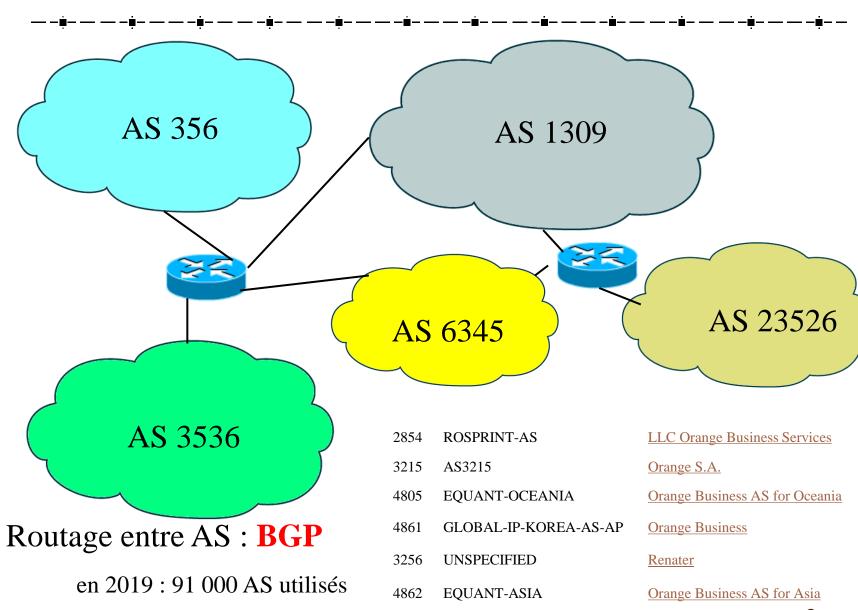
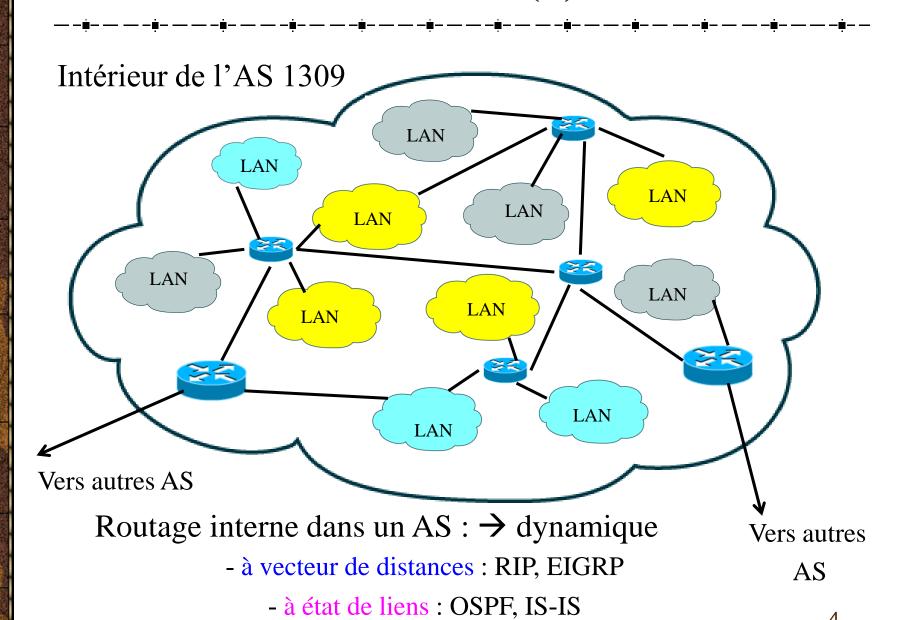
Complément sur le réseau

