
Fast Algorithms Parameterized by Clique-Width

Mamadou M. Kanté

(Joint works with B. Bergougnoux and O-J. Kwon)

June, 15th, 2017, UIB

1

At the Beginning

Theorem (Courcelle et al.)
Every MSOL2-problem can be solved in time f(k) · n for
graphs of tree-width k.
Every MSOL1-problem can be solved in time f(k) · n3 for
graphs of clique-width k.

MSOL2 are formulas written with the incidence representation: edge set
quantifications are allowed.

MSOL1 are formulas written with the adjacency relation : only vertex
(set) quantifications.

Hamiltonicity belongs to MSOL2 \MSOL1.

TW (≤ k) ⊆ CW (≤ 2k+1) (essentially tight).

2

And then Naturally . . .

Finer time complexity questions may appear with Mike’s FPT world

1 For a given (bunch of) problem(s), what is the best f(k)?

2 For which problems in MSOL2 \MSOL1 do we still have f(k) · poly(n)
parametrised by clique-width?

Already hard examples were known in the 2000’s paper: color
not wanted edges in a clique (of clique-width 2).
XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

For tree-width a lot of work the last 10years for better time complexity.

Almost nothing for clique-width, except

W -hardness proof of Fomin et al. for some well-known
problems,
2k log(k) for Domination like problems (and few others) via
rank-width.

3

And then Naturally . . .

Finer time complexity questions may appear with Mike’s FPT world

1 For a given (bunch of) problem(s), what is the best f(k)?

2 For which problems in MSOL2 \MSOL1 do we still have f(k) · poly(n)
parametrised by clique-width?

Already hard examples were known in the 2000’s paper: color
not wanted edges in a clique (of clique-width 2).
XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

For tree-width a lot of work the last 10years for better time complexity.

Almost nothing for clique-width, except

W -hardness proof of Fomin et al. for some well-known
problems,
2k log(k) for Domination like problems (and few others) via
rank-width.

3

And then Naturally . . .

Finer time complexity questions may appear with Mike’s FPT world

1 For a given (bunch of) problem(s), what is the best f(k)?

2 For which problems in MSOL2 \MSOL1 do we still have f(k) · poly(n)
parametrised by clique-width?

Already hard examples were known in the 2000’s paper: color
not wanted edges in a clique (of clique-width 2).
XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

For tree-width a lot of work the last 10years for better time complexity.

Almost nothing for clique-width, except

W -hardness proof of Fomin et al. for some well-known
problems,
2k log(k) for Domination like problems (and few others) via
rank-width.

3

Problems

Feedback vertex set
A feedback vertex set is X ⊆ V (G) such that G \X is a forest.

Connected locally checkable properties
Let (σ, ρ) be (co-)finite subsets of N. A connected (σ, ρ)-dominating set is a
connected D ⊆ V (G) s.t.

|N(x) ∩D| ∈

{
σ if x ∈ D
ρ if x /∈ D.

Examples. (Total) domination, d-domination, independent set, perfect
domination, . . .

Hamiltonian Cycle
Find a cycle covering all vertices.

4

Wanted Algorithms

Objective
Let G be a graph of rank-width k,

One can compute in time 2O(k) · nO(1) a minimum FVS.
Given (σ, ρ), one can compute in time 2O(k·d) · nO(1) an
optimum connected (σ, ρ)-dominating set, d = d(ρ, σ)}.
One can compute a Hamiltonian cycle in time nO(k).
One can compute the chromatic number in time npoly(k).

Such algorithms (or better) exist when parameterized by tree-width.

Reminder. rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

5

Our Result (Essentially tight under ETH)

Theorem
Let G be a graph of /////////////rank-width clique-width k,

One can compute in time 2O(k) · nO(1) a minimum FVS.
Given (σ, ρ), one can compute in time 2O(k·d) · nO(1) an
optimum connected (σ, ρ)-dominating set, d = d(ρ, σ)}.
One can compute a Hamiltonian cycle in time nO(k).

One can compute the chromatic number in time npoly(k).

