Fast Algorithms Parameterized by Clique-Width

Mamadou M. Kanté

(Joint works with B. Bergougnoux and O-J. Kwon)

June, 15%", 2017, UIB

At the Beginning

Theorem (Courcelle et al.)
@ Every M SO Ls-problem can be solved in time f(k) - n for
graphs of tree-width k.

e Every M SOLi-problem can be solved in time f(k) - n? for
graphs of clique-width k.

® MSOLy are formulas written with the incidence representation: edge set
quantifications are allowed.

@ MSOL; are formulas written with the adjacency relation : only vertex
(set) quantifications.

@ Hamiltonicity belongs to M SOLy \ MSOL;.
@ TW(L k) C CW(L 2"!) (essentially tight).

And then Naturally . ..

Finer time complexity questions may appear with Mike's FPT world

@ For a given (bunch of) problem(s), what is the best f(k)?

@ For which problems in MSOL; \ MSOL1 do we still have f(k) - poly(n)
parametrised by clique-width?

o Already hard examples were known in the 2000's paper: color
not wanted edges in a clique (of clique-width 2).

o XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

And then Naturally . ..

Finer time complexity questions may appear with Mike's FPT world

@ For a given (bunch of) problem(s), what is the best f(k)?

@ For which problems in MSOL; \ MSOL1 do we still have f(k) - poly(n)
parametrised by clique-width?

o Already hard examples were known in the 2000's paper: color
not wanted edges in a clique (of clique-width 2).

o XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

@ For tree-width a lot of work the last 10years for better time complexity.

And then Naturally . ..

Finer time complexity questions may appear with Mike's FPT world

@ For a given (bunch of) problem(s), what is the best f(k)?

@ For which problems in MSOL; \ MSOL1 do we still have f(k) - poly(n)
parametrised by clique-width?

o Already hard examples were known in the 2000's paper: color
not wanted edges in a clique (of clique-width 2).

o XP algorithms for several well-known problems: Hamiltonicity,
Chromatic number, Domatic number, etc.

@ For tree-width a lot of work the last 10years for better time complexity.
@ Almost nothing for clique-width, except

o W-hardness proof of Fomin et al. for some well-known
problems,

o 2F108(k) for Domination like problems (and few others) via
rank-width.

Problems

Feedback vertex set
A feedback vertex set is X C V(G) such that G\ X is a forest.

Connected locally checkable properties

Let (o, p) be (co-)finite subsets of N. A connected (o, p)-dominating set is a
connected D C V(Q) s.t.

ifx € D

IN(z) N D| € {p it gD,

Examples. (Total) domination, d-domination, independent set, perfect
domination, ...

Hamiltonian Cycle

Find a cycle covering all vertices.

Wanted Algorithms

Objective
Let G be a graph of rank-width £,

@ One can compute in time 2°) . RO a minimum FVS.

e Given (o, p), one can compute in time 2004 . nO1) ap

optimum connected (o, p)-dominating set, d = d(p,0)}.

@ One can compute a Hamiltonian cycle in time n®%).

@ One can compute the chromatic number in time n?o¥(%)

Such algorithms (or better) exist when parameterized by tree-width.

Our Result (Essentially tight under ETH)

Theorem

Let G be a graph of fAnKiWdEl clique-width E,

@ One can compute in time 2°) . O a minimum FVS.

@ Given (o, p), one can compute in time 20(*d) . ,00) ap

optimum connected (o, p)-dominating set, d = d(p,0)}.

@ One can compute a Hamiltonian cycle in time n©®*).

Reminder. rwd(G) < cwd(G) < 27Wd(@+1 _ g

Clique-Width

Given G and H, and labg : V(G) — [k], laby : V(H) — [k]

© 1(z) a graph with a single vertex x labeled 1,

@ G @ H the disjoint union of G and H,

© ren;,;(G) rename all i-vertices into j-vertices (no more
vertex labeled 7).

Q add; j(G)) add all edges between i-vertices and j-vertices (no
parallel edges).

The clique-width of G, cwd(G), is the minimum & such that G is
the value of a term from the above operations.

Clique-Width versus Rank-Width

@ No known FPT polynomial algorithm time for computing CWD
f (k) -n3 known for RWD.

@ RWD is based on ranks of matrices, but graph operations
(complicated).

CWD operations simple and better for algorithmic purposes.

@ RWD enjoys several nice structural properties, in particular
links with vertex-minor quasi-ordering.

Whilst CWD only known to be closed under induced subgraph.

