
Graph Operations Characterizing Rank-Width

Bruno Courcelle 2,1 and Mamadou Moustapha Kanté 2,1

Université Bordeaux 1, LaBRI, CNRS
351 Cours de la libération

33405 Talence Cedex, France.

Abstract

Graph complexity measures like tree-width, clique-width and rank-width are im-
portant because they yield Fixed Parameter Tractable algorithms. These algorithms
are based on hierarchical decompositions of the considered graphs and on bound-
edness conditions on the graph operations that, more or less explicitly, recombine
the components of decompositions into larger graphs. Rank-width is de�ned in a
combinatorial way, based on a tree, and not in terms of graph operations. We de�ne
operations on graphs that characterize rank-width and help for the construction of
Fixed Parameter Tractable algorithms, especially for problems speci�ed in monadic
second-order logic.

Key words: Clique-Width; Rank-Width; Hierarchical Decomposition; Graph
Operation.

1 Introduction

Graph complexity measures like tree-width [29], branch-width [30], clique-width
[10] and rank-width [27] are important parameters for the construction of poly-
nomial algorithms. Many np-complete properties, especially those express-
ible by formulas of monadic second-order logic (abbreviated MS logic in the
sequel) have Fixed Parameter Linear algorithms if tree-width (equivalently
branch-width) is taken as parameter and Fixed Parameter Cubic algorithms
if clique-width (equivalently rank-width) is taken as parameter. These results
are proved in the books by Downey and Fellows [15] and by Flum and Grohe

1 Emails: courcell@labri.fr, mamadou.kante@labri.fr.
2 Supported by the GRAAL project of �Agence Nationale pour la Recherche�. B.
Courcelle is member of �Institut Universitaire de France�.

Preprint submitted to Elsevier August 19, 2008

[18] for tree-width, by Courcelle et al. [9] with help of results by Hliněný, Oum
and Seymour [20,28] for rank-width and clique-width.

These complexity measures are also interesting for the study of relations on
graphs like minor inclusion and vertex-minor inclusion (see Robertson and
Seymour [29], the book by Diestel [14], the article by Oum [27]).

All complexity measures de�ning graph �widths� are based on hierarchical de-
compositions. These decompositions arise in two di�erent ways: either because
the graphs are de�ned as the values of terms written with some kinds of �graph
concatenations� or because edges and vertices are associated with the nodes
of certain trees.

Clique-width and its close variants, NLC-width [31] and m-clique-width [11],
are based on decompositions of the �rst category. Tree-width [29], branch-
width [30], and rank-width [28] are decompositions of the second type. How-
ever, tree-width has an exact characterization in terms of graph operations [5,
Theorem 1.1]. In this article we give one for rank-width. In all cases the width
of a graph is de�ned as the minimal width of decomposition of a certain type
of this graph, where the width of the decomposition measures how complex is
the construction of the graph from the tree representing the decomposition.

Two widths, say wd and wd′, are equivalent if the same sets of graphs have
bounded width with respect to both of them. This is the case if there exist
two strictly increasing functions f and g : N → N such that for every graph G
of the considered type (simple or not, directed or not) we have f(wd(G)) ≤
wd′(G) ≤ g(wd(G)). While being equivalent, two widths may have advantages
and drawbacks.

In particular, clique-width and rank-width are equivalent but clique-width
has the advantage of having an algebraic de�nition in terms of very simple
graph operations. Furthermore, this de�nition is the basis of the construction
of algorithms for checking graph properties expressible in MS logic and for
solving optimization problems expressed in MS logic [9,12,18] in linear-time
in the size of the algebraic expressions de�ning the input graphs.

On the other hand, rank-width has a good behavior with respect to vertex-
minor inclusion, so that the class of graphs of rank-width at most k is charac-
terized by �nitely many excluded vertex-minors [27]. Furthermore, the cubic-
time algorithm that constructs for a given graph an algebraic expression of
clique-width at most 2k+1−1 if the graph has clique-width at most k, is based
on the decomposition underlying rank-width [20,28].

In this article we de�ne algebraic operations on graphs that characterize rank-
width as follows:

2

a graph G has rank-width at most k if and only if it is the value of a term
in T (Rk, Ck)

where Rk is a �nite set of binary graph �concatenation� operations, Ck is a
�nite set of constants, both depending on k, and T (Rk, Ck) is the set of �nite
well-formed terms constructed with Rk and Ck.

In a few words, the operations are based on coloring vertices by sets of colors
⊆ [k] := {1, 2, . . . , k}, like in the variant of clique-width called m-clique-width
(see [10,11]), but vertex colors are manipulated by linear transformations on
the GF (2) vector space {0, 1}k rather than with set union over subsets of
{1, . . . , k}. Furthermore, edges are created between two disjoint graphs by
means of bilinear forms, taking the vectors of colors as arguments. It is thus
somewhat natural that they can generate (exactly) the set of graphs of rank-
width at most k since the notion of rank-width is based on ranks of GF (2)
matrices.

That MS de�nable graph properties are Fixed Parameter Linear for tree-width
and clique-width (assuming that graphs are given by the relevant decomposi-
tions or algebraic expressions) can be proved in a uni�ed way because, up to
some technical details, the graph operations underlying these decompositions
or expressions, are expressible in terms of the following operations acting on
logical structures:

- disjoint union,
- quanti�er-free transformations [4,9].

The operation that replaces everywhere a vertex color a by the color b, and
the one that adds edges between every vertex colored by a and every vertex
colored by b are typical examples of quanti�er-free transformations. General
quanti�er-free transformations modify logical structures by rede�ning certain
relations by quanti�er-free formulas (see [1,4,6,13] for graph algebras).

We present the graph operations that de�ne rank-width as particular opera-
tions based on disjoint union and vertex-colorings with bounded number of
distinct colors. We obtain thus a unifying framework for de�ning and compar-
ing several related notions of width.

For comparing these families and the corresponding widths, we can say roughly
that, the more vertex color manipulations we allow, the smallest is the cor-
responding width. In this respect, rank-width is �smaller� than clique-width
but an even smaller width can be de�ned. However, all these width notions
are equivalent to clique-width. But their recognition algorithms may be very
di�erent. That a width is smaller than another equivalent one, is unimportant
with respect to the question: �which classes of graphs have bounded width
?�, but seems useful for the construction of Fixed Parameter Tractable (ab-

3

breviated FPT) algorithms based on MS formulas. The reason is that, for
representing graph operations based on k colors, one uses k unary relations
c1, . . . , ck such that ci(x) means �vertex x has color i� (possibly among others).
The constants in the linear algorithms based on the methodology explained
in [9,15,18] depend on the sizes of the basic sets of relations used to describe
the colored graphs. Hence, using less relations yields smaller (although large)
constants.

However, the two possibilities for a usable implementation are the following
ones (we denote by n the number of vertices of the graphs):

- either we de�ne graphs by terms of size p(k) · n built with p(k) basic
operations (for graphs of clique-width at most k we have p(k) = θ(k2)),

- or we de�ne them by terms of size 2n − 1, and this is what we can do
as a consequence of our main result, but built with much larger sets of
operations (say θ(2k2

) for graphs of rank-width at most k).

Using a system like MONA [19] able to convert MS formulas into automata
on terms may indicate whether one method is better than the other. Practical
experience is yet insu�cient to decide.

For comparing two widths, say wd and wd′, a proof that for every graph G

wd′(G) ≤ f(wd(G))

consists in general in proving that every wd-decomposition of width k based
on a tree T can be transformed into a wd′-decomposition of width at most
f(k), based on a tree T ′. In most cases the trees T and T ′ are almost the
same. Other results involving deep reorganizations of graph decompositions
are established in [7].

The main results of this article are:

- a uni�ed �Boolean� framework to formalize graph operations equivalent
to those de�ning clique-width,

- an algebraic characterization of rank-width.

