¹ **1 Preliminaries**

² The set of positive integers (including 0) is denoted by **N** and for a positive integer *n*, the set $\{1, \ldots, n\}$ of integers is denoted as [*n*]. For $m, n \in \mathbb{N}$, we write $\llbracket m, n \rrbracket$ for the interval $\{m, \ldots, n\}$. For a set *V* and $x \in V$, the singleton $\{x\}$ shall be often written simply as x. The power set of a finite set *V* is denoted by 2^V and we write |*V*| to denote the size of *V*. A partition of a set *V* is a collection $\{V_1, \ldots, V_n\}$ of non-empty and pairwise non-intersecting subsets of *V*, called *blocks*, such that $\bigcup_{1 \leq i \leq n} V_i = V$. For an equivalence relation \equiv on $V \times V$, we denote by V/\equiv the set of equivalence classes of \equiv and write $[Y]_{\equiv}$ to denote the 9 equivalence class of $Y \in V$. Recall that the set of equivalence classes forms a partition.

 Λ *set system* **S** is a pair (S, \mathcal{S}) where *S* is a finite set and *S* is a collection of subsets of *S*. ¹¹ We refer to *S* as the *ground set*, and members of S as *hyperedges*. We use boldface capital 12 letters to denote set systems, *e.g.*, **S**, **M**; capital letters for ground sets, *e.g.*, *S*, *M*; and ¹³ calligraphic letters for set of hyperedges, *e.g.*, S, M. We follow [\[6\]](#page-8-0) for our graph terminology. ¹⁴ For a graph G, we denote by $V(G)$ its vertex set, and by $E(G)$ its edge set; an edge between ¹⁵ *x* and *y* in an undirected graph is denoted by *xy* (equivalently *yx*). It is common to call ¹⁶ vertices of a tree *nodes*.

¹⁷ We are going to prove the following.

 \bullet **Theorem 1.** Let *k* and *q* be positive integers. There is an elementary function f such that 19 *every first-order formula* φ *of quantifier-rank q can be checked in time* $f(k, q) \cdot poly(n)$ *in* ²⁰ *graphs of linear clique-width at most k.*

²¹ We organise this section as follows. The notion of *linear clique-width* is introduced in ²² Section [1.1,](#page-0-0) while *first-order logic* and *Feferman-Vaught Theorem* are introduced in Section ²³ [1.2.](#page-1-0)

²⁴ **1.1 Linear clique-width**

²⁵ We will follow [\[1\]](#page-8-1) for the definition of *linear clique-width* as we will use their semi-group ²⁶ structure. If *k* is a positive integer, a graph **G** is said *k-labeled* if every vertex of **G** receives $_{27}$ a label from $[k]$, and each vertex of **G** labeled *i* is called an *i*-labeled vertex. The labeling ²⁸ function of a *k*-labeled graph is denoted by $\alpha_{\mathbf{G}}$. The following operations are defined on ²⁹ *k*-labeled graphs:

30 **Relabeling operation** For every function $f : [k] \rightarrow [k]$, let ρ_f be the operation that takes as ³¹ input a *k*-labeled graph **G** and outputs the *k*-labeled graph **G** with labeling function 32 $f \circ \alpha_{\mathbf{G}}$.

33 **Join operation** For every symmetric subset *S* of $[k] \times [k]$, let \otimes_S be the binary operation ³⁴ that takes as inputs two *k*-labeled graphs **G** and **H** and outputs the *k*-labeled graph **K** 35 where $\alpha_K = \alpha_G \cup \alpha_H$, and **K** is obtained from the disjoint union of **G** and **H** and adding 36 all edges in the set $\{xy \mid x \in G, y \in H, (\alpha_{\mathbf{G}}(x), \alpha_{\mathbf{H}}(y)) \in S\}$. We denote **K** as $\mathbf{G} \otimes_S \mathbf{H}$. 37 **Constant** For every $i \in [k]$, let i be the k-labeled graph with a single vertex labeled i and no ³⁸ edge.

39 **Adding a vertex** For every $i \in [k]$ and $X \subseteq [k]$, let $a_{i,X}$ be the operation that takes as 40 input a *k*-labeled graph **G** and outputs **G** \otimes_S **i** with labeling function $\alpha_G \cup \alpha_i$ where 41 $S = \{i\} \times X \cup X \times \{i\}.$

 Let **LCW***^k* be the alphabet {a*i,X* | *i* ∈ [*k*]*, X* ⊆ [*k*]} ∪ {*ρ^f* | *f* : [*k*] → [*k*]}. A *width-k linear clique-width expression* is a word over the alphabet **LCW***k*. Every width-*k* linear clique-width expression *w* can be evaluated inductively into a *k*-labeled graph, denoted by $\mathbf{val}(w)$, as follows:

- \blacksquare **val**(ρ_f) is the empty-graph,
- $\mathbf{val}(\mathsf{a}_{i,X})$ is the *k*-labeled graph i,
- $\mathbf{val}(u \rho_f)$ is the *k*-labeled graph $\rho_f(\mathbf{val}(u)),$
- $\mathbf{val}(u \, \mathsf{a}_{i,X})$ is the *k*-labeled graph $\mathsf{a}_{i,X}(\mathbf{val}(u))$.

