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1 Introduction du sujet

1.1 PIDO

On rappelle qu'un graphe G est le couple d'un ensemble de sommets V et d'un
ensemble d'arêtes E. Pour chaque couple de sommets (v1, v2) avec v1, v2 ∈ V , il existe
ou non une unique arête e ∈ E reliant v1 et v2 (on dit que les sommets sont voisins).
Cet objet mathématique, dans le principe très simple, est un puissant outils de modéli-
sation, aussi bien utilisé dans la simulation nucléaire que dans l'analyse musicale 1.

Il existe de nombreux problèmes autour de la théorie des graphes. Une partie d'entre
eux sont dit NP complets, c'est à dire que l'on ne connaît pas d'algorithme qui trouve à
coup sûr une solution exacte dans n'importe quel cas. Pour ces problèmes, on développe
alors des algorithmes de résolution partielle, qui donne des solutions incomplètes mais
su�samment proches des solutions exactes pour être exploitées.

Parmi ces problèmes, on a celui de la domination de graphe : on dispose d'un
graphe et on veut colorer un sous ensemble d'au plus k de ses sommets, non voisins deux
à deux, tel que chaque sommet du graphe soit couvert, c'est à dire :

� soit coloré (dominant)
� soit voisin d'un sommet coloré (dominé)

(k est un entier compris entre 0 et la taille du graphe).
Ce problème étant NP complet, on va développer des algorithmes qui coloreront une par-
tie du graphe de sorte à dominer un maximum de sommets tout en minimisant tant que
possible le nombre de sommets dominants.
C. Laforest a proposé une variante de ce problème : en plus du graphe, on dispose
maintenant d'un ensemble d'obligations, un partitionnement stable des sommets du
graphes : chaque sommet du graphe est a�ecté à un et un seul sous ensemble (appelé une
obligation) tel qu'il n'est voisin d'aucun sommet de ce même sous ensemble. On cherchera
maintenant une con�guration dominante tel que si un sommet appartient à l'ensemble
des sommets dominants, alors tous les sommets de son obligation sont dominants. Il en
découle que si un sommet n'est pas dominant, c'est qu'aucun des sommets de son obli-
gation ne l'est.
Ce nouveau problème est en fait équivalent au premier, avec une contrainte additionnelle.
Il a été démontré par C. Laforest qu'il était également NP complet. On aura donc des al-
gorithmes de résolution partielle. C. Laforest en a justement proposé un dans un article 2

publié avec T. Martinod. Ce sera notre base de travail tout au long de ce projet.

1.2 Objectifs

Dans un premier temps nous chercherons à comprendre et à implémenter l'al-
gorithme mentionné précédemment. Cela implique de développer quelques outils pour
manipuler des instances qui seront, rappelons le, des couples graphe + ensemble d'obli-

1. Tonnetz harmonic analysis : https://www.youtube.com/watch?v=NQ7LkWCzKxI

2. On the complexity of Independent Dominating Set with Obligations in graphs : https://hal.

archives-ouvertes.fr/hal-02946979v2
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gations.

Dans un second temps nous mettrons en ÷uvre cet algorithme et nous l'évaluerons.
Pour cela, il faudra être capable de proposer une grande variété d'instances (donc de
les générer) et de sélectionner et d'extraire des indicateurs de qualité des résultats
obtenus.

Il est assez naturel, pour évaluer un objet ou une personne, de le mettre en concur-
rence avec d'autres objets ou personnes e�ectuant la même tâche. Nous proposerons donc
à notre tour des variantes de l'algorithme étudié pour a�n de mieux situer ses perfor-
mances et peut-être de trouver une meilleure alternative (dans certains cas du moins).

L'étape �nale de ce projet sera la rédaction de ce rapport et une soutenance orale.

2 Méthodes de travail

2.1 Outils

Nous travaillons avec le langage Python, selon la volonté de notre tuteur. Nous
utilisons les bibliothèques graphiz et matplotlib pour nos outils de visualisation et les
bibliothèques math et random en complément des outils natifs du langage. En dehors
des types objets déjà disponibles, nous nous tenons au paradigme de programmation
impérative de sorte à �uidi�er le passage de pseudo code à Python.
En�n, a�n de faciliter le travail en binôme, nous utilisons l'outils de gestion de version et
de collaboration GitHub 3.

3 Instances

3.1 Généralités sur nos générateurs

Dans le but d'assurer la comptabilité de nos algorithmes de résolution du problème
PIDO avec nos générateurs d'instance, nous avons mis en vigueur des normes de
fonctionnement pour ces derniers en ce qui concerne la façon de représenter les infor-
mations. En excluant la possibilité d'user du principe de la programmation orientée objet,
il a été établi que le meilleur moyen de représenter un graphe était d'utiliser un dic-
tionnaire dans lequel chaque sommet serait une clé qui aura pour valeur l'ensemble
de ses sommets voisins. Quant aux obligations, même si elles sont un ensemble d'en-
sembles, elles ne seront pas modélisées par un set() d'ensembles mais plutôt par une
list() d'ensembles, ainsi nous aurons accès à la fonction shuffle() pour mélanger les
obligations et donc changer leur ordre de lecture, ce qui se trouve être une étape impor-
tante de la génération d'obligations.
Cette unicité dans le principe de fonctionnement des générateurs nous a permis de créer
des fonctions facilitant la manipulation des graphes : addEdge(), createGraph(),
addVertex() et deleteVertex().

3. Dépôt du projet : https://github.com/loremipsumdsa/PIDO
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Il est à noter que chaque générateur de graphe prendra en paramètre un intervalle
auquel son nombre d'obligation, choisi aléatoirement avant la génération, devra ap-
partenir ainsi que d'autres paramètres, variant selon les générateurs, donnant des ins-
tructions sur les intervalles dans lesquels doivent se trouver le nombre de sommet et
le nombre d'arrête du graphe.
En�n, en plus de leur graphe, les générateurs de graphe retourneront également une liste
d'obligations qui sera, elle, produite par le générateur d'obligations.

