
Trees in Graphs With Conflict Edges or
Forbidden Transitions

Mamadou Moustapha Kanté?, Christian Laforest??, and Benjamin Momège? ? ?

Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
{mamadou.kante,laforest,momege}@isima.fr

Abstract. In a recent paper [Paths, trees and matchings under disjunc-
tive constraints, Darmann et. al., Discr. Appl. Math., 2011] the authors
add to a graph G a set of conflicts, i.e. pairs of edges of G that cannot be
both in a subgraph of G. They proved hardness results on the problem of
constructing minimum spanning trees and maximum matchings contain-
ing no conflicts. A forbidden transition is a particular conflict in which
the two edges of the conflict must be incident. We consider in this paper
graphs with forbidden transitions. We prove that the construction of a
minimum spanning tree without forbidden transitions is still N P-Hard,
even if the graph is a complete graph. We also consider the problem of
constructing a maximum tree without forbidden transitions and prove
that it cannot be approximated better than n1/2−ε for all ε > 0 even if
the graph is a star. We strengthen in this way the results of Darmann
et al. concerning the minimum spanning tree problem. We also describe
sufficient conditions on forbidden transitions (conflicts) to ensure the ex-
istence of a spanning tree in complete graphs. One of these conditions
uses graphic sequences.

1 Introduction

In some practical situations, classical graphs are not complex enough to model
all the constraints. For example, a city map can be modelled by a graph where
streets are edges. However a car cannot always follow any route on this map. In
some points it can be forbidden to turn left or right for example. This means
that some paths in the graph are not valid. In the graph of a city with such
restrictions, finding a spanning tree containing no restriction would be useful to
ensure the connectivity between any pair of locations. The cars could travel on
this tree submitted to no forbidden transitions. In this paper we investigate this
kind of problem from a pure theoretical point of view.

In the following paragraphs we give the main definitions, notations and con-
cepts that will be used throughout the paper. We also give some bibliographical
references on related results.
? M.M. Kanté is supported by the French Agency for Research under the DORSO

project.
?? Ch. Laforest is supported by the French Agency for Research under the DEFIS

program TODO, ANR-09- EMER-010.
? ? ? B. Momège has a PhD grant from CNRS and région Auvergne.

Specific notions and notations. In this paper, we only consider undirected,
unweighted and simple graphs. We refer to [2] for definitions and undefined
notations. The vertex set of a graph G is denoted by VG and its edge set by EG.
An edge between u and v in a graph G is denoted by uv. A tree is an acyclic
connected graph and a star is a tree with a distinguished vertex adjacent to the
other vertices. A complete graph (resp. star) with n vertices is denoted by Kn

(resp. Sn). A path (or a cycle) of G is Hamiltonian if it contains all the vertices
of G exactly once (all paths and cycles are elementary here).

If G is a graph, a conflict is a pair {e1, e2} of edges of G. A conflict {e1, e2} is
called a forbidden transition if e1 and e2 are incident. In a forbidden transition
{uv, vw}, the vertex v is called its centre and the vertices u and w its extremities.
We denote by (G, C) (resp. (G,F)) a graph G with a set of conflicts C (resp.
with a set of forbidden transitions F). (We use the notation C to denote conflicts
and F for forbidden transitions.) A spanning tree T in (G, C) is a spanning tree
in G without conflicts, i.e., for any e, e′ of T , {e, e′} /∈ C (similarly for the other
subgraph notions).

The spanning tree problem without conflicts (STWC) is, given (G, C), con-
structs a spanning tree T in (G, C), if one exists, otherwise say NO. We define
similarly the spanning tree problem without forbidden transitions (STWFT).
Similarly, the Hamiltonian path (or cycle) problem without forbidden transitions
is denoted by HPWFT (or HCWFT). The problem of constructing a tree with-
out forbidden transitions of maximum size will be denoted by MTWFT.

