoup, D); // Sauvegarde
printf("La 01111(a été sauvegardée !\n");

else if (d ='r’){ // Si restauration
nbCoup = recharger (t,D); // Restauration
printf("La grille a été rechargée !\n");

}

else { // Sinon (mouvement ou faute de frappe)

if (!permuter(t,d, D)) // Tentative de permutation
printf("permutation impossible !\n");
nbCoup++; // Incrémentation du nombre de coup

/

35 }
36
37 scanf ("%c",&d) ;
38 printf ("%c\n", d);
39 }
40
41 printf("\n\nBien joué ! \n"); // Si victoire, félicitation
42 liberer (t, D); // Liberation de la mémoire
43
44}
../codes/main.c
2.3 Surcouche graphique
2.3.1 Lancement du mode graphique
Initialisations
Le mode graphique est lancé grace a appel de la fonction "graphique". Dans cette fonction nous initialisons
les modules indispensables au bon fonctionnement du jeu, c’est & dire les modules audio et vidéo, le module
permettant d’écrire du texte sur une fenétre ainsi que le module aléa. Cette fonction va jouer la musique de fond
et faire tourner en boucle la création de I'interface "menu" tant que l'utilisateur n’aura pas demandé ’arrét
totale du jeu.
1 void graphique (){
2
3 if (SDL_Init(SDL_INIT VIDEO | SDL INIT AUDIO)==-1){ //Si 1l’initialisation des modules audio
et video échoue
4 fprintf(stderr ,"Unable to initialize VIDEO or AUDIO:%s \n",SDL_ GetError()); //On écrit un
message d’erreur
5 exit (EXIT FAILURE); //On sort du programme
6 }
7
8 if (TTF_Init()==—1){ //Si 1’initialisation de SDL_ Ttf échoue
9 fprintf (stderr ,"Unable to initialize TTF: %s\n",TTF GetError()); //On écrit un message d’
erreur
10 exit (EXIT FAILURE); //On sort du programme
11 }
12
13 if (Mix_ OpenAudio (44100 ,MIX DEFAULT FORMAT,2,256)==-1){//Si 1’ ’initialisation de SDL_Mixer é
choue
14 fprintf(stderr ,"Unable to open an audio with Mixer: %s" ,Mix_ GetError());//On écrit un
message d’erreur
15 exit (EXIT_FAILURE);//On sort du programme
16 }
17
18 srand (time (NULL)); //On enclenche le module alea
19
20 Mix Music * musique=NULL; //On crée un pointeur vers une musique
21
22 SDL_Thread* threadMusic = SDL_CreateThread (randomMusic, musique);//On lance un thread qui va
jouer des musiques aléatoires en fond
23
24 int stop=0; //On initialise la fonction qui va décider de si le jeu s’arréte ou pas
25 while (stop==0||stop==—1){//Si stop est & 0 ou —1 le jeu continue et on relance menu()
26 stop=menu(); //La fonction menu renvoi soi 0, soi —1, soi 1
27
28
29 done = 1;//Le jeu est terminé donc on met la variable globale done & 1 pour stopper le
thread
30
31 SDL _WaitThread (threadMusic ,NULL); //On attend que le thread se stop grace a la variable done
32
33 Mix FreeMusic(musique);//La musique n’est plus utilisée donc on libére la mémoire
correspondante
34
35 Mix_Quit(); //On quitte SDL_Mixer
36 TTF_ Quit(); //On quitte SDL_Ttf
37 SDL Quit(); //On quitte SDL_ Quit
38}

../codes/graphique.c

Multi-threading
Pour faire tourner la musique de fond sans cesse il aurait fallut vérifier assez réguliérement si une musique

était en train d’étre jouée, or si l'utilisateur ne saisie aucune entrée clavier ni souris le programme resterait en
pause et aucune nouvelle musique ne serait jouée apres la fin de la précédente. Utiliser la fonction "PollEvent"
au lieu de "MainEvent" dans la boucle des événements ferait utiliser le CPU & 100% de performances, ce qui
n’est pas trés optimisé. Utiliser "PollEvent" et ajouter un délai dans la boucle des événements aurait poser un
gros probléme en terme de latence pour 'affichage des boutons en surbrillance. Puisque "MainEventTimeout"
n’existe que sur SDL2.0 nous avons dii utiliser le multi-threading pour faire tourner la musique en fond du jeu
sur un thread secondaire. L’état d’une variable "done", exceptionnellement globales aux fonctions graphiques,
est donc modifié par le thread principal et passe de 0 & 1 pour que le fonction du thread secondaire puisse savoir
a quel moment elle doit se terminer.

Thread secondaire

Dans le thread secondaire tournera une fonction ("randomMusic") qui jouera de la musique. Toutes les secondes
elle vérifiera qu’il y a bien une musique qui est en train d’étre jouée, si on ne mettait pas ce délai de 1 seconde
le CPU fonctionnerait a 100% pour rien. Cette fonction lit aussi I’état de la variable globale "done" pour savoir
si elle doit se terminer ou non afin de pouvoir terminé le thread principale en toute sécurité.

