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Problem Definition
Let G be a graph on n vertices and m edges. An edge is written xy (equivalently yx). A
dominating set in G is a set of vertices D such that every vertex of G is either in D or
is adjacent to some vertex of D. It is said to be minimal if it does not contain any other
dominating set as a proper subset. For every vertex x let N [x] be {x} ∪ {y | xy ∈ E},
and for every S ⊆ V let N [S] :=

⋃
x∈S N [x]. For S ⊆ V and x ∈ S we call any

y ∈ N [x] \ N [S \ x] a private neighbor of x with respect to S. The set of minimal
dominating sets of G is denoted by D(G). We are interested in an output-polynomial
algorithm for enumerating D(G), i.e., listing, without repetitions, all the elements of
D(G) in time bounded by p(n+m,

∑
D∈D(G)

|D|) (Dom-Enum for short).

It is easy to see that Dom-Enum is a special case of Hypergraph Dualiza-
tion. Let N (G), called the closed neighborhood hypergraph, be the hypergraph with
hyper-edges {N [x] | x ∈ V }. It is easy to see that D is a dominating set of G if
and only if D is a transversal of N (G). Hence, Dom-Enum is a special case of Hy-
pergraph Dualization. For several graph classes the closed neighborhood hyper-
graphs are subclasses of hypergraph classes where an output-polynomial algorithm is
known for Hypergraph Dualization, e.g. minor-closed classes of graphs, graphs
of bounded degree, graphs of bounded conformality, graphs of bounded degeneracy,
graphs of logarithmic degeneracy, [11; 12; 19]. So, Dom-Enum seems more tractable
than Hypergraph Dualization since there exist families of hypergraphs that are
not closed neighborhoods of graphs [1].
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Key Results
Contrary to several special cases of Hypergraph Dualization in graphs, (e.g. enu-
meration of maximal independent sets, enumeration of spanning forests, etc.) Dom-
Enum is equivalent to Trans-Enum. Indeed, it is proved in [13] that with every
hypergraph H one can associate a co-bipartite graph B(H) such that every minimal
dominating set of B(H) is either a transversal ofH or has size at most 2. A consequence
is that there exists a polynomial delay polynomial space algorithm for Trans-Enum
if and only if there exists one for Dom-Enum, even in co-bipartite graphs. The reduc-
tion is moreover asymptotically tight (with respect to polynomial delay reductions as
defined in [19]) in the sense that there exist hypergraphs H such that for every graph G
we cannot have tr(H) = D(G) [13]. This intriguing result has the advantage of bringing
tools from graph structural theory to tackle the difficult and widely open problem Hy-
pergraph Dualization. Furthermore, until recently the most graph classes where
Dom-Enum is known to be tractable were those for which closed neighborhood hyper-
graphs were subclasses of some of the tractable hypergraph classes for Hypergraph
Dualization. We will give examples of graph classes where graph theory helps a
lot to solve Dom-Enum, and sometimes allows to introduce new techniques for the
enumeration.

It is widely known now that every monadic second-order formula can be checked
in polynomial time in graph classes of bounded clique-width [3; 20]. Courcelle proved
in [2] that one can also enumerate, with linear delay linear space, the solutions of every
monadic second-order formula. Since one can express in monadic second-order logic
that a subset D of vertices is a minimal dominating set, Dom-Enum has a linear delay
linear space in graph classes of bounded clique-width. The algorithm by Courcelle is
quite ingenious: it firsts constructs a DAG some sub-trees of which correspond to the
positive runs of the tree-automata associated with the formula on the given graph and
then enumerate these sub-trees.

Many graph classes do not have bounded clique-width (interval graphs, permu-
tation graphs, unit-disk graphs, etc.) and many such graph classes have nice structures
that helped in the past for solving combinatorial problems, e.g. the clique-tree of chordal
graphs, permutation models, etc. For some of these graph classes structural results can
help to solve Dom-Enum.

A common tool in enumeration area is the parsimonious reduction. One wants
to enumerate a set of objects O and instead constructs a bijective function b : O → T
such that there is an efficient algorithm to enumerate T . For instance it is proved in
[11; 13] that every minimal dominating set D of a split graph G can be characterized by
D∩C(G) where C(G) is the clique of G. A consequence is that in a split graph G there
is a bijection between D(G) and the set {S ⊆ C(G) | ∀x ∈ S, x has a private neighbor},
and since this later set is an independent system, Dom-Enum in split graphs admits
a linear delay polynomial space algorithm.

One can obtain other parsimonious reductions using graph structures. For in-
stance, it is easy to check that every minimal dominating set in an interval graph is
a collection of paths. Moreover, using the interval model (and ordering intervals from
their left endpoints) every minimal dominating set can be constructed greedily by keep-
ing track of the last two chosen vertices. Indeed it is proved in [14] that with every
interval graph G one can associate a DAG the maximal paths of which are in bijection
with the minimal dominating sets of G. The nodes of the DAG are pairs (x, y) such
that x < y and such that x and y can be both in a minimal dominating set, and the
arcs are ((x, y), (y, z)) such that (1) {x, y, z} can be in a minimal dominating set, (2)
there is no vertex between y and z that is not dominated by y or z; sources are pairs
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(x, y) where every interval before x is dominated by x, and sinks are pairs (x, y) where
every interval after y is dominated by y. This reduction to maximal paths of a DAG
can be adapted to several other graph classes having a linear structure similar to the
interval model, e.g. permutation graphs, circular-arc graphs [14]. In general, if for ev-
ery graph G in a graph class C one can associate an ordering of the vertices such that
for every subset S ⊆ V the possible ways to extend S into a minimal dominating set
depends only on the last k vertices of S, for some fixed constant k depending only on
C, then for every G ∈ C the enumeration of D(G) can be reduced to the enumeration
of paths in a DAG as for interval graphs and thus Dom-Enum is tractable in C [19].
This seems for instance to be the case for d-trapezoid graphs.