Summary

@ Hamiltonian Cycle
© Feedback Vertex Set

© Representatives for Weighted Partitions

Main Idea

Lu) 2(v) 3fw)

A path (cycle) essentially partitions the vertex set into paths in
each node of the clique-width expression.
A solution at the root if a partition with one block.

Algorithm (by Gurski)

e Consider all partitions of V(G) into paths.

@ A partition P is represented by the multiset {(i, 7, ¢) | there
are exactly ¢ paths between an i-vertex and an j-vertex}.

@ The number of such partitions is bounded by n**.
G =reni,;(H). Repeat P\ {(i,(,p), (4, £,p')} U{(j, &,p + P)}
until no (4,4, p).
G = Gy ® Go. Take disjoint unions of partitions.
G = add; j(H). Add as a possible partition (connect some paths)

PAA, 4,n1), (4, €, n2), (¢, £,n3)} U{(t,i,n1 — 1), (5,4, n2 — 2), (¢, €,n3 +1)}.

10

G = add; j(H). Add as a possible partition (connect some paths)

PAA(t 4,m1), (4, €, n2), (¢, 6, n3)} U {(t,i,n1 — 1), (4, £,m2 — 2), (¢, 6,3 + 1)}

11

Algorithm

o Consider all partitions of V(G) into paths.

@ A partition P is represented by the multiset {(4, 7,¢) | there
are exactly ¢ paths between an i-vertex and an j-vertex}.

@ The number of such partitions is bounded by nk?.
G =ren;;(H). Repeat P\ {(¢,,p), (4, £,p")} U{(j. £, p+ 1)}
until no (4,4, p).
G = G ® G4. Take disjoint unions of partitions.
G = add; j(H). Add as a possible partition (connect some paths)

PAAt, i,n1), (4,4, m2), (¢, £,n3)} U {(t,4,n1 — 1), (4, £, n2 — 2), (¢, £, n3 + 1)}

O(k)

Let's turn it into an n one by removing unnecessary ones.

12

Characteristics

@ For each partition P, compute the multigraph Auz(P) on k
vertices where ¢ edges between v; and v; if (i,7,¢) € P.

o P =Qif Aux(P) and Auxz(Q) have same degree sequence
and same connected components.

C1 I T/. (%]
o—2

CQ ® l\\. (%)

04 o*\\: ()

13

Characteristics

e For each partition P, compute the multigraph Auz(P) on k
vertices where ¢ edges between v; and v; if (i,7,¢) € P.

o P=Qif Aux(P) and Auxz(Q) have same degree sequence
and same connected components.

checking of Hamiltonicity is reduced to checking alternating
Eulerian trail.

13

Characteristics

@ For each partition P, compute the multigraph Auz(P) on k
vertices where ¢ edges between v; and v; if (i,7,¢) € P.

e P=Qif Aux(P) and Auxz(Q) have same degree sequence
and same connected components.

Reduction. Take in each equivalence class one representative.

Proposition

o If P = Q, then P can be extended into a Hamiltonian iff Q
can be.

@ The operations in the algorithm preserve representativity.

o(k)

Time complexity. There are n degree sequences and for each at

most 2¥108(k) possible partitions.

13

Summary

© Feedback Vertex Set

14

Compute an optimum set D = P

Let Cy, a set of characteristics classifying possible solutions.
tabls| is the optimum value for all D with characteristic s.

@ Compute tab[s] on 1(x),
@ For each operation, compute tab from tab's of operands.

Assume this gives time f(k) - n(1), with solution in tab[sg].

15

Compute an optimum set D = P

Let Cy, a set of characteristics classifying possible solutions.
tabls| is the optimum value for all D with characteristic s.

@ Compute tab[s] on 1(x),
@ For each operation, compute tab from tab's of operands.

Assume this gives time f(k) - n(1), with solution in tab[sg].
A connected set satisfying P.

For each s, compute A[s| which stores the pairs (p,w) s.t. there is
D with p = CC(D)/[k] and w := w(D) is optimum.

15

Compute an optimum set D = P

Let Cy, a set of characteristics classifying possible solutions.
tabls| is the optimum value for all D with characteristic s.

@ Compute tab[s] on 1(x),
@ For each operation, compute tab from tab's of operands.

Assume this gives time f(k) - n(1), with solution in tab[sg].

A connected set satisfying P.

For each s, compute A[s| which stores the pairs (p,w) s.t. there is
D with p = CC(D)/[k] and w := w(D) is optimum.

