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1 Preliminaries1

The set of positive integers (including 0) is denoted by N and for a positive integer n, the2

set {1, . . . , n} of integers is denoted as [n]. For m,n ∈ N, we write Jm,nK for the interval3

{m, . . . , n}. For a set V and x ∈ V , the singleton {x} shall be often written simply as x.4

The power set of a finite set V is denoted by 2V and we write |V | to denote the size of V . A5

partition of a set V is a collection {V1, . . . , Vn} of non-empty and pairwise non-intersecting6

subsets of V , called blocks, such that
⋃

1≤i≤n Vi = V . For an equivalence relation ≡ on7

V × V , we denote by V/≡ the set of equivalence classes of ≡ and write [Y ]≡ to denote the8

equivalence class of Y ∈ V . Recall that the set of equivalence classes forms a partition.9

A set system S is a pair (S,S) where S is a finite set and S is a collection of subsets of S.10

We refer to S as the ground set, and members of S as hyperedges. We use boldface capital11

letters to denote set systems, e.g., S, M; capital letters for ground sets, e.g., S, M ; and12

calligraphic letters for set of hyperedges, e.g., S, M. We follow [6] for our graph terminology.13

For a graph G, we denote by V (G) its vertex set, and by E(G) its edge set; an edge between14

x and y in an undirected graph is denoted by xy (equivalently yx). It is common to call15

vertices of a tree nodes.16

We are going to prove the following.17

▶ Theorem 1. Let k and q be positive integers. There is an elementary function f such that18

every first-order formula φ of quantifier-rank q can be checked in time f(k, q) · poly(n) in19

graphs of linear clique-width at most k.20

We organise this section as follows. The notion of linear clique-width is introduced in21

Section 1.1, while first-order logic and Feferman-Vaught Theorem are introduced in Section22

1.2.23

1.1 Linear clique-width24

We will follow [1] for the definition of linear clique-width as we will use their semi-group25

structure. If k is a positive integer, a graph G is said k-labeled if every vertex of G receives26

a label from [k], and each vertex of G labeled i is called an i-labeled vertex. The labeling27

function of a k-labeled graph is denoted by αG. The following operations are defined on28

k-labeled graphs:29

Relabeling operation For every function f : [k] → [k], let ρf be the operation that takes as30

input a k-labeled graph G and outputs the k-labeled graph G with labeling function31

f ◦ αG.32

Join operation For every symmetric subset S of [k] × [k], let ⊗S be the binary operation33

that takes as inputs two k-labeled graphs G and H and outputs the k-labeled graph K34

where αK = αG ∪αH, and K is obtained from the disjoint union of G and H and adding35

all edges in the set {xy | x ∈ G, y ∈ H, (αG(x), αH(y)) ∈ S}. We denote K as G ⊗S H.36

Constant For every i ∈ [k], let i be the k-labeled graph with a single vertex labeled i and no37

edge.38

Adding a vertex For every i ∈ [k] and X ⊆ [k], let ai,X be the operation that takes as39

input a k-labeled graph G and outputs G ⊗S i with labeling function αG ∪ αi where40

S = {i} ×X ∪X × {i}.41

Let LCWk be the alphabet {ai,X | i ∈ [k], X ⊆ [k]} ∪ {ρf | f : [k] → [k]}. A width-k42

linear clique-width expression is a word over the alphabet LCWk. Every width-k linear43

clique-width expression w can be evaluated inductively into a k-labeled graph, denoted by44

val(w), as follows:45
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val(ρf ) is the empty-graph,46

val(ai,X) is the k-labeled graph i,47

val(uρf ) is the k-labeled graph ρf (val(u)),48

val(u ai,X) is the k-labeled graph ai,X(val(u)).49

The linear clique-width of a graph G, denoted by lcw(G), is the least k such that there50

is a word w in LCWk with G is isomorphic to val(w) after forgetting the labels of val(w).51

1.2 First-order logic52

We refer to [4] for a complete presentation of FO logic, and we shortly introduce it now.53