Rappels

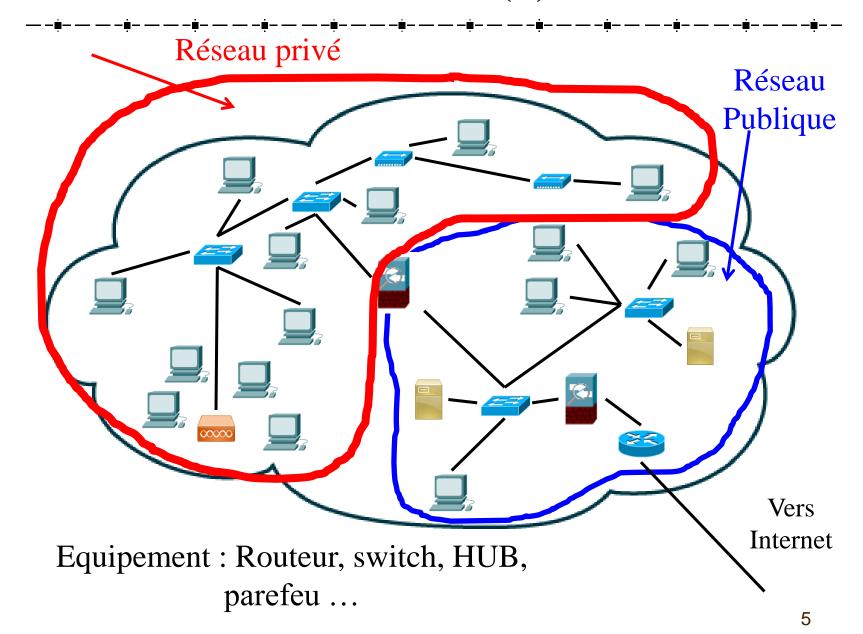
Quelques protocoles



Définition d'Internet donné par wikipédia (en 2022)


☐ Internet est le réseau informatique mondial accessible au public. C'est un réseau de réseaux, à commutation de paquets, sans centre névralgique, composé de millions de réseaux aussi bien publics que privés, universitaires, commerciaux et gouvernementaux, eux-mêmes regroupés, en 2019, en 91 000 réseaux autonomes (AS).

L'information est transmise par internet grâce à un ensemble <u>standardisé de protocoles de transfert de données</u>, qui permet l'élaboration d'applications et de services variés comme le courrier électronique, la messagerie instantanée, le pair-à-pair et le World Wide Web.


Internet (2)

Internet (3)

Internet (3)

* Etendue géographique

- PAN, LAN, MAN, WAN
- WPAN, WLAN, WMAN, WWAN

* Type

- réseau privé
- réseau public

* Différentes topologies physiques

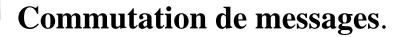
- Anneau, en étoile, étoile étendue...
- Réseau maillé, hiérarchique,...

Equipement d'un réseau

- **Couche Physique :**
 - Modem, carte CSU/DSU (channel service Unit/ Data Service Unit)
 - Répéteur
 - Concentrateur (HUB) ou répéteur multiport
- Couche Liaison de données
 - NIC (Network Interface Card) == carte réseau
 - Pont
 - Commutateur (switch) ou Pont multiport
- Couche Réseau
 - Routeur, commutateur multi-couches (layer3), Parefeu
- Couche Application
 - Passerelle, Proxy, serveurs, équipement sécurité réseau

Commutation (1)

₩ But:


- Relier les différents abonnés entre eux en minimisant les coûts
 - -> Partage des ressources

Commutation de circuits.

- Création d'un lien physique par juxtaposition de différents supports physiques afin de constituer une liaison de bout en bout entre le destinataire et la source
 - Connexion réalisée avant l'échange d'information
 - Libération à la fin de la connexion
 - Pas de stockage intermédiaire
 - Des ressources sont mobilisées
 - ◆ Régulation faite à la connexion

Etablissement d'un circuit virtuel

- Pas de lien physique entre le destinataire et la source
- Chaque bloc d'informations (message) constitue une unité de transfert acheminée individuellement par le réseau
 - Le message est mémorisé à chaque nœud
 - ◆ Utilisation d'une mémoire importante
 - Meilleure utilisation des lignes
 - ◆ Transfert même si le correspondant est occupé
 - Multicast possible

Commutation de paquets.