3.2 Graphe aléatoire

Utilité Le premier générateur que nous avions pensé à faire était un générateur de
graphe aléatoire car évaluer la dominance de nos algorithmes sur ce dernier était la ma-
nière la plus objective de les comparer entre eux. Nous avons réalisé deux générateurs de
ce type d'instance, l'un est complètement aléatoire tandis que l'autre est obligatoirement
connexe, c'est à dire que tous ses sommets sont liés à au moins un autre sommet. Sur ce
type de problème, avoir un ou plusieurs sommets isolés peut être à la fois une contrainte
et un avantage, nous avons trouvé utile de bien di�érencier ces types de graphe a�n de
généraliser notre étude.
Nous avons par ailleurs programmer un générateur d'instance aléatoire qui choisis aléa-
toirement un type d'instance à générer, cependant nous ne lui avons pas trouvé de grande
utilité.

Algorithme de graphe aléatoire Ce générateur complètement aléatoire initialise un
graphe avec un nombre de sommet aléatoire compris dans l'intervalle fournis par l'utili-
sateur. Il dé�ni un nombre d'arrête de la même façon, puis, autant de fois qu'il le faudra
pour atteindre ce nombre, il ajoutera des arrêtes entre deux sommets di�érents et qui ne
sont pas déjà voisins.
Cet algorithme nous permet donc d'obtenir un graphe aléatoire.

Algorithme de graph aléatoire connexe Il fonctionne dans sa globalité de la même
manière que l'algorithme précédent sauf au moment de l'initialisation du graphe. En e�et,
en plus de rajouter des sommets au graphe, il lie chacun d'entre eux à un autre sommet
aléatoire du graphe de manière à ce que tous les sommets de ce dernier aient une arrête
qui les lie à au moins un autre et que le graphe soit donc connexe.

3.3 Graphe complet

Utilité Le graphe complet, contrairement aux autres, fait o�ce de graphe de test.
C'est un graphe dans lequel chaque sommet est lié par une arrête à tous les autres som-
mets. En toute logique, tous les sommets dominent l'entièreté du graphe donc l'évaluation
de chacun de nos algorithmes avec ce type de graphe doit être identique. Etant donnée
sa nature, évaluer les performances de nos algorithmes sur ce dernier permettait avant
tout de véri�er le bon fonctionnement de nos fonctions de génération d'obligation et
d'évaluation.
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Algorithme Le principe de fonctionnement de l'algorithme de génération de graphe
complet est très simple. Il consiste à ajouter autant de sommet qu'il le faut dans le
graphe, et pour chacun d'ente eux on ajoute des arrêtes qui les lient à tous les autres
sommets du graphe.

3.4 Graphes complexes : Grid, Torus et Hypercube

Utilité Un algorithme de résolution du problème PIDO peut être meilleur qu'un autre
en moyenne mais il peut très bien exister un type de graphe pour lequel il sera moins bon
que d'autres. Cette ré�exion nous a mené à produire trois générateurs de graphes très
particuliers.

� Le graphe Grid, comme son nom l'indique, est un type de graphe ressemblant à
une grille.

� Le graphe Torus est également une grille mais avec une particularité bien à lui, les
sommets en bordure de grille sont liés aux sommets qui se trouvent à la bordure
opposée mais toujours sur la même ligne ou sur la même colonne.

� Le graphe Hypercube qui, à chaque fois que sa dimension augmente de 1, se voit
ajouté un graphe similaire à celui de la dimension précédente auquel il sera lié par
des arrêtes allant d'un sommet à un autre identique.

Pour un même nombre de sommet chacun de ces trois graphes gardera la même apparence
contrairement aux graphes générés aléatoirement. Par exemple un graphe hypercube de
dimension n sera structuré de la même façon que n'importe quel autre graphe hypercube
de taille n. Cela ne veut pas pour autant dire que pour chaque nombre de sommet nous
n'aurons qu'un seul cas de graphe à étudier. Il existe toujours énormément de possibilités
de distribution des obligations donc il reste tout aussi important d'évaluer nos algorithmes
de résolution sur un grand nombre d'instance pour ces trois types de graphe que pour
des graphes aléatoires.

Algorithme graphe Grid La fonction qui génère ce type de graphe prend en para-
mètre des intervalles de taille de colonne et de taille de ligne a�n de parcourir le graphe
de la même manière qu'on parcourt un tableau.
L'algorithme va d'abord parcourir les lignes et les colonnes entrées par l'utilisateur avec
deux boucles imbriquées et pour chaque combinaison de ligne et de colonne ajouter un
nouveau sommet dont le nom dépendra de sa position dans la grille. On parcourt une
seconde fois la grille mais cette fois en reliant par des arrêtes les sommets censés l'être,
pour cela on s'aide de la nomenclature dépendante de la position du sommet. On obtient
donc un graphe Grid en forme de grille.

Algorithme graphe Torus L'algorithme de génération du graphe Torus di�ère de
celui du graphe Grid en ajoutant les arrêtes entre les sommets en bordure et leur som-
met opposé. Les sommets situés dans les coins de la grille ont deux sommets opposés
d'où l'utilisation des if et non pas des elif pour véri�er leur position par rapport aux
bordures.
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Algorithme graphe Hypercube Il existe une méthode très simple à mettre en place
permettant de générer un graph hypercube.
Considérons tout d'abord que chaque sommet de l'hypercube est nommé en binaire tel
que 001101 soit un sommet du graphe hypercube de dimension 6. On peut alors dire
que dans un graphe hypercube, deux sommets sont voisins si et seulement si leurs noms
di�èrent d'1 seul bit, par exemple 0101 et 0100 seraient voisins dans le graphe hypercube
de dimension 4.
La fonction correspondant à cette algorithme prend en paramètre une dimension (n)
pour générer un graphe de 2n sommets. Pour chaque sommet on va, avant de l'ajouter
au graphe, convertir son numéro en binaire puis rajouter des 0 au début pour qu'il ait un
nom respectant la nomenclature décrite précédemment. Ensuite, pour chaque bit i dans
le nom du sommet, l'algorithme ajoutera une arrête allant du sommet jusqu'à un autre
sommet avec qui il aura comme seule di�érence au niveau du nom le bit i.