50 The linear clique-width of a graph \bf{G} , denoted by $\mathsf{lcw}(\bf{G})$, is the least *k* such that there 51 is a word *w* in LCW_k with **G** is isomorphic to **val**(*w*) after forgetting the labels of **val**(*w*).

⁵² **1.2 First-order logic**

 We refer to [\[4\]](#page-8-2) for a complete presentation of FO logic, and we shortly introduce it now. Define a *vocabulary* to be a finite set of relation names, each one being associated with an *arity* in **N**. A *relational structure* **A** over the vocabulary Σ (Σ*-structure* for short) consists in a set *A*, called the *universe*, and for each relation name $R \in \Sigma$, a relation $R^{\mathbb{A}} \subseteq A^k$ with *k* the arity of R.

 58 Let V be a countable set of variables, each being either a variable ranging over individual ⁵⁹ elements of the universes, called an FO *variable*, and use lower-case letters to denote them. 60 The *atomic formulas* are $x = y$ and $R(x_1, \ldots, x_k)$ where R is a *k*-ary relation name of Σ, 61 *x*₁, ..., *x*_k are FO variables. An FO *formula* over Σ is either an atomic formula, or it is 62 of the inductive form $\neg \varphi$, $\varphi \vee \psi$, $\exists x \varphi$, where φ and ψ are FO formulas. We also use the 63 classical syntactic sugars $x \neq y$, $\forall x \varphi$, $\varphi \wedge \psi$, $\varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi$ for the formulas $\neg(x = y)$, 64 $\neg \exists x \neg \varphi, \neg (\neg \varphi \land \neg \psi), \neg \varphi \lor \psi, \text{ and } (\varphi \to \psi) \land (\psi \to \varphi), \text{ respectively.}$

⁶⁵ A variable is *free* in a formula if it is not bound by a quantifier (∃ or ∀). We write 66 $\varphi(x_1, \ldots, x_p)$ to say that x_1, \ldots, x_p are among the free variables of φ . An FO *sentence* is an 67 FO formula without free variables. The size of a formula φ is simply defined as the number of symbols in it and is denoted by $|\varphi|$. The *quantifier-rank* of an FO formula φ , denoted by ⁶⁹ qr(*φ*), is defined inductively as follows:

$$
\text{or} \qquad \text{qr}(\varphi) = \begin{cases} 0 & \text{if } \varphi \text{ is atomic,} \\ \text{qr}(\psi) & \text{if } \varphi = \neg \psi, \\ \max\{\text{qr}(\psi_1), \text{qr}(\psi_2)\} & \text{if } \varphi = \psi_1 \vee \psi_2, \\ 1 + \text{qr}(\psi) & \text{if } \varphi = \exists x \psi. \end{cases}
$$

 71 An FO formula is *quantifier-free* if its quantifier-rank is 0. We denote by $FO(\Sigma)$ the set of f_{72} first-order formulas over Σ, and by $FO^q(Σ)$ the set of first-order sentences of quantifier-rank ⁷³ at most *q*. We simply write FO or FO^q when Σ is clear from the context. We denote by F^4 F^4 F^4 the set of FO formulas with quantifier-rank at most *q* and having at most *t* free ⁷⁵ variables.

⁷⁶ Let **A** be a Σ-structure and *φ* be an FO formula. A V*-valuation on* **A** is a mapping *ν* τ ⁷ that assigns to each FO variable of V an element of A. We say that (\mathbb{A}, ν) *models* φ , denoted ⁷⁸ by $(A, \nu) \models \varphi$, when one of the following cases holds: φ is $R(x_1, \ldots, x_k)$ for some relation $\forall x \in \mathbb{R}^n$ and $\forall x \in \mathbb{R}^n$, $\forall (x, y) \in \mathbb{R}^n$, $\forall y \in \mathbb{R}^n$, $\forall (x, y) = \forall (y)$, $\forall (x, y) \in \mathbb{R}^n$, \forall as a (A, ν) models both φ_1 or φ_2 ; φ is $\exists x \psi$ and there exists a *V*-valuation ν' on A such \mathcal{L}_{B1} that $(\mathbb{A}, \nu') \models \psi$ and ν' agree on all variable names other than *x*. We say that A θ ₈₂ *models a formula φ*, denoted by $\mathbb{A} \models \varphi$, if $(\mathbb{A}, \nu) \models \varphi$ for some V-valuation *ν* on \mathbb{A} . If *φ*(*x*) is 83 a formula with *x* a free variable, then for a structure \mathbb{A} and $u \in A$, we write $\varphi[u/x]$ to mean \mathbb{R}^4 that any *V*-valuation on A we will consider for φ will map *x* to *u*.

For a vocabulary Σ , let us denote by S^{Σ} the set of relational structures over the vocabulary Ω . A *class of relational structures over* Σ is a subset C of S^{Σ} which is closed under isomorphism. 87 If \mathcal{L} is a set of FO formulas, we define the *L*-theory of a Σ-structure A, denoted by $\text{Th}_{\mathcal{L}}(\mathbb{A})$, 88 as the set of formulas in L that A models. It is worth mentionning that $\text{Th}_{\mathcal{L}}(\mathbb{A}) = \text{Th}_{\mathcal{L}}(\mathbb{B})$ ⁸⁹ whenever **A** is isomorphic to **B**.

