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Abstract

Clique-width is a complexity measure for graphs (directed or not, with edge-colours
or not). Rank-width is an equivalent complexity measure for undirected graphs and
has good algorithmic and structural properties. It is in particular related to the
vertex-minor relation. We discuss some possible extensions of the notion of rank-
width to directed graphs (with edge-colours or not). A C-coloured graph is a directed
graph where the arcs are coloured with colours from the set C. There is not a unique
natural notion of rank-width for C-coloured graphs. We define two notions of rank-
width for them, both based on a coding of C-coloured graphs by F∗-graphs - edge-
coloured graphs where each edge has exactly one colour from a field F - and named
respectively F-rank-width and F-bi-rank-width. The two notions are equivalent to
clique-width. We then present a notion of vertex-minor for F∗-graphs and prove
that F∗-graphs of bounded F-rank-width are characterised by a list of F∗-graphs to
exclude as vertex-minors (this list is finite if F is finite). A cubic-time algorithm
to decide whether an F∗-graph has F-rank-width (resp. F-bi-rank-width) at most k,
for fixed k and fixed finite field F, is also given. Graph operations to check MSOL-
definable properties on F∗-graphs of bounded F-rank-width (resp. F-bi-rank-width)
are presented. A specialisation of all these notions to (directed) graphs without edge
colours is presented, which shows that our results generalise the ones in undirected
graphs.
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1 Introduction

In the last three decades have appeared graph complexity measures and asso-
ciated graph decompositions which have proved their importance in structural
as well as algorithmic graph theory. The most known and probably useful ones
are tree-width [60] - introduced by Robertson and Seymour in their Graph Mi-
nors Project [65] which ends up to the proof of the Graph Minor Theorem [64]
- and clique-width introduced by Courcelle et al. [11,19].

Clique-width is more general than tree-width because every class of graphs of
bounded tree-width has bounded clique-width, but the converse is false [19].
In fact many dense graph classes have unbounded tree-width, but bounded
clique-width. For instance, distance hereditary graphs have clique-width at
most 3. Clique-width is defined in terms of algebraic graph operations - the
so-called VR graph algebra [11] - that generalise the concatenation of words.
These operations allow to construct graphs from basic ones in a simple way,
by means of what is called a clique-width expression. The clique-width of a
graph is roughly the minimum number of basic graphs needed to construct it.
Thanks to its definition, it is possible to get uniform constructions for solving
in linear time every problem expressible in monadic second-order logic (MSOL
for short) - provided the clique-width expression of the graph is given - in
graph classes of small clique-width [18]. This result is important in complexity
theory because many NP-complete problems are expressible in MSOL, e.g.,
3-colourability.

But, not all graph classes have bounded clique-width, e.g., planar graphs,
chordal graphs (see for instance [54,46,45] for some other examples). Hence,
it is important to identify classes of graphs that have bounded clique-width.
There exist several possible ways to do that:

(1) Design a polynomial time algorithm that computes the clique-width of
a graph and an optimal clique-width expression. But, as expected, it is
NP-complete, given (G, k), to check if G has clique-width at most k [24].

(2) What about if k is fixed? It is still open whether there exists a polynomial
time algorithm that checks if a given graph has clique-width at most k
and constructs an optimal clique-width expression, for fixed k ≥ 4 (for
k ≤ 3, see the algorithm by Corneil et al. [9]). Recall that this latter
problem is linear time for tree-width [2].

(3) It is well-known that graphs of tree-width at most k are characterised by
a finite list of graphs to exclude as minors [61] and hence, combined with
[63], we get the existence of a quadratic algorithm for checking if a graph
has tree-width at most k, for fixed k. So, a similar result for clique-width
would be welcomed even if such an algorithm would probably not help for
constructing an optimal clique-width expression. Unfortunately, no such
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result is known for clique-width. Indeed, clique-width is only known to
be monotone with respect to the induced subgraph relation and this later
inclusion is not a well-quasi-order on graph classes of bounded clique-
width (cycles have clique-width at most 4 and are not well-quasi-ordered
by the induced subgraph relation).

Unlike tree-width, clique-width does not have an associated combinatorial de-
composition. And, it seems that the combinatorial decomposition associated
to tree-width, tree-decomposition, make easier the characterisation and the
recognition of graphs of tree-width at most k, for fixed k. In fact this combi-
natorial definition has yielded many structural properties in graph classes of
bounded tree-width (see [65]) and was of great help in the proof of the Graph
Minor Theorem. Hence, it is relevant to ask for an equivalent combinatorial
definition of clique-width.

Oum and Seymour [57] investigated the quest for a polynomial time recogni-
tion algorithm for graphs of clique-width at most k, for fixed k. They intro-
duced in this quest the notion of rank-width and its associated combinatorial
decomposition rank-decomposition. They prove that rank-width and clique-
width of undirected graphs are equivalent in the sense that a class of undirected
graphs has bounded rank-width if and only if it has bounded clique-width.
Even if rank-width is not exactly equal to clique-width, it turns out that
it shares with clique-width and tree-width their positive properties without
their drawbacks. More precisely, rank-width is more general than tree-width
because it is equivalent to clique-width, which is more general than tree-width.
Of course, deciding if an undirected graph has rank-width at most k when k
is part of the input is NP-complete [42]; but, for fixed k there exists a cubic-
time algorithm that decides whether the rank-width of an undirected graph is
at most k and if so, constructs a rank-decomposition of width at most k [41].
Another advantage of rank-width over clique-width is that it is monotone with
respect to the vertex-minor relation (recall no such notion, except for induced
subgraph relation, is known for clique-width), i.e., if H is a vertex-minor of
G, then the rank-width of H is at most the rank-width of G [56].

Furthermore, rank-width is related to the branch-width of matroids [34], a
complexity measure for matroids. The branch-width of matroids not only gen-
eralises the tree-width of graphs in the sense that a graph has bounded tree-
width if and only if its associated cycle matroid has bounded branch-width, but
also shares many structural as well as algorithmic properties with tree-width
(see for instance the works by Hliněný et al. [39,40,67] for the algorithmic side
and the works by Geelen et al. [34,35,36] for the structural side). For instance,
Geelen and his coauthors work on a project aiming at extending techniques of
the Graph Minors Project to matroids in order to solve some old and difficult
conjectures in matroid theory (see the survey [37]). It is worth noticing that
positive answers to that conjectures would imply the Graph Minor Theorem.
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It turns out that the branch-width of a binary matroid is one more than the
rank-width of its fundamental graph 2 , and a fundamental graph of a minor
of a matroidM is a vertex-minor of a fundamental graph ofM [56]. We can
therefore ask to generalising known results on the branch-width of binary ma-
troids to the rank-width of undirected graphs. For instance, the following are
generalisations of results in binary matroids: every class of undirected graphs
of bounded rank-width is characterised by a finite list of undirected graphs to
exclude as vertex-minors [56]; the vertex-minor relation is a well-quasi-order
on graph classes of bounded rank-width [59]. Moreover, these structural re-
sults combined with the notion of isotropic systems introduced by Bouchet [6]
have lead to the proof of a weak version of Seese’s conjecture [20]. The Seese’s
conjecture said roughly that graph classes of bounded clique-width are exactly
those where MSOL is decidable.

All these structural properties of rank-width have generated interest. First,
since clique-width and rank-width of undirected graphs are equivalent, there
exists a uniform way to check problems expressible in monadic second-order
logic in undirected graphs of small rank-width: transform a rank-decomposition
into a clique-width expression [57] and use the uniform algorithms for clique-
width [18]. But, since there exist graphs with rank-width k and clique-width

at least 2
k
2 [10,58], this method is not a priori efficient. Courcelle and Kanté

[16] proposed an alternative characterisation of rank-width in terms of graph
operations that allow to check MSOL properties by using directly the rank-
decomposition and avoiding the translation into a clique-width expression. It
is worth noticing that these uniform algorithms for checking MSOL formulas
based on algebraic graph operations have hidden constants which are non el-
ementary functions - depending on the formula and the width - that cannot
be avoided because of the generality of the method [28]. Since it is well-known
that some problems - including problems non expressible in MSOL - admit sin-
gle exponential algorithms in the tree-width [69] and in the clique-width [38],
people have investigated such algorithms for rank-width. For instance, Bui-
Xuan et al. [1,4] have proposed the notion of H-join decomposition of graphs
and a new complexity measure boolean-width - equivalent to rank-width - that
lead them to get linear time algorithms with runtimes single exponential in the
rank-width - provided the rank-decomposition is given - for problems studied
in [38,69]. Independently, Hliněný et al. [32] redefine the algebraic character-
isation of rank-width proposed in [16] and use Myhill-Nerode logical tools in
order to get uniform constructions of algorithms whose runtimes are single
exponential in the rank-width. These tools seem promising because they allow
to get polynomial time algorithms for problems that were not known to be
polynomial in graph classes of bounded rank-width [29,32].

2 A fundamental graph associated to a matroid M = (S,I) is the bipartite graph
(B,S \ B,E) where B is a basis of M and there is an edge between e ∈ B and
f ∈ S \B if (B \ {e}) ∪ {f} is a basis of M.
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Due to the many applications of tree-width and clique-width of undirected
graphs in various fields, it is relevant to ask similar complexity measures for
directed graphs. These directed versions should agree with the correspond-
ing widths on undirected graphs by considering undirected graphs as directed
graphs with opposite edges. In the case of tree-width, a natural definition
is to take the tree-width of its underlying undirected graph. However, even
though this definition yields polynomial time algorithms for MSOL problems
(see [14]), it does not help in understanding the structure of directed graphs.
In the last years, people have investigated better notions of tree-width and
have proposed several ones: directed tree-width [44], D-width [66], DAG-width
[55], Kelly-width [43] to list some of them. Unfortunately, none of them give
rise similar algorithmic and structural properties as the tree-width of undi-
rected graphs [33]. On the other hand, clique-width was originally defined for
directed as well as undirected graphs. Furthermore, it can be easily extended
to directed graphs with edge-colours (see [14]), and still get the same algo-
rithmic properties as the undirected version. Hence, it is natural to ask for a
notion of rank-width for directed graphs (with edge-colours or not) that be-
haves like the rank-width of undirected graphs. We tackle this question in this
paper. This is relevant for two reasons. First, in the case of undirected graphs,
clique-width is more general than tree-width and the notion of rank-width
shares many structural properties of tree-width, so one can argue whether a
notion of tree-width for directed graphs can be really interesting, compared
to a similar one for rank-width. Second and not the last, Hliněný et al. in
[33] have shown that clique-width is perhaps the only algorithmically useful
complexity measure for directed graphs.

As in the case of tree-width, there is not a unique natural way to define a
notion of rank-width for directed graphs (with edge-colours or not). Courcelle
and Oum suggested in [20] a definition of rank-width for directed graphs as
follows: Courcelle [13] described a graph transformation B from (directed)
graphs to undirected bipartite graphs so that f1(cwd(B(G))) ≤ cwd(G) ≤
f2(cwd(B(G))), for some functions f1 and f2; the rank-width of a (directed)
graph is defined as the rank-width of B(G). This definition can be extended
to edge-coloured graphs by using a similar coding (see [14, Chapter 6]). This
definition gives a cubic-time algorithm that approximates the clique-width of
edge-coloured graphs. Another consequence is the proof of a weak version of
the Seese’s conjecture for edge-coloured graphs [20]. However, this definition
suffers from the following drawback: a vertex-minor of B(G) does not always
correspond to a coding of an edge-coloured graph and similarly for the notion
of pivot-minor.

We investigate in this paper a better notion of rank-width for edge-coloured
graphs. We are looking for a notion that agrees with the one on undirected
graphs and that allows to get similar structural and algorithmic results. The
rank-width of an undirected graph is defined as the branch-width of a certain
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symmetric and submodular function determined by the graph. The definition
of this function is based on ranks of matrices and is quite similar to the con-
nectivity function of matroids - a symmetric and submodular function which
is the basis of the definition of the branch-width of matroids. And, this leads
Oum to adapt the proof techniques by Geelen et al. [34,35] in order to gener-
alise many results on the branch-width of binary matroids to the rank-width of
undirected graphs [56,58]. Inspired by the results of Oum, Kanté introduced in
[47] two notions of rank-width for directed graphs, namely GF (4)-rank-width
and bi-rank-width, the two being also based on ranks of matrices. He proved
that these two notions are equivalent to clique-width and derived from the
algebraic characterisation of [16] graph operations that approximates - within
a factor of two - the two notions of rank-width. These notions have raised
some interest, particularly in the algorithmic community. Indeed, Hliněný et
al. [29,30,31,33] popularised the bi-rank-width and adapted the Myhill-Nerode
type logical tools to get new polynomial time algorithms for directed graph
classes of bounded bi-rank-width. So, investigating the structural aspects of
GF (4)-rank-width and of bi-rank-width is relevant.

We generalise the notions of GF (4)-rank-width and of bi-rank-width to edge-
coloured graphs and generalise most of the known results on the rank-width
of undirected graphs to these notions (answering open questions in [47]). Our
notions will be also based on ranks of matrices. For that purposes, we take
an injection from the set of colours to a finite field and this allows to rep-
resent edge-coloured graphs by matrices (similar to the adjacency matrices
of graphs). But, this representation is not enough to get a symmetric and
submodular function like the one for undirected graphs. To overcome this dif-
ficulty, we will define the notion of σ-symmetric matrices, which generalises
the notion of symmetric and skew-symmetric matrices. We then explain how
to represent edge-coloured graphs by σ-symmetric matrices. We derive from
this representation a symmetric and submodular function that will be used to
define a first notion of rank-width, called F-rank-width, that generalises the
GF (4)-rank-width of directed graphs. We study this new complexity measure
by generalising most of the known results on the rank-width of undirected
graphs [16,41,56]: we define the notions of vertex-minor and of pivot-minor
relations, and prove that the F-rank-width is monotone with respect to these
relations; we give characterisations by excluded configurations and by alge-
braic operations; finally, we propose a cubic-time recognition algorithm for
fixed k.

Concerning the notion of bi-rank-width, there is not unfortunately a unique
way to extend it to edge-coloured graphs. We will define in this paper a first
notion that we call F-bi-rank-width. In its definition, we will use the repre-
sentation of edge-coloured graphs by matrices (not necessarily σ-symmetric)
and will use the same idea as the one used in [47] for defining bi-rank-width.
F-bi-rank-width generalises bi-rank-width of directed graphs and is monotone
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with respect to the vertex-minor relation defined for F-rank-width. But, we
do not currently know of a characterisation by excluded configurations of
edge-coloured graphs of bounded F-bi-rank-width. In Section 6 we will discuss
another definition of rank-width that also generalises bi-rank-width.

The paper is organised as follows. In Section 2 we give some preliminary
definitions and results. We recall in particular the definitions of clique-width
of graphs (directed or not, with edge-colours of not), and of rank-width of
undirected graphs. The F-rank-width of edge-coloured graphs is studied in
Section 3. We will define the notion of vertex-minor and pivot-minor, and
prove that edge-coloured graphs of bounded F-rank-width are characterised
by a list of edge-coloured graphs to exclude as vertex-minors (resp. pivot-
minors). This set is finite if F is finite. A cubic-time recognition algorithm, for
fixed k and fixed finite field F and a specialisation to directed graphs are also
presented. The F-bi-rank-width is studied in Section 4. We also specialise it
to directed graphs. In Section 5 we introduce some algebraic graph operations
that generalise the ones in [16]. These operations will be used to characterise
exactly the two notions of rank-width. They can be seen as alternatives to
clique-width operations for solving MSOL properties. We conclude by some
remarks and open questions in Section 6.

This paper is related to a companion paper where the authors introduce a de-
composition of edge-coloured graphs on a fixed field [50]. This decomposition
plays a role similar to the split decomposition [21] for the rank-width of undi-
rected graphs. Particularly we show that the rank-width of an edge-coloured
graph is exactly the maximum over the rank-width over all edge-coloured
prime graphs in the decomposition, and we give different characterisations of
edge-coloured graphs of rank-width one.

2 Preliminaries

For two sets A and B, we let A\B be the set {x ∈ A | x /∈ B}. The power-set
of a set V is denoted by 2V . We sometimes write x to denote the set {x}. We
denote by N the set containing zero and the positive integers.

