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Abstract. A transition in a graph is a pair of adjacent edges. Given a
graph G = (V,E), a set of forbidden transitions F ⊆ E × E and two
vertices s, t ∈ V , we study the problem of finding a path from s to t
which uses none of the forbidden transitions of F . This means that it is
forbidden for the path to consecutively use two edges forming a pair in
F . The study of this problem is motivated by routing in road networks
in which forbidden transitions are associated to prohibited turns as well
as routing in optical networks with asymmetric nodes, which are nodes
where a signal on an ingress port can only reach a subset of egress ports.
If the path is not required to be elementary, the problem can be solved in
polynomial time. On the other side, if the path has to be elementary, the
problem is known to be NP-complete in general graphs [Szeider 2003]. In
this paper, we study the problem of finding an elementary path avoiding
forbidden transitions in planar graphs. We prove that the problem is
NP-complete in planar graphs and particularly in grids. In addition, we
show that the problem can be solved in polynomial time in graphs with
bounded treewidth. More precisely, we show that there is an algorithm
which solves the problem in time O((3∆(k+1))2k+2n)) in n-node graphs
with treewidth at most k and maximum degree ∆.

1 Introduction

Driving in New-York is not easy. Not only because of the rush hours and the taxi
drivers, but because of the no-left, no-right and no U-turn signs. Even in a “grid-
like” city like New-York, prohibited turns might force a driver to cross several
times the same intersection before eventually reaching their destination. In this
paper, we give hints explaining why it is difficult to deal with forbidden-turn
signs when driving in grid-like road networks.

Let G = (V,E) be a graph. A transition in G is a pair of two distinct edges
incident to a same vertex. Let F ⊆ E × E be a set of forbidden transitions in
G. We say that a path P = (v0, . . . , vq) is F-valid if it contains none of the
transitions of F , i.e., {{vi−1, vi}, {vi, vi+1}} /∈ F for i ∈ {1, . . . , q− 1}. Given G,
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F and two vertices s and t, the Path Avoiding Forbidden Transitions (PAFT)
problem consists in finding an F-valid s-t-path.

The PAFT problem arises in many contexts. In optical networks for instance,
nodes can be highly asymmetric with respect to their switching capabilities as
pointed out in [2]. This means that an optical node might have some restrictions
on its internal connectivity and that, consequently, signal on a certain ingress
port can only reach a subset of the egress ports. As explained in [2, 4, 7], a node
can be asymmetrically configured for many reasons such as the limitation on
the number of physical ports of optical switch components and the low cost of
asymmetric nodes compared to symmetric ones. The existence of asymmetric
nodes adds some connectivity constraints in the network. This has motivated
some studies to re-investigate, under the assumption of the existence of asym-
metric nodes, some classical problems in optical network, such as routing [2, 4,
9] and protection with node-disjoint paths [7]. These studies do not highlight
the computational complexity of the problems they consider. We point out here
that the optical nodes configured asymmetrically can be modeled as vertices
with forbidden transitions and the routing problem is an application of PAFT.
The study of PAFT is also motivated by its relevance to vehicle routing. In road
networks, it is possible that some roads are closed due to traffic jams, construc-
tion, etc. It is also frequent to encounter no-left, no-right and no U-turn signs
at intersections. These prohibited roads and turns can be modeled by forbidden
transitions.

When the PAFT problem is studied, a distinction has to be made accord-
ing to whether the path to find is elementary (cannot repeat vertices) or non-
elementary. Indeed, PAFT can be solved in polynomial time [6] for the non-
elementary case while finding an elementary path avoiding forbidden transitions
has been proved NP-complete in [12]. In this paper, we study the elementary
version of the PAFT problem in planar graphs and more particularly in grids.
Our interest for planar graphs is motivated by the fact that they are closely re-
lated to road networks. They are also an interesting special case to study while
trying to capture the difficulty of the problem. Furthermore, to the best of our
knowledge, this case has not been addressed before in the literature.

Related work PAFT is a special case of the problem of finding a path avoiding
forbidden paths (PFP) introduced in [15]. Given a graph G, two vertices s and t,
and a set S of forbidden paths, PFP aims at finding an s-t-path which contains
no path of S as a subpath. When the forbidden paths are composed of exactly
two edges, PFP is equivalent to PAFT. Many papers address the non-elementary
version of PFP, proposing exact polynomial solutions [15, 8, 1]. The elementary
counterpart has been recently studied in [10] where a mathematical formulation
is given and two solution approaches are developed and tested. The computa-
tional complexity of the elementary PFP can be deduced from the complexity
of PAFT which has been established in [12]. Szeider proved in [12] that finding
an elementary path avoiding forbidden transitions is NP-complete and gave a
complexity classification of the problem according to the types of the forbidden
transitions. The NP-completeness proof in [12] does not extend to planar graphs.



PAFT is also a generalization of the problem of finding a properly colored
path in an edge-colored graph (PEC). Given an edge-colored graph Gc and
two vertices s and t, the PEC problem aims at finding an s-t-path such that
any consecutive two edges have different colors. It is easy to see that PEC is
equivalent to PAFT when the set of forbidden transitions consists of all pairs of
adjacent edges that have the same color. The PEC problem is proved to be NP-
complete in directed graphs [5] which directly implies that the PAFT problem
is NP-complete in directed graphs4.