Works involving forbidden transitions. Graphs with forbidden transitions
have already been investigated and several problems known to be polynomial in
graphs have been shown to be intractable in graphs with forbidden transitions.
For instance it is proved in [10] that knowing whether there exists a path between
two nodes avoiding forbidden transitions is N P-complete and a line between
tractable and intractable cases have been identified. The problem of finding two-
factors1 is considered in [4] and a dichotomy between tractable and intractable
instances is also given. In a very recent paper [7] we propose an exact exponential
time algorithm that checks the existence of paths without forbidden transitions
between two vertices; we also generalise the notion of cut in such graphs.

It is worth noticing that the N P-hardness of the connectedness of two
vertices in graphs with forbidden transitions does not imply the N P-hardness
of STWFT. Indeed, a classical result in graph theory (see [2]) states that a
graph is connected if and only if it contains a spanning tree. Unfortunately, this
is not the case anymore if we take into account F and STWFT. The simplest
proof of this fact is the following. Consider a complete graph Kn with n ≥ 3
where each possible transition is forbidden. Each pair of vertices is connected by
a path with one edge, i.e. without forbidden transitions, but any spanning tree
contains at least two edges (since n ≥ 3) thus a forbidden transition.

Works involving conflicts. Since forbidden transitions are special cases of
conflicts, the N P-hard problems considered in [4, 10] remains N P-hard in

1 a subgraph such that for any vertex its in-degree and its out-degree is exactly one.

graphs with conflicts. But notice that dichotomy theorems in [4, 10] are no longer
valid when dealing with conflicts. Some tractable cases of the path problem have
been investigated in [8]. Another set of problems have been considered in the
literature. For example authors of [9] considered the problem of constructing
a scheduling such that two conflicting tasks cannot be executed on the same
machine or packing problems under the condition that two conflicting items
cannot be packed together. In [3] the authors proved that STWC is N P-
complete. They proved also similar results for the maximum matching problem.

Summary. We prove in Section 2 that STWFT is N P-complete and charac-
terise (in)tractable cases. Hence our result is stronger since we prove the hardness
for a more restrictive type of conflicts. We go further by proving the hardness
even in complete graphs with forbidden transitions. We also show that HPWFT
and HCWFT are also N P-complete in complete graphs with forbidden tran-
sitions. We furthermore prove that MTWFT cannot be approximated, even in
stars with forbidden transitions. In Section 3.1 we adapt and use a result on
graphical sequences to give a sufficient condition to ensure an always YES in-
stance for STWFT in polynomial time when restricting instances to (Kn,F).
In Section 3.2, we prove that STWFT is polynomial in (Kn,F) where each ver-
tex is in a bounded number of forbidden transitions. We also prove that if each
edge is involved in at most one conflict, then there always exist an Hamiltonian
path in (Kn, C). Finally, in Section 3.3 we describe a polynomial time process
to transform any instance (G, C) into an instance (Gf , Cf) containing less edges
and conflicts and ensuring that (G, C) is a YES instance for STWC iff (Gf , Cf)
is.

2 Hardness Results

2.1 N P-Hardness of STWFT, HPWFT and HCWFT

If (G, C) is a graph with conflicts, we can associate with it a conflict graph that
has as edge set C and as vertex set edges involved in C. A 2-ladder is a disjoint
union of edges and a 3-ladder is a disjoint union of paths with 3 vertices. We
recall the following from [3].

Theorem 1 ([3]). STWC is N P-complete, even if conflict graphs are 3-
ladders. However, STWC is polynomial in (G, C) with 2-ladder conflict graphs.

A slight modification of the proof of Theorem 1 gives the following result for
forbidden transitions. Its proof is given for completeness.

Theorem 2. STWFT is N P-complete, even in bipartite graphs with 3-ladders
as conflict graphs. STWFT is polynomial in (G,F) with 2-ladder conflict graphs.

Proof. The second statement follows directly from Theorem 1.
As in the proof of the N P-completeness of STWC, we will reduce the

(3,B2)-SAT to STWFT with 3-ladders as forbidden transitions. We recall that

a (3,B2)-SAT instance is a 3-SAT instance such that each variable occurs exactly
four times, twice positive and twice negated.

