1 Preliminaries

The set of positive integers (including 0) is denoted by \mathbb{N} and for a positive integer n, the set $\{1, \ldots, n\}$ of integers is denoted as [n]. For $m, n \in \mathbb{N}$, we write [m, n] for the interval $\{m, \ldots, n\}$. For a set V and $x \in V$, the singleton $\{x\}$ shall be often written simply as x. The power set of a finite set V is denoted by 2^V and we write |V| to denote the size of V. A partition of a set V is a collection $\{V_1, \ldots, V_n\}$ of non-empty and pairwise non-intersecting subsets of V, called *blocks*, such that $\bigcup_{1 \le i \le n} V_i = V$. For an equivalence relation \equiv on $V \times V$, we denote by V/\equiv the set of equivalence classes of \equiv and write $[Y]_{\equiv}$ to denote the equivalence class of $Y \in V$. Recall that the set of equivalence classes forms a partition.

A set system **S** is a pair (S, S) where S is a finite set and S is a collection of subsets of S. We refer to S as the ground set, and members of S as hyperedges. We use boldface capital letters to denote set systems, e.g., **S**, **M**; capital letters for ground sets, e.g., S, M; and calligraphic letters for set of hyperedges, e.g., S, M. We follow [6] for our graph terminology. For a graph G, we denote by V(G) its vertex set, and by E(G) its edge set; an edge between x and y in an undirected graph is denoted by xy (equivalently yx). It is common to call vertices of a tree nodes.

¹⁷ We are going to prove the following.

Theorem 1. Let k and q be positive integers. There is an elementary function f such that every first-order formula φ of quantifier-rank q can be checked in time $f(k,q) \cdot poly(n)$ in graphs of linear clique-width at most k.

We organise this section as follows. The notion of *linear clique-width* is introduced in Section 1.1, while *first-order logic* and *Feferman-Vaught Theorem* are introduced in Section 1.2.

²⁴ 1.1 Linear clique-width

²⁵ We will follow [1] for the definition of *linear clique-width* as we will use their semi-group ²⁶ structure. If k is a positive integer, a graph **G** is said k-labeled if every vertex of **G** receives ²⁷ a label from [k], and each vertex of **G** labeled i is called an *i*-labeled vertex. The labeling ²⁸ function of a k-labeled graph is denoted by $\alpha_{\mathbf{G}}$. The following operations are defined on ²⁹ k-labeled graphs:

Relabeling operation For every function $f:[k] \to [k]$, let ρ_f be the operation that takes as input a k-labeled graph **G** and outputs the k-labeled graph **G** with labeling function $f \circ \alpha_{\mathbf{G}}$.

Join operation For every symmetric subset S of $[k] \times [k]$, let \otimes_S be the binary operation that takes as inputs two k-labeled graphs **G** and **H** and outputs the k-labeled graph **K** where $\alpha_{\mathbf{K}} = \alpha_{\mathbf{G}} \cup \alpha_{\mathbf{H}}$, and **K** is obtained from the disjoint union of **G** and **H** and adding all edges in the set $\{xy \mid x \in G, y \in H, (\alpha_{\mathbf{G}}(x), \alpha_{\mathbf{H}}(y)) \in S\}$. We denote **K** as $\mathbf{G} \otimes_S \mathbf{H}$. Constant For every $i \in [k]$, let i be the k-labeled graph with a single vertex labeled i and no edge.

Adding a vertex For every $i \in [k]$ and $X \subseteq [k]$, let $a_{i,X}$ be the operation that takes as input a k-labeled graph **G** and outputs $\mathbf{G} \otimes_S i$ with labeling function $\alpha_{\mathbf{G}} \cup \alpha_i$ where $S = \{i\} \times X \cup X \times \{i\}$.

Let \mathbf{LCW}_k be the alphabet $\{\mathbf{a}_{i,X} \mid i \in [k], X \subseteq [k]\} \cup \{\rho_f \mid f : [k] \to [k]\}$. A width-k linear clique-width expression is a word over the alphabet \mathbf{LCW}_k . Every width-k linear clique-width expression w can be evaluated inductively into a k-labeled graph, denoted by $\mathbf{val}(w)$, as follows:

- 46 **val** (ρ_f) is the empty-graph,
- $\mathbf{val}(\mathbf{a}_{i,X})$ is the k-labeled graph i,
- ⁴⁸ **val** $(u\rho_f)$ is the k-labeled graph $\rho_f(\mathbf{val}(u))$,
- ⁴⁹ **val** $(u a_{i,X})$ is the k-labeled graph $a_{i,X}(val(u))$.

The linear clique-width of a graph \mathbf{G} , denoted by $\mathsf{lcw}(\mathbf{G})$, is the least k such that there is a word w in \mathbf{LCW}_k with \mathbf{G} is isomorphic to $\mathbf{val}(w)$ after forgetting the labels of $\mathbf{val}(w)$.