The optimum connected set is (p,w) € A[so] with p =TI and
I C [k] the set of intersected label classes in time

F(k) - g(k) - 2klostk) . O,

15

Weighted Partitions

e A weighted partition is (po, p, w) with (p,w) € II(V \ po) x N.

o We let acyclic(p, ¢) holds iff p LI ¢ yields an acyclic forest, ie,
|V | 4+ #block(p U q) — (#block(p) + #block(q)) = 0.

16

Weighted Partitions

e A weighted partition is (po, p, w) with (p,w) € II(V \ po) x N.

o We let acyclic(p, ¢) holds iff p LI ¢ yields an acyclic forest, ie,
|V | 4+ #block(p U q) — (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(po,p,w) € A | ¥(po,p,w’) € A, w’ < w)}.

Remove non maximal ones.

16

Weighted Partitions

e A weighted partition is (po, p, w) with (p,w) € II(V \ po) x N.

o We let acyclic(p, ¢) holds iff p LI ¢ yields an acyclic forest, ie,
|V | 4+ #block(p U q) — (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(po,p,w) € A | ¥(po,p,w’) € A, w’ < w)}.

Remove non maximal ones.

acjoin(A, B) := rmc ({(Po \ V) U (g0 \ V) U (P0 N 40): Pr(v7\gg) 2 T1(Vipg) w1 + w2) |

(Po, P, w1) € A, (g0, g, w2) € B and acyclic(py(yry 40y qT(v\pO))}) .

Join of two partitions

16

Weighted Partitions

e A weighted partition is (po, p, w) with (p,w) € II(V \ po) x N.

o We let acyclic(p, ¢) holds iff p LI ¢ yields an acyclic forest, ie,
|V | 4+ #block(p U q) — (#block(p) + #block(q)) = 0.

For A and B sets of weighted partitions

rmc(A) := {(po,p,w) € A | ¥(po,p,w’) € A, w’ < w)}.

Remove non maximal ones.

acjoin(A, B) := rmc ({(Po \ V) U (g0 \ V) U (P0 N 40): Pr(v7\gg) 2 T1(Vipg) w1 + w2) |

(Po, P, w1) € A, (g0, g, w2) € B and acyclic(py(yry 40y qT(v\pO))}) .

Join of two partitions

proi (A, X) := rme ({(po \ X, py\x)») | (po, p,w) € A and Vp; € p, (p; \ X) # 0}) -

For renaming, the checking of connectedness

16

Needed Information

Dynamic Programming Table

s:[k] = {1,2, -2} and Vit = {a;,,..., 2, } with
{i1,...,ip} == s71(2).

(po, p,w) € Als] if there is FF C G and E? C {vy} x V(F)

Q Theset s (1) = {i € [k] | [V(F) Nlabg'(i)| = 1} and
po = {i € [K] | [V(F) Nlabg' ()] = 0}.

@ The graph F:= (V(F)U{vw}UV,", B(F)UEJUEY) is a forest
where E} := Uicj<p @iy x (V(F)N labg' (i5))-

© Each component C of (V(F) U {vo}, E(F) U EY) intersects
labg' (s71({1,2})) U {vo}.

@ The partition p equals (s7*({1,2}) U {vo})/ ~p+ Where i ~ j if a vertex
in labg' (i) N V(F) is connected in the graph F'™ to a vertex in
labg' (7) NV (F); we consider labj' (vo) = {vo}.

18

Dynamic Programming Table

s:[k] = {1,2, -2} and Vit = {z;,,..., 2, } with
{i, ... ip} :=5"1(2).

FIGURE 2. Example of graph F*, here p = {{wp, 1}, {2, 3}, {4}}.
s~ (1) = {1,4}, s7*(2) = {2,3}, s7*(-2) = {5,6,7,8} and py =
{7.8}.

18

{1} {{vo}}, 00} if 5(1)

{{(@’ HL v}, wiz)), (0, {{1},{vo}}, w(z))} if s(1)
tabg[s] :=
0 if 5(1)

Argue its correctness (and assuming at least two vertices in FVS).

L,

_27

2.

19

G = add, ;(H)
Let (p(]:pvw) € AH[S/]

@ If poN{i,j} #0, then (po,p,w) € Ac[s'].
@ Otherwise, glue blocks containing i and j, respectively.

o §'(4),s'(j) € {1,2} (otherwise contains a cycle).
o Let s such that s(¢) := s'(¢) for £ ¢ {i,j} and

(1,1) if s(i) = s(j) = 1
(s'(4),8'(4)) = (2,1) if (s(i),5(5)) = (—=2,1)
(1,2) if (s(d),s(4)) = (1,-2).

