La couche Réseau

Communication dans le monde entier

Le protocole IP: Internet Protocol

- * Couche 2 : couche liaison de données
 - Objectif: communiquer sur le même réseau
 - Adresse unique
 - Adresse Mac (Medium Access Control)
 - 6 octets
 - Code détecteur/correcteur d'erreurs
 - Redondance dans les trames (FCS/CRC)
 - Format générique d'une trame

@MACd

@MACs

Niveau 3,etc...

d:destination

s: source

• 2 protocoles connus : Ethernet, Wifi

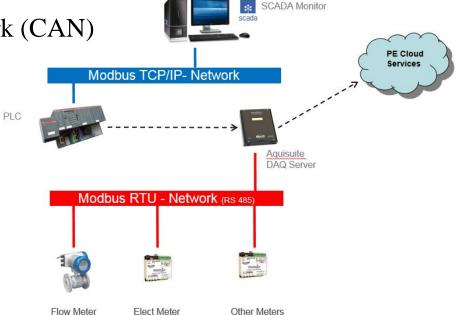
SCADA (1)

* Supervisory Control And Data Acquisition

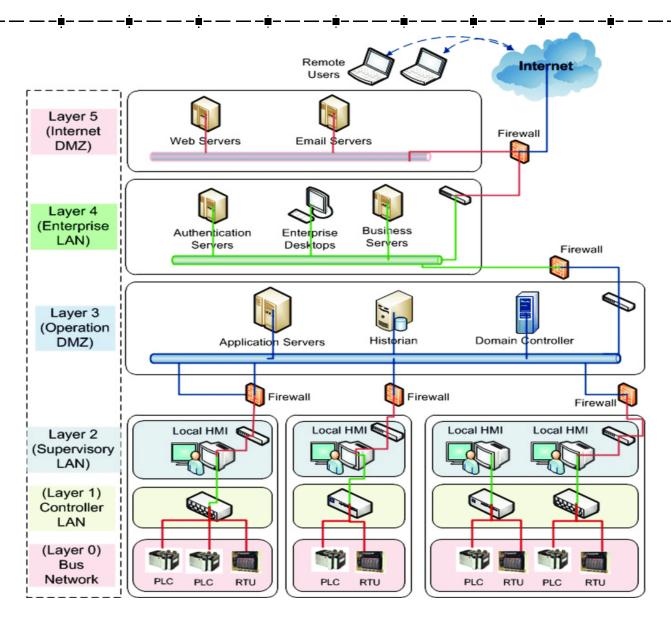
Système de télégestion à grande échelle permettant de traiter en temps réel un grand nombre de télémesures et de contrôler à distance des installations techniques.

- Supervision
 - Via des opérateurs, des ingénieurs, ... des humains
- Contrôle
 - Télémétrie, Monitoring
- Acquisition
 - Capteurs analogiques, digitals
- Communication
 - Remontées des informations, des alarmes, etc...

ICS: Industrial Control System



* Vocabulaire


- SCADA est composé de nombreux RTU reliés entre eux par un système de communication et reliés à des PLCs, visualisation des infos via une HMI (Human Machine Interface)
- *RTU* : Remote Telemetry Unit
 - Système d'acquisition et de contrôle
 - Récupère et envoie les données ou des alarmes
 - Equipement maitre/esclave
- *PLC* (Programmable Logic Controller)
 - Gère les RTU et envoie des infos retravaillées au système SCADA

SCADA (3)

- * Vocabulaire
 - Communication -> Bus de terrain. (RLI : Réseaux Locaux Industriels)
 - Modbus
 - Fieldbus, Profibus
 - Controller Area Network (CAN)
 - Etc...

SCADA - Entreprise

- * Réseau couche 1,2 et 7
- ***** Utilisation Maitre/Esclave
 - Modbus ou Modbus TCP sur port 502
- * Jusqu'à 247 périphériques
 - Un esclave = 1 adresse unique physique sur 1 octet
- * Trames:
 - questions/réponses :