Reminder. rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

5

Clique-Width

Given G and H, and labG : V (G)→ [k], labH : V (H)→ [k]

1 1(x) a graph with a single vertex x labeled 1,
2 G⊕H the disjoint union of G and H,
3 reni→j(G) rename all i-vertices into j-vertices (no more

vertex labeled i).
4 addi,j(G)) add all edges between i-vertices and j-vertices (no

parallel edges).

The clique-width of G, cwd(G), is the minimum k such that G is
the value of a term from the above operations.

6

Clique-Width versus Rank-Width

No known FPT polynomial algorithm time for computing CWD

f(k) · n3 known for RWD.

RWD is based on ranks of matrices, but graph operations
(complicated).

CWD operations simple and better for algorithmic purposes.

RWD enjoys several nice structural properties, in particular
links with vertex-minor quasi-ordering.

Whilst CWD only known to be closed under induced subgraph.

7

Summary

1 Hamiltonian Cycle

2 Feedback Vertex Set

3 Representatives for Weighted Partitions

8

Main Idea

A path (cycle) essentially partitions the vertex set into paths in
each node of the clique-width expression.
A solution at the root if a partition with one block.

9

Algorithm (by Gurski)

Consider all partitions of V (G) into paths.
A partition P is represented by the multiset {(i, j, `) | there
are exactly ` paths between an i-vertex and an j-vertex}.
The number of such partitions is bounded by nk

2
.

G = reni→j(H). Repeat P \ {(i, `, p), (j, `, p′)} ∪ {(j, `, p+ p′)}
until no (i, `, p).

G = G1 ⊕G2. Take disjoint unions of partitions.

G = addi,j(H). Add as a possible partition (connect some paths)

P \ {(t, i, n1), (j, `, n2), (t, `, n3)} ∪ {(t, i, n1 − 1), (j, `, n2 − 2), (t, `, n3 + 1)}.

10

G = addi,j(H). Add as a possible partition (connect some paths)

P \ {(t, i, n1), (j, `, n2), (t, `, n3)} ∪ {(t, i, n1 − 1), (j, `, n2 − 2), (t, `, n3 + 1)}.

11

Algorithm

Consider all partitions of V (G) into paths.
A partition P is represented by the multiset {(i, j, `) | there
are exactly ` paths between an i-vertex and an j-vertex}.
The number of such partitions is bounded by nk

2
.

G = reni→j(H). Repeat P \ {(i, `, p), (j, `, p′)} ∪ {(j, `, p+ p′)}
until no (i, `, p).

G = G1 ⊕G2. Take disjoint unions of partitions.

G = addi,j(H). Add as a possible partition (connect some paths)

P \ {(t, i, n1), (j, `, n2), (t, `, n3)} ∪ {(t, i, n1 − 1), (j, `, n2 − 2), (t, `, n3 + 1)}.

Let’s turn it into an nO(k) one by removing unnecessary ones.

12

Characteristics

For each partition P, compute the multigraph Aux(P) on k
vertices where ` edges between vi and vj if (i, j, `) ∈ P.
P ≡ Q if Aux(P) and Aux(Q) have same degree sequence
and same connected components.

C1

C2

C3

C4

v1

v2

v3

v4

13

Characteristics

For each partition P, compute the multigraph Aux(P) on k
vertices where ` edges between vi and vj if (i, j, `) ∈ P.
P ≡ Q if Aux(P) and Aux(Q) have same degree sequence
and same connected components.

checking of Hamiltonicity is reduced to checking alternating
Eulerian trail.

13

Characteristics

For each partition P, compute the multigraph Aux(P) on k
vertices where ` edges between vi and vj if (i, j, `) ∈ P.
P ≡ Q if Aux(P) and Aux(Q) have same degree sequence
and same connected components.

Reduction. Take in each equivalence class one representative.

Proposition
If P ≡ Q, then P can be extended into a Hamiltonian iff Q
can be.
The operations in the algorithm preserve representativity.

Time complexity. There are nO(k) degree sequences and for each at
most 2k log(k) possible partitions.