⁹⁰ **2 Proof of Theorem [1](#page-0-1)**

⁹¹ As we have seen above, one can associate with each graph **G** of linear clique-width at most *k* ⁹² a word in LCW_k^+ that can be evaluated into **G**. Using the semi-group homomorphism *h*, defined in [\[1\]](#page-8-1), that maps every word in LCW_k^+ into an element of a semi-group of size at ⁹⁴ most $2^{2^{O(k)}}$, we obtain from Simon's Factorisation Forest Theorem that every graph **G** of ⁹⁵ linear clique-width at most *k* admits a tree-like decomposition of height, called *h*-rank of **G**, ⁹⁶ at most $3 \cdot 2^{2^{O(k)}}$. We will prove, by induction, that any FO-formula of quantifier-rank *q* can ⁹⁷ be solved in time $f(q) \cdot poly(n)$, where f is a tower of exponentials of height depending only ⁹⁸ on the *h*-rank of **G**. We introduce Simon's Factorisation Forest Theorem in Section [2.1,](#page-2-0) the ⁹⁹ semi-group homomorphism in Section [2.2,](#page-2-1) an upper-bound on the number of FO^q-theories ¹⁰⁰ based on the structure of the Simon's Forest Factorisation in Section [2.3,](#page-4-0) and the algorithm ¹⁰¹ in Section [2.4](#page-7-0) which uses Colcombet's deterministic algorithm for computing Simon's Forest ¹⁰² Factorisation.

¹⁰³ **2.1 Simon's forest factorisation theorem**

 Remind that a *semi-group* is a set *S* equipped with an associative binary operation. Notice also that A^* is the set of finite words over the alphabet A , while A^+ is the set of non-empty finite words over *A*, and each equipped with concatenation · is a semi-group. An *idempotent element* in a semi-group (S, \circ) is an element *e* such that $e \circ e = e$. For two semi-groups $108 \left(S_1, o_1 \right)$ and (S_2, o_2) , a *semi-group homomorphism* is a function $h : S_1 \rightarrow S_2$ such that $h(x \circ_1 y) = h(x) \circ_2 h(y).$

110 Let (S, \circ) be a semi-group and A an alphabet. For a semi-group homomorphism h: *A*⁺ \rightarrow *S*, an *h-factorisation* of a word $w \in A^*$ is a sequence (w_1, \ldots, w_n) such that

- 112 **1.** $w = w_1 \cdot w_2 \cdot \cdots \cdot w_n$
- $|w_i|$ < |*w*| for all $i \in [n]$, and

114 **3.** $h(w_1) = h(w_2) = \cdots = h(w_n)$ is idempotent if $n \geq 3$.

The *h*-rank of a word $w \in A^*$ is defined inductively as follows : single letters have *h*-rank 116 1, and for every $w \in A^*$ of length at least 2, its *h*-rank is

$$
1 + \min_{(w_1, \ldots, w_n) \text{ is an } h \text{-factorisation of } w} \left(\max_{1 \le i \le n} \{ h \text{-rank of } w_i \} \right).
$$

¹¹⁸ Imre Simon proved in [\[14\]](#page-8-3) that the *h*-rank of any word is upper-bounded by a function ¹¹⁹ on the size of the target semi-group, which we refer below with the improvement given in [\[9\]](#page-8-4).

¹²⁰ ▶ **Theorem 2** (Simon's Forest Factorisation Theorem [\[9\]](#page-8-4))**.** *Let S be a finite semi-group and let* $h : A^* \to S$ *be a semi-group homomorphism. Then, every word* $w \in A^+$ *has h-rank at* $122 \text{ most } 3 \cdot |S|$.

¹²³ **2.2 A semi-group for words in LCW***^k*

 α Our proof will be an induction based on the *h*-rank of words in LCW_k^+ , for some semi-group ¹²⁵ homorphism *h*. Let's define this semi-group homomorphism borrowed from [\[1\]](#page-8-1).

126 A *k*-derivation is a triple $\sigma = (\mathbf{G}, \lambda, \gamma)$ where

- G is a *k*-labeled graph, called *underlying graph* of σ ,
- $\lambda : \mathbf{G} \to 2^{[k]}$ assigns to each vertex *x* of *G* its profile,
- ¹²⁹ \bullet $\gamma : [k] \rightarrow [k]$ is a *relabeling* function.

