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Abstract. We reduce (in polynomial time) the enumeration of minimal
dominating sets in interval and permutation graphs to the enumeration of
paths in DAGs. As a consequence, we can enumerate in linear delay, after
a polynomial time pre-processing, minimal dominating sets in interval
and permutation graphs. We can also count them in polynomial time.
This improves considerably upon previously known results on interval
graphs, and to our knowledge no output polynomial time algorithm for
the enumeration of minimal dominating sets and their counting were
known for permutation graphs.

1 Introduction

The Minimum Dominating Set problem is a classic and well-studied graph
optimisation problem. A dominating set in a graph G is a subset D of its set
of vertices such that each vertex is either in D or has a neighbour in D. Com-
puting a minimum dominating set has numerous applications in many areas,
e.g., networks, graph theory (see for instance the book [9]). In this paper we
are interested in the enumeration of (inclusion-wise) minimal dominating sets in
interval and permutation graphs. The Minimum Dominating Set problem is
known to be tractable in linear time for these two classes [4].

There are two approaches in enumeration algorithms. The input-sensitive
approach which uses classical worst-case running time analysis, i.e., the running
time depends on the length of the input. This approach is usually used in the
exact algorithms community, and can be useful for obtaining upper bounds.
For instance the best running exponential time algorithm that enumerates all
minimal dominating sets in an n-vertex graph runs in time O(1.7159n) and is at
the same time an upper bound to the number of minimal dominating sets in an
n-vertex graph [7]. The output-sensitive approach measures the time complexity
of an enumeration algorithm in the sum of the sizes of the input and output.
An algorithm whose running time is bounded by a polynomial depending on the
sum of the sizes of the input and output is called an output-polynomial time
algorithm. In this paper we deal with the output-sensitive approach.



The existence of an output-polynomial time algorithm for the enumeration of
minimal dominating sets of graphs is closely related to the well-known Transver-
sal problem in hypergraphs. A transversal in a hypergraph is a subset of its
ground set that intersects every of its hyperedges. The Transversal problem
asks for an output-polynomial time algorithm for the enumeration of all the
(inclusion-wise) minimal transversals of hypergraphs. This is a hard problem
and is a long-standing open question (see for instance [5]). However, it is a
well-studied problem due to is applications in several areas [5,6,8,13,16], and
output-polynomial time algorithms are known to exist when restricted to some
hypergraph classes (a summary of some known tractable cases is given in [10]).
It is known that the set of minimal dominating sets of a graph is the same as the
set of minimal transversals of its closed neighbourhood hypergraph [3]. Therefore,
whenever the closed neighbourhood hypergraphs of a graph class is in one of
the known tractable classes of hypergraphs, there exists an output-polynomial
time algorithm for the enumeration of minimal dominating sets of graphs in
this graph class. This is the case for instance of degenerate graph classes, line
graphs, path-graphs, . . . [10,12]. However, not all closed neighbourhood hyper-
graphs are in those tractable cases, e.g., closed neighbourhood hypergraphs of
split graphs for instance. Indeed, Kanté et al. [11] have shown that there exists
an output-polynomial time algorithm for the enumeration of minimal transver-
sals in hypergraphs if and only if there exists one for the enumeration of minimal
dominating sets in graphs.

An enumeration algorithm is said to be linear delay if it performs a polyno-
mial time pre-processing in the size of the input and such that the delay between
two consecutive outputs oi and oi+1 is linear in the size of oi+1. It is clear that
linear delay enumeration algorithms are output-polynomial time algorithms. We
give linear delay algorithms for the enumeration of minimal dominating sets
in interval and permutation graphs, and we use for that the interval and the
permutation model respectively. This improves considerably upon the known
algorithms on interval graphs (the best known is designed for β-acyclic hyper-
graphs, and has delay between two consecutive outputs polynomial in the size
of the input [5,6]). We can moreover count in polynomial time (in the size of the
input) minimal dominating sets. We have no knowledge of such counting results.
Liner delay is the best we can hope whenever we want to list the elements of
each minimal dominating set. Our techniques can be summarised as follows.

1. We first build in polynomial time a directed acyclic graph (DAG for short)
and prove that some paths in this DAG correspond exactly to minimal dom-
inating sets.

2. These paths can be counted in linear time (in the size of the DAG), and can
be listed in linear delay with a classical Depth First Search algorithm.

Let us describe briefly the construction of the DAG in interval graphs. One
first observes that any minimal dominating set in an interval graph is a collection
of paths. Secondly, by using the interval model and by ordering the intervals (say
their left endpoints from left to right), one can construct any minimal dominating
set. In fact if you take a vertical line and those vertices X whose intervals are
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before that vertical line, then for any minimal dominating set D either D ∩X
is a dominating set of the graph induced on X, or the vertex in D just after
the vertical line (following the ordering) should be adjacent to those vertices in
X not dominated by D ∩ X. We show that by moving in the right way such
a vertical line, we can construct any minimal dominating set by keeping track
only of the last two chosen vertices. Following that, we can construct the DAG,
the vertices of which will be those pairs (x, y) (with the left endpoint of x before
the left endpoint of y) such that x and y can be both in a minimal dominating
set, and the arcs are of the form ((x, y), (y, z)) such that

– there is no vertex with its interval between the right endpoint of y and the
left endpoint of z,

– {x, y, z} can belong to a minimal dominating set.

We show that the minimal dominating sets of an interval graph are exactly
those sets {xi1 , . . . , xik+1

} such that there exists a path (v1, . . . , vk) with vj :=
(xij , xij+1

) with no intervals before the left endpoint of xi1 and after the right
endpoint of xik+1

.
For the permutation graphs, the construction is of the same flavor, but is

more complicated. In fact each minimal dominating set can be still constructed
from left to right (by ordering the bottom and top lines from left to right), but
we need to keep track of the last three vertices, and following how their segments
intersect, we need to keep one or two additional vertices. We postpone the details
in Section 4.

Summary. In Section 2 we give some necessary definitions and we deal with
interval graphs in Section 3. Permutation graphs are considered in Section 5.
Some concluding remarks are given in Section 5.

2 Preliminaries

If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The power-set
of a set V is denoted by 2V . The size of a set A is denoted |A|.

We refer to [1] for graph terminology. The vertex set of a (directed) graph G
is denoted by VG and its edge set (or arc set) by EG. We only deal with finite
and simple (directed) graphs. We denote by n the size of the vertex set of a
(directed) graph and by m the size of its edge (or arc) set. An arc from x to y
in a directed graph is denoted by (x, y) and an edge between x and y in a graph
is denoted by xy.

Let G be a graph. For a vertex x, we denote by NG(x) the set {y ∈ VG | xy ∈
EG}, and we let NG[x] be NG(x)∪{x}. For X ⊆ VG, we write NG[X] and NG(X)
for respectively

⋃
x∈X

NG[x] and NG[X] \X. We say that a vertex y is a private

neighbour with respect to D ⊆ VG of x if y ∈ NG[x] \ NG[D \ x]. (When D is
clear from the context, for convenience we will omit the expression “with respect
to D”.) Note that a private neighbour of a vertex x ∈ D is either x itself, or a
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vertex in VG \D, but never a vertex y ∈ D\{x}. The set of private neighbours of
x ∈ D is denoted by PD(x). A subset D of VG is called an irredundant set if for
all x ∈ D, we have PD(x) 6= ∅. A subset D of VG is called a minimal dominating
set if it is an irredundant set, and each vertex in VG \D has a neighbour in D.