- Les messages sont découpés en paquet de longueur maximale fixe
- Le séquencement des paquets n'est pas garanti
 - Réassemblage des paquets
 - Meilleure utilisation des lignes

Mécanismes mis en œuvre dans un réseau (1)

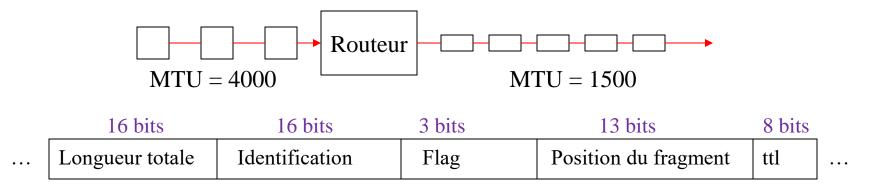
- * L'adressage
 - Identification sans ambiguïté d'une machine
 - Adressage à plat ou global
 - Adressage hiérarchique (réseau, pt d'accès, identifiant)

Exemple : adresse IP, adresse ATM, n° téléphone,...

- * Découpage des données
 - Fragmentation des données pour être en adéquation avec les protocoles transmettant les données

Chaque réseau à une taille maximale au niveau paquet:

MTU: Maximum Transfert Unit


Exemple : Arpanet : 1000 octets

Ethernet: 1500 octets FDDI: 4470 octets

Exemple découpage des données en IP (Fragmentation IP)

<u>Flag</u>: bit 1 : non utilisé

bit 2 : indique si le paquet peut être fragmenté bit 3 : dernier fragment (0), fragment autre (1)

<u>Identification</u>: n° attribué à chaque fragment afin de permettre leur réassemblage

Position fragment : position du début du fragment

Un paquet fragmenté n'est jamais réassemblé sauf par le destinataire

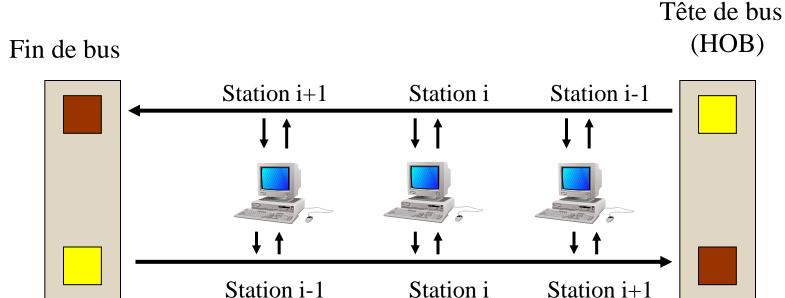
- * Le routage
 - Mise en œuvre de protocoles de routage (RIP, OSPF, BGP,...)
 - Implémentation manuelle des routes
- * La congestion
 - Mise en œuvre de méthodes de contrôle de flux
 - → exemple dans TCP, frame relay,...
- * La sécurité
 - Politique de sécurité, chiffrement, certificat ...

Protocoles hauts débits ou Réseaux Locaux Industriels

(Autre que Ethernet ou Wifi..... Cf. cours réseau)

DQDB: Distributed Queue Dual Bus

→ objectif : être un réseau MAN


→ débit : 160 MB/s sur fibre optique

<u>Caractéristiques</u>:

- Technologie en double bus et de sens inverse
- Chaque station est raccordée en parallèle sur chacun des deux bus
- A chaque extrémité d'un bus, une "tête de bus" qui émet régulièrement des trames/cellules vides
- Chaque trame est composée de 53 octets.
- Possibilité d'avoir des communications :
 - en mode connecté/ non connecté
 - en mode asynchrone/ isochrone

DQDB: IEEE 802.6 (2)

Tête de bus Fin de bus

Chaque cellule comprend 53 octets, 5 octets pour l'entête et 48 octets pour les données.

DQDB: Accès au médium (1)

But : Réserver une trame par l'intermédiaire du bus B pour émettre sur le bus A.