52 1.2 First-order logic

⁵³ We refer to [4] for a complete presentation of FO logic, and we shortly introduce it now. ⁵⁴ Define a *vocabulary* to be a finite set of relation names, each one being associated with an ⁵⁵ *arity* in N. A *relational structure* \mathbb{A} over the vocabulary Σ (Σ -*structure* for short) consists in ⁵⁶ a set A, called the *universe*, and for each relation name $\mathbb{R} \in \Sigma$, a relation $\mathbb{R}^{\mathbb{A}} \subseteq A^k$ with k ⁵⁷ the arity of \mathbb{R} .

Let \mathcal{V} be a countable set of variables, each being either a variable ranging over individual elements of the universes, called an *FO variable*, and use lower-case letters to denote them. The *atomic formulas* are x = y and $\mathsf{R}(x_1, \ldots, x_k)$ where R is a *k*-ary relation name of Σ , x_1, \ldots, x_k are FO variables. An *FO formula* over Σ is either an atomic formula, or it is of the inductive form $\neg \varphi$, $\varphi \lor \psi$, $\exists x \varphi$, where φ and ψ are FO formulas. We also use the classical syntactic sugars $x \neq y$, $\forall x \varphi$, $\varphi \land \psi$, $\varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi$ for the formulas $\neg(x = y)$, $\neg \exists x \neg \varphi, \neg(\neg \varphi \land \neg \psi), \neg \varphi \lor \psi$, and $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$, respectively.

A variable is *free* in a formula if it is not bound by a quantifier $(\exists \text{ or } \forall)$. We write $\varphi(x_1, \ldots, x_p)$ to say that x_1, \ldots, x_p are among the free variables of φ . An *FO sentence* is an FO formula without free variables. The size of a formula φ is simply defined as the number of symbols in it and is denoted by $|\varphi|$. The *quantifier-rank* of an FO formula φ , denoted by $qr(\varphi)$, is defined inductively as follows:

$$\mathbf{qr}(\varphi) = \begin{cases} 0 & \text{if } \varphi \text{ is atomic,} \\ \mathbf{qr}(\psi) & \text{if } \varphi = \neg \psi, \\ \max\{\mathbf{qr}(\psi_1), \mathbf{qr}(\psi_2)\} & \text{if } \varphi = \psi_1 \lor \psi_2, \\ 1 + \mathbf{qr}(\psi) & \text{if } \varphi = \exists x\psi. \end{cases}$$

An FO formula is *quantifier-free* if its quantifier-rank is 0. We denote by $FO(\Sigma)$ the set of first-order formulas over Σ , and by $FO^q(\Sigma)$ the set of first-order sentences of quantifier-rank at most q. We simply write FO or FO^q when Σ is clear from the context. We denote by $FO^q[t]$ the set of FO formulas with quantifier-rank at most q and having at most t free variables.

Let A be a Σ -structure and φ be an FO formula. A \mathcal{V} -valuation on A is a mapping ν 76 that assigns to each FO variable of \mathcal{V} an element of A. We say that (\mathbb{A}, ν) models φ , denoted 77 by $(\mathbb{A},\nu) \models \varphi$, when one of the following cases holds: φ is $\mathsf{R}(x_1,\ldots,x_k)$ for some relation 78 name R of arity k and $(\nu(x_1), \ldots, \nu(x_k)) \in \mathsf{R}^{\mathbb{A}}$; φ is x = y and $\nu(x) = \nu(y)$; φ is $\varphi_1 \vee \varphi_2$ 79 and (\mathbb{A},ν) models both φ_1 or φ_2 ; φ is $\exists x\psi$ and there exists a \mathcal{V} -valuation ν' on \mathbb{A} such 80 that $(\mathbb{A}, \nu') \models \psi$ and ν and ν' agree on all variable names other than x. We say that \mathbb{A} 81 models a formula φ , denoted by $\mathbb{A} \models \varphi$, if $(\mathbb{A}, \nu) \models \varphi$ for some \mathcal{V} -valuation ν on \mathbb{A} . If $\varphi(x)$ is 82 a formula with x a free variable, then for a structure A and $u \in A$, we write $\varphi[u/x]$ to mean 83 that any \mathcal{V} -valuation on \mathbb{A} we will consider for φ will map x to u. 84

For a vocabulary Σ , let us denote by \mathbf{S}^{Σ} the set of relational structures over the vocabulary 56 Σ . A class of relational structures over Σ is a subset \mathbb{C} of \mathbf{S}^{Σ} which is closed under isomorphism. ⁸⁷ If \mathcal{L} is a set of FO formulas, we define the \mathcal{L} -theory of a Σ -structure \mathbb{A} , denoted by $\mathsf{Th}_{\mathcal{L}}(\mathbb{A})$, ⁸⁸ as the set of formulas in \mathcal{L} that \mathbb{A} models. It is worth mentionning that $\mathsf{Th}_{\mathcal{L}}(\mathbb{A}) = \mathsf{Th}_{\mathcal{L}}(\mathbb{B})$ ⁸⁹ whenever \mathbb{A} is isomorphic to \mathbb{B} .