Contribution Our main contribution is the proof that the PAFT problem is
NP-complete in grids. We also prove that the problem can be solved in time
O((3∆(k+1))2k+2n)) in n-node graphs with treewidth at most k and maximum
degree ∆. In other words, we prove that the PAFT problem is FPT in k + ∆.
Our NP-completeness result strengthens the one of Szeider [12] established in
2003 and extends to the problem of PFP.

The paper is organized as follows. The problem of PAFT is formally stated in
Section 2. In Section 3, the problem is proven NP-complete in grids. A polynomial
time algorithm for graphs with bounded treewidth is presented in Section 4.
Finally, some directions for future work are presented in Section 5

2 Problem statement

Let G = (V,E) be a graph. Given a subgraph H of G, a transition in H is a
(not ordered) set of two distinct edges of H incident to a same vertex. Namely,
{e, f} is a transition if e, f ∈ E(H), e 6= f and e∩f 6= ∅. Let T denote the set of
all transitions in G. Let F ⊆ T be a set of forbidden transitions. A transition in
A = T \F is said allowed. A path is any sequence (v0, v1, · · · , vr) of vertices such
that vi 6= vj for any 0 ≤ i < j ≤ r and ei = {vi, vi+1} ∈ E for any 0 ≤ i < r.
Given two vertices s and t in G, a path P = (v0, v1, · · · , vr) is called an s-t-path if
v0 = s and vr = t. Finally, a path P = (v0, v1, · · · , vr) is F-valid if any transition
in P is allowed, i.e., {ei, ei+1} /∈ F for any 0 ≤ i < r.

Problem 1 (Problem of Finding a Path Avoiding Forbidden Transitions, PAFT).
Given a graph G = (V,E), a set F of forbidden transitions and two vertices
s, t ∈ V . Is there an F-valid s-t-path in G?

3 NP-completeness in grids

We start by proving that the PAFT problem is NP-complete in grids. For this
purpose, we first prove that it is NP-complete in planar graphs with maximum

4 Note that, in [5], the authors state that their result can be extended to planar
graphs. However, there is a mistake in the proof of the corresponding Corollary 7:
to make their graph planar, vertices are added when edges intersect. Unfortunately,
this transformation does not preserve the fact that the path is elementary.



degree at most 8 by a reduction from 3-SAT. Then, we propose simple transfor-
mations to reduce the degree of the vertices and prove that the PAFT problem
is NP-complete in planar graphs with degree at most 4. Finally, we prove it is
NP-complete in grids.

Lemma 1. The PAFT problem is NP-complete in planar graphs with maximum
degree 8.

Proof. The problem is clearly in NP. We prove the hardness using a reduction
from the 3-SAT problem. Let Φ be an instance of 3-SAT, i.e., Φ is a boolean for-
mula with variables {v1, · · · , vn} and clauses {C1, · · · , Cm}. We build a grid-like
planar graph G where rows correspond to clauses and columns correspond to
variables. In what follows, the colors are only used to make the presentation eas-
ier. Moreover, we consider undirected graphs but, since the forbidden transitions
can simulate orientations, the figures are depicted with directed arcs for ease of
presentation. Please note also that we use a multigraph in the reduction for the
sake of simplicity. This multigraph can easily be transformed into a simple graph
without changing the maximum degree.

Gadget Gij. For any i ≤ n and j ≤ m, we define the gadget Gij depicted in
Figure 1 and that consists of 4 edge-disjoint paths from sij to tij : two “blue”
paths BTij and BFij , and two “red” paths RTij and RFij defined as follows.

– RTij = (sij , αij , trueij , xij , true
′
ij , yij , zij , tij);

– BTij = (sij , βij , trueij , xij , true
′
ij , yij , zij , tij);

– RFij = (sij , xij , yij , γij , falseij , zij , false
′
ij , tij);

– BFij = (sij , xij , yij , δij , falseij , zij , false
′
ij , tij).

The forbidden transitions Fij of the gadget Gij are defined in such a way
that the only way to go from sij to tij is by following one of the paths in
{BTij ,BFij ,RTij ,RFij}. It is forbidden to use any transition consisting of two
edges from two different paths of the set {BTij ,BFij ,RTij ,RFij}.

Intuitively, assigning the variable vi to True will be equivalent to choosing
one of the paths BTij or RTij (called positive paths) depicted with full lines in
Fig. 1. Respectively, assigning vi to False will correspond to choosing one of the
paths BFij or RFij (called negative paths) and depicted by dotted line in Fig. 1.

So far, it is a priori not possible to start from sij by one path and arrive
in tij by another path. In particular, the color by which sij is left must be
the same by which tij is reached. If Variable vi appears in Clause Cj , we add
one edge to Gij as follows. If vi appears positively in Cj , we add the brown
edge {αij , βij} that creates a “bridge” between BTij and RTij . Similarly, if vi
appears negatively in Cj , we add the green edge {γij , δij} that creates a “bridge”
between BFij and RFij . When the gadget Gij contains a brown (resp. green)
edge, all the transitions containing the brown (resp. green) edge are allowed;
this makes it possible to switch between the positive (resp. negative) paths BTij
and RTij (resp. BFij and RFij) when going from sij to tij . Hence, if vi appears
in Cj , it will be possible to start from sij with one color and arrive to tij with
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Fig. 1: Example of the Gadget-graph Gij for Variable vi, and j ≤ m. Brown (resp.
green) edge is added if vi appears positively (resp., negatively) in Cj . If vi /∈ Cj , none
of the green nor brown edge appear.

a different one. Note that, the type of path (positive or negative) cannot be
modified between sij and tij .

We characterize the Fij-valid sij-tij-paths in Gij with the following straight-
forward claims.

