
An Exact Algorithm to Check the Existence of
(Elementary) Paths and a Generalisation of the

Cut Problem in Graphs with Forbidden
Transitions

Mamadou Moustapha Kanté?, Christian Laforest??, and Benjamin Momège? ? ?

Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France
{mamadou.kante,laforest,momege}@isima.fr

Abstract. A graph with forbidden transitions is a pair (G,FG) where
G := (VG, EG) is a graph and FG is a subset of the set {({y, x}, {x, z}) ∈
E2

G}. A path in a graph with forbidden transitions (G,FG) is a path in G
such that each pair ({y, x}, {x, z}) of consecutive edges does not belong
to FG. It is shown in [S. Szeider, Finding paths in graphs avoiding for-
bidden transitions, DAM 126] that the problem of deciding the existence
of a path between two vertices in a graph with forbidden transitions is
Np-complete. We give an exact exponential time algorithm that decides
in time O(2n ·n5 ·log(n)) whether there exists a path between two vertices
of a given n-vertex graph with forbidden transitions. We also investigate
a natural extension of the minimum cut problem: we give a polynomial
time algorithm that computes a set of forbidden transitions of minimum
size that disconnects two given vertices (while in a minimum cut prob-
lem we are seeking for a minimum number of edges that disconnect the
two vertices). The polynomial time algorithm for that second problem
is obtained via a reduction to a standard minimum cut problem in an
associated allowed line graph.

1 Introduction

Algorithms manipulating graphs are often used to solve concrete situations in
many applied fields. Finding a path between two given points/vertices is a fun-
damental basic tool that often serves as subroutine in many more complex al-
gorithms and software (for example in flows (improving paths between a source
and a sink), in scheduling (notion of constraint and critical path), in network
for routing operations, etc.). Several well-known polynomial time algorithms are
able to do this task: DFS, BFS (to find shortest paths in unweighted graphs),
Dijkstra (for weighted graphs). They are widely available in software packages

? M.M. Kanté is supported by the French Agency for Research under the DORSO
project.

?? Ch. Laforest is supported by the French Agency for Research under the DEFIS
program TODO, ANR-09- EMER-010.

? ? ? B. Momège has a PhD grant from CNRS and région Auvergne.

(like Maple and Mathematica1 for example) and are taught in most of first level
computer science or engineering courses all around the world (see a reference
book on algorithms like [6]).

A path (simple or elementary) P in a graph G is just a list of consecutive
(incident) edges (or arcs) of G between a given first vertex s and a final vertex
t. To construct such a path P given G, s and t, the classical algorithms use
all the potentiality of the graph: namely, when a given intermediate vertex u is
reached, there is no restrictions on the following vertex that can be reached: any
neighbour of u. Of course, BFS for example does not explore an already explored
(and marked) vertex w but, as w is a neighbour of u, this possibility is taken
into account among all possibilities.

This is a strong hypothesis in several real applications. Indeed, in some con-
crete networks, it is not possible, coming from a point a towards a point b to
continue towards point c. For example in several large streets of cities, it is for-
bidden to turn left at point b (towards point c) and to cross a road (if one come
from point a preceding b). Many such transits are forbidden in all the countries;
several other restrictions exist (no “U” turn for example).

All these concrete limitations are due to the system modelled by graphs
(routes, systems of production, etc.) in which all the paths are not possible
because they have a local transition that is not allowed.

These forbidden transitions must be added into the knowledge of the graph.
Then the algorithms that are supposed to construct paths between two vertices
must take them into account. The hard part of the work starts at this point. In-
deed, unlike the classical situation where there are several algorithms mentioned
above, adding forbidden transitions strongly increases the complexity of the sit-
uation: In [8], Szeider shows that knowing whether there exists a path between
two nodes avoiding forbidden transitions is Np-Complete while it is polynomial
without these constraints (see [6]).

Several other studies have been done on graphs with forbidden transitions.
For example, in [3] the authors want to find an Eulerian path in a graph rep-
resenting biological data (from DNA sequencing) where all transitions between
these biological elements are not allowed. Later, in [4], this practical problem
serves as a motivation for a graph theoretic study. The authors prove, among
other results, that finding an Eulerian path is Np-Complete when the graph
contains forbidden transitions. In [7] the problem of finding two-factors2 is con-
sidered. The author gives conditions on the type of transitions under which
deciding whether there is a two-factor avoiding forbidden transitions in G is
polynomial or Np-complete. In [1,9] the authors investigate a more general form
of transitions; they propose polynomial time algorithms to find a shortest path
avoiding forbidden subpaths. However, their paths are not elementary (we will
call walks these objects later). This is a huge difference with the study of [8]
where Szeider consider elementary paths.