Summary. In Section 2 we recall the de�nitions of rank-width and clique-
width. In Section 3 we de�ne a general notion of graph operations based
on vectorial colorings and we recall the relationships between these di�erent
widths. We prove in Section 4 that rank-width is characterized by certain
graph operations based on linear transformations. We extend the results of
Section 4 to edge-colored graphs in Section 5. Section 6 is a conclusion and
states some open questions.

4

2 Notations and De�nitions

We denote by [k] the set {1, . . . , k} and by [k]′ the set {1′, . . . , k′} to provide
an isomorphic copy of [k] to be used in some constructions. Graphs are �nite,
simple, loop-free and undirected unless otherwise speci�ed. A graph G is de-
�ned as 〈VG, edgG〉 where edgG ⊆ VG×VG is the symmetric adjacency relation.
Without loss of generality we assume that VG is always linearly ordered. This
order will be used to represent edgG by a square matrix over GF (2). For a
graph G and a set U ∈ VG, we denote by G[U] the sub-graph of G induced by
U . We denote by 2V the power-set of some set V .

A sub-cubic tree is a tree such that the degree of each node is at most 3. By
replacing in a sub-cubic tree T every induced path x−u1−u2−· · ·−un−y by the
edge x−y, and by deleting the intermediate vertices u1, . . . , un, one transforms
T into a tree T ′ such that every node has degree 1 or 3 and N

(1)
T ′ = N

(1)
T (we

denote by N
(1)
T the set of nodes of degree 1). We will denote T ′ by Red(T).

Composition of multivalued functions. Let α : A→ 2B and β : B → 2C

be two multivalued functions. We denote by β ◦ α the mapping A→ 2C such
that β ◦ α(a) = β(α(a)) =

⋃{β(b) | b ∈ α(a)}. We also use ◦ for the normal
composition of unary functions.

Let F be a set of unary and binary functions and C be a set of constants. We
denote by T (F,C) the set of �nite well-formed terms built with F ∪ C. They
will be handled also as labeled directed and rooted ordered trees in the usual
way. The tree corresponding to a term t in T (F,C) has for set of nodes the set
Nt of occurrences in t of the symbols from F ∪C; its root is the occurrence of
the �rst symbol in the usual pre�x notation; it is directed so that every node
is reachable from the root by a directed path; each node is labeled by the
symbol of which it is an occurrence and edges are ordered so as to represent
the order of arguments of a function symbol.

We de�ne the reduced term of t ∈ T (F,C) as red(t) ∈ T ({∗}, {#}) where ∗ is
binary and # is a constant. It is obtained by replacing every binary symbol
by ∗ and by deleting the unary symbols. Formally,

red(t) = # if t ∈ C,
red(f(t)) = red(t) if f ∈ F is unary,

red(f(t1, t2)) = ∗(red(t1), red(t2)) if f ∈ F is binary.

Contexts [12,11]. Let F and C be as above. A context is a term in T (F,C∪
{u}) having a single occurrence of the variable u (a nullary symbol). We denote

5

by Cxt(F,C) the set of contexts. We denote by Id the particular context u.
Let s be a context and t be a term or a context, we denote by s[t/u] the term
obtained by replacing u in s with t. We will use the notation s • t for s[t/u]
for s in Cxt(F,C) and t in T (F,C).

2.1 Clique-Width

We recall the de�nition of clique-width [3,6,10]. Let k be a positive integer. A
k-graph is a graph whose vertices are colored with colors from [k]. Formally
we de�ne a k-graph as G = 〈VG, edgG, δG〉 where δG(x) ∈ [k] for each x ∈ VG

(uncolored graphs are considered as graphs whose vertices have all the same
color). We recall the following operations:

(1) For k-graphs G = 〈VG, edgG, δG〉 and H = 〈VH , edgH , δH〉 such that VG ∩
VH = ∅ (if not, we take a disjoint copy of H), we denote by G ⊕ H the
k-graph K = 〈VG ∪ VH , edgG ∪ edgH , δK〉 and call it the disjoint union of
G and H where:

δK(x) =

δG(x) if x ∈ VG

δH(x) if x ∈ VH .

(2) For i, j ∈ [k] with i 6= j, for a k-graph G = 〈VG, edgG, δG〉, we denote by
ηi,j(G) the k-graph K = 〈VG, edgK , δG〉 where

edgK = edgG ∪ {xy | x, y ∈ VG, x 6= y and δG(x) = i, δG(y) = j}.

(3) For i, j ∈ [k] with i 6= j, for a k-graph G = 〈VG, edgG, δG〉, we denote by
ρi→j(G), the k-graph K = 〈VG, edgG, δK〉 where

δK(x) =

j if δG(x) = i

δG(x) otherwise.

(4) For i ∈ [k], we let i denote a k-graph with a single vertex colored by i.

We let F c
k be the set {⊕, ηi,j, ρi→j | i, j ∈ [k], i 6= j} and Cc

k be the set
{i | i ∈ [k]}. Every term t in T (F c

k , C
c
k) denotes a k-graph val(t). The clique-

width of a graph G, denoted by cwd(G), is the minimum k such that there
exists a term t in T (F c

k , C
c
k) that de�nes G, i.e., such that G is isomorphic to

val(t).

The problem of checking if cwd(G) ≤ k for given (G, k) is np-complete [17],
polynomial if k ≤ 3 [2]. However, thanks to [20] and [28], clique-width can be
approximated in cubic-time. This is enough for constructing FPT algorithms.

6

Lozin and Rautenbach [24] consider the problem of �nding a term t in T (F c
k , C

c
k)

for k minimal and such that red(t) = r ∈ T ({∗}, {#}) where the term r is
given with a bijection of the set of vertices onto the set of occurrences of #.
The term t must respect this bijection. They give a polynomial-time algorithm
that constructs a term t with k at most twice the minimal value.

A variant of clique-width, called m-clique-width, has been de�ned and used in
[10,11]. It is based on vertex-colorings where a vertex may have several colors
or no color at all. Since a set of at most k colors can be considered as a single
color from a set of cardinality 2k, it is not a surprise that for every graph G,
mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1, where mcwd(G) denotes the m-clique-
width of G. For our algebraic characterization of rank-width, we will also use
such colorings with several colors and graph operations that use and transform
such colorings in a more powerful way than those de�ning m-clique-width. We
will put our de�nitions in a convenient formal framework de�ned in Section 3.

2.2 Rank-Width

We now recall the de�nition of rank-width [27]. For an (R,C)-matrix M =
(mij | i ∈ R, j ∈ C) over some �eld, if X ⊆ R, Y ⊆ C, we let M [X, Y]
denote the sub-matrix (mij | i ∈ X, j ∈ Y). The order of an (R,C)-matrix is
|R| × |C|. We will sometimes denote an (R,C)-matrix by its order when the
context is clear.

For a graph G, we let AG be its adjacency (VG, VG)-matrix over GF (2). We
assume that the vertex set of each graph G is linearly ordered, for instance
by a numbering of vertices. From such a linear order, one de�nes the (n× n)-
adjacency matrix AG of G, where n = |VG|.

Cut-rank functions. Let G = 〈VG, edgG〉 be a graph. We de�ne the cut-
rank function ρG of G by letting ρG(X) = rk(AG[X,VG \X]) for X ⊆ VG,
where rk is the matrix rank function. We let ρG(∅) = ρG(VG) = 0.

Rank-width. A layout of a graph G is a pair (T, L) of a sub-cubic tree T

and a bijective function L : VG → N
(1)
T . For an edge e of T , the connected

components of T\e induce a bipartition of N
(1)
T , hence a bipartition (Xe, Ye) of

VG. The width of an edge e of a layout (T, L) is ρG(Xe) = ρG(Ye). The width
of a layout (T, L), denoted by rwd(G, T, L), is the maximum width over all
edges of T . The rank-width of G, denoted by rwd(G), is the minimum width
over all layouts of G.