Claim 1 The Fij-valid sij-tij-paths in Gij are RTij ,BTij ,RFij ,BFij and

– if variable vi appears positively in Clause Cj:

• the path RBTij that starts with the first edge {sij , αij} of RTij, then
uses brown edge {αij , βij} and ends with all edges of BTij but the first
one;

• the path BRTij that starts with the first edge {sij , βij} of BTij, then uses
brown edge {αij , βij} and ends with all edges of RTij but the first one;

– if variable vi appears negatively in Clause Cj:

• the path RBFij that starts with the subpath (sij , xij , yij , γij) of RFij,
then uses green edge {γij , δij} and ends with the subpath of BFij that
starts at δij and ends at tij;

• the path BRFij that starts with the subpath (sij , xij , yij , δij) of BFij,
then uses green edge {δij , γij} and ends with the subpath of RFij that
starts at γij and ends at tij;

Claim 2 Let P be a Fij-valid sijtij-paths in Gij. Then, either

– P passes through trueij and true′ij and does not pass through falseij nor
false′ij, or

– P passes through falseij and false′ij and does not pass through trueij nor
true′ij.

Claim 3 Let P be a Fij-valid sijtij-paths in Gij. Then the first and last edges
of P have different colors if and only if P uses a green or a brown edge, i.e., if
P ∈ {RBTij ,BRTij ,RBFij ,BRFij}.



Clause-graph Gj. For any j ≤ m, the Clause-gadget Gj is built by combining
the graphs Gij , i ≤ n, in a “line” (see Fig. 2). The subgraphs Gij are combined
from “left to right” (for i = 1 to n) if j is odd and from “right to left” (for i = n
to 1) otherwise. In more details, for any j ≤ m, Gj is obtained from a copy of
each gadget Gij , 1 ≤ i ≤ n, and two additional vertices sj and tj as follows:

– If j is odd, the subgraph Gj starts with a red edge {sj , s1j} and then, for
1 < i ≤ n, the vertices sij and ti−1,j are identified. Finally, there is a blue
edge from tnj to vertex tj .

– If j is even, the subgraph Gj starts with a blue edge {sj , snj} and then, for
1 < i ≤ n, the vertices tij and si−1,j are identified. Finally, there is a red
edge from t1j to vertex tj .

The forbidden transitions Fj include, besides all transitions in Fij , i =
1, . . . , n , new transitions which are defined such that, when passing from a
gadget Gij to the next one, the same color must be used. This means that if we
enter a vertex tij = si,j+1 by an edge with a given color, the same color must
be used to leave this vertex. However, in such vertices, we can change the type
(positive or negative) of path.

Note that if we enter a Clause-graph with a red (resp. blue) edge, we can
only leave it with a blue (resp. red) edge. This means that a path must change
its color inside the Clause-graph, and must hence use a brown or green edge
in some gadget-graph. The use of a brown (resp. green) forces a variable that
appears positively (resp. negatively) in the clause to be set to true (resp. false)
and validates the Clause.

The key property of Gj relates to the structure of Fj-valid paths from sj to
tj , which we summarize in Claims 4 and 5.

Claim 4 Any Fj-valid path P from sj to tj in Gj consists of the concatenation
of:

Case j odd. the red edge {sj , s1j}, then the concatenation of Fij-valid paths
from sij to tij in Gij, for 1 ≤ i ≤ n in this order (from i = 1 to n), and
finally the blue edge {tnj , tj};

Case j even. the blue edge {sj , snj}, then the concatenation of Fij-valid paths
from sij to tij in Gij, for 1 ≤ i ≤ n in the reverse order (from i = n to 1),
and finally the red edge {t1j , tj}.

By the previous claim, for any Fj-valid path P from sj to tj , the colors of the
first and last edges differ. Hence, by Claim 3 and the definition of the allowed
transitions between two gadgets:

Claim 5 Any Fj-valid path P from sj to tj must use a green or a brown edge
in a gadget Gij for some 1 ≤ i ≤ n.
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Fig. 2: Case j odd. Clause-graph Gj for a Clause Cj = v̄1 ∨ v2 ∨ v4 in a formula with 4
Variables. The bold path corresponds to an assignment of v1, v2 and v4 to True, and
of v3 to False.

Main graph. To conclude, we have to be sure that the assignment of the
variables is coherent between the clauses. For this purpose, let us combine the
subgraphs Gj , j ≤ m, as follows (see Fig 3). First, for any 1 ≤ j < m, let
us identify tj and sj+1. Then, some vertices (depicted in grey in Fig 3) of Gij

are identified with vertices of Gi,j+1 in such a way that using a positive (resp.,
negative) path in Gij forces the use of the same type of path in Gi,j+1. That
is, the choice of the path used in Gij is transferred to Gi,j+1 and therefore it
corresponds to a truth assignment for Variable vi.

Namely, for each 1 ≤ j < m and for each 1 ≤ i ≤ n, we identify the vertices
truei,j+1 and false′ij on the one hand, and the vertices true′ij and falsei,j+1 on
the other hand to obtain the ”grey” vertices. Finally, forbidden transitions F of
G, include, besides all transitions in Fj for j = 1, . . . ,m, new transitions which
are defined in order to forbid “crossing” a grey vertex, i.e., it is not possible to
go from Gi,j to Gi,j+1 via a grey vertex. The following claims present the key
properties of an F-valid path in G.

Claim 6 Any F-valid path P from s1 to tm in G consists of the concatenation
of Fj-valid paths from sj to tj in Gj from j = 1 to m.