1 See http://www.maplesoft.com/ and http://www.wolfram.com/
2 a subgraph such that for any vertex its in-degree and the out-degree is exactly one.

Summary. In Section 2 of our paper, we give preliminary definitions, notations
and concepts. In Section 3 we propose an exponential time algorithm based on
inclusion-exclusion principle having a complexity of O(2n · n5 · log(n)) (where n
is the number of vertices) to decide if the graph contains or not a (elementary)
path between two given vertices avoiding forbidden transitions. In Section 4 we
investigate an equivalent problem to the minimum cut problem: we propose a
polynomial time algorithm to compute the minimum number of allowed transi-
tions to transform into forbidden ones to disconnect a given vertex s to a given
vertex t (instead of cutting edges as in the original well-known cut problem).

2 Preliminaries

In this paper we consider only simple graphs. If A and B are two sets, A\B
denotes the set {x ∈ A | x /∈ B}. The size of a set A is denoted by |A|.

We refer to [5] for graph terminology not defined in this paper. The vertex-
set of a graph G (directed or not) is denoted by VG and its edge-set (or arc-set
if it is directed) by EG. An edge between two vertices x and y in an undirected
graph G is denoted by {x, y} and an arc from x ∈ VG to y ∈ VG in a directed
graph G is denoted by (x, y). For a vertex x ∈ VG we let EG(x) be the set of
edges or arcs incident with x; the degree of x, defined as |EG(x)|, is denoted by
dG(x).

If C is a class of graphs, we denote by Cind the class of graphs {H | H is an
induced subgraph of some graph G ∈ C}. We denote by P3, K3, 2K2, P4 and
L4 the undirected graphs depicted in Fig. 1.

L4P3 K3 2K2 P4

Fig. 1.

In the undirected case, a graph with forbidden transitions is a pair (G,FG)
where G is a graph and FG is a subset of the set TG := {({y, x}, {x, z}) ∈ E2

G}
of transitions of G. Transitions of FG are called the forbidden transitions and
the transitions of AG := TG \FG are called the allowed transitions. We will also
denote a transition ({y, x}, {x, z}) by the triplet (y, x, z). If for all the transitions
({y, x}, {x, z}) ∈ FG we have ({y, x}, {x, z}) ∈ FG ⇔ ({x, z}, {y, x}) ∈ FG the
forbidden transitions are called symmetric and in this case we define for each
vertex x a transition graph Ax with VAx := EG(x) and EAx := {{ei, ej} ⊆ VAx |
(ei, ej) ∈ AG}. The set AG := {Ax | x ∈ VG} is called the system of allowed
transitions.

A walk between s and t or an (s, t)-walk in (G,FG) is a sequence of vertices
(s = x1, x2, . . . , xk = t) such that {xi, xi+1} ∈ EG for every 1 ≤ i ≤ k − 1

and ({xi−1, xi}, {xi, xi+1}) ∈ AG for every 2 ≤ i ≤ k − 1. Such a walk is called
a walk on k vertices and it may also be represented by the sequence of edges
({x1, x2}, . . . , {xi, xi+1}, . . . {xk−1, xk}).

In the directed case, a directed graph with forbidden transitions is a pair
(G,FG) where G is a graph and FG is a subset of the set TG := {((y, x), (x, z)) ∈
E2

G} of transitions of G. Transitions of FG are called the forbidden transi-
tions and the transitions of AG := TG \ FG are called the allowed transi-
tions. We will also denote a transition ((y, x), (x, z)) by the triplet (y, x, z). A
walk from s to t or an (s, t)-walk in (G,FG) is a sequence of vertices (s =
x1, x2, . . . , xk = t) such that (xi, xi+1) ∈ EG for every 1 ≤ i ≤ k − 1 and
((xi−1, xi), (xi, xi+1)) is a transition of AG for every 2 ≤ i ≤ k − 1. Such a walk
is called a walk on k vertices and it may also be represented by the sequence of
arcs ((x1, x2), . . . , (xi, xi+1), . . . , (xk−1, xk)).

In the two cases, a shortest (s, t)-walk is a walk for which k is minimum. A
path is a walk where each vertex appears once. If there is an (s, t)-walk in G
we say that G is (s, t)-connected; s and t are called disconnected if there is no
(s, t)-walk.