7

Remark 2.1 If (T, L) is a layout of G then (Red(T), L) is also a layout of
G, and of same width. We can thus assume that if (T, L) is a layout of G then,
T is a cubic tree, i.e., each node of T has degree 1 or 3.

The notion of rank-width was introduced by Oum and Seymour in their in-
vestigations of recognition algorithms for graphs of bounded clique-width [28].
The notion of rank-width and of clique-width are equivalent in the sense that
a class of simple undirected graphs has bounded rank-width if and only if it
has bounded clique-width because rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 [28].
Hliněný and Oum give in [20] an O(f(k) · n3)-time algorithm that for every
undirected graph G with n vertices and every k ∈ N, checks whether rwd(G)
is at most k and if the answer is positive, produces a layout of width at most
k. If rwd(G) > k, then cwd(G) > k and if rwd(G) ≤ k one obtains a term t
in T (F c

k′ , Cc
k′) where k′ = 2k+1 − 1, that de�nes G.

To solve problems de�nable in MS logic on graphs of bounded rank-width,
one can use this term and apply the techniques of Courcelle et al. [9]. In this
paper, we give an algebraic characterization of rank-width, which will allow
us to solve MS de�nable problems without transforming the layout of width
k into a clique-width expression of width 2k+1 − 1 because an equally useful
algebraic expression can be derived.

We recall below the relations between clique-width, rank-width and tree-width
[29]. Corneil and Rotics [3] showed that for every k there exists an in�nite

family of graphs of tree-width k that have clique-width at least 2b
k
2
c−1. Com-

bined with the proposition below this shows that the comparison cwd(G) ≤
2rwd(G)+1 − 1 is essentially optimal. We denote by twd(G) the tree-width of a
graph G.

Proposition 2.2 Let G be an (uncolored) undirected graph. Then

(1) cwd(G) ≤ 3 · 2twd(G)−1.
(2) rwd(G) ≤ twd(G) + 1.

Proof.

(1) See Corneil and Rotics [3].
(2) See Oum [26]. Another proof by Kanté [23] gives rwd(G) ≤ 4 · twd(G) +

2. 2

8

3 Multiple Colorings and Logically De�ned Graph Operations

Handling multiple colorings of vertices with k colors is clearly the same thing
as handling colorings with colors in {0, 1}k. This vectorial approach that we
introduce now will be essential in our construction of graph operations char-
acterizing rank-width.

Let k be a positive integer, B = {0, 1}. A Bk-coloring of a graphG is a mapping
γ : VG → Bk with no constraint on the values of γ for adjacent vertices. We
consider that x ∈ VG has color i (among others) if and only if γ(x)[i] (the i-th
component of γ(x)) is 1. (It is worth noticing that for each x ∈ VG, γG(x) is
a row vector.)

A Bk-colored graph is a triple G = 〈VG, edgG, γG〉 where γG is a Bk-coloring
of 〈VG, edgG〉. A graph G = 〈VG, edgG〉 is made canonically into a Bk-colored
graph for each k, with γG(x) = (0, · · · , 0) for each x. We de�ne some operations
on these graphs.

Recoloring. For a mapping h : Bk → Bm and a Bk-colored graph G, we let
Recolh(G) be the Bm-colored graph K = 〈VG, edgG, γK〉 where γK = h ◦ γG.

Graph products. Let f : Bk × B` → {0, 1}, g : Bk → Bm and h : B` →
Bm be arbitrary mappings. For G, Bk-colored and H, B`-colored, such that
VG∩VH = ∅, we letG⊗f,g,hH be the Bm-colored graphK = 〈VG∪VH , edgK , γK〉
where:

edgK = edgG ∪ edgH ∪ {xy | x ∈ VG, y ∈ VH and f(γG(x), γH(y)) = 1},

γK(x) =

(g ◦ γG)(x) if x ∈ VG,

(h ◦ γH)(x) if x ∈ VH .

Constants. For each u ∈ Bk we let u be a constant denoting a graph with
one vertex colored by u and no edge. If we need to specify such a graph with
a particular vertex x, we use u(x) instead of u. We denote by Ck the set
{u | u ∈ B1 ∪ · · · ∪Bk}. In some occasions we will use a constant ∅k to denote
the empty Bk-colored graph.

Remark 3.1 (1) As in the operations by Wanke [31] (see also [21]) these
operations add edges between two disjoint graphs, that are the two argu-
ments of (many) binary operations. This is a di�erence with clique-width

9

where a single binary operation ⊕ is used, and ηi,j applied to G⊕H may
add edges to G and to H.

(2) The disjoint union of G, Bk-colored and H, B`-colored with k ≤ ` is
G⊗f,g,h H where f(u, v) = 0, g(u) = (u, 0, · · · , 0) ∈ B` and h(v) = v for
all u ∈ Bk and all v ∈ B`.

(3) We have G⊗f,g,h H = H ⊗f̃ ,h,g G where f̃(u, v) = f(v, u).
(4) The recoloring operations can actually be combined with other operations.

The following rules are clear:

Recolm(u) = v if v = m(u).

Recolm(G⊗f,g,h H) = G⊗f,m◦g,m◦h H.

Recolm(G)⊗f,g,h Recolm′(H) = G⊗f ′,g◦m,h◦m′ H

where f ′(u, v) is de�ned as f(m(u),m′(v)). Let us also note that

G⊗f,g,h ∅k = Recolg(G).

Let n ∈ N. We let Bn be the �nite set of operations Recolh, ⊗f,g,h where
g : Bk → Bm, h : B` → Bm and f : Bk × B` → {0, 1} are mappings such that
k, `,m ≤ n . Without loss of generality we may assume k, l,m 6= 0.

For n ≥ 1, every term t ∈ T (Bn, Cn) has for value a Bn-colored graph, denoted
by val(t), or actually the family of all graphs isomorphic to such a graph 3 .

We now explain how such operations �t into the logical framework of Courcelle
et al. [9]. A relational signature is a �nite set Σ = {R,S, T, . . .} of relation
symbols, each of which given with an arity ar(R) ≥ 1. We denote by STR[Σ]
the set of all �nite relational Σ-structures A =< A, (RA)R∈Σ > where RA ⊆
Aar(R). The set A is called the domain of A. A relational Σ-structure A =<
A, (RA)R∈Σ > is said binary if ar(R) ≤ 2 for each R ∈ Σ.

Bk-colored graphs as binary relational structures. Let us introduce
unary relations ci for i ∈ [n]. The meaning of ci(x) = true will be �x has color
i�. Hence a Bk-colored graph G = 〈VG, edgG, γG〉 for k ≤ n is described exactly
by the relational structure with domain VG that we will also denote by G:

〈VG, edgG, c1G, . . . , cnG〉.

For a Bk-colored graph, k < n the predicates ciG(x) for k + 1 ≤ i ≤ n
will be false. Every relational structure of this form, and such that edgG

3 We assume terms well-written with respect to the expected types of functions. A
more formal treatment would specify Bn as a many-sorted signature.

10

is symmetric and irre�exive (edgG(x, x) never holds) represents a Bk-colored
graph G, k ≤ n.

We de�ne the notion of quanti�er-free operations suited for our purposes
(see [1] for general de�nitions). We let QF [Σ, {x1, . . . , xn}] denote the set
of quanti�er-free formulas written with symbols in Σ and variables among
{x1, . . . , xn}. (Examples will be given shortly.) Up to logical equivalence, this
set is �nite.

Let Σ and Γ be two relational signatures. A QF-de�nition scheme D of type
Σ → Γ is a tuple (ψ, (θR)R∈Γ) where:

ψ ∈ QF [Σ, {x}],
θR ∈ QF [Σ, {x1, . . . , xar(R)}] for each R ∈ Γ.