13

Summary

1 Hamiltonian Cycle

2 Feedback Vertex Set

3 Representatives for Weighted Partitions

14

Compute an optimum set D |= P

Let Ck a set of characteristics classifying possible solutions.
tab[s] is the optimum value for all D with characteristic s.

1 Compute tab[s] on 1(x),
2 For each operation, compute tab from tab’s of operands.

Assume this gives time f(k) · nO(1), with solution in tab[s0].

A connected set satisfying P .

For each s, compute A[s] which stores the pairs (p, w) s.t. there is
D with p = CC(D)/[k] and w := w(D) is optimum.

The optimum connected set is (p, w) ∈ A[s0] with p = I and
I ⊆ [k] the set of intersected label classes in time

f(k) · g(k) · 2k log(k) · nO(1).

15

Compute an optimum set D |= P

Let Ck a set of characteristics classifying possible solutions.
tab[s] is the optimum value for all D with characteristic s.

1 Compute tab[s] on 1(x),
2 For each operation, compute tab from tab’s of operands.

Assume this gives time f(k) · nO(1), with solution in tab[s0].

A connected set satisfying P .

For each s, compute A[s] which stores the pairs (p, w) s.t. there is
D with p = CC(D)/[k] and w := w(D) is optimum.

The optimum connected set is (p, w) ∈ A[s0] with p = I and
I ⊆ [k] the set of intersected label classes in time

f(k) · g(k) · 2k log(k) · nO(1).

15

Compute an optimum set D |= P

Let Ck a set of characteristics classifying possible solutions.
tab[s] is the optimum value for all D with characteristic s.

1 Compute tab[s] on 1(x),
2 For each operation, compute tab from tab’s of operands.

Assume this gives time f(k) · nO(1), with solution in tab[s0].

A connected set satisfying P .

For each s, compute A[s] which stores the pairs (p, w) s.t. there is
D with p = CC(D)/[k] and w := w(D) is optimum.

The optimum connected set is (p, w) ∈ A[s0] with p = I and
I ⊆ [k] the set of intersected label classes in time

f(k) · g(k) · 2k log(k) · nO(1).

15

Weighted Partitions

A weighted partition is (p0, p, w) with (p, w) ∈ Π(V \ p0)×N.
We let acyclic(p, q) holds iff p t q yields an acyclic forest, ie,
|V |+ #block(p t q)− (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w
′
) ∈ A, w′ ≤ w)}.

Remove non maximal ones.

acjoin(A,B) := rmc
(
{(p0 \ V

′
) ∪ (q0 \ V) ∪ (p0 ∩ q0), p↑(V ′\q0) t q↑(V \p0), w1 + w2) |

(p0, p, w1) ∈ A, (q0, q, w2) ∈ B and acyclic(p↑(V ′\q0), q↑(V \p0))}
)
.

Join of two partitions

proj(A, X) := rmc
(
{(p0 \X, p↓(V \X), w) | (p0, p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}

)
.

For renaming, the checking of connectedness

16

Weighted Partitions

A weighted partition is (p0, p, w) with (p, w) ∈ Π(V \ p0)×N.
We let acyclic(p, q) holds iff p t q yields an acyclic forest, ie,
|V |+ #block(p t q)− (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w
′
) ∈ A, w′ ≤ w)}.

Remove non maximal ones.

acjoin(A,B) := rmc
(
{(p0 \ V

′
) ∪ (q0 \ V) ∪ (p0 ∩ q0), p↑(V ′\q0) t q↑(V \p0), w1 + w2) |

(p0, p, w1) ∈ A, (q0, q, w2) ∈ B and acyclic(p↑(V ′\q0), q↑(V \p0))}
)
.

Join of two partitions

proj(A, X) := rmc
(
{(p0 \X, p↓(V \X), w) | (p0, p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}

)
.

For renaming, the checking of connectedness

16

Weighted Partitions

A weighted partition is (p0, p, w) with (p, w) ∈ Π(V \ p0)×N.
We let acyclic(p, q) holds iff p t q yields an acyclic forest, ie,
|V |+ #block(p t q)− (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w
′
) ∈ A, w′ ≤ w)}.

