Fast Algorithms Parameterized by Clique-Width

Mamadou M. Kanté

(Joint works with B. Bergougnoux and O-J. Kwon)

June, 15^{th} , 2017, UIB

At the Beginning

Theorem (Courcelle et al.)

- Every $MSOL_2$ -problem can be solved in time $f(k) \cdot n$ for graphs of tree-width k.
- Every $MSOL_1$ -problem can be solved in time $f(k) \cdot n^3$ for graphs of clique-width k.
- MSOL₂ are formulas written with the incidence representation: edge set quantifications are allowed.
- MSOL₁ are formulas written with the adjacency relation : only vertex (set) quantifications.
- Hamiltonicity belongs to $MSOL_2 \setminus MSOL_1$.
- $TW(\leq k) \subseteq CW(\leq 2^{k+1})$ (essentially tight).

And then Naturally . . .

Finer time complexity questions may appear with Mike's FPT world

- For a given (bunch of) problem(s), what is the best f(k)?
- ② For which problems in $MSOL_2 \setminus MSOL_1$ do we still have $f(k) \cdot poly(n)$ parametrised by clique-width?
 - Already hard examples were known in the 2000's paper: color not wanted edges in a clique (of clique-width 2).
 - XP algorithms for several well-known problems: Hamiltonicity, Chromatic number, Domatic number, etc.

And then Naturally . . .

Finer time complexity questions may appear with Mike's FPT world

- For a given (bunch of) problem(s), what is the best f(k)?
- ② For which problems in $MSOL_2 \setminus MSOL_1$ do we still have $f(k) \cdot poly(n)$ parametrised by clique-width?
 - Already hard examples were known in the 2000's paper: color not wanted edges in a clique (of clique-width 2).
 - XP algorithms for several well-known problems: Hamiltonicity, Chromatic number, Domatic number, etc.
- For tree-width a lot of work the last 10years for better time complexity.

And then Naturally . . .

Finer time complexity questions may appear with Mike's FPT world

- **①** For a given (bunch of) problem(s), what is the best f(k)?
- ② For which problems in $MSOL_2 \setminus MSOL_1$ do we still have $f(k) \cdot poly(n)$ parametrised by clique-width?
 - Already hard examples were known in the 2000's paper: color not wanted edges in a clique (of clique-width 2).
 - XP algorithms for several well-known problems: Hamiltonicity, Chromatic number, Domatic number, etc.
- For tree-width a lot of work the last 10years for better time complexity.
- Almost nothing for clique-width, except
 - W-hardness proof of Fomin et al. for some well-known problems,
 - $2^{k \log(k)}$ for Domination like problems (and few others) via rank-width.

Problems

Feedback vertex set

A feedback vertex set is $X \subseteq V(G)$ such that $G \setminus X$ is a forest.

Connected locally checkable properties

Let (σ, ρ) be (co-)finite subsets of $\mathbb N$. A connected (σ, ρ) -dominating set is a connected $D\subseteq V(G)$ s.t.

$$|N(x) \cap D| \in \begin{cases} \sigma & \text{if } x \in D\\ \rho & \text{if } x \notin D. \end{cases}$$

Examples. (Total) domination, d-domination, independent set, perfect domination, \dots

Hamiltonian Cycle

Find a cycle covering all vertices.

4

Wanted Algorithms

Objective

Let G be a graph of rank-width k,

- One can compute in time $2^{O(k)} \cdot n^{O(1)}$ a minimum FVS.
- Given (σ, ρ) , one can compute in time $2^{O(k \cdot d)} \cdot n^{O(1)}$ an optimum connected (σ, ρ) -dominating set, $d = d(\rho, \sigma)$.
- One can compute a Hamiltonian cycle in time $n^{O(k)}$.
- One can compute the chromatic number in time $n^{poly(k)}$.

Such algorithms (or better) exist when parameterized by tree-width.

Our Result (Essentially tight under ETH)

Theorem

Let G be a graph of $\sqrt{a}h/k/\sqrt{d}th$ clique-width k,

- ullet One can compute in time $2^{O(k)} \cdot n^{O(1)}$ a minimum FVS.
- Given (σ, ρ) , one can compute in time $2^{O(k \cdot d)} \cdot n^{O(1)}$ an optimum connected (σ, ρ) -dominating set, $d = d(\rho, \sigma)$.
- One can compute a Hamiltonian cycle in time $n^{O(k)}$.