We denote by + and · the binary operations of any field and by 0 and 1 the
identity elements of + and · respectively. For every prime number p and every
positive integer k, we denote by Fpk the finite field of characteristic p and of
order pk. We recall that they are the only finite fields. For a field F, we let F∗

be the set F \ {0}. We refer to [52] for our field terminology.

For sets R and C, an (R,C)-matrix is a matrix where the rows are indexed by
elements in R and columns indexed by elements in C. For an (R,C)-matrix
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M , if X ⊆ R and Y ⊆ C, we let M [X, Y ] be the submatrix of M where the
rows and the columns are indexed by X and Y respectively. We let rk be the
matrix rank-function (the field will be clear from the context). We denote by
MT the transpose of a matrix M . The order of an (R,C)-matrix is defined
as |R| × |C|. We often write k × ℓ-matrix to denote a matrix of order k × ℓ.
For positive integers k and ℓ, we let Ok,ℓ be the zero k × ℓ-matrix and Ik the
identity k × k-matrix.

We use the standard graph terminology, see for instance [22]. A directed graph
G is a couple (VG, EG) where VG is the set of vertices and EG ⊆ VG×VG is the
set of edges. A directed graph G is said to be oriented if (x, y) ∈ EG implies
(y, x) /∈ EG, and it is said undirected if (x, y) ∈ EG implies (y, x) ∈ EG. An
edge between x and y in an undirected graph is denoted by xy (equivalently
yx). For a directed graph G, we denote by G[X ], called the subgraph 3 of G
induced by X ⊆ VG, the directed graph (X,EG ∩ (X × X)); we let G-X be
the subgraph G[VG \X ]. The degree of a vertex x in an undirected graph G
is the cardinal of the set {y | xy ∈ EG}. Two directed graphs G and H are
isomorphic if there exists a bijection h : VG → VH such that (x, y) ∈ EG if and
only if (h(x), h(y)) ∈ EH . We call h an isomorphism between G and H . All
directed graphs are finite and loop-free (i.e., for every x ∈ VG, (x, x) 6∈ EG).

A tree is an acyclic connected undirected graph. In order to avoid confusions
in some lemmas, we will call nodes the vertices of trees. The nodes of degree
1 are called leaves and the set of leaves in a tree T is denoted by LT . A cubic
tree is a tree such that the degree of each node is either 1 or 3. A tree T is
rooted if it has a distinguished node r, called the root of T . For convenience,
we will consider a rooted tree as an oriented graph such that the underlying
graph is a tree and all the nodes are reachable from the root by a directed

path. For a tree T , we let
−→
T be the oriented tree obtained from T as follows:

pick an edge of T incident with a leaf, subdivide it and root the new tree by
considering the new node as the root. For a tree T and an edge e of T , we let
T -e denote the graph (VT , ET \ {e}).

Let C be a (possibly infinite) set that we call the colours. A C-coloured graph
G is a tuple (VG, EG, ℓG) where (VG, EG) is a directed graph and ℓG : EG →
2C \ {∅} is a mapping. Its associated underlying graph u (G) is the directed
graph (VG, EG). Two C-coloured graphs G and H are isomorphic if there is
an isomorphism h between u (G) and u (H) such that for every (x, y) ∈ EG,
ℓG((x, y)) = ℓH((h(x), h(y)). We call h an isomorphism between G and H .
We let G (C) be the class of C-coloured graphs for a fixed colour set C. Even
though we authorise infinite colour sets in the definition, most of the results
in this article are valid only when the colour set is finite. Remark that an
edge-uncoloured graph can be seen as an edge-coloured graph where all the

3 G[X] is oriented (or undirected) if G is oriented (or undirected).
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edges have the same colour.

Remark 2.1 (2-structures and edge-coloured graphs) A 2-structure [23]
is a pair (D,R) where D is a finite set and R is an equivalence relation on the
set D2 = {(x, y) | x, y ∈ D and x 6= y}. Every 2-structure (D,R) can be seen
as a C-coloured graph G = (D,D2, ℓ) where C := {[e]R | [e]R is the equivalence
class of e with respect to R} and for every edge e, ℓ(e) := [e]R. Equivalently,
every C-coloured graph G can be seen as a 2-structure (VG, R) where eRe′

if and only if ℓG(e) = ℓG(e
′) and all the non-edges in G are equivalent with

respect to R.

A parameter on G (C) is a function wd : G (C) → N that is invariant under
isomorphism. Two parameters on G (C), say wd and wd′, are equivalent if there
exist two mutually increasing integer functions f and g such that for every
edge-coloured graph G ∈ G (C), f(wd′(G)) ≤ wd(G) ≤ g(wd′(G)).

We finish these preliminaries by the notions of terms and contexts (see the
survey [12] or the book [14] for an introduction to universal algebra). Let F
be a set of function symbols and C a set of constants. We denote by T (F , C)
the set of finite well-formed terms built with F ∪ C. The syntactic tree of a
term t in T (F , C) is denoted by Synt(t). Notice that Synt(t) is rooted. If F is
a set of binary function symbols and C a set of constants, then for every term
t in T (F , C), we let uS (t) be the tree obtained from u (Synt(t)) as follows: let
r1 be a neighbour - in preference a non leaf node - of the root r of u (Synt(t));
forget the orientations of the edges in u (Synt(t)) and contract the edge rr1
into a single node. If F is a set of binary and unary function symbols, then for
every term t in T (F , C) we associate a term red(t) in T ({∗}, {#}) as follows:

red(t) = # if t ∈ C,

red(f(t)) = red(t) if f is unary,

red(f(t1, t2)) = ∗(red(t1), red(t2)) if f is binary.

A context is a term in T (F , C ∪ {u}) having exactly one single occurrence of
the variable u (a nullary symbol). We denote by Cxt(F , C) the set of contexts.
We denote by Id the particular context u. If s is a context and t a term, we
let s • t be the term in T (F , C) obtained by substituting t for u in s.

2.1 Clique-Width

We follow the definition of clique-width in [14, Chapter 2]. We will only deal
with graphs without loops, even though the definition of clique-width in [14]
allows loops. It does not hurt restricting our attention to loopless graphs be-
cause removing loops does not change clique-width. Let C be a finite set of
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colours and k a positive integer. A C-coloured k-graph G is a C-coloured graph
(VG, EG, ℓG) equipped with a mapping γG : VG → {1, 2, . . . , k}.

Disjoint union. For disjoint C-coloured k-graphs G and H , we let G⊕H
be the C-coloured k-graph K := (VG ∪ VH , EG ∪ EH , ℓK , γk) where

ℓK((x, y)) :=




ℓG((x, y)) if (x, y) ∈ EG,

ℓH((x, y)) if (x, y) ∈ EH ,

γK(x) :=




γG(x) if x ∈ VG,

γH(x) if x ∈ VH .

Edge addition. Let i, j ∈ {1, . . . , k} with i 6= j and c ∈ C. For ev-
ery C-coloured k-graph G, we let addci,j(G) be the C-coloured k-graph K :=
(VG, EG ∪ {(x, y) | x, y ∈ VG and γG(x) = i, γG(y) = j}, ℓK , γG) where, for
every (x, y) ∈ EK ,

ℓK((x, y)) :=





ℓG((x, y)) if γG(x) 6= i or γG(y) 6= j,

ℓG((x, y)) ∪ {c} if (x, y) ∈ EG, and γG(x) = i and γG(y) = j,

{c} if (x, y) /∈ EG, and γG(x) = i and γG(y) = j.

Port relabelling. Let h : {1, . . . , k} → {1, . . . , k} be a mapping. For every
C-coloured k-graph G, we let relabh(G) be the C-coloured k-graph K :=
(VG, EG, ℓG, h ◦ γG).

Basic graphs. For each i ∈ {1, 2, . . . , k}, we let i be a constant denoting
a C-coloured k-graph with exactly one single vertex and no edge; this unique
vertex, let us call it x, is such that γi(x) := i.

Definition 2.2 We let FC
k := {⊕, addci,j, relabh | i, j ∈ {1, . . . , k}, i 6= j, h

is a mapping from {1, . . . , k} to {1, . . . , k}}. We denote by Ck the set {i | i ∈
{1, . . . , k}}. Each term t in T (FC

k , Ck) evaluates into a C-coloured k-graph
val(t). The clique-width of a C-coloured graph G, denoted by cwd(G), is the
minimum k such that G is isomorphic to val(t) for some term t in T (FC

k , Ck).

If G is isomorphic to val(t) for some term t in T (FC
k , Ck), then there exists a bi-

jection between VG and Vval(t). Since each vertex in Vval(t) is in correspondence
with an occurrence of a constant symbol in t, we can assume the existence of
a bijection Lt between VG and Lu (Synt(t)).
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Clique-width was first defined for graphs (directed or not) without edge colours.
And so, most of the investigations concern only graphs without edge colours
(see for instance [11,18,19,24,25,53]). However, many results in the uncoloured
version do hold in the edge-coloured version (see [8,14]).

2.2 Rank-Width and Vertex-Minor of Undirected Graphs

Let V be a finite set and f : 2V → N a function. We say that f is symmetric
if for any X ⊆ V, f(X) = f(V \ X); f is submodular if for any X, Y ⊆ V ,
f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).

A layout of a finite set V is a pair (T,L) of a cubic tree T and a bijective
function L : V → LT . For each edge e of T , the connected components of T -e
induce a bipartition (Xe, V \Xe) of LT , and thus a bipartition (Xe, V \Xe) =
(L−1(Xe),L

−1(V \Xe)) of V (we will omit the subscript or superscript e when
it is clear from the context).

Let f : 2V → N be a symmetric function and (T,L) a layout of V . The f -
width of each edge e of T is defined as f(Xe) and the f -width of (T,L) is
the maximum f -width over all edges of T . The f -width of V is the minimum
f -width over all layouts of V .

Definition 2.3 (Rank-width of undirected graphs [56,57]) For every undi-
rected graph G, we let MG be its adjacency (VG, VG)-matrix over F2 where
MG[x, y] := 1 if and only if xy ∈ EG. For every undirected graph G, we let
cutrkG : 2VG → N where cutrkG(X) := rk(MG[X, VG \X ]), where rk is the
matrix rank over F2. This function is symmetric. The rank-width of an undi-
rected graph G, denoted by rwd(G), is the cutrkG-width of VG.

Contrary to clique-width, there exists, for fixed k, a cubic-time algorithm that
given an undirected graph G, either outputs a layout of VG of cutrkG-width at
most k, or confirms that the rank-width of G is at least k+1 [41]. Rank-width
is moreover related to the vertex-minor relation.

Definition 2.4 (Local complementation [5,27,56], Vertex-minor [7,56])
For an undirected graph G and a vertex x of G, the local complementation at
x, denoted by G ∗ x, consists in replacing the subgraph induced on the neigh-
bours of x by its complement. An undirected graph H is a vertex-minor of an
undirected graph G if H can be obtained from G by applying a sequence of local
complementations and deletions of vertices.

Authors of [5,27,56] also introduced the pivot operation on an edge xy, denoted
by G ∧ xy = G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y. An interesting theorem relating
rank-width and the notion of vertex-minor is the following.
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Theorem 2.5 ([56]) For every positive integer k, there exists a finite list Ck

of undirected graphs such that an undirected graph has rank-width at most k
if and only if it does not contain as vertex-minor any graph isomorphic to a
graph in Ck.

3 F-Rank-Width of σ-Symmetric F∗-Graphs

We want a notion of rank-width for edge-coloured graphs that generalises the
one on undirected graphs and allows to get similar structural and algorithmic
results. For that purposes, we will identify each colour by a non-zero element
of a field. This representation will allow us to define the rank-width of edge-
coloured graphs by using the rank of matrices.

Let F be a field. An F∗-graph G is an F∗-coloured graph where for every edge
(x, y) ∈ EG, we have ℓG((x, y)) ∈ F∗, i.e., each edge has exactly one colour in
F∗. For every F∗-graph G, one can extend ℓG to the mapping ℓ′ : VG × VG →
F where for every edge (x, y) ∈ EG, ℓ′((x, y)) := ℓG((x, y)) and for every
(x, y) /∈ EG, ℓ′((x, y)) := 0. Therefore, we will consider for all F∗-graphs G
that ℓG((x, y)) = 0 for all (x, y) /∈ EG. We can represent every F∗-graph G
by a (VG, VG)-matrix MG over F such that MG[x, y] := ℓG((x, y)) for every
x, y ∈ VG with x 6= y, and MG[x, x] := 0 for every x ∈ VG.

Let σ : F→ F be a bijection. We recall that σ is an involution if σ(σ(a)) = a for
all a ∈ F. We call σ a sesqui-morphism if σ is an involution, and the mapping
[x 7→ σ(x)/σ(1)] is an automorphism. It is worth noticing that if σ : F→ F is
a sesqui-morphism, then σ(0) = 0 and for every a, b ∈ F, σ(a+b) = σ(a)+σ(b)
(i.e., σ is an automorphism for the addition). Moreover, we have the following
notable equalities.

Proposition 3.1 If σ : F→ F is a sesqui-morphism, then

σ(a · b) =
σ(a) · σ(b)

σ(1)
,

σ
(
a

b

)
=

σ(1) · σ(a)

σ(b)
,

σ

(
a · b

c

)
=

σ(a) · σ(b)

σ(c)
.

An F∗-graph G is σ-symmetric if u (G) is undirected, and for every edge (x, y),
ℓG((x, y)) = a if and only if ℓG((y, x)) = σ(a). Clearly, if G is a σ-symmetric
F∗-graph, then MG[x, y] = σ(MG[y, x]). (Matrices verifying this condition are
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also said to be σ-symmetric 4 .) We denote by S (F) (respectively S (F, σ))
the class of F∗-graphs (respectively σ-symmetric F∗-graphs). A nice property
of σ-symmetric matrices - that was known to hold in symmetric and skew
symmetric matrices - is the following.

Lemma 3.2 For every σ-symmetric (V, V )-matrix M and for every X ⊆ V ,
we have rk(M [X, V \X]) = rk(M [V \X,X ]).

Proof. Let A1 := M [X, V \X ] and let M ′ be the (V \ X,X)-matrix where
M ′[y, x] = σ(A1[x, y])/σ(1). Since σ is a sesqui-morphism, the mapping [x 7→
σ(x)/σ(1)] is an automorphism and then rk(M ′) = rk((A1)

T ) = rk(A1). But,
M [V \X,X ] = σ(1)·M ′. Then, rk(M [V \X,X ]) = rk(M ′) = rk(M [X, VG \X]). ✷

From Lemma 3.2 one can define for σ-symmetric graphs a symmetric function
like the cutrk function and derive a rank-width notion for σ-symmetric graphs.
Before, let us show how to represent C-coloured graphs by σ-symmetric F∗-
graphs.

Let C be a fixed finite colour set. To represent a C-coloured graph, one first
takes an injection from 2C \ {∅} to F∗ for a large enough field F. Hence,
any C-coloured graph is an F∗-graph. Notice that this representation is not
unique: on one hand, several incomparable fields are possible for F, and on
the other hand, the representation depends on the injection from C to F∗.
For example, oriented graphs can be represented by an F∗3-graph or by an
F∗4-graph (see Section 3.4). Since not all F∗-graphs are σ-symmetric for some
sesqui-morphism σ, we need to prove that every F∗-graph can be seen as a
σ′-symmetric G∗-graph for some field G. If a graph G is not σ-symmetric for
any sesqui-morphism σ, that means, for every sesqui-morphism σ, there exist
x and y such that MG[x, y] 6= σ(MG[y, x]). So, we need to match every pair
(a, b) ∈ F× F into some element v(a, b) ∈ G in such a way that we can define
a sesqui-morphism σ′ : G → G such that σ′(v(a, b)) = v(b, a). Since, there
are |F|2 such pairs, G must have order at least |F|2. We will prove that every
F∗-graph can be seen as a σ̃-symmetric (F2)∗-graph for some sesqui-morphism
σ̃ : F2 → F2, where F2 is an algebraic extension of F of order 2. Let us first
make the following observation.

Lemma 3.3 There exists an element r in F∗ such that the polynomial X2 −
r(X + 1) has no root in F.