Parsimonious reductions between graph classes can be also defined. For instance,
the completion of a graph G, i.e. the set of edges that can be added to G without
changing D(G) are characterized in [11; 13]; this characterization lead the authors to
prove that the completion of every P6-free chordal graph is a split graph, which results
in a linear delay polynomial space algorithm for Dom-Enum in P6-free chordal graph.

The techniques developed by the Hypergraph Dualization community com-
bined with graph structural theory can give rise to new tractable cases of Dom-Enum.
For instance, the main drawback of Berge’s algorithm is that at some level computed
transversals are not necessarily subsets of solutions and this prevents from obtaining
an output-polynomial algorithm since the computed set may be arbitrary large com-
pared to the solution set [21]. One way to overcome this difficulty consists in choosing
some levels l1, . . . , lk of Berge’s algorithm such that every computed set at level lj is
a subset of a solution at level lj+1. A difficulty with that scheme is to compute all
the descendants in level lj+1 of a transversal in level lj. This idea combined with the
structure of minimal dominating sets in line graphs is used to derive a polynomial delay
polynomial space algorithm for Dom-Enum in line graphs [15]. A consequence is that
there is a polynomial delay polynomial space algorithm to list the set of minimal edge
dominating sets in graphs.

Another famous technique in enumeration area is the back tracking. Start from
the empty set, and in each iteration choose a vertex x and partition the problem into
two sub-problems: the enumeration of minimal dominating sets containing x, and the
enumeration of those not containing x; at each step we have a set X to include in
the solution and a set Y not to include. If at each step one can solve the Extension
Problem, i.e. whether there is a minimal dominating set containing X and not inter-
secting Y , then Dom-Enum admits a polynomial delay polynomial space algorithm.
However, the Extension Problem is NP-complete in general [19] and even in split
graphs [16]. But, sometimes structure helps. For instance, in split graphs whenever
X ∪ Y ⊆ C(G), the Extension Problem is polynomial [11; 13] and was the key
for the linear delay algorithm. Another special case of the Extension Problem is
proved to be polynomial in chordal graphs using the clique tree of chordal graphs and
is also the key to prove that Dom-Enum in chordal graphs admits a polynomial delay
polynomial space algorithm [16]. The algorithm uses deeply the clique tree and is a
nested combination of several enumeration algorithms.

Open Problems
1. The first major challenge is to find an output-polynomial algorithm for Dom-Enum,

even in co-bipartite graphs. One way to address this problem is to understand the
structure of minimal dominating sets in a graph. Failing to solve this problem,
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can graphs help to improve the quasi-polynomial time algorithm by Fredman and
Khachiyan [7]?

2. Until now if the techniques used to solve Dom-Enum in many graph classes are well-
known, deep structural theory of graphs is not used and the used graph structures
are more or less ad-hoc. Can we unify all these results and obtain at the same time
new positive results. Indeed, there are several well-studied graph classes where the
status of Dom-Enum is still open: bipartite graphs, unit-disk graphs, graphs of
bounded expansion to cite a few. Are developed tools sufficient to address these
graph classes?

3. There are several well-studied variants of the dominating set problem, in particular
total dominating set and connected dominating set (see the monographs [9; 10]).
It is proved in [13] that the enumeration of minimal total dominating sets and
minimal connected dominating sets in split graphs is equivalent to Hypergraph
Dualization. This is somehow surprising and we do not yet understand why such
small variations make the problem difficult even in split graphs. Can we explain
this situation?

4. From [13] we know that the enumeration of minimal connected dominating sets
is harder than Hypergraph Dualization. Are both problems equivalent? Can
we find a graph class C where each graph in C has a non-exponential number of
minimal connected dominating sets, but minimum connected dominating set is NP-
complete? Notice that if a class of graphs C has a polynomially bounded number
of minimal separators, then the enumeration of minimal connected dominating sets
can be reduced to Dom-Enum [13].

5. A related question to Dom-Enum is a tight bound for the number of minimal
dominating sets in graphs. The best upper bound is O(1.7159n) and the best lower
bound is 15n/6 [6]. For several graph classes tight bounds were obtained [4; 8]. Prove
that 15n/6 is the upper bound or find the tight bound.

6. Another related subject to Dom-Enum is the counting of (minimal) dominating sets
in time polynomial in the input graph. If the counting of dominating sets is a #P-
hard problem and have been investigated in the past [5; 17; 18], not so much is known
for the counting of minimal dominating sets, one can cite few examples: graphs of
bounded clique-width [2], and interval, permutation and circular-arc graphs [14]. If
we define forG the minimal domination polynomial MD(G, x) that is the generating
function of its minimal dominating sets, for which graph classes this polynomial can
be computed? Does it have a (linear) recursive definition? For which values x can
we evaluate it?
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