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Abstract

Rank-width is a graph complexity measure that has many structural properties. It
is known that the rank-width of an undirected graph is the maximum over all induced
prime graphs with respect to split decomposition and an undirected graph has rank-width
at most 1 if and only if it is a distance-hereditary graph. We are interested in an extension
of these results to directed graphs. We give several characterizations of directed graphs
of rank-width 1 and we prove that the rank-width of a directed graph is the maximum
over all induced prime graphs with respect to displit decomposition, a new decomposition
on directed graphs.

1 Introduction

Rank-width [18, 19] is a graph complexity measure introduced by Oum and Seymour in their
investigations on recognition algorithms for undirected graphs of clique-width [4] at most k, for
fixed k. It is known that a class of graphs has bounded rank-width if and only if it has bounded
clique-width [19]. However, rank-width has better algorithmic properties: undirected graphs
of rank-width at most k can be recognized by a cubic-time algorithm [13] and are characterized
by a finite list of undirected graphs to exclude as vertex-minors [18].

Another interesting fact is that rank-width is related to split decomposition. The split
decomposition, introduced by Cunningham [5], is a generalisation of the well known modular
decomposition [10, 16]. It was defined on graphs (directed or not), but only the undirected
case has been widely studied in literature. Split decomposition of undirected graphs can
be computed in linear time [7], and can be used in several problems such as: circle graph
recognition [9, 21], parity graph recognition [3, 7], and solving some optimization problems [5,
3, 11, 20]. The rank-width of an undirected graph is the maximum over the rank-width of
its induced prime graphs with respect to split decomposition. Moreover, undirected graphs of
rank-width at most 1 are exactly distance hereditary graphs [18], which are graphs that are
completely decomposable by the split decomposition.

Despite all these positive results of rank-width on clique-width, clique-width has an unde-
niable advantage on rank-width: it is defined for undirected as well as directed graphs and its
definition can be extended to relational structures. In his investigations for an extension of
rank-width to relational structures, Kanté defined in [15] a notion of rank-width for directed
graphs, called GF(4)-rank-width, and that generalized the rank-width of undirected graphs.
He, moreover, generalized two results on undirected graphs: directed graphs of GF(4)-rank-
width k can be recognized by a cubic-time algorithm and are also characterized by a finite
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list of directed graphs to exclude as vertex-minors. It is thus natural to ask whether we can
generalize all the results known for rank-width of undirected graphs.

In this paper, we are interested in a characterization of directed graphs of GF(4)-rank-
width 1, similar to the one for undirected graphs. In the literature, there exist several char-
acterizations of undirected graphs of rank-width 1 that we recall in the following.

Theorem 1 ([1, 12, 18]). Let G be a connected undirected graph. Then the following conditions
are equivalent:

1. G is completely decomposable by the split decomposition ( i.e., every node in the split
decomposition tree is degenerated).

2. G can be obtained from a single vertex by creating twins or adding pendant vertices.
3. G has rank-width 1.
4. For every W ⊆ VG with |W | ≥ 4, G[W ] has a non trivial split.
5. G is (house, hole, domino, gem)-free.
6. G is distance hereditary ( i.e., for every x, y ∈ VG, every chordless path between x and
y has the same length).

The main result of this paper is the extension of Theorem 1 to directed graphs (Theo-
rem 21). We will show in particular that directed graphs of GF(4)-rank-width 1 are obtained
by orienting in a certain way distance hereditary graphs and are exactly directed graphs com-
pletely decomposable by the displit decomposition, a new decomposition that generalizes split
decomposition. As a consequence we get that the GF(4)-rank-width of a directed graph is
the maximum over the GF(4)-rank-width of its induced prime graphs with respect to displit
decomposition.

The paper is organized as follows. We give some notations in Section 2 and recall the notion
of GF(4)-rank-width in Section 3. In Section 4 we define the notion of displit decomposition
and derive some basic properties. In Section 5 we prove our main result. We conclude by a
comparison between the split decomposition of directed graphs introduced by Cunningham
[5] and the displit decomposition.

2 Preliminaries

When the context is clear we will write u to denote the set {u}. We denote by 2V the
power-set of a set V and we let N be the set of natural integers. A function f : 2V → N

is said symmetric if for any X ⊆ V, f(X) = f(V \X); it is said sub-modular if for any
X, Y ⊆ V, f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).

For sets R and C, an (R, C)-matrix is a matrix where the rows are indexed by elements
in R and columns indexed by elements in C. For an (R, C)-matrix M , if X ⊆ R and Y ⊆ C
we let M [X, Y ] be the sub-matrix of M where the rows and the columns are indexed by X
and Y respectively. If M is an (X, Y )-matrix, M t denotes the transposed (Y, X)-matrix. A
Y -vector is an (X, Y )-matrix where |X| = 1. The matrix rank function is denoted by rk.

A directed graph (or digraph) G is a couple (VG, EG) where VG is the set of vertices and
EG, the set of edges, is a set of ordered pairs (x, y) with x, y ∈ VG and x 6= y. We consider
undirected graphs as special cases of directed graphs where (x, y) ∈ EG ⇔ (y, x) ∈ EG (edges
are denoted xy in this case). Unless otherwise specified, a graph is considered as directed. If
G is a digraph and x a vertex of G we denote by N+

G (x) the set {y | (x, y) ∈ EG}, by N−
G (x)

the set {y | (y, x) ∈ EG} and by NG(x) the set N+
G (x) ∪ N−

G (x). The degree of x is |NG(x)|.
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For a graph G we denote by G[X] the sub-graph of G induced by X ⊆ VG and we let G−X
be the sub-graph G[VG\X]. If G is a digraph, let u (G) be the undirected graph obtained from G
by forgetting the directions of edges, i.e., u (G) = (VG, EG ∪{(y, x) | (x, y) ∈ EG}). A digraph
G is said strongly connected if for every pair x, y ∈ VG, there is a sequence x0 = x, x1, . . . xk = y
such that (xi, xi+1) ∈ EG for every i ∈ {0, . . . k − 1}, and it is said connected if u (G) is
connected.