Chaque station a 4 compteurs :

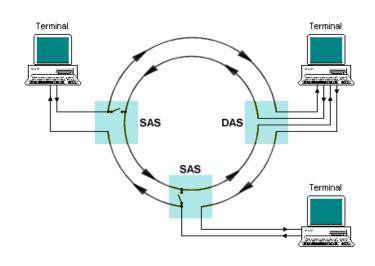
- 2 Request Counter (RC)
- 2 Countdown Counter (CD)

Un pour chaque bus

RC : compte le nombre de requêtes venant des autres stations nb de cellules vides à laisser passer

- 2 bits importants dans l'entête:
- Bit **Busy** : cellule vide ou pleine
- Bit **Rsvd** : cellule déjà réservée ou non

Exemple : Station x veut émettre sur le bus A

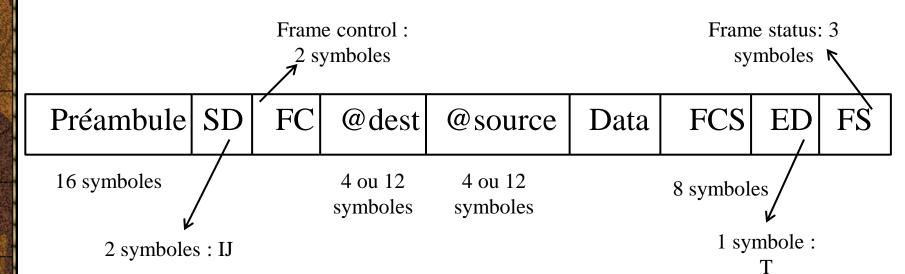

- Sur le bus B,
 - première trame dont rsvd= 0, alors rsvd <- 1
 - recopie RC dans CD
 - remise à zéro de RC
- Sur le bus A,
 - Si CD=0, et trame vide, alors on émet sinon si trame vide, CD = CD -1

Autre station:

A chaque requête sur le bus B, RC = RC + 1A chaque cellule vide sur le bus A, RC = RC - 1

- * Fiber Distributed Data Interface
 - Normalisé par l'ISO: 9314
 - Double anneau contra-rotatif, en fibre optique multimode
 - Débit 100 Mbps sur une distance de 100 km.
 - Utilisation trafic synchrone et asynchrone
 - 2 sortes d'équipement
 - SAS : Single Attachment Station
 - DAS: Dual Attachment Station

• Utilisation d'un jeton (proche de la norme 802.5)

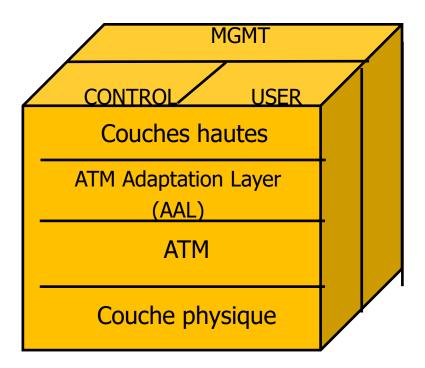


- **☀** Jeton temporisé
 - TTRT : Target Token Rotation Time
 - Temps maximum pour recevoir le jeton
 - Discuter à l'initialisation du réseau-> choix du plus petit
 - TRT: Token Rotation Timer
 - THT : Token Holding Timer
 - Algo: Quand jeton libéré, TRT <- TTRT
 - si jeton arrive et TRT > 0, alors THT <- TRT émission asynchrone tant que THT >0 puis synchrone
 - si jeton arrive et TRT < 0, alors émission synchrone seulement

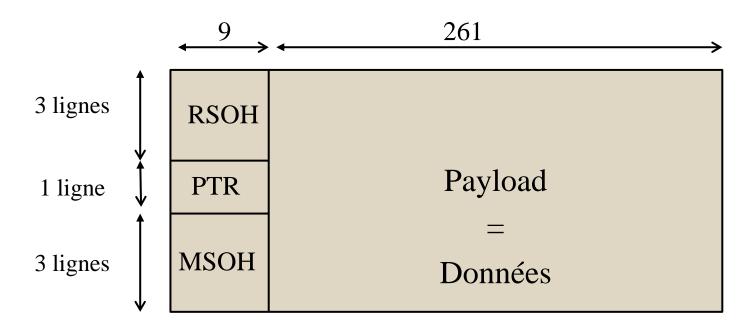
FDDI (3)

- ★ Codage utilisé 4B/5B
 - 32 combinaisons

- 16 pour les datas
- 4 délimiteurs trames
- 2 signalisations logicielles
- 2 signalisations matérielles