Let A = 〈A, (RA)R∈Σ〉 and B = 〈B, (RB)R∈Γ〉 be respectively in STR[Σ] and
STR[Γ]. We say that D de�nes B from A if

(i) B = {a | A |= ψ(a)},
(ii) for each R ∈ Γ,

RB = {(a1, . . . , aar(R)) ∈ Bar(R) | A |= θR(a1, . . . , aar(R))}.

The structure B is uniquely determined by A and D. Therefore, we can use a
functional notation and we write B = D̂(A).

A quanti�er-free operation γ from STR[Σ] to STR[Γ] is a function de�ned
by a QF-de�nition scheme D of type Σ → Γ such that γ(A) = D̂(A) for all
A ∈ STR[Σ].

Example The ηi,j operation for simple, loop-free undirected k-graphs can
be de�ned as a quanti�er-free operation where:

ψ := true,

θedg(x1, x2) := edg(x1, x2) ∨
(
x1 6= x2 ∧

((
ci(x1) ∧ cj(x2)

)
∨

(
cj(x1) ∧ ci(x2)

)))
,

θc`
(x) := c`(x) for ` ∈ [k].

Proposition 3.2 For each positive integer n we have:

(1) The operations Recolh are quanti�er-free operations for any mapping h :
Bk → Bm, k,m ≤ n.

11

(2) The operations ⊗f,g,h are expressible in terms of ⊕ and quanti�er-free
operations for any mappings f : Bk × B` → {0, 1}, g : Bk → Bm and
h : B` → Bm, k, `,m ≤ n.

Proof.

(1) is clear.
(2) Let n be a �xed positive integer. We consider Bk-colored graphs for k ≤ n.

In addition to the unary predicates c1, . . . , cn, we will use auxiliary unary
ones d1, . . . , dn (di /∈ {c1, . . . , cn}). We have, if K = G⊗f,g,h H:

K = α(η(G⊕ β(H)))

where β replaces in H each ci by di (i.e., diβ(H)(x) holds if and only if
ciH(x) holds, and then, ciβ(H)(x) is false), η creates edges, by rede�ning
edg(x, y) with the following formula where in the de�nition of edg′, u and
v range over Bn (we let u[i] denote the i-th component of u):

edg(x, y) ∨ edg′(x, y) ∨ edg′(y, x)

and edg′(x, y) is

∨
f(u,v)=1

(∧
u[i]=1

ci(x) ∧
∧

u[i]=0

¬ci(x) ∧
∧

v[j]=1

dj(y) ∧
∧

v[j]=0

¬dj(y)
)
.

The operation α performs the recolorings de�ned by g and h. 2

Theorem 3.3 For each monadic second-order graph property P , for each n ∈
N, there exists an algorithm that checks in time O(|t|) for every term t ∈
T (Bn, Cn) if the graph de�ned by this term satis�es P .

Proof. This result is proved in [9] for T (F c
n, C

c
n) instead of T (Bn, Cn), but it

extends to all quanti�er-free de�nable operations as proved in [4]. The logical
foundations of this result are presented in detail by Makowsky in [25]. 2

Remark 3.4 It can be proved that a class of (uncolored) graphs has bounded
clique-width if and only if it is de�ned by a subset of T (Bn, Cn) for some n.
The same logical tools yield Theorem 3.3 and its specialization to clique-width
bounded graphs. For graphs of bounded rank-width, one needs to express them
in some algebraic way, either by clique-width expressions as in [28] or by the
algebraic operations to be de�ned below, that are particular terms in the sets
T (Bn, Cn).

12

4 Vectorial Colorings and Rank-Width

We specialize the operations de�ned in the previous section by taking advan-
tage of the vector space structure of Bk over the �eld GF (2). As in Section 2.2
the vertex set of each graph is linearly ordered. We denote by MT the trans-
pose of a matrix M and we let Ok,` and Ik denote respectively the (k× `)-null
matrix and the (k × k)-identity matrix.

Let k ≥ 1. With a Bk-colored graph G = 〈VG, edgG, γG〉 we associate the
(VG, VG)-adjacency (symmetric) matrix AG and the (VG, [k])-color matrix ΓG,
the row vectors of which are the vectors γG(x) in Bk for x in VG. We de�ne
the color-rank of G as the rank of ΓG and we denote it by crk(G). Clearly,
crk(G) ≤ k if G is Bk-colored 4 .

Linear recolorings. A recoloring Recolh is linear if h : Bk → Bm is linear,
in other words, if for some (k×m)-matrix N and all Bk-colored graphs G, we
have, by letting H = Recolh(G):

ΓH = ΓG ·N

i.e., γH(x) = γG(x) ·N for each x in VG.

If Recolh and Recolh′ are linear recolorings, described respectively by N and
N ′, then Recolh ◦Recolh′ is linear and is described by N ′ ·N .

Bilinear product of graphs. We consider the operations ⊗f,g,h where:

- f : Bk ×B` → B is bilinear, hence de�ned by f(u, v) = (u ·M) · vT where
M is a (k × `)-matrix;

- the recoloring maps g : Bk → Bm and h : B` → Bm are linear.

We order the graph K = G⊗f,g,hH by preserving the orderings of VG and VH

and letting x < y for x ∈ VG and y ∈ VH . In terms of products of matrices we

4 The color-rank of G should not be confused with its rank, de�ned as the rank of
its adjacency matrix AG with coe�cients in {0, 1}. All ranks are relative to GF (2).

13

have thus:

AK =

 AG ΓG ·M · ΓT
H

ΓH ·MT · ΓT
G AH



ΓK =

ΓG ·N

ΓH · P


whereM,N and P are the matrices describing f, g and h respectively. We will
use in this case the notation ⊗M,N,P for ⊗f,g,h.

Constants. We recall that for each u ∈ Bk, u denotes the graph with a single
vertex colored by u and no edge. We also let Ck be the set {u | u ∈ B1∪· · ·∪Bk}.

Remark 4.1 (1) If K = G⊗M,N,P H is Bm-colored, then we have:

AK [VG, VH] = ΓG ·M · ΓT
H ,

ΓK [VG, [m]] = ΓK[VG] = ΓG ·N,
ΓK [VH , [m]] = ΓK[VH] = ΓH · P.

Since for all matrices we have:

rk(A ·B) ≤ min{rk(A), rk(B)},

we have

crk(K[VG]) = rk(ΓK [VG, [m]]) ≤ rk(ΓG) ≤ k,

and symmetrically

crk(K[VH]) = rk(ΓK [VH , [m]]) ≤ rk(ΓH) ≤ `.

(2) We have G⊗M,N,P H = H ⊗MT ,P,N G.
(3) The following rules are clear:

RecolQ(u) = v if v = u ·Q,
RecolQ(G⊗M,N,P H) = G⊗M,N ·Q,P ·Q H,

RecolQ(G)⊗M,N,P RecolQ′(H) = G⊗Q·M ·Q′T ,Q·N,Q′·P H,

G⊗M,N,P ∅k = RecolN(G).

14

We let Rn ⊆ Bn be the set of linear recolorings RecolN and bilinear products
⊗M,N,P whereM,N and P are respectively (k×`), (k×m) and (`×m)-matrices
for k, `,m ≤ n. We denote by val(t) the graph de�ned, up to isomorphism, by
a term t ∈ T (Rn, Cn). This graph is the value of the term in the corresponding
algebra. Two terms are equivalent if they de�ne, up to isomorphism, the same
graph.

