Short Labeling Scheme for Connectivity Check on Certain Graph Classes of Unbounded Clique-Width

Mamadou Moustapha Kanté

Université Bordeaux 1, LaBRI, CNRS 351 Cours de la libération 33405 Talence Cedex, France. mamadou.kante@labri.fr

March 5, 2009

Let G be a planar graph with n vertices. It is proved in [1] that we can assign to each vertex x of G a bit sequence J(x) of size at most $O(\log(n))$ such that for every pair of vertices (x,y) and every subset X of $V(G) - \{x,y\}$, we can verify if x and y are connected in $G \setminus X$ just by looking at J(x), J(y) and $\{J(z) \mid z \in X\}$. A similar result is known for graph classes of bounded clique-width [2]. In order to extend this result to more graph classes we investigate graph classes obtained by "gluing" graphs of bounded clique-width with limited overlaps. Our objective is to combine the two labelings. For that we introduce a notion of decomposition that extends the one of tree-decomposition.

Let \mathcal{H}_1 and \mathcal{H}_2 be two graph classes. An $(\mathcal{H}_1, \mathcal{H}_2)$ -decomposition of a graph G = (V(G), E(G)) is a partition \mathcal{T} of E(G) such that:

- 1. for every U in T the sub-graph G[U] is in \mathcal{H}_2 ,
- 2. the intersection graph $G(\mathcal{T})$ of \mathcal{T} is in \mathcal{H}_1 .

The *spread* of an $(\mathcal{H}_1, \mathcal{H}_2)$ -decomposition is $\max_{x \in V_G} | \{E \in \mathcal{T} \mid x \text{ incident with an edge of } E\} |$. The $(\mathcal{H}_1, \mathcal{H}_2)$ -width of an $(\mathcal{H}_1, \mathcal{H}_2)$ -decomposition \mathcal{T} is the maximum between its spread and the maximum degree of its intersection graph $G(\mathcal{T})$. The $(\mathcal{H}_1, \mathcal{H}_2)$ -width of a graph G is the minimum over all $(\mathcal{H}_1, \mathcal{H}_2)$ -decompositions.

We let \mathcal{P} be the class of planar graphs and $CWD(\leq k)$ be the class of graphs of clique-width at most k. We prove that if G has a $(\mathcal{P}, CWD(\leq k))$ -decomposition of $(\mathcal{P}, CWD(\leq k))$ -width ℓ then we can assign to each vertex x of G a bit sequence J(x) of size at most $O(f(k,\ell) \cdot \log(n))$ such that for every pair of vertices (x,y) and every subset X of $V(G) - \{x,y\}$, we can verify if x and y are connected in $G \setminus X$ just by looking at J(x), J(y) and $\{J(z) \mid z \in X\}$. For instance $K_{3,3}$ -minor free graphs of bounded degree have a $(\mathcal{P}, CWD(\leq 3))$ -decomposition of bounded $(\mathcal{P}, CWD(\leq 3))$ -width. This result is available in [3].

References

- [1] B. Courcelle, C. Gavoille, M. M. Kanté and A. Twigg. Optimal Labeling for Connectivity Checking in Planar Networks with Obstacles. Manuscript, 2008. Available in http://www.labri.fr/perso/kante/research.php.
- [2] B. Courcelle and R; Vanicat. Query Efficient Implementation of Graphs of Bounded Clique-Width. Discrete Applied Mathematics, 131:129-150, 2003.
- [3] M.M. Kanté. *Graph Structurings: Some Algorithmic Applications*. PhD Thesis, Université Bordeaux 1, 2008. Available in http://www.labri.fr/perso/kante/research.php.

¹An intersection graph of a cover \mathcal{T} is an undirected graph $G(\mathcal{T})$ with vertex set $\{x_U \mid U \in \mathcal{T}\}$ and edge set $\{x_{U}x_{V} \mid U \cap V \neq \emptyset\}$