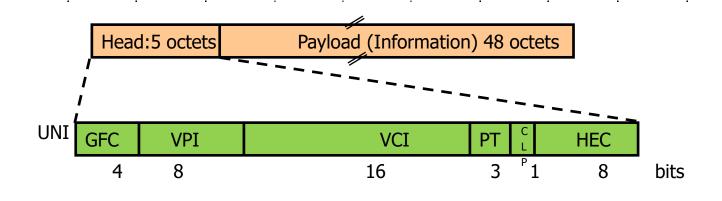


- * ATM (Asynchronous Transfert Mode)
 - Proposé par France Télécom en 1982
 - Très fort débit possible
 - Allocation flexible de BP
 - Intégration des contraintes de temps
 - Tous les flux possibles (video, audio, VoIP, mail,....)
 - Bi-directionnel
 - Mixage entre communication circuit et commutation paquet



- Protocole RNIS –large-bande
 - Utilisation des fibres optiques pour la couche physique
 - SONET (Synchronous Optical NETwork) → USA
 - ◆ SDH (Synchronous Digital Hierarchy) → Europe

- * Basé sur le TDM (Time Division Multiplexing)
 - ◆ STM-1 ou OC-3 → 155 Mb/s
 - ◆ STM-4 ou oc-12 → 622 Mb/s
 - Pour SDH, 9*270 octets , mais 8000 fois/s -> 155Mb/s


Regenerator ou Multiplex SOH: Section Overhead

PTR : Pointeur₂₄

- * Fonctionnement ATM
 - ATM est orienté connexion
 - ATM utilise de petits paquets (cellule) de 53 octets
 - Header de 5 octets, payload de 48 octets
 - Avantage : pas de perte de temps dans les commutateurs
 - Après la connexion, utilisation d'un CV (circuit virtuel)
 - Identification : VCN Virtual Circuit Number
 - VCN = VPI + VCI
 - VPI : Virtual Path identifier
 - VCI : Virtual Channel identifier

ATM (4)

NNI	VPI	VCI	PT	C L	HEC	
	12	16	3	1	. 8	bits

GFC : Generic Flow Control (non utilisé actuellement (0000)

VPI : Virtual Path Identifier

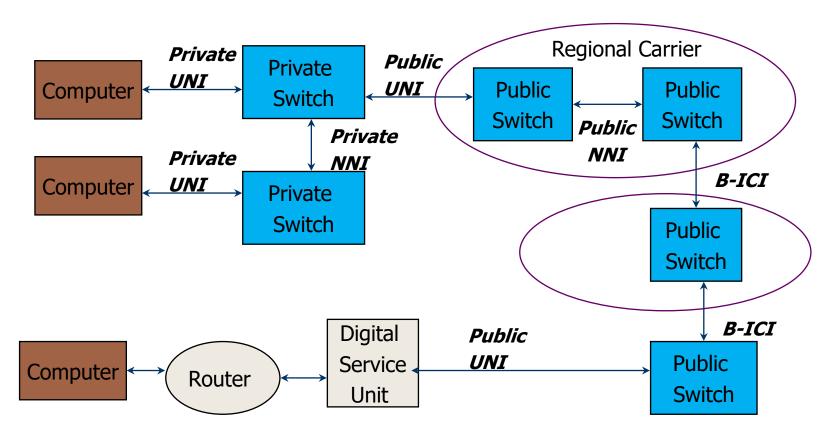
VCI : Virtual Circuit Identifier

PT : Payload Type (nature des données transportées)