An intersection graph is a graph in which each vertex corresponds to a set
and two vertices are adjacent if and only if their corresponding sets intersect.
The collection of sets in correspondence with the vertices of an intersection
graph is called an intersection model. A graph is an interval graph if it has
an intersection model consisting of intervals on a straight line. A graph is a
permutation graph if it has an intersection model consisting of straight lines
between two parallels. We assume without loss of generality that any interval
graph (or permutation graph) is given with its intersection model. Indeed, the
recognition and a construction of an intersection model can be done in linear time
for any interval graph (or permutation graph). See for instance [2] for interval
graphs and [15] for permutation graphs.

Given a graph G and a subset C of 2VG , we say that an algorithm enumer-
ates C with linear delay if, after a pre-processing that takes time p(n +m) for
some polynomial p, it outputs the elements of C without repetitions, the delay
between two consecutive outputs oi and oi+1 being bounded by O(|oi+1|). It is
worth noticing that an algorithm which enumerates a subset C of 2VG in linear

delay outputs the set C in time O
(
p(n+m) +

∑
C∈C
|C|
)

where p is the poly-

nomial bounding the pre-processing time, and is optimal since it does not take

asymptotically more time than the size ||C|| := O

( ∑
C∈C
|C|
)

of C.

We finish these preliminaries with the following folklore theorem on the enu-
meration and the counting of maximal paths in directed acyclic graphs.

Theorem 1 (folklore). Given a directed acyclic graph D and two disjoint sub-
sets S and P of vertices of D, the enumeration of paths from vertices in S to
vertices in P can be done in linear delay. Moreover, counting these paths can be
done in linear time in the size of D.

3 Interval Graphs

We may suppose without loss of generality that in an intersection model of an
interval graph all endpoints are pairwise distinct. For an interval graph G, let
us denote its interval model by IG, and for each vertex x of G let IG(x) be
the interval in IG associated with x. We number the endpoints of the intervals
from left to right and we denote by s(x) and e(x) the left and right endpoint of
IG(x) respectively. We can therefore assume that IG(x) := [s(x), e(x)] and will
be viewed as the set of points on the line between s(x) and e(x).

We linearly order the vertices of an interval graph G with the linear order
� such that x � y whenever s(x) ≤ s(y). We can therefore consider that the
vertices of G are enumerated as x1, x2, . . . , xn with xi � xj whenever i ≤ j. We
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will in the sequel consider any subset D of VG as linearly ordered by � and when
we write {xi1 , . . . , xik}, then we consider xij � xi` whenever j ≤ `. The proof of
the following lemma is straightforward.

Lemma 2. Let D be an irredundant set of an interval graph G. Then for all
distinct vertices x and y in D, the sets IG(x) \ IG(y) and IG(y) \ IG(x) are non
empty.

The following is an easy corollary of Lemma 2.

Corollary 3. Let D be a minimal dominating set of an interval graph G. Then
for all distinct vertices x and y in D, we have e(x) < e(y) whenever x ≺ y.

For x ∈ VG, we let NC(x) be the set {y ∈ VG | s(y) > e(x)}, and ncs(x)
and nce(y) be respectively min{s(y) | y ∈ NC(x)} and min{e(y) | y ∈ NC(x)}.
Notice that if y is such that s(y) = ncs(x), then we do not have necessarily
e(y) = nce(x), and vice-versa. For D := {xi1 , . . . , xik} a subset of the vertex set
of an interval graph G and j ≤ k, we denote by Dj the subset {xi1 , . . . , xij} of
D, and we let pD(xij ) := min{e(y) | y ∈ PDj

(xij )}.

Lemma 4. Let D := {xi1 , . . . , xik} be an irredundant set of an interval graph
G. For j ≤ k, let xpj be such that e(xpj ) = pD(xij ). Then xpj ∈ PD(xij ).

Proof. If there exists j′ such that xpj
∈ NG(xij′ ), then j

′ > j, and thus s(xij ) <
s(xij′ ). Therefore, s(xij′ ) < e(xpj

), and since e(xpj
) < e(y) for all y ∈ PD(xij ),

we would have xij′ adjacent to all vertices in PD(xij ). A contradiction with the
fact that D is an irredundant set. ut

The following characterises minimal dominating sets in interval graphs, and
will be the core of our algorithm.

Proposition 5. A subset D := {xi1 , . . . , xik} of an interval graph G is a mini-
mal dominating set if and only if the following conditions hold.

1. For all ` ≤ n, we have s(xi1) ≤ e(x`).
2. For all ` ≤ n, we have e(xik) ≥ s(x`).
3. For all j ≤ k, we have j = k if NC(xij ) = ∅, otherwise we have e(xij+1

) ≥
ncs(xij ).

4. For all 1 ≤ j < k, we have pD(xij ) < s(xij+1
) ≤ nce(xij ).

The following tells us how to compute the private neighbour of a vertex.

Proposition 6. Let D := {xi1 , . . . , xik} be an irredundant set. Then for all
x ∈ NG[xik ], we have x ∈ PD(xik) if and only if e(xik−1

) < s(x).

In order to enumerate in linear delay, and count in polynomial time, the set
of minimal dominating sets of an interval graph G, we associate with it a DAG,
denoted by DagI(G), where the paths from a subset of the sources to a subset
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of the sinks correspond exactly to minimal dominating sets of G. Let G be an
interval graph. The graph DagI(G) has vertex set the pairs (xi, xj) such that

(V.1) xi � xj ,
(V.2) p{xi}(xi) < s(xj) ≤ nce(xi),
(V.3) NC(xi) 6= ∅ and e(xj) ≥ ncs(xi),

and it has as arc set the set of pairs ((xi, xj), (xj , xk)) such that

(E.1) p{xi,xj}(xj) < s(xk) ≤ nce(xj).

A vertex (xi, xj) of DagI(G) is called an initial vertex if s(xi) ≤ e(x`) for all
1 ≤ ` ≤ n. A vertex (xi, xj) of DagI(G) is called a final vertex if e(xj) ≥ s(x`)
for all 1 ≤ ` ≤ n, and then NC(xj) = ∅.

Lemma 7. For every interval graph G, we have the following.

1. DagI(G) is a DAG.
2. If a vertex (xi, xj) of DagI(G) is an initial vertex (resp. a final vertex), then

it is a source (resp. a sink) of DagI(G).
3. DagI(G) can be constructed in time O(n3).

Proposition 8. Let G be an interval graph and let v1 and vk be respectively an
initial vertex and a final vertex of DagI(G). Then (v1, v2, . . . , vk) is a path of
DagI(G) if and only if {xi1 , . . . , xik+1

} is a minimal dominating set of G of size
greater than or equal to 2 with vj := (xij , xij+1

).

We can now state the main theorem of the section.

Theorem 9. Let G be an interval graph. Then, after a pre-processing in time
O(n3), one can enumerate in linear delay the minimal dominating sets of G.
One can moreover count them in time O(n3).

Proof. By Lemma 7 the DAG DagI(G) can be constructed in time O(n3). By
Proposition 8, there is a bijection between paths from initial vertices to final
vertices in DagI(G) and minimal dominating sets of G of size at least 2.

It remains to deal now with minimal dominating sets of size 1. For each
x, we can determine in time O(n) if {x} is a minimal dominating set. So, let
S := {x ∈ VG | {x} is a minimal dominating set of G}. The set S can be
constructed at the same time as DagI(G). We let G′ be the DAG obtained from
DagI(G) by adding new vertices vx to DagI(G), with in-degree and out-degree
0, for each x ∈ S. Therefore, each such new vertex vx is a source and a sink at
the same time. We define the following subsets of VG′ .