Reminder. $\operatorname{rwd}(G) \leq \operatorname{cwd}(G) \leq 2^{\operatorname{rwd}(G)+1} - 1$.

Clique-Width

Given G and H, and $lab_G: V(G) \rightarrow [k]$, $lab_H: V(H) \rightarrow [k]$

- **1** $\mathbf{1}(x)$ a graph with a single vertex x labeled 1,
- ② $G \oplus H$ the disjoint union of G and H,
- **1** $ren_{i o j}(G)$ rename all *i*-vertices into *j*-vertices (no more vertex labeled *i*).
- **4** $add_{i,j}(G)$) add all edges between *i*-vertices and *j*-vertices (no parallel edges).

The clique-width of G, $\operatorname{cwd}(G)$, is the minimum k such that G is the value of a term from the above operations.

Clique-Width versus Rank-Width

- No known FPT polynomial algorithm time for computing CWD $f(k) \cdot n^3 \text{ known for RWD}.$
- RWD is based on ranks of matrices, but graph operations (complicated).

CWD operations simple and better for algorithmic purposes.

- RWD enjoys several nice structural properties, in particular links with vertex-minor quasi-ordering.
 - Whilst CWD only known to be closed under induced subgraph.

Summary

- Mamiltonian Cycle
- Peedback Vertex Set
- 3 Representatives for Weighted Partitions

Main Idea

A path (cycle) essentially partitions the vertex set into paths in each node of the clique-width expression.

A solution at the root if a partition with one block.

9

Algorithm (by Gurski)

- Consider all partitions of V(G) into paths.
- A partition \mathcal{P} is represented by the multiset $\{(i, j, \ell) \mid \text{there} \}$ are exactly ℓ paths between an i-vertex and an j-vertex $\}$.
- ullet The number of such partitions is bounded by $n^{k^2}.$

```
G = ren_{i \to j}(H). Repeat \mathcal{P} \setminus \{(i, \ell, p), (j, \ell, p')\} \cup \{(j, \ell, p + p')\} until no (i, \ell, p).
```

 $G = G_1 \oplus G_2$. Take disjoint unions of partitions.

 $G = add_{i,j}(H)$. Add as a possible partition (connect some paths)

```
\mathcal{P} \setminus \{(t,i,n_1),(j,\ell,n_2),(t,\ell,n_3)\} \cup \{(t,i,n_1-1),(j,\ell,n_2-2),(t,\ell,n_3+1)\}.
```

$G = add_{i,j}(H)$. Add as a possible partition (connect some paths)

 $\mathcal{P} \setminus \{(t,i,n_1),(j,\ell,n_2),(t,\ell,n_3)\} \cup \{(t,i,n_1-1),(j,\ell,n_2-2),(t,\ell,n_3+1)\}.$

Algorithm

- Consider all partitions of V(G) into paths.
- A partition $\mathcal P$ is represented by the multiset $\{(i,j,\ell)\mid$ there are exactly ℓ paths between an i-vertex and an j-vertex $\}$.
- ullet The number of such partitions is bounded by n^{k^2} .

$$G=ren_{i\to j}(H)$$
. Repeat $\mathcal{P}\setminus\{(i,\ell,p),(j,\ell,p')\}\cup\{(j,\ell,p+p')\}$ until no (i,ℓ,p) .

 $G = G_1 \oplus G_2$. Take disjoint unions of partitions.

 $G = add_{i,j}(H)$. Add as a possible partition (connect some paths)

$$\mathcal{P} \setminus \{(t, i, n_1), (j, \ell, n_2), (t, \ell, n_3)\} \cup \{(t, i, n_1 - 1), (j, \ell, n_2 - 2), (t, \ell, n_3 + 1)\}.$$

Let's turn it into an $n^{O(k)}$ one by removing unnecessary ones.

Characteristics

- For each partition \mathcal{P} , compute the multigraph $Aux(\mathcal{P})$ on k vertices where ℓ edges between v_i and v_j if $(i, j, \ell) \in \mathcal{P}$.
- $\mathcal{P} \equiv \mathcal{Q}$ if $Aux(\mathcal{P})$ and $Aux(\mathcal{Q})$ have same degree sequence and same connected components.