10

11

int randomMusic(void * musique){
Mix Music * newMusique = (Mix Music*) musique;//On cast musique pour pouvoir l’utiliser en
tant que pointeur vers une musique
Mix_VolumeMusic (65); //Le volume de base est a 128, ce qui était trop fort donc on le met a
65
while (done==0){ //Tant que done==0 donc tant que le main thread tourne donc tant que le jeu
n’est pas terminé
SDL_Delay (1000); //On delay pour éviter de faire souffrir le CPU avec une boucle qui se ré
péte trop vite pour rien. La boucle va donc se répéter toutes les secondes
if (Mix_PlayingMusic ()==0){//Si aucune musique ne joue actuellement
char nomFichier[14];//On crée une chaine de char qui va contenir le chemin d’une
nouvelle musique
sprintf (nomFichier , "music/%i .mp3" ,rand () %54); //On met dans cette chaine le chemin d’une
nouvelle musique aléatoire, il y en a 53 donc on utilise %54
Mix FreeMusic(newMusique); //On libére la mémoire allouée par une potentielle musique
pointée par newMusique
newMusique=NULL; //On set le pointeur a NULL, si l’allocation de la ligne suivante ne s
effectue pas ne pointeur ne pointera pas n’importe ou
newMusique= Mix_ LoadMUS(nomFichier);//On alloue de la mémoire, on y met la musique alé
atoire et on pointe cette case avec newMusique
Mix PlayMusic (newMusique,0); //On lance la musique, elle ne se répéte pas
}
}

return 0;

}

)

../codes/graphique.c

2.3.2 Affichage et fonctionnement du menu

Initialisations et affichages

Une fois qu’un appel a la fonction "menu" a été effectué, le programme va afficher le menu. Pour se faire, on va
initialiser une fenétre de menu avec une image de fond, créer une liste de boutons et les afficher sur la fenétre.
A partir du moment ou le menu est affiché, on lance la fonction qui contient la boucle des événements.

10
11

12
13

14

int menu(){

SDL_Surface * screen=initialisation (0,480,480); //On appelle initialisation () pour créer la
fenétre et la pointer avec screen

SDL _Surface ** button = createRect(8,"button/button"); //On utilise createRect () pour créer
une une liste de 8 surfaces correspondant aux boutons "nouvelle partie", "recharger" et "
quitter" qui s’appellera button. (8 car il y a les images grises et bleus)

setButtonMenu (screen ,button); // On utilise cette fonction pour afficher les boutons sur 1’é
cran screen

int stop=eventMenu(screen ,button);//Dans stop on va stocker la décision du joueur quant au
fait d’arréter le jeu totalement (1) ou de juste relancer le menu pour arréter le taquin

(0)

SDL_FreeSurface(screen);//Puisqu’on va redémarrer le menu ou arréter le jeu, on ferme 1’é

cran donc on libére la mémoire allouée par screen pour 1’écran

freeSurface (button,8);//On libére la mémoire allouée pour tous les boutons dans la liste
button .

16
17
18
19

21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

37
38
39
40
41
42
43

44
45

46
47
48

49

50
51
52
53
54

56
57
58
59
60
61
62

63
64
65
66

67
68
69
70

71
72
73
74

return stop;//On renvoie 1 pour arréter le jeu totalement, 0 pour redémarrer le menu et
juste arréter le taquin

}
SDL _Surface * initialisation (int n,int width,int height){

SDL _Surface * screen=NULL; //screen va contenir la fenétre
if ((screen= SDL_SetVideoMode (width , height ,32,SDL _HWSURFACE))=—NULL) {
fprintf(stderr ,"Ok erreur sdl:%s \n",SDL_GetError());
exit (EXIT FAILURE) ;
} //Si on ne parvient pas a créer la fenétre on stop le prog et un message d’erreur s’envoie

SDL_Rect pos; //Variable contenant la position de 1’image de fond de la fenétre
pos.x=0;//coord axe horizontal
pos.y=0;//coord axe vertical

char nomFichier [22]; //chaine de char contenant le chemin vers |’image de fond

sprintf (nomPFichier , "image/background%i .bmp" ,n); //Ecriture du chemin dans la chaine

SDL _Surface *background=SDL LoadBMP(nomFichier);//Creation de la surface pointant vers 1’
image de fond

SDL _BlitSurface (background ,NULL, screen ,&pos); //Posage de l’image de fond au coord [0;0]

SDL _FreeSurface (background);//On libére la mémoire allouée pour 1’image de fond puisqu’on 1’
a déja posé

return screen;//On renvoi le pointeur vers la fenétre qui contient désormais un fond