¹³⁰ An *atomic k-derivation* is a *k*-derivation whose underlying graph has at most one vertex. 131 The composition of two *k*-derivations $\sigma_1 = (\mathbf{G}_1, \lambda_1, \gamma_1)$ and $\sigma_2 = (\mathbf{G}_2, \lambda_2, \gamma_2)$, denoted 132 by $\sigma_1 \otimes \sigma_2$, is the *k*-derivation σ obtained as follows :

- the underlying graph of σ is the graph obtained from the disjoint union of $\rho_{\gamma_2}(\mathbf{G}_1)$ and G_2 where we add an edge between a vertex x of G_1 and a vertex y of G_2 whenever 135 $\alpha_{\mathbf{G}_1}(x) \in \lambda_2(y)$. Notice that the labeling function of the underlying graph of σ is 136 $γ_2 ∘ α_{\mathbf{G}_1} ∪ α_{\mathbf{G}_2}$.
- 137 **••** The profile of σ is $\lambda_1 \cup \gamma_1^{-1} \circ \lambda_2$.
- 138 **The relabeling function of** σ **is** $\gamma_2 \circ \gamma_1$ **.**

¹³⁹ As claimed in [\[1\]](#page-8-1) it is not hard to see that ⊗ is associative, and so the set of *k*-derivations ¹⁴⁰ equipped with the composition operation ⊗ is a semi-group. Let *S^k* be the semi-group 141 generated by the set of atomic k -derivations. It is not hard to see that S_k is finitely generated. 142 The following proved in $[1]$ is a reformulation of width- k linear clique-width expressions.

¹⁴³ ▶ **Lemma 3** ([\[1,](#page-8-1) Lemma 4.2])**.** *If* **G** *has linear clique-width at most k, then it is the underlying* 144 *graph of a* k -derivation from S_k .

Let $\sigma = (\mathbf{G}, \lambda, \gamma)$ be a *k*-derivation. For $c = (i, X) \in [k] \times 2^{[k]}$, we call the set of 146 *i*-labeled vertices of **G** with profile *X* a *c*-class and denote it by $\sigma[c]$. Let \mathcal{C}_k denote the ¹⁴⁷ set $\{(i, X) \in [k] \times 2^{[k]}\}$, that we call for simplicity *classes*. We are now ready to define the 148 finite semi-group T_k , called *abstraction semi-group*, which is a substructure of the abstraction ¹⁴⁹ semi-group defined in [\[1\]](#page-8-1).

150 **• Definition 4.** *The* abstraction *of a k*-derivation σ , denoted by $[\sigma]$, is the triple (L, γ) ¹⁵¹ *where:*

- \mathcal{L} **L** is the set $\{c \in \mathcal{C}_k \mid \sigma[c] \neq \emptyset\}$, i.e., the set of non-empty *c*-classes.
- γ *is the relabeling function of* σ *.*

 154 The following now summarises the semi-group structure of T_k , the set of abstractions of ¹⁵⁵ *k*-derivations and is corrolary of the fact that "having the same abstraction" is a congruence ¹⁵⁶ in *Sk*.

 157 **▶ Lemma 5** ([\[1\]](#page-8-1)). *There is an associative operation* $[\tilde{\otimes}]$ *such that* $[\sigma_1 \otimes \sigma_2] = [\sigma_1] [\tilde{\otimes}][\sigma_2]$ *.* 158 *Moreover, the set* T_k *has size at most* $2^{2^{O(k)}}$ *.*

¹⁵⁹ The induction will be on *k*-derivations, and so we will for simplicity use first-order logic 160 on *k*-derivations instead of graphs. We will consider each *k*-derivation $\sigma = (\mathbf{G}, \lambda, \gamma)$ as the ¹⁶¹ relational structure over the vocabulary edg representing the edge relation of the underlying 162 graph **G**, *k* constants c_1, \ldots, c_k representing the set [*k*] and disjoint from the vertex set of 163 the underlying graph, the predicate P_c , for a class $c \in \mathcal{C}_k$, where $P_c(x)$ holds if x is a vertex ¹⁶⁴ and belongs to the *c*-class, and binary predicate ρ representing the relabeling function γ (we 165 can add the axiom that ρ is a function on every formula using ρ). We will need the following ¹⁶⁶ which is straighforward.

167 **Example 167** Comma 6. Let *k* and *q* be positive integers. If the two *k*-derivations σ_1 and σ_2 are such 168 *that* $\text{Th}_{FO^q}(\sigma_1) = \text{Th}_{FO^q}(\sigma_2)$, then $[\sigma_1] = [\sigma_2]$.

Proof. If $c \in \mathcal{C}_k$ is a class such that $\sigma_1[c] \neq \emptyset$, but $\sigma_2[c] = \emptyset$, then the formula $P_c(x)$ will be ¹⁷⁰ satisfied by σ_1 , but not σ_2 . One checks in a similar way that they have the same relabeling 171 function.

 It is well-known from Feferman-Vaught Theorem [\[7\]](#page-8-5) that the FO-theory of a generalised product of two structures can be computed from the FO-theories of the two operands, where examples of generalised products are quantifier-free transductions [\[11\]](#page-8-6). We refer to [\[4\]](#page-8-2) for the definition of transductions, however it is not hard to prove that the composition operation of *k*-derivations is a quantifier-free transduction.

177 \triangleright **Observation 7.** Let *k* be a positive integer. There is a quantifier-free transduction τ on 178 *the vocabulary of k-derivations such that* $\sigma_1 \otimes \sigma_2 = \tau(\sigma_1 \oplus \sigma_2)$ *, for every two k-derivations* ¹⁷⁹ *σ*¹ *and σ*2*.*

¹⁸⁰ We can therefore state the following version of Feferman-Vaught Theorem for the ⊗ $_{181}$ operation. We refer to [\[7,](#page-8-5) [11\]](#page-8-6) for more information.