A tree is an acyclic connected undirected graph. In order to avoid confusions, the vertices
of trees will be called nodes. The nodes of degree at most 1 in trees are called leaves and
denoted by LT . A sub-cubic tree is a tree such that the degree of each node is at most 3.

A layout of a set V is a pair (T,L) of an undirected tree T and a bijective function
L : V → LT . For each edge (u, v) of T we let Xuv be the set of leaves reachable from u by a
chordless path going through v. Each edge (u, v) of T induces a bipartition {Xuv, LT \Xuv}
of LT , and thus a bipartition {Xuv, V \Xuv} = {L−1(Xuv),L

−1(LT \Xuv)} of V .

3 Rank-Width of Digraphs

In [15] Kanté defined a notion of rank-width for digraphs named GF(4)-rank-width. This
notion is based on a function, called cut-rank function, that measures how some bipartitions
of sets of vertices are connected. The cut-rank function is based on a representation of digraphs
by matrices over the field GF(4). We recall that GF(4) has four elements {0, 1, a , a 2} with the
property that 1 + a + a 2 = 0 and a 3 = 1 and is of characteristic 2.

For a digraph G, we denote by MG the (VG, VG)-matrix over GF(4) where:

MG[x, y] =























0 if (x, y) /∈ EG and (y, x) /∈ EG

a if (x, y) ∈ EG and (y, x) /∈ EG

a 2 if (y, x) ∈ EG and (x, y) /∈ EG

1 if (x, y) ∈ EG and (y, x) ∈ EG.

For every subset X of VG we let cutrk
(4)
G (X), called cut-rank function, be rk

(

MG[X, VG\X]
)

.

Lemma 2 ([15]). For every digraph G, the function cutrk
(4)
G is symmetric and sub-modular.

From now on, we denote by MG the (VG, VG)-matrix over GF(4) of a digraph G.

Definition 3 (GF(4)-Rank-Width). A sub-cubic layout of a digraph G is a layout (T,L) of VG

where T is sub-cubic. Let (T,L) be a sub-cubic layout of a digraph G. The GF(4)-rank-width

of an edge (u, v) of T is cutrk
(4)
G (Xuv). The GF(4)-rank-width of a sub-cubic layout (T,L) is

the maximum GF(4)-rank-width over all edges of T . The GF(4)-rank-width of G, denoted by
rwd(4)(G), is the minimum GF(4)-rank-width over all sub-cubic layouts of G.

Observation 4. Since GF(4) is an extension of GF(2), for every undirected graph G we have
rwd(4)(G) = rwd(G), where rwd(G) denotes the rank-width of G.
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4 Displit Decomposition

4.1 Bi-Partitive Families

Two bipartitions {X1, X2} and {Y1, Y2} of a set V overlap if Xi∩Yj 6= ∅ for every i, j ∈ {1, 2}.

Definition 5 (Bi-Partitive Family). Let V be a finite set and let F be a family of bipartitions
of V . Then F is bi-partitive if:

- {∅, V } 6∈ F ,
- for all v ∈ V , {{v}, V \{v}} ∈ F and
- for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2} overlap, then
{Xi ∩ Yj , V \(Xi ∩ Yj)} ∈ F , for every i, j ∈ {1, 2}.

A member {X1, X2} of a bi-partitive family F is trivial if |X1| ≤ 1 or |X2| ≤ 1, and is strong
if there is no {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2} overlap.

Bi-partitive families have been studied in [6]. They are very close to partitive families
[2, 16] introduced in order to generalize properties of modular decomposition. An example of
a bi-partitive family is the family of splits in a strongly connected digraph [5]. The following
proposition gives another example of a bi-partitive family.

Proposition 6 (Folklore). Let f : 2V → N be a symmetric and sub-modular function and
let m = min

∅(X(V
f(X). Then the family of minimums F = {{X, V \X} | f(X) = m} is

bi-partitive.

Proof. Let {X, V \X} and {Y, V \Y } be in F such that {X, V \X} and {Y, V \X} overlap.
Thus f(X ∩ Y ) + f(X ∪ Y ) ≤ 2m. Since X ∩ Y and X ∪ Y are non-empty, f(X ∩ Y ) ≥ m
and f(X ∪ Y ) ≥ m. Thus f(X ∩ Y ) = f(X ∪ Y ) = m and {X ∩ Y, V \(X ∩ Y )} and
{X ∪ Y, V \(X ∪ Y )} are in F .

A major result on bi-partitive families, that we recall in the following theorem, is that
every bi-partitive family can be represented by a unique labeled tree.

Theorem 7. Let F be a bi-partitive family on a finite set V . Then there is a unique layout
(T,L) of V , called the representative layout, such that each internal node of T has at least 3
neighbors, is marked degenerate, linear or prime and:

- For every (u, v) ∈ ET , the bipartition {Xuv, V \Xuv} is a strong bipartition in F and
there is no other strong bipartition in F .

- For every internal node u of T :

• If u is degenerated, then for every ∅ ( W ( NT (u), the bipartition
{∪v∈W Xuv, V \ ∪v∈W Xuv} is in F .

• If u is linear, there is an ordering v1, . . . , vk of NT (u) such that for every 1 ≤
i ≤ j < k, the bipartition {∪ℓ∈{i,...,j}X

uvℓ , V \ ∪ℓ∈{i,...,j} Xuvℓ} is in F .