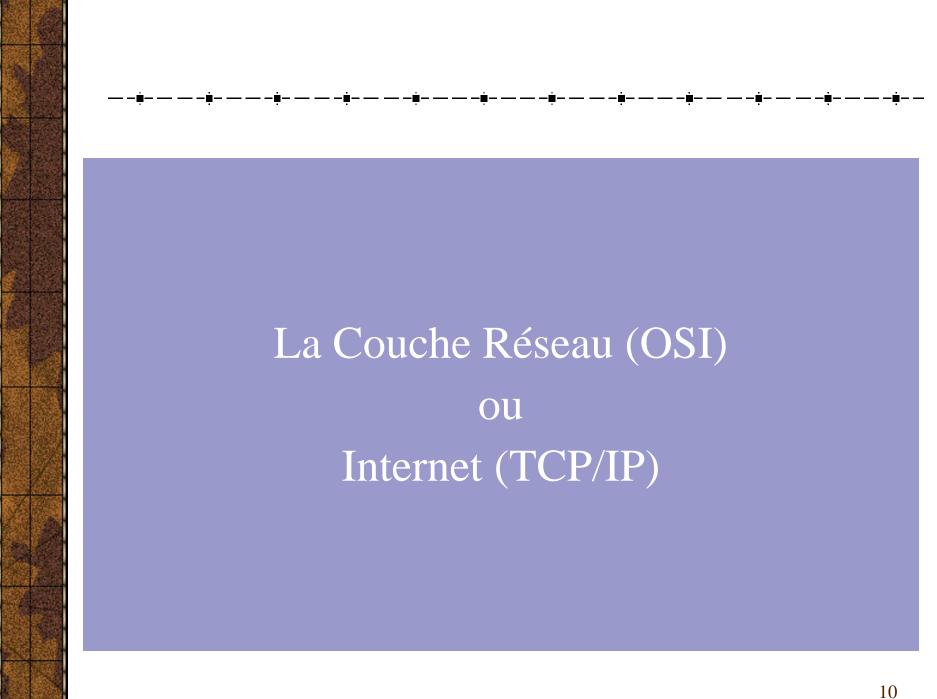
N° station esclave	Code fonction + bit d'erreur	Information spécifique concernant la demande	Mot de contrôle
1 octet	1 octet	n octets	2 octets

• Erreurs:

N° station esclave	Code fonction + bit d'erreur	Code d'exception	Mot de contrôle	
1 octet	1 octet	1 octet	2 octets	

- * Modbus -> fiable
 - CRC sur 16 bits.
- * Code fonction

Code	Nature des fonctions MODBUS	TSX 37
H'01'	Lecture de n bits de sortie consécutifs	*
H'02'	Lecture de n bits de sortie consécutifs	*
H'03'	Lecture de n mots de sortie consécutifs	*
H'04'	Lecture de n mots consécutifs d'entrée	*
H'05'	Ecriture de 1 bit de sortie	*
H'06'	Ecriture de 1 mot de sortie	*
H'07'	Lecture du statut d'exception	
H'08'	Accès aux compteurs de diagnostic	
H'09'	Téléchargement, télé déchargement et mode de marche	
H'0A'	Demande de CR de fonctionnement	
H'0B'	Lecture du compteur d'événements	*
H'0C'	Lecture des événements de connexion	*
H'OD'	Téléchargement, télé déchargement et mode de marche	
H'0E'	Demande de CR de fonctionnement	
H'0F'	Ecriture de n bits de sortie	*
H'10'	Ecriture de n mots de sortie	*
H'11'	Lecture d'identification	*
H'12'	Téléchargement, télé déchargement et mode de marche	
H'13'	Reset de l'esclave après erreur non recouverte	
пъ	reset de l'esclave après effeut flori l'ecouveite	


- * Réseau couche 1,2 et 7
- ***** Utilisation Maitre/Esclave
 - Méthode d'accès CSMA/CR (Collision Resolution)
- ★ Codage NRZ

• Bit dominant : 0

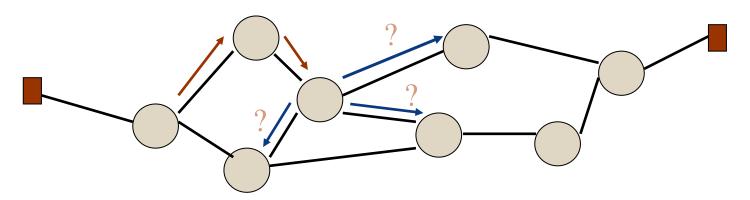
• Bit récessif : 1

Field name	Length (bits)	Purpose	
Start-of-frame	1	Début de trame (dominant)	
Identifier	11	Identifiant unique pour la donnée	
Remote transmission request (RTR)	1	Dominant pour une donnée, récessif pour une requête	
Reserved bit (r0)	1	Bit de reserve (par défaut dominant, mais peut être aussi récessif)	
Data length code (DLC)	4	Longueur des données en octets	
Data field	0-8 bytes	données	
CRC	15	Cyclic redundancy check	
CRC delimiter	1	Must be recessive (1)	
ACK slot	1	l'emetteur met en récessif, celui qui reçoit en dominant	
ACK delimiter	1	Must be recessive (1)	
End-of-frame (EOF)	7	Must be recessive (1)	