S := {vx | x ∈ S} ∪ {v ∈ VDagI(G) | v is an initial vertex},
T := {vx | x ∈ S} ∪ {v ∈ VDagI(G) | v is a final vertex}.

It is clear now that paths from S to T in G′ are in bijection with all the minimal
dominating sets of G. Since, paths from S to T in DAGs can be listed in linear
delay, and be counted in linear time (see Theorem 1), we are done. ut
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4 Permutation Graphs

For a permutation graph G let us denote its permutation model by LG, and
for each vertex x of G let LG(x) be the segment in LG corresponding to x. We
number the endpoints of segments from left to right and we denote by b(x) and
t(x) the endpoints of LG(x) on the bottom line and top line respectively. All
endpoints are assumed to be different without loss of generality. We order the
vertices of G by their bottom line endpoints, and then the vertices of G are
assumed to be enumerated as x1, . . . , xn where b(xi) ≤ b(xj) whenever i ≤ j. As
in the interval case, we will also consider any subset D of VG as linearly ordered,
and when we write {xi1 , . . . , xik}, then we consider i1 < ... < ik and hence
b(xi1) < · · · < b(xik). For two vertices x and y of G, we say that LG(x) < LG(y)
whenever b(x) < b(y) and t(x) < t(y).

For a subset D := {xi1 , . . . , xik+1
} of G, if k ≥ 4, we let xD be the vertex

xir ∈ D such that t(xir ) := max{t(xi`) | xi` ∈ D and ` < k− 2}; if k ≥ 3, we let

A(D) :=

{
D if k = 3,

{xD, xik−2
, xik−1

, xik , xik+1
} if k ≥ 4.

Lemma 10. Let D be an irredundant set of a permutation graph G. Then G[D]
contains neither triangles nor claws. Therefore, for each x ∈ D, dG[D](x) ≤ 2.

Lemma 11. Let D′ := {xi1 , xi2 , ..., xik+1
} with k ≥ 4 be a subset of the vertex

set of a permutation graph G such that D := {xi1 , xi2 , ..., xik} and A(D′) are
irredundant sets of G. Then for all l ≤ ik−3, NG[xik+1

] ∩ PD(xil) = ∅.

In the next lemmas we show how to construct irredundant sets of a permu-
tation graph G from left to right. Indeed, we characterise exactly the situations
where an irredundant set D := {xi1 , . . . , xik} can be extended to an irredundant
set D′ := D∪{xik+1

}, and we show that for deciding the extension we need only
know xik−2

, xik−1
, xik , and following the intersections of LG(xik−2

), LG(xik−1
)

and LG(xik) we need to know also either xD′ or the vertex xs such that t(xs) :=
min{y ∈ PD(y)} with y such that t(y) := min{t(xik−2

), t(xik−1
), t(xik)}, or both.

The cases summarising the intersections of LG(xik−2
), LG(xik−1

) and LG(xik) are
depicted in Fig. 1.

Lemma 12 (Case 1). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (1) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) is an irredundant set of G,
2. t(xik+1

) > min{t(y) | y ∈ PD(xik−2
)}.

Lemma 13 (Case 2). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (2) of Fig. 1.

Then D′ is an irredundant set of G if and only if A(D′) is an irredundant set of
G.
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b(xik)b(xik)

b(xik−1
) b(xik−1

)

b(xik−1
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)

b(xik−2
)

t(xik) t(xik)
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) t(xik−1

)

t(xik−2
) t(xik−2

)

t(xik−2
) t(xik−2

)

t(xik−1
)t(xik−1

)

Fig. 1. Different cases following the intersections of LG(xik−2), LG(xik−1) and LG(xik ).

Lemma 14 (Case 3). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (3) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) is an irredundant set of G,
2. t(xik+1

) > min{t(y) | y ∈ PD(xik−1
)}.

Lemma 15 (Case 4). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (4) of Fig. 1.

Then D′ is an irredundant set of G if and only if A(D′) is an irredundant set of
G.

Lemma 16 (Case 5). Let D′ := {xi1 , xi2 , . . . , xik , xik+1
} with k ≥ 3 be a subset

of the vertex set of a permutation graph G such that D := {xi1 , . . . , xik} is an
irredundant set of G and {xik−2

, xik−1
, xik} corresponds to Case (5) of Fig. 1.

Then D′ is an irredundant set of G if and only if

1. A(D′) \ xD′ is an irredundant set of G,
2. t(xik+1

) > min{t(v) | v ∈ PD(xik)}.

The next proposition shows that minimal dominating sets are exactly those
irredundant sets {xi1 , . . . , xik} with no segments before xi1 (after xik), and for
each 2 ≤ l < k, there do not exist vertices y with LG(xil−2

) < LG(y) and y not
in NG[Dl+1].

Proposition 17. Let D := {xi1 , xi2 , . . . , xik} be an irredundant set of a per-
mutation graph G. Then D is a minimal dominating set of G if and only if the
following conditions are fulfilled
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1. for each l, t(xl) ≥ min (t(xi1), t(xi2), t(xi3)) or b(xl) ≥ b(x1),
2. {y | LG(xik−2

) < LG(y) and y /∈ NG[D]} = ∅,
3. for all 2 ≤ l < k, if LG(xil) does not intersect LG(xil−1

) then {y | LG(xil−2
) <

LG(y) < LG(xil−1
) and y /∈ NG[Dl+1]} = ∅. Furthermore, {y | LG(xil−1

) <
LG(y), t(y) < t(xil+1

), and b(y) < b(xil) and y /∈ NG[Dl+1]} = ∅ if
LG(xil+1

) intersects LG(xil).

Proof. Assume that D is a minimal dominating set. Suppose that (1) is false,
then there exists x such that LG(x) < LG(x1), LG(x) < LG(x2) and LG(x) <
LG(x3). Since D is a dominating set there exists l ≥ 4 such that LG(xil) in-
tersects LG(x), i.e., t(xil) < t(x). But in this case LG(xil) intersects LG(xi1),
LG(xi2) and LG(xi3) which contradicts Lemma 10. If (2) is not satisfied, there ex-
ists x such that x /∈ NG[D] which is in contradiction with D being a dominating
set. Now let 2 ≤ l < n such that LG(xil) does not intersect LG(xil−1

). Assume
that there exists x ∈ {y | LG(xil−2

) < LG(y) < LG(xil−1
) and y /∈ NG[Dl+1]}.

Then x is not covered by Dl+1 and since D is a dominating set, there exists
s > l + 1 such that x ∈ NG[xis ]. Now since b(xis) > b(xil+1

), we have that
t(xis) < t(x) but then dG[D](xs) > 3 contradicting Lemma 10. Now assume that
LG(xil+1

) intersects LG(xil) and there exists x ∈ {y | LG(xil−1
) < LG(y), t(y) <

t(xil+1
), and b(y) < b(xil) and y /∈ NG[Dl+1]}. Then there exists s > l+ 1 such

that x ∈ NG[xis ]. Since b(xis) > b(xil+1
), we have that t(xis) < t(x) and then

{xis , xil+1
, xil} forms a triangle contradicting Lemma 10.