- There is no other bipartition in F .

(By convention, an internal node of degree 3 is always degenerated.)

Remark 8. Theorem 7 is proved in [6] using a different formalism. It follows also directly
from results on partitive families [2, 16] using the simple bijection f(F) = {X ⊆ V \{v} |
{X, V \X} ∈ F} between bi-partitive families on V and partitive families on V \{v}, where
v ∈ V is fixed.
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Figure 1: Schematic view of a displit (left) and a Cunningham’s split (right).

Remark 9. If F is a bi-partitive family with the additional property:

- for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2} overlap,
{X1∆Y1, X1∆Y2} ∈ F ,

then F is said to be strongly bi-partitive. The representative layout of a strongly bi-partitive
family has no linear node. Cunningham showed that the family of splits in a connected
undirected graph is strongly bi-partitive [5]. Another example is the family of bi-joins in an
undirected graph [17].

4.2 Displits

Definition 10 (Displit). Let G be a digraph. A bipartition {X1, X2} of VG is a displit if

X1 6= ∅, X2 6= ∅ and cutrk
(4)
G (X1) ≤ 1.

Figure 1 shows a comparison between displits and splits on digraphs. A graph G is de-
generated if every bipartition of VG is a displit, and G is prime if every displit in G is trivial.
Finally G is linear if there is an ordering x1, . . . , xn of it’s vertices such that the family of
displits in G is {{{xi, . . . , xj}, VG\{xi, . . . , xj}} | 1 ≤ i ≤ j < n}. By convention, a graph with
at most 3 vertices is only degenerated.

By Proposition 6, the family of displits in a connected digraph is bi-partitive. By Theorem
7, this family can be represented by a unique labeled layout, that we call displit decomposition.

Observation 11. If {X1, X2} is a displit in G, then {X1, X2} is a split in u (G). The converse
is not necessarily true.

4.3 Quotient Graphs

Let (T,L) be a displit decomposition of a connected digraph G and let u be an internal node
of T . We recall that for every node v in NT (u), Xuv is the set of leaves reachable from u by a
chordless path going through v. The set {Xuv = L−1(Xuv) | v ∈ NT (u)} is a proper partition
of VG, and for every v ∈ NT (u), {Xuv, VG\X

uv} is a displit.
For every v ∈ NT (u), we choose a vertex xv in Xuv such that xv is adjacent to a vertex in

VG\X
uv. Such a xv always exists since G is connected. Let C(u) be the graph of vertex set

NT (u) and of edge set {(v, w) | (xv, xw) ∈ EG}. It is worth noticing that C(u) is isomorphic
to G[{xv | v ∈ NT (u)}], and that C(u) is not unique for a node u. Then we will consider C(u)
as an induced sub-graph of G. We now prove or state some technical lemmas.

Lemma 12. Let {X, Y } be a displit in G, and let x ∈ X and y ∈ Y such that x is adjacent to

y. Let {X ′, Y ′} be a bipartition of VG with Y ′ ⊆ Y . Then cutrk
(4)
G (Y ′) = cutrk

(4)
G′ (Y ′), where

G′ = G[Y ∪ {x}].
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Proof. Obviously cutrk
(4)
G′ (Y ′) ≤ cutrk

(4)
G (Y ′). By definition of displits, there is an X-vector

A and a Y -vector B such that MG[X, Y ] = At · B. Since x is adjacent to a vertex in Y ,
A[x] 6= 0. Thus MG[X, Y ′] = A[x]−1 ·At ·MG[{x}, Y ′]. Therefore, rk(MG[X ′\(X\{x}), Y ′]) =
rk(MG[X ′, Y ′]) since all rows in MG[X, Y ′] are generated by the row MG[{x}, Y ′].

Lemma 13. Let (T,L) be a displit decomposition of a digraph G and let u be a node of T . If
u is prime (resp. degenerated, linear), then C(u) is prime (resp. degenerated, linear).

Proof. Let {X, Y } be a bi-partition of VC(u), let X ′ = ∪v∈XXuv and let Y ′ = VG\X
′. We

show that {X, Y } is a displit in C(u) if and only if {X ′, Y ′} is a displit in G. Trivially, if
{X ′, Y ′} is a displit in G, then {X, Y } is a displit in C(u).

Now suppose that {X, Y } is a displit in C(u). {X ′, Y ′} does not overlap {Xuv, VG\X
uv}

for every v ∈ NT (u). We apply |NT (u)| times Lemma 12, for all {Xuv, VG\X
uv}. Thus

{X ′, Y ′} is a displit if and only if {X, Y } is a displit.

The following lemmas give characterization of degenerate and linear graphs. (Proofs are
given in Appendix.)

Lemma 14. If G is degenerated with at least 4 vertices, then either u (G) is a star, or G is
C ′

3 where each of the 3 vertices is substituted by a complete graph (maybe with 0 vertex).

Lemma 15. If G is linear and has at least 4 vertices, then there is an ordering (x1, . . . , xn)
of vertices of VG, and a function f : VG → {0, 1, 2} such that for all j > i:

- (xi, xj) ∈ EG if f(xi) ≡ f(xj) (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
- (xj , xi) ∈ EG if f(xi) ≡ f(xj) − 1 (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
- there are no other edges in the graph.

Theorem 16. Let G be a connected digraph with at least 3 vertices, and let (T,L) be its displit
decomposition. Then rwd(4)(G) = max{rwd(4)(C(u)) | u ∈ VT \LT }.