}

SDL _Surfacex* createRect(int n,char debutNom[20]){

SDL _Surface #** rect=(SDL_Surfacexx) malloc(nxsizeof (SDL_Surfacex)); //On crée une liste de n
surfaces

char nomPFichier [27]; //Chaine de char contenant le chemin du type d’image que va contenir la
liste rect

for (int i=0;i<n;i++){//Pour le nombre de surface
sprintf (nomFichier , "%s%i .bmp" ,debutNom,i);//On met dans la chaine le chemin du type d’
image que va contenir la liste rect
rect [1]=SDL_LoadBMP(nomFichier);//On fait pointer chaque surface sur leur image
correspondante

}

return rect;//On renvoi la liste

}

void setButtonMenu (SDL_Surfacesscreen ,SDL_Surfacesxbutton){
SDL_Rect pos; //Variable contenant la position des boutons que l’on va placer
pos.x=80; //coord axe horizontal
pos.y=80; //coord axe vertical

//Position du bouton Nouvelle partie

SDL _BlitSurface (button [0] ,NULL, screen ,&pos); //Posage du bouton Nouvelle partie aux dernié
res coordonnées de pos sur la fenétre

pos.y=pos.y+125; //Position du bouton Recharger

SDL _BlitSurface (button [1] ,NULL, screen ,&pos);//Posage du bouton Recharger aux derniéres
coordonnées de pos sur la fenétre

pos.y=pos.y+175; //Position du bouton Quitter

SDL _BlitSurface (button [2] ,NULL, screen ,&pos); //Posage du bouton Quitter aux derniéres
coordonnées de pos sur la fenétre

SDL_Flip(screen);//On met en place les modifications pour obtenir une belle fenétre de menu

../codes/graphique.c

Boucle des événements du menu

Dans la boucle des événements le programme va étre mit en pause tant qu’aucune entrée clavier ou souris
n’a été faite par le joueur. Pour rendre l'interface plus vivante nous avons décidé de mettre en surbrillance les
boutons sur lesquels le joueur passe avec la souris ainsi que de jouer un effet sonore lorsqu’il clique sur un des
boutons. Pour savoir sur quel bouton le joueur est passé nous interprétons la position de la souris a I'instant du

mouvement de souris et la comparons aux positions des boutons sur I'interface. La surbrillance s’effectue avec

I'utilisation de la fonction "colorButton" et chaque clic est traité par la fonction "clickOnMenu".

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

40
41

43

int eventMenu(SDL_ Surfacexscreen ,SDL_Surface*xbutton){
int stop=0; //Variable a 1 si on arréte totalement le jeu, a —1 si on relance le menu
int x,y;//Variables qui vont comprendre la position de la souris quand elle bouge
Mix Chunk * sonClic= NULL; //Pointeur qui va pointer sur un effet sonore de clic
sonClic = Mix_ LoadWAV("sound effect/1.wav");//On le fait pointer vers 1’effet sonore
SDL Event event; //Variable contenant 1’input du joueur
while (stop==0){//Tant qu’on ne décide pas d’arréte ni de relancer le menu
SDL WaitEvent(&event); //On attend que le joueur interagisse avec le jeu
switch (event.type){ //On étudie tous les cas d’input
case SDL_QUIT: //Si il ferme d’une quelconque fagon la fenétre le jeu s’arréte totalement
stop=1;//le jeu s’arréte totalement
break ;
case SDL MOUSEBUTTONDOWN: //Si il clique & un endroit
if (event.button.button—SDL BUTTON LEFT){//avec le bouton gauche de la souris
stop=clickOnMenu (sonClic , event.button.x,event.button.y);//On arréte le programme en
fonction de 1’endroit du clic
}
break ;
case SDL MOUSEMOTION: //Si il bouge la souris
x=event.motion.x;//x contient sa position horizontal
y=event.motion.y;//y contient sa position vertical
if (x>=80 && x<=400 && y>=80 && y<=144){//si il passe sur le bouton Nouvelle partie
colorButton (screen ,button,4,80,80);//On met le bouton nouvelle partie en bleu

}

else if (x>=80 && x<=400 && y>=205 && y<=269){//Si il passe sur le bouton Recharger
colorButton (screen ,button,5,80,205);//On met le bouton Recharger en bleu

}

else if (x>=80 && x<=400 && y>=380 && y<=444){ //Si il passe sur le bouton Quitter
colorButton (screen ,button ,6,80,380);// On met le bouton Quitter en bleu

else { //S’il ne passe sur aucun bouton
setButtonMenu (screen ,button);//On réaffiche tous les boutons au cas ol certains seraient
affichés en bleu.