⁹⁰ 2 Proof of Theorem 1

As we have seen above, one can associate with each graph **G** of linear clique-width at most k91 a word in \mathbf{LCW}_{k}^{+} that can be evaluated into **G**. Using the semi-group homomorphism h, 92 defined in [1], that maps every word in \mathbf{LCW}_k^+ into an element of a semi-group of size at most $2^{2^{O(k)}}$, we obtain from Simon's Factorisation Forest Theorem that every graph **G** of 93 94 linear clique-width at most k admits a tree-like decomposition of height, called h-rank of \mathbf{G} . 95 at most $3 \cdot 2^{2^{O(k)}}$. We will prove, by induction, that any FO-formula of quantifier-rank q can 96 be solved in time $f(q) \cdot poly(n)$, where f is a tower of exponentials of height depending only 97 on the *h*-rank of **G**. We introduce Simon's Factorisation Forest Theorem in Section 2.1, the 98 semi-group homomorphism in Section 2.2, an upper-bound on the number of FO^{q} -theories 99 based on the structure of the Simon's Forest Factorisation in Section 2.3, and the algorithm 100 in Section 2.4 which uses Colcombet's deterministic algorithm for computing Simon's Forest 101 Factorisation. 102

¹⁰³ 2.1 Simon's forest factorisation theorem

Remind that a *semi-group* is a set S equipped with an associative binary operation. Notice also that A^* is the set of finite words over the alphabet A, while A^+ is the set of non-empty finite words over A, and each equipped with concatenation \cdot is a semi-group. An *idempotent element* in a semi-group (S, \circ) is an element e such that $e \circ e = e$. For two semi-groups (S_1, \circ_1) and (S_2, \circ_2) , a *semi-group homomorphism* is a function $h : S_1 \to S_2$ such that $h(x \circ_1 y) = h(x) \circ_2 h(y)$.

Let (S, \circ) be a semi-group and A an alphabet. For a semi-group homomorphism h: $A^+ \to S$, an *h*-factorisation of a word $w \in A^*$ is a sequence (w_1, \ldots, w_n) such that

- 112 **1.** $w = w_1 \cdot w_2 \cdot \cdots \cdot w_n$,
- 113 **2.** $|w_i| < |w|$ for all $i \in [n]$, and

114 **3.** $h(w_1) = h(w_2) = \dots = h(w_n)$ is idempotent if $n \ge 3$.

The *h*-rank of a word $w \in A^*$ is defined inductively as follows : single letters have *h*-rank 116 1, and for every $w \in A^*$ of length at least 2, its *h*-rank is

117
$$1 + \min_{(w_1,...,w_n) \text{ is an } h\text{-factorisation of } w} \left(\max_{1 \le i \le n} \{h\text{-rank of } w_i\} \right).$$

Imre Simon proved in [14] that the h-rank of any word is upper-bounded by a function on the size of the target semi-group, which we refer below with the improvement given in [9].

▶ **Theorem 2** (Simon's Forest Factorisation Theorem [9]). Let S be a finite semi-group and let $h: A^* \to S$ be a semi-group homomorphism. Then, every word $w \in A^+$ has h-rank at most $3 \cdot |S|$.

123 2.2 A semi-group for words in LCW_k

Our proof will be an induction based on the *h*-rank of words in \mathbf{LCW}_k^+ , for some semi-group homorphism *h*. Let's define this semi-group homomorphism borrowed from [1].

¹²⁶ A *k*-derivation is a triple $\sigma = (\mathbf{G}, \lambda, \gamma)$ where

- 127 **G** is a k-labeled graph, called *underlying graph* of σ ,
- 128 $\lambda : \mathbf{G} \to 2^{[k]}$ assigns to each vertex x of G its *profile*,
- 129 $\gamma: [k] \to [k]$ is a *relabeling* function.

An atomic k-derivation is a k-derivation whose underlying graph has at most one vertex. The composition of two k-derivations $\sigma_1 = (\mathbf{G}_1, \lambda_1, \gamma_1)$ and $\sigma_2 = (\mathbf{G}_2, \lambda_2, \gamma_2)$, denoted by $\sigma_1 \otimes \sigma_2$, is the k-derivation σ obtained as follows:

- the underlying graph of σ is the graph obtained from the disjoint union of $\rho_{\gamma_2}(\mathbf{G}_1)$ and \mathbf{G}_2 where we add an edge between a vertex x of \mathbf{G}_1 and a vertex y of \mathbf{G}_2 whenever $\alpha_{\mathbf{G}_1}(x) \in \lambda_2(y)$. Notice that the labeling function of the underlying graph of σ is
- 136 $\gamma_2 \circ \alpha_{\mathbf{G}_1} \cup \alpha_{\mathbf{G}_2}.$
- 137 The profile of σ is $\lambda_1 \cup \gamma_1^{-1} \circ \lambda_2$.
- 138 The relabeling function of σ is $\gamma_2 \circ \gamma_1$.