Proof. There exist |F| − 1 distinct polynomials of the form X2 − r(X + 1),
r 6= 0. We first notice that 0 or −1 cannot be a root of X2− r(X +1), for any

4 Note that symmetric and skew-symmetric matrices are σ-symmetric.

13



r ∈ F∗. Now, two such polynomials cannot have a common root. Assume the
contrary and let α be a root of X2−r(X+1) and of X2−r′(X+1) with r 6= r′.
Then (α+1) · (r− r′) = 0, i.e., r = r′ since α 6= −1, a contradiction. Since −1
and 0 cannot be the roots of any of the polynomials, we have at most |F| − 2
possible roots. Therefore, there exists an element r such that X2 − r(X + 1)
has no root in F. ✷

We can now construct the desired algebraic extension of the finite field F

of characteristic p and order q. Its construction is standard (see the book
[52]). Let r ∈ F∗ be such that X2 − r(X + 1) has no root in F (such an r
exists by Lemma 3.3). We define F2 to be the field isomorphic to the field
F[X ]/(X2 − r(X + 1)) (i.e. F2 is the finite field of characteristic p and order
q2). Let α := X/(X2−r(X+1)). Then every element of F2 is a polynomial on
α of the form a0+a1α where a0, a1 ∈ F. Moreover, α is a root of X2−r(X+1)
in F2. We let γ := 1− r−1α and τ := r−1α be in F2. Remark that α = rτ and
1 = γ + τ .

Lemma 3.4 We have the following equalities:

γ2 = (1 + r−1)γ + r−1τ,

τ 2 = r−1γ + (1 + r−1)τ,

γ · τ = −(r−1γ + r−1τ).

Let f̃ : F × F → F2 where, for every (a, b) ∈ F × F, f̃(a, b) := aγ + bτ . The
proof of the following is straightforward.

Lemma 3.5 f̃ is a bijection.

For the sesqui-morphism in F2, we let σ̃ : F2 → F2 where σ̃(aγ+bτ) := bγ+aτ .
One easily verifies that σ̃(σ̃(β)) = β for all β ∈ F2.

Lemma 3.6 σ̃ is an automorphism.

Proof. An easy computation shows that σ̃((aγ + bτ) + (cγ + dτ)) = σ̃(aγ +
bτ) + σ̃(cγ + dτ). For the product, we have.

σ̃((aγ + bτ) · (cγ + dτ)) = σ̃(acγ2 + (ad+ bc)γτ + bdτ 2)

= acσ̃(γ2) + (ad+ bc)σ̃(γτ) + bdσ̃(τ 2)

and

σ̃(aγ + bτ) · σ̃(cγ + dτ) = (bγ + aτ) · (dγ + cτ)

= bdγ2 + (ad+ bc)γτ + acτ 2.

14



By Lemma 3.4, σ̃(γ2) = τ 2, σ̃(τ 2) = γ2 and σ̃(γτ) = γτ . This concludes the
proof of the lemma. ✷

For every F∗-graph G, we let G̃ be the (F2)∗-graph (VG, EG ∪ {(y, x) | (x, y) ∈
EG}, ℓG̃) where, for every two distinct vertices x and y,

ℓ
G̃
((x, y)) := f̃(ℓG((x, y)), ℓG((y, x))).

By the definitions of G̃ and σ̃, and Lemmas 3.4-3.6, we get the following.

Proposition 3.7 The mapping [G 7→ G̃] from S (F) to S (F2, σ̃) is a bijection
and for every F∗-graph G, G̃ is σ̃-symmetric. Moreover, for two F∗-graphs G
and H, G̃ and H̃ are isomorphic if and only if G and H are isomorphic.

We now summarise the representation of C-coloured graphs - C finite - as
σ̃-symmetric (F2)∗-graph for a large enough field F. Let C be a class of C-
coloured graphs and let Π(C ) ⊆ 2C be the set of subsets of C appearing as
colours of edges in graphs of C . Then,

(1) take an injection i : Π(C )→ F∗ for a large enough finite field F,
(2) for every graph G in C , let G′ be the F∗-graph obtained from G by

replacing each edge colour A ⊆ C by i(A),
(3) take G̃′ as the representation of G. By Proposition 3.7 G̃′ is σ̃-symmetric.

The rank-width of G will be defined as the rank-width of G̃′.

Nevertheless, these representations of C-coloured graphs are not unique and
two different mappings can give two different rank-width parameters. But, the
different parameters are equivalent (see Proposition 3.12).

In the case of an infinite colour set C, our representation does not always
work. In fact, we can always take an injection from Π(C ) to an infinite field
F. However, if F is infinite, a mapping from S (F) to S (G, σ) is not always
possible with the previous construction. For example, a mapping is possible
from S (R) to S (C, σ) with f(a, b) = (1+ i)a+(1− i)b and σ(a+ ib) = a− ib
(where a, b ∈ R), but the construction fails for F = C since the set of complex
numbers is algebraically closed.

From the discussion above, we will focus our attention to σ-symmetric F∗-
graphs. The case of F∗-graphs that are not σ-symmetric will be discussed in
Section 4.
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3.1 Rank-Width of σ-symmetric F∗-Graphs

Along this section, we let F be a fixed field (of characteristic p, and of order
q if F is finite), and we let σ : F → F be a fixed sesqui-morphism. We recall
that if G is an F∗-graph, we denote by MG the (VG, VG)-matrix where:

MG[x, y] :=




ℓG((x, y)) if x 6= y,

0 otherwise.

Definition 3.8 (Cut-Rank Functions) The F-cut-rank function of a σ-
symmetric F∗-graph G is the function cutrkFG : 2VG → N where cutrkFG(X) =
rk(MG[X, VG \X ]) for all X ⊆ VG.

Lemma 3.9 For every σ-symmetric F∗-graph G, the function cutrkFG is sym-
metric and submodular.

In order to prove the submodularity, we need the submodular inequality of the
matrix rank-function.

Proposition 3.10 ([56, Proposition 4.1]) Let M be an (R,C)-matrix over
a field F. Then for all X1, Y1 ⊆ R and X2, Y2 ⊆ C,

rk(M [X1,X2]) + rk(M [Y1, Y2]) ≥ rk(M [X1 ∪ Y1,X2 ∩ Y2]) + rk(M [X1 ∩ Y1,X2 ∪ Y2]).

Proof of Lemma 3.9. The first statement follows from Lemma 3.2. For the
second statement, let X and Y be subsets of VG. We let A1 = MG[X, VG \X ]
and A2 = MG[Y, VG \ Y ]. We have by definition and Proposition 3.10,

cutrkFG(X) + cutrkFG(Y ) = rk(A1) + rk(A2)

≥ rk(MG[X ∪ Y , (VG \X) ∩ (VG \ Y )])+

rk(MG[X ∩ Y , (VG \X) ∪ (VG \ Y )]).

Since (VG\X)∩(VG\Y ) = VG\(X∪Y ) and (VG\X)∪(VG\Y ) = VG\(X∩Y ),
the second statement holds. ✷

Definition 3.11 (F-rank-width) The F-rank-width of a σ-symmetric F∗-
graph G, denoted by rwdF(G), is the cutrkFG-width of VG.

If we let σ1 be the identity automorphism on F2, then undirected graphs
are exactly σ1-symmetric F∗2-graphs. Moreover, for every undirected graph G,
the functions cutrkG and cutrkF2

G are equal. Hence, rank-width of undirected
graphs and F2-rank-width coincide.

One can easily check that the F-rank-width of a σ-symmetric F∗-graph is
the maximum of the F-rank-width of its connected components. The next
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proposition compares clique-width and F-rank-width, for finite field F. Its
proof, which is an easy adaptation of the one comparing rank-width and clique-
width of undirected graphs [57, Proposition 6.3], is given in Appendix because
it uses the results in Section 5.

Proposition 3.12 Let G be a σ-symmetric F∗-graph, with |F| = q ∈ N.

(1) If t is a term in T (FF
k , Ck) isomorphic to G, then (uS (red(t)),Lt) is a

layout of VG of cutrkFG-width at most k.
(2) If (T,L) is a layout of VG of cutrkFG-width at most k, then we can con-

struct in time O(qk · |VG|
2) a term t in T (FF

k′, Ck′) with k′ ≤ 2 · qk − 1
such that G is isomorphic to val(t) and (T,L) = (uS (red(t)),Lt).

In other words, rwdF(G) ≤ cwd(G) ≤ 2 · qrwdF(G) − 1.

3.2 Vertex-Minor and Pivot-Minor of σ-Symmetric F∗-Graphs

Definition 3.13 (λ-local complementation) Let λ in F∗. Let G be an F∗-
graph and x a vertex of G. The λ-local complementation at x of G is the
F∗-graph G ∗ (x, λ) represented by the (VG, VG)-matrix MG∗(x,λ) where:

MG∗(x,λ)[z, t] :=




MG[z, t] + λ ·MG[z, x] ·MG[x, t] if z 6= t,

0 otherwise.

An F∗-graph H is locally equivalent to an F∗-graph G if there exist vertices
x1, . . . , xp and λ1, . . . , λp in F∗ such that H = (· · · ((G ∗ (x1, λ1)) ∗ (x2, λ2)) ∗
· · · ∗ (xp, λp)). We call H a vertex-minor of G if H = G′[X ] for some X ⊆ VG

and G′ is locally equivalent to G. Moreover, H is a proper vertex-minor of G
if X ( VG.

One can easily show that for every F∗-graph G and every vertex x of G, the
adjacency matrix of G∗(x, λ) is obtained by modifying the submatrix induced
by the neighbours of x. Then for every vertex y of G, MG[x, y] = MG∗(x,λ)[x, y].
Notice that when F is the field F2, this notion of 1-local complementation
matches with the local complementation defined by Bouchet in [5].

In this section, we are interested in σ-symmetric graphs, thus we have to
restrict ourselves to a subset of λ-local complementations which preserve the
σ-symmetry. We say that λ in F∗ is σ-compatible if σ(λ) = λ · σ(1)2.

Lemma 3.14 Let G be a σ-symmetric F∗-graph and let λ ∈ F∗ be σ-compatible.
Then every λ-local complementation of G is also σ-symmetric.
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Proof. Let H := G ∗ (x, λ) for some σ-compatible λ. It is sufficient to prove
that MH [t, z] = σ(MH [z, t]) for any z, t ∈ VG, z 6= t.

MH [t, z] = MG[t, z] + λ ·MG[t, x] ·MG[x, z]

= σ(MG[z, t]) + λ · σ(MG[x, t]) · σ(MG[z, x])

= σ(MG[z, t]) + λ · σ(1) · σ(MG[z, x] ·MG[x, t])

= σ(MG[z, t]) + σ(λ) · σ−1(1) · σ(MG[z, x] ·MG[x, t])

= σ(MG[z, t]) + σ(λ ·MG[z, x] ·MG[x, t])

= σ(MG[z, t] + λ ·MG[z, x] ·MG[x, t])

= σ(MH [z, t]). ✷

Definition 3.15 (σ-locally-equivalent, σ-vertex-minor) An F∗-graph H
is σ-locally-equivalent to a σ-symmetric F∗-graph G if if there exist vertices
x1, . . . , xp and λ1, . . . , λp in F∗, all σ-compatible, such that H = (· · · ((G ∗
(x1, λ1)) ∗ (x2, λ2)) ∗ · · · ∗ (xp, λp)). We call H a σ-vertex-minor of G if H =
G′[X ] for some X ⊆ VG and G′ is σ-locally-equivalent to G. Moreover, H is
a proper σ-vertex-minor of G if X ( VG.

Observe that if no σ-compatible λ ∈ F∗ exists, H is a σ-vertex-minor of G if
and only if H is an induced subgraph of G.

Lemma 3.16 Let λ be a σ-compatible element in F∗. Let G be a σ-symmetric
F∗-graph and x a vertex of G. For every subset X of VG,

cutrkFG∗(x,λ)(X) = cutrkFG(X).

Proof. We can assume that x ∈ X since cutrkFG is a symmetric function
(Lemma 3.9). For each y ∈ X, the σ-local-complementation at x results in
adding a multiple of the row indexed by x to the row indexed by y. Pre-
cisely, we obtain MG∗(x,λ)[y, VG \X] by adding λ ·MG[y, x] ·MG[x, VG \X ] to
MG[y, VG \X]. This operation is repeated for all y ∈ X. In each case, the rank
of the matrix does not change. Hence, cutrkFG∗(x,λ)(X) = cutrkFG(X). ✷

Unfortunately, a σ-compatible λ does not always exist. For instance, if the
field is F3 and σ is such that σ(x) = −x (see Section 3.4), no σ-compatible λ
does exist. We present now another F∗-graph transformation which is defined
for every pair (F, σ).

Definition 3.17 (pivot-complementation) Let G be a σ-symmetric F∗-
graph, and x and y two vertices of G such that ℓG((x, y)) 6= 0. The pivot-
complementation at xy of G is the F∗-graph G∧xy represented by the (VG, VG)-
matrix MG∧xy where MG∧xy[z, z] := 0 for every z ∈ VG, and for every z, t ∈
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VG \ {x, y} with z 6= t:

MG∧xy[z, t] := MG[z, t]−
MG[z, x] ·MG[y, t]

MG[y, x]
−

MG[z, y] ·MG[x, t]

MG[x, y]
,

MG∧xy[x, t] :=
MG[y, t]

MG[y, x]
MG∧xy[y, t] :=

σ(1) ·MG[x, t]

MG[x, y]

MG∧xy[z, x] :=
σ(1) ·MG[z, y]

MG[x, y]
MG∧xy[z, y] :=

MG[z, x]

MG[y, x]

MG∧xy[x, y] := −
1

MG[y, x]
MG∧xy[y, x] := −

σ(1)2

MG[x, y]

An F∗-graph H is pivot-equivalent to an F∗-graph G if H is obtained by ap-
plying a sequence of pivot-complementations to G. We call H a pivot-minor
of G if H = G′[X ] for some X ⊆ VG and G′ pivot-equivalent to G. Moreover,
H is a proper pivot-minor of G if X ( VG.

It is easy to observe that G∧xy = G∧yx if σ(1) = 1. In the case of undirected
graphs (F = F2), this definition coincides with the pivot-complementation of
undirected graphs [56].

Lemma 3.18 Let G be a σ-symmetric F∗-graph and let xy be an edge of G.
Then G ∧ xy is also σ-symmetric.

Proof. Let z, t ∈ VG, with z 6= t. If {z, t} ∩ {x, y} = ∅, then

MG∧xy[t, z] = MG[t, z]−
MG[t, x] ·MG[y, z]

MG[y, x]
−

MG[t, y] ·MG[x, z]

MG[x, y]

= σ(MG[z, t])−
σ(MG[x, t]) · σ(MG[z, y])

σ(MG[x, y])
−

σ(MG[y, t]) · σ(MG[z, x])

σ(MG[y, x])

= σ(MG[z, t])− σ

(
MG[x, t] ·MG[z, y]

MG[x, y]

)
− σ

(
MG[y, t] ·MG[z, x]

MG[y, x]

)

= σ

(
MG[z, t])−

MG[x, t] ·MG[z, y]

MG[x, y]
−

MG[y, t] ·MG[z, x]

MG[y, x]

)

= σ (MG∧xy[z, t]) .

If t 6= y, then:

MG∧xy[t, x] =
σ(1) ·MG[t, y]

MG[x, y]
=

σ(1) · σ(MG[y, t])

σ(MG[y, x])

= σ

(
MG[y, t]

MG[y, x]

)
= σ (MG∧xy[x, t]) .
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Finally:

MG∧xy[y, x] = −
σ(1)2

MG[x, y]
= −

σ(1)2

σ(MG[y, x])

= σ

(
−

12

MG[y, x]

)
= σ (MG∧xy[x, y]) . ✷

Lemma 3.19 Let G be a σ-symmetric F∗-graph and xy an edge of G. For
every subset X of VG,

cutrkFG∧xy(X) = cutrkFG(X).

Proof. Let Y := VG \X. We can assume w.l.o.g. that x ∈ X. If y ∈ X, then
(with X ′ := X \ {x, y})

rk (MG∧xy[X, Y ]) = rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]
− MG[X′,y]·MG[x,Y ]

MG[x,y]




= rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]




= rk




1
MG[y,x]

·MG[y, Y ]

σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]




= rk




MG[y, Y ]

MG[x, Y ]

MG[X
′, Y ]




= rk (MG[X, Y ]) .