Let us show now that if (1), (2) and (3) are satisfied, then D is a minimal
dominating set. Since D is an irredundant set of G, it remains to show that D
is a dominating set. Assume not, i.e., there exists x such that x /∈ NG[D]. We
know that there exists y ∈ D such that LG(y) < LG(x) otherwise (1) would be
violated. So let s such that b(xis) := max{b(y) | y ∈ D and b(y) < b(x)}. We
know that s < k − 2, otherwise (2) would be violated. Now it is sufficient to
notice that if LG(xis+1) intersects LG(xis+2) then (3) is violated with l = s+ 1,
otherwise (3) is violated with l = s+ 2. ut

Proposition 18. Let D := {xi1 , xi2 , . . . , xik , xik+1
} be a subset of the vertex set

of a permutation graph G and let x ∈ {y | LG(xik−2
) < LG(y)}. Then x ∈ NG[D]

if and only if x ∈ NG[A(D)].

Let G be a permutation graph and let ⊥ be a non vertex of G. Thanks
to Lemmas 12-16, and Propositions 17 and 18, the DAG to which some paths
correspond to the minimal dominating sets of G will have as vertices those
quintuplets (xi1 , xi2 , xi3 , xi4 , xi5) in (VG∪ ⊥)5 that correspond to Cases (1)-(5)
of Fig. 1, and the arcs describe the construction of minimal dominating sets
from left to right (and thanks to Proposition 18 the arcs can be constructed in
polynomial time).

We denote by Initial(G) those quintuplets (xi, xj , xk,⊥, xs) ∈ (VG∪ ⊥)5
such that A := {xi, xj , xk} is an irredundant set of G, and one of the following
conditions hold

(I.1) t(xs) := min{t(y) | y ∈ PA(xi)} if A corresponds to Case (1) of Fig. 1 and
{y | LG(y) < LG(xi)} = ∅.
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(I.2) xs =⊥ if A corresponds to Case (2) of Fig. 1 and {y | t(y) < t(xk), b(y) <
b(xj), and y /∈ NG[A]} = ∅.

(I.3) t(xs) := min{t(y) | y ∈ PA(xj)} if A corresponds to Case (3) of Fig. 1 and
{y | t(y) < t(xj) and b(y) < b(xi)} = ∅.

(I.4) xs =⊥ if A corresponds to Case (4) of Fig. 1 and {y | t(y) < t(xj), b(y) <
b(xi), and y /∈ NG[A]} = ∅.

(I.5) t(xs) := min{t(y) | y ∈ PA(xk)} if A corresponds to Case (5) of Fig. 1 and
{y | t(y) < t(xk) and b(y) < b(xi)} = ∅.

We denote by Regular(G) those quintuplets (xi, xj , xk, xr, xs) ∈ (VG∪ ⊥)5
such that A := {xi, xj , xk} is an irredundant set of G, and one of the following
conditions hold

(R.1) r < i and xs =⊥ if A corresponds to Case (2) or (4) of Fig. 1.
(R.2) r < i and xs ∈ NG[xi] \NG[{xr, xj , xk}] if A corresponds to Case (1) of Fig.

1.
(R.3) r < i and xs ∈ NG[xj ] \NG[{xr, xi, xk}] if A corresponds to Case (3) of Fig.

1.
(R.4) xr =⊥ and xs ∈ NG[xk] \ NG[{xr, xi, xj}] if A corresponds to Case (5) of

Fig. 1.

For v := (xi, xj , xk, xr, xs) in Initial(G) ∪Regular(G) we let

A(v) :=

{
{xr, xi, xj , xk} if xr 6=⊥,
{xi, xj , xk} otherwise.

We let DagP (G) be the DAG with vertex set Initial(G) ∪ Regular(G)
and such that there is an arc (v1, v2) with v1 := (xi, xj , xk, xr, xs) and v2 :=
(xj , xk, xl, xr′ , xs′) if the following conditions are satisfied.

(A.1) If xr′ 6=⊥, then t(xr′) = max(t(xr), t(xi)) if xr 6=⊥, otherwise t(xr′) = xi.
(A.2) A := A(v1) ∪ {xl} is an irredundant set of G.
(A.3) t(xl) > t(xs) if xs 6=⊥.
(A.4) If LG(xk) does not intersect LG(xj) then {y | LG(xi) < LG(y) < LG(xj) and y /∈

NG[A]} = ∅. Furthermore, {y | LG(xj) < LG(y), t(y) < t(xl), and b(y) <
b(xk) and y /∈ NG[A]} = ∅ if LG(xl) intersects LG(xk).

(A.5) If xs′ 6=⊥ then
(A.5.1) xs = xs′ if xs 6=⊥ and min{t(xi), t(xj), t(xk)} = min{t(xj), t(xk), t(xl)}.
(A.5.2) t(xs′) = min{t(x) | x ∈ PA(y)} where y is the vertex such that t(y) =

min{t(xj), t(xk), t(xl)} otherwise.

A vertex v of DagP (G) is called an initial vertex if it belongs to Initial(G)
and it is called a final vertex if {y | LG(xi) < LG(y) and y /∈ NG[A(v)]} = ∅.
The set of final vertices is denoted by Final(G).

Proposition 19. Let G a be permutation graph. A subset D := {xi1 , xi2 , ..., xik+2
}

of VG is a minimal dominating set of G of size greater than or equal to three, if
and only if there exists a path (v1, ..., vk) of DagP (G) where vj := (xij , xij+1 , xij+2 ,
xrj , xsj ), and v1 ∈ Initial(G) and vk ∈ Final(G).
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Theorem 20. Let G be a permutation graph. Then, after a pre-processing in
time O(n8), one can enumerate in linear delay the minimal dominating sets of
G. One can moreover count them in time O(n8).

Proof. By Proposition 19 there is a bijection between minimal dominating sets
of G of size greater than or equal to 3, and paths from Initial(G) to Final(G)
in DagP (G). Let S1 := {x ∈ VG | {x} is a minimal dominating of G}, and let
S2 := {{x, y} | {x, y} is a minimal dominating set of G}. Clearly S1 and S2 can
be constructed in time O(n3). We let G′ be the DAG obtained from DagP (G)
by adding new vertices vx and vxy, with in-degree and out-degree 0, for each
x ∈ S1 and each {x, y} ∈ S2. We let

S := Initial(G) ∪ {vx | x ∈ S1} ∪ {vx,y | {x, y} ∈ S2},
T := Final(G) ∪ {vx | x ∈ S1} ∪ {vx,y | {x, y} ∈ S2}.

It is now clear that paths from S to T in G′ corresponds to minimal dominating
sets of G, and since such paths can be listed in linear delay in DAGs, and be
counted in linear time (see Theorem 1), it remains to show that DagP (G) can
be constructed in time O(n8).

First notice that the number of vertices of DagP (G) is bounded by n5. Fur-
thermore, for a quintuplet (xi, xj , xk, xr, xs), we can check in linear time if it is
a vertex of DagP (G). Then the time complexity for the creation of VDagP (G) is
bounded by O(n6). Now we analyse the time complexity to compute the neigh-
bourhood of a vertex of DagP (G). For v := (xi, xj , xk, xr, xs) ∈ VDagP (G), we
need to check if (v, w) is an arc for all w = (xj , xk, xl, xr′ , xs′) where t(xr′) =
max(t(xr), t(xi)). There is at most n2 candidates for w, and we can check if
there is an arc from v to w in linear time. So the total time complexity to create
DagP (G) is bounded by O(n8). ut

5 Conclusion

If we want to list a subset C ⊆ 2VG of a graph G, by outputting each element
of each C ∈ C, then the size of C defined as

∑
C∈C
|C| is a lower bound. We have

proposed linear delay algorithms for the enumeration of minimal dominating
sets in interval and permutation graphs the running times of which match the
above lower bound. Our techniques allow also a polynomial time algorithm (in
the sizes of the graphs) for counting minimal dominating sets. The techniques
used in this paper can be adapted to list with linear delay (and also count
in polynomial time) the minimal connected dominating sets and minimal total
dominating sets in interval and permutation graphs [14]. The results presented
here and in [14] can be extended to trapezoid graphs, but the proofs are more
tricky. It is not known whether one can enumerate minimal dominating sets in
circle graphs, can we adapt some of our techniques to them?
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A Proof of Theorem 1

In this appendix, we recall the algorithms that enumerate (and count) maximal
paths in a DAG. The following algorithm lists with linear delay all paths in a dag
G from S to P . It can be used to also count all paths from S to P , by commenting
the call to the function All-Maximal-Path(G, s, p, ∅), and uncommenting the call
to the function Count-Maximal-Path(G, s, p). It is straightforward to check that
the algorithms use linear space in the size of the input (we can give a reference
to the graph), and perform the desired outputs.