Let I be an instance of the (3,B2)-SAT with m clauses C1, . . . , Cm and n
variables X1, . . . , Xn. We let (G,F) with

VG := {r} ∪ {cj | Cj is a clause} ∪ {xi, xi, ri, si | Xi is a variable},
EG := {rri, rixi, rixi, xisi, xisi | i ∈ {1, . . . , n}}∪

{xicj | Xi occurs positively in Cj} ∪ {xicj | Xi occurs negatively in Cj}.

G is bipartite (colour “black” the vertices: c1, . . . , cm, r1, . . . , rn, s1, . . . , sn which
are independent and “white” the other also independent remaining vertices). The
structure of the graph G is the same as in [3] but the conflicts we define are now
forbidden transitions.

F :=
⋃

i∈{1,...,n}

{{cjxi, xisi}, {ckxi, xisi} | cjxi ∈ EG and ckxi ∈ EG}∪

⋃
i∈{1,...,n}

{{cjxi, xisi}, {ckxi, xisi} | cjxi ∈ EG and ckxi ∈ EG}

One easily checks that the conflict graph of F is a 3-ladder. We now prove
that I is satisfiable iff there exists a spanning tree of (G,F).

Assume I is satisfiable. Then there is a mapping δ : {X1, . . . , Xn} → {0, 1}
such that each clause is satisfied and for each clause there is a variable Xi such
that δ(Xi) allows to satisfy it. Let T be the graph formed with the following
edges:⋃

i∈{1,...,n}

{rri, rixi, rixi} ∪
⋃

i∈{1,...,n}

{sixi | δ(Xi) = 1} ∪

⋃
i∈{1,...,n}

{sixi | δ(Xi) = 0} ∪

⋃
i∈{1,...,n}

{xicj , xick | δ(Xi) = 1 and Xi occurs positively in Cj and in Ck} ∪

⋃
i∈{1,...,n}

{xicj , xick | δ(Xi) = 0 and Xi occurs negatively in Cj and in Ck}

One checks that T spans G, is acyclic, is connected and does not contain a
forbidden transition. Therefore, T is a spanning tree of (G,F).

Assume now that (G,F) has a spanning tree T without forbidden transitions.
For each i ∈ {1, . . . , n} for which exactly one the edges xisi or xisi is in ET , we
do the following assignment δ : {X1, . . . , Xn} → {0, 1}

δ(Xi) :=

{
1 if xisi ∈ ET

0 if xisi ∈ ET .

The other variables Xi receive arbitrary assignments. We claim that the
assignment δ satisfies the instance I. Let us consider any clause Cj . There exists

some i ∈ {1, . . . , n} such that xicj ∈ ET or xicj ∈ ET . If xicj ∈ ET , then
xisi /∈ ET and therefore xisi ∈ ET . By the definition of δ, we have δ(Xi) = 1
and then Cj is satisfied by δ(Xi). Similarly, if xicj ∈ ET , we have xisi /∈ ET

and then xisi ∈ ET . Again, by the definition of δ, we have δ(Xi) = 0, so Cj is

satisfied by δ(Xi). We conclude that I is satisfied by δ. ut

If we take as parameter the number of conflicts a vertex (an edge) is involved
in graphs with forbidden transitions, Theorem 2 gives a sharp line between
tractable and intractable cases. We leave open the question for a dichotomy
between tractable and intractable cases with respect to conflict graphs as done
in [4, 10]. In the following, we show that when restricting to complete graphs, the
N P-completeness of STWFT remains true. For any (G,F) such that G has
n ≥ 3 vertices, construct the complete graph Kn with the same set of vertices
than G (and with all possible edges) and F(G) := F ∪ {{e, f} | e ∈ EKn

\ EG,
f ∈ EKn

, e 6= f and e and f incident in Kn}.

Lemma 1. T is a spanning tree of (G,F) iff T is a spanning tree of (Kn,F(G)).