We can apply these definitions to a “classic” graph G by noting that G is a
graph with forbidden transitions where FG = ∅.

The path problem in graphs with forbidden transitions consists in, given a
graph with forbidden transitions (G,FG), and two vertices s and t, asking for
the existence of an (s, t)-path.

Until the end of this section we consider only undirected graphs with sym-
metric forbidden transitions.

Theorem 1 ([8]). Let C be a class of graphs closed under isomorphism and
let G(C) be the set of graphs with symmetric forbidden transitions (G,FG) with
AG ⊆ C. The path problem is Np-complete in G(C) if Cind contains at least one of
the sets {K3, 2K2}, {K3, 2K2}, {P4}, {L4}. In all other cases the path problem
is solvable in linear time, and a path can be constructed in linear time.

Remark 2. One can even prove that Theorem 1 is still true if we consider
bipartite graphs with symmetric forbidden transitions. Indeed, let (G,FG) be a
graph with symmetric forbidden transitions, and let (G′, FG′) where

VG′ := VG ∪ EG,

EG′ := {{x, {x, y}} | {x, y} ∈ EG},
FG′ := {({{x, y}, y}, {y, {y, z}}) | ({x, y}, {y, z}) ∈ FG}.

One easily proves that P := (x1, . . . , xk) is a path in (G,FG) if and only if
(x1, {x1, x2}, x2, . . . , xk−1, {xk−1, xk}, xk) is a path in (G′, FG′).

An easy corollary of Theorem 1 is the following.

Corollary 3. Let (G,FG) be a graph with symmetric forbidden transitions such
that, for every vertex x of G, the transition graph Ax is a complete graph when-
ever dG(x) ≥ 4. Then, for every two vertices x and y, one can construct in linear
time a path between x and y, if one exists.

Proof. Let x be a vertex of G. If dG(x) ≥ 4, then Ax is a complete graph, and
each graph in the set {P3, P4, L4, 2K2} is not an induced subgraph of Ax. If
dG(x) ≤ 3, then P4, L4 and 2K2 cannot be induced subgraphs of Ax. Therefore,
any of these sets {K3, 2K2}, {K3, 2K2}, {P4}, {L4} is included in Aind

G . And
by Theorem 1, one can find a path, if it exists, between every two vertices of G
in linear time. ut

3 Exact Exponential Time Algorithm

Our algorithm will count the number of paths between two vertices using the
principle of inclusion-exclusion as in [2]. Let us introduce some notations.

Let (G,FG) be a graph (directed or not) with forbidden transitions and let
s and t be two vertices of G. For every positive integer `, we denote by W`(s, t)
the set of (s, t)-walks on ` vertices, and by P`(s, t) the set of paths in W`(s, t).
For Y ⊆ VG, we denote by W`,Y (s, t) the walks in W`(s, t) that do not intersect
Y and similarly for P`,Y (s, t).

We propose Algorithm 1 to verify the existence of an (s, t)-path.

Algorithm 1: PathProblem(G,FG)

Data: A graph with forbidden transitions (G,FG) and two vertices s and t.

Result: Does there exist an (s, t)-path in (G,FG)? If yes, how many vertices
the shortest path contain?

begin
1 Let n be |VG|
2 for `← 1 to n do
3 R := 0
4 foreach A ⊆ VG with |A| ≥ n− ` do
5 R := R +

(|A|
n−`

)
· (−1)|A|−(n−`) · |W`,A(s, t)|

end
6 if R ≥ 1 then
7 return (YES, `)

end
end

8 return NO
end

Theorem 4. Algorithm 1 is correct and runs in time O(2n ·n5 ·log(n)) for every
n-vertex graph with forbidden transitions.

The rest of this section is devoted to the proof of Theorem 4. So, we assume
that we are given an n-vertex graph with forbidden transitions (G,FG) and two
vertices s and t.

Lemma 5. Let ` be a fixed positive integer. Then

|P`(s, t)| =
∑

Y⊆VG

|Y |=n−`

∑
X⊆VG\Y

(−1)|X| · |W`,Y ∪X(s, t)|.