Remark 4.2 We can transform every term t ∈ T (Rn, Cn) into a term t′ ∈
T (Rn, Cn) where each constant u ∈ Bn and each operation RecolN or ⊗M,N,P

are such that M,N and P are (n×n)-matrices. For that, we use the following
recursive rules:

t′ =


(u, 01,n−k) if t = u and u ∈ Bk,

RecolN ′(t′1) if t = RecolN(t1),

t′1 ⊗M ′,N ′,P ′ t′2 if t = t1 ⊗M,N,P t2.

where M,N and P are respectively (k× `), (k×m) and (`×m)-matrices and,

M ′ =

 M 0k,n−`

0n−k,` 0n−k,n−`

 N ′ =

 N 0k,n−m

0n−k,m 0n−k,n−m

 P ′ =

 P 0`,n−m

0n−`,m 0n−`,n−m



It is straightforward to verify that t′ is equivalent to t. So without loss of
generality, we can replace Rn by R′

n consisting of bilinear products ⊗M,N,P

where M,N and P are (n × n)-matrices and may assume that for each u ∈
Cn, u ∈ Bn. We use here also Remark 4.1(1) showing that recolorings can be
combined with bilinear products.

Our objective is to prove the following which is our main theorem.

Theorem 4.3 (Main Theorem) A graph G has rank-width at most n if and
only if it is the value of a term in T (Rn, Cn).

We will prove it in two steps. We �rst prove the following proposition which
is the �if direction�.

Proposition 4.4 Let G = val(t) where t ∈ T (Rn, Cn). Then rwd(G) ≤ n.

We recall that s • t = s[t/u] for s ∈ Cxt(Rn, Cn), t ∈ T (Rn, Cn) and Id is the
particular context u. Before proving Proposition 4.4, we state and prove the
following lemma.

Lemma 4.5 Let t = c • t′ where t′ ∈ T (R′
n, Cn), c ∈ Cxt(R′

n, Cn)− {Id}. If

15

we let G = val(t) and H = val(t′) then:

AG[VH , VG − VH] = ΓH ·B,
ΓG[VH] = ΓH · C

for some matrices B and C.

Proof. We use an induction on the structure of c. We have several cases:

(a) c = Id⊗M,N,P t
′′.

We let K = val(t′′). Then G = H⊗M,N,P K. We have, as observed above,

AG[VH , VK] = ΓH ·M · ΓT
K ,

ΓG[VH] = ΓH ·N.

Hence we take B = M · ΓT
K and C = N .

The proof is similar if c = t′′⊗M,N,P Id, we take B = MT · ΓT
K because

AG[VH , VK] = ΓH ·MT · ΓT
K and C = P .

(b) c = c′ ⊗M,N,P t
′′ where c′ ∈ Cxt(R′

n, Cn)− {Id}.
We let K = val(t′′) and G′ = val(c′ • t′). Hence G = G′ ⊗M,N,P K. We
recall that:

AG =

 AG′ ΓG′ ·M · ΓT
K

ΓK ·MT · ΓT
G′ AK


Hence

AG[VH , VG − VH] =
(
AG′ [VH , VG′ − VH]

(
ΓG′ ·M · ΓT

K

)
[VH , VK]

)
By inductive hypothesis, AG′ [VH , VG′ − VH] = ΓH · B′. We now prove

that
(
ΓG′ ·M · ΓT

K

)
[VH , VK] = ΓH · C ′′ for some matrix C ′′.

(
ΓG′ ·M · ΓT

K

)
[VH , VK] = ΓG′ [VH , [n]] ·M · ΓT

K by de�nition,

= ΓG′[VH] ·M · ΓT
K by de�nition,

= ΓH · C ′ ·M · ΓT
K by inductive hypothesis.

Hence AG[VH , VG − VH] = ΓH

(
B′ C ′ ·M · ΓT

K

)
.

We now consider ΓG[VH]. We have:

ΓG =

ΓG′ ·N

ΓK · P



16

Then ΓG[VH] = (ΓG′ ·N) [VH , [n]] = ΓG′ [VH , [n]] ·N = ΓH · C ′ ·N .
This proves the lemma, because the case of c = t′′ ⊗M,N,P c′ is simi-

lar. 2

We can now prove Proposition 4.4.

Proof of Proposition 4.4. Let G = val(t) where t ∈ T (Rn, Cn). We trans-
form it into a term t̃ in T (R′

n, Cn) with red(t̃) = red(t). By de�nition there
exists a bijection L between VG and the set of constants of red(t̃). We take
(red(t̃), L) as a layout of G. We claim that the width of this layout is at most
n. Hence we have to prove that for each subterm t′ of t

rk(AG[Vval(t′), VG − Vval(t′)]) ≤ n.

Let t′ be a subterm of t and letH = val(t′). By Lemma 4.5 we haveAG[VH , VG−
VH] = ΓH ·B. Hence rk(AG[VH , VG−VH]) ≤ n since each H is Bn-colored. 2

For proving the �only if direction� stated as Proposition 4.13, we need some
technical lemmas. Let us introduce some de�nitions before. We write G =
H ⊗M K instead of H ⊗M,N,P K if we do not care about the coloring of G
but only about its vertices and edges. More precisely ⊗M is an abbreviation
for ⊗M,O,O where O denotes zero-matrices. We recall that a graph without
colors has all its vertices colored by a row vector (0, · · · , 0). We recall that for
X ⊆ VG we denote by ρG(X) the rank of AG[X,VG −X] (cf. the de�nition of
rank-width in Section 2.2).

Let G be a graph and (V1, V2) be a bipartition of its vertices such that ρG(V1) =
m. We say that vertices x1, . . . , xm in V1 form a vertex basis of G[V1] with
respect to G if their associated row vectors in AG[V1, V2] are independent.
Vertices x1, . . . , xp in V1 with p ≥ ρG(V1) form a vertex generator of G[V1]
with respect to G if their associated row vectors generate the row vectors of
AG[V1, V2].

If A is a (X, Y)-matrix (or equivalently a (|X| × |Y |)-matrix) we let A[x, Y]
denote the row vector of A corresponding to x ∈ X and let A[X, y] denote
the column vector corresponding to y ∈ Y . We now introduce the notion of
presentation, which will allow us to construct a term in T (Rn, Cn) from a
layout by induction.

De�nition 4.6 (Presentation) Let (V1, V2) be a bipartition of VG with A =
AG[V1, V2]. Let X = {z1, . . . , zp} ⊆ V1 be a vertex generator of G[V1] with
respect to G. The set of row vectors A[zi, V2] generates the same space vector

17

as the set of all row vectors of A. It follows that A = N · A[X,V2] for some
(V1, X)-matrix N . We de�ne N by N [x, z] = bxz if z ∈ X and x /∈ X where:

A[x, V2] = bxz1A[z1, V2] + · · ·+ bxzpA[zp, V2]

and

bzz = 1 if z ∈ X
bzz′ = 0 if z, z′ ∈ X and z 6= z′.

Let us enumerate the elements of V1 as v1, . . . , vn. Let H
′ be a Bn-coloring

of G[V1] such that γH′(vi) = (0, . . . , 0, 1, 0, . . . , 0) with 1 at i-th position and
H = RecolN(H ′). We call (H,N,X) a presentation of G[V1] relative to G. It
is clear that H is a Bp-coloring of G[V1] and ΓH = N .

Proposition 4.7 Let G be a graph and let (V1, V2) be a bipartition of VG.
Let X ⊆ V1 and Y ⊆ V2 be vertex generators of G[V1] and G[V2] respectively,
both with respect to G. Let (H,N,X) and (K,P, Y) be presentations of G[V1]
and G[V2] respectively, both relative to G. Then AG[V1, V2] = NMP T where
M = AG[X, Y] and G = H ⊗M K.

Proof. By de�nition, that (H,N,X) is a presentation of G[V1] relative to G
means that AG[V1, V2] = N · AG[X,V2]. Similarly AG[V2, V1] = P · AG[Y, V1]
since (K,P, Y) is a presentation of G[V2] relative to G. Then AG[V2, X] =
P · AG[Y,X], i.e., AG[X,V2] = AG[X, Y] · P T . We let M = AG[X, Y]. Hence
AG[V1, V2] = NMP T .