Remove non maximal ones.

acjoin(A,B) := rmc
(
{(p0 \ V

′
) ∪ (q0 \ V) ∪ (p0 ∩ q0), p↑(V ′\q0) t q↑(V \p0), w1 + w2) |

(p0, p, w1) ∈ A, (q0, q, w2) ∈ B and acyclic(p↑(V ′\q0), q↑(V \p0))}
)
.

Join of two partitions

proj(A, X) := rmc
(
{(p0 \X, p↓(V \X), w) | (p0, p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}

)
.

For renaming, the checking of connectedness

16

Weighted Partitions

A weighted partition is (p0, p, w) with (p, w) ∈ Π(V \ p0)×N.
We let acyclic(p, q) holds iff p t q yields an acyclic forest, ie,
|V |+ #block(p t q)− (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(p0, p, w) ∈ A | ∀(p0, p, w
′
) ∈ A, w′ ≤ w)}.

Remove non maximal ones.

acjoin(A,B) := rmc
(
{(p0 \ V

′
) ∪ (q0 \ V) ∪ (p0 ∩ q0), p↑(V ′\q0) t q↑(V \p0), w1 + w2) |

(p0, p, w1) ∈ A, (q0, q, w2) ∈ B and acyclic(p↑(V ′\q0), q↑(V \p0))}
)
.

Join of two partitions

proj(A, X) := rmc
(
{(p0 \X, p↓(V \X), w) | (p0, p, w) ∈ A and ∀pi ∈ p, (pi \X) 6= ∅}

)
.

For renaming, the checking of connectedness

16

Needed Information

17

Dynamic Programming Table

s : [k]→ {1, 2,−2} and V +
s := {xi1 , . . . , xip} with

{i1, . . . , ip} := s−1(2).

(p0, p, w) ∈ A[s] if there is F ⊆ G and E0
s ⊆ {v0} × V (F)

1 The set s−1(1) = {i ∈ [k] | |V (F) ∩ lab−1
G (i)| = 1} and

p0 = {i ∈ [k] | |V (F) ∩ lab−1
G (i)| = 0}.

2 The graph F+ := (V (F) ∪ {v0} ∪ V +
s , E(F) ∪ E0

s ∪ E+
s) is a forest

where E+
s :=

⋃
1≤j≤p xij × (V (F) ∩ lab−1

G (ij)).

3 Each component C of (V (F) ∪ {v0}, E(F) ∪ E0
s) intersects

lab−1
G (s−1({1, 2})) ∪ {v0}.

4 The partition p equals (s−1({1, 2}) ∪ {v0})/ ∼F+ where i ∼ j if a vertex
in lab−1

G (i) ∩ V (F) is connected in the graph F+ to a vertex in
lab−1

G (j) ∩ V (F); we consider lab−1
G (v0) = {v0}.

18

Dynamic Programming Table

s : [k]→ {1, 2,−2} and V +
s := {xi1 , . . . , xip} with

{i1, . . . , ip} := s−1(2).

18

G = 1(x)

tabG[s] :=


{(∅, {{1, v0}},w(x)), (∅, {{1}, {v0}},w(x))} if s(1) = 1,

{({1}, {{v0}}, 0)} if s(1) = −2,
∅ if s(1) = 2.

Argue its correctness (and assuming at least two vertices in FVS).

19

G = addi,j(H)

Let (p0, p, w) ∈ AH [s′]

If p0 ∩ {i, j} 6= ∅, then (p0, p, w) ∈ AG[s′].

Otherwise, glue blocks containing i and j, respectively.

s′(i), s′(j) ∈ {1, 2} (otherwise contains a cycle).
Let s such that s(`) := s′(`) for ` /∈ {i, j} and

(s′(i), s′(j)) :=


(1, 1) if s(i) = s(j) = 1

(2, 1) if (s(i), s(j)) = (−2, 1)

(1, 2) if (s(i), s(j)) = (1,−2).

Add to AG[s]

proj(s−1(−2)∩{i, j}, acjoin({(p0, p, w)}, {([k]\{i, j}, {{i, j}}, 0)}).