¹⁸² ▶ **Theorem 8** ([\[7,](#page-8-5) Theorem 5.4])**.** *Let s and q be positive integers. Then, for every sequence* 183 $\sigma_1, \ldots, \sigma_s$ of *k*-derivations, $\text{Th}_{FOq}(\sigma)$ depends only on $\text{Th}_{FOq}(\sigma_1), \ldots, \text{Th}_{FOq}(\sigma_s)$.

184 For a positive integer *q*, we write $\sigma_1 \equiv_q \sigma_2$ if $\mathsf{Th}_{\text{FO}^q}(\sigma_1) = \mathsf{Th}_{\text{FO}^q}(\sigma_2)$. Notice that \equiv_q is 185 an equivalence relation, and by Lemma [6,](#page-3-0) if $\sigma_1 \equiv_q \sigma_2$, then $[\sigma_1] = [\sigma_2]$. We can derive the ¹⁸⁶ following as a corollary of Theorem [8.](#page-4-1)

 187 **Lemma 9.** Let *k* and *q* be positive integers. If σ_1 and σ_2 are two \equiv_q -equivalent *k*-derivations, 188 then, for every two k-derivations σ_l and σ_r , it holds that $\sigma_l \otimes \sigma_1 \otimes \sigma_r \equiv_q \sigma_l \otimes \sigma_2 \otimes \sigma_r$.

Proof. By Theorem [8,](#page-4-1) the \equiv_q -equivalence class of $\sigma_l \otimes \sigma_l \otimes \sigma_r$ depends only on the \equiv_q -¹⁹⁰ equivalence classes of σ_l , σ_1 and σ_r . Since σ_1 and σ_2 are \equiv_q -equivalent, the statement follows $_{191}$ by Theorem [8.](#page-4-1)

192 2.3 An upper-bound on the number of FO^q-theories

193 Let $h_k: S_k \to T_k$ be the semi-group homomorphism described in Section [2.2.](#page-2-1) Let $f_1(q)$ $2^{k \cdot 2^k \cdot k^k}$, and for every $\ell > 1$, let $f_{\ell}(q) = 2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}}}$ $194 \quad 2^{k \cdot 2^{k \cdot k}}$, and for every $\ell > 1$, let $f_{\ell}(q) = 2^{2^{k \cdot (j_{\ell-1}(q)+1)}}$. It is not hard to check ¹⁹⁵ that for every *ℓ*, *fℓ*(*q*) is a tower of 2 whose height depends only on *ℓ*. We are going to prove ¹⁹⁶ the following, which combines with Lemma [3](#page-3-1) and Theorem [2](#page-2-2) implies Theorem [1.](#page-0-1)

¹⁹⁷ ▶ **Proposition 10.** *Let q be a fixed positive integer. The number of* ≡*q-equivalence classes* 198 *on k*-derivations of h_k -rank at most ℓ *is upper-bounded by* $f_{\ell}(q)$ *.*

199 The proof will be by induction on the h_k -rank of *k*-derivations of S_k , and we follow the ²⁰⁰ structure of Simon's factorisation.

Basic case. By definition, every atomic *k*-derivation has h_k -rank 1. Because the underlying ²⁰² graph of each atomic *k*-derivation is a single vertex, an atomic *k*-derivation is obtained by ²⁰³ choosing a label, the profile of the single vertex and a labeling function. So, the number ²⁰⁴ of atomic *k*-derivations is upper-bounded by $k \cdot 2^k \cdot k^k$. Since each satisfied FO-formula $_{205}$ corresponds to a family of non-isomorphic substructure, each FO^q -theory corresponds to 206 a family of family of substructures. So, the number of equivalence classes of \equiv_q on atomic 207 *k*-derivations is upper-bounded by $f_1(q) = 2^{2^{k \cdot 2^k \cdot k^k}}$.

Binary factorisation. Assume that a *k*-derivation σ of h_k -rank ℓ is equal to $\sigma_1 \otimes \sigma_2$ and the h_k -rank of both σ_1 and of σ_2 is at most $\ell-1$. From Theorem [8,](#page-4-1) one can decide $Th_{FOq}(\sigma)$ 210 from $\text{Th}_{FOq}(\sigma_1)$ and $\text{Th}_{FOq}(\sigma_2)$, *i.e.*, each equivalence class of \equiv_q on *k*-derivations of h_k -rank ²¹¹ at most *ℓ* admitting a binary factorisation is a subset of pairs of equivalence classes on 212 *k*-derivations of h_k -rank at most $\ell - 1$, whose number is upper-bounded by $2^{2^{f_{\ell-1}(q)\cdot f_{\ell-1}(q)}}$.