}

break ;

default :
break;

}

Mix FreeChunk(sonClic);//On libére la mémoire allouée pour le son de clic
return stop;//Si on doit arréter totalement le jeu on renvoie 1, si on redémarre juste le
menu on renvoie —1

../codes/graphique.c

Gestion des clics sur le menu

On compare donc la position de la souris & l'instant du clic aux positions des boutons sur I'interface avec la
fonction "clickOnMenu". Un son est joué si le joueur a cliqué sur un bouton. Si le clic tombe sur la position du
bouton "Nouvelle partie" on mélange un tableau & l’aide des fonctions de la partie algorithmique du projet et on
lance le jeu de taquin avec ce tableau. Si l'utilisateur a cliqué sur le bouton "Recharger", on utilise également les
fonctions de la partie algorithmique du projet pour recharger un tableau et un nombre de coups sauvegardés et
lancer le jeu de taquin avec ces données. Si 'utilisateur clique sur le bouton quitter, la fonction "clickOnMenu"
retourne qu’il a été décidé qu’il fallait arréter totalement le jeu. Dans le cas ou l'utilisateur clique a un endroit
neutre on retourne & la boucle des événements.

® N o O A W N e

int clickOnMenu (Mix Chunk*sonClic ,int x,int y){
int xx tab=NULL; //On crée un pointeur sur un tableau contenant la grille de taquin
int nbCoups; //Variable contenant le nombre de coups du joueur

if (x>=80 && x<=400 && y>=80 && y<=144){ //Si il clique sur le bouton Nouvelle partie
Mix PlayChannel(—1,sonClic ,0);//On active un son de clic
tab=melanger (4);//On met dans tab une nouvelle grille mélangée de taquin
jeu(tab,0);//lance le jeu de taquin avec la nouvelle grille et 0 en tant que nombre de
coups
return —1;//Renvoi —1 quand le jeu de taquin se termine de sorte & ce que le menu se
relance entiérement

}

else if (x>=80 && x<=400 && y>=205 && y<=269){//Si il clique sur le bouton Recharger

13
14
15

Mix PlayChannel(—1,sonClic ,0);//On lance le son de clic
tab=(int *x) malloc(4*sizeof (int*));//On alloue de la place pour la grille de 4x4
for (int 1=0;i<4;i++){

16 tab[i]=(int *)malloc(4*xsizeof (int));
17
18 nbCoups =recharger (tab,4); //On charge la grille du contenu du fichier de sauvegarde de
grille et on stock le nombre de coups de la sauvegarde dans nbCoups
19 jeu(tab ,nbCoups);//On lance le jeu de taquin avec la grille rechargée et le nombre de
coups correspondant
20 return —1;//Renvoi —1 pour relancer le menu
21
22
23 else if (x>=80 && x<=400 && y>=380 && y<=444){//Si il clique sur le bouton Quitter
24 Mix PlayChannel(—1,sonClic ,0);//On lance le son du clic
25 return 1;//On renvoie 1 pour terminer totalement le jeu
26
27
28 else { //Si il clique & un endroit neutre
29 return 0;//La boucle des event continue
30
31}
../codes/graphique.c
2.3.3 Affichage et fonctionnement du jeu de taquin
Initialisations et affichages
Comme pour le menu, pour afficher I'interface de jeu de taquin, le programme va initialiser une fenétre avec une
image de fond, créer une liste de cases représentant la grille, une liste de boutons et afficher cette derniére sur
la fenétre. La fonction "jeu" va également faire appel a la fonction "synchro" afin de synchroniser les positions
des cases représentant la grille avec le tableau contenant la liste. Une fois que tous les éléments sont affichés on
lancer la boucle des événements du jeu de taquin avec la fonction "eventJeu".
1 void jeu(intxxtab,int nbCoups){
2
3 SDL _Surface * screen=initialisation (2,900,480);//On initialise la fenétre de jeu dans screen
4
5 SDL_Surface ** rect=createRect(16,"rect/");//On fait pointer les surfaces de la liste rect
sur les images des cases de la grille de taquin
6
7 synchro (screen ,rect ,tab ,nbCoups);//On synchronise 1’affichage des images des cases avec la
grille de taquin dans tab
8
9 SDL_Surface ** button = createRect(12,"button/button");//On fait pointer les 12 surfaces de
button sur es images des boutons Sauvegarder, Recharger et Quitter (12 car il y a les
images des boutons en gris, bleu et bleu foncé)
10
11 setButtonJeu (screen ,button,tab);//On affiche correctement les images des boutons
12
13 eventJeu (screen ,rect ,button,tab,nbCoups);//On lance la boucle qui gére les inputs du joueur
durant le jeu de taquin
14
15 liberer (tab,4); //Le jeu de taquin est terminé donc on libére la mémoire allouée pour le
tableau
16 freeSurface (button,12);//On libére la mémoire allouée pour la liste de surfaces pointant sur
des images de boutons
17 freeSurface(rect ,16);//On libére la mémoire allouée pour la liste des images de la grille de
taquin
18 SDL _FreeSurface(screen); //On libére la mémoire allouée pour 1’image de fond
19
20 }
../codes/graphique.c
1 void setButtonJeu(SDL_Surfacexscreen ,SDL_Surfacesxbutton,int xxtab){
2
3 SDL_Rect pos;//Variable contenant les positions des boutons que 1’on va placer
4 pos .x=540;//Coord axe horizontal
5 pos.y=156;//coord axe vertical
6 //Coord de 1’image du bouton sauvegarder
7 if (verifier (tab,4)==0){//Si le jeu de taquin n’est pas encore réussi. S’il est réussi on
remettrait l’image de sauvegarder en gris alors qu’il serait censé étre gris foncé
s SDL_BlitSurface(button [3] ,NULL, screen ,&pos);//On met 1’image de sauvegarder en gris
0 }