Remark. No edge between i-vertices and j-vertices prior to addi,j (Irredundant
expression).

20

G = addi,j(H)

Let (p0, p, w) ∈ AH [s′]

If p0 ∩ {i, j} 6= ∅, then (p0, p, w) ∈ AG[s′].

Otherwise, glue blocks containing i and j, respectively.

s′(i), s′(j) ∈ {1, 2} (otherwise contains a cycle).
Let s such that s(`) := s′(`) for ` /∈ {i, j} and

(s′(i), s′(j)) :=


(1, 1) if s(i) = s(j) = 1

(2, 1) if (s(i), s(j)) = (−2, 1)

(1, 2) if (s(i), s(j)) = (1,−2).

Add to AG[s]

proj(s−1(−2)∩{i, j}, acjoin({(p0, p, w)}, {([k]\{i, j}, {{i, j}}, 0)}).

Remark. No edge between i-vertices and j-vertices prior to addi,j (Irredundant
expression).

20

G = G1 ⊕G2

Let (p01, p1, w1) ∈ AG1 [s1] and (p02, p2, w2) ∈ AG2 [s2]

Let s such that for each i ∈ [k]

s(i) =



s1(i) = s2(i) = −2 if i ∈ p01 ∩ p02
s2(i) if i ∈ p01,
s1(i) if i ∈ p02,
2 if i ∈ [k] \ (p01 ∪ p02) and s1(i), s2(i) ∈ {1, 2}
−2 if i ∈ [k] \ (p01 ∪ p02) and (s1(i), s2(i)) ∈

{(1,−2), (−2, 1), (1, 1), (−2,−2)}

Add to AG[s]

acjoin(proj(s−1(−2), {(p01, p1, w1)}), proj(s−1(−2), {(p02, p2, w2)})).

21

G = G1 ⊕G2

Let (p01, p1, w1) ∈ AG1 [s1] and (p02, p2, w2) ∈ AG2 [s2]

Let s such that for each i ∈ [k]

s(i) =



s1(i) = s2(i) = −2 if i ∈ p01 ∩ p02
s2(i) if i ∈ p01,
s1(i) if i ∈ p02,
2 if i ∈ [k] \ (p01 ∪ p02) and s1(i), s2(i) ∈ {1, 2}
−2 if i ∈ [k] \ (p01 ∪ p02) and (s1(i), s2(i)) ∈

{(1,−2), (−2, 1), (1, 1), (−2,−2)}

Add to AG[s]

acjoin(proj(s−1(−2), {(p01, p1, w1)}), proj(s−1(−2), {(p02, p2, w2)})).

21

G = reni→j(H)

Let (p0, p, w) ∈ AH [s′]

If i ∈ p0, then (p0 \ {i}, p, w) ∈ AG[s′],

If i /∈ p0, but j ∈ p0 and s′(i) = −2, then (p0 \ {j}, p, w) ∈ AG[s′].

If i /∈ p0, j ∈ p0, s′(i) ∈ {1, 2}, then add to AG[s] with s(j) = s′(i)
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).

Now, i, j /∈ p0, then

if s′(i), s′(j) ∈ {1, 2}, then add to AG[s] with s(j) = 2
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).
otherwise s′(i), s′(j) ∈ {1,−2}, add to AG[s] with s(j) = −2
proj({i, j}, {(p0, p, w)}).

22

G = reni→j(H)

Let (p0, p, w) ∈ AH [s′]

If i ∈ p0, then (p0 \ {i}, p, w) ∈ AG[s′],

If i /∈ p0, but j ∈ p0 and s′(i) = −2, then (p0 \ {j}, p, w) ∈ AG[s′].

If i /∈ p0, j ∈ p0, s′(i) ∈ {1, 2}, then add to AG[s] with s(j) = s′(i)
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).

Now, i, j /∈ p0, then

if s′(i), s′(j) ∈ {1, 2}, then add to AG[s] with s(j) = 2
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).
otherwise s′(i), s′(j) ∈ {1,−2}, add to AG[s] with s(j) = −2
proj({i, j}, {(p0, p, w)}).