Proof. It is clear that any spanning tree of (G,F) is also a spanning tree of
(Kn,F(G)). Conversely, assume now that T is a spanning tree without forbidden
transitions of (Kn,F(G)). Since n ≥ 3, T does not contain any “non-edge” of
G, otherwise T would contain a forbidden transition. Therefore, T is a spanning
tree without forbidden transitions of (G,F). ut

From Theorem 2 and Lemma 1, we can prove the following.

Theorem 3. STWFT is N P-complete in complete graphs with forbidden tran-
sitions.

It is well-known that Kn contains many Hamiltonian paths or cycles that
can be computed in polynomial time (if n ≥ 3). This is not the case in complete
graphs with forbidden transitions.

Theorem 4. HPWFT and HCWFT are N P-complete in complete graphs
with forbidden transitions.

Proof. We reduce the Hamiltonian path (or cycle) problem to HPWFT (or
HCWFT). Let G be an n-vertex graph without forbidden transitions with n ≥ 3
and let (Kn,F(G)) be the complete graph with forbidden transition associated
with it (see definition of F(G) before Lemma 1). One can easily show that
G contains an Hamiltonian path (or cycle) if and only if (Kn,F(G)) contains
an Hamiltonian path (or cycle) containing no forbidden transitions. But the
problem of determining whether a graph G contains an Hamiltonian path or
cycle is N P-complete (see [5]). ut

2.2 Inapproximability of MTWFT

The previous results show that constructing a spanning tree without forbidden
transitions is a hard problem. We investigate here the optimisation version. Given
(G,F), we denote by α(G,F) the maximum size of a tree in (G,F). Notice that
if (G,F) is a YES instance for STWFT, then α(G,F) = |V |.

Theorem 5. Let (G,F) and let n be the number of vertices of G. Then α(G,F)
cannot be approximated with a ratio better than n1/2−ε for all ε > 0 even if G is
a star.

Proof. We will reduce the maximum clique problem to MTWFT in stars. Let
G be a graph with n vertices. Construct the star G′ with vertex set VG∪{r} and
edge set {ru | u ∈ VG} (r is a new vertex), and let F := {{ru, rv} | uv /∈ EG}.
We claim that T is a tree of size k in (G′,F) if and only if T \ r induces a clique
of size k − 1 in G.

Let T be a tree of size k in (G′,F). Hence, T is a star Sk with distinguished
vertex r and k−1 other vertices from VG. As T contains no forbidden transitions,
for all u and all v in T \ r, we have uv ∈ EG. Therefore, T \ r induces a clique
of size k − 1 in G.

Conversely, let C := {u1, . . . , uk} be a clique of size k in G. Then in G′ none
of the edges ru1, . . . , ruk is involved in a pair in F . Therefore, C ∪ {r} induces
a tree of size k + 1 in (G′,F).

Now, using the fact that one cannot construct a clique of maximum size in
an n-vertex graph with a better approximation ratio than n1/2−ε for all ε > 0
(see [1]) we get the desired result. ut

3 Constructive Results in Complete Graphs

From proof of Theorem 2, we deduce the N P-completeness of STWFT even
if the number of forbidden transitions an edge or vertex is involved is bounded.
However, the reduction in the proof of Theorem 3 does not preserve this property.
We will see in this Section 3.2 that bounding the number of conflicts an edge or
vertex is involved implies a polynomial time algorithm for STWFT in complete
graphs. We will also provide some other sufficient conditions.

3.1 A Sufficient Condition to Contain a STWFT

For (Kn,F), we will construct a graph G with the same set of n vertices and
containing only the edges of G that are not in any forbidden transitions of F .
If G is connected, then we are done since we can just take any spanning tree
of G, and it will be of course a spanning tree of (Kn,F). So, we will assume
that G is not connected and let us denote by C1, . . . , Ck its k > 1 connected
components and ni the number of vertices of Ci. In the following we will also use
Ci to denote the set of the ni vertices of the component Ci. Some components

are not necessarily complete graphs and some of them may be composed of only
one vertex.