Define a vocabulary to be a finite set of relation names, each one being associated with an54

arity in N. A relational structure A over the vocabulary Σ (Σ-structure for short) consists in55

a set A, called the universe, and for each relation name R ∈ Σ, a relation RA ⊆ Ak with k56

the arity of R.57

Let V be a countable set of variables, each being either a variable ranging over individual58

elements of the universes, called an FO variable, and use lower-case letters to denote them.59

The atomic formulas are x = y and R(x1, . . . , xk) where R is a k-ary relation name of Σ,60

x1, . . . , xk are FO variables. An FO formula over Σ is either an atomic formula, or it is61

of the inductive form ¬φ, φ ∨ ψ, ∃xφ, where φ and ψ are FO formulas. We also use the62

classical syntactic sugars x ̸= y, ∀xφ, φ ∧ ψ, φ → ψ, and φ ↔ ψ for the formulas ¬(x = y),63

¬∃x¬φ, ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, and (φ → ψ) ∧ (ψ → φ), respectively.64

A variable is free in a formula if it is not bound by a quantifier (∃ or ∀). We write65

φ(x1, . . . , xp) to say that x1, . . . , xp are among the free variables of φ. An FO sentence is an66

FO formula without free variables. The size of a formula φ is simply defined as the number67

of symbols in it and is denoted by |φ|. The quantifier-rank of an FO formula φ, denoted by68

qr(φ), is defined inductively as follows:69

qr(φ) =


0 if φ is atomic,
qr(ψ) if φ = ¬ψ,
max{qr(ψ1), qr(ψ2)} if φ = ψ1 ∨ ψ2,

1 + qr(ψ) if φ = ∃xψ.

70

An FO formula is quantifier-free if its quantifier-rank is 0. We denote by FO(Σ) the set of71

first-order formulas over Σ, and by FOq(Σ) the set of first-order sentences of quantifier-rank72

at most q. We simply write FO or FOq when Σ is clear from the context. We denote by73

FOq[t] the set of FO formulas with quantifier-rank at most q and having at most t free74

variables.75

Let A be a Σ-structure and φ be an FO formula. A V-valuation on A is a mapping ν76

that assigns to each FO variable of V an element of A. We say that (A, ν) models φ, denoted77

by (A, ν) |= φ, when one of the following cases holds: φ is R(x1, . . . , xk) for some relation78

name R of arity k and (ν(x1), . . . , ν(xk)) ∈ RA; φ is x = y and ν(x) = ν(y); φ is φ1 ∨ φ279

and (A, ν) models both φ1 or φ2; φ is ∃xψ and there exists a V-valuation ν′ on A such80

that (A, ν′) |= ψ and ν and ν′ agree on all variable names other than x. We say that A81

models a formula φ, denoted by A |= φ, if (A, ν) |= φ for some V-valuation ν on A. If φ(x) is82

a formula with x a free variable, then for a structure A and u ∈ A, we write φ[u/x] to mean83

that any V-valuation on A we will consider for φ will map x to u.84

For a vocabulary Σ, let us denote by SΣ the set of relational structures over the vocabulary85

Σ. A class of relational structures over Σ is a subset C of SΣ which is closed under isomorphism.86
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If L is a set of FO formulas, we define the L-theory of a Σ-structure A, denoted by ThL(A),87

as the set of formulas in L that A models. It is worth mentionning that ThL(A) = ThL(B)88

whenever A is isomorphic to B.89

2 Proof of Theorem 190

As we have seen above, one can associate with each graph G of linear clique-width at most k91

a word in LCW+
k that can be evaluated into G. Using the semi-group homomorphism h,92

defined in [1], that maps every word in LCW+
k into an element of a semi-group of size at93

most 22O(k) , we obtain from Simon’s Factorisation Forest Theorem that every graph G of94

linear clique-width at most k admits a tree-like decomposition of height, called h-rank of G,95

at most 3 · 22O(k) . We will prove, by induction, that any FO-formula of quantifier-rank q can96

be solved in time f(q) · poly(n), where f is a tower of exponentials of height depending only97

on the h-rank of G. We introduce Simon’s Factorisation Forest Theorem in Section 2.1, the98

semi-group homomorphism in Section 2.2, an upper-bound on the number of FOq-theories99

based on the structure of the Simon’s Forest Factorisation in Section 2.3, and the algorithm100

in Section 2.4 which uses Colcombet’s deterministic algorithm for computing Simon’s Forest101