As claimed in [1] it is not hard to see that \otimes is associative, and so the set of k-derivations equipped with the composition operation \otimes is a semi-group. Let S_k be the semi-group generated by the set of atomic k-derivations. It is not hard to see that S_k is finitely generated. The following proved in [1] is a reformulation of width-k linear clique-width expressions.

▶ Lemma 3 ([1, Lemma 4.2]). If G has linear clique-width at most k, then it is the underlying graph of a k-derivation from S_k .

Let $\sigma = (\mathbf{G}, \lambda, \gamma)$ be a k-derivation. For $c = (i, X) \in [k] \times 2^{[k]}$, we call the set of *i*-labeled vertices of **G** with profile X a *c*-class and denote it by $\sigma[c]$. Let \mathcal{C}_k denote the set $\{(i, X) \in [k] \times 2^{[k]}\}$, that we call for simplicity classes. We are now ready to define the finite semi-group T_k , called *abstraction semi-group*, which is a substructure of the abstraction semi-group defined in [1].

Definition 4. The abstraction of a k-derivation σ , denoted by $[\sigma]$, is the triple (L, γ) where:

- 152 L is the set $\{c \in C_k \mid \sigma[c] \neq \emptyset\}$, i.e., the set of non-empty c-classes.
- 153 γ is the relabeling function of σ .

The following now summarises the semi-group structure of T_k , the set of abstractions of *k*-derivations and is corrolary of the fact that "having the same abstraction" is a congruence in S_k .

Lemma 5 ([1]). There is an associative operation $[\tilde{\otimes}]$ such that $[\sigma_1 \otimes \sigma_2] = [\sigma_1] [\tilde{\otimes}] [\sigma_2]$. Moreover, the set T_k has size at most $2^{2^{O(k)}}$.

The induction will be on k-derivations, and so we will for simplicity use first-order logic 159 on k-derivations instead of graphs. We will consider each k-derivation $\sigma = (\mathbf{G}, \lambda, \gamma)$ as the 160 relational structure over the vocabulary edg representing the edge relation of the underlying 161 graph G, k constants c_1, \ldots, c_k representing the set [k] and disjoint from the vertex set of 162 the underlying graph, the predicate P_{c} , for a class $c \in \mathcal{C}_k$, where $P_c(x)$ holds if x is a vertex 163 and belongs to the c-class, and binary predicate ρ representing the relabeling function γ (we 164 can add the axiom that ρ is a function on every formula using ρ). We will need the following 165 which is straighforward. 166

Lemma 6. Let k and q be positive integers. If the two k-derivations σ_1 and σ_2 are such that Th_{FO^q}(σ_1) = Th_{FO^q}(σ_2), then [σ_1] = [σ_2]. ¹⁶⁹ **Proof.** If $c \in C_k$ is a class such that $\sigma_1[c] \neq \emptyset$, but $\sigma_2[c] = \emptyset$, then the formula $\mathsf{P}_{\mathsf{c}}(x)$ will be ¹⁷⁰ satisfied by σ_1 , but not σ_2 . One checks in a similar way that they have the same relabeling ¹⁷¹ function.

It is well-known from Feferman-Vaught Theorem [7] that the FO-theory of a generalised product of two structures can be computed from the FO-theories of the two operands, where examples of generalised products are quantifier-free transductions [11]. We refer to [4] for the definition of transductions, however it is not hard to prove that the composition operation of *k*-derivations is a quantifier-free transduction.

Observation 7. Let k be a positive integer. There is a quantifier-free transduction τ on the vocabulary of k-derivations such that $\sigma_1 \otimes \sigma_2 = \tau(\sigma_1 \oplus \sigma_2)$, for every two k-derivations σ_1 and σ_2 .

We can therefore state the following version of Feferman-Vaught Theorem for the \otimes 181 operation. We refer to [7, 11] for more information.

¹⁸² ► **Theorem 8** ([7, Theorem 5.4]). Let s and q be positive integers. Then, for every sequence ¹⁸³ $\sigma_1, \ldots, \sigma_s$ of k-derivations, Th_{FO^q}(σ) depends only on Th_{FO^q}(σ_1),..., Th_{FO^q}(σ_s).

For a positive integer q, we write $\sigma_1 \equiv_q \sigma_2$ if $\mathsf{Th}_{\mathrm{FO}^q}(\sigma_1) = \mathsf{Th}_{\mathrm{FO}^q}(\sigma_2)$. Notice that \equiv_q is an equivalence relation, and by Lemma 6, if $\sigma_1 \equiv_q \sigma_2$, then $[\sigma_1] = [\sigma_2]$. We can derive the following as a corollary of Theorem 8.

▶ Lemma 9. Let k and q be positive integers. If σ_1 and σ_2 are two \equiv_q -equivalent k-derivations, then, for every two k-derivations σ_l and σ_r , it holds that $\sigma_l \otimes \sigma_1 \otimes \sigma_r \equiv_q \sigma_l \otimes \sigma_2 \otimes \sigma_r$.