20



If y 6∈ X, then (with X ′ := X \ {x} and Y ′ := Y \ {y})

rk (MG∧xy[X, Y ]) = rk



− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

MG[X′,x]
MG[y,x]

MG[X
′, Y ′]− MG[X′,x]·MG[y,Y ′]

MG[y,x]
− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



− 1

MG[y,x]
MG[y,Y ′]
MG[y,x]

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



− 1

MG[y,x]
0

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk



MG[x, y] 0

0 MG[X
′, Y ′]− MG[X′,y]·MG[x,Y ′]

MG[x,y]




= rk




MG[x, y] 0

MG[X
′, y] MG[X

′, Y ′]− MG[X′,y]·MG[x,Y ′]
MG[x,y]




= rk




MG[x, y] MG[x, Y
′]

MG[X
′, y] MG[X

′, Y ′]




= rk (MG[X, Y ]) . ✷

Proposition 3.20 Let G and H be two σ-symmetric F∗-graphs. If H is σ-
locally-equivalent (resp. pivot-equivalent) to G, then the F-rank-width of H is
equal to the F-rank-width of G. If H is a σ-vertex-minor (resp. pivot-minor)
of G, then the F-rank-width of H is at most the F-rank-width of G.

Proof. The first statement is obvious by Lemmas 3.16 and 3.19. Since taking
sub-matrices does not increase the rank, it does not increase the F-rank-width.
So, the second statement is true. ✷

Our goal now is to prove the following which is a generalisation of Theorem
2.5.

Theorem 3.21 (i) For each positive integer k ≥ 1, there is a set C
(F,σ)
k of

σ-symmetric F∗-graphs, each having at most (6k+1 − 1)/5 vertices, such
that a σ-symmetric F∗-graph G has F-rank-width at most k if and only if
no σ-symmetric F∗-graph in C

(F,σ)
k is isomorphic to a pivot-minor of G.

(ii) Suppose that a σ-compatible λ ∈ F∗ exists. Then for each positive integer

k ≥ 1, there is a set C ′
(F,σ)
k of σ-symmetric F∗-graphs, each having at

most (6k+1 − 1)/5 vertices, such that a σ-symmetric F∗-graph G has F-
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rank-width at most k if and only if no σ-symmetric F∗-graph in C ′
(F,σ)
k is

isomorphic to a σ-vertex-minor of G.

Note that C
(F,σ)
k and C ′

(F,σ)
k are finite if F is finite. For doing so we adapt

the same techniques as in [35,56]. We first prove some inequalities concerning
cut-rank functions. All the notions of linear algebra are borrowed from [51].

Proposition 3.22 Let G be a σ-symmetric F∗-graph, λ a σ-compatible ele-
ment in F∗ and x a vertex of G. For every subset X of VG \ {x},

cutrkF(G∗(x,λ))-x(X) = rk


 −1 MG[x, VG \ (X ∪ {x})]

MG[X,x] MG[X,VG \ (X ∪ {x})]


− 1.

Proof. Let X be a subset of VG \ {x} and let Y := VG \ (X ∪ {x}). We let J
be the matrix (MG[z, x] ·MG[x, t])z∈X,t∈Y . Then,

cutrkF(G∗(x,λ))-x(X) = rk(MG∗(x,λ)[X,Y ])

= rk(MG[X,Y ] + λ · J)

= rk


−1 · λ

−1 MG[x, Y ]

0 MG[X,Y ] + λ · J




︸ ︷︷ ︸
A

−1.

We now show how to transform the ({x} ∪ X, {x} ∪ Y )-matrix A by using
elementary row operations in order to get the desired equality. For each z ∈ X,

−λ ·MG[z, x] · A[x, Y ∪ {x}] =
(
MG[z, x] −λ · J [z, Y ]

)
.

Hence,

−λ ·MG[z, x] · A[x, Y ∪ {x}] +A[z, Y ∪ {x}] =
(
MG[z, x] MG[z, Y ]

)
.

Therefore, by adding −λ ·MG[z, x] · A[x, Y ∪ {x}] to each row A[z, Y ∪ {x}]

of A we get the matrix


 −1 MG[x, Y ]

MG[X,x] MG[X,Y ]


. This concludes the proof. ✷

Lemma 3.23 Let G be a σ-symmetric F∗-graph and x a vertex in VG. Assume
that (X1, X2) and (Y1, Y2) are partitions of VG \ {x}. Then,

cutrkFG-x(X1) + cutrkF(G∗(x,λ))-x(Y1) ≥ cutrkFG(X1 ∩ Y1) + cutrkFG(X2 ∩ Y2)− 1.

Proof. We recall that for every vertex z of G, MG[z, z] = 0. Let M ′ be
obtained from MG by replacing MG[x, x] by −1. Hence, for every subset X of
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VG, rk(MG[X, VG \X ]) = rk(M ′[X, VG \X ]. We recall that Y2 = VG\(Y1∪{x})
and X2 = VG \ (X1 ∪ {x}). By definition of M ′,

M ′[Y1 ∪ {x}, Y2 ∪ {x}] =


 −1 MG[x, Y2]

MG[Y1, x] MG[Y1, Y2]


 .

By Proposition 3.22,

cutrkFG-x(X1) + cutrkF(G∗(x,λ))-x(Y1) = rk(MG[X1, X2]) + rk(M ′[Y1 ∪ {x}, Y2 ∪ {x}])− 1.

Since rk(MG[X1, X2]) = rk(M ′[X1, X2]), by Proposition 3.10 we get the in-
equality

rk(MG[X1,X2]) + rk(M ′[Y1 ∪ {x}, Y2 ∪ {x}]) ≥

rk(M ′[X1 ∩ Y1,X2 ∪ Y2 ∪ {x}]) + rk(M ′[X1 ∪ Y1 ∪ {x},X2 ∩ Y2]).

Hence,

cutrkFG-x(X1) + cutrkF(G∗(x,λ))-x(Y1) ≥ cutrkFG(X1 ∩ Y1) + cutrkFG(X1 ∪ Y1 ∪ {x})− 1.

By the symmetry of cutrkFG, we get the desired inequality. ✷

Proposition 3.24 Let G be a σ-symmetric F∗-graph and xy an edge of G.
For every subset X of VG \ {x},

cutrkF(G∧xy)-x(X) = rk


 0 MG[x, VG \ (X ∪ {x})]

MG[X,x] MG[X,VG \ (X ∪ {x})]


− 1.

Proof. Suppose w.l.o.g. that y ∈ X (otherwise replace X by VG \ (X ∪{x})).
Let Y := VG \ (X ∪ {x}) and X ′ := X \ {y}. Then, by elementary row and
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column operations, we have.

cutrkF(G∧xy)-x(X) = rk




σ(1)
MG[x,y]

·MG[x, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]
− MG[X′,y]·MG[x,Y ]

MG[x,y]




= rk




MG[y, Y ]

MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]




= rk




MG[y, x] MG[y, Y ]

0 MG[y, Y ]

0 MG[X
′, Y ]− MG[X′,x]·MG[y,Y ]

MG[y,x]



− 1

= rk




0 MG[y, Y ]

MG[y, x] MG[y, Y ]

MG[X
′, x] MG[X

′, Y ]



− 1

= rk




0 MG[y, Y ]

MG[X, x] MG[X, Y ]


− 1. ✷

Lemma 3.25 Let G be a σ-symmetric F∗-graph and xy an edge in VG. As-
sume that (X1, X2) and (Y1, Y2) are partitions of VG \ {x}. Then

cutrkFG-x(X1) + cutrkF(G∧xy)-x(Y1) ≥ cutrkFG(X1 ∩ Y1) + cutrkFG(X2 ∩ Y2)− 1.

Proof. We recall that Y2 = VG \ (Y1 ∪ {x}) and X2 = VG \ (X1 ∪ {x}). By
definition of MG,

MG[Y1 ∪ {x}, Y2 ∪ {x}] =


 0 MG[x, Y2]

MG[Y1, x] MG[Y1, Y2]


 .

By Proposition 3.24,

cutrkFG-x(X1) + cutrkF(G∧xy)-x(Y1) = rk(MG[X1, X2]) + rk(MG[Y1 ∪ {x}, Y2 ∪ {x}])− 1.

By Proposition 3.10 we get the inequality

rk(MG[X1,X2]) + rk(MG[Y1 ∪ {x}, Y2 ∪ {x}]) ≥

rk(MG[X1 ∩ Y1,X2 ∪ Y2 ∪ {x}]) + rk(MG[X1 ∪ Y1 ∪ {x},X2 ∩ Y2]).

Hence,

cutrkFG-x(X1) + cutrkF(G∧xy)-x(Y1) ≥ cutrkFG(X1 ∩ Y1) + cutrkFG(X1 ∪ Y1 ∪ {x})− 1.
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By the symmetry of cutrkFG, we get the desired inequality. ✷

The most important ingredients for proving Theorem 3.21 are Propositions
3.22 and 3.24, and Lemmas 3.23 and 3.25. All the other ingredients are already
proved in [35,56] except that they are stated for the connectivity function of
matroids in [35] and for undirected graphs in [56]. Their proofs rely only on
the fact that the parameter is symmetric, submodular and integer valued. We
include them for completeness. We first recall some definitions [35,56].

Let V be a finite set and f : 2V → N a symmetric and submodular function.
Let (A,B) be a bipartition of V . A branching of B is a triple (T, r,L) where
T is a cubic tree with a fixed node r ∈ LT and such that (T,L) is a layout of
B ∪{xA} (xA /∈ B) with L(xA) = r. For an edge e of T and a node v of T , we
let Tev be the set of nodes in the component of T -e not containing v and we
let Yev := L

−1(LTev
). We say that B is k-branched if there exists a branching

(T, r,L) such that for each edge e of T , f(Yer) ≤ k. Remark that if A and B
are k-branched, then the f -width of V is at most k.

A subset A of V is called titanic with respect to f if for every partition
(A1, A2, A3) of A, there is a i ∈ {1, 2, 3} such that f(Ai) ≥ f(A) (A1,A2 or A3

may be empty).

Lemma 3.26 ([41, Lemma 3.3]) Let V be a finite set and f : 2V → N a
symmetric and submodular function. Assume that the f -width of V is at most
k. Let (A,B) be a bipartition of V such that f(A) ≤ k. If A is titanic with
respect to f , then B is k-branched.

Let g : N → N be a function. A σ-symmetric F∗-graph G is called (m, g)-
connected if for every bipartition (A,B) of VG, cutrkFG(A) = ℓ < m implies
|A| ≤ g(ℓ) or |B| ≤ g(ℓ). This notion will help to bound the sizes of the
minimal σ-symmetric F∗-graphs that every σ-symmetric F∗-graph of F-rank-
width k must exclude as pivot-minors or σ-vertex-minors.

Lemma 3.27 Let f : N→ N be a non-decreasing function with f(0) = 0. Let
G be an (m, f)-connected σ-symmetric F∗-graph. Then, for every two vertices
x and y of G such that ℓG((x, y)) 6= 0, either G-x or (G ∧ xy)-x is (m, 2f)-
connected. Moreover, if a σ-compatible λ ∈ F∗ exists, then for every vertex x
of G, either G-x or (G ∗ (x, λ))-x is (m, 2f)-connected.

Proof. Since f(0) = 0, G is connected. Let y be a neighbour of x. Suppose
neither G-x nor (G ∧ xy)-x is (m, 2f)-connected. Then there are bipartitions
(A1, A2) and (B1, B2) of VG \ {x} such that a = cutrkFG-x(A1) < m, b =
cutrkF(G∧xy)-x(B1) < m, and |Ai| > 2f(a), |Bi| > 2f(b) for i = 1, 2.
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We may assume that a ≥ b. By Lemma 3.25, we have

cutrkFG(A1 ∩B1) + cutrkFG(A2 ∩B2) ≤ a+ b+ 1.

Thus, either cutrkFG(A1 ∩ B1) ≤ a or cutrkFG(A2 ∩ B2) ≤ b. So, by hypothesis
either |A1 ∩ B1| ≤ f(a) or |A2 ∩ B2| ≤ f(b). Assume that |A2 ∩ B2| ≤ f(b).
Similarly, we also have either |A2 ∩ B1| ≤ f(a) or |A1 ∩ B2| ≤ f(b). Since
|A1 ∩ B2| = |B2| − |B2 ∩ A2| > f(b), we have |A2 ∩ B1| ≤ f(a). Then |A2| =
|A2 ∩ B1|+ |A2 ∩B2| ≤ f(a) + f(b) ≤ 2f(a). This yields a contradiction.

The proof of the second statement is similar, using Lemma 3.23. ✷

We let g(n) = (6n−1)/5. Note that g(0) = 0, g(1) = 1 and g(n) = 6g(n−1)+1
for all n ≥ 1. We now prove that the minimal σ-symmetric F∗-graphs that have
F-rank-width at least k + 1 are (k + 1, g)-connected.

Lemma 3.28 Let k ≥ 1 and let G be a σ-symmetric F∗-graph of F-rank-width
larger than k. If every proper pivot-minor of G has F-rank-width at most k,
then G is (k + 1, g)-connected. Similarly, if a σ-compatible λ ∈ F∗ exists,
and every proper σ-vertex-minor of G has F-rank-width at most k, then G is
(k + 1, g)-connected.

Proof. The proof is similar to the one of [56, Lemma 5.3]. We assume that G
is connected since the F-rank-width of G is the maximum of the F-rank-width
of its connected components. It is now easy to see that G is (1, g)-connected.

Assume that m ≤ k and that G is (m, g)-connected but G is not (m + 1, g)-
connected. Then there exists a bipartition (A,B) with cutrkFG(A) = m such
that |A| > g(m) and |B| > g(m). Also, either A or B is not k-branched
(rwdF(G) > k). We may assume that B is not k-branched. Let x ∈ A and
xy ∈ EG.

By Lemma 3.27, either G-x or (G ∧ xy)-x is (m, 2g)-connected; assume G-x
is (m, 2g)-connected. Since G-x and (G ∧ xy)-x are proper pivot-minors of G,
they both have F-rank-width at most k. Let (A1, A2, A3) be a tri-partition of
A \ {x}. Since |A| > g(m) = 6g(m− 1) + 1, there exists an i ∈ {1, 2, 3} such
that |Ai| > 2g(m− 1). Since G-x is (m, 2g)-connected and |Ai| > 2g(m− 1),

cutrkFG-x(Ai) ≥ m ≥ cutrkFG-x(A \ {x}).

Therefore, by Lemma 3.26 B is k-branched in G-x. Since B is not k-branched
in G, there exists W ⊆ B such that

cutrkFG(W ) = cutrkFG-x(W ) + 1.
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Thus, the column vectors of MG[W,VG \ (W ∪ {x})] do not span MG[W,x]. So,
the column vectors of MG[W,VG \ (B ∪ {x})] do not span MG[W,x]. Hence,
the column vectors of MG[B, VG \ (B ∪ {x})] do not span MG[B, x]. Therefore,

cutrkFG-x(B) = cutrkFG(B)− 1 = m− 1.

This implies that |B| ≤ 2g(m− 1) or |A \ {x}| ≤ 2g(m− 1). A contradiction.

The proof of the second statement is similar (replace G∧xy by G∗(x, λ)). ✷

Theorem 3.29 (Size of excluded pivot-minors and σ-vertex-minors)
Let k ≥ 1 and let G be a σ-symmetric F∗-graph. If G has F-rank-width larger
than k but every proper pivot-minor of G has F-rank-width at most k, then
|VG| ≤ (6k+1 − 1)/5.

Moreover, if a σ-compatible λ ∈ F∗ exists, and if G has F-rank-width larger
than k, but every proper σ-vertex-minor of G has F-rank-width at most k, then
|VG| ≤ (6k+1 − 1)/5.

Proof. Let x ∈ VG. We may assume that G-x is (k + 1, 2g)-connected by
Lemmas 3.27 and 3.28. Since G-x has F-rank-width k, there exists a bipartition
(A,B) of VG \ {x} such that |A| ≥ 1

3
(|VG| − 1) and |B| ≥ 1

3
(|VG| − 1) and

cutrkFG-x(A) ≤ k. By (k+1, 2g)-connectivity, either |A| ≤ 2g(k) or |B| ≤ 2g(k).
Therefore, |VG|−1 ≤ 6g(k) and consequently |VG| ≤ 6g(k)+1 = g(k+1). ✷

It is surprising that the bound (6k+1− 1)/5 does not depend neither on F nor
on σ. But that is because the proof technique is based on the cutrkFG-width
of VG and neither on F nor on σ. However, the F-rank-width depends on F

since there is no reason that the rank of a matrix is the same in two different
fields. But, as we will see in the following proof of Theorem 3.21, the set of σ-
symmetric F∗-graphs to exclude as pivot-minors and σ-vertex-minor depends
on F and σ.