Factorisation.102

2.1 Simon’s forest factorisation theorem103

Remind that a semi-group is a set S equipped with an associative binary operation. Notice104

also that A∗ is the set of finite words over the alphabet A, while A+ is the set of non-empty105

finite words over A, and each equipped with concatenation · is a semi-group. An idempotent106

element in a semi-group (S, ◦) is an element e such that e ◦ e = e. For two semi-groups107

(S1, ◦1) and (S2, ◦2), a semi-group homomorphism is a function h : S1 → S2 such that108

h(x ◦1 y) = h(x) ◦2 h(y).109

Let (S, ◦) be a semi-group and A an alphabet. For a semi-group homomorphism h :110

A+ → S, an h-factorisation of a word w ∈ A∗ is a sequence (w1, . . . , wn) such that111

1. w = w1 · w2 · · · · · wn,112

2. |wi| < |w| for all i ∈ [n], and113

3. h(w1) = h(w2) = · · · = h(wn) is idempotent if n ≥ 3.114

The h-rank of a word w ∈ A∗ is defined inductively as follows : single letters have h-rank115

1, and for every w ∈ A∗ of length at least 2, its h-rank is116

1 + min
(w1,...,wn) is an h-factorisation of w

(
max

1≤i≤n
{h-rank of wi}

)
.117

Imre Simon proved in [14] that the h-rank of any word is upper-bounded by a function118

on the size of the target semi-group, which we refer below with the improvement given in [9].119

▶ Theorem 2 (Simon’s Forest Factorisation Theorem [9]). Let S be a finite semi-group and120

let h : A∗ → S be a semi-group homomorphism. Then, every word w ∈ A+ has h-rank at121

most 3 · |S|.122

2.2 A semi-group for words in LCWk123

Our proof will be an induction based on the h-rank of words in LCW+
k , for some semi-group124

homorphism h. Let’s define this semi-group homomorphism borrowed from [1].125

A k-derivation is a triple σ = (G, λ, γ) where126
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G is a k-labeled graph, called underlying graph of σ,127

λ : G → 2[k] assigns to each vertex x of G its profile,128

γ : [k] → [k] is a relabeling function.129

An atomic k-derivation is a k-derivation whose underlying graph has at most one vertex.130

The composition of two k-derivations σ1 = (G1, λ1, γ1) and σ2 = (G2, λ2, γ2), denoted131

by σ1 ⊗σ2, is the k-derivation σ obtained as follows :132

the underlying graph of σ is the graph obtained from the disjoint union of ργ2(G1) and133

G2 where we add an edge between a vertex x of G1 and a vertex y of G2 whenever134

αG1(x) ∈ λ2(y). Notice that the labeling function of the underlying graph of σ is135

γ2 ◦ αG1 ∪ αG2 .136

The profile of σ is λ1 ∪ γ−1
1 ◦ λ2.137

The relabeling function of σ is γ2 ◦ γ1.138

As claimed in [1] it is not hard to see that ⊗ is associative, and so the set of k-derivations139

equipped with the composition operation ⊗ is a semi-group. Let Sk be the semi-group140

generated by the set of atomic k-derivations. It is not hard to see that Sk is finitely generated.141

The following proved in [1] is a reformulation of width-k linear clique-width expressions.142

▶ Lemma 3 ([1, Lemma 4.2]). If G has linear clique-width at most k, then it is the underlying143

graph of a k-derivation from Sk.144

Let σ = (G, λ, γ) be a k-derivation. For c = (i,X) ∈ [k] × 2[k], we call the set of145

i-labeled vertices of G with profile X a c-class and denote it by σ[c]. Let Ck denote the146

set {(i,X) ∈ [k] × 2[k]}, that we call for simplicity classes. We are now ready to define the147

finite semi-group Tk, called abstraction semi-group, which is a substructure of the abstraction148

semi-group defined in [1].149

▶ Definition 4. The abstraction of a k-derivation σ, denoted by [σ], is the triple (L, γ)150

where:151

L is the set {c ∈ Ck | σ[c] ̸= ∅}, i.e., the set of non-empty c-classes.152

γ is the relabeling function of σ.153

The following now summarises the semi-group structure of Tk, the set of abstractions of154

k-derivations and is corrolary of the fact that "having the same abstraction" is a congruence155

in Sk.156

▶ Lemma 5 ([1]). There is an associative operation [⊗̃] such that [σ1 ⊗σ2] = [σ1] [⊗̃][σ2].157