Characteristics

- For each partition \mathcal{P} , compute the multigraph $Aux(\mathcal{P})$ on k vertices where ℓ edges between v_i and v_j if $(i, j, \ell) \in \mathcal{P}$.
- $\mathcal{P} \equiv \mathcal{Q}$ if $Aux(\mathcal{P})$ and $Aux(\mathcal{Q})$ have same degree sequence and same connected components.

checking of Hamiltonicity is reduced to checking alternating Eulerian trail.

Characteristics

- For each partition \mathcal{P} , compute the multigraph $Aux(\mathcal{P})$ on k vertices where ℓ edges between v_i and v_j if $(i, j, \ell) \in \mathcal{P}$.
- $\mathcal{P} \equiv \mathcal{Q}$ if $Aux(\mathcal{P})$ and $Aux(\mathcal{Q})$ have same degree sequence and same connected components.

Reduction. Take in each equivalence class one representative.

Proposition

- If $\mathcal{P} \equiv \mathcal{Q}$, then \mathcal{P} can be extended into a Hamiltonian iff \mathcal{Q} can be.
- The operations in the algorithm preserve representativity.

Time complexity. There are $n^{O(k)}$ degree sequences and for each at most $2^{k\log(k)}$ possible partitions.

Summary

- Hamiltonian Cycle
- Peedback Vertex Set
- 3 Representatives for Weighted Partitions

Compute an optimum set $D \models P$

Let C_k a set of characteristics classifying possible solutions. tab[s] is the optimum value for all D with characteristic s.

- Compute tab[s] on $\mathbf{1}(x)$,
- ② For each operation, compute tab from tab's of operands.

Assume this gives time $f(k) \cdot n^{O(1)}$, with solution in $tab[s_0]$.

Compute an optimum set $D \models P$

Let C_k a set of characteristics classifying possible solutions. tab[s] is the optimum value for all D with characteristic s.

- Compute tab[s] on $\mathbf{1}(x)$,
- ② For each operation, compute tab from tab's of operands.

Assume this gives time $f(k) \cdot n^{O(1)}$, with solution in $tab[s_0]$.

A connected set satisfying P.

For each s, compute $\mathcal{A}[s]$ which stores the pairs (p,w) s.t. there is D with p=CC(D)/[k] and $w:=\mathrm{w}(D)$ is optimum.

Compute an optimum set $D \models P$

Let C_k a set of characteristics classifying possible solutions. tab[s] is the optimum value for all D with characteristic s.

- Compute tab[s] on $\mathbf{1}(x)$,
- ② For each operation, compute tab from tab's of operands.

Assume this gives time $f(k) \cdot n^{O(1)}$, with solution in $tab[s_0]$.

A connected set satisfying P.

For each s, compute $\mathcal{A}[s]$ which stores the pairs (p,w) s.t. there is D with p=CC(D)/[k] and $w:=\mathrm{w}(D)$ is optimum.

The optimum connected set is $(p,w) \in \mathcal{A}[s_0]$ with p=I and $I \subseteq [k]$ the set of intersected label classes in time

$$f(k) \cdot g(k) \cdot 2^{k \log(k)} \cdot n^{O(1)}$$
.

- A weighted partition is (p_0, p, w) with $(p, w) \in \Pi(V \setminus p_0) \times \mathbb{N}$.
- We let $\operatorname{acyclic}(p,q)$ holds iff $p \sqcup q$ yields an acyclic forest, ie, $|V| + \#\operatorname{block}(p \sqcup q) (\#\operatorname{block}(p) + \#\operatorname{block}(q)) = 0.$

- A weighted partition is (p_0, p, w) with $(p, w) \in \Pi(V \setminus p_0) \times \mathbb{N}$.
- We let $\operatorname{acyclic}(p,q)$ holds iff $p \sqcup q$ yields an $\operatorname{acyclic}$ forest, ie, $|V| + \#\operatorname{block}(p \sqcup q) (\#\operatorname{block}(p) + \#\operatorname{block}(q)) = 0.$

For \mathcal{A} and \mathcal{B} sets of weighted partitions

 $\operatorname{rmc}(\mathcal{A}) := \{(p_0, p, w) \in \mathcal{A} \mid \forall (p_0, p, w') \in \mathcal{A}, w' \leq w)\}.$ Remove non maximal ones.