Proof. Let m = max{rwd(4)(C(u)) | u ∈ VT \LT }. Obviously m ≤ rwd(4)(G) (since C(u) is
an induced sub-graph of G). For every u ∈ VT \LT , let (Tu,Lu) be a sub-cubic layout of C(u)
of GF(4)-rank-width at most m. We suppose w.l.o.g. that the Tu are pairwise disjoint. We
construct a sub-cubic layout (T ′,L′) of G of GF(4)-rank-width at most m. Let T ′ be the
union of all Tu (for u ∈ VT \LT ), after the identification of the vertices u in Tv and v in Tu for
every (u, v) ∈ ET−LT

, and after contraction of every vertex of degree 2. For all x ∈ VG, let
L′(x) = Lu(L(x)) where {u} = NT (L(x)).

It is not hard to see that (T ′,L′) is a sub-cubic layout of G. Moreover, by Lemma 12, in
T ′ every edge has GF(4)-rank-width at most m.

4.4 Decomposition Algorithm

It is known that the split decomposition of an undirected graph can be computed in linear
time [7], and the split decomposition of a digraph in time O(m log(n)) [14]. We present here
a simple O(nm) algorithm to compute the displit decomposition of a digraph. This algorithm
is a simple adaptation of [9]. Due to space limitation, we present only the main lines, stated
in the following two lemmas without proofs.

Lemma 17. Let x and y be two vertices of a connected digraph G. We can compute in time
O(n + m) a non trivial displit {X, Y } such that x ∈ X and y ∈ Y (if it exists).
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Lemma 18. Given a digraph G, we can compute in time O(nm) a family F of non overlapping
displits such that for every displit {X, Y } in G, either {X, Y } ∈ F , or there is a bipartition
{X ′, Y ′} ∈ F such that {X, Y } and {X ′, Y ′} overlap.

The family constructed in the previous lemma contains obviously all strong displits in G.
A final O(nm) procedure finds every non-strong displits in F . This leads to the following
theorem.

Theorem 19. The displit decomposition of every digraph can be computed in time O(nm).

5 Digraphs of GF(4)-rank-width 1

In [15] Kanté defined a notion of vertex-minor for digraphs that extended the one for undi-
rected graphs. He also characterized the class of digraphs of GF(4)-rank-width at most k in
the following.

Theorem 20 ([15]). For each k, there is a finite list Ck of digraphs having at most (6k+1−1)/5
vertices such that a digraph G has GF(4)-rank-width at most k if and only if no digraph in Ck

is isomorphic to a vertex-minor of G.

When k = 1, the digraphs to exclude as vertex-minors have at most 7 vertices. However,
we do not know any polynomial-time algorithm that checks whether a given graph is a vertex-
minor of another. We will give in this section several characterizations of digraphs of GF(4)-
rank-width 1. As a consequence we get an algorithm for recognizing digraphs of GF(4)-rank-
width 1.

A vertex x of a digraph G is a pendant vertex of another vertex y if y is the only neighbor
of x in G. Two vertices x and y of a digraph G are called dtwins if x and y verify one of the
following exclusive conditions (A = N+

G−y(x), B = N−
G−y(x)):

1. N+
G−x(y) = A, N−

G−x(y) = B or,

2. N+
G−x(y) = B, N−

G−x(y) = (B\A) ∪ (A\B) or,

3. N+
G−x(y) = (A\B) ∪ (B\A), N−

G−x(y) = A.

We say that a digraph is completely decomposable by the displit decomposition if every
node in the displit decomposition is degenerate or linear. The main result of this paper is the
following theorem, analogous to Theorem 1.

Theorem 21. Let G be a connected digraph with at least 2 vertices. Then the following
conditions are equivalent:

1. G is completely decomposable by the displit decomposition.
2. G can be obtained from a single vertex by creating dtwins or adding pendant vertices.
3. G has GF(4)-rank-width 1.
4. For every W ⊆ V with |W | ≥ 4, G[W ] has a non-trivial displit.
5. u (G) is distance-hereditary and for every W ⊆ V with |W | ≤ 5, rwd(4)(G[W ]) ≤ 1.

Condition 5 gives a characterization of digraphs of GF(4)-rank-width 1 by forbidden in-
duced sub-graphs: a digraph has GF(4)-rank-width 1 if and only if it is (H, C)-free, where H
is the set of digraphs G such that u (G) is a house, a gem, a domino or a hole (Ck, k ≥ 5),
and C is the set of connected digraphs G with at most 5 vertices such that rwd(4)(G) > 1
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and for every x ∈ VG, rwd(4)(G− x) ≤ 1. A computer check shows that C contains 78 graphs
(Figure 3 in Appendix).

Before proving Theorem 21, let us state and prove two technical lemmas. The following is
immediate from the definitions.

Proposition 22. Let x and y be two vertices of a digraph G. Then {x, y} is a displit if and
only if x and y are dtwins or x is a pendant vertex of y or y is a pendant vertex of x.

The following proposition is a straightforward adaptation of [18, Proposition 7.1].

Proposition 23. Let x and y be dtwins of a digraph G such that G−x has at least one edge.
Then, rwd(4)(G − x) = rwd(4)(G)

Proof. By definition of GF(4)-rank-width we have rwd(4)(G − x) ≤ rwd(4)(G). We will prove
that rwd(4)(G − x) ≥ rwd(4)(G). Let (T,L) be a sub-cubic layout of GF(4)-rank-width k =
rwd(4)(G − x) of G − x. By definition, there is a bijection L between VG−x and LT . Let
v = L(y) and let u ∈ VT such that uv ∈ ET . Let T ′ be obtained from T as follows: VT ′ is the
set VT∪{u

′, w} (where u′ and w are two new nodes) and ET ′ the set (ET \{uv})∪{uu′, u′v, u′w}.
We let L′ : VG → LT ′ be such that L′(x) = w and for every z ∈ VG\x, L′(z) = L(z).