000 - 011 = user data

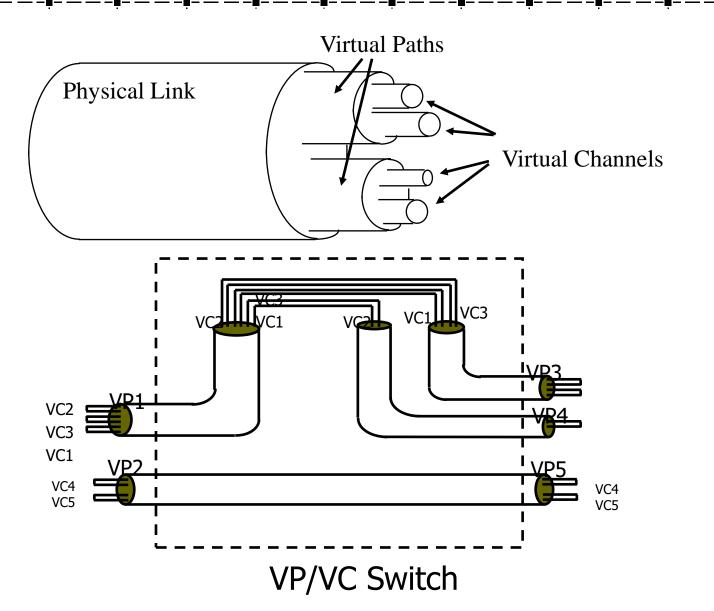
100 et 101 -> cellule pour la maintenance...

CLP : Cell Loss Priority (0 ou 1 pour congestion ou non)


HEC: Header error Check

UNI : User Network Interface NNI : Network-Network Interface

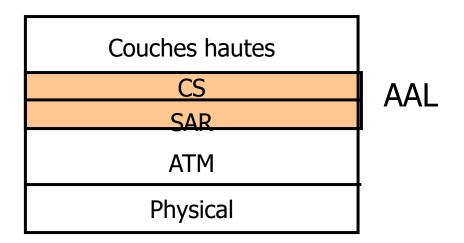
ATM (5)


* ATM est un réseau hiérarchique

- UNI : entre équipement et réseau
- NNI : entre réseaux

B-ICI: Broadband Inter-Carrier Interface

Switch ATM



- * CBR : Constant Bit Rate
 - Liaison fixe (ADSL)
- * rt-VBR : Real-time Variable Bit Rate
 - Utilisation pour la vidéo conférence
- * nrt-VBR : Non-Real-time Variable Bit Rate
 - Utilisation pour les chats instantanés
- ***** UBR : Unspecified Bit Rate
 - Transfert de données
- * ABR : Available Bit Rate
 - Web

* ATM Adaptation Layer

- Permet des services au-dessus d'ATM
- Permet la segmentation et le réassemblage des données (SAR)
- Identification des messages
- Remise à l'heure

SAR : Segmentation and Reassembly

CS: Convergence Sublayer

AAL (2)

- * AAL1 : CBR, application vidéo et audio à débit constant
- * AAL2 : VBR, application vidéo et audio à débit variable
- * AAL3/4 : transfert des données
- * AAL5 : transfert des données plus simple que AAL 3/4 (très utilisé -> PPPOA)
- **★** AAL5 : MTU 9180 octets
 - Ip au-dessus de AAL5
 - Division en paquet de 48 octets
 - Rajout d'un en-queue de 8 octets
 - Bourrage si nécessaire pour avoir multiple de 48 octets
 - Dernier paquet à un identifiant particulier

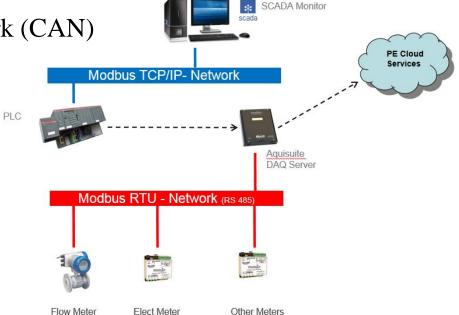
SCADA (1)

* Supervisory Control And Data Acquisition

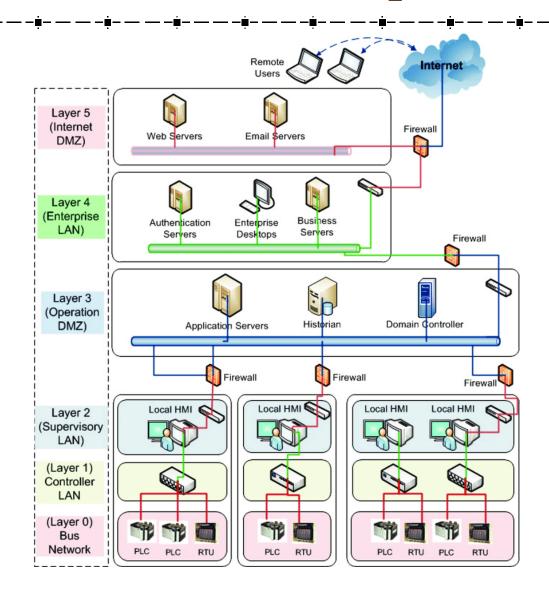
Système de télégestion à grande échelle permettant de traiter en temps réel un grand nombre de télémesures et de contrôler à distance des installations techniques.