3.5 Extracteur et exportateur d'instance

utilité Au cours du projet nous avons eu l'idée de développer un extracteur et un ex-
portateur d'instance de sorte à être capable de traiter des instances générées par des
personnes utilisant les mêmes normes que nous mais également pour faciliter le débogage
de nos codes. Quand un résultat nous paraissait incohérent il nous su�sait de déboguer
notre code et de l'exécuter à nouveau avec la même instance sauvegardée et rechargée. Si
aucun chargement ni sauvegarde n'était possible nous n'aurions pas pu réaliser l'impact
des changements dans nos codes de façon précise.
Pour qu'un �chier soit lu par l'extracteur d'instance il devra avoir la même structure que
l'exemple ci-dessous :
a :b
b :a :e
c :b :d
e :b
d :c

a,c
e,d
b

Le premier élément de chaque ligne correspond à un sommet et les suivants sont ses
voisins. Chaque ligne qui suit le saut de ligne correspond à une obligation, ses éléments
sont donc séparés par des virgules. Dans le cas où la fonction d'extraction ne trouve pas
d'obligations il en générera.

Algorithme extracteur d'instance L'algorithme extracteur d'instance va lire chaque
ligne d'un �chier. Tant qu'il ne rencontre pas de saut de ligne, il va peu à peu remplir
le graphe en y ajoutant les sommets et les arrêtes en suivant les instructions du �chier.
Une fois un saut de ligne rencontré, il ne va rien modi�er au graph ni aux obligations et
attendre de passer à la ligne suivante pour ajouter cette fois les obligations à l'instance.
Dans le cas où la liste des obligations est vide, l'extracteur va faire appel à la fonction de
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génération d'obligation pour compléter l'instance.

Algorithme exportateur d'instance Cet algorithme va donc faire totalement l'in-
verse de ce que fait l'algorithme extracteur d'instance. Il prendra en entrée une instance
et écrira dans le �chier chaque sommets de son graphe ainsi que ses voisins en respectant
la relation clé/valeur dans le dictionnaire python. Lorsque toutes les clés seront lues, la
fonction ferait un saut de ligne et écrira, pour chaque obligation, tous ses éléments sur
une ligne.

3.6 Générateur d'obligations

Utilité La fonction de génération d'obligations permet de générer complètement aléa-
toirement un ensemble d'obligations stables en prenant en entrée un graphe. Cette fonc-
tion est utilisée à la �n de chacun des algorithmes de génération de graphe pour leur
produire un ensemble d'obligations. Nous aurions pu donner à chaque fonction de gé-
nération de graphe sa propre fonction de génération d'obligations, cela aurait rendu les
exécutions de nos tests bien plus courtes car il existe des implémentations spéci�ques à
chaque type de graphe pour leur générer un ensemble d'obligations de manière optimi-
sée. Cependant elle est extrêmement utile car elle joue un grand rôle dans la polyvalence
de notre programme. Elle nous permet de pouvoir développer quand nous le voulons un
générateur de graphe sans avoir à nous préoccuper de refaire une fonction de génération
d'obligation spéci�quement pour celui-ci.

Algorithme de génération d'obligations L'algorithme prend en paramètre un graphe
et va parcourir chacun de ses sommets et pour chacun d'entre eux il va mélanger sa lise
d'obligations crée au préalable pour maximiser l'aléa. Dans le cas où la liste d'obligations
n'aurait pas été mélangé on aurait eu plus de chance de remplir les premières obligations
que les dernières, ce qui ne convient pas à notre contrainte d'aléa. On parcourt les obliga-
tions jusqu'à en trouver une qui ne contienne aucun voisin du sommet que nous sommes
en train de traiter. Une fois cela fait, nous ajoutons ce sommet dans l'obligation, et at-
taquons l'itération suivante de la première boucle. Dans le cas où le nombre d'obligation
serait insu�sant pour stocker tous les sommets tout en restant stables on se permet d'en
augmenter le nombre.
Une fois que tous les sommets sont bien réparties dans les obligations on supprime celles
qui sont vides et on véri�e que le nombre d'obligations respecte bien la contrainte initiale
donnée en paramètre, si ce n'est pas le cas on renvoi un message d'erreur en expliquant
que la création d'obligation n'a pas pu être faite.
Dans le cas où le nombre d'obligations est égal à celui de la contrainte on renvoi la liste
d'obligations générée.
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4 Algorithmes

4.1 Algorithme initial

Algorithme L'ensemble du projet est construit autour d'un algorithme de résolution
partiel proposé par C. Laforest. Voici L'algorithme, tel qu'il est décrit dans l'article :

Algorithme 1 : PIDO par C. Laforest

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
Créer une solution vide S;
tant que obligations restantes dans OS faire

Ajouter la plus grande obligation B dans S;
Soit N(B) l'ensemble des sommets qui sont voisins d'au moins un sommet de
B;
Soit O(B) l'ensemble des sommets contenus dans les obligations contenant au
moins un sommet de B ;
Supprimer dans G tout les sommets de B et de O(B);
Supprimer dans OS l'obligation B ainsi que toutes les obligations des
sommets de N(B);

�n
Retourner S;

Pour mieux comprendre la notion de "plus grande obligation", voici l'algorithme qui
sélectionne B :

Algorithme 2 : Plus grande obligation

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
B est la première obligation de OS;
pour chaque obligation O dans OS faire

si O contient plus de sommets que B alors
B devient O;

�n
�n
Retourner B;

Implémentation Pour des raisons qui seront explicitées par la suite, nous avons choisi
de séparer dans l'implémentation le sélecteur de l'obligation B du corps de l'algorithme.
Nous avons donc une fonction searchIDO() qui reçoit une instance : un graphes sous
la forme d'un dictionnaire et un ensemble d'obligation représenté par un tableau d'en-
sembles. Pour ne pas altérer l'instance, au cas ou elle serait réutilisée plus tard, la fonction
va travailler sur une copie. Plusieurs fois au cours du traitement, searchIDO() appelle une
autre fonction passé en argument, selector() et lui passe l'instance pour qu'elle lui ren-
voie une obligation à traiter. Dans le cas présent, selector() est bigestObligation()
et renvoie la plus grande obligation de l'ensemble.