22

G = reni→j(H)

Let (p0, p, w) ∈ AH [s′]

If i ∈ p0, then (p0 \ {i}, p, w) ∈ AG[s′],

If i /∈ p0, but j ∈ p0 and s′(i) = −2, then (p0 \ {j}, p, w) ∈ AG[s′].

If i /∈ p0, j ∈ p0, s′(i) ∈ {1, 2}, then add to AG[s] with s(j) = s′(i)
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).

Now, i, j /∈ p0, then

if s′(i), s′(j) ∈ {1, 2}, then add to AG[s] with s(j) = 2
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).

otherwise s′(i), s′(j) ∈ {1,−2}, add to AG[s] with s(j) = −2
proj({i, j}, {(p0, p, w)}).

22

G = reni→j(H)

Let (p0, p, w) ∈ AH [s′]

If i ∈ p0, then (p0 \ {i}, p, w) ∈ AG[s′],

If i /∈ p0, but j ∈ p0 and s′(i) = −2, then (p0 \ {j}, p, w) ∈ AG[s′].

If i /∈ p0, j ∈ p0, s′(i) ∈ {1, 2}, then add to AG[s] with s(j) = s′(i)
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).

Now, i, j /∈ p0, then

if s′(i), s′(j) ∈ {1, 2}, then add to AG[s] with s(j) = 2
proj({i}, acjoin({(p0, p, w)}, {([k] \ {i, j}, {{i, j}}, 0)})).
otherwise s′(i), s′(j) ∈ {1,−2}, add to AG[s] with s(j) = −2
proj({i, j}, {(p0, p, w)}).

22

Summary

1 Hamiltonian Cycle

2 Feedback Vertex Set

3 Representatives for Weighted Partitions

23

Ac-Representation

A, A′ sets of weighted partitions, and (q0, q, 0).

ac-opt(A, (q0, q, 0)) := max{w | (q0, p, w) ∈ A, p t q = {V \ q0} and acyclic(p, q)}.

A′ ac-represents A if ac-opt(A, (q0, q, 0)) = ac-opt(A′, (q0, q, 0)).

f preserve ac-representation if f(A′) ac-represents f(A) if A′ does.

Proposition
The operators rmc, proj and acjoin preserve ac-representation.

24

Ac-Representation

A, A′ sets of weighted partitions, and (q0, q, 0).

ac-opt(A, (q0, q, 0)) := max{w | (q0, p, w) ∈ A, p t q = {V \ q0} and acyclic(p, q)}.

A′ ac-represents A if ac-opt(A, (q0, q, 0)) = ac-opt(A′, (q0, q, 0)).

f preserve ac-representation if f(A′) ac-represents f(A) if A′ does.

Proposition
The operators rmc, proj and acjoin preserve ac-representation.

24

Ac-Representation

A, A′ sets of weighted partitions, and (q0, q, 0).

ac-opt(A, (q0, q, 0)) := max{w | (q0, p, w) ∈ A, p t q = {V \ q0} and acyclic(p, q)}.

A′ ac-represents A if ac-opt(A, (q0, q, 0)) = ac-opt(A′, (q0, q, 0)).

f preserve ac-representation if f(A′) ac-represents f(A) if A′ does.

Proposition
The operators rmc, proj and acjoin preserve ac-representation.

24

Ac-Representation

A, A′ sets of weighted partitions, and (q0, q, 0).

ac-opt(A, (q0, q, 0)) := max{w | (q0, p, w) ∈ A, p t q = {V \ q0} and acyclic(p, q)}.

A′ ac-represents A if ac-opt(A, (q0, q, 0)) = ac-opt(A′, (q0, q, 0)).

f preserve ac-representation if f(A′) ac-represents f(A) if A′ does.

Proposition
The operators rmc, proj and acjoin preserve ac-representation.

24

Computing an Ac-Representative

V ′ := V ∪ {v0} and cuts are tri-partitions (U, V1, V2) with v0 ∈ V1

M [(p0, p), (q0, q)] :=

{
0 if p0 6= q0 or p t q 6= {V ′ \ p0},
α2|V ′\p0|−(#block(p)+#block(q)) otherwise.