- A weighted partition is (p_0, p, w) with $(p, w) \in \Pi(V \setminus p_0) \times \mathbb{N}$.
- We let $\operatorname{acyclic}(p,q)$ holds iff $p \sqcup q$ yields an acyclic forest, ie, $|V| + \#\operatorname{block}(p \sqcup q) (\#\operatorname{block}(p) + \#\operatorname{block}(q)) = 0$.

For A and B sets of weighted partitions

```
\begin{split} \operatorname{rmc}(\mathcal{A}) &:= \{(p_0, p, w) \in \mathcal{A} \mid \forall (p_0, p, w') \in \mathcal{A}, w' \leq w)\}. \\ & \text{Remove non maximal ones.} \end{split} \operatorname{acjoin}(\mathcal{A}, \mathcal{B}) := \operatorname{rmc}\left(\{(p_0 \setminus V') \cup (q_0 \setminus V) \cup (p_0 \cap q_0), p_{\uparrow(V' \setminus q_0)} \sqcup q_{\uparrow(V \setminus p_0)}, w_1 + w_2) \mid (p_0, p, w_1) \in \mathcal{A}, (q_0, q, w_2) \in \mathcal{B} \text{ and } \operatorname{acyclic}(p_{\uparrow(V' \setminus q_0)}, q_{\uparrow(V \setminus p_0)})\}\right). \\ & \text{Join of two partitions} \end{split}
```

- A weighted partition is (p_0, p, w) with $(p, w) \in \Pi(V \setminus p_0) \times \mathbb{N}$.
- We let $\operatorname{acyclic}(p,q)$ holds iff $p \sqcup q$ yields an acyclic forest, ie, $|V| + \#\operatorname{block}(p \sqcup q) (\#\operatorname{block}(p) + \#\operatorname{block}(q)) = 0$.

For \mathcal{A} and \mathcal{B} sets of weighted partitions

```
\begin{split} \operatorname{rmc}(\mathcal{A}) &:= \{(p_0, p, w) \in \mathcal{A} \mid \forall (p_0, p, w') \in \mathcal{A}, w' \leq w)\}. \\ \operatorname{Remove \ non \ maximal \ ones}. \end{split} \operatorname{acjoin}(\mathcal{A}, \mathcal{B}) &:= \operatorname{rmc}\left(\{(p_0 \setminus V') \cup (q_0 \setminus V) \cup (p_0 \cap q_0), p_{\uparrow(V' \setminus q_0)} \sqcup q_{\uparrow(V \setminus p_0)}, w_1 + w_2) \mid \\ & (p_0, p, w_1) \in \mathcal{A}, (q_0, q, w_2) \in \mathcal{B} \ \text{and} \ \operatorname{acyclic}(p_{\uparrow(V' \setminus q_0)}, q_{\uparrow(V \setminus p_0)})\}\right). \\ \operatorname{Join \ of \ two \ partitions} \end{split} \operatorname{proj}(\mathcal{A}, X) := \operatorname{rmc}\left(\{(p_0 \setminus X, p_{\downarrow(V \setminus X)}, w) \mid (p_0, p, w) \in \mathcal{A} \ \text{and} \ \forall p_i \in p, \ (p_i \setminus X) \neq \emptyset\}\right). \end{split}
```

For renaming, the checking of connectedness

Needed Information

Dynamic Programming Table

$$s:[k] o \{1,2,-2\}$$
 and $V_s^+:=\{x_{i_1},\dots,x_{i_p}\}$ with $\{i_1,\dots,i_p\}:=s^{-1}(2).$

$(p_0, p, w) \in \mathcal{A}[s]$ if there is $F \subseteq G$ and $E_s^0 \subseteq \{v_0\} \times V(F)$

- ① The set $s^{-1}(1)=\{i\in [k]\mid |V(F)\cap lab_G^{-1}(i)|=1\}$ and $p_0=\{i\in [k]\mid |V(F)\cap lab_G^{-1}(i)|=0\}.$
- ② The graph $F^+ := (V(F) \cup \{v_0\} \cup V_s^+, E(F) \cup E_s^0 \cup E_s^+)$ is a forest where $E_s^+ := \bigcup_{1 < j < p} x_{ij} \times (V(F) \cap lab_G^{-1}(i_j))$.
- **3** Each component C of $(V(F) \cup \{v_0\}, E(F) \cup E_s^0)$ intersects $lab_G^{-1}(s^{-1}(\{1,2\})) \cup \{v_0\}.$
- **③** The partition p equals $(s^{-1}(\{1,2\}) \cup \{v_0\})/\sim_{F^+}$ where $i \sim j$ if a vertex in $lab_G^{-1}(i) \cap V(F)$ is connected in the graph F^+ to a vertex in $lab_G^{-1}(j) \cap V(F)$; we consider $lab_G^{-1}(v_0) = \{v_0\}$.