Commentaire Pour toute instance (G,OS), on obtiendra S, un sous ensemble de som-
mets du graphe respectant la contrainte additionnelle dé�nie dans le chapitre précédent,
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à savoir si un sommet appartient à S, alors tous les sommets appartenant à la même
obligation sont dans S. Puisque qu'on suppose que toutes les obligations stables, on aura
également S stable. En revanche rien n'assure que S soit une con�guration dominante
complète sur G. Il est possible qu'un sommet de G ne soit ni dans S, ni voisin d'un
sommet de S.
Un étape qui caractérise cet algorithme est la sélection de l'obligation B. Ici, on choisi la
plus grande obligation, celle qui contient le plus de sommets. On remarque que qu'en réa-
lité quelque soit l'obligation sélectionnée, les assertions précédentes restent vraies. De là,
nous comprenons que c'est en jouant sur ce choix, précisément sur le critère de sélection,
que nous obtiendrons des variantes plus ou moins intéressantes de l'algorithme.

4.2 Première alternative : par couverture

Algorithme A partir de maintenant nous conserverons le corps de l'algorithme précé-
demment exposé et nous nous intéresserons exclusivement à la sélection de B. Jusque là,
B était l'obligation contenant le plus de sommets. Nous avons eu l'intuition qu'il serait
plus intéressant de comptabiliser l'ensemble des sommets couverts par l'obligation. A
savoir, tout les sommets de l'obligation plus tout les voisins de chaque sommet de l'obli-
gation qui ne sont pas déjà couvert (rappelons qu'on a une élimination des sommets déjà
traités). Nous avons donc proposé le sélecteur suivant :

Algorithme 3 : Obligation la plus couvrante

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
B est la première obligation de OS;
CB est un ensemble initialement vide;
CO est un ensemble initialement vide;
pour chaque obligation O dans OS faire

pour chaque sommet S de O faire
Ajouter S dans CO;
Ajouter tous les voisins de S dans CO;

�n
si CO contient plus de sommets que CB alors

B devient O;
CB devient CO;

�n
Vider CO;

�n
Retourner B;

Implémentation Puisque nous avions précédemment séparé le corps de l'algorithme du
sélecteur deB, nous n'avons qu'à écrire une nouvelle fonction de sélection mostCoveringObligation(),
qui prend également l'ensemble des obligations et le graphe, et qui retourne l'obligation
la plus couvrante. Nous pouvons maintenant utiliser ce nouveau sélecteur en le passant
en paramètre à notre première fonction searchIDO(). Notons que cette fois ci, le graphe
est bien nécessaire pour déterminer l'obligation la plus couvrante (l'ensemble d'obligation
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seul n'est pas su�sant).

Commentaire Cette méthode de sélection implique plus de calculs que la première, car
en plus de parcourir l'ensemble des obligations, On accède à chaque sommet de chaque
obligation et on regarde ses voisins.
Il est important de se rappeler qu'un ensemble ne peut pas contenir deux fois un même
élément. Ainsi, si un sommet est voisin de deux sommets d'une obligation O, il apparaît
une seule fois dans CO. En�n lorsqu'une obligation est supprimée par l'algorithme prin-
cipale, tous ses sommets sont retirés du graphe. Par conséquent ici le sélecteur ne compte
que les sommets qui ne sont pas encore couverts.

4.3 Deuxième alternative : par voisinage

Algorithme L'algorithme précédent comptait les sommets couverts par une obligation,
soit la somme des sommets de cette obligation plus tous les voisins de ses sommets. Nous
proposons donc une variante dans laquelle ne sont comptés que les sommets dominés par
l'obligation, soit les voisins des sommets de l'obligation en question.

Algorithme 4 : Obligation la plus couvrante

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
B est la première obligation de OS;
CB est un ensemble initialement vide;
CO est un ensemble initialement vide;
pour chaque obligation O dans OS faire

pour chaque sommet S de O faire
Ajouter tous les voisins de S dans CO;

�n
si CO contient plus de sommets que CB alors

B devient O;
CB devient CO;

�n
Vider CO;

�n
Retourner B;

Implémentation Notre nouvelle fonction de sélection mostDominantObligation() est
à peu près un copier coller de la précédente, on retire simplement la ligne qui ajoute les
sommets de l'obligation considérée dans l'ensemble construit.

Commentaire Notre intuition est que ce sélecteur devrait donner en général des so-
lutions plus petite, c'est à dire utiliser moins de sommets dominants pour dominer un
graphe. Supposons un cas critique, on a une instance avec un graphe étoile de taille
n > 2(un sommet central, les n−1 autres sommets sont voisins uniquement de ce sommet
central) et deux obligations, l'une contenant le central, l'autre tout les autres sommets. Le
sélecteur de plus grande obligation choisira de couvrir tous le graphe en retenant comme
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solution la deuxième obligation (donc |S| = n − 1). Notre nouveau sélecteur choisira la
première obligation pour dominer également l'ensemble du graphe (|S| = 1)). On aurait
donc deux solutions complètes mais la deuxième serait bien plus e�cace. (remarquons
que notre sélecteur par couverture n'aurait pas fait de di�érence entre les deux obligations
puisque l'ensemble couvert est le même dans les deux cas).

4.4 Troisième alternative : par rapport de domination

Algorithme Nous avons proposé des algorithmes de sélection fonction de la taille des
obligations et de la taille de leur voisinage ou bien de la somme des deux. Pour aller plus
loin sur le problème d'e�cacité, nous proposons donc une dernière alternative qui évalue
le rapport des deux, c'est à dire qui choisi l'obligation dont le rapport taille du voisinage
sur taille de l'obligation est maximum.

Algorithme 5 : Obligation ayant le meilleur rapport de domination

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
B est la première obligation de OS;
CB est un ensemble initialement vide;
CO est un ensemble initialement vide;
pour chaque obligation O dans OS faire

pour chaque sommet S de O faire
Ajouter tous les voisins de S dans CO;

�n

si |CO|
|O| est plus grand que

|CB|
|B| alors

B devient O;
CB devient CO;

�n
Vider CO;

�n
Retourner B;

Implémentation La fonction de sélection mostDominatingObligation() est cette fois
encore sensiblement proche dans l'implémentation de nos fonctions précédentes. Nous
pouvons indi�éremment calculer le rapport de la taille de l'ensemble dominé ou de l'en-
semble couvert par une obligation par sa taille. En e�et si o est une obligation, d l'ensemble

dominé et c l'ensemble couvert par o, on a c = d+ o donc
|c|
|o|

=
|d|
|o|

+ 1.