We now prove that G = H ⊗M K. It is su�cient to prove that AG[V1, V2] =
AG′ [V1, V2] where G

′ = H ⊗M K. By de�nition of a presentation, ΓH = N and
ΓK = P . Hence AG′ [V1, V2] = ΓH ·M · ΓT

K = NMP T = AG[V1, V2]. 2

Remark 4.8 (1) If k = rk(AG[V1, V2]) in Proposition 4.7, we have neces-
sarily p = |X| ≥ k, q = |Y | ≥ k. If p = q = k then X and Y are vertex
bases of G[V1] and G[V2] respectively, both with respect to G.

(2) If V1 ⊂ V and X is a vertex basis of G[V1] with respect to G, then there
is a unique presentation (H,N,X) of G[V1] relative to G.

Example We let G be such that V1 = {a, b, c, d}, V2 = {α, β, γ, δ, µ} and

18

AG[V1, V2] = A =

α β γ δ µ

a 1 1 0 0 1

b 1 0 0 1 0

c 0 0 1 0 1

d 1 1 1 0 0

We choose {a, b, c} and {α, β, γ} as vertex bases of G[V1] and G[V2] respec-
tively. We have thus A[d, V2] = A[a, V2]+A[c, V2], and, A

T [δ, V1] = AT [α, V1]+
AT [β, V1] and A

T [µ, V1] = AT [β, V1] + AT [γ, V1].

The corresponding B3-colorings of G[V1] and G[V2] are respectively de�ned by:

a 1 0 0

b 0 1 0

c 0 0 1

d 1 0 1

α 1 0 0

β 0 1 0

γ 0 0 1

δ 1 1 0

µ 0 1 1

The matrix M is A[{a, b, c}, {α, β, γ}]. We can check for an example that
A[d, µ] = (1, 0, 1) ·M · (0, 1, 1)T = (1, 1, 1) · (0, 1, 1)T = 1 + 1 = 0.

We can now state some basic properties of presentations.

Fact 4.9 Let G be a graph with a bipartition (V1, V2) of VG. Let (H,N,X)
and (K,P, Y) be presentations of G[V1] and G[V2] respectively, both relative to
G. Let Z ⊆ V1 ∪ V2 and M = AG[X, Y]. Then:

G[Z] = H[Z ∩ V1]⊗M K[Z ∩ V2]

Fact 4.10 Let G be a graph. If X ′ ⊆ X ⊆ V ⊆ VG and X ′, X are vertex
generators of G[V] with respect to G, then:

AG[V, VG − V] = N · AG[X,VG − V],

AG[X,VG − V] = N ′ · AG[X ′, VG − V],

for some (V,X)-matrix N and some (X,X ′)-matrix N ′ and

AG[V, VG − V] = (N ·N ′) · AG[X ′, VG − V].

19

Proposition 4.11 Let V ⊆ VG and (V1, V2) be a bipartition of V . Let (H1, N1, X1)
and (H2, N2, X2) be presentations of G[V1] and G[V2] respectively, both relative
to G. Then there exist a vertex basis Z ⊆ X1 ∪X2 of G[V] and a presentation
(H,N,Z) of G[V] relative to G such that

H = H1 ⊗M,P1,P2 H2

where M is a (X1, X2)-matrix, P1 is a (X1, Z)-matrix and P2 is a (X2, Z)-
matrix.

Proof. We let h = |X1|, k = |X2|, n = |V1|, m = |V2| and |VG − V | = p. By
Proposition 4.7 we have G = H1 ⊗M ′ K where M ′ = AG[X1, X2 ∪ (VG − V)]
and (K,N ′

2, X2 ∪ (VG−V)) is a presentation of G[VG−V1] relative to G with:

N ′
2 =

@
@

@
X2 VG − V

V2 N2 0m,p

VG − V 0p,k Ip

Hence by Fact 4.9 G[V] = (H1 ⊗M ′ K) [V1 ∪ V2] = H1 ⊗M H2 where M =
M ′[X1, X2] since

K[V2] = H2

N ′
2[V2, X2] = N2

(X2 ∪ (VG − V)) ∩ V2 = X2.

It remains to de�ne Z, P1 and P2 such that (H,N,Z) is a presentation of G[V]
relative to G where:

H = H1 ⊗M,P1,P2 H2,

N =

ΓH1 · P1

ΓH2 · P2

 .

Let X1 = {x1, . . . , xh}, X2 = {y1, . . . , yk} and ` = ρG(V). We let A =
AG[V, VG − V].

Claim 4.12 X1 ∪X2 is a vertex generator of G[V] with respect to G.

Proof of Claim 4.12. We consider the matrix AG[V1, VG − V1]. Its row
vectors are generated by those associated with X1. Thus, so are those of
AG[V1, VG − V] which are projections of the latter ones. Similarly the row

20

vectors of AG[V2, VG − V] are generated by those associated with X2. Hence
X1 ∪X2 is a vertex generator of G[V1 ∪ V2] with respect to G. 2

One can thus �nd a vertex basis Z ⊆ X1∪X2. It consists of ` vertices. Without
loss of generality we can assume that Z = {x1, . . . , xh′ , y1, . . . , yk′} for some
h′ ≤ h and k′ ≤ k. Let W = VG−V . For each s such that h′ < s ≤ h, we have
a vector ws such that the row vector A[xs,W] is:

A[xs,W] = ws ·
(
A[x1,W], · · · , A[xh′ ,W], A[y1,W], · · · , A[yk′ ,W]

)T

We let

P1 =



Ih′ 0h′,`−h′

wh′+1

...

wh


.

Thus P1 is an (X1, Z)-matrix. Similarly, for k′ < u ≤ k, we have w′
u such that:

A[yu,W] = w′
u ·

(
A[x1,W], · · · , A[xh′ ,W], A[y1,W], · · · , A[yk′ ,W]

)T

We let

P2 =



0k′,`−k′ Ik′

w′
k′+1

...

w′
k


.

It is an (X2, Z)-matrix. We let H = H1 ⊗M,P1,P2 H2. Let x ∈ V1 and z ∈ W .
We wish to prove that:

A[x, z] = γH(x) ·
(
A[x1, z], · · · , A[xh′ , z], A[y1, z], · · · , A[yk′ , z]

)T

Since (H1, N1, X1) is a presentation of G[V1] we have:

AG[x, z] = γH1(x) ·
(
AG[x1, z], · · · , AG[xh, z]

)T

21

But P1 is de�ned in such a way that:


AG[x1, z]

...

AG[xh, z]

 = P1 ·
(
AG[x1, z], · · · , AG[xh′ , z], AG[y1, z], · · · , AG[yk′ , z]

)T

Hence

AG[x, z] = γH1(x) · P1 ·
(
A[x1, z], · · · , A[xh′ , z], A[y1, z], · · · , A[yk′ , z]

)T

But it is clear that γH1(x) · P1 = γH(x).

The proof is similar for AG[y, z] for y ∈ V2 and z ∈ W . This terminates the
proof of the proposition. 2

Example We let V1 = {1, 2, . . . , 5}, V2 = {a, b, c, d, e}, W = VG − V =
{α, β, γ, δ}. The matrix AG[V1 ∪ V2, V2 ∪W] is:

AG =

a b c d e α β γ δ

1 1 0 0 1 1 1 0 0 1

2 1 1 0 0 0 1 1 0 0

3 0 1 1 1 0 0 1 1 1

4 0 1 0 1 1 0 1 0 1

5 1 0 1 1 0 1 0 1 1

a 0 1 1 1

b 1 1 1 0

c 1 0 1 1

d 1 0 0 1

e 0 0 1 0

We can leave unde�ned the sub-matrix AG[V2, V2]. We have the following linear

22

relations between rows and columns of AG[V1, V2 ∪W] and AG[V2, V1 ∪W]:

4 = 1 + 2

5 = 2 + 3

d = a+ b

e = a+ b+ c

Vertex bases are forG[V1] : {1, 2, 3} and forG[V2] : {a, b, c}. Among {1, 2, 3, a, b, c},
one can select {1, 2, a} as a vertex basis of G[V1 ∪ V2]. Then we have:

M =

a b c

1 1 0 0

2 1 1 0

3 0 1 1

P1 =

1 2 a

1 1 0 0

2 0 1 0

3 0 0 1

P2 =

1 2 a

a 0 0 1

b 1 0 1

c 0 1 1

We can now prove the converse direction of the main theorem.