Moreover, the set Tk has size at most 22O(k) .158

The induction will be on k-derivations, and so we will for simplicity use first-order logic159

on k-derivations instead of graphs. We will consider each k-derivation σ = (G, λ, γ) as the160

relational structure over the vocabulary edg representing the edge relation of the underlying161

graph G, k constants c1, . . . , ck representing the set [k] and disjoint from the vertex set of162

the underlying graph, the predicate Pc, for a class c ∈ Ck, where Pc(x) holds if x is a vertex163

and belongs to the c-class, and binary predicate ρ representing the relabeling function γ (we164

can add the axiom that ρ is a function on every formula using ρ). We will need the following165

which is straighforward.166

▶ Lemma 6. Let k and q be positive integers. If the two k-derivations σ1 and σ2 are such167

that ThFOq (σ1) = ThFOq (σ2), then [σ1] = [σ2].168



5

Proof. If c ∈ Ck is a class such that σ1[c] ̸= ∅, but σ2[c] = ∅, then the formula Pc(x) will be169

satisfied by σ1, but not σ2. One checks in a similar way that they have the same relabeling170

function. ◀171

It is well-known from Feferman-Vaught Theorem [7] that the FO-theory of a generalised172

product of two structures can be computed from the FO-theories of the two operands, where173

examples of generalised products are quantifier-free transductions [11]. We refer to [4] for the174

definition of transductions, however it is not hard to prove that the composition operation of175

k-derivations is a quantifier-free transduction.176

▶ Observation 7. Let k be a positive integer. There is a quantifier-free transduction τ on177

the vocabulary of k-derivations such that σ1 ⊗σ2 = τ(σ1 ⊕ σ2), for every two k-derivations178

σ1 and σ2.179

We can therefore state the following version of Feferman-Vaught Theorem for the ⊗180

operation. We refer to [7, 11] for more information.181

▶ Theorem 8 ([7, Theorem 5.4]). Let s and q be positive integers. Then, for every sequence182

σ1, . . . , σs of k-derivations, ThFOq (σ) depends only on ThFOq (σ1), . . . ,ThFOq (σs).183

For a positive integer q, we write σ1 ≡q σ2 if ThFOq (σ1) = ThFOq (σ2). Notice that ≡q is184

an equivalence relation, and by Lemma 6, if σ1 ≡q σ2, then [σ1] = [σ2]. We can derive the185

following as a corollary of Theorem 8.186

▶ Lemma 9. Let k and q be positive integers. If σ1 and σ2 are two ≡q-equivalent k-derivations,187

then, for every two k-derivations σl and σr, it holds that σl ⊗σ1 ⊗σr ≡q σl ⊗σ2 ⊗σr.188

Proof. By Theorem 8, the ≡q-equivalence class of σl ⊗σ1 ⊗σr depends only on the ≡q-189

equivalence classes of σl, σ1 and σr. Since σ1 and σ2 are ≡q-equivalent, the statement follows190

by Theorem 8. ◀191

2.3 An upper-bound on the number of FOq-theories192

Let hk : Sk → Tk be the semi-group homomorphism described in Section 2.2. Let f1(q) =193

2k·2k·kk , and for every ℓ > 1, let fℓ(q) = 222·(fℓ−1(q)+1)2q·22(2fℓ−1(q))2q

. It is not hard to check194

that for every ℓ, fℓ(q) is a tower of 2 whose height depends only on ℓ. We are going to prove195

the following, which combines with Lemma 3 and Theorem 2 implies Theorem 1.196

▶ Proposition 10. Let q be a fixed positive integer. The number of ≡q-equivalence classes197

on k-derivations of hk-rank at most ℓ is upper-bounded by fℓ(q).198

The proof will be by induction on the hk-rank of k-derivations of Sk, and we follow the199

structure of Simon’s factorisation.200

Basic case. By definition, every atomic k-derivation has hk-rank 1. Because the underlying201