We call Edge Between Components, noted EBC, an edge having its two
extremities in two different components. The general idea is the following. If it
is possible to connect the k components of G using EBC, in a “meta-tree” of
components, in such a way that each vertex of each component is incident to at
most one such EBC, then (Kn,F) contains a spanning tree. Indeed, this “meta-
tree” is a tree of the k components, it is connected and cycle-free. Inside each
component, it is sufficient to take any spanning tree. These k trees connected
by these EBC form a spanning tree T of (Kn,F) (T is connected and is cycle-
free). Indeed, T contains no forbidden transitions because, by construction, edges
of components are part of no forbidden transitions and EBC are pairwise non
incident by construction. In Theorem 7 we give a sufficient condition under which
it is possible to do this construction. Before going further, we need some notions,
definitions and preliminary results.

A sequence n1, . . . , nk of positive integers (ni ≥ 1) is a SDT (Sequence of
Degrees Tree) if there exists a tree T of k vertices denoted by u1, . . . , uk such
that dT (ui) ≤ ni. We will use the following theorem.

Theorem 6 ([6]). Let n1, . . . , nk be a sequence of positive integers, k ≥ 2. There

exists a tree with k vertices having degrees n1, . . . , nk if and only if
∑k

i=1 ni =
2k − 2.

We underline the fact that the proof of Theorem 6 in [6] describes a polyno-
mial time algorithm to construct the tree from the sequence.

Lemma 2. The sequence of positive integers n1, . . . , nk, k ≥ 2, is a SDT if and
only if

∑k
i=1 ni ≥ 2k − 2.

Proof. We suppose first that
∑k

i=1 ni ≥ 2k − 2 and we show that n1, . . . , nk is
a SDT. We decrease the value of some ni (keeping them strictly positive) to
obtain a sum equal to 2k − 2. This operation can easily be done in polynomial
time. Then we can apply Theorem 6 on this new sequence. In the corresponding
tree T the degrees are less than n1, . . . , nk and hence this sequence is a SDT.

Let us show now that if n1, . . . , nk is a SDT, then
∑k

i=1 ni ≥ 2k − 2. As
n1, . . . , nk is a SDT, there exists a tree T whose k vertices u1, . . . , uk are such
that dT (ui) ≤ ni (for i = 1, . . . , k). But, it is well-known that in any graph, the
sum of degrees of vertices is equal to two times the number of edges and in a
tree the number of edges is equal to the number of vertices minus 1. This gives
here

∑k
i=1 dT (ui) = 2(k − 1) and we get the expected inequality. ut

Theorem 7. Let (Kn,F) and let n1, . . . , nk be the number of vertices of the k
connected components induced by the n vertices of Kn and all the edges that are
not in any forbidden transitions. If

∑k
i=1 ni ≥ 2k − 2, then (Kn,F) contains a

spanning tree that can be constructed in polynomial time.

Proof. If
∑k

i=1 ni ≥ 2k − 2, then by Lemma 2 there exists a tree TC with k
vertices u1, . . . , uk such that dTC

(ui) ≤ ni. Now, replace each vertex ui by the

connected component Ci having ni vertices. For each edge of TC , between Ci

and Cj choose a vertex u in Ci and a vertex v in Cj and connect them by an
EBC (this EBC exists since G is a complete graph). These two vertices u and v
will not be used in any other connections between components. The number of
vertices in each component is sufficient to ensure that property. Now construct in
each component Ci any tree spanning its ni vertices. The whole graph composed
of these k trees plus the selected EBC forms a spanning tree of (Kn,F). Note
that, as the proofs of Theorem 6 and Lemma 2 are constructive and polynomial,
there is a polynomial time algorithm to construct it. ut

3.2 Other Sufficient Conditions for a Polynomial Testing

In this section we study the case where each vertex is the extremity of a limited
number of forbidden transitions. We have shown in Theorem 4 that deciding
whether (Kn,F) contains an Hamiltonian Path is N P-complete. We first notice
that when each edge is in at most one conflict, it is possible to construct one
(recall that in [3] the authors proved a polynomial testing for STWC in such
graphs).