Dynamic Programming Table

$$s:[k]\to \{1,2,-2\} \text{ and } V_s^+:=\{x_{i_1},\dots,x_{i_p}\} \text{ with } \{i_1,\dots,i_p\}:=s^{-1}(2).$$

FIGURE 2. Example of graph F^+ , here $p=\{\{v_0,1\},\{2,3\},\{4\}\},$ $s^{-1}(1)=\{1,4\},$ $s^{-1}(2)=\{2,3\},$ $s^{-1}(-2)=\{5,6,7,8\}$ and $p_0=\{7,8\}.$

$G = \mathbf{1}(x)$

$$tab_G[s] := \begin{cases} \{(\emptyset, \{\{1, v_0\}\}, \mathbf{w}(x)), (\emptyset, \{\{1\}, \{v_0\}\}, \mathbf{w}(x))\} & \text{if } s(1) = 1, \\ \{(\{1\}, \{\{v_0\}\}, 0)\} & \text{if } s(1) = -2, \\ \emptyset & \text{if } s(1) = 2. \end{cases}$$

Argue its correctness (and assuming at least two vertices in FVS).

$$G = add_{i,j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $p_0 \cap \{i, j\} \neq \emptyset$, then $(p_0, p, w) \in \mathcal{A}_G[s']$.
- ullet Otherwise, glue blocks containing i and j, respectively.
 - $s'(i), s'(j) \in \{1, 2\}$ (otherwise contains a cycle).
 - Let s such that $s(\ell) := s'(\ell)$ for $\ell \notin \{i, j\}$ and

$$(s'(i), s'(j)) := \begin{cases} (1, 1) & \text{if } s(i) = s(j) = 1\\ (2, 1) & \text{if } (s(i), s(j)) = (-2, 1)\\ (1, 2) & \text{if } (s(i), s(j)) = (1, -2). \end{cases}$$

$$G = add_{i,j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $p_0 \cap \{i, j\} \neq \emptyset$, then $(p_0, p, w) \in \mathcal{A}_G[s']$.
- Otherwise, glue blocks containing i and j, respectively.
 - $s'(i), s'(j) \in \{1, 2\}$ (otherwise contains a cycle).
 - Let s such that $s(\ell) := s'(\ell)$ for $\ell \notin \{i, j\}$ and

$$(s'(i), s'(j)) := \begin{cases} (1, 1) & \text{if } s(i) = s(j) = 1\\ (2, 1) & \text{if } (s(i), s(j)) = (-2, 1)\\ (1, 2) & \text{if } (s(i), s(j)) = (1, -2). \end{cases}$$

Add to $\mathcal{A}_G[s]$

$$\operatorname{proj}(s^{-1}(-2) \cap \{i,j\}, \operatorname{acjoin}(\{(p_0,p,w)\}, \{([k] \setminus \{i,j\}, \{\{i,j\}\}, 0)\}).$$

Remark. No edge between i-vertices and j-vertices prior to $add_{i,j}$ (Irredundant expression).

$$G = G_1 \oplus G_2$$

Let $(p_{01}, p_1, w_1) \in \mathcal{A}_{G_1}[s_1]$ and $(p_{02}, p_2, w_2) \in \mathcal{A}_{G_2}[s_2]$

Let s such that for each $i \in [k]$

$$s(i) = \begin{cases} s_1(i) = s_2(i) = -2 & \text{if } i \in p_{01} \cap p_{02} \\ s_2(i) & \text{if } i \in p_{01}, \\ s_1(i) & \text{if } i \in p_{02}, \\ 2 & \text{if } i \in [k] \setminus (p_{01} \cup p_{02}) \text{ and } s_1(i), s_2(i) \in \{1, 2\} \\ -2 & \text{if } i \in [k] \setminus (p_{01} \cup p_{02}) \text{ and } (s_1(i), s_2(i)) \in \\ \{(1, -2), (-2, 1), (1, 1), (-2, -2)\} \end{cases}$$

$$G = G_1 \oplus G_2$$

Let $(p_{01}, p_1, w_1) \in \mathcal{A}_{G_1}[s_1]$ and $(p_{02}, p_2, w_2) \in \mathcal{A}_{G_2}[s_2]$