Proof of Theorem 3.21. We show only the proof for the first statement.
the other proof is similar. If k < 0, we let C

(F,σ)
k = ∅. If k = 0, we let C

(F,σ)
0 :=

{a | a ∈ F∗} where a is the σ-symmetric F∗-graph ({x, y}, {x
a
→ y, y

σ(a)
→ x}).

It is clear that G has F-rank-width at most 0 if and only if G has no pivot-
minor isomorphic to any a ∈ C

(F,σ)
0 .

Assume now that k ≥ 1 and let C
(F,σ)
k be the set, up to isomorphism, of

σ-symmetric F∗-graphs H such that rwdF(H) > k and every proper pivot-
minor of H has F-rank-width at most k. By Theorem 3.29, each σ-symmetric
F∗-graph in C

(F,σ)
k has at most (6k+1 − 1)/5 vertices.
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Let G be a σ-symmetric F∗-graph of F-rank-width at most k. Since every
F∗-graph in C

(F,σ)
k has F-rank-width larger than k, no F∗-graph in C

(F,σ)
k is

isomorphic to a pivot-minor of G.

Conversely, assume that the F-rank-width of G is larger than k and let H be a
proper pivot-minor of G of minimum size such that rwdF(H) > k. Then there

exists an F∗-graph H ′ ∈ C
(F,σ)
k isomorphic to H . ✷

Remark 3.30 It is worth noticing that the bound (6k+1− 1)/5 on the size of
excluded configurations is not tight. For instance, thanks to the characterisa-
tion of σ-symmetric F∗-graphs of F-rank-width 1 in [49,50], the obstructions
for σ-symmetric F∗-graphs of F-rank-width 1 by σ-vertex-minor (resp. pivot-
minor) have at most 5 (resp. 6) vertices.

3.3 Recognising F-Rank-Width at Most k

The recognition algorithm is an easy corollary of the one by Hliněný and
Oum concerning representable matroids [41]. We recall the necessary materials
about matroids. We refer to Schrijver [68] for our matroid terminology.

Definition 3.31 (Matroids) A pair M = (S, I) is called a matroid if S
is a finite set and I is a nonempty collection of subsets of S satisfying the
following conditions

(M1) if I ∈ I and J ⊆ I, then J ∈ I,
(M2) if I, J ∈ I and |I| < |J |, then I ∪ {z} ∈ I for some z ∈ J \ I.

For U ⊆ S, a subset B of U is called a base of U if B is an inclusion wise
maximal subset of U and belongs to I. It is easy to see that, if B1 and B2

are bases of U ⊆ S, then B1 and B2 have the same size. The common size of
the bases of a subset U of S is called the rank of U , denoted by rM(U). A set
B ⊆ S is a base of M if it is a base of S.

Let A be a m×n-matrix. Let S := {1, . . . , n} and let I be the collection of all
those subsets I of S such that the columns of A with index in I are linearly
independent. Then M := (S, I) is a matroid. If A has entries in F, then M
is said representable over F and A is called a representation ofM over F.

If M = (S, I) is a matroid, we let λM be defined such that for every subset
U of S, λM(U) = rM(U) + rM(S \ U)− rM(S) + 1 and call it the connectiv-
ity function of M. The function λM is symmetric and submodular [68]. The
branch-width ofM, denoted by bwd(M), is the λM-width of S.

LetM = (S, I) be a matroid and P a partition of S. The pair (M,P) is called
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a partitioned matroid. A partitioned matroid (M,P) is representable over F

if M is representable over F. For a partitioned matroid (M,P), we let λPM
be defined such that for every Z ⊆ P, we have λPM(Z) := λM(

⋃
Y ∈Z Y ). The

branch-width of (M,P), denoted by bwd(M,P), is the λPM-width of P.

Theorem 3.32 ([41]) Let F be a fixed finite field and k be a fixed positive
integer. There exists a cubic-time algorithm that takes as input a representable
partitioned matroid (M,P) over F given with the representation ofM over F

and outputs a layout of P of λPM-width at most k or confirms that the branch-
width of (M,P) is strictly greater than k.

We can now derive our recognition algorithm from Theorem 3.32. For a set X,
we let X ′ be a disjoint copy of it defined as {x′ | x ∈ X}. For an F∗-graph G,
we letMG be the matroid on VG∪V

′
G represented by the (VG, VG∪V

′
G)-matrix

(recall that In denotes the identity square matrix of size n):

( VG V ′G

VG I|VG| MG

)

For each x ∈ V , we let Px := {x, x′} and we let Π(G) := {Px | x ∈ VG}.

Proposition 3.33 Let G be an F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) =
rk(MG[X, VG \X ]) + rk(MG[VG \X,X ]) + 1 where P := {Px | x ∈ X}.

Proof. For X ⊆ VG and P := {Px | x ∈ X}, we have

λ
Π(G)
MG

(P ) = rMG
(X ∪X ′) + rMG

((VG \X) ∪ (VG \X)′)− rMG
(VG ∪ V ′G) + 1

= rk




0 MG[VG \X,X ]

I|X| MG[X,X ]


+ rk




0 MG[X, VG \X ]

I|VG|−|X| MG[VG \X, VG \X ]


− |VG|+ 1

= |X|+ rk(MG[VG \X,X ]) + |VG −X|+ rk(MG[X, VG \X ])− |VG|+ 1

= rk(MG[X, VG \X ]) + rk(MG[VG \X,X ]) + 1. ✷

Since when G is σ-symmetric, we have rk(MG[X, VG \X ]) = rk(MG[VG \X,X ]) =
cutrkFG(X), we get the following as corollaries of Proposition 3.33.

Corollary 3.34 Let G be a σ-symmetric F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) =

2 · cutrkFG(X) + 1 where P := {Px | x ∈ X}.

Corollary 3.35 Let G be a σ-symmetric F∗-graph and let p : VG → Π(G)
be the bijective function such that p(x) = Px. If (T,L) is a layout of Π(G)

of λ
Π(G)
MG

-width 2k + 1, then (T,L ◦ p) is a layout of VG of cutrkFG-width k.
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Conversely, if (T,L) is a layout of VG of cutrkFG-width k, then (T,L ◦ p−1) is

a layout of Π(G) of λ
Π(G)
MG

-width 2k + 1.

Theorem 3.36 (Checking F-Rank-Width at most k) For fixed k and a
fixed finite field F, there exists a cubic-time algorithm that, for a σ-symmetric
F∗-graph G, either outputs a layout of VG of cutrkFG-width at most k or con-
firms that the F-rank-width of G is larger than k.

Proof. Let k be fixed and let A be the algorithm constructed in Theorem
3.32 for 2k + 1. Let G be a σ-symmetric F∗-graph. We run the algorithm A
with input (MG,Π(G)). If it confirms that bwd(MG,Π(G)) > 2k + 1, then
the F-rank-width of G is greater than k (Corollary 3.34). If it outputs a layout

of Π(G) of λ
Π(G)
MG

-width at most 2k + 1, we can transform it into a layout of

VG of cutrkFG-width at most k by Corollary 3.35. The fact that the algorithm
A runs in cubic-time concludes the proof. ✷

3.4 Specialisations to Graphs

We specialise in this section the F-rank-width to directed and oriented graphs.
As we already said, for undirected graphs the F2-rank-width matches with the
rank-width.

Directed Graphs [47]. We recall that the adjacency matrix of a directed
graph G is the (VG, VG)-matrix MG over F2 where MG[x, y] := 1 if and only
if (x, y) ∈ EG. This matrix is not symmetric except when G is undirected. In
particular, rk(MG[X, VG \X]) is a priori different from rk(MG[VG \X,X ]).
The quest for finding another representation of directed graphs by matrices
where rk(MG[X, VG \X ]) = rk(MG[VG \X,X ]) motivates the definition of
σ-symmetry. We now give this representation.

We recall that F4 is the finite field of order four. We let {0, 1,a,a2} be its
elements with the property that 1+a+a2 = 0 and a3 = 1. Moreover, it is of
characteristic 2. We let σ4 : F4 → F4 be the automorphism where σ4(a) = a2

and σ4(a
2) = a. It is clearly a sesqui-morphism.

For every directed graph G, let G̃ := (VG, EG ∪ {(y, x)|(x, y) ∈ EG}, ℓG̃) be
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the F4
∗-graph where for every pair of vertices (x, y):

ℓ
G̃
((x, y)) :=





1 if (x, y) ∈ EG and (y, x) ∈ EG,

a (x, y) ∈ EG and (y, x) /∈ EG,

a2 (y, x) ∈ EG and (x, y) /∈ EG,

0 otherwise.

One easily verifies that G̃ is σ4-symmetric and is actually the one constructed
in Section 3. We define the rank-width of a directed graph G, denoted by
rwdF4(G), as the F4-rank-width of G̃.

Remark 3.37 Let G be an undirected graph. We denote by
←→
G the directed

graph obtained from G by replacing each edge xy in G by two opposite ones.

By the definition of
←→
G we have MG = M←→

G
. Then rwdF4(

←→
G ) = rwd(G) since

F4 is an extension of F2.

We now specialise the notion of vertex-minor. We recall that given a sesqui-
morphism σ : F→ F, an element λ of F∗ is said σ-compatible if σ(λ) = λ·σ(1)2.
Since σ4(1) = 1, 1 is σ4-compatible and is the only one. We then denote
G ∗ (v, 1) by G ∗ v, and say that a directed graph H is a vertex-minor of
a directed graph G if H̃ is a σ4-vertex-minor of G̃. One easily verifies that
if a directed graph H is obtained from a directed graph G by applying a
1-local-complementation at x, then H is obtained from G by modifying the
subgraph induced on the neighbours of x as shown on Table 1. Figure 1 gives
an example of a 1-local complementation. Thanks to the characterisation of
directed graphs of rank-width 1 in [49] (see Remark 3.30), we can compute
- with the help of a computer program - the set of obstructions for directed
graphs of rank-width 1 with respect to vertex-minor (resp. pivot-minor). These
two sets are depicted in Figures 2 and 3 respectively.

G G ∗ x

z ⊥ t z ↔ t

z → t z ← t

z ← t z → t

z ↔ t z ⊥ t

G G ∗ x

z ⊥ t z → t

z → t z ⊥ t

z ← t z ↔ t

z ↔ t z ← t

(a) (b)

Table 1
We use the following notations: x → y means ℓG((x, y)) = a, x ← y means
ℓG((x, y)) = a2, x↔ y means ℓG((x, y)) = 1, and z ⊥ t means ℓG((x, y) = 0).
(a) Uniform Case: z ← x→ t or z → x← t or z ↔ x↔ t.
(b) Non Uniform Case: z ← x← t or z → x↔ t or z ↔ x→ t.

31
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x3

x6

x5

x4

x1
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x3

x6

x5

x4

x1

(a) (b)

Figure 1. (a) A directed graph G. (b) The directed graph G ∗ x4.

Figure 2. Vertex-minor exclusions for directed graphs of rank-width 1.

Figure 3. Pivot-minor exclusions for directed graphs of rank-width 1.

Moreover, as in the undirected case, we have G∧xy = G∧yx = G ∗ x ∗ y∗x =
G ∗ y ∗ x ∗ y. As corollaries of Theorems 3.21 and 3.36 we get the following.
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Figure 4. Pivot-minor exclusions for oriented graphs of F3-rank-width 1.

Theorem 3.38 For each positive integer k, there is a finite list Ck of directed
graphs having at most (6k+1 − 1)/5 vertices such that a directed graph G has
rank-width at most k if and only if no directed graph in Ck is isomorphic to a
vertex-minor of G.

Theorem 3.39 For fixed k, there exists a cubic-time algorithm that, for a
directed graph G, either outputs a layout of VG of cutrkF4

G -width at most k or
confirms that the rank-width of G is larger than k.

Oriented Graphs. We can define another parameter in the case of oriented
graphs. Let G = (V,A) be an oriented graph, and let G̃ := (V,E, ℓ) be the
F∗3-graph such that E = A ∪ A′ where A′ = {(y, x)|(x, y) ∈ A}, ℓ((x, y)) := 1
if (x, y) ∈ A and ℓ((x, y)) := −1 if (x, y) ∈ A′. Clearly, G̃ is a σ3-symmetric
F∗3-graph, with σ3(x) := −x. Moreover, one can show immediately that σ3

is a sesqui-morphism. Note that there is no σ3-compatible λ in F∗3, thus no
σ3-vertex-minor is defined on σ3-symmetric F∗3-graphs. Nevertheless, oriented
graphs of F3-rank-width k are characterised by a finite set of oriented graphs
C

(F3,σ3)
k of forbidden pivot-minors (whereas sets C

(F4,σ4)
k and C ′

(F4,σ4)
k contains

directed graphs). Again, with the help of [49], we can compute the set of
obstructions - depicted in Figure 4 - for oriented graphs of F3-rank-width 1
with respect to pivot-minor relation.

F3-rank-width and F4-rank-width of oriented graphs are two equivalent param-
eters, since they are both equivalent to clique-width. But these two parameters
are not equal. In one hand, tournaments of F3-rank-width 1 are exactly tour-
naments completely decomposable by bi-join decomposition (see [50]), and a
cut {X, Y } in a tournament has F4-rank 1 if and only if X or Y is a module.
Since there are tournaments completely decomposable by bi-join and prime
with respect to the modular decomposition (see [3]), there are oriented graphs
of F3-rank-width 1 and F4-rank-width at least 2. On the other hand, the graph
in Figure 5 (right) has F4-rank-width 2 and F3-rank-width 3.
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Figure 5. Left: an oriented graph of F3-rank-width 1 and F4-rank-width 2
(white/black vertices give a cut of F3-rank-width 1). Right: an oriented graph
of F3-rank-width 3 and F4-rank-width 2 (white/black vertices give a cut of
F4-rank-width 2).

4 The Second Notion of Rank-Width: F-Bi-Rank-Width

4.1 Definitions and Comparisons to Other Parameters

Recall that if G is an F∗-graph, we denote by MG the (VG, VG)-matrix over F

where MG[x, y] := ℓG((x, y)) if x 6= y, and MG[x, x] = 0. As for the notion of
F-rank-width, we use matrix rank functions for the notion of F-bi-rank-width.
Its definition is similar to the one of bi-rank-width.

Definition 4.1 (Bi-Cut-Rank Function) For an F∗-graph G, we let bicutrkFG :
2VG → N where bicutrkFG(X) = rk(MG[X, VG \X ]) + rk(MG[VG \X,X ]) for
all X ⊆ VG.

Lemma 4.2 For every F∗-graph G, the function bicutrkFG is symmetric and
submodular.

Proof. Let X and Y be subsets of VG. We let A1 := MG[X, VG \X ], A2 :=
MG[VG \X,X ], B1 =: MG[Y, VG \ Y ] and B2 := MG[VG \ Y , Y ]. By definition,

bicutrkFG(X) = rk(A1) + rk(A2) = rk(A2) + rk(A1) = bicutrkFG(VG \X).

For the submodularity, we have by definition,

bicutrkFG(X) + bicutrkFG(Y ) = rk(A1) + rk(A2) + rk(B1) + rk(B2).

By Proposition 3.10,

rk(A1) + rk(B1) ≥ rk(MG[X ∪ Y , (VG \X) ∩ (VG \ Y )]) + rk(MG[X ∩ Y , (VG \X) ∪ (VG \ Y )])

and

rk(A2) + rk(B2) ≥ rk(MG[(VG \X) ∪ (VG \ Y ),X ∩ Y ]) + rk(MG[(VG \X) ∩ (VG \ Y ),X ∪ Y ]).
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Since (VG\X)∩(VG\Y ) = VG\(X∪Y ) and (VG\X)∪(VG\Y ) = VG\(X∩Y )
the second statement holds. ✷

Definition 4.3 (F-bi-rank-width) The F-bi-rank-width of an F∗-graph, de-
noted by brwdF(G), is the bicutrkFG-width of VG.

We now compare F-bi-rank-width - F finite - with clique-width and F-rank-
width. The proof of the following is given in Appendix.