Claim 7 Let P be an F-valid s1tm-path in G. Then, for any 1 ≤ i ≤ n, either

– for any 1 ≤ j ≤ m, the subpath of P between sij and tij passes through
trueij and true′ij and does not pass through falseij nor false′ij, or

– for any 1 ≤ j ≤ m, the subpath of P between sij and tij passes through
falseij and false′ij and does not pass through trueij nor true′ij.

Proof. By Claims 4 and 6, for any 1 ≤ i ≤ n and any 1 ≤ j ≤ m, there is a
subpath Pij of P that goes from sij to tij . Moreover, the paths Pij are pairwise
vertex-disjoint.

For 1 ≤ i ≤ n, by Claim 2, Pi1 either passes through truei1 and true′i1, or
through falsei1 and false′i1. Let us assume that we are in the first case (the
second case can be handled symmetrically). We prove by induction on j ≤ m
that Pij passes through trueij and true′ij and does not pass through falseij nor
false′ij .



Indeed, if P passes through trueij = false′i,j+1 and true′ij = falsei,j+1,
then Pi,j+1 cannot use falsei,j+1 nor false′i,j+1 since Pij and Pi,j+1 are vertex-
disjoint. By Claim 2, Pi,j+1 passes through truei,j+1 and true′i,j+1.

ut

sj

s1j
t1j t2j t3j t4j

tj = sj+1

s4,j+1t4,j+1

t3,j+1
t2,j+1

t1,j+1

tj+1

Fig. 3: Combining Cj = v̄1 ∨ v2 ∨ v4 and Cj+1 = v2 ∨ v̄3 ∨ v̄4 (Case j odd).

Note that (G,F) can be constructed in polynomial-time. Moreover, G is
clearly planar with maximum degree 8. Hence, the next claim allows to prove
Lemma 1.

Claim 8 Φ is satisfiable if and only if there is an F-valid s1-tm-path in G.

Proof. Let ϕ be a truth assignment which satisfies Φ. We can build an F-valid
s1-tm-path in G as follows. For each row 1 ≤ j ≤ m, we build a path Pj from
si to tj by concatenating the paths Pij , 1 ≤ j ≤ m, which are built as follows.
Among the variables that appear in Cj , let vk be the variable with the smallest
index, which satisfies the clause.

– For 1 ≤ i < k, if ϕ(vi) = true, then Pij = RTij if j is odd and Pij = BTij
if j is even, respectively. If ϕ(vi) = false, then Pij = RFij if j is odd, and
Pij = BFij if j is even.

– If ϕ(vk) = true, then Pij = RBTij if j is odd, and Pij = BRTij if j is even.
If ϕ(vk) = false, then Pij = RBFij if j is odd, and Pij = BRFij if j is even.

– For k < i ≤ n, if ϕ(vi) = true, then Pij = BTij if j is odd, and Pij = RTij
if j is even. If ϕ(vi) = false, then Pij = BFij if j is odd, and Pij = RFij

otherwise.

The path P obtained from the concatenation of paths Pj for 1 ≤ j ≤ m is an
F-valid path from s1 to tm.

Now let us suppose that there is an F-valid path P from s1 to tm. According
to Claim 7, for any 1 ≤ i ≤ n, for any 1 ≤ j ≤ m, P passes through trueij and
true′ij or for any 1 ≤ j ≤ m, P passes through falseij and false′ij . Let us then
consider the truth assignment ϕ of Φ such that for each 1 ≤ i ≤ n:

– If P uses trueij and true′ij in all rows 1 ≤ j ≤ m, then ϕ(vi) = true.



– If P uses falseij and false′ij in all rows 1 ≤ j ≤ m, then ϕ(vi) = false.

Thanks to Claim 7, ϕ is a valid truth assignment. We need to prove that ϕ
satisfies Φ. According to Claim 6, for each row 1 ≤ j ≤ m, P contains an Fj-
valid path Pj from sj to tj . Each path Pj uses a green or a brown edge as stated
by Claim 3. With respect to the possible ways to use a green or a brown edge
which are stated in Claim 2, the use of a brown edge in Pj forces Pj (and hence
P ) to use, for a variable vi that appears positively in Cj , the vertices trueij and
true′ij . Similarly, the use of a green edge in Pj forces Pj (and hence P ) to use, for
a variable vi that appears negatively in Cj , the vertices falseij and falce′ij . This
means that for each clause Cj , for one of the variables that appear in Cj which
we denote vi, ϕ(vi) = true (ϕ(vi) = false) if vi appears positively (negatively)
in Cj , respectively. Thus, the truth assignment ϕ satisfies Φ. ut

Due to lack of space, we only give a sketch of the proof of the next lemma.
The full proof can be found in the Appendix.

Lemma 2. The PAFT problem is NP-complete in planar graphs with maximum
degree 4.

Proof (sketch). The graph G used in the reduction of the proof of Lemma 1 is
planar and each vertex of G has either degree 8, degree 5 or degree at most
4. We transform G into a planar graph G′ with maximum degree 4 and an
associated set of forbidden transitions F ′ such that finding an F-valid path in
G is equivalent to finding an F ′-valid path in G′:

– We transform vertices of degree 5 to vertices of degree 3 as follows. For
vertices s1j (resp. t1j) where j is odd we delete the 2 blue edges incident to
s1j (resp. t1j). For vertices snj (resp. t1j) where j is even, we delete the 2
red edges incident to snj (resp. t1j).