Let s such that for each $i \in [k]$

$$s(i) = \begin{cases} s_1(i) = s_2(i) = -2 & \text{if } i \in p_{01} \cap p_{02} \\ s_2(i) & \text{if } i \in p_{01}, \\ s_1(i) & \text{if } i \in p_{02}, \\ 2 & \text{if } i \in [k] \setminus (p_{01} \cup p_{02}) \text{ and } s_1(i), s_2(i) \in \{1, 2\} \\ -2 & \text{if } i \in [k] \setminus (p_{01} \cup p_{02}) \text{ and } (s_1(i), s_2(i)) \in \\ \{(1, -2), (-2, 1), (1, 1), (-2, -2)\} \end{cases}$$

Add to $\mathcal{A}_G[s]$

```
\operatorname{acjoin}(\operatorname{proj}(s^{-1}(-2),\{(p_{01},p_1,w_1)\}),\operatorname{proj}(s^{-1}(-2),\{(p_{02},p_2,w_2)\})).
```

$$G = ren_{i \to j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $i \in p_0$, then $(p_0 \setminus \{i\}, p, w) \in \mathcal{A}_G[s']$,
- If $i \notin p_0$, but $j \in p_0$ and s'(i) = -2, then $(p_0 \setminus \{j\}, p, w) \in \mathcal{A}_G[s']$.

$$G = ren_{i \to j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $i \in p_0$, then $(p_0 \setminus \{i\}, p, w) \in \mathcal{A}_G[s']$,
- If $i \notin p_0$, but $j \in p_0$ and s'(i) = -2, then $(p_0 \setminus \{j\}, p, w) \in \mathcal{A}_G[s']$.
- If $i \notin p_0$, $j \in p_0$, $s'(i) \in \{1,2\}$, then add to $\mathcal{A}_G[s]$ with s(j) = s'(i) proj $(\{i\}, \mathsf{acjoin}(\{(p_0, p, w)\}, \{([k] \setminus \{i, j\}, \{\{i, j\}\}, 0)\}))$.

$$G = ren_{i \to j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $i \in p_0$, then $(p_0 \setminus \{i\}, p, w) \in \mathcal{A}_G[s']$,
- If $i \notin p_0$, but $j \in p_0$ and s'(i) = -2, then $(p_0 \setminus \{j\}, p, w) \in \mathcal{A}_G[s']$.
- If $i \notin p_0$, $j \in p_0$, $s'(i) \in \{1,2\}$, then add to $\mathcal{A}_G[s]$ with s(j) = s'(i) proj $(\{i\}, \mathsf{acjoin}(\{(p_0, p, w)\}, \{([k] \setminus \{i, j\}, \{\{i, j\}\}, 0)\}))$.
- Now, $i, j \notin p_0$, then
 - if $s'(i), s'(j) \in \{1, 2\}$, then add to $\mathcal{A}_G[s]$ with s(j) = 2 proj $(\{i\}, \operatorname{acjoin}(\{(p_0, p, w)\}, \{([k] \setminus \{i, j\}, \{\{i, j\}\}, 0)\}))$.

$$G = ren_{i \to j}(H)$$

Let
$$(p_0, p, w) \in \mathcal{A}_H[s']$$

- If $i \in p_0$, then $(p_0 \setminus \{i\}, p, w) \in \mathcal{A}_G[s']$,
- If $i \notin p_0$, but $j \in p_0$ and s'(i) = -2, then $(p_0 \setminus \{j\}, p, w) \in \mathcal{A}_G[s']$.
- If $i \notin p_0$, $j \in p_0$, $s'(i) \in \{1,2\}$, then add to $\mathcal{A}_G[s]$ with s(j) = s'(i) proj($\{i\}$, acjoin($\{(p_0,p,w)\}$, $\{([k]\setminus\{i,j\},\{\{i,j\}\},0)\}$)).
- Now, $i, j \notin p_0$, then
 - if $s'(i), s'(j) \in \{1, 2\}$, then add to $\mathcal{A}_G[s]$ with s(j) = 2 proj $(\{i\}, \operatorname{acjoin}(\{(p_0, p, w)\}, \{([k] \setminus \{i, j\}, \{\{i, j\}\}, 0)\}))$.
 - otherwise $s'(i), s'(j) \in \{1, -2\}$, add to $\mathcal{A}_G[s]$ with s(j) = -2 proj $(\{i, j\}, \{(p_0, p, w)\})$.