Proof. Since a path on ` vertices is a walk that goes through ` vertices and
avoids n− ` other vertices, we have that

|P`(s, t)| =
∑

Y⊆VG

|Y |=n−`

|P`,Y (s, t)|. (1)

A walk on ` vertices that is not a path is a walk that repeats at least one vertex.
Then,

|P`,Y (s, t)| = |W`,Y (s, t)| −

∣∣∣∣∣∣
⋃

x∈VG\Y

W`,Y ∪{x}(s, t)

∣∣∣∣∣∣ .
And, by the inclusion-exclusion principle∣∣∣∣∣∣

⋃
x∈VG\Y

W`,Y ∪{x}(s, t)

∣∣∣∣∣∣ =
∑

X⊆VG\Y
X 6=∅

(−1)|X| · |W`,Y ∪X(s, t)|.

Therefore,

|P`,Y (s, t)| =
∑

X⊆VG\Y

(−1)|X| · |W`,Y ∪X(s, t)|.

By Eq. (1), we can conclude. ut

As a corollary of Lemma 5, we get the following which proves the correctness
of the algorithm.

Corollary 6. Let ` be a fixed positive integer. Then,

|P`(s, t)| =
∑

A⊆VG

|A|≥n−`

(
|A|
n− `

)
· (−1)|A|−(n−`) · |W`,A(s, t)|.

Proof. Choosing a subset Y of VG of size n − ` and then choosing a subset of
VG \ Y , is similar to choosing a subset A of VG of size at least n − `, and then
choosing a subset Y of A of size n− `. Hence,∑

Y⊆VG

|Y |=n−`

∑
X⊆VG\Y

(−1)|X| · |W`,Y ∪X(s, t)|

=
∑

A⊆VG

|A|≥n−`

(
|A|
n− `

)
· (−1)|A|−(n−`) · |W`,A(s, t)|.

By Lemma 5, we can conclude. ut

It remains now to bound the time complexity of Algorithm 1.

Lemma 7. Let ` be a fixed positive integer and let Y be a subset of VG. Then
one can compute |W`,Y (s, t)| in time O(n4 · log(n)).

Proof. We can assume that ` ≥ 3 since the statement is clear for ` ≤ 2. If
{s, t} ∩ Y 6= ∅, then |W`,Y (s, t)| = 0. So, assume that s and t do not belong to
Y . Let us use the notation W`,Y (s, x, t) to denote walks in W`,Y (s, t) having x
as penultimate vertex. Then,

|W`,Y (s, t)| =
∑

x∈VG\Y

|W`,Y (s, x, t)|.

If we know the multiset {|W`,Y (s, x, t)| | x ∈ VG \ Y }, then we can compute
|W`,Y (s, t)| in time O(n). We will prove that the multiset {|W`,Y (s, x0, x1)| |
(x0, x1) ∈ (VG \ Y)2} can be computed in time O(n4 · log(n)). If ` = 3, then
|W`,Y (s, x0, x1)| = 1⇔ (s, x0, x1) ∈ AG. Assume now that ` ≥ 4. Then

|W`,Y (s, x0, x1)| =
∑

y∈VG\Y
(y,x0,x1)∈AG

|W`−1,Y (s, y, x0)|. (2)

We will compute the multiset {|W`,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y)2}
by dynamic programming using Eq. (2). We first compute {|W3,Y (s, x0, x1)| |
(x0, x1) ∈ (VG \Y)2} in time O(n2 · log(n)) (there are O(n2) possible transitions
and a search can be done in time O(log(n)) if TG is lexicographically ordered).
Now, if {|W`−1,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y)2} is known, one can compute
|W`,Y (s, x0, x1)|, for some pair (x0, x1) ∈ (VG\Y)2, in time O(n·log(n)) (by using
Eq. (2)), and then one can compute the multiset {|W`,Y (s, x0, x1)| | (x0, x1) ∈
(VG \Y)2} from {|W`−1,Y (s, x0, x1)| | (x0, x1) ∈ (VG \Y)2} in time O(n3 · log(n))
and from {|W3,Y (s, x0, x1)| | (x0, x1) ∈ (VG \ Y)2} in time O(n4 · log(n)). This
finishes the proof. ut

Proof (Proof of Theorem 4). By Corollary 6, Algorithm 1 is correct. And, by
Corollary 6 and Lemma 7, the time complexity is bounded by

n∑
`=1

n∑
i=n−`

(
n

i

)
·O(n4 · log(n)) ≤ O(2n · n5 · log(n)).

This concludes the proof. ut

4 Generalisation of the Minimum Cut Problem

Paths and walks are related to notions of connectivity. A classical problem in
graph theory is to cut a minimum number of edges to disconnect two given
vertices s and t. In our context, there is another way to disconnect s and t: we
can just transform some allowed transitions into forbidden ones. In this section
we propose a polynomial time algorithm to find a minimum number of such
transitions that must be turned into forbidden.