C[(p0, p), (U, V1, V2)] :=

{
0 if p0 6= U or p 6v (V1, V2),

α|V
′\U|−#block(p) otherwise.

Theorem

We have M = C · Ct. Moreover, there exists an algorithm
ac-reduce that given a set of weighted partitions A, outputs in time
|A| · 2(ω−1)|V | · |V |O(1) a maximum ac-generator A′ of size ≤
(|V |+ 1) · 2|V | that ac-represents A.

25

Computing an Ac-Representative

V ′ := V ∪ {v0} and cuts are tri-partitions (U, V1, V2) with v0 ∈ V1

M [(p0, p), (q0, q)] :=

{
0 if p0 6= q0 or p t q 6= {V ′ \ p0},
α2|V ′\p0|−(#block(p)+#block(q)) otherwise.

C[(p0, p), (U, V1, V2)] :=

{
0 if p0 6= U or p 6v (V1, V2),

α|V
′\U|−#block(p) otherwise.

Theorem

We have M = C · Ct. Moreover, there exists an algorithm
ac-reduce that given a set of weighted partitions A, outputs in time
|A| · 2(ω−1)|V | · |V |O(1) a maximum ac-generator A′ of size ≤
(|V |+ 1) · 2|V | that ac-represents A.

25

Back to FVS Algorithm

Apply ac-reduce after computing AG[s].

Theorem
There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k · 2(1+ω)k · n · kO(1).

G = addi,j(H). AG[s] is updated from 2 tables in AH , each of size
(k + 1) · 2k, i.e., AG in time 3k · 2(ω+1)·k · k0(1).

G = reni→j(H). AG[s] is updated from 7 tables in AH , i.e., AG in time
3k · 2(ω+1)·k · k0(1).

G = G1 ⊕G2. AG[s] is updated from 32k entries, each of size 2k, i.e. we
update AG[s] in time 32k ·2(ω+1)·k, and AG in time 33k ·2(ω+1)·k ·kO(1).

26

Back to FVS Algorithm

Apply ac-reduce after computing AG[s].

Theorem
There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k · 2(1+ω)k · n · kO(1).

G = addi,j(H). AG[s] is updated from 2 tables in AH , each of size
(k + 1) · 2k, i.e., AG in time 3k · 2(ω+1)·k · k0(1).

G = reni→j(H). AG[s] is updated from 7 tables in AH , i.e., AG in time
3k · 2(ω+1)·k · k0(1).

G = G1 ⊕G2. AG[s] is updated from 32k entries, each of size 2k, i.e. we
update AG[s] in time 32k ·2(ω+1)·k, and AG in time 33k ·2(ω+1)·k ·kO(1).

26

Back to FVS Algorithm

Apply ac-reduce after computing AG[s].

Theorem
There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k · 2(1+ω)k · n · kO(1).

G = addi,j(H). AG[s] is updated from 2 tables in AH , each of size
(k + 1) · 2k, i.e., AG in time 3k · 2(ω+1)·k · k0(1).

G = reni→j(H). AG[s] is updated from 7 tables in AH , i.e., AG in time
3k · 2(ω+1)·k · k0(1).

G = G1 ⊕G2. AG[s] is updated from 32k entries, each of size 2k, i.e. we
update AG[s] in time 32k ·2(ω+1)·k, and AG in time 33k ·2(ω+1)·k ·kO(1).

26

Conclusion

One can probably improve constants, but what about
parametrised by rank-width?
The algorithm for Hamiltonian cycle can be adapted for
directed graph and for q-cycle covering.
what about computing the chromatic number?

Let’s hope fest the 70th.

27

Conclusion

One can probably improve constants, but what about
parametrised by rank-width?
The algorithm for Hamiltonian cycle can be adapted for
directed graph and for q-cycle covering.
what about computing the chromatic number?

Let’s hope fest the 70th.

27

	Hamiltonian Cycle
	Feedback Vertex Set
	Representatives for Weighted Partitions