Commentaire Avec ce sélecteur, nous ne nous attendons pas à nous rapprocher d'un
calculateur de solutions complètes. Il est probable que les solutions retournées ne couvre
qu'une petite partie du graphe. En revanche nous espérons déterminer des solutions loca-
lement très e�cace, c'est-à-dire un sommet dominant doit dominer beaucoup de sommets.
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4.5 Alternative témoin : par hasard

Algorithme Nous sommes dans une démarche de comparaison et d'évaluation. Nous
voulons donc situer la valeur ajoutée de nos algorithmes, les uns par rapport aux autres
mais aussi véri�er leur crédibilité, c'est à dire si il est intéressant de les utiliser où si on
peut faire aussi bien sans.

Algorithme 6 : Obligation au hasard

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
Retourner une obligation B prise au hasard dans OS;

Implémentation Ce dernier sélecteur randomObligation() tient en une ligne grâce à
la méthode choice() de la bibliothèque random. Par ailleurs il n'a besoin en entré que
de l'ensemble des obligations, le graphe n'est pas nécessaire (comme le premier).

Commentaire Ce sélecteur est minimal, il nécessite très peu de calcul. Notons que
puisque les ensembles d'obligations ne sont pas ordonnées par notre générateur, on aurait
pu choisir de renvoyer toujours l'obligation en position 0 dans le tableau par exemple.
Nous avons cependant préféré utiliser une position pseudo aléatoire au cas où un ensemble
d'obligation serait justement ordonnée, comme ce pourrait être le cas avec une instance
extraite d'un �chier. On aurait alors un biais qui fausserait la valeur de témoin. Cette
ré�exion nous a inspiré le mode de sélection suivant.

4.6 Dernière alternative : sélection statique

Algorithme Jusque là, au cours du traitement, B était sélectionné en fonction de l'état
courant de l'instance. Puisque l'algorithme modi�ait l'instance (suppression des sommets
couverts et des obligations partiellement couvertes), nous pouvions dire que la sélection
de B était dynamique. Il nous vient donc l'idée que celle ci pourrait être statique : On
aurait un ensemble d'obligations initialement ordonné selon un critère (par exemple la
taille du voisinage de l'obligation). Au traitement, l'algorithme considérerait d'abord la
première obligation de l'ensemble. Il est possible que le traitement de celle ci entraîne
la suppression d'autres obligations, sans pour autant altérer l'ordre. Par la suite, l'algo-
rithme considérera toujours l'obligation suivante dans l'ensemble, jusqu'à ce que celui ci
soit totalement vidé.

Dans un premier temps on veut pouvoir trier un ensemble d'obligations selon l'un des
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critères précédemment dé�nis. Pour cela on propose un algorithme générique :

Algorithme 7 : Tri de l'ensemble d'obligation

Soit G un graphe et OS un ensemble d'obligations sur les sommets de G;
Soit S une fonction de sélection parmi celles dé�nies précédemment;
OOS est une liste initialement vide;
tant que OS n'est pas vide faire

B = S(G,OS);
Ajouter B à la suite de OOS;
Supprimer B de OS;

�n
Retourner OOS;

Une fois l'ensemble trié, l'instance est traité classiquement par notre algorithme prin-
cipal en faisant appel à un sélecteur qui retourne toujours le premier élément de l'ensemble
d'obligations (cet élément est ensuite supprimé par l'algorithme principal, donc remplacé
par le suivant).

Algorithme 8 : Obligation suivante

Soit G un graphe et OS un ensemble d'obligations ordonné sur les sommets de G;
Retourner la première obligation de OS

Implémentation Puisque pour des raisons pratique nous utilisions déjà des listes pour
la représentation de nos ensembles d'obligations, Nous n'avons aucune di�culté à les
trier en utilisant les fonctions de sélection. Nous avons pour cela implémenter la fonction
obligationsOrder() qui reçoit une instance et un sélecteur et qui retourne l'ensemble
des obligations trié.
Si os est une liste triée, os[0] est son premier élément. Maintenant si on supprime cet
élément (os.del(0)), on retrouve en position 0 l'élément qui était avant en seconde
position (la liste est utilisée comme une pile). On a donc une fonction nextObligation()

qui reçoit une instance dont la liste d'obligations est ordonnée. On récupère la première,
on la supprime de la liste et on la renvoie. C'est cette fonction donc qui jouera le rôle de
sélecteur.

Commentaire Avant même de faire des tests, nous pouvons prévoir certains compor-
tements de cette nouvelle méthode de sélection. D'abord nous comprenons que nous ne
devrions pas remarquer de di�érence entre la sélection aléatoire statique et dynamique.
En e�et dans les deux cas, l'obligation retournée à chaque itération est choisie aléatoi-
rement. De même, nous prévoyons une équivalence entre la sélection par plus grande
obligation en statique ou en dynamique : en e�et la taille des obligations n'évolue pas au
cours du traitement. La di�érence se fera donc sur les sélections par voisinage, couverture
et rapport de domination. Nous n'espérons pas de meilleurs résultats en statique qu'en
dynamique, en fait nous pensons plutôt souligner l'importance de la prise en compte de
l'évolution de l'instance. En�n cette méthode, couplée à l'outils d'importation d'instance
depuis un �chier, ouvre à de nouvelles possibilités.
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5 Évaluation

5.1 Évaluation d'une solution

Critères d'évaluation Nous avons à présent de quoi générer un graphe et des algo-
rithmes pour traiter celui-ci. Le problème qui se pose est : comment savoir si l'algorithme
à bien fait son travail, c'est à dire comment évaluer la solution retournée. Dans un pre-
mier temps, nous véri�ons si la solution est recevable, c'est-à-dire si elle respecte bien la
contrainte d'obligations. Rappelons que la contrainte est : si un sommet appartient à la
solution, alors tous les sommets de son obligation y sont aussi. L'algorithme proposé par
C. Laforest respecte cette contrainte. Si nous venions à produire une solution irrecevable,
ce serait donc une erreur d'implémentation. Après plusieurs batteries de test de receva-
bilité sans erreur, nous décidons de contourner cette étape de véri�cation en supposant
que l'implémentation est correcte.