Proof. By Theorem 8, the \equiv_q -equivalence class of $\sigma_l \otimes \sigma_1 \otimes \sigma_r$ depends only on the \equiv_q equivalence classes of σ_l , σ_1 and σ_r . Since σ_1 and σ_2 are \equiv_q -equivalent, the statement follows
by Theorem 8.

¹⁹² 2.3 An upper-bound on the number of FO^{*q*}-theories

Let $h_k: S_k \to T_k$ be the semi-group homomorphism described in Section 2.2. Let $f_1(q) = 2^{k \cdot 2^k \cdot k^k}$, and for every $\ell > 1$, let $f_\ell(q) = 2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2(2^{f_{\ell-1}(q)})^{2q}}}$. It is not hard to check that for every ℓ , $f_\ell(q)$ is a tower of 2 whose height depends only on ℓ . We are going to prove the following, which combines with Lemma 3 and Theorem 2 implies Theorem 1.

▶ **Proposition 10.** Let q be a fixed positive integer. The number of \equiv_q -equivalence classes on k-derivations of h_k -rank at most ℓ is upper-bounded by $f_\ell(q)$.

The proof will be by induction on the h_k -rank of k-derivations of S_k , and we follow the structure of Simon's factorisation.

Basic case. By definition, every atomic k-derivation has h_k -rank 1. Because the underlying graph of each atomic k-derivation is a single vertex, an atomic k-derivation is obtained by choosing a label, the profile of the single vertex and a labeling function. So, the number of atomic k-derivations is upper-bounded by $k \cdot 2^k \cdot k^k$. Since each satisfied FO-formula corresponds to a family of non-isomorphic substructure, each FO^q-theory corresponds to a family of family of substructures. So, the number of equivalence classes of \equiv_q on atomic k-derivations is upper-bounded by $f_1(q) = 2^{2^{k \cdot 2^k \cdot k^k}}$. **Binary factorisation.** Assume that a k-derivation σ of h_k -rank ℓ is equal to $\sigma_1 \otimes \sigma_2$ and the h_k -rank of both σ_1 and of σ_2 is at most $\ell - 1$. From Theorem 8, one can decide $\mathsf{Th}_{FO^q}(\sigma)$ from $\mathsf{Th}_{FO^q}(\sigma_1)$ and $\mathsf{Th}_{FO^q}(\sigma_2)$, *i.e.*, each equivalence class of \equiv_q on k-derivations of h_k -rank at most ℓ admitting a binary factorisation is a subset of pairs of equivalence classes on ι_{12} k-derivations of h_k -rank at most $\ell - 1$, whose number is upper-bounded by $2^{2^{f_{\ell-1}(q) \cdot f_{\ell-1}(q)}}$.

Unranked factorisation. Assume now that a k-derivation $\sigma = (\mathbf{G}, \lambda, \gamma)$ of h_k -rank ℓ is equal 213 to $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ with $h_k(\sigma_1) = h_k(\sigma_2) = \cdots = h_k(\sigma_n) = h_k(\sigma) = (L, \gamma)$ is idempotent, 214 and, for each $i \in [n]$, the h_k -rank of σ_i is at most $\ell - 1$. Notice that because $h_k(\sigma)$ is 215 idempotent, the function γ is also idempotent (on the semi-group of functions $[[k] \rightarrow [k]])$, 216 and then by the definition of the operation \otimes , the relabeling function of each k-derivation 217 σ_i , for $i \in [n]$, is γ . So, let's denote σ_s by $(\mathbf{G}_s, \lambda_s, \gamma)$, for each $s \in [n]$. As noticed in [1], we 218 have $\gamma(i) = i$, for each $i \in \gamma([k])$. Similarly, a *c*-class is non-empty in σ_s if and only if it is 219 non-empty in σ_t if and only if it is non-empty in σ , for all $s, t \in [n]$. Since all the σ_i 's have 220 the same relabeling function, by Lemma 9, we can derive the following. 221

▶ Lemma 11. The two k-derivations σ and $\mathcal{R}_1 \otimes \mathcal{R}_2 \otimes \cdots \otimes \mathcal{R}_n$ are \equiv_q -equivalent where \mathcal{R}_s is any representative of the \equiv_q -equivalence class of σ_s , for each $s \in [n]$.

Let $\mathcal{A}_{k,\ell}^q$ be an alphabet where letters are in one-to-one correspondence with a fixed set 224 of representatives of the \equiv_q -equivalence classes on k-derivations of h_k -rank at most $\ell - 1$. 225 By inductive hypothesis, the size of $\mathcal{A}_{k,\ell}^q$ is upper-bounded by $f_{\ell-1}(q)$. Because each σ_s , 226 for $s \in [n]$ has h_k -rank at most $\ell - 1$, we can replace the word $\sigma_1 \sigma_2 \cdots \sigma_n$ by the word 227 $w(\sigma) = w_1 w_2 \cdots w_n$ on $\mathcal{A}^q_{k,\ell}$, where, for each $s \in [n]$, w_s is the \equiv_q -representative of σ_s in 228 \mathcal{A}_{k}^{q} . By Lemma 11, the two k-derivations σ and $w_{1} \otimes w_{2} \otimes \cdots \otimes w_{n}$ are \equiv_{q} -equivalent. Our 229 goal is to prove that if n > 2q, then there is a set \mathcal{F} of words $w_1 w_2 \cdots w_r$ of length at 230 most 2q on the alphabet $\mathcal{A}_{k,\ell}^q$ and such that the \equiv_q -equivalence class of σ can be derived 231 from the \equiv_q -equivalence classes of words in the set \mathcal{F} . Let's add the new letter $\emptyset_{\lambda}^{\gamma}$ as the 232 triple $(\emptyset, \lambda, \gamma)$, and for every k-derivation $\sigma' = (\mathbf{G}', \lambda', \gamma')$, the k-derivation $\sigma' \otimes \emptyset_{\lambda}^{\gamma}$ is the 233 k-derivation $(\rho_{\gamma}(\mathbf{G}'), \lambda', \gamma \circ \gamma').$ 234