- Utilisation du bit stuffing (après 5 bits)
- Si problème, 6 bits dominants consécutifs

- L'unité d'information est le paquet
- Les fonctionnalités principales de la couche 3
 - Mode de connexion
 - 2 modes existent :
 - connecté (ATM, X25,...)
 - 3 phases (connexion, transfert, déconnexion)
 - non connecté (IP,....)
 - Désignation des systèmes (adressage)
 - Unicité des adresses
 - Calcul des routes
 - Trouver un chemin entre la source et la destination
 - Création des tables de routage

* Adressage


• L'adresse permet de déterminer de **façon unique** le destinataire d'un paquet et son emplacement géographique au niveau mondial.

Ex : N° téléphone pour le RTC N° IP pour une machine

- mode connecté après création circuit virtuel :
 - N° du circuit virtuel
- mode non connecté:
 - L'adresse complète pour chaque paquet

Routage (1)

L'acheminement des paquets vers un destinataire dans un réseau maillé est réalisé par un procédé appelé **routage**.

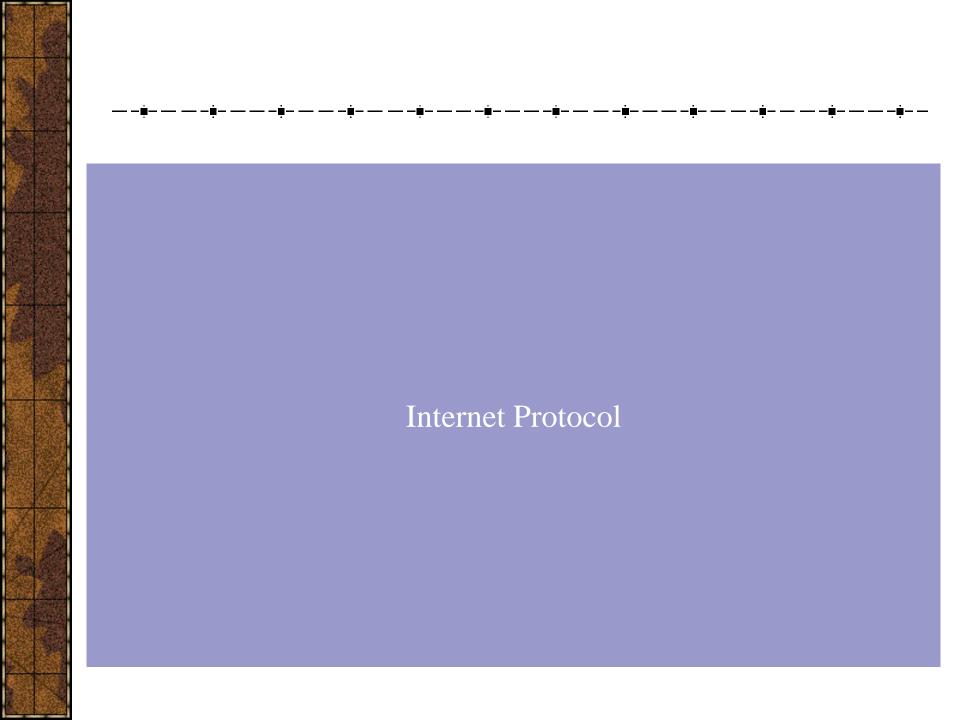
A chaque nœud correspond un routeur contenant *une table* (*table de routage*) et mettant en place des algorithmes permettant l'acheminement des paquets dans Internet et éventuellement la mise à jour des tables automatiquement.

Les nœuds routent du mieux qu'ils peuvent (notion de best effort d'IP).

Politiques de calcul

- Fixe (une fois pour toutes)
- Adaptative aux modifications de topologie ou de charge

Participants aux calculs


- Un seul centre (routage centralisé)
- Tout ou partie des systèmes appelés, routeurs (routage distribué ou réparti)

Portée du calcul

- Le prochain pas (hop by hop)
- Toute la route (source routing)

Méthodes de calcul

- Aléatoire (dirigé ou non)
- Inondation
- Avec table de routage
 - Fixes
 - Adaptatives
 - Nécessitent la transmission d'informations d'état de la topologie et de la charge
 - Protocoles d'échanged'informations de routage :RIP, BGP, OSPF, IS-IS...