– We replace each vertex v of degree 8 by a gadget gv of maximum degree 4.
Gadget gv is designed such that it can be crossed at most once by a path of
G′ and only if the edges used to enter and leave gv correspond to an allowed
transition around v. Figure 5 gives an example of a vertex v in G and the
corresponding gadget gv in G′. ut

Theorem 1. The problem of finding a path avoiding forbidden transitions is
NP-complete in grids.

Proof. To prove the theorem we use the notion of planar grid embedding [13]. A
planar grid embedding of a graph G is a mapping Q of G into a grid such that
Q maps each vertex of G into a distinct vertex of the grid and each edge e of G
into a path of the grid Q(e) whose endpoints are mappings of vertices linked by
e. For every pair {e, e′} of edges of G, the corresponding paths Q(e) and Q(e′)
have no points in common, except, possibly, the endpoints. It has been proved
in [14], that if G = (V,E) is a planar graph such that |V | = n and ∆ ≤ 4,
then a planar grid embedding of G in a grid of size at most 9n2 can be found in
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Fig. 4: Example of a vertex v and the corresponding gadget gv

polynomial-time. Let us consider an instance of the problem of finding a path
avoiding forbidden transitions in a planar graph G = (V,E) of maximum degree
at most 4 with a set of allowed transitions A (A = E ×E \ F). Let Q be a grid
planar embedding of G into a grid K of size at most O(|V |2). Finding a PAFT
between two nodes s and t in G with the set A is equivalent to finding a PAFT
between the nodes Q(s) and Q(t) in K with the set of allowed transitions A′
defined such that:

– For each e ∈ E, all the transitions in the path Q(e) are allowed.
– For each {e, e′} ∈ A, the pair of edges of Q(e) and Q(e′), which share a

vertex, is an allowed transition.
ut

4 Parameterized complexity

On the positive side, by using dynamic programming on a tree-decomposition of
the input graph, we prove that the problem is FPT when the parameter is the
sum of the treewidth and the maximum degree.

A tree-decomposition of a graph [11] is a way to represent G by a family
of subsets of its vertex-set organized in a tree-like manner and satisfying some
connectivity property. The treewidth of G measures the proximity of G to a
tree. More formally, a tree decomposition of G = (V,E) is a pair (T,X ) where
X = {Xt|t ∈ V (T )} is a family of subsets, called bags, of V , and T is a tree,
such that:

⋃
t∈V (T )Xt = V , for any edge uv ∈ E, there is a bag Xt (for some

node t ∈ V (T )) containing both u and v, and for any vertex v ∈ V , the set
{t ∈ V (T )|v ∈ Xt} induces a subtree of T . The width of a tree-decomposition
(T,X ) is maxt∈V (T )|Xt|−1 and its size is order |V (T )| of T . The treewidth of G,
denoted by tw(G), is the minimum width over all possible tree-decompositions
of G.



Theorem 2 proves that when the treewidth of the graph is bounded, the
PAFT can be solved in polynomial time. Complete proof of the theorem can be
found in the Appendix.

Theorem 2. The problem of finding a path avoiding forbidden transitions is
FPT when parameterized by k +∆ where k is the treewidth and ∆ is the maxi-
mum degree. In particular, there exists an algorithm that finds the shortest path
avoiding forbidden transitions between two vertices in time O((3∆(k+1))2k+2n))

The Algorithm uses dynamic programming techniques and its key idea is
similar to the one used to find a Hamiltonian cycle in graphs with bounded
treewidth [3].

In more details, let G = (V,E) be a graph with bounded treewidth k, F
a set of forbidden transitions , and s and t two vertices of V . Let (T,X ) be a
tree-decomposition of width k of G rooted in an arbitrary node. Let G[A] be the
subgraph of G induced by the set of vertices A. For each u ∈ V (T ), we denote
by Xu,Tu and Vu the set of vertices of the bag corresponding to u, the subtree
of T rooted at u, and the set of vertices of the bags corresponding to the nodes
of Tu , respectively.

If there exists an F-valid path P from s to t, then the intersection of this
path with G[Vu] for a node u ∈ T consists of a set of paths avoiding forbidden
transitions each having both endpoints in Xu. If t ∈ Vu, then one of the paths
has only one endpoint in Xu. With respect to the parts of path P that are in
G[Vu], vertices in Xu can be partitioned into three subsets X0

u, X1
u, and X2

u which
are the vertices of degree 0, 1 and 2 in P ∩ G[Vu], respectively. Furthermore, a
matching M of X1

u decides which vertices are endpoints of the same subpath and
a set of edges S defines which edges incident to X1

u are in P . For each node u ∈ T
and each subproblem (X0

u, X
1
u, X

2
u,M, S) where (X0

u, X
1
u, X

2
u) is a partition of

Xu, M is a matching of X1
u and S is a set of edges incident to the vertices of

X1
u, we need to check if there exists a set of paths avoiding forbidden transitions

in Vu such that their endpoints are exactly X1
u according to the matching M ,

they contain the edges of S and the vertices of X2
u and they do not contain any

vertex of X0
u. For each node, we will need to solve at most 3k+1(k + 1)k+1∆k+1

subproblems; there are at most 3k+1 possible partitions of the vertices of Xu

into the 3 different sets, (k+1)k+1 possible matchings for a set of k+1 elements
and ∆ possible edges for each element of X1

u.