10
11

pos.y=pos.y+104;
//Coord de 1’image du bouton recharger

10

12
13
14
15
16
17
18
19
20

SDL _BlitSurface (button[1] ,NULL, screen ,&pos);//On place 1’image du bouton Recharger en gris
pos.y=pos.y+104;//Coord du bouton Quitter
SDL_BlitSurface (button [2] ,NULL, screen ,&pos);//On place 1’image du bouton Quitter en gris

SDL_Flip(screen);//On actualise le visuel

../codes/graphique.c

Boucle des événements du jeu de taquin

Dés le début de la fonction "eventJeu", qui contient la boucle des événements du jeu de taquin, on vérifie que
la grille chargée ne soit pas déja ordonnée, si elle I’est, on affiche directement 1’écran de réussite sans jouer
d’effet sonore. Une fois dans la boucle, le programme se met en pause tant qu’aucune entrée eclavier ou souris
n’a été faite par le joueur. Les effets sonores et la surbrillance des boutons sont gérés de la méme fagon que
pour le menu. Si l'utilisateur appuie sur un touche, on vérifie que le jeu de taquin ne soit pas réussi avant
d’effectuer une action. Si le joueur appuie sur une touche directionnelle un effet sonore de permutation se lance
et le programme fait permuter la case juste & gauche, & droite, en haut ou en bas de la case vide avec cette
derniére si cela est possible. Si aprés la permutation le taquin est réussi alors un écran de succés s’affiche et un
effet sonore correspondant est joué. On fait appel a la fonction "clickOnJeu" dés l'instant ot le joueur utilise
le clic gauche de sa souris. S’il clique sur un bouton alors celui arbore une couleur plus foncée, c’est pourquoi
lorsque I'utilisateur relache le clic gauche on redonne sa couleur bleu au bouton sur lequel se trouve la souris ou
alors on redonne leur couleur normale & tous les boutons si la souris n’est sur aucun bouton.

AW N =

© © N o «

10

11

12
13
14
15
16
17
18
19
20

21
22
23
24

26
27

28
29
30
31
32

33

34

35

36

38

void eventJeu(SDL_ Surfacexscreen ,SDL_Surfacex*rect ,SDL_Surfacexxbutton ,intxxtab,int nbCoups){
int success=verifier (tab,4); //Variable contenant 1 si le jeu de taquin est réussi, 0 sinon
int stop=0;//variable contenant 1 si on doit relancer un écran de menu
int *nbCoupsPoint=&nbCoups; //On crée un pointeur vers le nombre de coups pour pouvoir le
modifier dans les autres fonctions
if (success==1){//Si le jeu est réussi
achievement (screen); //On affiche 1’écran de succés
}

SDL_Event event; //Variable contenant les inputs du joueur
Mix Chunk * sonPermu = Mix LoadWAV("sound effect /2.wav");//Pointeur vers 1’effet sonore de
permutation de case
Mix_ Chunk * sonClic = Mix LoadWAV("sound effect/1l.wav");//Pointeur vers 1’effet sonore de
clic
Mix_Chunk % sonSuccess = Mix LoadWAV("sound effect /3.wav");//Pointeur vers 1’effet sonore de
réussite du jeu de taquin
int x,y;//Variables contenant la position de la souris quand on la déplace
while (stop==0){//Tant que stop n’est pas a 1 on lit les inputs du joueur
SDL_WaitEvent(&event);//Attente d’une entrée du joueur
switch (event.type){//On étudie les cas suivants
case SDL QUIT: //Si le joueur ferme la fenétre
stop=1;//le jeu de taquin s’arréte et on relance un écran de menu
break;
case SDL KEYDOWN: //S’il appuie sur une touche
if ((success==0) | (verifier (tab,4)==0)){//S’il n’a pas encore réussi le jeu. On utilise
1’opérateur "|" pour ne pas avoir a faire trop de calculs pour rien. Il est possible que
success soit a 1 mais que le taquin ne soit pas réussi, dans le cas ou on a rechargé une
sauvegarde de grille alors qu’on vient de réussir le jeu
success=0;//La grille n’est donc pas réussi
switch (event . key.keysym.sym) {
case SDLK LEFT: //Si la touche est la fléche de gauche
if (permuter(tab,’g’,4)==1){//On permute la case vide avec la case juste a sa gauche si
possible , et si possible on rentre dans le if
Mix PlayChannel(—1,sonPermu,0);//On joue le son de permutation
*nbCoupsPoint = *nbCoupsPoint + 1;//Le nombre de coups augmente de 1
synchro (screen ,rect ,tab ,xnbCoupsPoint);//On synchronise les positions des images des
cases de la grille avec les cases de la grille
SDL _Flip(screen); //On actualise le visuel
}