Puisque la solution est recevable, nous nous intéressons maintenant à sa qualité. L'ob-
jectif est de montrer que pour une même instance, tel algorithme a mieux répondu au
problème que tel autre. Le problème étant comment maximiser la couverture du graphe
tout en minimisant le nombre de sommets dominants, nous allons mesurer deux caracté-
ristiques de la solution qui nous serviront de critères de qualité : La taille de l'ensemble
des sommets de la solution et la taille de l'ensemble des sommets du graphe couverts par
la solution. A�n de rendre ces chi�res plus parlants, nous les transformons en pourcen-
tage. Nous obtenons alors un taux dominant et un taux couvert du graphe. À partir
de ces deux valeurs, nous pouvons calculer un troisième critère : le rapport des deux, que
nous nommons coe�cient de domination. Ce rapport est donc proportionnel à la cou-
verture et inversement-proportionnel à la taille de la solution.En�n on peut déterminer
si une solution est complète, si 100% des sommets du graphe sont couverts.

Pour une solution sur une instance données, nous avons maintenant un état de receva-
bilité, trois indicateurs numériques de qualité et un état de complétude. Nous pourrions
décider de combiner ces critères pour obtenir une note globale. Cependant nous ne préfé-
rons pas, de la même façon que nous ne considérons pas que le coe�cient de domination
se substitue au couple taux de couverture et au taux dominant. A cet étape nous pensons
que la qualité d'une solution est subjective et dépend des besoins de l'utilisateur. C'est à
lui de décider l'équilibre acceptable entre maximisation de la couverture et minimisation
de la solution.

Implémentation Nous avons deux fonctions, pour les deux étapes de l'évaluation, cha-
cune prenant en paramètre un graphe et une solution.

La première, checkSolution(), véri�e la recevabilité de la solution. Pour cela elle en
prend chaque obligation une par une et véri�e qu'il n'en existe pas dont l'intersection
avec la solution soit non vide et la di�érence vide. Elle retourne True ou False selon
le cas. Cette véri�cation est simple mais implique beaucoup de calcul, c'est pour cette
raison que nous avons décidé de l'écarter une fois la �abilité des algorithmes éprouvée.
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Pour cela, la fonction recevability_test() teste un grands nombre de couple instance
solution, respectivement généré avec tous les générateurs possibles et calculés avec tous
les sélecteurs disponibles. Une seule exécution de cette fonction nous a permis de supposer
que l'implémentation était correcte.

La seconde fonction, evaluatePIDO(), prend donc une instance et une solution (seul
le graphe est important, l'ensemble d'obligation n'est pas nécessaire). Elle extrait nos
indicateurs de qualité et les retourne dans un tuple à trois champs. Pour cela elle construit
l'ensemble des sommets couverts, le mesure et le rapporte en pourcentage de la taille du
graphe. elle mesure également la taille proportionnelle de la solution et le rapport de la
taille de l'ensemble couvert par la solution. Le dernier champs du tuple est un booléen
qui indique si la solution est complète ou nous (complet si tous les sommets du graphe
sont couverts).

5.2 Évaluation d'un algorithme

Valeur statistique Nous somme maintenant capable d'évaluer une solution fournie
par un algorithme pour une instance donnée. Nous savons qu'un essai sur une instance
avec un algorithme nous donne très peu d'informations sur l'algorithme lui-même. Pour
mesurer ses performances, il nous faut faire un grand nombre de tests avec un grand
nombre d'instances, et idéalement, avoir une base de comparaison. La suite logique est
de réaliser une mise en concurrences statistique des di�érents algorithmes.

Nous sommes capable de générer di�érents types d'instances (à graphes connexe, grid,
torus...) et nous nous attendons à ce que les algorithmes soient plus ou moins performants
selon les types. Nous générons donc un nombre n d'instances d'un type donné (n para-
métrable), nous passons chacune de ces instances dans chacun des algorithmes, évaluons
chaque solution et calculons une valeur moyenne pour chaque critère et pour chaque al-
gorithme. Ici l'algorithme à sélection aléatoire prend tout son sens car ses scores nous
serviront de socle de comparaison (un algorithme dont les indicateurs serait proche de
celui ci pourrait être considéré comme médiocre). Puisque les entrées sont très variées,
il faut beaucoup de cas pour obtenir des résultats exploitables. On considère que n est
assez grand quand les chi�res ne varient pas (ou très peu) entre deux sessions. Nous vou-
lons également savoir, sur n instances, combien chaque algorithme détermine de solutions
complètes. nous avons �nalement �xé n = 30000, ce qui donne des sessions de calcul
d'environs 26h.

En�n, pour bien comprendre les résultats, il est intéressant de disposer de données
sur les instances utilisées pour le test. C'est pourquoi nous faisons suivre les relevés
statistiques par un ensemble de métadonnées : Pour une session de test, il s'agit du type
de graphes utilisées, du nombre moyen, minimum et maximum de sommets composants
les graphes et du nombre moyen, minimum et maximum d'obligations associées.

Implémentation Nous avons voulu rendre la gestion des tests la plus �exible possible.
Pour cela nous avons écrit une fonction statisticCompare() qui prend en paramètre
n, le nombre d'échantillons à tester, un générateur d'instance et une liste de sélecteur à
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comparer.

n fois, la fonction génère une instance et enregistre les métadonnées associées. Pour
chaque sélecteur de la liste,elle détermine une solution, fait évaluer la solution et sau-
vegarde les scores. Une valeurs moyenne est déterminée pour chaque indicateur et pour
chaque sélecteur. En�n, on compte le nombre de solutions complètes.