5 Conclusion

We have proven that the problem of finding a path avoiding forbidden transi-
tions is NP-complete even in well-structured graphs as grids. We have also proved
that PAFT can be solved in polynomial time when the treewidth is bounded.
We believe that the PAFT is actually W [1]-hard when parameterized by the
treewidth. Future work might focus on proving this conjecture and also on us-
ing structural properties of planar graphs to improve the running time of the
algorithm for solving PAFT in planar graphs with bounded treewidth. Another



interesting direction in the study of PAFT could be to consider the optimization
problem where the objective is to find a path with minimum number of forbidden
transitions and to investigate possible approximation solutions.
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Appendix

We provide in this appendix the proofs of Lemma 2 and Theorem 2.

A Proof of Lemma 2

Let G be the graph obtained from the reduction in the proof of lemma 1 and
let E be the planar embedding of G that is obtained by embedding the smaller
gadgets as in Figures 1,2,3. the graph G has the following properties:

– G is planar.
– Each vertex of G has either degree 8 or degree ≤ 4. In fact, there are also

vertices of degree 5 which we transform to vertices of degree 3 as follows.
For vertices s1j (resp. t1j) where j is odd we delete the 2 blue edges incident
to s1j (resp. t1j). For vertices snj (resp. t1j) where j is even, we delete the
2 red edges incident to snj (resp. t1j). This transformation does not affect
the reduction or the proof.

– According to its forbidden transitions and to its disposition in the planar
embedding E , a vertex v of G of degree 8 has one of three following types:
Type 1: The edges incident to v are ω(v) = {e, e′, f, f ′, g, g′, h, h′} and the

allowed transitions around v are A(v) = {{e, e′}, {f, f ′}, {g, g′}, {h, h′}}.
The edges of v in the planar embedding E . (v is a vertex of type xij , yij
or zij in the graph G)

Type 2: The edges incident to v are ω(v) = {e, e′, f, f ′, g, g′, h, h′} and the
allowed transitions around v are A(v) = {{e, e′}, {f, f ′}, {g, g′}, {h, h′}}.
The edges of v in the planar embedding E . (v is a vertex of type trueij ,
true′ij , falseij , or false′ij in the graph G)

Type 3: The edges incident to v are ω(v) = {e, e′, f, f ′, g, g′, h, h′} and the
allowed transitions around v are A(v) = {{e, e′}, {e, f ′}, {f, f ′}, {f, e′},
{g, g′}, {g, h′}, {h, h′}, {h, g′}}. The edges of v in the planar embedding
E are as depicted in Figure7a. (v is a vertex of type sij in the graph G)

To prove the lemma, we are going to replace each vertex v of degree 8 in G
with a gadget Dv. After replacing all vertices of degree 8, we will obtain a graph
G′ of maximum degree 4 and a new set of forbidden transitions F ′ such that
finding an F−valid path from s to t in G is equivalent to finding an F ′-valid
path from s to t in G′. Let v be a vertex of degree 8 of G. Dv is constructed
according to the type of v as follows:

Type 1 In this case, Dv is constructed as follows. For each i ∈ ω(v), a vertex vi
is created. For each {i, j} ∈ A(v), vertices vi and vj are linked with a path
Pij of length four . The four paths Pij are pairwise intersecting in distinct
vertices as illustrated in Figure 5b. The allowed transitions in Dv are the
transitions of the paths Pij . Now to replace v with Dv in G, we do the
following: each edge i ∈ ω(v) of G is linked to vertex vi of Dv. The gadget
Dv is planar, and edges i ∈ ω(v) are connected to it in the same ”order” they
were connected to v in the planar embedding of G as illustrated in Figure 5.



Note the gadget Dv cannot be crossed twice with the same path, otherwise
the path is not simple. Moreover, Dv can be crossed if and only if the edges
used to enter and leave form an allowed transition around v.

A vertex of degree 8 and allowed
transtions A(v) = {{e, e′}, {f, f ′},
{g, g′}, {h, h′}} (edges are ordered as in
the planar embedding E of G)
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Gadget Dv: the paths Pee′ , Pff ′ ,Pgg′ , and
Phh′ are respectively the pink, blue, red and
green paths. Transitions around vertices vi
and transitions of paths Pee′ , Pff ′ ,Pgg′ , and
Phh′ are allowed

Fig. 5: Type 1

Type 2 In this case, Dv is constructed as follows. For each i ∈ ω(v), a vertex vi
is created. For each {i, j} ∈ A(v), vertices vi and vj are linked with a path
Pij of length 7 . Each two of the four paths Pij intersect in two different
vertices as illustrated in Figure 6b. The allowed transitions in Dv are the
transitions of the paths Pij . Now to replace v with Dv in G, we do the
following: each edge i ∈ ω(v) of G is linked to vertex vi of Dv. The gadget
Dv is planar, and edges i ∈ ω(v) are connected to it in the same ”order”
they were connected to v in the planar embedding E of G as illustrated in
Figure 6. Note that the gadget Dv cannot be crossed twice with the same
path, otherwise the path is not simple. Moreover, Dv can be crossed if and
only if the edges used to enter and leave form an allowed transition around
v.

Type 3 In this case, Dv is constructed as follows. For each {i, i′} ∈ A(v) , ver-
tices vi and vj are linked with a path Pij of length 7. Each two of the paths
Pij intersect twice in distinct vertices as illustrated in Figure 7b. Further-
more, we add two edges linking the paths Pee′ and Pff ′ , and Pgg′ and Phh′ ,
respectively. Now to replace v with Dv in G, we do the following: each edge
i ∈ ω(v) of G is linked to vertex vi of Dv. The gadget Dv is planar, and
edges i ∈ ω(v) are connected to it in the same ”order” they were connected
to v in the planar embedding E of G as illustrated in Figure 7. Note that the
gadget Dv cannot be crossed twice with the same path, otherwise the path
is not simple. Moreover, Dv can be crossed if and only if the edges used to
enter and leave form an allowed transition around v.