break ;
case SDLK RIGHT: //Si la fléche est la fléche de droite
if (permuter(tab,’d’,4)==1){//On permute la case vide avec la case juste a sa droite si
possible , et si possible on rentre dans le if
Mix PlayChannel(—1,sonPermu,0);//On joue le son de permutation
*nbCoupsPoint = *xnbCoupsPoint + 1;//Le nombre de coups augmente de 1
synchro (screen ,rect ,tab,*nbCoupsPoint);//On synchronise les positions des images des
cases de la grille avec les cases de la grille
SDL_Flip(screen); //On actualise le visuel
}

break;

11

39
40

41
42
43

44
45
46
a7
48

49
50
51

52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95

case SDLK UP://Si la touche est la fléche du haut
if (permuter(tab,’h’,4)==1){//On permute la case vide avec la case juste en haut si
possible , et si possible on rentre dans le if
Mix PlayChannel(—1,sonPermu,0);//On joue le son de permutation
*nbCoupsPoint = *xnbCoupsPoint + 1;//On incrémente de 1 le nombre de coups
synchro (screen ,rect ,tab ,*xnbCoupsPoint);//On synchronise les positions des images
cases de la grille avec les cases de la grille
SDL_Flip(screen);//On actualise le visuel

}

break;
case SDLK DOWN: //Si la touche est la fléche du bas
if (permuter(tab,’b’,4)==1){//On permute la case vide avec la case juste en bas si

possible , et si possible on rentre dans le if
Mix PlayChannel(—1,sonPermu,0);//On joue le son de permutation
xnbCoupsPoint = *nbCoupsPoint + 1;//On incrémente de 1 le nombre de coups
synchro (screen ,rect ,tab,*xnbCoupsPoint);//On synchronise les positions des images
cases de la grille avec les cases de la grille
SDL _Flip(screen);//On actualise le visuel
}
break ;
default :
break ;

}
if (verifier (tab,4)==1){//Si le taquin est réussi aprés la permutation qui vient d’
effectuée
achievement (screen);//On affiche 1’écran de succés
Mix PlayChannel(—1,sonSuccess ,0);//On joue le son de succés
success=1;//On indique a la variable que le jeu de taquin a été réussi

}

break ;
case SDL MOUSEBUTTONDOWN: //Si il clique sur un bouton de la souris
if (event.button.button=SDL BUTTON LEFT){//Si il fait un clic gauche

}

stop=clickOnJeu (screen ,rect ,button,tab,nbCoupsPoint,sonClic ,event.button.x,event.button.

y);//On rentre dans stop la valeur retournée par la fonction qui gére les clic de la
souris pour savoir si le jeu de taquin se termine
}
break ;
case SDL MOUSEBUTTONUP: //Si on relache un bouton de souris
if (event.button.button=SDL BUTTON LEFT){//Si on relache le clic gauche
x=event.motion.x;//Coord axe horizontal
y=event.motion.y;//Coord axe vertical
//Position de la souris au relachement du clic

étre

if (x>=540 && x<=860 && y>=156 && y<=220 && success==0){//Si on clique sur sauvegarder

colorButton (screen ,button,7,540,156);//On fait passer le bouton du bleu foncé au bleu

}

else if (x>=540 && x<=860 && y>=260 && y<=324){//Si on clique sur Recharger
colorButton (screen ,button,5,540,260);//On fait passer le bouton du bleu foncé au bleu

}

else if (x>=540 && x<=860 && y>=364 && y<=428){//Si on clique sur Quitter
colorButton (screen ,button,6,540,364);//On fait passer le bouton du bleu foncé au bleu

else {//Si on clic sur un endroit qui n’est pas un bouton
setButtonJeu (screen ,button,tab);//On réaffiche tous les boutons au cas ou certains
seraient affichés en bleu foncé

}

}
break;

case SDL MOUSEMOTION: //Si on bouge la souris
x=event . motion.x;//Coord axe horizontal
y=event . motion.y;//Coord axe vertical
//Position de la souris
if (x>=540 && x<=860 && y>=156 && y<=220 && success==0){//Si il passe sur le bouton
Sauvegarder et que success est a 0, donc que le jeu n’est pas encore réussi
colorButton (screen , button,7,540,156);//On passe du gris au bleu sur ce bouton

}

else if (x>=540 && x<=860 && y>=260 && y<=324){//Si il passe sur le bouton Recharger
colorButton (screen , button,5,540,260);//On passe du gris au bleu sur ce bouton

}

else if (x>=b540 && x<=860 && y>=364 && y<=428){//Si il passe sur le bouton Quitter
colorButton (screen ,button ,6,540,364);//On passe du gris au bleu sur ce bouton

else {//S’il ne passe sur aucun bouton particulier

setButtonJeu (screen ,button,tab);//On réaffiche tous les boutons au cas ou certains
seraient affichés en bleu.