Unranked factorisation. Assume now that a *k*-derivation $\sigma = (\mathbf{G}, \lambda, \gamma)$ of h_k -rank ℓ is equal 214 to $\sigma_1 \otimes \sigma_2 \otimes \cdots \otimes \sigma_n$ with $h_k(\sigma_1) = h_k(\sigma_2) = \cdots = h_k(\sigma_n) = h_k(\sigma) = (L, \gamma)$ is idempotent, and, for each $i \in [n]$, the h_k -rank of σ_i is at most $\ell - 1$. Notice that because $h_k(\sigma)$ is 216 idempotent, the function γ is also idempotent (on the semi-group of functions $[[k] \rightarrow [k]]$), ²¹⁷ and then by the definition of the operation ⊗, the relabeling function of each *k*-derivation *σ*_{*i*}, for *i* ∈ [*n*], is *γ*. So, let's denote *σ*_{*s*} by (**G**_{*s*}, $λ$ _{*s*}, $γ$), for each *s* ∈ [*n*]. As noticed in [\[1\]](#page-8-1), we ²¹⁹ have *γ*(*i*) = *i*, for each *i* ∈ *γ*([*k*]). Similarly, a *c*-class is non-empty in *σ^s* if and only if it is α ²²⁰ non-empty in *σ*^{*t*} if and only if it is non-empty in *σ*, for all *s*, *t* ∈ [*n*]. Since all the *σ*^{*i*}'s have ²²¹ the same relabeling function, by Lemma [9,](#page-4-2) we can derive the following.

222 **► Lemma 11.** *The two k-derivations* σ *and* $\mathcal{R}_1 \otimes \mathcal{R}_2 \otimes \cdots \otimes \mathcal{R}_n$ *are* \equiv_q *-equivalent where* \mathcal{R}_s 223 *is any representative of the* \equiv_q *-equivalence class of* σ_s *, for each* $s \in [n]$ *.*

Let $\mathcal{A}_{k,\ell}^q$ be an alphabet where letters are in one-to-one correspondence with a fixed set 225 of representatives of the \equiv_q -equivalence classes on *k*-derivations of h_k -rank at most $\ell-1$. α ²²⁶ By inductive hypothesis, the size of $\mathcal{A}_{k,\ell}^q$ is upper-bounded by $f_{\ell-1}(q)$. Because each σ_s , 227 for $s \in [n]$ has h_k -rank at most $\ell - 1$, we can replace the word $\sigma_1 \sigma_2 \cdots \sigma_n$ by the word $w(\sigma) = w_1 w_2 \cdots w_n$ on $\mathcal{A}_{k,\ell}^q$, where, for each $s \in [n]$, w_s is the \equiv_q -representative of σ_s in $\mathcal{A}_{k,\ell}^q$. By Lemma [11,](#page-5-0) the two *k*-derivations σ and $w_1 \otimes w_2 \otimes \cdots \otimes w_n$ are \equiv_q -equivalent. Our 230 goal is to prove that if $n > 2q$, then there is a set F of words $w_1w_2\cdots w_r$ of length at ²³¹ most 2*q* on the alphabet $\mathcal{A}_{k,\ell}^q$ and such that the \equiv_q -equivalence class of σ can be derived from the \equiv_q -equivalence classes of words in the set F. Let's add the new letter \emptyset^γ_λ as the triple $(\emptyset, \lambda, \gamma)$, and for every *k*-derivation $\sigma' = (\mathbf{G}', \lambda', \gamma')$, the *k*-derivation $\sigma' \otimes \emptyset_{\lambda}^{\gamma}$ is the *k*-derivation $(ρ_γ(**G**'), λ', γ ∘ γ')$.

For a word $w = w_1 \cdots w_r$ on $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_\lambda^{\gamma}\}\)$, an FO formula θ and a V-valuation ν on $w_1 \otimes w_2 \otimes \cdots \otimes w_r$, we denote by $b^{\theta,\nu'}_w$ the predicate $(w_1 \otimes w_2 \otimes \cdots \otimes w_r, \nu) \models \theta$.

Example 12. Let q and t be positive integers and let φ be an FO-formula in FO^q[t]. If $n \geq 2(q+t)+1$, then, for every V-valuation ν on σ of the *t* variables of φ , there is a set of \mathcal{F}_{φ} *of pairs* (w, θ) *and a boolean function* B_{φ} *using the predicates* $\{b_w^{\theta, \nu} \mid (w, \theta) \in \mathcal{F}_{\varphi}\}$ *, where each w is a word on* $\mathcal{A}_{k,\ell}^q \cup \{\emptyset^n_{\lambda}\}\$ *and is of length at most* $2(q+t)$ *and* θ *a sub-formula of* φ *, such that*

 $(\sigma, \nu) \models \varphi$ *if and only if* B_{φ} *is satisfiable.*

Proof. The proof is by induction on $|\varphi| + q$ and follows the structure of FO formulas.

238 **1.** If φ is quantifier-free, *i.e.*, $q = 0$, then the satisfiability of φ depends only on the *k*-

derivations in the Forest Factorisation of σ that contain $\nu(x)$, for *x* a free variable in φ . 240 Let $\sigma_{i_1}, \ldots, \sigma_{i_r}$ be the *k*-derivations that contain $\nu(x)$, for all free variables *x* of φ (with ²⁴¹ *r* $\leq t$). Then, let *w* be obtained from $w(\sigma)$ by removing the letters whose indices are 242 between w_{i_j} and $w_{i_{j+1}}$ when $i_j < i_{j+1} - 1$, *i.e.*, i_j and i_{j+1} are not consecutive, and possibly after w_{i_r} if $i_r \neq n$. Let $\mathcal{F}_{\varphi} = \{(w, \varphi)\}\$ and *B*^{ϕ} = *b*^{φ},^{*v*}. It is straigforward to check that (σ, ν) satisfies φ if and only if *B*_{φ} holds.