Theorem 8. Let (Kn, C) be such that the conflict graph associated with C is a
2-ladder. Then (Kn, C) contains an Hamiltonian path and it can be constructed
in polynomial time.

Proof. We construct the Hamiltonian path in (Kn, C) step by step, by adding
one by one the vertices and keeping the property that the chosen vertices form
a path in (Kn, C). We begin with any two vertices of Kn. Suppose now that we
have constructed a path in (Kn, C) with p ≥ 2 vertices, denoted by H. We denote
by a and b the two extremities of H and a′ (resp. b′) the unique neighbour of a
(resp. b) in H. Consider a vertex c outside H.

Case 1. If one of {a′a, ac} or {b′b, bc} is not a conflict, then we can add c as
a new extremity (by adding the edge ac or bc) of H that becomes a path with
p+ 1 vertices in (Kn, C).
Case 2. In the other cases, this means that {a′a, ab} is not a conflict (otherwise
the edge a′a would be involved into 2 conflicts) and similarly for {ab, bc}. One
can construct a path H ′ composed in this order of: b′, . . . , a′, a, b, c which is a
path with p+ 1 vertices in (Kn, C).

We can therefore conclude that (Kn, C) contains an Hamiltonian path. Since
at each step the construction can be done in polynomial time, an Hamiltonian
path can be constructed in polynomial time. ut

We now look at the case where each vertex is in a limited number of forbidden
transitions.

Fact 1 Let (Kn,F) be given. We suppose that each vertex is the extremity of
at most k forbidden transitions and that n ≥ k + 1. If (Kn,F) contains a tree

T with k + 1 vertices, then one can extend it to a spanning tree of (Kn,F) in
polynomial time.

Proof. If n = k + 1 then T is already a spanning tree of (Kn,F). If n > k + 1,
consider a vertex u of Kn outside T . As u is the extremity of at most k forbidden
transitions and as T contains k + 1 vertices, T contains a vertex v which is
the centre of no forbidden transitions of extremity u. One can complete T by
connecting u to v. This induces no forbidden transitions in this new tree that
now has k+2 vertices. We do the same process with this new tree containing k+2
vertices, etc. At each step one can connect any vertex outside the current tree to
this tree by adding no forbidden transitions. One can continue until obtaining a
spanning tree. If the initial T is given, then completing it into a spanning tree
can be done in polynomial time. ut

Fact 2 Let k be a fixed positive integer. There is a polynomial time algorithm
that constructs in (G,F) a tree with k+1 vertices if and only if there exists one.

Proof. We apply here a brute force method: Generate all the subsets with k+ 1
vertices; Each subset induces a graph with k+1 vertices; Test in each such graph
all the possible spanning trees. When one such tree without forbidden transitions
is found, stop and return it. If none is found, this means that there is no such
tree (since the process is exhaustive).

Generating all the subsets with k + 1 vertices can be done in O(nk+1). We
generate all the trees with k + 1 vertices in such induced subgraphs. There are
at most (k+ 1)k−1 trees (this is a well-known result, see [2]). Each such tree can
be generated and tested in polynomial time. But, as k is a constant, (k + 1)k−1

is also a constant. The whole process is a polynomial time algorithm able to
construct a required tree if and only if there exists one. ut

Theorem 9. Let k be a fixed positive integer. Let (Kn,F) be given. If each ver-
tex of Kn is the extremity of at most k forbidden transitions, then in polynomial
time one can decide whether there exists a spanning tree in (Kn,F) and, in this
case, construct one in polynomial time.

Proof. If Kn contains at most k + 1 vertices, then the technique used in the
proof of Fact 2 shows that one can determine and construct in polynomial time
a spanning tree in (Kn,F) if and only if there exists one. Let us consider now
the case where Kn contains more than k + 1 vertices.