graph of each atomic k-derivation is a single vertex, an atomic k-derivation is obtained by202

choosing a label, the profile of the single vertex and a labeling function. So, the number203

of atomic k-derivations is upper-bounded by k · 2k · kk. Since each satisfied FO-formula204

corresponds to a family of non-isomorphic substructure, each FOq-theory corresponds to205

a family of family of substructures. So, the number of equivalence classes of ≡q on atomic206

k-derivations is upper-bounded by f1(q) = 22k·2k·kk

.207



6

Binary factorisation. Assume that a k-derivation σ of hk-rank ℓ is equal to σ1 ⊗σ2 and the208

hk-rank of both σ1 and of σ2 is at most ℓ− 1. From Theorem 8, one can decide ThFOq (σ)209

from ThFOq (σ1) and ThFOq (σ2), i.e., each equivalence class of ≡q on k-derivations of hk-rank210

at most ℓ admitting a binary factorisation is a subset of pairs of equivalence classes on211

k-derivations of hk-rank at most ℓ− 1, whose number is upper-bounded by 22fℓ−1(q)·fℓ−1(q)
.212

Unranked factorisation. Assume now that a k-derivation σ = (G, λ, γ) of hk-rank ℓ is equal213

to σ1 ⊗σ2 ⊗ · · · ⊗σn with hk(σ1) = hk(σ2) = · · · = hk(σn) = hk(σ) = (L, γ) is idempotent,214

and, for each i ∈ [n], the hk-rank of σi is at most ℓ − 1. Notice that because hk(σ) is215

idempotent, the function γ is also idempotent (on the semi-group of functions [[k] → [k]]),216

and then by the definition of the operation ⊗, the relabeling function of each k-derivation217

σi, for i ∈ [n], is γ. So, let’s denote σs by (Gs, λs, γ), for each s ∈ [n]. As noticed in [1], we218

have γ(i) = i, for each i ∈ γ([k]). Similarly, a c-class is non-empty in σs if and only if it is219

non-empty in σt if and only if it is non-empty in σ, for all s, t ∈ [n]. Since all the σi’s have220

the same relabeling function, by Lemma 9, we can derive the following.221

▶ Lemma 11. The two k-derivations σ and R1 ⊗ R2 ⊗ · · · ⊗ Rn are ≡q-equivalent where Rs222

is any representative of the ≡q-equivalence class of σs, for each s ∈ [n].223

Let Aq
k,ℓ be an alphabet where letters are in one-to-one correspondence with a fixed set224

of representatives of the ≡q-equivalence classes on k-derivations of hk-rank at most ℓ − 1.225

By inductive hypothesis, the size of Aq
k,ℓ is upper-bounded by fℓ−1(q). Because each σs,226

for s ∈ [n] has hk-rank at most ℓ − 1, we can replace the word σ1σ2 · · ·σn by the word227

w(σ) = w1w2 · · ·wn on Aq
k,ℓ, where, for each s ∈ [n], ws is the ≡q-representative of σs in228

Aq
k,ℓ. By Lemma 11, the two k-derivations σ and w1 ⊗w2 ⊗ · · · ⊗wn are ≡q-equivalent. Our229

goal is to prove that if n > 2q, then there is a set F of words w1w2 · · ·wr of length at230

most 2q on the alphabet Aq
k,ℓ and such that the ≡q-equivalence class of σ can be derived231

from the ≡q-equivalence classes of words in the set F . Let’s add the new letter ∅γλ as the232

triple (∅, λ, γ), and for every k-derivation σ′ = (G′, λ′, γ′), the k-derivation σ′ ⊗ ∅γλ is the233

k-derivation (ργ(G′), λ′, γ ◦ γ′).234

For a word w = w1 · · ·wr on Aq
k,ℓ ∪ {∅γλ}, an FO formula θ and a V-valuation ν on235

w1 ⊗w2 ⊗ · · · ⊗wr, we denote by bθ,νw the predicate (w1 ⊗w2 ⊗ · · · ⊗wr, ν) |= θ.236

▶ Lemma 12. Let q and t be positive integers and let φ be an FO-formula in FOq[t]. If
n ≥ 2(q + t) + 1, then, for every V-valuation ν on σ of the t variables of φ, there is a set of
Fφ of pairs (w, θ) and a boolean function Bφ using the predicates {bθ,νw | (w, θ) ∈ Fφ}, where
each w is a word on Aq

k,ℓ ∪ {∅γλ} and is of length at most 2(q + t) and θ a sub-formula of φ,
such that

(σ, ν) |= φ if and only if Bφ is satisfiable.