245 **2.** If $\varphi = \neg \psi$, then by inductive hypothesis there are a set \mathcal{F}_{ψ} and a boolean function B_{ψ} Ω_{246} *w* $\Omega_{w}^{6,\nu} \mid (w,\theta) \in \mathcal{F}_{\psi}$ such that (σ,ν) satisfies ψ if and only if B_{ψ} is satisfied, *i.e.*, (σ,ν) 247 satisfies $\neg \psi$ if and only if $\neg B_{\psi}$ is satisfied. We therefore let $\mathcal{F}_{\varphi} = \mathcal{F}_{\psi}$ and $B_{\varphi} = \neg B_{\psi}$.

248 **3.** If $\varphi = \psi_1 \vee \psi_2$, then by inductive hypothesis, there are, respectively, sets \mathcal{F}_1 and \mathcal{F}_2 , and boolean functions B_1 and B_2 on, respectively, $\{b_w^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_1\}$ and $\{b_w^{\theta,\nu} \mid (w,\theta) \in \mathcal{F}_2\}$, ²⁵⁰ such that $(σ, ν)$ satisfies $ψ_1$ (resp. $ψ_2$) if and only if B_1 (resp. B_2) is satisfied. Let $\mathcal{F}_{\varphi} = \mathcal{F}_{1} \cup \mathcal{F}_{2}$ and $B_{\varphi} = B_{1} \vee B_{2}$. We can thus conclude by inductive hypothesis that ²⁵² (*σ, v*) satisfies φ if and only if B_{φ} is satisfied.

253 **4.** Assume finally that $\varphi = \exists x \psi$. For each vertex $u \in V(G)$, let ν_u be the V-valuation on ²⁵⁴ *σ* where $\nu_u(x) = u$ and $\nu_u(y) = \nu(y)$ for every other free variable in ψ . By inductive hypothesis, there are a set \mathcal{F}_u and a boolean function B_u on $\{b_w^{\theta,\nu'} \mid (w,\theta) \in \mathcal{F}_u\}$ such that $(σ, ν')$ satisfies $ψ$ if and only if B_u is satisfied. Let $\mathcal{F}_φ = \bigcup_{u \in V(G)} \mathcal{F}_u$ and ²⁵⁷ $B_{\varphi} = \vee_{u \in V(G)} B_u$. We therefore have by inductive hypothesis that (σ, ν) satisfies φ if ²⁵⁸ and only if B_{φ} is satisfied.

$$
259
$$

260 The following shows that we can replace σ by a finite number of *k*-derivations so that the ²⁶¹ \equiv_q -equivalence of σ can be derived from their \equiv_q -equivalence classes.

▶ **Lemma 13.** Let *q* be a positive integer. There are at most $(f_{\ell-1}(q) + 1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}$ 262 *pairs* (w, θ) *with* w *a word of length at most* $2q$ *on* $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_\lambda^\gamma\}$ *and* θ *a formula in* $FO^{q'}[t]$ ′ $264 \text{ with } q' + t \leq q.$

Proof. First, The number of words on the alphabet $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_\lambda^{\gamma}\}\$ and of length at most 2^{*q*} is upper-bounded by $(f_{\ell-1}(q) + 1)^{2q}$. Now, each θ in FO^{q'} [*t*] with $q' + t \leq q$ is also 267 a formula in FO^q by replacing *θ* by $\exists x_1 \cdots x_t \theta$. For each such word $w = w_1 \cdots w_r$, let ²⁶⁸ $\sigma(w)$ be $w_1 \otimes w_2 \otimes \cdots \otimes w_r$. By applying Theorem [8,](#page-4-1) we obtain that the number of distinct ²⁶⁹ FO^q-theories among such $\sigma(w)$ is upper-bounded by $2^{(2^{f_{\ell-1}(q)})^{2q}}$. Therefore, the number of $\text{such pairs is upper-bounded by } (f_{\ell-1}(q) + 1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}.$

²⁷¹ We can now give an upper-bound on the number of \equiv_q -equivalence classes.

Proof of Proposition [10.](#page-4-3) By Lemma [12,](#page-5-1) for every *k*-derivation σ of h_k -rank ℓ and admitting a Forest Factorisation into $\sigma_1 \cdots \sigma_n$, either $n \leq 2q$ or, for every FO sentence φ in FO^q, there are a family \mathcal{F}_{φ} of pairs (w, θ) with θ a sentence in FO^q, *w* a word of length at most 2*q* on $\mathcal{A}_{k,\ell}^q \cup \{\emptyset_\lambda^{\gamma}\}\$ and a boolean function B_{φ} on $\{b_w^{\theta} \mid (w,\theta) \in \mathcal{F}_{\varphi}\}\$ such that σ satisfies φ if and only if B_{φ} is satisfied. By Lemma [13,](#page-6-0) the number of such pairs is upper-bounded by $(f_{\ell-1}(q)+1)^{2q}\cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}$. Let's denote by $\mathcal T$ the set of such pairs and let $\mathcal B$ be the set of boolean functions on subsets of \mathcal{T} . We can conclude that every FO^q sentence satisfied by such a σ is associated with a a boolean function in \mathcal{B} . It is worth noticing that the satisfaction of any boolean function in \mathcal{B} does depend only on the FO^q-theories of *k*-derivations of h_k -rank at most $\ell - 1$. Therefore, we can consider that for every *k*-derivation σ , its FO^q-theory is the set

 ${B_\varphi \in \mathcal{B} \mid B_\varphi \text{ is satisfied and } B_\varphi \text{ is associated with } (\sigma, \varphi)}$.