Proposition 4.4 Let G be an F∗-graph, with |F| = q ∈ N.

(1) If t is a term in T (FF
k , Ck) isomorphic to G, then (uS (red(t)),Lt) is a

layout of VG of bicutrkFG-width at most 2k.
(2) If (T,L) is a layout of VG of bicutrkFG-width at most k, then we can

construct in time O(qk · |VG|
2) a term t in T (FF

k′, Ck′) with k′ ≤ 2 · qk − 1
such that G is isomorphic to val(t), and (uS (red(t)),Lt) = (T,L).

In other words, 1
2
brwdF(G) ≤ cwd(G) ≤ 2 · qbrwdF(G) − 1.

The mapping [G 7→ G̃] from S (F) to S (F2, σ̃) constructed in Section 3 is
such that for every x, y ∈ VG, M

G̃
[x, y] = γ ·MG[x, y] + τ ·MG[y, x] for some

fixed γ, τ ∈ (F2)∗ with γ, τ 6∈ F.

Proposition 4.5 For every F∗-graph G and every subset X of VG, we have

M
G̃
[X, VG \X ] = γ ·MG[X, VG \X ] + τ ·MT

G [VG \X,X ].

Lemma 4.6 ([51,52]) (i) Let M be a matrix over F. If the rank of M over
F is k, then the rank of M over any finite extension of M is k.

(ii) If A and B are two matrices over F, then rk(A + B) ≤ rk(A) + rk(B)
and rk(A · B) ≤ min{rk(A), rk(B)}. If a ∈ F∗, then rk(a · A) = rk(A).

Proposition 4.7 Let G be an F∗-graph. Then

(1) rwdF2

(G̃) ≤ brwdF(G) ≤ 4 · rwdF2

(G̃).
(2) If G is σ-symmetric for some sesqui-morphism σ : F→ F, then brwdF(G) =

2 · rwdF(G).

Proof. It is sufficient to compare cutrkF
2

G̃
(X) and bicutrkFG(X) for every sub-

set X of VG.

(1) From Lemma 4.6 and Proposition 4.5 we have.

rk(M
G̃
[X, VG \X ]) ≤ rk(MG[X, VG \X ]) + rk(MG[VG \X,X ])

= bicutrkFG(X).
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We now prove that bicutrkFG(X) ≤ 4 · cutrkF
2

G̃
(X). Let M1 := MG[X, VG \X ]

and M2 := MT
G [VG \X,X ]. We recall that each entry of M

G̃
is of the form

a · γ + b · τ for a unique pair (a, b) ∈ F× F. Let π1 and π2 be mappings from
F2 to F such that:

π1(a · γ + b · τ) = a,

π2(a · γ + b · τ) = b.

Clearly, M1 = π1(MG̃
[X, VG \X ]) and M2 = π2(MG̃

[VG \X,X ]). It is also
straightforward to verify that π1 and π2 are homomorphisms with respect to
the addition. Moreover, for every c ∈ F, δ ∈ F2 and i ∈ {1, 2}, πi(c·δ) = c·πi(δ).

We let v1, . . . , vk be a column-basis of M
G̃
[X, VG \X ]. Then for each column-

vector v in M
G̃
[X, VG \X ], v =

∑
i≤k αi · vi where αi ∈ F2. Then we have for

j ∈ {1, 2},

πj(v) =
∑

i≤k

πj(αi · vi)

=
∑

i≤k

πj (αi · (π1(vi) · γ + π2(vi) · τ))

=
∑

i≤k

πj (αi · γ · π1(vi) + αi · τ · π2(vi))

=
∑

i≤k

πj(αi · γ) · π1(vi) + πj(αi · τ) · π2(vi)

Thus, every column-vector of Mj is a linear combination of 2k vectors π1(vi)
and π2(vi) for i ∈ {1, . . . , k}, i.e., rk(Mj) ≤ 2k. Therefore, bicutrkFG(X) =

rk(M1) + rk(M2) ≤ 4 · cutrkF
2

G̃
(X).

(2) Assume now that G is σ-symmetric. By definition of bicutrkFG, we have
bicutrkFG(X) = rk(MG[X, VG \X ]) + rk(MG[VG \X,X ]). But since G is σ-
symmetric, by Lemma 3.9, we have rk(MG[X, VG \X ]) = rk(MG[VG \X,X ]).
We can then conclude that bicutrkFG(X) = 2 · cutrkFG(X). ✷

The notion of λ-local complementation defined in Section 3.2 also preserves
the F-bi-rank-width.

Lemma 4.8 Let G be an F∗-graph and λ an element in F∗. If G∗ (x, λ) is the
λ-local complementation of G at x, then for every subset X of VG, we have
bicutrkFG∗(x,λ)(X) = bicutrkFG(X).

Proof. Assume by symmetry that x is in X. Let y be a neighbour of x in X.
If we apply a λ-local complementation at x, we obtain MG∗(x,λ)[y, VG \X] by
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adding λ·MG[y, x]·MG[x, VG \X ] to MG[y, VG \X ]. Therefore, rk(MG∗(x,λ)[X, VG \X ]) =
rk(MG[X, VG \X ]). Similarly, we obtain MG∗(x,λ)[VG \X, y] by adding to MG[VG \X, y]
the column λ · MG[VG \X, x] · MG[x, y]. Again, rk(MG∗(x,λ)[VG \X,X ]) =

rk(MG[VG \X,X ]). We can thus conclude that bicutrkFG∗(x,λ)(X) = bicutrkFG(X). ✷

Corollary 4.9 Let G and H be two F∗-graphs. If H is locally equivalent to
G, then the F-bi-rank-width of H is equal to the F-bi-rank-width of G. If H is
a vertex-minor of G, then the F-bi-rank-width of H is at most the F-bi-rank-
width of G.

Note that the pivot-complementation defined in Section 3.2 is not well de-
fined in the case of F∗-graphs that are not σ-symmetric. Currently, we do not
have a characterisation of F∗-graphs of bounded F-bi-rank-width as the one in
Theorem 3.21. We leave it as an open question. Indeed, our notion of vertex-
minor is not a well-quasi-order on F∗-graphs of bounded F-bi-rank-width (see
Remark 4.13).

4.2 Recognising F-Bi-Rank-Width at Most k

We recall that if G is an F∗-graph, we denote by (MG,Π(G)) the partitioned
matroid represented over F where Π(G) := {Px | x ∈ VG} with Px := {x, x′}
and MG is the matroid represented by the (VG, VG ∪ V ′G)-matrix over F (V ′G
is an isomorphic copy of VG)

( VG V ′G

VG I|VG| MG

)
.

The following are corollaries of Proposition 3.33.

Corollary 4.10 Let G be an F∗-graph. For every X ⊆ VG, λ
Π(G)
MG

(P ) =

bicutrkFG(X) + 1 where P := {Px | x ∈ X}.

Corollary 4.11 Let G be an F∗-graph and let p : VG → Π(G) be the bijective

function such that p(x) = Px. If (T,L) is a layout of Π(G) of λ
Π(G)
MG

-width

k + 1, then (T,L ◦ p) is a layout of VG of bicutrkFG-width k. Conversely, if
(T,L) is a layout of VG of bicutrkFG-width k, then (T,L ◦ p−1) is a layout of

Π(G) of λ
Π(G)
MG

-width k + 1.

Theorem 4.12 (Checking F-Bi-Rank-Width at most k) For a fixed fi-
nite field F and a fixed integer k, there exists a cubic-time algorithm that, for
an F∗-graph G, either outputs a layout of VG of bicutrkFG-width at most k or
confirms that the F-bi-rank-width of G is larger than k.
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Proof. Let k be fixed and let A be the algorithm constructed in Theorem
3.32 for k + 1. Let G be an F∗-graph. We run the algorithm A with input
(MG,Π(G)). If it confirms that bwd(MG,Π(G)) > k+1, then the F-bi-rank-
width of G is greater than k (Corollary 4.10). If it outputs a layout of Π(G) of

λ
Π(G)
MG

-width at most k+1, we can transform it into a layout of VG of bicutrkFG-
width at most k by Corollary 4.11. The fact that the algorithm A runs in
cubic-time concludes the proof. ✷

4.3 A Specialisation to Graphs

The bi-rank-width of a directed graph G, denoted by brwd(G), is its F2-bi-rank-
width [47]. One easily checks that if G is undirected, i.e., if EG is symmetric,
then brwd(G) = 2 · rwd(G). It is worth noticing that the paper [30] has used
the term signed rank-width to denote the bi-rank-width of signed graphs, which
are bipartite directed graphs.

A directed graph is strongly connected if for every pair (x, y) of vertices, there
is a directed path from x to y. Clearly in a strongly connected graph G,
for every ∅ ( X ( VG, we have bicutrkFG(X) ≥ 2. It is easy to show that
strongly connected graphs of bi-rank-width 2 are exactly the graphs completely
decomposable by Cunningham’s split decomposition of directed graphs [21].

The 1-local complementation of a directed graph seen as an F∗2-graph is the one
defined by Bouchet [5] and Fon-Der-Flaass [27]. One easily verifies that if H
is obtained by applying a 1-local complementation at x to G, then (z, t) ∈ EH

if and only if:

- (z, t) /∈ EG, (z, x) ∈ EG and (x, t) ∈ EG or,
- (z, t) ∈ EG, and either (z, x) /∈ EG or (x, t) /∈ EG.

Figures 6 illustrates a 1-local complementation of a directed graph seen as an
F∗2-graph.

The 1-local complementation of a directed graph seen as an F∗2-graph can be
different from the one when we consider it as a σ4-symmetric F∗4-graph (see
Section 3.4). Figures 7 and 8 illustrate this observation. We leave open the
question of finding a notion of vertex-minor for directed graphs, that not only
lets invariant F4-rank-width and F2-bi-rank-width, but also is independent of
the representation.

Remark 4.13 Directed graphs of bounded bi-rank-width are not well-quasi-
ordered by the vertex-minor relation. In fact the class EC of directed even cycles
such that each vertex has either in-degree 2 or out-degree 2 are of bounded bi-
rank-width and are not well-quasi-ordered by the vertex-minor relation since
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Figure 6. (a) A directed graph seen as an F∗2-graph. (b) Its 1-local complementation
at x4.

x

G2

H = (G2 ∗ x) \ x

G1

Figure 7. G1 and G2 are graphs in EC. Each graph in EC, seen as an F∗2-graph,
is isomorphic to its 1-local complementations. This is not the case if we consider
them as a σ4-symmetric F∗4-graph. For instance, H is a vertex-minor of G2 seen as
a σ4-symmetric F∗4-graph.

x1

G1 G2G

x x

x2

x

x2x1 x1 x2

Figure 8. G1 is a vertex-minor of G seen as an F∗2-graph and the only one locally
equivalent to it, and G2 is a vertex-minor of G seen as a σ4-symmetric F∗4-graph. G1

is not isomorphic to G2.

none of them is a vertex-minor of another. In fact each of them is isomorphic
to its 1-local complementations. Figure 7 illustrates such cycles.
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5 Algebraic Graph Operations for F-Rank-Width and F-Bi-Rank-
Width

Courcelle and the first author gave in [16] graph operations that characterise
exactly the notion of rank-width of undirected graphs. These operations are
interesting because they allow to check monadic second-order properties on
undirected graph classes of bounded rank-width without using clique-width
operations. We give in Section 5.1 graph operations, that generalise the ones
in [16] and that characterise exactly F-rank-width. A specialisation that allows
to characterise exactly F-bi-rank-width is then presented in Section 5.2. We
let F be a fixed finite field along this section. For a fixed positive integer k,
we let Fk be the set of row vectors of length k. If T is a rooted tree and u a
node of T , we let Tu be the sub-tree of T rooted at u.

5.1 Graph Operations Characterising F-Rank-Width

We let σ : F→ F be a fixed sesqui-morphism. If u := (u1, . . . , uk) ∈ Fk, we let
σ(u) be (σ(u1), . . . , σ(uk)). Similarly, if M = (mi,j) is a matrix, we let σ(M)
be the matrix (σ(mi,j)). In this section we deal with σ-symmetric F∗-graphs.

An Fk-colouring of a σ-symmetric F∗-graph G is a mapping γG : VG → Fk

with no constraint on the values of γG for adjacent vertices. An Fk-coloured
σ-symmetric F∗-graph G is a tuple (VG, EG, ℓG, γG) where (VG, EG, ℓG) is a
σ-symmetric F∗-graph and γG is an Fk-colouring of (VG, EG, ℓG). Notice that
an Fk-coloured σ-symmetric F∗-graph has not only its edges coloured with
colours from F, but also its vertices with colours from Fk. With an Fk-coloured
σ-symmetric F∗-graph G, we associate the (VG×{1, 2, . . . , k})-matrix ΓG, the
row vectors of which are the vectors γG(x) in Fk for x in VG.

The following is a binary graph operation that combines several operations
consisting in adding coloured edges between its disjoint arguments and re-
colour them independently.

Definition 5.1 (Bilinear Products) Let k, ℓ and m be positive integers and
let M,N and P be k × ℓ, k × m and ℓ × m matrices, respectively, over F.
For an Fk-coloured σ-symmetric F∗-graph G and an Fℓ-coloured σ-symmetric
F∗-graph H, we let G ⊗M,N,P H be the Fm-coloured σ-symmetric F∗-graph
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K := (VG ∪ VH , EG ∪ EH ∪ E ′, ℓK , γK) where:

E ′ := {xy | x ∈ VG, y ∈ VH and γG(x) ·M · σ(γH(y))
T 6= 0},

ℓK((x, y)) :=





ℓG((x, y)) if x, y ∈ VG,

ℓH((x, y)) if x, y ∈ VH ,

γG(x) ·M · σ(γH(y))
T if x ∈ VG, y ∈ VH ,

σ
(
γG(y) ·M · σ(γH(x))

T
)

if y ∈ VG, x ∈ VH .

γK(x) :=




γG(x) ·N if x ∈ VG,

γH(x) · P if x ∈ VH .

Definition 5.2 (Constants) For each u ∈ Fk, we let u be a constant denot-
ing an Fk-coloured σ-symmetric F∗-graph with exactly one vertex and no edge;
this unique vertex is coloured by u.

We denote by CFn the set {u | u ∈ F1 ∪ · · · ∪ Fn}. We let R(F,σ)
n be the set

of bilinear products ⊗M,N,P where M,N and P are respectively k × ℓ, k ×m
and ℓ×m matrices for k, ℓ,m ≤ n. Each term t in T (R(F,σ)

n , CFn) defines, up to
isomorphism, a σ-symmetric F∗-graph val(t). We write by abuse of notation
G = val(t) to say that G is isomorphic to val(t).

Similarly to terms in T (FF
k , Ck), if G = val(t) for some term t in T (R(F,σ)

n , CFn),
then there exists a bijection between VG and leaves in u (Synt(t)) that we still
denote by Lt.

One easily verifies that the operations ⊗M,N,P can be defined in terms of the
disjoint union and quantifier-free operations. The following is thus a corollary
of results in [11,17].

Theorem 5.3 Let k be a fixed integer. For each monadic second-order prop-
erty ϕ, there exists an algorithm that checks for every term t ∈ T (R

(F,σ)
k , CFk ),

in time O(f(k) · |t|), for some function f , if the σ-symmetric F∗-graph defined
by this term, up to isomorphism, satisfies ϕ.

The principal result of this section is the following.

Theorem 5.4 Let G be a σ-symmetric F∗-graph.

(1) If G = val(t) for some term t in T (R
(F,σ)
k , CFk ), then (uS (t),Lt) is a layout

of VG of cutrkFG-width at most k.
(2) Any layout (T,L) of VG, of cutrkFG-width at most k, can be transformed,

in time O(k2 · |VG|
2), into a term t in T (R

(F,σ)
k , CFk ) such that G = val(t)

and (uS (t),Lt) = (T,L).

In other words, G has F-rank-width at most k if and only if it is isomorphic
to val(t) for some term t in T (R

(F,σ)
k , CFk ).
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As a corollary of Theorem 5.4, we get the following.

Theorem 5.5 ([16]) Let σ1 : F2 → F2 be the identity automorphism. An
undirected graph has rank-width at most k if and only if it is isomorphic to
val(t) for some term t in T (R

(F2,σ1)
k , CF2

k ).