IPv4 (1)

- *****Caractéristiques
 - Destinataire unique ou multiple
 - Mode non connecté
 - pas de garantie de livraison
 - pas d'avertissement en cas de non livraison
 - Mais, ...livraison sans erreur quand le paquet arrive

Adresse IP pour chaque carte réseau, pas par hôte

> Adresse IPv4 : 32 bits

4 nombres : 0-255.0-255.0-255

exemple: 193.55.95.26, 12.15.3.2, 223.0.0.1

 $Max = 2^32=4,2 \text{ Milliards} \dots$

**** @IP : Partie réseau + numéro unique sur le réseau****Unique au niveau mondial

- * Partie réseau : donnée par des instances internationales (RIR Regional Internet Registry)
- * Partie hôte : donnée par les responsables du site
- * A partir d'une @IP, où se trouve la partie réseau?
 - Utilisation du masque
 - Le masque est donné avec l'@IP
 - Faire un "et" bit à bit pour trouver la partie réseau

Exemple: @IP: 193.55.95.32 masque: 255.255.255.0

réseau : 193.55.95.0

- * Pour chaque réseau, 2 adresses réservées :
 - Adresse réseau : tous les bits hôtes à 0,
 - Adresse broadcast : tous les bits hôtes à 1
- * Evolution de l'adressage réseau

Classfull Classless

Adressage très rigide Beaucoup d'@ IP non utilisées Basée sur le classfull
Mais absence de rigidité

CIDR: Classless Inter-Domain Routing

IPv4 (4)

Par défaut,...

- Si 1^{er} octet entre 0 et 127, masque 255.0.0.0 (classe A)
 - Seul 1^{er} octet réseau et 3 octets pour la partie hôte
- Si 1er octet entre 128 et 191, masque 255.255.0.0 (classe B)
 - Les 2 premiers octets pour le réseau et 2 octets pour la partie hôte
- Si 1^{er} octet entre 192 et 223, masque 255.255.255.0

(classe C)

• Les 3 premiers octets pour le réseau et 1 octet pour la partie hôte

Une classe C ne peut contenir que 254 machines.

Exemple: @réseau: 200.10.15.0 @machines: 200.10.15.1

@broadcast: 200.10.15.255 200.15.10.254

IPv4 (5)

* Adresses IP privées (RFC 1918)

- Non unique, mais gratuite
- Ne permettent pas d'aller sur internet (filtrage)

@réseau : 10.0.0.0 /8

0.0.0.0 /8 masque 255.0.0.0

• @réseau : 172.16.0.0- 172.31.0.0 /16

masque 255.255.0.0

• @réseau : 192.168.0.0 – 192.168.255.0 /24

masque 255.255.255.0

Dans un réseau:

- Toutes les @IPs ont le même préfixe réseau
- Les numéros hôtes sont distincts

Adresse IP: 195.12.13.15

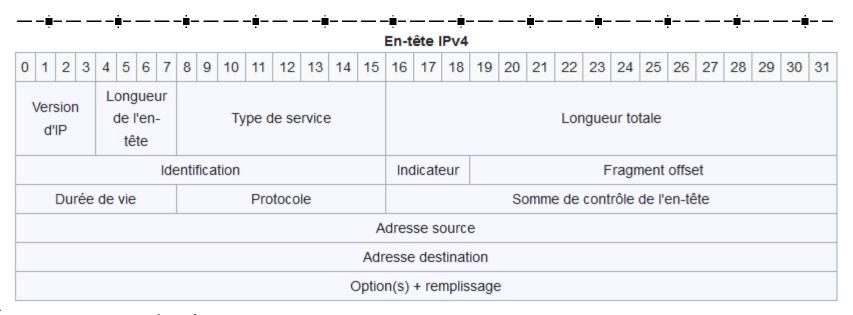
Adresse de classe A, B ou C?

Masque par défaut : ?

Adresse réseau de cet ordinateur ?

Classe C, masque 255.255.255.0, réseau : 195.12.13.0

Adresse IP: 123.0.13.15


Adresse de classe A, B ou C?

Masque par défaut : ?

Adresse réseau de cet ordinateur ?

Classe A, masque 255.0.0.0, réseau : 123.0.0.0

Encapsulation:

niveau 2	niveau 3	niveau 4 etc
----------	----------	--------------

Champs principaux pour l'envoi des données :

@MACd @MACs	@IPs	@IPd	niveau 4 etc
-------------	------	------	--------------

TP Mise en place d'un réseau

- HUB, switch
- Table de commutation
- STP (Spanning Tree Protocol)