12

}

109 break ;
110 default :
111 break ;
112 }
113 }
114 Mix FreeChunk(sonPermu); //On libére la mémoire allouée pour le son de permutation
115 Mix_ FreeChunk(sonClic); //On libére la mémoire allouée pour le son du clic
116 Mix FreeChunk(sonSuccess); //On libére la mémoire allouée pour le son de succés du jeu de
taquin
117}
../codes/graphique.c
Gestion des clics sur le jeu de taquin
La fonction "clickOnJeu" gére les clics en partie comme le fait la fonction "clickOnMenu" pour la gestion des
clics sur le menu. La différence majeure vient du fait que quand on clique sur un bouton, ce dernier devient
plus foncé. Si 'utilisateur clique sur le bouton "Sauvegarder", on utilise les fonctions de la partie algorithmique
du projet pour sauvegarder la grille ainsi que le nombre de coups effectués. Si 'utilisateur clique sur le bouton
"Recharger, cela synchronise la grille affichée avec celle rechargée. Si cette derniére est déja terminé alors on
affiche I’écran de réussite. Si 'utilisateur clique sur le bouton "Quitter" il quitte le jeu de taquin et un menu
est de nouveau crée.
1 int clickOnJeu(SDL_Surfacexscreen ,SDL_Surfacexxrect ,SDL Surfacexxbutton,int **tab,intxnbCoups,
Mix ChunkxsonClic ,int x, int y){
2
3 if (x>=540 && x<=860 && y>=156 && y<=220 && verifier (tab,4)==0){ //Si il clique sur le
bouton Sauvegarder
4 Mix PlayChannel(—1,sonClic ,0); //On lance le son de clic
5 sauvegarder (tab ,*xnbCoups,4); //On sauvegarde la grille de taquin ainsi que le nombre de
coups passé en parametre
6 colorButton (screen ,button,11,540,156); //On affiche le bouton Sauvegarder en bleu foncé (
pressé)
7 return 0; //On reste dans la boucle d’input du joueur
s }
9
10 else if (x>=540 && x<=860 && y>=260 && y<=324){//Si il clique sur le bouton Recharger
11 Mix PlayChannel(—1,sonClic ,0);//On joue le son de clic
12 xnbCoups=recharger (tab,4); //On recharge la grille et on met dans la case mémoire du
nombre de coups la valeur du nombre de coups sauvegardée
13
14 synchro (screen ,rect ,tab,*nbCoups);//On synchronise les images des cases de la grille avec
la grille
15 setButtonJeu (screen ,button,tab);//On remet tous les boutons en bleu au cas ou le taquin
soit auparavant réussi et que le bouton Sauvegarder soit bleu foncé
16
17 if (verifier (tab,4)==1){//Si la grille rechargée était réussie
18 achievement (screen);//On affiche 1’écran de réussite
19 }
20
21 colorButton (screen ,button,9,540,260);//On met en bleu foncé le bouton Recharger car il est
pressé
22 return 0;//On reste dans la boucle d’input du joueur
23 }
24
25 else if (x>=540 && x<=860 && y>=364 && y<=428){//Si il clique sur le bouton quitter
26 Mix PlayChannel(—1,sonClic ,0);//On lance le son de clic
27 return 1;//On sort de la boucle d’input du joueur dans le but de relancer un menu
28
29 else {//Si il ne clique sur aucun bouton
30 return 0;//On reste dans la boucle d’input du joueur
31 }
32
33
34}

../codes/graphique.c

Synchronisation de ’interface avec la grille

La fonction de synchronisation, "synchro", lis le tableau qui contient la grille de taquin et affiche les cases de la
grille de fagon a ce qu’elles correspondent au tableau. Si un écran de réussite du taquin était précédement affiché
celui est recouvert par une image de fond avant d’afficher les cases de la grille. Cette fonction permet également
d’afficher le nombre de coups effectués par le joueur. On recouvre également le nombre de coups précédemment
affiché en affichant un cadre & la place.