The graph G′ is the one obtained from G after replacing vertices of degree
8 with the gadgets described above. The set of forbidden transitions F ′ consists



A vertex of degree 8 and allowed
transtions A(v) = {{e, e′}, {e, f ′},
{f, f ′}, {f, e′}, {g, g′}, {g, h′}, {h, h′},
{h, g′}} (edges are ordered as in the
planar embedding E of G)
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Gadget Dv: the paths Pee′ , Pff ′ ,Pgg′ ,
and Phh′ are respectively the pink,
blue, red and green paths. Transitions
around vertices vi and transitions of
paths Pee′ , Pff ′ ,Pgg′ , and Phh′ are al-
lowed

Fig. 6: Type 2

A vertex of degree 8 and allowed
transtions A(v) = {{e, e′}, {e, f ′},
{f, f ′}, {f, e′}, {g, g′}, {g, h′}, {h, h′},
{h, g′}} (edges are ordered as in the
planar embedding E of G)
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Gadget Dv: the paths Pee′ , Pff ′ ,Pgg′ ,
and Phh′ are respectively the pink,
red, blue and green paths. transitions
around vertices vi, transitions of the
paths Pee′ , Pff ′ ,Pgg′ , and Phh′ , and
transitions containing the yellow edge
are allowed

Fig. 7: Type 3



of the transitions of the set F and the forbidden transitions of the gadgets Dv

as described above. The maximum degree of G′ is 4 and G′ is planar.
Let us now suppose that there is an F-valid path P from s to t in G. Let

P ′ be the s-t-path of G′ constructed as follows: P ′ uses all edges used by P .
Furthermore, if P uses a degree 8 vertex of type 1 or 2 with a transition {e, e′}
then P ′ uses e, subpath Pee′ , and e′. If P uses a degree 8 vertex of type 3 with
transition {e, e′} (or {e, f ′}), then P ′ uses e, e′ and the subpath Pee′ (e,f ′, and
the subpath Pef ′ which is the concatenation of a subpath of path Pee′ , a yellow
edge and a subpath of path Pee′), respectively. The path P ′ is F ′-valid.

Now, let us suppose that there is an F ′-valid path P ′ from s to t in G′. If P ′

only uses edges from G, then it can be considered as an F-valid path from s to t
in G. If P ′ uses an edge that is not in G, then P ′ crosses one of the gadgets Dv.
As we have specified above, the gadgets Dv can only be crossed in specified ways
that ensure that the edges used to enter and leave the gadget form an allowed
transition. We can then remove the edges of P ′ that do not belong to G to obtain
an F-valid path P in G. For any v of degree 8, the path P does not pass twice
through v since gadget Dv in G′ cannot be crossed twice by the same path.

B Proof of Theorem 2

To prove theorem 2, we first introduce the following definition and lemma.

Definition 1. A rooted tree decomposition ((T,X ), r) of G is nice if for every
node u ∈ V (T ):

– u has no children and |Xu| = 1 (u is called a leaf node), or
– u has one child v with Xu ⊂ Xv and |Xu| = |Xv| − 1 (u is called a forget

node),or
– u has one child v with Xv ⊂ Xu and |Xu| = |Xv|+1 (u is called an introduce

node), or
– u has two children v and w with Xu = Xv = Xw (u is called a join node.).

Lemma 3. When given a tree decomposition of width w of G, in polynomial
time we can construct a nice tree decomposition (T,X ) of G of width k, with
|V (T )| ∈ O(kn), where n = |V (G)|.

We use the notion of nice tree decomposition and adapt the dynamic pro-
gramming algorithm for finding a Hamiltonian cycle in a graph to prove Theo-
rem 2.

Let G = (V,E) be a graph with bounded treewidth k, F ⊆ E × E a set of
forbidden transitions (and A ⊆ E×E the set of allowed transitions), and s and t
two vertices of V . We would like to find the shortest path P from s to t avoiding
the forbidden transitions F .

Let Ge,f such that e and f are edges incident to s and t, respectively, be the
graph obtained from G, by deleting all edges incident to s and t except for e
and f . Finding the shortest path avoiding forbidden transitions F from s to t in
G is equivalent to finding the shortest path among all shortest paths avoiding



forbidden transitions F from s to t in Ge,f , for each possible pair e, f . In the
following we will present how to solve the CFT problem in Ge,f . To obtain the
solution in G, we will need to repeat the algorithm at most ∆2 times.

Let (T,X ) be a nice tree-decomposition of width k of Ge,f . We assume that
s appears in one introduce bag and t in two bags, a leaf and its introduce parent.
We root T at the node containing s. Let G[A] be the subgraph of Ge,f induced
by the set of vertices A. . For each u ∈ V (T ) we denote by Xu,Tu and Vu the
vertices of the bag corresponding to u, the subtree of T rooted at u, and the
vertices of the bags corresponding to the nodes of Tu , respectively.

If there exists an F-valid path P from s to t, then the intersection of this path
with G[Vu] for a node u ∈ T is a set of paths (avoiding forbidden transitions)
each having both endpoints in Xu. If t ∈ Vu, then one of the paths has only one
endpoint in Xu.