It is clear that (T ′,L′) is a sub-cubic layout of G. We claim that the GF(4)-rank-width of
(T ′,L′) is equal to the GF(4)-rank-width of (T,L).

It is clear that the GF(4)-rank-width of the edges u′v and u′w are at most 1. Since x and
y are dtwins, the GF(4)-rank-width of the edge uu′ is at most 1 (Proposition 22). Moreover,
the other edges of T ′ are in T , then their GF(4)-rank-width in (T ′,L′) is equal to their GF(4)-
rank-width in (T,L) (Lemma 12). Since G−x has at least one edge we have rwd(4)(G−x) ≥ 1.
Therefore rwd(4)(G − x) ≥ rwd(4)(G).

We can now begin the proof of Theorem 21.

Proof of Theorem 21. 1 → 2). By induction on |VG|. It is trivial if |VG| ≤ 2. Otherwise let
(T,L) be the displit decomposition of G, and let u be a leaf in T −LT . If u is degenerated, let
{v, w} ⊆ NT (u) ∩ LT . Otherwise u is linear and has at least 4 neighbors. Let v1, . . . vk be its
ordering. If NT (u)\LT ⊆ {v2, . . . , vk−1}, take v = v1 and w = vk. Otherwise take v = v2 and
w = v3. In all cases, {L−1({v, w}), VG\L

−1({v, w})} is a displit. By Proposition 22, either
x = L−1(v) and y = L−1(w) are dtwins, or one is a pendant vertex of the other. If x and y are
dtwins or x is a pendant vertex of y we let G′ = G − x, otherwise G′ = G − y. By induction
G′ is obtained from a single vertex by creating dtwins or adding pendant vertices.

2 → 3). By induction on |VG|. It is trivial if |VG| ≤ 2. Otherwise let x ∈ VG be the last
added vertex. If x is a pendant vertex, let {y} = NG(x), otherwise let y be the dtwin of x.
By induction, rwd(4)(G − x) = 1. Using Proposition 23, rwd(4)(G) = 1.

3 → 4). If rwd(4)(G) ≤ 1, then for every W ⊆ VG, rwd(4)(G[W ]) ≤ 1. When |W | ≥ 4, a
sub-cubic layout of G[W ] has an edge (u, v) such that {Xuv, V \Xuv} is non-trivial, and thus
G[W ] has a non-trivial displit.

4 → 1). Suppose that G is not completely decomposable. Then the displit decomposition
of G has a prime node u. By definition of a representative layout, the degree of u is at least
4. By Lemma 13, the quotient graph C(u) is prime and is an induced sub-graph of G with at
least 4 vertices.

3 → 5). By Observation 11, rwd(u (G)) = 1 since the layout of GF(4)-rank-width 1 for G is
a layout of rank-width 1 for u (G). Thus by Theorem 1, u (G) is distance hereditary. Moreover,
for every W ⊆ V , we have rwd(4)(G[W ]) ≤ 1.
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5 → 3). Due to space limitation we will give only a sketch of the proof. (For the complete
proof see Appendix A.3.) Suppose that G is a digraph such that rwd(4)(G) > 1 and such that
u (G) is distance hereditary. Let W be a minimal subset of VG such that rwd(4)(G[W ]) > 1.
Working on the split decomposition of u (G[W ]), one can show successively that:

- u (G[W ]) has no pendant vertex,
- if u (G[W ]) has a false twin, then G[W ] has at most 4 vertices,
- if u (G[W ]) has no false twin and no pendant vertex, then u (G) is complete, and
- if u (G[W ]) is complete, then G[W ] has at most 5 vertices.

Thus there is a W ⊆ VG of size at most 5 such that rwd(4)(G[W ]) > 1.

As a corollary of Theorems 19 and 21, we get an algorithm for recognizing digraphs of
GF(4)-rank-width 1.

Corollary 24. Digraphs of GF(4)-rank-width 1 can be recognized in time O(nm).

6 Concluding Remarks

Differences with Cunningham’s split decomposition of digraphs. Cunningham shows
that the family of splits in a strongly connected digraph is bi-partitive. He also gives a charac-
terization of degenerate and linear graphs for the split decomposition: a graph is degenerate
for the split decomposition if and only if it is complete or is a star, and is linear if and only if
it is a circle of transitive tournaments (CTT) [5].

The displit decomposition and the split decomposition of digraphs are both generalization
of the split decomposition of undirected graphs. A first difference is that for the displit
decomposition the graph has only to be connected.

The quotient graphs of the displit decomposition are induced sub-graphs of the original
graph; this is not necessarily true for the split decomposition of digraphs.

Finally, the split decomposition and the displit decomposition are mutually exclusive. For
all k ≥ 3 the graph C ′

k is linear for the split decomposition (and thus completely decomposable)
since it is a CTT, but it is prime for the displit decomposition since u (C ′

k) is prime for the
split decomposition. In the other hand, we can construct an infinite family of graphs linear
for the displit decomposition and prime for the split decomposition (Lemma 36 in Appendix).

Links between bi-rank-width and Cunningham’s split decomposition. Kanté de-
fined another digraph parameter called bi-rank-with, and showed relations between GF(4)-
rank-width and bi-rank-width [15]. A strongly connected digraph is completely decomposable
by Cunningham’s split decomposition if and only if it has bi-rank-width 2. It is open to find
another characterization for digraphs of bi-rank-width 2.