13

V)

© N o o os W

10
11

12
13
14
15
16
17
18
19
20

21
22

23
24

25
26

27
28

29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

void synchro(SDL _ Surfacexscreen ,SDL _Surfacex*rect ,int*xtab,int nbCoups) {

SDL Rect pos;//Variable contenant les positions des différents éléments que 1’on va
positionner

pos.x=0; //Coord axe horizontal

pos.y=0;//Coord axe vertical

TTF Font x font = NULL;

font = TTF_ OpenFont("font /Adobe Dia.ttf" ,41);//Pointeur pointant sur une police de taille 41

if (font = NULL){ //Si font n’a pas réussi a pointer vers la police
fprintf(stderr ,"\nUnable to load TTF: %s\n",TTF_ GetError());//Message d’erreur

SDL _Surface * background = SDL LoadBMP('"image/backgroundl .bmp");//Surface pointant vers une
image de fond

SDL _Color colorText;//couleur de la police (blanc)
colorText.r = 255;
colorText.g = 255;
colorText.b = 255;

char nbCoupsTxt[30];//Chaine de caractére contenant le texte a écrire pour donner le nombre
de coups

sprintf (nbCoupsTxt, "Nombre de coups: %i" ,nbCoups);//On écrit a la fin du texte le nombre de
coups

SDL Surface * nbCoupsTTF = TTF RenderText Blended(font ,nbCoupsTxt,colorText); //Surface
pointenant vers 1’image du rendu du texte

SDL_Surface * blocNbCoups = SDL_LoadBMP("image/nbCoups.bmp");//Surface pointant vers 1’image
de la case dans laquelle on va écrire le texte

SDL _BlitSurface (background ,NULL, screen ,&pos);//On pose 1l’image de fond en [0;0] pour cacher
1’écran de réussite du jeu de taquin au cas ou il soit affiché

pos .x=540;
pos.y=62;
//Coord de 1’image de la case dans laquelle on va écrire le texte

SDL _BlitSurface (blocNbCoups ,NULL, screen ,&pos);//On met 1’image de la case aux derniéres
coordonnées

pos .x=575;

pos.y=76;

//Coord de 1’emplacement du texte

SDL_BlitSurface (nbCoupsTTF ,NULL, screen ,&pos) ; //On place le texte au derniéres coordonnées

for (int i=0;i<4;i++){
for (int j=0;j<4;j++){//Pour toutes les cases de la grille de taquin
pos . x=60+95%] ;
pos . y=60+95%1i ;
//Coord de la case [i;]j]
SDL _BlitSurface(rect [tab[i][j]—1],NULL, screen ,&pos);//On place 1’image de la case en
fonction de la grille dans tab

}
}

TTF_CloseFont(font); //On libére la mémoire allouée pour pointer sur la police
SDL FreeSurface(background); //On libére la mémoire allouée pour 1’image de fond
SDL _FreeSurface (nbCoupsTTF); //On libére la mémoire allouée pour 1’image du texte

../codes/graphique.c

2.3.4 Fonctions partagées par le menu et le jeu de taquin

Coloration des boutons
Pour colorer un bouton nous avons décidé de simplement le recouvrir d’une autre image du méme bouton mais
avec une différente couleur avec la fonction "colorButton".

void colorButton (SDL_Surfacexscreen ,SDL _Surfacexxbutton,int num,int x, int y){
SDL_Rect pos;//Variable contenant la position du bouton que l’on va changer de couleur

pos.x=x;//Position horizontal du bouton
pos.y=y;//Position vertical du bouton

14

SDL _BlitSurface (button [num] ,NULL, screen ,&pos);//On place l’image en bleu du bouton

SDL_Flip(screen);//On actualise le visuel du tout

10
11}
../codes/graphique.c
Libération de la mémoire
La libération des listes d’images se fait avec la fonction "freeSurface" qui libére la mémoire allouée pour chaque
élément de la liste ainsi que la mémoire allouée pour chaque image.
1 void freeSurface (SDL_Surfacexsrect ,int n){
2 for (int i=0;i<n;i++){ //Pour toutes les surfaces de la liste
3 SDL _FreeSurface(rect[i]);//On libére la mémoire allouée pour ce qui est pointé par le

pointeur de surface

}

free(rect);//On libére le la mémoire allouée par le pointeur sur les pointeur de surface.

}

../codes/graphique.c

15

Chapitre 3

Conclusion

Le programme final respecte les consignes données : On a un jeu de taquin avec des grilles générées aléa-
toirement, des fonctionnalités impliquant I'utilisation de fichiers, une surcouche graphique utilisant la librairie
SDL et le jeu est étendu a sa version généralisée (en mode console exclusivement).

Par ailleurs I'aspect graphique a été particuliérement travaillé, on a essayé de donner une identité visuelle et
auditive adapté a la concentration du joueur.

La répartition des taches a bien marché puisque les deux parties on pu étre développées en paralléle. On retient
cependant qu’il aurait été astucieux de se mettre d’accord sur les conventions de nommage avant de commencer
afin d’avoir une plus grande cohérence dans les codes.

16

	Introduction du sujet
	Développement
	Méthode de travail
	Algorithme
	Générateur de configuration
	Mécanique de jeu
	Sauvegarde
	Fonctions auxiliaires

	Surcouche graphique
	Lancement du mode graphique
	Affichage et fonctionnement du menu
	Affichage et fonctionnement du jeu de taquin
	Fonctions partagées par le menu et le jeu de taquin

	Conclusion