With respect to the parts of path P that are in G[Vu], vertices in Xu can
be partitioned into three subsets: X0

u, X1
u, and X2

u which are the vertices of
degree 0, 1 and 2 in P ∩G[Vu], respectively. Furthermore, a matching M of X1

u

decides which vertices are endpoints of the same subpath and a set of edges S
defines which edges incident to X1

u are in P . For each node u ∈ T and each
subproblem (X0

u, X
1
u, X

2
u,M, S) where (X0

u, X
1
u, X

2
u) is a partition of Xu, M is a

matching of X1
u and S is a set of edges incident to the vertices of X1

u, we need
to see if there exists a set of paths avoiding forbidden transitions in Vu such
that their endpoints are exactly X1

u according to the matching M , they contain
the edges of S and the vertices of X2

u and they do not contain any vertex of
X0

u. For the case where t ∈ Vu, we will need to check the possible matchings of
each subset of X1

u of size |X1
u| − 1. For each node, we will need to solve at most

3k+1(k + 1)k+1∆k+1 subproblems; there are at most 3k+1 possible partitions of
the vertices of Xu into the 3 different sets, (k + 1)k+1 possible matchings for a
set of k + 1 elements and ∆ possible edges for each element of X1

u.

Let us see how to solve a problem (X0
u, X

1
u, X

2
u,M, S) at a node u supposing

that all the problems at its descendants have been solved:

– If u is a leaf, then Xu = {a}. The only problem that has a solution is
(X0

u = {a}, X1
u = ∅, X2

u = ∅,M = ∅, S = ∅).
– If u is a forget node, let v be the child of u. We have Xu = Xv \ a. We can

distinguish two cases:

• If a 6= t, then the problem (X0
u, X

1
u, X

2
u,M, S) has a solution if and

only if one of the problems (X0
u ∪ {a}, X1

u, X
2
u,M, S) and (X0

u, X
1
u, X

2
u ∪

{a},M, S) at node v has a solution.

• If a = t, then the problem (X0
u, X

1
u, X

2
u,M, S) has a solution if and only

if the problem (X0
u, X

1
u ∪ {a}, X2

u,M, S) at v has a solution.

– If u is an introduce node, let v be the child of u. We have Xu = Xv ∪ a (all
neighbors of a in Vu are in Xu). Note that a 6= t since t appears in a forget
node and its introduce parent. In this case we proceed as follows.

• If a ∈ X0
u, then solving (X0

u, X
1
u, X

2
u,M, S) at u is equivalent to solving

(X0
u \ {a}, X1

u, X
2
u,M, S) at v.



• if a ∈ X1
u, let ab be the edge incident to a in S. Since all neighbors of a

in Vu are in Xu, then b ∈ Xu ∩Xv. Let us consider the following cases:

∗ If b = t, then the only problem that has a solution at u is (Xu \
{a, t}, {a, t}, ∅, {(a, t)}, {(a, t)}). To solve it, we need to check at v
the solution of the problem (Xu \ {a}, ∅, ∅, ∅, ∅).

∗ If b ∈ X1
u (b 6= t), (the problem has a solution only if (a, b) ∈M and

the edge incident to b in S is ab) then check at v the solution of the
problem (X0

u ∪ {b}, X1
u \ {a, b}, X2

u,M
′, S′) where M ′ = M \ (a, b)

and S′ = S \ ab.
∗ If b ∈ X2

u (b 6= t), then check at v the solution of the problem
(X0

u, X
1
u \ {a} ∪ {b}, X2

u \ {b},M ′, S′) where M ′ = M \ (a, h)∪ (b, h)
and S′ contains the set S minus the edge ab plus an edge incident to
b that forms an allowed transition with edge ba (there are at most
∆ such problems).

• If a ∈ X2
u, then for every two neighbors b and c of a in Xu such that

(ba, ac) is an allowed transition do the following.

∗ If b ∈ X1
u and c ∈ X1

u, then check the solution at v of the problem
(X0

u ∪ {b, c}, X1
u \ {b, c}, X2

u \ {a},M ′, S′) where M ′ = M \ (b, c) and
remove ab and bc from S to obtain S′.

∗ If b ∈ X2
u and c ∈ X2

u, then check the solution at v of the problem
(X0

u, X
1
u∪{b, c}, X2

u\{a, b, c},M ′, S′) where M ′ = M∪{bh, ch′}\hh′
(bc should not be in the matching) and to obtain S′, add to S two
edges incident to b and c and forming allowed transitions with ab
and ac, respectively (there are k+1

2 possible choices for hh′ and ∆2

possible choices for the two edges to add to S).
∗ If b ∈ X1

u and c ∈ X2
u, then check the solution at v of the problem

(X0
u∪{b}, X1

u \{b}∪{c}, X2
u \{a, c},M ′, S′) where M ′ = M \ bh∪ ch

and to obtain S′ remove ab from S and add an edge incident to c
that forms an allowed transition with ca. (There are ∆ possibilities).

Note that the number of pairs of neighbors of a to consider are of order
of k2.

– If u is a join node, let v and w be its children. For any two subproblems
at v and w we check if the union of the two solutions is a solution for
(X0

u, X
1
u, X

2
u,M, S) of node u. (At most (3k+1k + 1(k + 1)∆k+1)2 possibili-

ties).

At the node containing s, we only need to solve subproblems where s and t
are of degree 1 and all other vertices have either degree 2 or 0.

To find the shortest path, one has to choose, whenever having a choice be-
tween different solutions for a subproblem at a node, the solution with the min-
imum number of edges.