Algorithm 1: List-Count-Path(S, P )
Input: A DAG G, and two subsets of its vertex set S and P .
Output: List all paths (with linear delay) from S to P .
begin

Let s and p be new vertices
Add (s, x) for all x ∈ S
Add (x, p) for all x ∈ P
Let (s = x1, ..., xn = p) be a topological ordering of G
// The following loop deletes all vertices not in a path from S to P
Mark all vertices in P ∪ {p}
for i = n− 1 to 1 do

for each neighbour y of xi do
if y is marked then

mark xi

end
end

end
Delete all vertices which are not marked
All-Maximal-Path(G, s, p, ∅) // lists paths with linear delay
// Count-Maximal-Path(G, s, p) // count paths

end

B Proofs from Section 3

Proof (of Proposition 5). Suppose that D is a minimal dominating set of G. If
(1) does not hold, then there exists ` ≤ n such that s(xi1) > e(x`). Since for all
1 < j ≤ k, s(xij) > s(xi1), we can conclude that NG[x`]∩D = ∅, a contradiction.
If (2) is not satisfied, then there exists ` ≤ n such that e(xik) < s(x`). By
Corollary 3, we have that e(xik) > e(xi`) for all 1 ≤ ` < k, we can again
conclude in this case that NG[x`] ∩D = ∅, which yields a contradiction.

We now show (3). Let j ≤ k such that NC(xij ) = ∅. Since xij � xik ,
we have s(xij ) ≤ s(xik). Therefore, NG[xik ] ⊆ NG[xij ] ∪ NC(xij ), and since
NC(xij ) = ∅, we have NG[xik ] ⊆ NG[xij ]. So, assuming that j 6= k would
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Algorithm 2: All-Maximal-Path(G, x, p,D)

Input: A DAG G with one single sink p, a vertex x and a subset D.
Output: Lists all paths from x to p with linear delay and appends D.
begin

if x = p then
output(D)

end
else

for each neighbour y of x do
All-Maximal-Path(G, y, p,D ∪ {x})

end
end

end

Algorithm 3: Count-Maximal-Path(G, s, p)
Input: A DAG G with one single source s and one single sink p.
Output: The number of paths from s to p
begin

Initialise Count[x] to 0 for every vertex in G, and Count[p] = 1
for i = n to 1 do

for each neighbour y of xi do
Count[xi] = Count[xi] + Count[y]

end
end
Output Count[s]

end

contradict the fact that D is a minimal dominating set. Hence, j = k whenever
NC(xij ) = ∅. Assume now that NC(xij ) 6= ∅. Then j < k. If e(xij+1

) < ncs(xij ),
then NG[xij+1

]∩NC(xij ) = ∅. Since s(xij ) < s(xij+1
), we can therefore conclude

that NG[xij+1 ] ⊆ NG[xij ]. But again this contradicts the fact thatD is a minimal
dominating set.

It remains to show (4). Let 1 ≤ j < k. Because D is a minimal dominating
set PD(xij ) is not empty, and therefore pD(xij ) exists. Moreover, by (3) NC(xij )
is not empty, and therefore nce(xij ) is well-defined. So, the inequality in (4) is
well-defined. Assume that (4) does not hold. Then either pD(xij ) ≥ s(xij+1

) or
s(xij+1

) > nce(xij ). Assume first that pD(xij ) ≥ s(xij+1
) and let xpj

be such that
e(xpj ) = pD(xij ). If e(xpj ) ≤ e(xij ), then we would have xpj ∈ NG[xij+1 ] which
would contradict Lemma 4. If e(xpj ) > e(xij ), then either xpj ∈ NG[xij+1 ],
which would contradict Lemma 4, or since s(xij ) < s(xij+1

), we will have
IG(xij+1

) ⊆ IG(xij ) which contradicts Lemma 2. We can thus conclude that
pD(xij ) < s(xij+1

). Assume now that s(xij+1
) > nce(xij ) and let xej ∈ NC(xij )

be such that e(xej ) = nce(xij ). Since xej ∈ NC(xij ), we have e(xij ) < s(xej ),
and by Corollary 3, we also have e(xij′ ) < s(xej ) for all j′ < j. Therefore,
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NG[xej ] ∩ {xi1 , . . . , xij} = ∅. Moreover, since e(xej ) < s(xij+1
) and s(xij+1

) <
s(xir ) for all r > j+1, we can also conclude that NG[xej ]∩{xij+1 , . . . , xik} = ∅.
Therefore, NG[xej ] ∩D = ∅, which yields a contradiction with the fact that D
is a dominating set.

We now assume that D satisfies Conditions (1) to (4). We first prove that D
is a dominating set. Let x in VG \D. By (1) and (2) we know that s(xi1) < e(x)
and e(xik) > s(x). So let r := max{j ≤ k | s(xij ) ≤ e(x)}. Notice that r is well-
defined by (1). If NG[x] ∩ {xi1 , . . . , xir} 6= ∅, then NG[x] ∩D 6= ∅. So, suppose
that NG[x] ∩ {xi1 , . . . , xir} = ∅. Notice that by (2) we have necessarily r < k.
Now, if r < k, then by (3) NC(xir ) 6= ∅ and x ∈ NC(xir ). So, nce(xir ) ≤ e(x).
By definition of r, we have s(xir+1) > e(x), i.e., s(xir+1) > nce(xir ), which
contradicts (4).

We now prove that D is minimal. We first prove that PDj (xij ) 6= ∅ for all
1 ≤ j ≤ k. By definition of Dj , it is clear that PD1(xi1) 6= ∅. So, let ` > 1 be the
maximum ≤ k such that PD`

(xi`) 6= ∅. If ` = k, then we are done. So assume that
` < k. By (3) NC(xi`) 6= ∅ and let xs` ∈ NC(xi`) be such that s(xs`) = ncs(xi`).
By (3) we have e(xi`+1

) ≥ s(xs`) and by (4) s(xi`+1
) ≤ nce(xi`). And since

nce(xi`) ≤ e(xs`), we can conclude that IG(xs`) ∩ IG(xi`+1
) 6= ∅, and thus

xs` ∈ NG[xi`+1
] \ NG[xi` ]. Assume there exists j < ` such that xs` ∈ NG[xij ],

i.e., e(xij ) > e(xi`), and let j′ be the maximum among such js. Since s(xij′+1
) >

s(xij′ ), we will have IG[xij′+1
] ⊆ IG[xij′ ], and this contradicts (3) because we

would have e(xij′+1
) < ncs(xij′ ). Therefore, xs` ∈ PD`+1

(xi`+1
) since for all

j ≤ `, xs` /∈ NG[xij ].
It remains now to prove that PD(xij ) 6= ∅ for all 1 ≤ j ≤ k. Since PDk

(xik) 6=
∅, we can conclude that PD(xik) 6= ∅. So let 1 ≤ j < k, and let xpj be such
that e(xj`) = pD(xij ). By (4), we have s(xij+1

) > e(xpj
), i.e., xpj

/∈ NG[xij+1
].