For a word $w = w_1 \cdots w_r$ on $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_{\lambda}^{\gamma}\}$, an FO formula θ and a \mathcal{V} -valuation ν on $w_1 \otimes w_2 \otimes \cdots \otimes w_r$, we denote by $b_w^{\theta,\nu}$ the predicate $(w_1 \otimes w_2 \otimes \cdots \otimes w_r, \nu) \models \theta$.

▶ Lemma 12. Let q and t be positive integers and let φ be an FO-formula in $FO^{q}[t]$. If $n \geq 2(q+t) + 1$, then, for every \mathcal{V} -valuation ν on σ of the t variables of φ , there is a set of \mathcal{F}_{φ} of pairs (w, θ) and a boolean function B_{φ} using the predicates $\{b_{w}^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_{\varphi}\}$, where each w is a word on $\mathcal{A}_{k,\ell}^{q} \cup \{\emptyset_{\lambda}^{\gamma}\}$ and is of length at most 2(q+t) and θ a sub-formula of φ , such that

 $(\sigma, \nu) \models \varphi$ if and only if B_{φ} is satisfiable.

²³⁷ **Proof.** The proof is by induction on $|\varphi| + q$ and follows the structure of FO formulas.

1. If φ is quantifier-free, *i.e.*, q = 0, then the satisfiability of φ depends only on the *k*derivations in the Forest Factorisation of σ that contain $\nu(x)$, for x a free variable in φ . Let $\sigma_{i_1}, \ldots, \sigma_{i_r}$ be the *k*-derivations that contain $\nu(x)$, for all free variables x of φ (with $r \leq t$). Then, let w be obtained from $w(\sigma)$ by removing the letters whose indices are not in $\{i_1, \ldots, i_r\}$ and by adding $\emptyset_{\lambda}^{\gamma}$ between w_{i_j} and $w_{i_{j+1}}$ when $i_j < i_{j+1} - 1$, *i.e.*, i_j and i_{j+1} are not consecutive, and possibly after w_{i_r} if $i_r \neq n$. Let $\mathcal{F}_{\varphi} = \{(w, \varphi)\}$ and

 $B_{\varphi} = b_w^{\varphi,\nu}$. It is straigforward to check that (σ,ν) satisfies φ if and only if B_{φ} holds.

2. If $\varphi = \neg \psi$, then by inductive hypothesis there are a set \mathcal{F}_{ψ} and a boolean function B_{ψ} 246 on $\{b_{w}^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_{\psi}\}$ such that (σ,ν) satisfies ψ if and only if B_{ψ} is satisfied, *i.e.*, (σ,ν) 247 satisfies $\neg \psi$ if and only if $\neg B_{\psi}$ is satisfied. We therefore let $\mathcal{F}_{\varphi} = \mathcal{F}_{\psi}$ and $B_{\varphi} = \neg B_{\psi}$. **3.** If $\varphi = \psi_1 \lor \psi_2$, then by inductive hypothesis, there are, respectively, sets \mathcal{F}_1 and \mathcal{F}_2 , and boolean functions B_1 and B_2 on, respectively, $\{b_w^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_1\}$ and $\{b_w^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_2\}$, such that (σ,ν) satisfies ψ_1 (resp. ψ_2) if and only if B_1 (resp. B_2) is satisfied. Let $\mathcal{F}_{\varphi} = \mathcal{F}_1 \cup \mathcal{F}_2$ and $B_{\varphi} = B_1 \lor B_2$. We can thus conclude by inductive hypothesis that (σ,ν) satisfies φ if and only if B_{φ} is satisfied.

4. Assume finally that $\varphi = \exists x \psi$. For each vertex $u \in V(\mathbf{G})$, let ν_u be the \mathcal{V} -valuation on σ where $\nu_u(x) = u$ and $\nu_u(y) = \nu(y)$ for every other free variable in ψ . By inductive hypothesis, there are a set \mathcal{F}_u and a boolean function B_u on $\{b_w^{\theta,\nu'} \mid (w,\theta) \in \mathcal{F}_u\}$ such that (σ,ν') satisfies ψ if and only if B_u is satisfied. Let $\mathcal{F}_{\varphi} = \bigcup_{u \in V(\mathbf{G})} \mathcal{F}_u$ and $B_{\varphi} = \bigvee_{u \in V(\mathbf{G})} B_u$. We therefore have by inductive hypothesis that (σ,ν) satisfies φ if and only if B_{φ} is satisfied.