Proof. The proof is by induction on |φ| + q and follows the structure of FO formulas.237

1. If φ is quantifier-free, i.e., q = 0, then the satisfiability of φ depends only on the k-238

derivations in the Forest Factorisation of σ that contain ν(x), for x a free variable in φ.239

Let σi1 , . . . , σir be the k-derivations that contain ν(x), for all free variables x of φ (with240

r ≤ t). Then, let w be obtained from w(σ) by removing the letters whose indices are241

not in {i1, . . . , ir} and by adding ∅γλ between wij and wij+1 when ij < ij+1 − 1, i.e., ij242

and ij+1 are not consecutive, and possibly after wir if ir ̸= n. Let Fφ = {(w,φ)} and243

Bφ = bφ,νw . It is straigforward to check that (σ, ν) satisfies φ if and only if Bφ holds.244

2. If φ = ¬ψ, then by inductive hypothesis there are a set Fψ and a boolean function Bψ245

on {bθ,νw | (w, θ) ∈ Fψ} such that (σ, ν) satisfies ψ if and only if Bψ is satisfied, i.e., (σ, ν)246

satisfies ¬ψ if and only if ¬Bψ is satisfied. We therefore let Fφ = Fψ and Bφ = ¬Bψ.247
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3. If φ = ψ1 ∨ ψ2, then by inductive hypothesis, there are, respectively, sets F1 and F2, and248

boolean functions B1 and B2 on, respectively, {bθ,νw | (w, θ) ∈ F1} and {bθ,νw | (w, θ) ∈ F2},249

such that (σ, ν) satisfies ψ1 (resp. ψ2) if and only if B1 (resp. B2) is satisfied. Let250

Fφ = F1 ∪ F2 and Bφ = B1 ∨ B2. We can thus conclude by inductive hypothesis that251

(σ, ν) satisfies φ if and only if Bφ is satisfied.252

4. Assume finally that φ = ∃xψ. For each vertex u ∈ V (G), let νu be the V-valuation on253

σ where νu(x) = u and νu(y) = ν(y) for every other free variable in ψ. By inductive254

hypothesis, there are a set Fu and a boolean function Bu on {bθ,ν′

w | (w, θ) ∈ Fu}255

such that (σ, ν′) satisfies ψ if and only if Bu is satisfied. Let Fφ =
⋃
u∈V (G) Fu and256

Bφ = ∨u∈V (G)Bu. We therefore have by inductive hypothesis that (σ, ν) satisifies φ if257

and only if Bφ is satisfied.258

◀259

The following shows that we can replace σ by a finite number of k-derivations so that the260

≡q-equivalence of σ can be derived from their ≡q-equivalence classes.261

▶ Lemma 13. Let q be a positive integer. There are at most (fℓ−1(q) + 1)2q · 22(2fℓ−1(q))2q

262

pairs (w, θ) with w a word of length at most 2q on Aq
k,ℓ ∪ {∅γλ} and θ a formula in FOq′

[t]263

with q′ + t ≤ q.264

Proof. First, The number of words on the alphabet Aq
k,ℓ ∪ {∅γλ} and of length at most265

2q is upper-bounded by (fℓ−1(q) + 1)2q. Now, each θ in FOq′
[t] with q′ + t ≤ q is also266

a formula in FOq by replacing θ by ∃x1 · · ·xtθ. For each such word w = w1 · · ·wr, let267

σ(w) be w1 ⊗w2 ⊗ · · · ⊗wr. By applying Theorem 8, we obtain that the number of distinct268