- Supervision
 - Via des opérateurs, des ingénieurs, ... des humains
- Contrôle
 - Télémétrie, Monitoring
- Acquisition
 - Capteurs analogiques, digitals
- Communication
 - Remontées des informations, des alarmes, etc...

ICS: Industrial Control System



* Vocabulaire


- SCADA est composé de nombreux RTU reliés entre eux par un système de communication et reliés à des PLCs, visualisation des infos via une HMI (Human Machine Interface)
- *RTU* : Remote Telemetry Unit
 - Système d'acquisition et de contrôle
 - Récupère et envoie les données ou des alarmes
 - Equipement maitre/esclave
- *PLC* (Programmable Logic Controller)
 - Gère les RTU et envoie des infos retravaillées au système SCADA

SCADA (3)

- * Vocabulaire
 - Communication -> Bus de terrain. (RLI : Réseaux Locaux Industriels)
 - Modbus
 - Fieldbus, Profibus
 - Controller Area Network (CAN)
 - Etc...

SCADA - Entreprise

- * Réseau couche 1,2 et 7
- ***** Utilisation Maitre/Esclave
 - Le dialogue entre esclave est interdit
 - Modbus ou Modbus TCP sur port 502
- * Jusqu'à 247 périphériques
 - Un esclave = 1 adresse unique physique sur 1 octet
- * Trames:

• questions.

5,	N° station esclave	Code fonction + bit d'erreur	Information spécifique concernant la demande	Mot de contrôle
	1 octet	1 octet	n octets	2 octets

• Erreurs:

N° station esclave	Code fonction + bit d'erreur	Code d'exception	Mot de contrôle
1 octet	1 octet	1 octet	2 octets

- * Modbus -> fiable
 - CRC sur 16 bits.
- * Code fonction

Code	Nature des fonctions MODBUS	TSX 37
H'01'	Lecture de n bits de sortie consécutifs	*
H'02'	Lecture de n bits de sortie consécutifs	*
H'03'	Lecture de n mots de sortie consécutifs	*
H'04'	Lecture de n mots consécutifs d'entrée	*
H'05'	Ecriture de 1 bit de sortie	*
H'06'	Ecriture de 1 mot de sortie	*
H'07'	Lecture du statut d'exception	
H'08'	Accès aux compteurs de diagnostic	
H'09'	Téléchargement, télé déchargement et mode de marche	
H'0A'	Demande de CR de fonctionnement	
H'0B'	Lecture du compteur d'événements	*
H'0C'	Lecture des événements de connexion	*
H'OD'	Téléchargement, télé déchargement et mode de marche	
H'0E'	Demande de CR de fonctionnement	
H'0F'	Ecriture de n bits de sortie	*
H'10'	Ecriture de n mots de sortie	*
H'11'	Lecture d'identification	*
H'12'	Téléchargement, télé déchargement et mode de marche	
H'13'	Reset de l'esclave après erreur non recouverte	
пъ	reset de l'esclave après effeut flori l'ecouveite	

- * Réseau couche 1,2 et 7
- ***** Utilisation Maitre/Esclave
 - Méthode d'accès CSMA/CR (Collision Resolution)
- * Codage NRZ

• Bit dominant : 0

• Bit récessif : 1

nt) donnée ee, récessif pour une requête
e, récessif pour une requête
-,
dominant, mais peut être aussi récessif)
octets
f, celui qui reçoit en dominant
<u> </u>

- Utilisation du bit stuffing (après 5 bits)
- Si problème, 6 bits dominants consécutifs