The rest of the section is devoted to the proof of Theorem 5.4. We refer to
Section 2 for the definition of a context. We recall however that we denote by
Id the particular context u.

Lemma 5.6 If K = G ⊗M,N,P H, then MK [VG, VH ] = ΓG ·M · σ(ΓH)
T and

ΓK =
(
ΓG·N
ΓH ·P

)
. Moreover, K is isomorphic to H ⊗M ′,P,N G where M ′ = 1

σ(1)2
·

σ(M)T .

Lemma 5.7 Let t = c • t′ where t′ ∈ T (R
(F,σ)
k , CFk ) and c ∈ Cxt(R

(F,σ)
k , CFk ) \

{Id }. If G = val(t) and H = val(t′), then

MG[VH , VG \ VH ] = ΓH · B,

ΓG[VH ] = ΓH · C.

for some matrices B and C.

Proof. We prove it by induction on the structure of c. We identify two cases
(the two other cases are similar by symmetry and Lemma 5.6).

Case 1 c = Id ⊗M,N,P t′′, i.e., t′′ ∈ T (R
(F,σ)
k , CFk ). Then, G = H ⊗M,N,P K

where K = val(t′′). By Lemma 5.6,

MG[VH , VG \ VH ] = ΓH ·M · σ(ΓK)
T ,

ΓG[H] = ΓH ·N.

We let B = M · σ(ΓK)
T and C = N .

Case 2 c = c′ ⊗M,N,P t′′, i.e., t′′ ∈ T (R
(F,σ)
k , CFk ). We let G′ = val(c′ • t′) and

K = val(t′′). Hence, G = G′ ⊗M,N,P K. By definition and Lemma 5.6,

MG[VH , VG \ VH ] =
(
MG′ [VH , VG′ \ VH ] (ΓG′ ·M · σ(ΓK)

T )[VH , VK ]

)

By inductive hypothesis, MG′ [VH , VG′ \ VH ] = ΓH · B
′ for some matrix B′.

Moreover, (ΓG′ ·M · σ(ΓK)
T )[VH , VK ] = ΓG′[VH ] ·M ·σ(ΓK)

T . But by induc-
tive hypothesis, ΓG′[VH ] = ΓH ·C

′ for some matrix C ′. Then, MG[VH , VG \ VH ] =

ΓH ·B where B =
(
B′ C ′ ·M · σ(ΓK)

T

)
. Moreover, ΓG[H] = ΓH ·C where

C = C ′ ·N since ΓG[VH ] = ΓG′[VH ] ·N . ✷

42



Let V be a subset of VG. A subset X of V is called a vertex-basis of MG[V, VG \ V ]
if either MG[V, VG \ V ] is a zero-matrix and |X| = 1, or {MG[x, VG \ V ] | x ∈
X} is linearly independent and generates the row space of MG[V, VG \ V ].

Proof of Theorem 5.4. (1) Assume G = val(t) for some term t in T (R(F,σ)
k , CFk ).

Hence, (uS (t),Lt) is a layout of VG. In order to prove that the cutrkFG-width
of (uS (t),Lt) is at most k, it is sufficient to prove that for each subgraph H of
G associated to a sub-term t′ of t, cutrkFG(VH) ≤ k. However, we have proved
in Lemma 5.7 that MG[VH , VG \ VH ] = ΓH · B for some matrix B. And since
each such H is Fℓ-coloured for some ℓ ≤ k, we are done.

(2) Let (T,L) be a layout of VG of cutrkFG-width at most k. For each node

u of
−→
T , we let Gu be the subgraph of G induced by the vertices that are in

correspondence with the leaves of the sub-tree of
−→
T rooted at u. It is clear

that Gr = G (r is the root of
−→
T ). We let r(u) be max{1, cutrkFG(VGu

)}.

We will construct inductively, bottom-up, for each node u of
−→
T a term tu in

T (R
(F,σ)
k , CFk ) and a vertex-basis Xu of MG[VGu

, VG \ VGu
] such that:

(i) u (Synt(tu)) =
−→
T u and val(tu) is an Fr(u)-coloured σ-symmetric F∗-graph

isomorphic to Gu,
(ii) MG[VGu

, VG \ VGu
] = Γval(tu) ·MG[Xu, VG \ VGu

].

If we prove the two statements (i) and (ii), we have proved that val(tr) is
isomorphic to G and that (uS (t),Lt) = (T,L).

If u is a leaf, then we let Xu = {L−1(u)}. If u is a leaf and L−1(u) has a
neighbour in VG, we let tu = 1. If u is a leaf and L−1(u) has not a neighbour
in VG, we let tu = 0. It is clear that tu and Xu verify statements (i) and (ii)
above.

We now show how to construct tu and Xu, for each internal node u, from tui

and Xui
, for i = 1, 2, where u1 and u2 are the children of u in

−→
T . We let

r(u1) := h and r(u2) := ℓ. We let Xu1
:= {x1, . . . , xh} and Xu2

:= {y1, . . . , yℓ}.
We let M := 1

σ(1)
·MG[Xu1

, Xu2
], and H := val(tu1

) and K := val(tu2
).

Claim 5.8 MG[VGu1
, VGu2

] = ΓH ·M · σ(ΓK)
T .

Proof of Claim 5.8. Let x ∈ VGu1
and y ∈ VGu2

. By inductive Properties (i)
and (ii), MG[x, VG \ VGu1

] = γH(x)·MG[Xu1
, VG \ VGu1

] and MG[y, VG \ VGu2
] =
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γK(y) ·MG[Xu2
, VG \ VGu2

]. Hence, γH(x) ·M = 1
σ(1)
·MG[x,Xu2

]. Therefore,

γH(x) ·M · σ(γK(y))
T =

1

σ(1)
·MG[x,Xu2

] · σ(γK(y))
T

=
1

σ(1)
· σ(MG[Xu2

, x])T · σ(γK(y))
T

=
1

σ(1)
· σ(γK(y)) · σ(MG[Xu2

, x])

= σ(γK(y) ·MG[Xu2
, x])

= σ(MG[y, x]) = MG[x, y]. ✷

It remains now to find a vertex-basis Xu of MG[VGu
, VG \ VGu

] and matrices

N and P such that MG[VGu
, VG \ VGu

] =
(

ΓH ·N
ΓK ·P

)
·MG[Xu, VG \ VGu

].

It is straightforward to show that {MG[z, VG \ VGu
] | z ∈ Xu1

∪Xu2
} generates

the row space of MG[VGu
, VG \ VGu

]. Therefore, we can find a vertex-basis
Xu of MG[VGu

, VG \ VGu
] which is a subset Xu1

∪ Xu2
. That means, for each

z ∈ Xu1
∪Xu2

, there exists a row vector bz in Fr(u) such that MG[z, VG \ VGu
] =

bz ·MG[Xu, VG \ VGu
]. We let tu = tu1

⊗M,N,P tu2
where:

N :=
(
bx1

, · · · , bxh

)T

P :=
(
by1 , · · · , byh

)T

It is clear that u (Synt(tu)) =
−→
T u and val(tu) is an Fr(u)-coloured σ-symmetric

F∗-graph. From Claim 5.8 val(tu) is isomorphic to Gu. It then remains to
show that ΓH · N · MG[Xu, VG \ VGu

] = MG[VGu1
, VG \ VGu

] and ΓK · P ·
MG[Xu, VG \ VGu

] = MG[VGu2
, VG \ VGu

]. For that it is sufficient to prove,
for each y in VG \ VGu

, that MG[Xu1
, y] = N ·MG[Xu, y] and MG[Xu2

, y] =
P ·MG[Xu, y]. But, this is a simple computation by the definitions of N , P
and Xu.

We now discuss the time complexity of the construction of tr. The construction
of tu and Xu for leaves u takes clearly constant time. If u is an internal node,
then the construction of the matrix M takes time O(k2), and if we know the
vertex basis Xu and the row vectors bz for each vertex z ∈ Xu1

∪Xu2
, we can

construct N and P in time O(k2). It remains to explain the construction of
Xu and the row vectors bz in O(k2 · n′) with n′ = |VG \ VGu

|. For that, we
transform the 2k × n′-matrix MG[Xu1

∪Xu2
, VG \ VGu

] in row echelon form.
This can be done in time O(k2 ·n′) (see [51]). At the end of this algorithm we
can identify Xu (the indexes of the non zero rows) and compute bz for each

z ∈ Xu1
∪Xu2

. Since
−→
T has 2|VG| − 1 nodes and n′ ≤ |VG|, we are done. ✷
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5.2 Graph Operations for F-Bi-Rank-Width

Graph operations in R(F,σ)
n are specialised in order to characterise exactly F-

bi-rank-width. Let k1 and k2 be positive integers. An Fk1,k2-bicolouring of an
F∗-graph G is a couple of mappings γ+

G : VG → Fk1 and γ−G : VG → Fk2 . An
Fk1,k2-bicoloured F∗-graph is a tuple (VG, EG, ℓG, γ

+
G, γ

−
G) where (VG, EG, ℓG) is

a F∗-graph and (γ+
G , γ

−
G) is an Fk1,k2-bicolouring. With an Fk1,k2-bicoloured F∗-

graph G we associate the (VG, {1, . . . , k1}) and (VG, {1, . . . , k2})-matrices Γ+
G

and Γ−G, the row vectors of which are respectively γ+
G(x) and γ−G(x) for x in

VG.

Definition 5.9 Let k1, k2, ℓ1, ℓ2, m1 and m2 be positive integers. Let M1, M2,
N1, N2, P1 and P2 be respectively k1×ℓ1, k2×ℓ2, k1×m1, k2×m2, ℓ1×m1 and
ℓ2×m2-matrices. For an Fk1,k2-bicoloured F∗-graph G and an Fℓ1,ℓ2-bicoloured
F∗-graph H, we let G ⊗M1,M2,N1,N2,P1,P2

H be the Fm1,m2-bicoloured F∗-graph
K := (VG ∪ VH , EG ∪ EH ∪ E1 ∪ E2, ℓK , γ

+
K , γ

−
k ) where:

E1 := {(x, y) | x ∈ VG, y ∈ VH and γ+
G(x) ·M1 · (γ

−
H(y))

T 6= 0},

E2 := {(y, x) | x ∈ VG, y ∈ VH and γ−G(x) ·M2 · (γ
+
H(y))

T 6= 0},

ℓK((x, y)) :=





ℓG((x, y)) if x, y ∈ VG,

ℓH((x, y)) if x, y ∈ VH ,

γ+
G(x) ·M1 · (γ

−
H(y))

T if x ∈ VG and y ∈ VH ,

γ−G(y) ·M2 · (γ
+
H(x))

T if y ∈ VG and x ∈ VH ,

γ+
K(x) :=




γ+
G(x) ·N1 if x ∈ VG,

γ+
H(x) · P1 if x ∈ VH ,

γ−K(x) :=




γ−G(x) ·N2 if x ∈ VG,

γ−H(x) · P2 if x ∈ VH .

Definition 5.10 For each pair (u, v) ∈ Fk1 ×Fk2, we let u · v be the constant
denoting an Fk1,k2-bicoloured F∗-graph with exactly one vertex and no edge;
this single vertex is coloured by (u, v).

We let BCFn be the set {u · v | (u, v) ∈ Fk1 × Fk2 and k1 + k2 ≤ n}. We denote
by BRF

n the set of all operations ⊗M1,M2,N1,N2,P1,P2
where M1, M2, N1, N2, P1

and P2 are respectively k1× ℓ1, k2× ℓ2, k1×m1, k2×m2, ℓ1×m1 and ℓ2×m2-
matrices and k1 + k2, ℓ1 + ℓ2 and m1 +m2 ≤ n. Every term t in T (BRF

n,BC
F
n)

defines, up to isomorphism, an F∗-graph denoted by val(t). If G is isomorphic
to val(t), we still denote by Lt the bijection between VG and the leaves of
Synt(t).

The operations in BRF
n can be defined in terms of disjoint union and quantifier-

free operations. Therefore, Theorem 5.3 is still true if we replace R(F,σ)
n by
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BRF
n.

Theorem 5.11 Let G be an F∗-graph.

(1) If G = val(t) for some term t in T (BRF
k,BC

F
k), then (uS (t),Lt) is a layout

of VG of bicutrkFG-width at most k.
(2) Any layout (T,L) of VG, of bicutrkFG-width at most k, can be transformed,

in time O(k2 · |VG|
2), into a term t in T (BRF

k,BC
F
k) such that G = val(t)

and (uS (t),Lt) = (T,L).

In other words, G has F-bi-rank-width at most k if and only if it is isomorphic
to val(t) for some term t in T (BRF

k ,BC
F
k).

The proof is similar to the one of Theorem 5.4.

Lemma 5.12 If K = G⊗M1,M2,N1,N2,P1,P2 H, then

MK [VG, VH] = Γ+
G ·M1 · (Γ

−
H)

T , MK [VH , VG] =
(
Γ−G ·M2 · (Γ

+
H)

T
)T

,

Γ+
K =



Γ+
G ·N1

Γ+
H · P1


 , Γ−K =



Γ−G ·N2

Γ−H · P2


 .

Moreover, K is isomorphic to H ⊗(M2)T ,(M1)T ,P1,P2,N1,N2
G.

Lemma 5.13 Let t = c• t′ where t′ ∈ T (BRF
k,BC

F
k) and c ∈ Cxt(BRF

k ,BC
F
k)\

{Id }. If G = val(t) and H = val(t′), then MG[VH , VG \ VH ] = Γ+
H · B1 and

MG[VG \ VH , VH ] = (Γ−H · B2)
T for some matrices B1 and B2.

Proof. We prove it by induction on the structure of c, by showing in addition
that Γ+

G[VH ] = Γ+
H · C1 and Γ−G[VH ] = Γ−H · C2 for some matrices C1 and C2. We

identify two cases (the two other cases are similar by symmetry and Lemma
5.12).

Case 1 c = Id ⊗M1,M2,N1,N2,P1,P2
t′′. We let K = val(t′′). Then G = H⊗M1,M2,N1,N2,P1,P2

K. By Lemma 5.12,

MG[VH , VG \ VH ] = Γ+
H ·M1 · (Γ

−
K)

T , MG[VG \ VH , VH] =
(
Γ−H ·M2 · (Γ

+
K)

T
)T

,

Γ+
G[VH ] = Γ+

H ·N1, Γ−G[VH ] = Γ−H ·N2.

We let B1 = M1 · (Γ
−
K)

T , B2 = M2 · (Γ
+
K)

T , C1 = N1 and C2 = N2.

Case 2 c = c′ ⊗M,M ′,N,P t′′ where c′ ∈ Cxt(BRF
k ,BC

F
k) \ {Id }. We let K =

val(t′′) and G′ = val(c′ • t′). Hence G = G′⊗M1,M2,N1,N2,P1,P2
K. By Lemma
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5.12,

MG[VH , VG \ VH ] =
(
MG′ [VH , VG′ \ VH ] Γ+

G′[VH ] ·M1 · (Γ
−
K)

T

)
,

MG[VG \ VH , VH] =
(
MG′ [VG′ \ VH , VH ]

(
Γ−G′[VH ] ·M2 · (Γ

+
K)

T
)T)

By inductive hypothesis, MG′ [VH , VG′ \ VH ] = Γ+
H ·B

′
1 and MG′ [VG′ \ VH , VH] =

(Γ−H · B
′
2)

T . Moreover, Γ+
G′[VH ] = Γ+

H · C
′
1 and Γ−G′[VH ] = Γ−H · C

′
2. Therefore,

letting

B1 =
(
B′1 C ′1 ·M1 · (Γ

−
K)

T

)
, B2 =

(
B′2 C ′2 ·M2 · (Γ

+
K)

T

)
,

C1 = C ′1 ·N1, C2 = C ′2 ·N2

concludes the proof. ✷

Proof of Theorem 5.11. (1) Let G be isomorphic to val(t) for some term
t in T (BRF

k ,BC
F
k). Thus, (uS (t),Lt) is a layout of VG. In order to prove that

the bicutrkFG-width of (uS (t),Lt) is at most k, it is sufficient to prove that for
each subgraph H of G associated to a sub-term t′ of t, bicutrkFG(VH) ≤ k.
But, we have proved in Lemma 5.13 that MG[VH , VG \ VH ] = Γ+

H · B1 and

MG[VG \ VH , VH ] =
(
Γ−H ·B2

)T
for some matrices B1 and B2. And since each

such H is Fk1,k2-coloured where k1 + k2 ≤ k, we are done.