20

G = addw(H)

Let (po,p,w) € Anls']

® If po N {i,j} # 0, then (po,p,w) € Ac[s'].
@ Otherwise, glue blocks containing i and j, respectively.

o §'(4),s'(j) € {1,2} (otherwise contains a cycle).
o Let s such that s(¢) := s'(¢) for £ ¢ {i,j} and

(1,1) if s(i) = s(j) = 1
(s'(4),8'(4)) = (2,1) if (s(i),5(5)) = (—=2,1)
(1,2) if (s(d),s(4)) = (1,-2).

Add to Ag|s]

proj(s " (=2)N{i, j}, acjoin({ (po, p, w)}, {([K]\ {i, 7}, {{i, 4}}, 0)})-

Remark. No edge between i-vertices and j-vertices prior to add;,; (Irredundant
expression).

20

G =G DGy

Let (po1,p1,w1) € Ag,[s1] and (poz, p2, w2) € Ag,|s2]

Let s such that for each i € [k]

s(i) =

s1(i) = s2(i) = —2
s2(4)

s1(4)

2

=9

if i € po1 N pPo2

if ¢ € po1,

if ¢ € po2,

if i € [k] \ (po1 U po2) and s1(4), s2(i) € {1,2}
if i € [k] \ (Po1 U po2) and (s1(7),s2(i)) €
{1, -2),(-2,1),(1,1), (=2, —2)}

21

G =G DGy

Let (po1,p1,w1) € Ag,[s1] and (poz, p2, w2) € Ag,|s2]

Let s such that for each i € [k]

51(4) = s2(i) = —2 if i € po1 N po2
s2(4) if i € po1,
N) s1(9) if ¢« € po2,
B =12 if i € [£]\ (po Upoa) and s1(3), 52(3) € {1, 2}
-2 if i € [k] \ (Po1 U po2) and (s1(7),s2(i)) €

{(1,=2),(=2,1),(1,1), (=2, =2)}

Add to Ag]s]

acjoin(proj(s " (—2), {(por, pr, w1)}), proj(s ™" (=2), {(poz, 2, w2)}))-

21

G =ren;;(H)

Let (poapa ’U)) € AH[S/]

o If i € po, then (po \ {i},p,w) € Ag[s'],
@ If i ¢ pg, but j € pp and ' (i) = =2, then (po \ {j}.p,w) € Ag[s'].

22

G =ren;;(H)

Let (poapa ’U)) € AH[S/]

@ If i € po, then (po \ {i}, p,w) € Ag[s],
@ If i ¢ pg, but j € pp and ' (i) = =2, then (po \ {j}.p,w) € Ag[s'].
@ Ifi ¢ py, jEpo, s(i) € {1,2}, then add to Ag[s] with s(j) = s'(¢)

proj ({1}, acjoin({ (po, p, w) }, {([K] \ {, 7}, {{i, 53}, 0)})).

22

G =ren;;(H)

Let (poapa ’U)) € AH[S/]

If i € po, then (po \ {i},p,w) € Acls],
If i & pg, but j € pg and s'(i) = —2, then (po \ {j},p,w) € Ac[s'].
If i & po, 7 € po, s'(4) € {1,2}, then add to Ag[s] with s(j) = s'(4)
proj({i}, acjoin({(po, p, w) }, {([k] \ {¢, j}, {{i, 7} },0)})).
Now, 4, j ¢ po, then
o if §'(i),s'(4) € {1,2}, then add to Ag[s] with s(j) = 2
proj({i}, acjoin({(po, p, w)}, {([k] \ {¢, j}, {{3,7}},0)}))-

22

G =ren;;(H)

Let (po, p,w) € Ag[s]

If i € po, then (po \ {i},p,w) € Ac[s'],

If i & pg, but j € pg and s'(i) = —2, then (po \ {j},p,w) € Ac[s'].
If i & po, 7 € po, s'(4) € {1,2}, then add to Ag[s] with s(j) = s'(4)
proj({i}, acjoin({(po, p, w) }, {([k] \ {¢, 7}, {{3,7}},0)}))-

Now, 4, j ¢ po, then

o if §'(i),s'(4) € {1,2}, then add to Ag[s] with s(j) = 2

proj({i}, acjoin({ (po, p, w)}, {([K] \ {4, 7}, {{i.j}},0)})).
o otherwise s'(7),s'(j) € {1,—2}, add to Ag[s] with s(j) = —2

proj({, j}, { (o, p; w)}).

22

Summary

© Representatives for Weighted Partitions

23

Ac-Representation

A, A sets of weighted partitions, and (go, ¢, 0).

ac-opt(A, (g0, q,0)) := max{w | (q0,p,w) € A, pUqg={V \ qo} and acyclic(p, q)}.