Summary

- Hamiltonian Cycle
- Peedback Vertex Set
- 3 Representatives for Weighted Partitions

 \mathcal{A} , \mathcal{A}' sets of weighted partitions, and $(q_0, q, 0)$.

```
\mathbf{ac\text{-}opt}(\mathcal{A}, (q_0, q, 0)) := \max\{w \mid (q_0, p, w) \in \mathcal{A}, \ p \sqcup q = \{V \setminus q_0\} \text{ and } \mathsf{acyclic}(p, q)\}.
```

 \mathcal{A} , \mathcal{A}' sets of weighted partitions, and $(q_0, q, 0)$.

```
\mathbf{ac\text{-}opt}(\mathcal{A}, (q_0, q, 0)) := \max\{w \mid (q_0, p, w) \in \mathcal{A}, \ p \sqcup q = \{V \setminus q_0\} \text{ and } \mathsf{acyclic}(p, q)\}.
```

 $\mathcal{A}' \text{ ac-represents } \mathcal{A} \text{ if } \mathbf{ac\text{-}opt}(\mathcal{A}, (q_0, q, 0)) = \mathbf{ac\text{-}opt}(\mathcal{A}', (q_0, q, 0)).$

 \mathcal{A} , \mathcal{A}' sets of weighted partitions, and $(q_0, q, 0)$.

```
\mathbf{ac\text{-}opt}(\mathcal{A}, (q_0, q, 0)) := \max\{w \mid (q_0, p, w) \in \mathcal{A}, \ p \sqcup q = \{V \setminus q_0\} \text{ and } \mathsf{acyclic}(p, q)\}.
```

 \mathcal{A}' ac-represents \mathcal{A} if $ac\text{-}\mathbf{opt}(\mathcal{A},(q_0,q,0)) = ac\text{-}\mathbf{opt}(\mathcal{A}',(q_0,q,0)).$

f preserve ac-representation if $f(\mathcal{A}')$ ac-represents $f(\mathcal{A})$ if \mathcal{A}' does.

 \mathcal{A} , \mathcal{A}' sets of weighted partitions, and $(q_0, q, 0)$.

```
\overline{\operatorname{\mathbf{ac-opt}}(\mathcal{A},(q_0,q,0))} := \max\{w \mid (q_0,p,w) \in \mathcal{A}, \ p \sqcup q = \{V \setminus q_0\} \ \text{and} \ \operatorname{\mathbf{acyclic}}(p,q)\}.
```

 $\mathcal{A}' \text{ ac-represents } \mathcal{A} \text{ if } \mathbf{ac\text{-}opt}(\mathcal{A}, (q_0, q, 0)) = \mathbf{ac\text{-}opt}(\mathcal{A}', (q_0, q, 0)).$

f preserve ac-representation if $f(\mathcal{A}')$ ac-represents $f(\mathcal{A})$ if \mathcal{A}' does.

Proposition

The operators rmc, proj and acjoin preserve ac-representation.

Computing an Ac-Representative

$$V' := V \cup \{v_0\}$$
 and cuts are tri-partitions (U, V_1, V_2) with $v_0 \in V_1$

$$\begin{split} M[(p_0,p),(q_0,q)] := \begin{cases} 0 & \text{if } p_0 \neq q_0 \text{ or } p \sqcup q \neq \{V' \setminus p_0\}, \\ \alpha^{2|V' \setminus p_0| - (\# \mathrm{block}(p) + \# \mathrm{block}(q))} & \text{otherwise}. \end{cases} \\ C[(p_0,p),(U,V_1,V_2)] := \begin{cases} 0 & \text{if } p_0 \neq U \text{ or } p \not\sqsubseteq (V_1,V_2), \\ \alpha^{|V' \setminus U| - \# \mathrm{block}(p)} & \text{otherwise}. \end{cases} \end{split}$$