Proposition 4.13 Every graph of rank-width at most n is the value of a term
in T (Rn, Cn).

Proof. We let G be such that rwd(G) ≤ n. We �rst assume G connected.

Let (T, L) be a layout of G of width n (we can assume T cubic by Remark
2.1). Let us select a leaf s of T as root, and direct T accordingly, from the
root towards the other vertices of degree 1. The weight of a node u of T is the
number of the nodes of T/u, the subtree of the directed tree T rooted at u.

For every edge of T of the form −→vu, we let Gu be the induced sub-graph of G,
the vertices of which are the leaves of T/u, and Gv the induced sub-graph of
G, the vertices of which are the leaves not in T/u.

Claim 4.14 One can choose for each u di�erent from the root of T , a pre-
sentation (Hu, Nu, Xu) of Gu with |Xu| = r(u) where r(u) is the width of −→vu,
and a term tu in T (Rn, Cn) that de�nes Hu, such that if u has two sons w and
w′ then tu = tw ⊗M,N1,N2 tw′ for some matrices M,N1 and N2.

Proof of Claim 4.14. By induction on the weight w(u) of u.

23

If w(u) = 1 then Gu is a singleton graph. Since G is assumed connected,
r(u) = 1. We take tu = 1.

Let w(u) 6= 1. Then u has two sons w and w′ and they have smaller weights
than u. By inductive hypothesis there exist presentations (Hw, Nw, Xw) of Gw

and (Hw′ , Nw′ , Xw′) of Gw′ .

By Proposition 4.11 there exists a (r(w) × r(w′))-matrix M , a (r(w), r(u))-
matrix N1 and a (r(w′), r(u))-matrix N2 such that (Hu, Nu, Xu) is a presen-
tation of Gu where

Hu = Hw ⊗M,N1,N2 Hw′

Nu =

ΓHw ·N1

ΓHw′ ·N2

 ,

Xu ⊆ Xw ∪Xw′ is a vertex basis of Gu.

By inductive hypothesis, there also exist tw and tw′ that de�ne Hw and Hw′

respectively. We let then tu = tw ⊗M,N1,N2 tw′ . It is clear that t de�nes Hu.
This completes the general case and the claim. 2

We can now �nish the proof of the proposition. For the case of u where r → u,
r is the root of T , we have Gr de�ned by 1 and G de�ned by tu⊗1,O,O 1, where
tu is obtained by Claim 4.14.

If G is not connected, then G = H1⊕· · ·⊕Hk where H1, . . . , Hk are connected
and rwd(Hi) ≤ n for each i. We let t1, . . . , tk be terms denoting H1, . . . , Hk

respectively. Then we can take t1 ⊗0,0,0 t2 ⊗0,0,0 · · · ⊗0,0,0 tk to denote G and
⊗0,0,0 is equivalent to ⊕, the disjoint union of uncolored graphs. This ends the
proof. 2

Remark 4.15 (1) Any layout (T, L) of G of width n, where T is cubic, is
made into a term t such that Red(red(t)) = T .

(2) The procedure that transforms a layout (T, L) of width k of a graph G
into a term t in T (Rk, Ck) can be done in time O(|VG|2). Our algorithm
consists in transforming each internal node u of T that partitions VG into
(V1, V2,W) into a binary operation ⊗M,N,P . For that, we need a vertex
basis B1 of AG[V1, VG − V1], a vertex basis B2 of AG[V2, VG − V2] and a
vertex basis B3 of AG[V1 ∪ V2,W]. By Proposition 4.11 we can construct
a vertex basis of AG[V1 ∪ V2,W] in time f(k) · |VG|, for some function f ,
by using the vertex bases B1 and B2. If V1 = {x} then B1 = {x} (G is
connected). Hence for each node of T we can construct the matrices M,N
and P in time O(f(k) · |VG|). Since |T | = O(|VG|), we can construct the
term t in time O(|VG|2).

24

5 Edge Colored Graphs

Let A = {a1, . . . , ap} be a �nite set of edge-colors. We extend some of the
previous de�nitions and results to graphs such that each undirected edge has
a color in A. We may have parallel edges with distinct colors.

For de�ning such graphs by clique-width expressions, we use the operations ηa
i,j

that add a-colored edges between i-vertices and j-vertices. The corresponding
notion of clique-width follows immediately.

The operations Rk can be modi�ed as follows. Instead of operations ⊗M,N,P

we use operations ⊗M1,...,Mp,N,P where M1, . . . ,Mp are (k × `)-matrices (see
Section 4) and Mi is used to create ai-colored edges, as does M in ⊗M,N,P for

creating ordinary edges. We denote by R
(A)
k the corresponding set of binary

operations. We obtain in this way a complexity measure on A-colored graphs:

Rwd (A)(G) = min{k | G = val(t), t ∈ T (R
(A)
k , Ck)}

If G is A-colored, then for each a ∈ A we let Ga be the sub-graph of G
consisting of VG and its a-colored edges.

It is clear that if G = val(t), t ∈ T (R
(A)
k , Ck) and a ∈ A then Ga =

val(ta) where ta ∈ T (Rk, Ck) is obtained from t by replacing each opera-
tion ⊗M1,...,Mp,N,P by ⊗M,N,P where M = Mi and a = ai. It follows that

rwd(Ga) ≤ Rwd (A)(G) for each a ∈ A.

We extend as follows the de�nition of rank-width for edge-colored graphs.

rwd(G) = min
{
max
a∈A

{rwd(Ga, T, L)} | (T, L) is a layout of G
}
.

Proposition 5.1 Let A be a set of p edge-colors. For every edge-colored graph
with edge-colors in A we have:

1

p
Rwd (A)(G) ≤ rwd(G) ≤ Rwd (A)(G).

Proof. Let t ∈ T (R
(A)
k , Ck) be a term de�ning G, made into a layout (T, L)

of G as in the proof of Theorem 4.3. Clearly (T, L) is also a layout of Ga, the
one derived from ta for each a ∈ A. Hence for each a, rwd(Ga, T, L) ≤ k since
ta ∈ T (Rk, Ck). Hence rwd(G) ≤ max

a∈A
{rwd(Ga, T, L)} ≤ k, which proves that

rwd(G) ≤ Rwd (A)(G).

25

For the inequality Rwd (A)(G) ≤ p · rwd(G) let us consider a layout (T, L) of G
that witnesses rwd(G) = k. Hence rwd(Ga, T, L) ≤ k for each a ∈ A. For each
a ∈ A there exists by Proposition 4.13 a term ta ∈ T (Rk, Ck) that de�nes Ga.
For any a, b ∈ A we have red(ta) = red(tb). To simplify the proof we assume
that A = {a, b}. The extension to p > 2 will be straightforward.

We now show how ta and tb can be merged into a single term. We need a
claim with an easy proof but numerous assumptions. Let G = Ga ∪ Gb and
H = Ha ∪ Hb. Assume Ga, Gb have color matrices ΓGa ,ΓGb

both of order
(|VG| × k). Assume Ha and Hb have similar matrices ΓHa ,ΓHb

.

Assume now that a graph K is obtained from G and H by taking their disjoint
union and adding a-edges and b-edges. We assume the a-edges are added by
the operation Ga ⊗Ma,Na,Pa Ha giving Ka which also involves recolorings by
Na, Pa. Assume that the b-edges are added by Gb ⊗Mb,Nb,Pb

Hb giving Kb.