Now, since the number of boolean functions on p variables is upper-bounded by 2^p , the ²⁷³ set B is then upper-bounded by $2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}}$, *i.e.*, the number of possible 274 FO^q -theories is upper-bounded by $2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q} \cdot 2^{2^{(2^{f_{\ell-1}(q)})^{2q}}}}$.

²⁷⁵ **2.4 The algorithm**

 276 It is proved in [\[8\]](#page-8-7) that if a graph has linear clique-width at most k , then one can compute ²⁷⁷ in time $2^{O(k^3)} \cdot n^3$ a width-*p* linear clique-width expression with $p \leq 2^k + 1$, *i.e.*, if a graph **G** has linear clique-width at most k, then for some $p \leq 2^k + 1$, one can construct in time ²⁷⁹ $2^{O(k^3)} \cdot n^3$ a word *w* using atomic *p*-derivations in S_p , evaluating into a *p*-derivation *σ* having **G** as underlying graph. Moreover, any FO^q -sentence φ on **G** can be translated into an $_{281}$ FO^q-sentence $\varphi^{\#}$ on σ with the property that **G** satisfies φ if and only if σ satisfies $\varphi^{\#}$. The ²⁸² following version of Simon's Factorisation Forest Theorem was proved in [\[2\]](#page-8-8) and allows to ²⁸³ compute the Simon's Forest Factorisation.

 \blacktriangleright **Theorem 14** ([\[2\]](#page-8-8)). Let Σ be an alphabet. For every finite semi-group *S* and every semi-²⁸⁵ *group homomorphism* $h : \Sigma^+ \to S$, one can construct a deterministic finite state automata α ₂₈₆ that takes as input a word w in Σ^+ and outputs in time $O(|w|)$ a Simon's Forest Factorisation</sub> $_{287}$ *of w of h-rank at most* $3 \cdot |S|$ *.*

²⁸⁸ The algorithm is then a classical bottom-up dynamic programming algorithm that ²⁸⁹ computes the FO^q-theory by following the Forest Factorisation given by Theorem [14.](#page-7-1) Recall that the height of the tree is upper-bounded by $3 \cdot 2^{2^{O(p)}}$ and $p \leq 2^k + 1$. The FO^q-theory is ²⁹¹ computed as follows:

292 **1.** If the h_p -rank of σ is 0, then σ is an atomic p-derivation. So, we compute all the 293 non-isomorphic atomic *p*-derivations that are substructures of *σ*.

2. Assume now that the h_p -rank of a subword σ' of σ is ℓ . We compute the FO^q-theory of ²⁹⁵ σ' as follows.

a. If σ' admits a binary factorisation into σ_1 and σ_2 , then we have already computed the FO^q-theories of σ_1 and σ_2 . Therefore, the FO^q-theory of σ' can be computed by taking a subset \mathcal{T}_1 of the FO^q-theory of σ_1 , a subset \mathcal{T}_2 of the FO^q-theory of σ_2 and a boolean function on $\mathcal{T}_1 \cup \mathcal{T}_2$. Whenever the boolean function is satisfied, we add it to the FO^q-theory of σ' (by keeping only non-equivalent ones). Since the FO^q-theories 301 of σ_1 and of σ_2 are upper-bounded by $f_{\ell-1}(q)$, the computation can be done in time 302 $2^{O(f_{\ell-1}(q)\cdot f_{\ell-1}(q))}$.

b. If σ' admits an unranked factorisation into $\sigma_1 \sigma_2 \cdots \sigma_n$, then we compute the FO^q 303 from left to right as follows. Let t be the maximum such that we have computed the ³⁰⁵ FO^q -query of *σ*₁ ⊗ · · ⋅ ⊗ *σ*_{*t*} (recall that *t* ≥ 1 as the FO^{*q*}-theory of each *σ*_{*s*}, for *s* ∈ [*n*], ³⁰⁶ is already computed). We can now use the same procedure as in the binary case to compute the FO^q-query of $\sigma_1 \otimes \cdots \otimes \sigma_{t+1}$. Since we keep only the non-equivalent ³⁰⁸ ones, by Proposition [10,](#page-4-3) the time complexity is upper-bounded by a polynomial on $2^{2^{2 \cdot (f_{\ell-1}(q)+1)^{2q}\cdot2^{2^{(2^{f_{\ell-1}(q)}})^{2q}}}$ $2^{2^{2\sqrt{\ell-1}(q+1)}}$