Generalization to 2-structures. A 2-structure is a complete digraph with labels on edges.
We mention that GF(4)-rank-width and displit decomposition can be generalized to 2-struc-
tures over finite fields. For a field F , we obtain a decomposition for 2-structures over F with
a characterization theorem similar to Theorem 21.

An interesting case is GF(3), which gives a decomposition theory for oriented graphs (i.e.,
directed anti-symmetric graph). The set of exclusion for oriented graphs of GF(3)-rank-width
1 is given in Figure 4.
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A Appendix

A digraph G is complete if for every pair of vertices x, y, (x, y) and (y, x) are edges of G; a
vertex x of G is universal if for every vertex y 6= x, (x, y) and (y, x) are edges of G. In a
complete digraph every vertex is a universal vertex.

Before continuing, let us state and prove some technical lemmas.

Lemma 25. Let G be a digraph with a universal vertex y ∈ VG, and let {X, Y } be a bipartition
of VG with y ∈ Y . Then {X, Y } is a displit in G if and only if X is a module of G − y.

Proof. If {X, Y } is a displit, then by definition, there exist an X-vector A and a Y -vector B
such that MG[X, Y ] = At · B. For every z ∈ Y , we have MG[X, {z}] = At · B[z]. Since y
is a universal vertex, then MG[X, {y}] = (1 · · · 1)t = At · B[y], i.e., At = B[y]−1 · (1 · · · 1)t.
Therefore, for every z ∈ Y , z does not distinguish any two vertices of X, i.e., X is a module
in G − y.

Conversely, if X is a module in G − y, then MG[X, Y ] = (1 · · · 1)t · B for some Y -vector
B. And, {X, Y } is a displit in G.

We define now an operation for digraphs such that u (G) is complete. This operation will
permit to transform a digraph into a digraph with a universal vertex, and thus will make
Lemma 25 applicable.

Let G be a digraph such that u (G) is complete, and let W ⊆ VG. Let G ∗ W = (VG, E′)
where E′∩W 2 = E∩W 2, E′∩(V \W )2 = E∩(V \W )2, and for every (x, y) ∈ W×(V \W ):

- if (x, y) ∈ E and (y, x) ∈ E then (y, x) ∈ E′,
- if (x, y) ∈ E and (y, x) 6∈ E then (x, y) ∈ E′ and (y, x) ∈ E′,
- if (x, y) 6∈ E and (y, x) ∈ E then (x, y) ∈ E′.

We make the following easy observations.

Proposition 26. Let G such that u (G) is complete.

(1) G ∗ A ∗ A = G ∗ (V \ A).

(2) G ∗ A ∗ A ∗ A = G, and thus G ∗ A ∗ (V \ A) = G.

(3) Let x ∈ VG and let B = N−
G (x)\N+

G (x). Then N+
G∗B(x) = V \{x}.

(4) Let x ∈ VG, let A = N+
G (x) \ N−

G (x) and let B = N−
G (x) \ N+

G (x). Then x is universal in
G ∗ B ∗ A ∗ A.

Lemma 27. Let G such that u (G) is complete, and let W ⊆ VG. {X, Y } is a displit in G if
and only if {X, Y } is a displit in G ∗ W .

Proof. If {X, Y } is a displit in G, then MG[X, Y ] = At · B for an X-vector A and a Y -vector
B. Then it is not hard to show that MG∗W [X, Y ] = A′t · B′, with A′[x] = a 2 · A[v] if x ∈ W
and A′[v] = A[v] if x 6∈ W , and B′[y] = a · B[y] if y ∈ W and B′[y] = B[y] if y 6∈ W . The
other way follows by Proposition 26 (2).
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A.1 Proof of Lemma 14

If G is degenerated, then u (G) is degenerated for the split decomposition. Thus either u (G) is
a star or u (G) is complete [5]. Note that every graph such that u (G) is a star is degenerated
for the displit decomposition.

We now suppose that u (G) is complete. By Lemma 25, if G has a universal vertex x, then
G−x is degenerated for the modular decomposition, i.e., every subset of vertices is a module.
A graph degenerated for the modular decomposition is either complete or edgeless [8]. Since
u (G) is complete, G is thus complete.

Suppose now that G has no universal vertex. Take an arbitrary vertex x ∈ VG and let
A = N+

G (x) \ N−
G (x), B = N−

G (x) \ N+
G (x) and C = N+

G (x) ∩ N−
G (x). Let G′ = G ∗ B and

G′′ = G′ ∗ A ∗ A. By Proposition 26 (4), x is universal in G′′, thus by Lemma 25, G′′ is
complete. Therefore, in G, A dominates B, B dominates C and C dominates A. This is
summarized in the following figure.

A

v

C

B A

v

C

BA

v

C

B

GG′ = G ∗ BG′′ = G′ ∗ A ∗ A

Thus G is a C ′
3 in where we have substituted the vertices by complete graphs of size |A|,

|B| and |C| + 1.

A.2 Proof of Lemma 15

Suppose that G is linear with at least 4 vertices. Let (x1, . . . , xn) be the linear ordering. Then
for every j ≥ i, {{xi, . . . xj}, V \ {xi, . . . xj}} is a split in u (G). Since the family of splits in
undirected graphs is strongly bi-partitive: u (G) is degenerated, i.e., G is either a star or is
complete. If u (G) is a star, then by Lemma 14, G is degenerated. Thus u (G) is complete.

Let A = N+
G (xn) \ N−

G (xn) and B = N−
G (xn) \ N+

G (xn). Let G′′ = G ∗ B ∗ A ∗ A. By
Proposition 26 (4), xn is universal in G′′. By Lemma 25, G is linear if and only if G′′ − xn is
linear for the modular decomposition, i.e., G′′ − xn is a transitive tournament [8]. Finally it
is not hard to show that G′′ − xn is a transitive tournament if and only if G has the desired
form.