And since s(xir ) > s(xij+1) for all r > j + 1, we can conclude that xpj /∈
∪j+1≤r≤kNG[xir ]. Therefore, xpj ∈ PD(xij ). ut

Proof (of Proposition 6). Let x ∈ NG[xik ] be in PD(xik). Then e(x) ≥ s(xxk
) and

x /∈ NG[xik−1
]. Therefore, e(xik−1

) < s(x) since by definition s(xik−1
) ≤ s(xik).

Assume now that x ∈ NG[xik ] is such that e(xik−1
) < s(x). By Corollary 3,

we know that e(xir ) < e(xik−1
) for all r < k − 1. Hence, s(x) > e(xij ) for all

j < k. Therefore, NG[x] ∩D = xik , i.e., x ∈ PD(xik). ut

Proof (of Lemma 7). We first prove (1). Assume that there exists a circuit
(v1, . . . , vk, vk+1 = v1) with vj := (xij , xij+1

) for 1 ≤ j ≤ k. Then, we would
have xi1 ≺ xi2 ≺ xi3 ≺ · · · ≺ xik ≺ xik+1

= xi1 which is a contradiction with the
fact that � is a linear order.

We now prove (2). If (xi, xj) is an initial vertex, then s(xi) ≤ e(x`) for all
1 ≤ ` ≤ n. Assume there exists (x`, xi) such that ((x`, xi), (xi, x`)) is an edge.
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We would have s(x`) ≤ s(xi), and therefore p{x`}(x`) < s(xi) ≤ nce(x`), and
thus there exists xs such that s(xi) > e(xs), a contradiction.

Assume now that (xi, xj) is a final vertex. Since, e(xj) ≥ s(x`) for all 1 ≤
i ≤ n, we have NC(xj) = ∅. And thus there cannot exist a vertex (xj , xk). So,
(xi, xj) is a sink.

It remains to prove (3). For each vertex xi of G, one can compute NC(xi)
in time O(n) and compute p{xi}(xi), nc

e(xi) and ncs(xi) in time O(n · log(n)).
Since we can decide in constant time if xi � xj , we can therefore construct the
set of vertices of DagI(G) in O(n2) since each of the conditions can be checked
in constant time whenever p{xi}(xi), nc

e(xi) and ncs(xi) are known. For each
pair (xi, xj) by Proposition 6, one can compute p{xi,xj}(xj) in time O(|NG[xj ]|).
Therefore, one can compute the edges of DagI(G) in time O(n3). ut

Proof (of Proposition 8). By Proposition 5 it is enough to prove that (v1, . . . , vk)
is a path of DagI(G) if and only if Conditions (1)-(4) are satisfied (provided we
assume D of size at least 2).

Assume first that (v1, . . . , vk) is a path of DagI(G). Since v1 is an initial
vertex, then s(xi1) ≤ e(x`) for all 1 ≤ ` ≤ n. Similarly, since vk is a final
vertex e(xik+1

) ≥ s(x`) for all 1 ≤ ` ≤ n, and moreover NC(xik+1
) = ∅. Now,

since for each j, (xij , xij+1) is a vertex of DagI(G), then by (V.3) we have
e(xij+1

) ≥ ncs(xij ). It remains now to check (4). Since (xi1 , xi2) is a vertex of
DagI(G), by (V.2) p{xi1

}(xi1) < s(xi2) ≤ nce(xi1) and then (4) is satisfied for
j = 1. Let j be the maximum < k such that (4) is satisfied and let us prove it for
j + 1 < k. Since (vj−1, vj) is an arc, then by (E.1) p{xij−1

,xij
}(xij ) < s(xij+1) ≤

nce(xij ). But, by Proposition 6, x ∈ PDj (xij ) if and only if e(xij−1) < s(x), i.e.,
x ∈ PDj (xij ) if and only if x ∈ P{xij−1

,xij
}(xij ). Therefore, we can conclude that

pD(xij ) < s(xij+1
) ≤ nce(xij ). Since now the four conditions of Proposition 5

are satisfied, we can conclude that D is a minimal dominating set of G.
Now assume that D := {xi1 , . . . , xik+1

} is a minimal dominating set G of
size at least 2. Then the four conditions of Proposition 5 are satisfied. For each
1 ≤ j ≤ k, let vj := (xij , xij+1). It is clear that each vj is a vertex of DagI(G)
by Conditions (3) and (4). By Conditions (1), (2) and (3) one can conclude
that v1 is an initial vertex and vk is a final vertex. To conclude it is enough to
prove that (vj , vj+1) is an arc for all 1 ≤ j < k. But, by Condition (4) for all
1 ≤ j < k, we have pD(xij ) < s(xij+1

) ≤ nce(xij ), and by Proposition 6 we
have P{xij−1

,xij
}(xij ) = PDj (xij ), i.e., p{xij−1

,xij
}(xij ) < s(xij+1) ≤ nce(xij ).

Therefore, (vj , vj+1) is an arc of DagI(G). ut

C Proofs from Section 4

Proof (of Lemma 10). Assume thatG[D] contains a claw {v, x, y, z} with centre v
and assume w.l.o.g that LG(x) < LG(y) < LG(z). Then we claim that PD(y) = ∅.
Indeed u ∈ PD(y) only if (b(x) < b(u) < b(y) and t(y) < t(u) < t(z)) or
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(b(y) < b(u) < b(z) and t(x) < t(u) < t(y)) and in both cases LG(u) intersects
LG(v). Now assume that G[D] contains a triangle {x, y, z} and assume w.l.o.g
that b(x) < b(y) < b(z). Then we claim that PD(y) = ∅. Indeed let u ∈ NG(y),
then either (b(u) < b(y) and t(y) < t(u)) but in this case LG(u) intersects LG(z)
or (b(u) > b(y) and t(y) > t(u)) and in this case LG(u) intersects LG(x). ut

Proof (of Lemma 11). Let l ≤ ik−3 and let x ∈ PD(xil). Let {t1, t2, t3} :=
{t(xik−2

), t(xik−1
), t(xik)} with t1 < t2 < t3 and let yi be such that t(yi) =

ti. First notice that t(xik+1
) > t1, otherwise G[{xik−2

, xik−1
, xik , xik+1

}] would
induce either a claw or contain a triangle contradicting Lemma 10. Similarly,
t(xij ) < t3 for all j ≤ k−3. Observe moreover that b(x) < b(y3), otherwise since
t(xil) < t3, we would have x ∈ NG(y3), a contradiction.