The following shows that we can replace σ by a finite number of k-derivations so that the \equiv_q -equivalence of σ can be derived from their \equiv_q -equivalence classes.

Lemma 13. Let q be a positive integer. There are at most $(f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}$ pairs (w,θ) with w a word of length at most 2q on $\mathcal{A}^{q}_{k,\ell} \cup \{\emptyset^{\gamma}_{\lambda}\}$ and θ a formula in $FO^{q'}[t]$ with $q' + t \leq q$.

Proof. First, The number of words on the alphabet $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_{\lambda}^{\gamma}\}$ and of length at most 265 2q is upper-bounded by $(f_{\ell-1}(q)+1)^{2q}$. Now, each θ in FO^{q'}[t] with $q'+t \leq q$ is also 267 a formula in FO^q by replacing θ by $\exists x_1 \cdots x_t \theta$. For each such word $w = w_1 \cdots w_r$, let 268 $\sigma(w)$ be $w_1 \otimes w_2 \otimes \cdots \otimes w_r$. By applying Theorem 8, we obtain that the number of distinct 269 FO^q-theories among such $\sigma(w)$ is upper-bounded by $2^{(2^{f_{\ell-1}(q)})^{2q}}$. Therefore, the number of 270 such pairs is upper-bounded by $(f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}$.

We can now give an upper-bound on the number of \equiv_q -equivalence classes.

Proof of Proposition 10. By Lemma 12, for every k-derivation σ of h_k -rank ℓ and admitting a Forest Factorisation into $\sigma_1 \cdots \sigma_n$, either $n \leq 2q$ or, for every FO sentence φ in FO^q, there are a family \mathcal{F}_{φ} of pairs (w, θ) with θ a sentence in FO^q, w a word of length at most 2qon $\mathcal{A}^q_{k,\ell} \cup \{\emptyset^{\gamma}_{\lambda}\}$ and a boolean function B_{φ} on $\{b^{\theta}_w \mid (w,\theta) \in \mathcal{F}_{\varphi}\}$ such that σ satisfies φ if and only if B_{φ} is satisfied. By Lemma 13, the number of such pairs is upper-bounded by $(f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}$. Let's denote by \mathcal{T} the set of such pairs and let \mathcal{B} be the set of boolean functions on subsets of \mathcal{T} . We can conclude that every FO^q sentence satisfied by such a σ is associated with a a boolean function in \mathcal{B} . It is worth noticing that the satisfaction of any boolean function in \mathcal{B} does depend only on the FO^q-theories of k-derivations of h_k -rank at most $\ell - 1$. Therefore, we can consider that for every k-derivation σ , its FO^q-theory is the set

 $\{B_{\varphi} \in \mathcal{B} \mid B_{\varphi} \text{ is satisfied and } B_{\varphi} \text{ is associated with } (\sigma, \varphi)\}.$

Now, since the number of boolean functions on p variables is upper-bounded by 2^p , the set \mathcal{B} is then upper-bounded by $2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2(2^{f_{\ell-1}(q)})^{2q}}}$, *i.e.*, the number of possible FO^{*q*}-theories is upper-bounded by $2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2(2^{f_{\ell-1}(q)})^{2q}}}$.

275 2.4 The algorithm

It is proved in [8] that if a graph has linear clique-width at most k, then one can compute 276 in time $2^{O(k^3)} \cdot n^3$ a width-p linear clique-width expression with $p \leq 2^k + 1$, *i.e.*, if a graph 277 **G** has linear clique-width at most k, then for some $p \leq 2^k + 1$, one can construct in time 278 $2^{O(k^3)} \cdot n^3$ a word w using atomic p-derivations in S_p , evaluating into a p-derivation σ having 279 **G** as underlying graph. Moreover, any FO^q-sentence φ on **G** can be translated into an 280 FO^q-sentence $\varphi^{\#}$ on σ with the property that **G** satisfies φ if and only if σ satisfies $\varphi^{\#}$. The 281 following version of Simon's Factorisation Forest Theorem was proved in [2] and allows to 282 compute the Simon's Forest Factorisation. 283

Theorem 14 ([2]). Let Σ be an alphabet. For every finite semi-group S and every semigroup homomorphism $h: \Sigma^+ \to S$, one can construct a deterministic finite state automata that takes as input a word w in Σ^+ and outputs in time O(|w|) a Simon's Forest Factorisation of w of h-rank at most $3 \cdot |S|$.

The algorithm is then a classical bottom-up dynamic programming algorithm that computes the FO^q-theory by following the Forest Factorisation given by Theorem 14. Recall that the height of the tree is upper-bounded by $3 \cdot 2^{2^{O(p)}}$ and $p \leq 2^k + 1$. The FO^q-theory is computed as follows:

²⁹² 1. If the h_p -rank of σ is 0, then σ is an atomic *p*-derivation. So, we compute all the ²⁹³ non-isomorphic atomic *p*-derivations that are substructures of σ .