A.3 Proof of Theorem 21 (5 → 3)

We start by two technical Propositions.

Proposition 28. Let G be a connected digraph such that u (G) is distance hereditary and
rwd(4)(G) = 1. If {X, Y } is a strong split in u (G), then {X, Y } is a displit in G.

Proof. Since {X, Y } is a strong split in u (G), there is no displit {X ′, Y ′} such that {X ′, Y ′}
and {X, Y } overlap. Suppose that {X, Y } is not a displit in G and let (T,L) be a sub-cubic
layout of G of GF(4)-rank-width 1. Each edge uv of T induces a bipartition {Xuv, VG\X

uv}
of VG.
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Since {Xuv, VG\X
uv} is a split, it does not overlap {X, Y }. If Xuv ( X or Xuv ( Y , we

orient the edge from v to u (we remove the edge (u, v)), otherwise we orient it from u to v
(we remove the edge (v, u)). Let now w be an internal node in T of out-degree zero. Such
a node always exists and w cuts VG into three sets {A, B, C}. For every W ∈ {A, B, C},
{W, VG \ W} is a displit, and W ⊆ X or W ⊆ Y . Thus there is a W ∈ {A, B, C} such that
{W, VG \ W} = {X, Y }. Contradiction.

Proposition 29. Let X, Y1 and Y2 such that X ∩ (Y1 ∪ Y2) = ∅, {X, Y1} is a displit in
G[X ∪Y1] and {X, Y2} is a displit in G[X ∪Y2]. If there is an edge xy ∈ (X×Y1∩Y2)∩E

u (G),
then {X, Y1 ∪ Y2} is a displit in G[X ∪ Y1 ∪ Y2].

Proof. If {X, Yi}, for i ∈ {1, 2}, is a displit in G[X∪Yi], then MG[X, Yi] = At
i ·Bi for X-vectors

Ai and Yi-vectors Bi. Since MG[X, {y}] 6= (0 · · · 0)t, Bi[y] 6= 0. Moreover, MG[X, {y}] =
At

1 ·B1[y] = At
2 ·B2[y], i.e., At

2 = α ·At
1 for α = B1[y]/B2[y]. We let C be the (Y1 ∪Y2)-vector

where C[z] = B1[z] if z ∈ Y1 and C[z] = α · B2[z] if z ∈ Y2\Y1. It is easy to verify that
MG[X, Y1 ∪ Y2] = At

1 · C.

From now on, we let G be a connected digraph such that:

- u (G) is distance hereditary,
- rwd(4)(G) > 1 and
- for every x ∈ VG, rwd(4)(G − x) ≤ 1.

In particular G has at least 4 vertices. Let (T,L) be the split decomposition of u (G).

Claim 30. G is prime w.r.t. the displit decomposition ( i.e., there is no displit {X, Y } of G
such that |X| > 1 and |Y | > 1).

Proof. Suppose that G is not prime and let {X, Y } be a non-trivial displit in G. Let xy ∈
(X × Y )∩E

u (G). Let G1 = G[X ∪ {y}] and G2 = G[Y ∪ {x}]. By hypothesis, rwd(4)(G1) ≤ 1

and rwd(4)(G2) ≤ 1.
Let (Ti,Li) be a sub-cubic layout of Gi of GF(4)-rank-width 1, for i ∈ {1, 2}. Let T be

the tree (VT1 ∪ VT2 , ET1 ∪ ET2 ∪ {uv}) where L1(y) = v and L2(x) = u. Let L : VG → LT be
the bijection such that L(x) = L1(x) if x ∈ X and L(y) = L2(y) if y ∈ Y . It is not hard to
see that (T,L) is a sub-cubic layout of G. Moreover, by Lemma 12, the GF(4)-rank-width of
(T,L) is 1. Contradiction.

Claim 31. u (G) has no pendant vertex.

Proof. Suppose that x is a pendant vertex of y in u (G). Then {{x, y}, VG \ {x, y}} is a
non-trivial displit. Contradiction with Claim 30.

Claim 32. If u (G) has a false twin, then G has at most 4 vertices.

Proof. Let x and y be two false twins in u (G). By Claim 31, |NG(x)| > 1 (similarly for y).
Assume for every z, t ∈ NG(x), {{z, t}, {x, y}} is a displit in G[{x, y, z, t}]. Then by

Proposition 29, {{x, y}, NG(x)} is a displit in G[{x, y}∪NG(x)], and thus {{x, y}, VG\{x, y}}
is a non-trivial displit in G. Contradiction with Claim 30.

Let z, t ∈ NG(x) such that {{z, t}, {x, y}} is not a displit. Moreover, since y is not
adjacent to x, {{x, z}, {y, t}} and {{x, t}, {y, z}} are not displits in G[{x, y, z, t}]. Thus
rwd(4)(G[{x, y, z, t}]) > 1. Therefore, VG = {x, y, z, t}.
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Claim 33. If u (G) has no pendant vertex and no false twin, then u (G) is complete.

Proof. Suppose that u (G) is not complete. Thus the split decomposition tree (T,L) of u (G)
has at least two internal nodes.

Let u be an internal node adjacent to two leaves u1 and u2. We know that u is a clique
node, otherwise there will be a false twin or a pendant vertex in u (G). Since u (G) is not
complete, u is adjacent to an internal node v. By the properties of split decomposition tree
[5], v must be a star node, and since u (G) has no pendant vertex and no false twin, v has to
be adjacent to an internal node w.