Suppose that the algorithm in the proof of Fact 2 constructs a tree T . Thanks
to Fact 1 one can extend it into a spanning tree of (Kn,F). Both operations are
done in polynomial time.

Suppose now the opposite, that is the algorithm in Fact 2 constructs no tree.
In this case, (Kn,F) contains no spanning tree. Indeed, if it contains one, T ,
then one can easily extract from T a tree on k + 1 vertices, without forbidden
transitions. This is in contradiction with Fact 2. ut

We notice that it is challenging to reduce the time complexity of the proce-
dure in Fact 2 from O(nk+1) to O(f(k) · nc) for some constant c not depending

in k and n. One just notices that a naive local search from a given vertex that
maximises at each step the number of neighbours of the current vertex will not
work since one can reduce the problem of finding a maximum clique in a graph
to a such local search.

Theorem 10. Let k be a fixed positive integer and let (Kn,F) be given. If each
vertex of Kn is the extremity of at most k forbidden transitions and if n ≥ 2k+1,
then (Kn,F) necessarily contains a spanning tree that can be constructed in
polynomial time.

Proof. The global idea is the following: First construct a tree T without forbid-
den transitions on k + 1 vertices in polynomial time and then use Fact 1 with
this tree T to extend it and finish the proof.

If u is a vertex of Kn we denote by Ext(u) the set of vertices of Kn which are
centres of a forbidden transition having u as an extremity. Hence, by hypothesis,
for all u, |Ext(u)| ≤ k.

Let us construct T by selecting first its vertices. Take any vertex u1. Take
any vertex u2 6= u1 which is not in Ext(u1) : u2 6∈ Ext(u1)∪{u1}, etc., take ui+1

a vertex not already taken and not in Ext(ui) ; ui+1 6∈ Ext(ui) ∪ {u1, . . . , ui},
etc. until obtaining a vertex uk+1. One can always choose at each step a new
vertex ui+1 because ui+1 is any vertex outside the set Ext(ui)∪{u1, . . . , ui} but
|{u1, . . . , ui}| ≤ k and |Ext(ui)| ≤ k; as n ≥ 2k+ 1, ui+1 can always be selected.

The tree T is then the path u1, u2, . . . , uk+1 spanning the selected vertices.
The only transitions in T are of the form {ui−1ui, uiui+1}. But such a transi-
tion is not forbidden since ui+1 was selected outside Ext(ui) (if the transition
{ui−1ui, uiui+1} is forbidden, this means that ui+1 would have been the extrem-
ity of a forbidden transition with centre ui, which is not the case by construction).

The path/tree T contains no forbidden transitions and has k + 1 vertices.
This tree T always exists and can be constructed in polynomial time. We end
the construction of the spanning tree by using the polynomial time constructing
process of Fact 1 while T is given here. ut

3.3 Simplification of (G, C)

We describe a process to simplify an instance (G, C) (if it is possible) by sup-
pressing edges and conflicts to obtain a new (reduced) instance (Gf , Cf) in which
there is a spanning tree if and only if there is a spanning tree in (G, C). (Gf , Cf)
is constructed iteratively, step by step. Let G0 = G and C0 = C. For each i, we
let Hi be the subgraph of Gi composed of all the vertices of G and only edges
that are not involved in a conflict in Ci and let Si be the set of edges of Gi

that are in a conflict of Ci and whose two extremities are in the same connected
component of Hi. The shape of the algorithm is in Fig. 1.

As at each step some edges are removed, the algorithm terminates and is
polynomial. We denote by (Gf , Cf) its final result. The graph Gf contains all
the vertices of the initial graph G and a subset of its edges. Moreover Cf ⊆ C.

i = 1;

while (Si−1 6= ∅) do

let Gi be obtained from Gi−1 by deleting edges in Si−1;

let Ci be obtained from Ci−1 by removing conflicts involving at least an edge in Si−1;

i = i + 1;

endwhile

return (Gi−1, Ci−1);

Fig. 1. Simplification of (G, C)

Theorem 11. (G, C) contains a spanning tree if and only if (Gf , Cf) contains
a spanning tree.