(2) For the second statement, let (T,L) be a layout of VG of bicutrkFG-width

at most k. For each node u of
−→
T , we let Gu be the subgraph of G induced

by the vertices that are in correspondence with the leaves of the sub-tree of
−→
T rooted at u. We let r1(u) be max{1, rk(MG[VGu

, VG \ VGu
])} and r2(u) be

max{1, rk(MG[VG \ VGu
, VGu

])}.

We will construct, bottom-up, for each node u of
−→
T a term tu and vertex-bases

X+
u and X−u of, respectively, MG[VGu

, VG \ VGu
] and (MG[VG \ VGu

, VGu
])T such

that:

(i) u (Synt(t)) =
−→
T u and val(tu) is an Fr1(u),r2(u)-bicoloured F∗-graph iso-

morphic to Gu,
(ii) MG[VGu

, VG \ VGu
] = Γ+

val(tu)
·MG[X

+
u , VG \ VGu

] and MG[VG \ VGu
, VGu

] =

MG[VG \ VGu
, X−u ] · (Γ

−
val(tu)

)T .

One clearly notices that statements (i) and (ii) imply statement (2) we want
to prove.

Let u be a leaf. We let X+
u := X−u := {L−1(u)}. If L−1(u) has in-neighbours,

we let c1 := 1, otherwise c1 := 0; if it has out-neighbours, we let c2 := 1,
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otherwise c2 := 0. We let tu := c1 · c2. Xu and tu verify clearly statements (i)
and (ii).

Let us now construct tu, and X+
u and X−u for each internal node u. Since

u has two children u1 and u2, we have already constructed tui
, X+

ui
and

X−ui
, for i = 1, 2, verifying the statements (i) and (ii). We let r1(u1) := h,

r2(u1) = h′, r1(u2) = ℓ and r2(u2) := ℓ′. We let X+
u1

:= {xi1 , . . . , xih},
X−u1

:= {xj1 , . . . , xjh′
}, X+

u2
:= {yt1 , . . . , ytℓ} and X−u2

:= {ys1, . . . , ysℓ′}. We
let M1 := MG[X

+
u1
, X−u2

] and M2 := (MG[X
+
u2
, X−u1

])T , and H = val(tu1
) and

K = val(tu2
).

Claim 5.14 MG[VGu1
, VGu2

] = Γ+
H ·M1·(Γ

−
K)

T and MG[VGu2
, VGu1

] =
(
Γ−H ·M2 · (Γ

+
K)

T
)T

.

Proof of Claim 5.14. Let x ∈ VGu1
and y ∈ VGu2

. By inductive hypothesis,

MG[x, VG \ VGu1
] = γ+

H(x) ·MG[X
+
u1
, VG \ VGu1

],

MG[VG \ VGu1
, x] = MG[VG \ VGu1

, X−u1
] · (γ−H(x))

T

MG[y, VG \ VGu2
] = γ+

K(y) ·MG[X
+
u2
, VG \ VGu2

],

MG[VG \ VGu2
, y] = MG[VG \ VGu2

, X−u2
] · (γ−K(y))

T .

Hence,

γ+
H(x) ·M1 · (γ

−
K(y))

T = MG[x,X
−
u2
] · (γ−K(y))

T = MG[x, y],

and

γ−H(x) ·M2 · (γ
+
K(y))

T = γ−H(x) · (MG[X
+
u2
, X−u1

])T · (γ+
K(y))

T

= (MG[X
+
u2
, X−u1

] · (γ−H(x))
T )T · (γ+

K(y))
T

= (MG[X
+
u2
, x])T · (γ+

K(y))
T

=
(
γ+
K(y) ·MG[X

+
u2
, x]
)T

= MG[y, x]. ✷

It remains now to find vertex-bases X+
u and X−u of, respectively, MG[VGu

, VG \ VGu
]

and (MG[VG \ VGu
, VGu

])T , and matrices N1, N2, P1 and P2 such that

MG[VGu
, VG \ VGu

] =
(

Γ+

H
·N1

Γ+

K
·P1

)
·MG[X

+
u , VG \ VGu

], and

MG[VG \ VGu
, VGu

] = MG[VG \ VGu
, X−u ] ·

(
Γ−

H
·N2

Γ−

K
·P2

)T

.

It is straightforward to show that {MG[z, VG \ VGu
] | z ∈ X+

u1
∪ X+

u2
} gen-

erates the row space of MG[VGu
, VG \ VGu

]. Similarly, {(MG[VG \ VGu
, z])T |

48



z ∈ X−u1
∪ X−u2

} generates the row space of (MG[VG \ VGu
, VGu

])T . There-
fore, we can find vertex-bases X+

u ⊆ X+
u1
∪ X+

u2
and X−u ⊆ X−u1

∪ X−u2
of,

respectively, MG[VGu
, VG \ VGu

] and (MG[VG \ VGu
, VGu

])T . That means, for
each z ∈ X+

u1
∪X+

u2
, there exists a row vector bz such that MG[z, VG \ VGu

] =
bz · MG[X

+
u , VG \ VGu

]. Similarly, for each z′ ∈ X−u1
∪ X−u2

, there exists a
row vector b′z such that MG[VG \ VGu

, z] = b′z · MG[VG \ VGu
, X−u ]. We let

tu = tu1
⊗M1,M2,N1,N2,P1,P2

tu2
where:

N1 :=
(
bxi1

, · · · , bxih

)T

P1 :=
(
byt1 , · · · , bytℓ

)T

N2 :=
(
b′xj1

, · · · , b′xj
h′

)T

P2 :=
(
b′ys1 , · · · , b

′
ys

ℓ′

)T

We have clearly u (Synt(t)) =
−→
T u and val(tu) is an Fr1(u),r2(u)-bicoloured F∗-

graph. From Claim 5.14 val(tu) is isomorphic to Gu. Hence, we need just
show that Γ+

H · N1 · MG[X
+
u , VG \ VGu

] = MG[VGu1
, VG \ VGu

] and Γ+
K · P1 ·

MG[X
+
u , VG \ VGu

] = MG[VGu2
, VG \ VGu

], and MG[VG \ VGu
, X−u ] ·(Γ

−
H ·N2)

T =
MG[VG \ VGu

, VGu1
] and MG[VG \ VGu

, X−u ] · (Γ
−
K · P2)

T = MG[VG \ VGu
, VGu2

].
But, this is an easy computation by the definitions of N1, N2, P1 and P2, and
X+

u and X−u .

As in the proof of Theorem 5.4(2), the time complexity of the construction

of tu, for each node u of
−→
T , is dominated by the construction of the vertex-

bases X+
u and X−u . But again, this can be done in time O(k2 · n′) where n′ =

|VG\VGu
| since it is enough to transform each matrix MG[X

+
u1
∪X+

u2
, VG \ VGu

]

and (MG[VG \ VGu
, X−u1

∪X−u2
])T in row echelon form. The fact that

−→
T has

2|VG| − 1 nodes concludes the proof. ✷

6 Conclusion

Unlike clique-width, there is not a unique way to define a notion of rank-width
for edge-coloured graphs. Based on the works by Kanté, we have introduced
two notions of rank-width, namely F-rank-width and F-bi-rank-width, for F∗-
graphs and explain how to use them to handle edge-coloured graphs with
edge colours from a finite set C. If the specialisation of F-bi-rank-width to
directed graphs called bi-rank-width has during the last years raised many
interests, due to the works by Hliněný et al. [29,31,32,33], it suffers from lack
of a structure theorem. On the other side, the F-rank-width shares many
structural properties with the rank-width of undirected graphs. Indeed, this
paper combined with [50] unifies many results concerning undirected graphs
of bounded rank-width and allows their generalisation to directed graphs, and
more generally to F∗-graphs of bounded F-rank-width. This a first step towards
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a structure theory for directed graphs and F∗-graphs like the one derived from
the Graph Minors Project. Moreover, the graph operations given in Section 5
allow to apply in a straightforward way the tools by Hliněný et al. [29,31,32,33]
to F-rank-width and therefore to F4-rank-width of directed graphs.

We now discuss about another notion of rank-width for edge-coloured graphs
that generalises bi-rank-width. We will imitate what is done in [16, Section 5].
Let G be an edge-coloured graph with colours from a finite set C. For each
colour a, we let Ga be the directed graph obtained from G by keeping only
edges coloured with a. Then, we define the symmetric and submodular function
bcutrkG : 2VG → N with bcutrkG(X) :=

∑
a∈C bicutrkF2

Ga
(X). Therefore, the

b-rank-width of G, bisrwd(G), is defined as the bcutrkG-width of VG. This
notion of b-rank-width will still be equivalent to clique-width and we can
still adapt the algorithm by Hliněný and Oum [41] to derive a cubic-time
recognition algorithm for graphs of b-rank-width at most k, for fixed k. By
adapting the algebraic operations in Section 5.2, we will be able to find an
algebraic characterisation. Moreover, one easily verifies that if Ha is a 1-local
complementation of Ga, then bisrwd(G′) = bisrwd(G), where G′ is obtained
from G by replacing Ga by Ha, for a ∈ C. Hence, one can define a notion
of vertex-minor such that the b-rank-width is monotone with respect to it.
However, as for F-bi-rank-width, the tools used in Section 3.2 do not seem to
be adaptable for obtaining a characterisation like the one in Theorem 2.5. We
leave as an open question the quest for such characterisations for b-rank-width
and F-bi-rank-width.

We conclude now this paper by stating some of the many open questions

(1) Oum [56] conjectured that if a class of undirected graphs exclude a bi-
partite circle graph as pivot-minor, then it has bounded rank-width. A
similar conjecture can be done for σ-symmetric F∗-graphs.

(2) Kanté has proved in [48] that the pivot-minor relation is a well-quasi-order
in σ-symmetric F∗-graph classes of bounded F-rank-width and has related
the F-rank-width to the branch-width of F-representable matroids. Is it
true that the pivot-minor relation is a well-quasi-order on σ-symmetric
F∗-graphs? A positive answer would imply a similar conjecture for F-
representable matroids.

(3) It is still open whether we can check if a fixed σ-symmetric F∗-graph
H is a is a pivot-minor of a given σ-symmetric F∗-graph G. Courcelle
and Oum [20] have proved that this problem is polynomial in undirected
graph classes of bounded rank-width. Results from [48] imply also that it
is polynomial in σ-symmetric F∗-graph classes of bounded F-rank-width.

(4) Recently, some authors investigated the clique-width of multigraphs [15]
or weighted graphs [26]. These graphs can be seen as N-graphs. It is easy
to verify that the rank-width is not equivalent to the clique-width when
C is infinite. It would be interesting to investigate the rank-width over an
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infinite field G, and in particular its algorithmic aspects: the recognition
of G∗-graphs of bounded rank-width, and the property checking on G∗-
graphs of bounded rank-width.
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A Proofs of Propositions 3.12 and 4.4

If R ⊆ {1, . . . , k} × {1, . . . , k} × F, we let ©R be the composition of the
functions addai,j with (i, j, a) ∈ R. This notation is non ambiguous because
addai,j ◦ add

b
k,l = addbk,l ◦ add

a
i,j.

Proof of Proposition 3.12. (1) Assume G = val(t) for some term t in
T (FF

k , Ck). In order to prove that (uS (red(t)),Lt) is a layout of VG of cutrkFG-
width at most k, it is enough to prove that for every subgraph H of G that
is a value of a sub-term t′ of t, cutrkFG(VH) ≤ k. But, by the definition of
operations in FF

k , the sub-matrix MG[VH , VG \ VH ] has at most k distinct rows.
Thus, cutrkFG(VH) = rk(MG[VH , VG \ VH ]) ≤ k.

(2) Assume (T,L) is a layout of VG of cutrkFG-width k. Then, by Theorem

5.4 we can construct in time O(k2 · |VG|
2) a term t in T (R(F,σ)

k , CFk ) such that
G = val(t) and (T,L) = (uS (t),Lt). We will construct inductively, on the size
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of t, a term t′ in T (FF
k′, Ck′) with k′ ≤ 2 · qk − 1 such G = val(t′). We let

β : Fk → {1, . . . , qk} be a bijective function that enumerates the set of vectors
in Fk with β(O1,k) = 1. We let {2′, . . . , (qk)′} be a disjoint copy of the set
{2, . . . , qk}. If t = u, then we let t′ := β(u). Suppose then that t = t1⊗M,N,P t2.
Then, we let

t′ := relabg′(relabg((©R′)((©R)(t
′
1 ⊕ relabh(t

′
2)))))

where

- R := {(β(u), β(v)′, λ) | u ·M · σ(v)T = λ},
- R′ := {(β(v)′, β(u), σ(λ)) | u ·M · σ(v)T = λ},
- h : {1, . . . , qk} → {1}∪{2′, . . . , (qk)′} is such that h(1) = 1 and h(i) := i′,
- g : {1, . . . , qk} → {1, . . . , qk} is such that g(i) := β(β−1(i) ·N),
- g′ : {1}∪{2′, · · · , (qk)′} → {1, . . . , qk} is such that g′(1) := 1 and g′(i′) :=
β(β−1(i) · P ).

It is a straightforward induction to check that G = val(t′) and that (T,L) =
(uS (red(t)),Lt). ✷

Proof of Proposition 4.4. (1) Assume G = val(t) for some term t in
T (FF

k , Ck). In order to prove that (uS (red(t)),Lt) is a layout of VG of bicutrkFG-
width at most k, it is enough to prove that for every subgraph H of G that
is a value of a sub-term t′ of t, bicutrkFG(VH) ≤ 2k. But, by the definition
of operations in FF

k , the sub-matrices MG[VH , VG \ VH ] and MG[VG \ VH , VH ]
have at most k distinct rows. Thus, bicutrkFG(VH) = rk(MG[VH , VG \ VH ]) +
rk(MG[VG \ VH , VH ]) ≤ 2k.

(2) Assume (T,L) is a layout of VG of bicutrkFG-width k. Then, by Theorem
5.4 we can construct in time O(k2 · |VG|

2) a term t in T (BRF
k ,BC

F
k) such that

G = val(t) and (T,L) = (uS (t),Lt). We will construct inductively, on the size
of t, a term t′ in T (FF

k′, Ck′) with k′ ≤ 2 · qk − 1 such G = val(t′). For each
pair (k1, k2) with k1 + k2 ≤ k, we let αk1,k2 : Fk1 × Fk2 → {1, . . . , qk1+k2} be
a bijective function that enumerates the set of pairs of vectors in Fk1 × Fk2

with αk1,k2((O1,k1, O1,k2)) = 1. We let {2′, . . . , (qk)′} be a disjoint copy of the
set {2, . . . , qk}.

If t = u · v, then we let t′ := α1,1((u,v)). Suppose now that t = t1⊗M1,M2,N1,N2,P1,P2

t2 with M1,M2, N1, N2, P1, P2 being respectively k1×ℓ1, k2×ℓ2, k1×k
′
1, k2×k

′
2,

ℓ1 × k′1 and ℓ2 × k′2-matrices. Then, we let

t′ := relabg′(relabg((©R′)((©R)(t
′
1 ⊕ relabh(t

′
2)))))

where
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- R := {(i, j′, c) | i = αk1,k2((u1, u2)), j = αℓ1,ℓ2((v1, v2)) and u1 ·M1 · v
T
1 =

c},
- R′ := {(j′, i, c) | j = αℓ1,ℓ2((v1, v2)), i = αk1,k2((u1, u2)), and u2 ·M2 ·v

T
2 =

c},
- h : {1, . . . , qk} → {1}∪{2′, . . . , (qk)′} is such that h(1) = 1 and h(i) := i′,
- g : {1, . . . , qk} → {1, . . . , qk} is such that if α−1k1,k2

(i) = (u1, u2), then
g(i) := αk′

1
,k′

2
((u1 ·N1, u2 ·N2)),

- g′ : {1} ∪ {2′, · · · , (qk)′} → {1, . . . , qk} is such that g′(1) := 1 and if
α−1ℓ1,ℓ2

(i) = (v1, v2), then g′(i′) := αk′
1
,k′

2
((v1 · P1, v2 · P2)).

An easy induction shows that G = val(t′) and that (T,L) = (uS (red(t)),Lt). ✷
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