294 **2.** Assume now that the h_p -rank of a subword σ' of σ is ℓ . We compute the FO^{*q*}-theory of σ' as follows.

a. If σ' admits a binary factorisation into σ_1 and σ_2 , then we have already computed the FO^q-theories of σ_1 and σ_2 . Therefore, the FO^q-theory of σ' can be computed by taking a subset \mathcal{T}_1 of the FO^q-theory of σ_1 , a subset \mathcal{T}_2 of the FO^q-theory of σ_2 and a boolean function on $\mathcal{T}_1 \cup \mathcal{T}_2$. Whenever the boolean function is satisfied, we add it to the FO^q-theory of σ' (by keeping only non-equivalent ones). Since the FO^q-theories of σ_1 and of σ_2 are upper-bounded by $f_{\ell-1}(q)$, the computation can be done in time $2^{O(f_{\ell-1}(q) \cdot f_{\ell-1}(q))}$.

b. If σ' admits an unranked factorisation into $\sigma_1 \sigma_2 \cdots \sigma_n$, then we compute the FO^q from left to right as follows. Let t be the maximum such that we have computed the FO^q-query of $\sigma_1 \otimes \cdots \otimes \sigma_t$ (recall that $t \ge 1$ as the FO^q-theory of each σ_s , for $s \in [n]$, is already computed). We can now use the same procedure as in the binary case to compute the FO^q-query of $\sigma_1 \otimes \cdots \otimes \sigma_{t+1}$. Since we keep only the non-equivalent ones, by Proposition 10, the time complexity is upper-bounded by a polynomial on $2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2(2^{f_{\ell-1}(q)})^{2q}}}$.

310		References
311	1	Mikołaj Bojańczyk, Martin Grohe, and MichałPilipczuk. Definable decompositions for graphs
312		of bounded linear cliquewidth. Log. Methods Comput. Sci., 17(1):Paper No. 5, 40, 2021.
313	2	Thomas Colcombet. A combinatorial theorem for trees. In Lars Arge, Christian Cachin,
314		Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming,
315		34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings,
316		volume 4596 of Lecture Notes in Computer Science, pages 901–912. Springer, 2007. doi:
317		10.1007/978-3-540-73420-8_77.
318	3	Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
319	л	graphs. Inform. and Comput., 85(1):12-75, 1990. doi:10.1016/0890-5401(90)90043-H.
320	4	bruno Courcene and Joost Engennet. Graph structure and mondaic second-order logic,
321		Press Cambridge 2012 A language-theoretic approach With a foreword by Maurice Nivet
322		doi:10_1017/CB09780511977619
323	5	Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
325	-	problems on graphs of bounded clique-width. <i>Theory Comput. Syst.</i> , 33(2):125–150, 2000.
326		doi:10.1007/s002249910009.
327	6	Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
328		Berlin, third edition, 2005.
329	7	S. Feferman and R. L. Vaught. The first order properties of products of algebraic systems.
330		Fundam. Informaticae, 47(1-3):57-103, 1959. URL: http://eudml.org/doc/213526.
331	8	Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The "art of trellis decoding" is fixed-parameter
332		tractable. IEEE Trans. Inform. Theory, 63(11):7178-7205, 2017. doi:10.1109/TIT.2017.
333	-	2740283.
334	9	Manfred Kufleitner. The height of factorization forests. In <i>Mathematical foundations of</i>
335		computer science 2008, volume 5162 of Lecture Notes in Comput. Sci., pages 443–454. Springer,
336	10	Berlin, 2008. ao1:10.1007/978-3-540-85238-4_36.
337	10	Foise and Cabriele Puppis editors 50th International Colleguium on Automata Languages
338		and Programming ICALP 2023 July 10-1/ 2023 Paderborn Germany volume 261 of
340		LIPIcs, pages 132:1–132:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
341		10.4230/LIPIcs.ICALP.2023.132.
342	11	Johann A. Makowsky. Algorithmic uses of the feferman-vaught theorem. Ann. Pure Appl.
343		Log., 126(1-3):159-213, 2004. doi:10.1016/j.apal.2003.11.002.
344	12	Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
345		A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
346		of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland,
347		August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
348		520-531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.
349	13	Detlef Seese. Linear time computable problems and logical descriptions. In Andrea Corradini
350		and Ugo Montanari, editors, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph
351		newriting and Computation, SEGRAGRA 1995, Volterra, Italy, August 28 - September 1, 1005 volume 2 of Electronic Notes in Theoretical Computer Science parce 246, 250. Electronic
352		1995, volume 2 of Electronic Notes in Theoretical Computer Science, pages 240–259. Elsevier,
353	14	Imre Simon Factorization forests of finite height Theoret Comput Sci 72(1):65-04 1000
355	<u> </u>	doi:10.1016/0304-3975(90)90047-L.