Let (G,FG) be a directed graph with forbidden transitions, and s, t two
non-adjacent vertices of G. We first define a new graph associated to (G,FG),
and s, t that we will use in the rest of this section.

Definition 1. We denote by G∗s,t the directed graph defined by:

VG∗s,t
:= EG ∪ {s′} ∪ {t′} ,

EG∗s,t
:= AG ∪ {(s′, (s, v)) | (s, v) ∈ EG} ∪ {((v, t), t′) | (v, t) ∈ EG}

In the following we simply denote G∗s,t by G∗.

Remark 8. We call the subgraph of G∗ induced by EG the allowed line graph
of (G,FG). It admits as vertex-set EG and as edge-set AG.

For example for the following graph with forbidden transition (G,FG) with
FG = {(e1, e2)}:

e6e5

e2

e3 e4

e1

s t

we obtain the following graph G∗:

e3

e2

e4 e5 e6

e1s' t'

The proof of the following proposition is straightforward.

Proposition 9. The function

f :

{
{(s, t)-walks in G} → {(s′, t′)-walks in G∗}

(e1 ∈ EG, ..., ek ∈ EG) 7→ (s′, e1 ∈ VG∗ , ..., ek ∈ VG∗ , t
′)

is well defined and bijective.

So we have the following immediate corollary.

Corollary 10. G is (s, t)-connected if and only if G∗ is (s′, t′)-connected.

Remark 11. We see that f is a bijection between the shortest (s, t)-walks in G
and the shortest (s′, t′)-walks in G∗ and therefore to obtain in polynomial time
a shortest (s, t)-walk in G (if it exists) we can find a shortest path in G∗ (if it
exists) and return its fibre under f.

Lemma 12. There exists an (s′, t′)-cut (i.e. a set of arcs disconnecting s′ and
t′) in G∗ having no outgoing arc of s′ and no incoming arc of t′. By definition
the size of a cut is its number of arcs.

Proof. Since s and t are not adjacent in G an (s, t)-walk in G takes at least
one transition. By making these transitions forbidden we obtain a new graph
which is not (s, t)-connected. Hence by removing the corresponding arcs in G∗

we obtain a graph which is not (s′, t′)-connected by Corollary 10. Finally these
arcs form a cut and as they correspond to transitions of G, there is no outgoing
arc of s′ or incoming arc of t′. ut

Lemma 13. In G∗, the arcs of a minimum (s′, t′)-cut having no outgoing arc of
s′ and no incoming arc of t′, correspond to a minimum set of allowed transitions
in G sufficient to forbid to disconnect s and t, and reciprocally.

Proof. G∗ deprived of these arcs is no longer (s′, t′)-connected and so G deprived
of the corresponding transitions is also no longer (s, t)-connected according to
Corollary 10 and reciprocally. Moreover as the size of this cut is equal to the
size of the set of corresponding transitions, if one is minimum, the other is also
minimum. ut

Theorem 14. Let m be the number of arcs of G∗. Assign to each arc of G∗ a
capacity equal to one except for the outgoing arcs of s′ and the incoming arcs
of t′ for which it is taken equal to m. The arcs of an (s′, t′)-cut of minimum
capacity correspond to a minimum set of allowed transitions in G sufficient to
forbid to disconnect s and t.

Proof. According to Lemma 12, there exists an (s′, t′)-cut in G∗ having no out-
going arc of s′ and no incoming arc of t′. This cut has less than m arcs (each
having a capacity equal to one) and thus admits a capacity less than m. Thus,
the minimum capacity of an (s′, t′)-cut is strictly less than m, and therefore an
(s′, t′)-cut of minimum capacity contains no outgoing arc of s′ or incoming arc
of t′ because its capacity would be greater than or equal to m. Now for such a
cut, the capacity is equal to its size and if its size is minimum, it corresponds
to a minimum set of allowed transitions in G sufficient to forbid to disconnect s
and t by Lemma 13. ut

We are now able to give an algorithm that takes as input a graph with for-
bidden transitions (G,FG), and s, t ∈ VG two non-adjacent vertices, and returns
a minimum set of allowed transitions sufficient to forbid to disconnect s and t.

Algorithm 2: GeneralisedCutProblem(G,FG)

Data: A directed graph with forbidden transitions (G,FG), and two non-
adjacent vertices s and t.