B = VG \ (Xvu ∪ Xvw). Note that |Xvu| ≥ 2 and |Xvw| ≥ 2. Suppose that |Xvw| > 2
and let c, c′ ∈ Xvw\{y} such that x ∈ Xvu ∩ NG(B ∪ Xvw) and y ∈ NG(Xvu)\Xvu. Then
{Xvu, (VG \Xvu) \ {c}} is a strong split in u (G− c), and {Xvu, (VG \Xvu) \ {c′}} is a strong
split in u (G − c′). By Proposition 28, {Xvu, (VG \ Xvu) \ {c}} is a displit in G − c and
{Xvu, (VG \ Xvu) \ {c′}} is a displit in G − c′, and by Proposition 29 {Xvu, VG \ Xvu} is a
non-trivial displit in G. Contradiction.

Thus |Xvw| = 2 and w is a complete node. Now u and w play a symmetric role, and
with the previous argument |Xvu| = 2. Suppose w.l.o.g. that NG(Xvu) ∩ B 6= ∅, and let
y ∈ B ∩ NG(Xvu), x ∈ Xvu ∩ NG(b) and Xvw = {c, c′}. Then {Xvu, (VG \ Xvu) \ {c}} is
a strong split in u (G − c), and {Xvu, (VG \ Xvu) \ {c′}} is a strong split in u (G − c′). By
Proposition 28, {Xvu, (VG \Xvu) \ {c}} is a displit in G− c and {Xvu, (VG \Xvu) \ {c′}} is a
displit in G− c′. Now Proposition 29 can apply with xy, and {Xvu, VG \Xvu} is a non-trivial
displit of G. Contradiction.

Claim 34. If u (G) is complete, then G has at most 5 vertices.

Proof. Let x ∈ VG. Let A = N+
G (x) \ N−

G (x) and B = N−
G (x) \ N+

G (x). Let G′′ = G ∗ B ∗
A ∗ A. By Proposition 26 (4), x is universal in G′′. By Lemma 25, G is prime if and only
if G′′ − x is prime for the modular decomposition. If a graph H is prime for the modular
decomposition, and |VH | > 4, then there is a W ′ ( VH such that |W | ≥ 3 and H[W ] is prime
[8]. Thus if |VG| > 5, there is a W ( VG \ {x} such that |W | ≥ 3 and G′′[W ] is prime for the
modular decomposition. By Lemma 25, G[W ∪ {x}] is prime for the displit decomposition.
Contradiction with rwd(4)(G[W ∪ {x}]) ≤ 1.

To summarize, we get the following lemma.

Lemma 35. Let G be a graph such that u (G) is distance hereditary, and rwd(4)(G) > 1. Then
there exists W ⊆ VG such that rwd(4)(G[W ]) > 1 and u (G[W ]) is either a C4, a diamond, a
K4 or a K5.

Proof. Let W ⊆ VG be a set of minimum size such that rwd(4)(G[W ]) > 1. Obviously |W | ≥ 4,
and for every x ∈ W , rwd(4)(G[W \ {x}]) ≤ 1. Thus G[W ] is connected, otherwise G[W ] has
a non trivial displit. By Claim 31, u (G[W ]) has no pendant vertex. By Claim 32, if u (G[W ])
has a false twin, then |W | ≤ 4 and thus u (G[W ]) is either C4, a diamond or a K4. Finally,
by Claims 33 and 34, if u (G[W ]) has no pendant vertex and no false twin, then u (G[W ]) is
complete of size at most 5.

A.4 Lemma 36

For k ≥ 2, let Gk be the digraph of vertex set {y0, . . . , y2k} and of edge set EG such that:
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Figure 2: Graph Gk, linear for the displit decomposition and prime for the split decomposition.

- (y2i, y2j) ∈ EGk
for every 0 ≤ i < j ≤ k,

- (y2i+1, y2j+1) ∈ EGk
for every 0 ≤ i < j < k,

- (y2j+1, y2i) ∈ EGk
for every 0 ≤ i ≤ j < k,

- (y2i, y2j+1) ∈ EGk
and (y2j+1, y2i) ∈ EGk

for every 0 ≤ j < i ≤ k.

Lemma 36. Gk is prime for split decomposition and linear for displit decomposition.

Proof. Obviously Gk respects condition of Lemma 15 with f(yi) = 1 if i is even and f(yi) = 0
if i is odd.

Suppose that Gk has a non-trivial split {X, Y }. W.l.o.g. y0 ∈ Y . We suppose that X and
Y are respectively partitionned into {X(i,j)}i,j∈{0,1} and {Y(i,j)}i,j∈{0,1} as in Figure 1.

Since u (Gk) is complete, then y0 6∈ Y(0,0). Suppose that y0 ∈ Y(1,1). Then X(1,1) is empty,
and there is no (x, y) ∈ X×Y such that {(x, y), (y, x)} ⊆ EG. The graph (VG \{y0}, EGk−y0 ∩
{(y, x) | (x, y) ∈ EGk−y0}) is connected, thus either VG \ {y0} ⊆ X or VG \ {y0} ⊆ Y .
Contradiction.

Suppose now that y0 ∈ Y(1,0). Then X(0,0) and X(1,0) are empty. Moreover for every even i,
yi ∈ Y . Since {X, Y } is non trivial, there is a p < q such that y2p+1 ∈ X and y2q+1 ∈ X. But
{{y2p, y2q}, {y2p+1, y2q+1}} is not a split in Gk[{y2p, y2p+1, y2q, y2q+1}]. Contradiction. The
last case y0 ∈ Y(0,1) is similar to the case y0 ∈ Y(1,0).
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Figure 3: Exclusions for directed graphs of GF(4)-rank-width 1.

Figure 4: Exclusions for oriented graphs of GF(3)-rank-width 1.
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