Finalement, sont retournés :
� un dictionnaire, dont les clés sont les noms des sélecteurs et les valeurs sont des

listes contenants chacun des trois scores moyens et le nombre de solutions com-
plètes dans la session.

� un dictionnaire de métadonnées concernant les instances échantillons. Ce dernier
donne le type des graphes utilisés, le nombre de sommets moyen, minimum et
maximum et le nombre d'obligations moyen, minimum et maximum.

5.3 Visualisation

Nous avons une certaine quantité de données et nous comptons les exploiter. Pour
nous simpli�er le travail nous décidons donc de produire deux outils de visualisation.

Le premier nous permet de visualiser une solution sur une instance donnée. A l'aide
de la bibliothèques graphviz, nous pouvons produire un rendu graphique répondant aux
règles de coloration suivantes :

� Toute les sommets d'une même obligation apparaissent tracés d'une même couleur
(choisie aléatoirement)

� Les sommets appartenant à la solution sont remplis en vert
� Les sommets dominés par la solution sont remplis en bleu
� Les sommets non couvert par la solution sont remplis en blanc

Cette outil nous a permis de véri�er que nos algorithmes avaient bien le comportement
que nous pouvions prévoir sur de petites instances. En revanche il devient vite inutilisable
sur les grands graphes pour lesquels l'a�chage est très dense.

Le deuxième outil, beaucoup plus intéressant, nous assiste dans nos observations sta-
tistiques. Il s'agit d'une fonction qui prend les données produites par nos sessions de tests
(le dictionnaire de statistiques et le dictionnaire de métadonnées) et les reporte sur un
graphique en barre généré à l'aide de Matplotlib. On construit une barre pour chaque
algorithme, donnant la part de sommets dominants, la part de sommet couverts et le rap-
port de domination ainsi que le nombre de solutions complètes trouvées dans la session.
Le tout est légendé et le titre est construit automatiquement à partir des métadonnées.
Les di�érences de performance entre les algorithmes deviennent ainsi remarquable au
premier coup d'÷il.
Les graphiques nous donne chaque fois un taille de solution moyenne s et un taux de
couverture moyen c. Il faut bien comprendre que cela veut dire "en moyenne, on a des
solution de taille s et en moyenne des couvertures moyenne de c" et non "dans le cas
moyen, on a une solution de taille s qui couvre c. D'ailleurs on n'a pas d, le coe�cient de
domination, tel que d =

c

s
.
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La structure du graphique est détaillée en annexe 2.

6 Résultats

6.1 sélection statique ou dynamique

Comme nous l'avions prévu, les sélecteurs aléatoire et par taille d'obligation se com-
portent de la même façon en statique ou en dynamique. En revanche contrairement à
notre intuition, les taux de couvertures avec les autres sélecteurs sont meilleurs en sta-
tique qu'en dynamique. On observe un gon�ement des chi�res, mais les coe�cients de
domination sont meilleurs en dynamique. En particulier le sélecteur par rapport de do-
mination semble beaucoup moins e�cace en statique (les résultats deviennent proches du
sélecteur aléatoire). En�n les tendances restent les mêmes dans les deux modes mais les
écarts entre algorithmes sont amoindris en dynamique.
Le graphique détaillé 3 est en annexe.

6.2 Taille d'ensemble d'obligations

Nous avons fait deux types de session, avec des grands et des petits ensembles d'obli-
gations. On remarque qu'on couvre beaucoup mieux les instances dotées d'obligations
nombreuses (20% de di�érence avec le sélecteur par taille), mais on produit également
des solutions plus grandes (10.4% de di�érence) et les coe�cients de domination sont
meilleurs avec de petit ensemble (à 0.6 point près). On pourrait d'ailleurs couvrir systéma-
tiquement tous les graphe en créant des obligations minimale, d'un seul sommets chacune
(stabilité assurée). Cela revient à une recherche d'ensemble dominant sans minimisation.
les tendances dans les deux cas sont toujours les mêmes et on conserve sensiblement les
écarts de taux de couverture entre les di�érents algorithmes.
Le graphique détaillé 4 est en annexe.

6.3 Instances à graphe complet

Les graphes complets engendrent un comportement particulier sur nos algorithmes.
Pour un graphe complet à n sommet, il existe un unique ensemble d'obligation possible :
celui-ci contient n obligations, chacune de taille 1. Une seule de ces obligations (c'est à
dire un seul sommet) su�t à couvrir tout le graphe. Ainsi, pour nos algorithmes, toute
obligations est équivalente :

� en taille (1)
� en potentiel de couverture (n)
� en potentiel de (n− 1)
� en rapport de domination (n/1)

de là, nous comprenons que nos sélecteurs deviennent impuissants face à ce type d'ins-
tance, et quelque soit l'obligation sélectionnée, le résultat est le même : 100% de couver-
ture et un coe�cient de domination maximum.
Le graphique détaillé 5 est en annexe.
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6.4 Instances classiques

Pour ce type d'instance, on remarque que les taux de couvertures sont globalement
bas (entre 84 et 78.2%, 80% par sélection aléatoire) et les tailles de solutions grandes,
ce qui donne des coe�cients de domination plutôt bas. Les meilleures couvertures sont
données par le sélecteur appliqué sur la taille d'obligation et les meilleures coe�cients de
domination sont produits par le sélecteur par rapport de domination, sans surprise en
mode dynamique (3.7%, contre 1.4% en aléatoire et 1.3% en sélection par taille).
Le graphique détaillé 6 est en annexe.

6.5 Instances à graphe connexes

En terme de taux de couverture, on a sensiblement la même con�guration qu'avec
les instances classiques. En revanche les solutions sont systématiquement plus petites
(32.9% contre 41.7% en sélection dynamique par taille) et les coe�cients de domination
plus élevés (1.7 contre 1.3).
Le graphique détaillé 7 est en annexe.

6.6 Instances à graphe Grid

On a cette fois le nombre d'instances complètement solvées comme indicateur supplé-
mentaire. Cela nous permet de remarquer que les sélecteurs par potentiel de dominance
et par couverture présente des taux de couverture inférieurs au sélecteur aléatoire mais
un bien plus grand nombre d'instances complètement solvées (696 et 784 contre 463). Le
sélecteur par taille reste largement en tête, avec 81.9% contre 79.3%, le second meilleur
(par couverture). On note que les solutions ont encore diminué en taille relative. Cf Dans
le graphique détaillé 8 en annexe.