Proof. If (Gf , Cf) contains a spanning tree T , then T is also a spanning tree of
(G, C). Indeed, T covers all the vertices of G and it contains no conflicts of C.
Otherwise, assume that two edges e and e′ T are in conflict in C. As {e, e′} /∈ Cf ,
this means that the conflict was eliminated during the construction of (Gf , Cf).
However the algorithm removes a conflict only if one of its edges is removed.
Hence e and e′ cannot be both in Gf ; Contradiction.

Consider now a spanning tree T of (G, C). This tree T covers all the vertices
of G. Let us denote by C1, . . . , Ck the k connected components of Gf in which all
the edges that are in at least one conflict of Cf are removed. Let uv be any edge
of T that has its two extremities into two different such connected components.
Let us show that the edge uv is in Gf . If not, this means that it was removed
at some step in the construction of (Gf , Cf), say step i and the two vertices u
and v are in a same connected component of Hi since the algorithm deletes an
edge involved in a conflict only if its two extremities are in a same connected
component of Hi. However, the algorithm guarantees that an edge in a connected
component of Hi will be always kept in the remaining steps j > i. So the edge
uv is an edge in Gf .

Let IC be the set of edges of T that are in Gf and have their two extremities
between two connected components C1, . . . , Ck. Consider now the graph G′ com-
posed of all the vertices of G and of all the edges of IC and all the edges of the
connected components C1, . . . , Ck. This graph is clearly connected. Moreover, it
contains no conflicts of Cf . Indeed, let us consider any pair e and e′ of edges of G′.

Case 1. There exist Ci and Cj such that e ∈ Ci and e′ ∈ Cj (we may have
i = j). By construction this means that they are not involved in a conflict of Cf .

Case 2. e and e′ are both in IC . As IC is a set of edges of a tree without conflicts
in C, edges e and e′ do not form a conflict in Cf ⊆ C.
Case 3. One edge, say e, is in a connected component and the other one, e′, is
in IC . As e is in a connected component, by construction it is not involved in a

conflict of Cf .

It is then easy to construct any spanning tree of G′ (with a BFS for example)
that is a spanning tree in (Gf , Cf). ut

If (G, C) is given, let G(C) be the graph containing all the vertices of G but
only the edges that are not involved in a conflict of C.

Corollary 1. If Gf (Cf) is connected, then (G, C) contains a spanning tree.

It is easy to give instances (G, C) in which G(C) is not connected while
Gf (Cf) is connected and thus contains a trivial solution (any spanning tree).
This simplification process leads to transform some instances that seem to be
too complicated to solve but that are in fact trivial.

References

1. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation.
Springer, 1999.

2. A. Bondy and U.S.R. Murty. Graph Theory. Springer London Ltd, 2010.
3. Andreas Darmann, Ulrich Pferschy, Joachim Schauer, and Gerhard J. Woeginger.

Paths, trees and matchings under disjunctive constraints. Discrete Applied Math-
ematics, 159(16):1726?1735, 2011.

4. Zdeněk Dvořák. Two-factors in orientated graphs with forbidden transitions. Dis-
crete Mathematics, 309(1):104–112, 2009.

5. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979.

6. Gautam Gupta, Puneet Joshi, and Amitabha Tripathi. Graphics sequences of trees
and a problem of frobenius. Czechoslovak Mathematical Journal, 57(132):49–52,
2007.

7. Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège. An exact
algorithm to check the existence of (elementary) paths and a generalisation of the
cut problem in graphs with forbidden transitions. In SOFSEM, pages 257–267,
2013.

8. Petr Kolman and Ondřej Pangrác. On the complexity of paths avoiding forbidden
pairs. Discrete Applied Mathematics, 157(13):2871 – 2876, 2009.

9. Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs.
Journal of Graph Algorithms and Applications, 13(2):233–249, 2009.

10. Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete
Applied Mathematics, 126(2-3):261–273, 2003.