Let us de�ne for G the color-matrix ΓG =
(
ΓGa ΓGb

)
of order (|VG|×2k), and

similarly ΓH =
(
ΓHa ΓHb

)
of order (|VH |×2k). We let �nally ΓK =

(
ΓKa ΓKb

)
of order ((|VG|+ |VH |)× 2k). Then we have:

Claim 5.2 K = G⊗M,M ′,N,P H where

M =

Ma 0

0 0

 M ′ =

0 0

0 Mb

 N =

Na 0

0 Nb

 P =

Pa 0

0 Pb



Proof of Claim 5.2. The veri�cation is routine from the numerous assump-
tions. 2

By using the fact that ta and tb have the same �shape�, i.e., red(ta) = red(tb),
their operations can be merged by the above claim so as to form a single term
t in T (R

(A)
2k , C2k) that de�nes G. Note that red(t) = red(ta). 2

6 Conclusion

Rank-width is an interesting complexity measure because it is equivalent to
clique-width, and also because it is increasing for vertex-minor inclusion [27]
and has a cubic-time veri�cation algorithm [20]. Contrary to clique-width,
rank-width was not initially de�ned in terms of graph operations but in terms
of layouts and associated ranks of GF (2)-matrices. In order to apply the re-
sults of [9] one needs to transform the layout of a graph into a clique-width

26

expression, and this transformation may introduce 2k+1 colors for graphs of
rank-width k (see [28]). By the results of this article we can now �nd FPT
algorithms for problems expressible in monadic second-order logic by trans-
forming the layout more directly into an algebraic expression based on disjoint
union and quanti�er-free operations. Indeed, we de�ne natural graph opera-
tions based on linear transformations that characterize rank-width. These op-
erations are specializations of more general operations based on disjoint union
and vertex-colorings. This allows us to compare several notions of width. How-
ever the same classes of graphs have bounded width.

The extension of these results to directed graphs will be considered in a future
article [23]. The results of the extended abstract [7] about balanced terms is
independent from the one presented here and will be considered in a second
article [8]. We will prove that every graph G of rank-width k is de�ned by a
term in T (R2k, C2k) of height 3 · log(|VG|+ 1).

Acknowledgments. We would like to thank the referees for their useful
comments.

References

[1] A. Blumensath and B. Courcelle. Recognizability, Hypergraph Operations and
Logical Types. Information and Computation, 204(6):853-919, 2006.

[2] D. G. Corneil, M. Habib, J.M. Lanlignel, B. Reed and U. Rotics. Polynomial-
Time Recognition of Clique-Width≤ 3 Graphs. In G. H. Gonnet, D. Panario and
A. Viola eds., Latin American Symposium on Theoretical Informatics, volume
1776 of LNCS, pages 126-134. Springer, 2000.

[3] D. G. Corneil and U. Rotics. On the Relationship between Clique-Width and
Tree-Width. SIAM Journal on Computing, 34(4):825-847, 2005.

[4] B. Courcelle. The Monadic Second-Order Logic of Graphs VII: Graphs as
Relational Structures. Theoretical Computer Science, 101(1):3-33, 1992.

[5] B. Courcelle. Graph Grammars, Monadic Second-Order Logic and the Theory of
Graph Minors. In N. Robertson and P. Seymour eds., Graph Structure Theory,
volume 147 of Contemporary Mathematics, pages 565-590. AMS, 1993.

[6] B. Courcelle. The Expression of Graph Properties and Graph Transformations
in Monadic Second-Order Logic. In G. Rozenberg ed., Handbook of Graph
Grammars and Computing by Graph Transformations, pages 313-400. World
Scienti�c, 1997.

[7] B. Courcelle and M.M. Kanté. Graph Operations Characterizing Rank-Width
and Balanced Graph Expressions. In A. Brandstädt, D. Kratsch and H. Müller

27

eds., Graph-Theoretic Concepts in Computer Science, volume 4769 of LNCS,
pages 66-75. Springer, 2007.

[8] B. Courcelle and M.M. Kanté. Balanced Graph Expressions. Manuscript, 2007.

[9] B. Courcelle, J.A. Makowsky and U. Rotics. Linear-Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems,
33(2):125-150, 2000.

[10] B. Courcelle and S. Olariu. Upper Bounds to the Clique-Width of Graphs.
Discrete Applied Mathematics, 101(1-3):77-114, 2000.

[11] B. Courcelle and A. Twigg. Compact Forbidden-Set Routing. In W. Thomas and
P. Weil eds., Symposium on Theoretical Aspects of Computer Science, volume
4393 of LNCS, pages 37-48. Springer, 2007.

[12] B. Courcelle and R. Vanicat. Query E�cient Implementation of Graphs of
Bounded Clique-Width. Discrete Applied Mathematics, 131(1):129-150, 2003.

[13] B. Courcelle and P. Weil. The Recognizability of Sets of Graphs is a Robust
Property. Theoretical Computer Science, 342(2-3):173-228, 2005.

[14] R. Diestel. Graph Theory . 3rd Edition, Springer-Verlag, 2005. Readable for free
on: http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/.

[15] R. Downey and M. Fellows. Parameterized complexity . Springer-verlag, 1999.

[16] W. Espelage, F. Gurski and E. Wanke. Deciding Clique-Width for Graphs of
Bounded Tree-Width. Journal of Graph Algorithms and Applications, 7(2):141-
180, 2003.

[17] M. Fellows, F. A. Rosamond, U. Rotics and S. Szeider. Clique-Width
Minimization is np-Hard. In J. M. Kleinberg ed., Symposium on Theory Of
Computing, pages 354-362. ACM, 2006.

[18] J. Flum and M. Grohe. Parameterized Complexity Theory . Springer Verlag,
2006.

[19] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe
and A. Sandholm. MONA: Monadic Second-Order Logic in Practice. In E.
Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria and B. Ste�en eds., Tools
and Algorithms for Construction and Analysis of Systems, volume 1019 of LNCS,
pages 89-110. Springer, 1995.

[20] P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-
Decompositions. In L. Arge, M. Ho�mann and E. Welzl eds, European
Symposium on Algorithms, volume 4698 of LNCS, pages 163-174. Springer, 2007.

[21] Ö. Johansson. Clique-Decomposition, NLC-Decomposition and Modular
Decomposition - Relationships and Results for Random Graphs. Congressus
Numerantium, 132:39-60, 1998.

[22] M.M. Kanté. Vertex-Minor Reductions can Simulate Edge Contractions.
Discrete Applied Mathematics, 155(17):2328-2340, 2007.

28

[23] M.M. Kanté. The Rank-Width of Directed Graphs. Submitted, 2008.

[24] V. Lozin and D. Rautenbach. The Relative Clique-Width of Graphs. Journal
of Combinatorial Theory, Series B, 97(5):846-858, 2007.

[25] J. A. Makowsky. Algorithmic Uses of the Feferman-Vaught Theorem. Annals
of Pure and Applied Logic, 126(1-3):159-213, 2004.

[26] S. Oum. Rank-width is Less Than or Equal to Branch-Width. Journal of Graph
Theory, 57(3):239-244, 2007.

[27] S. Oum. Rank-Width and Vertex-Minors. Journal of Combinatorial Theory,
Series B, 95(1):79-100, 2005.

[28] S. Oum and P. Seymour. Approximating Clique-Width and Branch-Width.
Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006.

[29] N. Robertson and P. Seymour. Graph Minors V: Excluding a Planar Graph.
Journal of Combinatorial Theory, Series B, 41(1):92-114, 1986.

[30] N. Robertson and P. Seymour. Graphs minors X: Obstructions to Tree-
Decompositions. Journal of Combinatorial Theory, Series B, 52(2):153-190,
1991.

[31] E. Wanke. k-NLC Graphs and Polynomial Algorithms. Discrete Applied
Mathematics, 54(2-3):251-266, 1994.

29