Result: A minimum set of allowed transitions sufficient to forbid to disconnect
s and t.

begin
1 Construct the graph G∗;
2 Assign to each arc of G∗ a capacity equal to one except for the outgoing

arcs of s′ and the incoming arcs of t′ for which it is taken equal to |EG|;
3 Compute an (s′, t′)-cut of minimum capacity in G∗ with these capacities;
4 return Transitions of G corresponding to the arcs of the cut.

end

Theorem 15. Algorithm 2 is correct and runs in time polynomial in the size of
G.

Proof. The correctness of Algorithm 2 follows from Theorem 14. For the time
complexity, the steps 1, 2, and 4 run in time O(|EG|2) and step 3 can be done
using a polynomial time algorithm which computes an (s′, t′)-cut of minimum
capacity in G∗ as the Edmonds-Karp algorithm. ut

Now if (G,FG) is an undirected graph with forbidden transitions and s, t
two non-adjacent vertices of VG, we introduce the directed graph with forbidden
transitions Gd defined formally as follows:

VGd
:= VG,

EGd
:= {(v, w), (w, v) | {v, w} ∈ EG} ,

FGd
:= {((v, w), (w, x)) | ({v, w}, {w, x}) ∈ FG} .

As G and Gd have the same walks (sequences of vertices) just apply the algorithm
2 to Gd to obtain a minimum set of allowed transitions sufficient to forbid to
disconnect s and t in G.

Remark 16. To obtain (if it exists) in polynomial time a shortest (s, t)-walk
in an undirected graph with forbidden transitions G we can find (if it exists) a
shortest path in G∗d and return its fibre under f.

5 Conclusion and perspectives

Including forbidden transitions into graphs strongly extend the capacities to
model real situations but also increases the complexity of a priori simple tasks
such as finding elementary (and shortest) paths. When the total number k of
forbidden transitions in G is low one can apply a simple branch and bound algo-
rithm to find (if there is one) such a path. Up to k = O(log n), this elementary
algorithm remains polynomial. However, as k can be much larger than n, we
proposed in Section 3 another method with time complexity O(2n · poly(n)).

In Section 4 we transposed a classical cutting problem: instead of cutting a
minimum number of edges to disconnect two given vertices s and t, we proposed
a polynomial time algorithm to turn a minimum number of allowed transitions
into forbidden ones in such a way that there is no more walk between s and t.
This is another measure of connectivity between s and t and can be used for
example in preliminary studies to prevent to disconnect two parts of a city when
there are temporary traffic restrictions due for example to a punctual event or
due to works in streets.

In conclusion, we can see graphs with forbidden transitions as graphs with
“reduced connection capabilities”. Due to the potential applications, we plan
to further investigate this subject. We hope to decrease the O(2n · poly(n))
complexity of the exact algorithm. Our result on the equivalent cutting problem
in Section 4 motivates us to try to generalise the flow problem in graphs with
forbidden transitions. In a more general way we intend to generalise classical
algorithmic problems into graphs with forbidden transitions.

References

1. Mustaq Ahmed and Anna Lubiw. Shortest paths avoiding forbidden subpaths. In
Susanne Albers and Jean-Yves Marion, editors, STACS, volume 3 of LIPIcs, pages
63–74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

2. Eric T. Bax. Inclusion and exclusion algorithm for the hamiltonian path problem.
Inf. Process. Lett., 47(4):203–207, 1993.

3. Jacek B lażewicz and Marta Kasprzak. Computational complexity of isothermic dna
sequencing by hybridization. Discrete Applied Mathematics, 154(5):718–729, 2006.

4. Jacek B lażewicz, Marta Kasprzak, Benjamin Leroy-Beaulieu, and Dominique
de Werra. Finding hamiltonian circuits in quasi-adjoint graphs. Discrete Applied
Mathematics, 156(13):2573–2580, 2008.

5. J.A. Bondy and U.S.R. Murty. Graph Theory. Springer London Ltd, 2010.
6. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3. ed.). MIT Press, 2009.
7. Zdeněk Dvořák. Two-factors in orientated graphs with forbidden transitions. Dis-

crete Mathematics, 309(1):104–112, 2009.
8. Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete

Applied Mathematics, 126(2-3):261–273, 2003.
9. Daniel Villeneuve and Guy Desaulniers. The shortest path problem with forbidden

paths. European Journal of Operational Research, 165(1):97–107, 2005.