24

Ac-Representation

A, A sets of weighted partitions, and (go, ¢, 0).

ac-opt(A, (40, 9,0)) := max{w | (q0,p,w) € A, pUg={V \ go} and acyclic(p, q)}.

AI aC—I’epFesentS ./4 |f ac-opt(A, (go,q,0)) = ac—l:)pl‘,(,A/7 (g0,9,0)).

24

Ac-Representation

A, A sets of weighted partitions, and (go, ¢, 0).

ac-opt(A, (g0, q,0)) := max{w | (g0, p,w) € A, plg={V \ g0} and acyclic(p, q)}. J

./4., ac—represents A |f ac-opt (A, (g0, q,0)) = ac-opt(A’, (g0, g, 0)).

f preserve ac-representation if f(A’) ac-represents f(.A) if A’ does.

24

Ac-Representation

A, A sets of weighted partitions, and (go, ¢, 0).

ac-opt(A, (g0, q,0)) := max{w | (g0, p,w) € A, plg={V \ g0} and acyclic(p, q)}.

./4., aC—I’epFesentS A |f ac-opt(A, (go,q,0)) = ac—opl:(A/7 (g0,9,0)).

f preserve ac-representation if f(A’) ac-represents f(.A) if A’ does.

Proposition

The operators rmc, proj and acjoin preserve ac-representation.

24

Computing an Ac-Representative
V':=V U{wv} and cuts are tri-partitions (U, V1, V5) with vy € V4

if po # go or pU g # {V' \ po},

0
M([(po,P); (90, 9)] := {a2\V'\p0|—(#block(p)+#block(q)) theraice.

if po # U or p IZ (V1,V2),

0
c ,p), (U, V1, V)] := R
[(po.). (1 V2)] {a‘V,\U‘f#bl(’“k(p) otherwise.

25

Computing an Ac-Representative
V':=V U{wv} and cuts are tri-partitions (U, V1, V5) with vy € V4

if po # go or pU g # {V' \ po},

0
M[(po,p), (g0,)] := {QZ\V'\pOI—(#block(p)+#block(q)) theraice.

if po # U or p IZ (V1,V2),

0
&} ,p), (U, Vi, Vo)l i= .
[(po.). (1 V2)] {a‘V,\U‘f#blo“k(p) otherwise.

Theorem

We have M = C - C*. Moreover, there exists an algorithm
ac-reduce that given a set of weighted partitions A, outputs in time
|A] - 2@=DIVI |V|90) 5 maximum ac-generator A’ of size <

(V| 4 1) - 2IV that ac-represents A.

25

Back to FVS Algorithm

Apply ac-reduce after computing Ag|s].

Theorem

There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k . 24wk 4y . LOQ),

26

Back to FVS Algorithm

Apply ac-reduce after computing Ag|s].

Theorem

There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k . 24wk 4y . LOQ),

G = add; ;(H). Ag[s] is updated from 2 tables in Ay, each of size
(k+1)-2% ie., Ag in time 3k . 2(w+D)-k . p0(1),

G =ren;—;(H). Ag[s] is updated from 7 tables in Ay, i.e., Ag in time
gk . 9(w+1)k 0(1) -

26

Back to FVS Algorithm

Apply ac-reduce after computing Ag|s].

Theorem

There is an algorithm that, given an n-vertex graph G and an
irredundant clique-width k-expression of G, computes a minimum
feedback vertex set in time 33k . 24wk 4y . LOQ),

G = add; ;(H). Ag[s] is updated from 2 tables in Ay, each of size
(k+1)-2% ie., Ag in time 3k . 2(w+D)-k . p0(1),

G =ren;—;(H). Ag[s] is updated from 7 tables in Ay, i.e., Ag in time
gk . 9(w+1)k 0(1) -

G =G @ Gy. Agls] is updated from 32* entries, each of size 2%, i.e. we
update Ag|[s] in time 32F . 20Tk "and Ag in time 33F . 2w 1)k O,

26

Conclusion

@ One can probably improve constants, but what about
parametrised by rank-width?

@ The algorithm for Hamiltonian cycle can be adapted for
directed graph and for g-cycle covering.

@ what about computing the chromatic number?

27

Conclusion

@ One can probably improve constants, but what about
parametrised by rank-width?

@ The algorithm for Hamiltonian cycle can be adapted for
directed graph and for g-cycle covering.

@ what about computing the chromatic number?

Let's hope fest the 70

27

	Hamiltonian Cycle
	Feedback Vertex Set
	Representatives for Weighted Partitions