Computing an Ac-Representative

 $V':=V\cup\{v_0\}$ and cuts are tri-partitions (U,V_1,V_2) with $v_0\in V_1$

$$\begin{split} M[(p_0,p),(q_0,q)] &:= \begin{cases} 0 & \text{if } p_0 \neq q_0 \text{ or } p \sqcup q \neq \{V' \setminus p_0\}, \\ \alpha^2 |V' \setminus p_0| - (\# \mathrm{block}(p) + \# \mathrm{block}(q)) & \text{otherwise}. \end{cases} \\ C[(p_0,p),(U,V_1,V_2)] &:= \begin{cases} 0 & \text{if } p_0 \neq U \text{ or } p \not\sqsubseteq (V_1,V_2), \\ \alpha |V' \setminus U| - \# \mathrm{block}(p) & \text{otherwise}. \end{cases} \end{split}$$

Theorem

We have $M=C\cdot C^t$. Moreover, there exists an algorithm ac-reduce that given a set of weighted partitions \mathcal{A} , outputs in time $|\mathcal{A}|\cdot 2^{(\omega-1)|V|}\cdot |V|^{O(1)}$ a maximum ac-generator \mathcal{A}' of size $\leq (|V|+1)\cdot 2^{|V|}$ that ac-represents \mathcal{A} .

Back to FVS Algorithm

Apply ac-reduce after computing $\mathcal{A}_G[s]$.

Theorem

There is an algorithm that, given an n-vertex graph G and an irredundant clique-width k-expression of G, computes a minimum feedback vertex set in time $3^{3k} \cdot 2^{(1+\omega)k} \cdot n \cdot k^{O(1)}$.

Back to FVS Algorithm

Apply ac-reduce after computing $A_G[s]$.

Theorem

There is an algorithm that, given an n-vertex graph G and an irredundant clique-width k-expression of G, computes a minimum feedback vertex set in time $3^{3k} \cdot 2^{(1+\omega)k} \cdot n \cdot k^{O(1)}$.

 $G = add_{i,j}(H)$. $\mathcal{A}_G[s]$ is updated from 2 tables in \mathcal{A}_H , each of size $(k+1)\cdot 2^k$, <u>i.e.</u>, \mathcal{A}_G in time $3^k\cdot 2^{(\omega+1)\cdot k}\cdot k^{0(1)}$.

 $G=ren_{i o j}(H).$ $\mathcal{A}_G[s]$ is updated from 7 tables in \mathcal{A}_H , i.e., \mathcal{A}_G in time $3^k\cdot 2^{(\omega+1)\cdot k}\cdot k^{0(1)}$.

Back to FVS Algorithm

Apply ac-reduce after computing $A_G[s]$.

Theorem

There is an algorithm that, given an n-vertex graph G and an irredundant clique-width k-expression of G, computes a minimum feedback vertex set in time $3^{3k} \cdot 2^{(1+\omega)k} \cdot n \cdot k^{O(1)}$.

 $G = add_{i,j}(H)$. $\mathcal{A}_G[s]$ is updated from 2 tables in \mathcal{A}_H , each of size $(k+1)\cdot 2^k$, <u>i.e.</u>, \mathcal{A}_G in time $3^k\cdot 2^{(\omega+1)\cdot k}\cdot k^{0(1)}$.

 $G = ren_{i o j}(H)$. $\mathcal{A}_G[s]$ is updated from 7 tables in \mathcal{A}_H , i.e., \mathcal{A}_G in time $3^k \cdot 2^{(\omega+1) \cdot k} \cdot k^{0(1)}$.

 $G=G_1\oplus G_2$. $\mathcal{A}_G[s]$ is updated from 3^{2k} entries, each of size 2^k , i.e. we update $\mathcal{A}_G[s]$ in time $3^{2k}\cdot 2^{(\omega+1)\cdot k}$, and \mathcal{A}_G in time $3^{3k}\cdot 2^{(\omega+1)\cdot k}\cdot \overline{k^{O(1)}}$.

Conclusion

- One can probably improve constants, but what about parametrised by rank-width?
- ullet The algorithm for Hamiltonian cycle can be adapted for directed graph and for q-cycle covering.
- what about computing the chromatic number?

Conclusion

- One can probably improve constants, but what about parametrised by rank-width?
- The algorithm for Hamiltonian cycle can be adapted for directed graph and for q-cycle covering.
- what about computing the chromatic number?

Let's hope fest the $70^{\rm th}$.