Assume first that t(x) > t(xil), then b(x) < b(xil) and thus t(xil) < t1,
otherwise LG(x) and LG(y1) would intersect. If x ∈ NG(xik+1

), then t(xik+1
) < t1

because b(xik+1
) > b(x) and this would yield a contradiction with the observation

that t(xik+1
) < t1. Suppose now that t(x) < t(xil), then t(xik+1

) > t(xD′). Indeed
if t(xik+1

) < t(xD′), then we would have t(xD′), t(xik+1
) > t2 because otherwise

{y3, y2, xD′ , xik+1
} would induce either a claw with centre xik+1

or contain a
triangle. Now if t(xD′), t(xik+1

) > t2, then {y1, y2, xD′ , xik+1
} would induce either

a claw with centre xD′ or contain a triangle. Assuming that t(xik+1
) > t(xD′)

we have t(x) < t(xil) < t(xD′) < t(xik+1
) and b(x) < b(y3) < b(xik+1

), i.e.,
LG(x) < LG(xik+1

). ut

Proof (of Lemma 12). Assume first that D′ is an irredundant set of G. Then
since the irredundance property is closed under inclusion, (1) holds. Assume now
that t(xik+1

) ≤ min{t(y) | y ∈ PD(xik−2
)}. By Lemma 10 we have t(xik+1

) >
t(xik−2

). Moreover, x ∈ PD(xik−2
) only if (b(x) < b(xik−2

) and t(xik−2
) < t(x) <

t(xik−1
)) or (b(xik−2

) < b(x) < b(xik−1
) and t(x) < t(xik−2

)). Now, if t(xik+1
) ≤

min{t(y) | y ∈ PD(xik−2
)}, then x ∈ PD(xik−2

) implies that (b(x) < b(xik−2
)

and t(xik−2
) < t(x) < t(xik−1

)). But in this case we would have PD(xik−2
) ⊆

NG(xik+1
), contradicting the irredundancy of D′ since PD′(xik−2

) ⊆ PD(xik−2
).

Assume now that (1) and (2) are true and let us show that PD′(xij ) 6= ∅
for all 1 ≤ j ≤ k + 1. We may assume that k ≥ 4 since otherwise A(D′) =
D′ and then we are done by assumption. So, xD′ exists. Let x be such that
t(x) = min{t(y) | y ∈ PD(xik−2

)}. By definition b(x) < b(xik−1
) < b(xik+1

),
and by (2) t(x) < t(xik+1

). Therefore, LG(x) < LG(xik+1
), i.e., x /∈ NG(xik+1

),
and hence PD′(xik−2

) 6= ∅. Let k − 1 ≤ j ≤ k + 1 and let x ∈ PA(D′)(xij ). If
there exists s ≤ k − 3 such that x ∈ NG(xis), then t(xis) > t(x) (because if
x ∈ PA(D′)(xij ), then LG(xik−2

) < LG(x)), and thus t(xD′) > t(x) (because by
definition t(xD′) > t(xis) for all s ≤ k − 3). Since b(xD′) < b(xik−2

), then we
would have x ∈ NG(xD′), which contradicts the irredundancy of A(D′). The fact
that PD(xij ) ∩NG[xik+2

] = ∅ for all j ≤ k − 3 concludes the proof. ut

17



Proof (of Lemma 13). We may assume that k ≥ 4 otherwise A(D′) = D′ and
we are done. It is also clear that if D′ is an irredundant set of G, then so is
A(D′). Suppose now that A(D′) is an irrendundant set of G and let us show
that D′ is. By Lemma 11, we know that for all j < k− 2, PD′(xij ) = PD(xij ) 6=
∅. Note first that t(xik+1

) > t(xik), otherwise {xik−1
, xik , xik+1

} would form a
triangle, contradicting Lemma 10. Moreover, for each x ∈ PD(xik−2

), we have
t(x) < t(xik) and b(x) < b(xik−1

) < b(xik+1
) and then x ∈ PD′(xik−2

). Let
k − 1 ≤ j ≤ k + 1 and let us show that PD′(xij ) 6= ∅. Let x ∈ PA(D′)(xij ).
Thus we have b(x) > b(xik−2

) and then t(x) > t(xD′) otherwise LG(xD′) would
intersect LG(x). Now since for all y ∈ D \ A(D′) we have b(y) < b(xik−2

) and
t(y) < t(xD′), LG(y) cannot intersect LG(x), and then x ∈ PD′(xij ). ut

Proof (of Lemma 14). Let xs be such that t(xs) = min{t(y) | y ∈ PD(xik−1
)}. If

D′ is irredundant, then A(D′) is clearly irredundant. Since x ∈ PD(xik−1
) only

if (b(x) < b(xik−2
) and t(xik−1

) < t(x) < t(xik−2
)) or (b(xik−2

) < b(x) < b(xik−1
)

and t(xik−2
) < t(x) < t(xik))), t(xik+1

) < t(xs) would imply that PD(xik−1
) ⊆

NG[xik+1
]∩, contradicting the fact that PD′(xik−1

) 6= ∅.
Now assume that D′ satisfies (1) and (2). We may assume that k ≥ 4

since otherwise A(D′) = D′ and then we are done by assumption. So, xD′
exists. Since D is irredundant, for all l < k − 2, t(xil) < t(xik−2

), otherwise
{xil , xik−2

, xik−1
} would form a triangle, contradicting Lemma 10. Therefore,

PD′(xik) = PA(D′)(xik) since x ∈ PA(D′)(xik) only if b(x) > b(xik−1
) and t(x) >

t(xik−2
). Now, observe that t(xik+1

) > t(xD′), otherwise, {xD′ , xik−2
, xik , xik+1

}
would form a claw with centre xik+1

, contradicting Lemma 10. Therefore, x ∈
PA(D′)(xik+1

) only if b(x) > b(xik−1
) and t(x) > t(xik−2

) > t(xD′). Hence,
PD′(xik+1

) 6= ∅ because b(xil) < b(xik−2
) and t(xil) < t(xD′) for all l < k − 2.

By assumptions, xs ∈ PD(xik−1
) \ NG(xik+1

) and therefore PD′(xik−1
) 6= ∅. It

remains to prove that PD′(xik−2
) 6= ∅. By definition of A(D′), x ∈ PA(D′)(xik−2

)
only if t(x) > t(xD′) and b(x) > b(xik−2

) (notice that t(x) < t(xik−2
) also).

Since for all l < k − 2, b(xil) < b(xik−2
) and t(xil) ≤ t(xD′), we have NG(xil) ∩

PA(D′)(xik−2
) 6= ∅, i.e., PD′(xik−2

) 6= ∅. ut

Proof (of Lemma 15). We may assume that k ≥ 4, otherwise A(D′) = D′ and
we are done. It is clear that A(D′) is an irredundant of G if D′ is because
A(D′) ⊆ D′. Now assume that A(D′) is an irredundant set of G. Since by
Lemma 11, P ′D(xil) = PD(xil) for all l < k − 2, we just prove that PD′(xij ) 6= ∅
for all k − 2 ≤ j ≤ k + 1. One first notices that t(xD′) < t(xik−2

), oth-
erwise {xD′ , xik−2

, xik} forms a triangle, contradicting Lemma 10. Similarly
t(xik+1

) > t(xik−2
), otherwise either {xik , xik+1

, xik−2
} induces a triangle or

{xik+1
, xik−2

, xik−1
, xik} induces a claw (with xik−2

as the centre) contradict-
ing also Lemma 10. Therefore, PD′(xik+1

) 6= ∅. One can also notice that if
x ∈ PA(D′)(xik), then b(xik−1

) < b(x) < b(xik) and t(xik+1
) > t(x) > t(xik−2

).
Since for all l < k − 2, t(x) < t(xD′) < t(xik−2

), then NG[xil ] ∩ PA(D′)(xik) 6= ∅
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which implies that PD′(xik) 6= ∅. One can easily check that PA(D′)(xik−1
) =

PA(D′)\{xik+1
}(xik−1

). Therefore, we have PD′(xik−1
) = PD(xik−1

) 6= ∅. It re-
mains now to prove that PD′(xik−2

) 6= ∅. Indeed, x ∈ PA(D′)(xik−2
) implies that

t(x) > t(xD′) and b(x) > b(xik−2
). Since for all l < k − 2, b(xil) < b(xik−2

) and
t(xil) < t(xD′), then PA(D′)(xik−2

)∩NG[xil ] 6= ∅, i.e., PD′(xik−1
) 6= ∅. Therefore

D′ is an irredundant set of G. ut

Proof (of Lemma 16). Let A := A(D′)\xD′ (notice that if k = 3 then A = A(D′)
since xD′ does not exist). Assume first that D′ is an irredundant set of G. Then
A is also an irredundant set of G and t(xik+1

) > min{t(v) | v ∈ PD(xik)},
otherwise since b(x) < b(xik+1

) for all x ∈ PD′(xik), LG(xik+1
) would intersect

LG(x) for all x ∈ PD′(xik) contradicting the fact that D′ is an irredundant set
of G.