6.7 Instances à graphe Torus

Ici, les résultats sont très proches de ceux données sur les graphes Grid, avec sim-
plement des solutions plus petites (environs 1% de di�érence partout) et des coe�cients
de domination plus légèrement supérieurs (0.1 point partout). Cela n'est pas étonnant
quand on connaît la proximité structurelle qu'il existe entre les graphes en grille et les
graphes de Torus. Cf Dans le graphique détaillé 9 en annexe.

6.8 Instances à graphe Hypercube

Les résultats produits sur les instances à graphes hypercubes sont assez remarquables :
on a des taux de couverture et des coe�cients de domination très élevés (93% et 3.8 au
plus). Par ailleurs les écarts sur les di�érents indicateurs sont réduits par rapport à
d'habitude, et pour la première fois on a deux algorithmes qui rattrapent le sélecteur
par taille d'obligation en couverture : en dynamique, les sélecteurs par couverture et par
domination sont aussi couvrants que ce dernier. Par ailleurs sur cette session le sélecteur
par rapport de domination ne détient pas le coe�cient de domination maximum (3.8
contre 3.9 en aléatoire) et en revanche son taux de couverture est inhabituellement élevé
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(89.4% contre 88.2 en aléatoire).
Le graphique détaillé 10 est en annexe.

6.9 Conclusion sur les résultats

Appréciation générale des algorithmes Nos tests ont montré que le sélecteur par
taille d'obligation était, en général, celui qui répondait le mieux au problème, à savoir
couvrir au plus le graphe en respectant les obligations. En revanche nous avons montré
que les autres sélecteurs pouvaient produire des solutions tel qu'un sommet dominant
couvre localement plus de sommets qu'avec notre premier sélecteur. Cela nous mène à
penser que sélectionner les obligations sur leur taille ne produit pas de solution optimale.
Sans étonnement, on remarque que plus un graphes comporte d'arêtes, plus les solutions
déterminés sont petites (minimal pour les graphes complets puisque les solutions sont
constituées d'un seul sommet).

retour d'intuition Nous avons globalement été plutôt déçu par les résultats que nous
avons obtenu, pour deux raisons. D'abord les di�érences de performances entre les di�é-
rents algorithmes étaient moins �agrantes que nous ne le pensions. Nous avons dû faire
de très longues sessions de calculs pour obtenir des statistiques stables (minimiser les
variations des indicateurs entre deux sessions) et nous avons craint un lissage de ces in-
dicateurs qui ne nous aurait pas permis de les comparer. Nous avons cependant �ni par
obtenir des résultats stables et des di�érences de comportements entre les algorithmes
exploitables. Ensuite nous avons remarqué que nos di�érents algorithmes ne produisaient
en général pas de solution biens meilleures que l'algorithme témoin, avec un facteur aléa-
toire. Il semble en fait que la contrainte d'obligation guide beaucoup la déterminisation
de la solution et que le poids du sélecteur est moindre.

limites de nos tests Il faut bien comprendre que les instances que nous générons,
même avec une spécialisation et dans un intervalle de tailles donnés, sont extrêmement
variées, ne serait-ce que dans la distribution des obligations. Par conséquent il peut être
risqué d'essayer de mesurer un comportement moyen. Nous avons d'ailleurs vu qu'il était
compliqué de stabiliser nos résultats, même avec des sessions très longues. Nous savons
qu'il existe une méthodologie très complète pour l'étude de qualité d'algorithme que nous
ne maîtrisons pas. Cela nous pousse à remettre en doute les conclusions que nous tirons
de nos graphiques. En particulier, il aurait peut être été plus judicieux d'aller plus loin
dans la spécialisation d'instance, par exemple étudier exclusivement les performances de
nos algorithmes sur des instances à graphes hypercubes plus précisément paramétrées.
Également si nous avions su que nos premiers résultats seraient si peu évidents, nous
aurions essayé d'utiliser d'autres outils statistiques comme les médianes, les écarts types
etc. En�n avec plus de temps nous aurions pu nous baser sur nos premiers résultats
pour chercher à les détailler ou à les améliorer en retouchant notre code. Par exemple,
nous avons remarqué après nos premières sessions que le nombre de solutions complètes
déterminé était un indicateur intéressant, mais nous n'avons pas eu le temps de refaire
des sessions pour l'intégrer.
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7 Conclusion

Intérêts Ce projet nous a plu pour plusieurs raisons. En premier lieu, comme nous le
voulions initialement, il nous a permis de nous mettre dans le rôle d'un chercheur en
étudiant un problème plutôt abstrait, en cherchant des solutions et en essayant de les
démontrer. Ensuite il nous a permis de nous initier aux graphes, qui, nous le savons, sont
des outils mathématiques très puissants. En�n nous avons été mené à une utilisation de
python nouvelle pour nous, en particulier nous avons dû ré�échir à la représentation et à
la distribution de l'information dans notre programme.

Perspectives Si ce projet était à refaire ou à continuer, nous essaierions d'appliquer
les idées précédemment dé�nies, notamment spécialiser plus nos tests pour répondre à la
problématique sur un ensemble d'instances plus précis. Il serait en particulier intéressant
de nous pencher plus sur le générateur d'obligation, par exemple produire un générateur
d'obligations équilibrées (toutes de même taille).
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A Annexes

Figure 1 � Visualisation d'une instance à graphe Torus complètement solvée
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Figure 2 � Description détaillée des graphiques générés

Figure 3 � Comparaison des modes de sélection statique et dynamique
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Figure 4 � Comparaison avec le facteur taille de l'ensemble d'obligations

Figure 5 � Résultats sur les instances à graphe complet
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Figure 6 � Résultats sur les instances à graphe classique

Figure 7 � Résultats sur les instances à graphe connexe
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Figure 8 � Résultats sur les instances à graphe en grille

Figure 9 � Résultats sur les instances à graphe Torus
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Figure 10 � Résultats sur les instances à graphe hypercube
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