Now assume that Conditions (1) and (2) are satisfied and let us prove that
D′ is an irredundant set of G. Since by Lemma 11 PD′(xil) = PD(xil) for all
l < k − 2, we just have to prove that PD′(xij ) 6= ∅ for all k − 2 ≤ j ≤ k + 1.
Note first that Condition (2) guarantees that PD′(xik) 6= ∅. Let us show that
PD′(xik−2

) 6= ∅ and let x ∈ PD(xik−2
). Remark that t(xik+1

) > t(xik) since
otherwise {xik , xik−2

, xik+1
} would form a triangle contradicting Lemma 10. Now

one can easily check that that t(x) < t(xik) and then LG(xik+1
) cannot intersect

LG(x) and then x ∈ PD′(xik−2
). Now let j ∈ {k − 1, k + 1} and let x ∈ PA(xij ).

Then we have t(x) > t(xik−2
). Furthermore, for all y ∈ D \ A, we have t(y) <

t(xik−2
) since otherwise {y, xik−2

, xik} would form a triangle. Thus LG(y) cannot
intersect LG(x) and then x ∈ PD′(xij ). ut

Proof (of Proposition 18). We may assume that k ≥ 4, otherwise the proposition
is trivially true because in this case A(D) = D. So, xD exists. Clearly, if x ∈
NG[A(D)], then x ∈ NG[D]. So assume that x ∈ NG[D] \ NG[A(D)] and let
l < k−2 such that x ∈ NG[xil ]. Since b(x) > b(xik−2

) and since b(xil) < b(xik−2
),

we have t(xil) > t(x). But now we have b(xD′) < b(x) and t(xD′) > t(xil) > t(x)
and then x ∈ NG[xD′ ] contradicting that x /∈ NG[A(D)]. ut

Proof (of Proposition 19). Suppose first that there exists a path (v1, ..., vk) of
DagP (G) with vj := (xij , xij+1

, xij+2
, xrj , xsj ), and v1 and vk respectively an

initial and a final vertex, and let D := {xi1 , xi2 , ..., xik+2
}. We first show by

induction on 3 ≤ ` ≤ k + 2 that

(i) D` := {xi1 , . . . , xi`} is an irredundant set of G,
(ii) xr`−3

= xD`
if xD`

is defined,
(iii) xs`−2

(whenever different from ⊥) corresponds to min{t(z) | z ∈ PD`
(y)}

where y ∈ D` is such that t(y) = min{t(xi`−2
), t(xi`−1

), t(xi`)}.
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Since v1 is an initial vertex, D3 is an irredundant set of G by definition, and
(ii) and (iii) are trivially satisfied. Assume that (i)-(iii) are satisfied for some
` and let us prove them for ` + 1. Since there exists an arc (v`−2, v`−1), we
know that A(v`−2) ∪ {xi`+1

} is an irredundant set of G, and one easily checks
that it corresponds to A(D`+1) (or to A(D`+1) \ xD`+1

) if {xi`−2
, xi`−1

, xi`}
corresponds to Cases (1)-(4) (or Case (5)) of Fig. 1. By Lemmas 12-16 we can
conclude that D`+1 is an irredundant set of G since by inductive hypothesis
D` is an irredundant set of G, and by (A.3) we have t(xi`+1

) > t(xs`−2
) in

Cases (1), (3) and (5) of Fig. 1. It is an easy computation to check (with (A.5))
that xsi`−1

corresponds to min{t(z) | z ∈ PD`
(y)} where y ∈ D` is such that

t(y) = min{t(xi`−1
), t(xi`), t(xi`+1

)}, and that xr`−2
= xD`+1

if xD`+1
is defined

(by (A.1)).
It remains now to show that D is a minimal dominating set (it is enough

to check the three conditions in Proposition 17). Since v1 is an initial vertex
of DagP (G), we can verify that (1) holds. Since vk is a final vertex, we have
{y | LG(xik) < LG(y) and y /∈ NG[A(vk)]} = ∅. One checks with (A.1) that
this implies {y | LG(xik) < LG(y) and y /∈ NG[A(vk) ∪ {xik−1

]} = ∅, which
implies by Proposition 18 that {y | LG(xik) < LG(y) and y /∈ NG[D]} = ∅
and then (2) holds. It remains to show Condition (3). Since v1 is an initial
vertex, we know that (3) holds for l = 2. Now let 2 < l < k and let A :=
A(vl−2) ∪ {xil+1

} (which is well-defined). Since there is an arc (vl−2, vl−1), we
have {y | LG(xil−2

) < LG(y) < LG(xil−1
) and y /∈ NG[A]} = ∅ if LG(xil) does

not intersect LG(xil−1
) and then by Proposition 18 we have {y | LG(xil−2

) <
LG(y) < LG(xil−1

) and y /∈ NG[Dl+1]} = ∅. If LG(xil+1
) intersects LG(xil)

then {y | LG(xil−1
) < LG(y), t(v) < t(xil+1

), and b(y) < b(xil) and y /∈
NG[A]} = ∅ and then, again by Proposition 18, {y | LG(xil−1

) < LG(y), t(y) <
t(xil+1

), and b(y) < b(xil) and y /∈ NG[Dl+1]} = ∅. Therefore (3) is satisfied.

Now assume that D := {xi1 , xi2 , ..., xik+2
} is a minimal dominating set of G.

For 1 ≤ j ≤ k let vj := (xij , xij+1 , xij+2 , xrj , xsj ) such that

xrj :=

{
⊥ if j = 1 or {xij , xij+1 , xij+2} corresponds to Case (5) of Fig. 1,
xDj+3 otherwise.

xsj :=


⊥ if {xij , xij+1

, xij+2
} corresponds to Case (2)

and (4) of Fig. 1,
min{t(x) | x ∈ PDj+2

(y)} otherwise with
t(y) = min{t(xij ), t(xij+1

), t(xij+2
)}.

We claim that (v1, v2, . . . , vk) is a path in DagP (G). First notice by Proposition
17(1) that v1 is an initial vertex, and by (2) vk is a final vertex. Let us show now
that for all 1 ≤ j < k, (vj , vj+1) is an arc. One easily checks by definition that
xrj+1

= max{t(xrj ), t(xij )}, and then (A.1) is verified. Now, since D is a minimal
dominating set, A(vj)∪{xij+1} is clearly an irredundant set of G, and then (A.2)
is also satisfied. By Lemmas 12-16 (A.3) is verified, and by Propositions 17 and
18 (A.4) is also satisfied. Now if xsj+1

6=⊥ and min{t(xij ), t(xij+1
), t(xij+2

)} =
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min{t(xij+1
), t(xij+2

), t(xij+3
)}, then we clearly have xsj+1

= xsj by definition,
and then (A.5.1) is checked. Otherwise, By Proposition 18 and by definition of
xsj (A.5.2) is trivially satisfied. ut
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