FOq-theories among such σ(w) is upper-bounded by 2(2fℓ−1(q))2q . Therefore, the number of269

such pairs is upper-bounded by (fℓ−1(q) + 1)2q · 22(2fℓ−1(q))2q

. ◀270

We can now give an upper-bound on the number of ≡q-equivalence classes.271

Proof of Proposition 10. By Lemma 12, for every k-derivation σ of hk-rank ℓ and admitting
a Forest Factorisation into σ1 · · ·σn, either n ≤ 2q or, for every FO sentence φ in FOq, there
are a family Fφ of pairs (w, θ) with θ a sentence in FOq, w a word of length at most 2q
on Aq

k,ℓ ∪ {∅γλ} and a boolean function Bφ on {bθw | (w, θ) ∈ Fφ} such that σ satisfies φ if
and only if Bφ is satisfied. By Lemma 13, the number of such pairs is upper-bounded by

(fℓ−1(q) + 1)2q · 22(2fℓ−1(q))2q

. Let’s denote by T the set of such pairs and let B be the set of
boolean functions on subsets of T . We can conclude that every FOq sentence satisfied by such
a σ is associated with a a boolean function in B. It is worth noticing that the satisfaction of
any boolean function in B does depend only on the FOq-theories of k-derivations of hk-rank
at most ℓ− 1. Therefore, we can consider that for every k-derivation σ, its FOq-theory is
the set

{Bφ ∈ B | Bφ is satisfied and Bφ is associated with (σ, φ)}.

Now, since the number of boolean functions on p variables is upper-bounded by 2p, the272

set B is then upper-bounded by 22·(fℓ−1(q)+1)2q·22(2fℓ−1(q))2q

, i.e., the number of possible273

FOq-theories is upper-bounded by 222·(fℓ−1(q)+1)2q·22(2fℓ−1(q))2q

. ◀274
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2.4 The algorithm275

It is proved in [8] that if a graph has linear clique-width at most k, then one can compute276

in time 2O(k3) · n3 a width-p linear clique-width expression with p ≤ 2k + 1, i.e., if a graph277

G has linear clique-width at most k, then for some p ≤ 2k + 1, one can construct in time278

2O(k3) ·n3 a word w using atomic p-derivations in Sp, evaluating into a p-derivation σ having279

G as underlying graph. Moreover, any FOq-sentence φ on G can be translated into an280

FOq-sentence φ# on σ with the property that G satisfies φ if and only if σ satisfies φ#. The281

following version of Simon’s Factorisation Forest Theorem was proved in [2] and allows to282

compute the Simon’s Forest Factorisation.283

▶ Theorem 14 ([2]). Let Σ be an alphabet. For every finite semi-group S and every semi-284

group homomorphism h : Σ+ → S, one can construct a deterministic finite state automata285

that takes as input a word w in Σ+ and outputs in time O(|w|) a Simon’s Forest Factorisation286

of w of h-rank at most 3 · |S|.287

The algorithm is then a classical bottom-up dynamic programming algorithm that288

computes the FOq-theory by following the Forest Factorisation given by Theorem 14. Recall289

that the height of the tree is upper-bounded by 3 · 22O(p) and p ≤ 2k + 1. The FOq-theory is290

computed as follows:291

1. If the hp-rank of σ is 0, then σ is an atomic p-derivation. So, we compute all the292

non-isomorphic atomic p-derivations that are substructures of σ.293

2. Assume now that the hp-rank of a subword σ′ of σ is ℓ. We compute the FOq-theory of294

σ′ as follows.295

a. If σ′ admits a binary factorisation into σ1 and σ2, then we have already computed296

the FOq-theories of σ1 and σ2. Therefore, the FOq-theory of σ′ can be computed by297

taking a subset T1 of the FOq-theory of σ1, a subset T2 of the FOq-theory of σ2 and a298

boolean function on T1 ∪ T2. Whenever the boolean function is satisfied, we add it to299

the FOq-theory of σ′ (by keeping only non-equivalent ones). Since the FOq-theories300

of σ1 and of σ2 are upper-bounded by fℓ−1(q), the computation can be done in time301

2O(fℓ−1(q)·fℓ−1(q)).302

b. If σ′ admits an unranked factorisation into σ1σ2 · · ·σn, then we compute the FOq
303

from left to right as follows. Let t be the maximum such that we have computed the304

FOq-query of σ1 ⊗ · · · ⊗σt (recall that t ≥ 1 as the FOq-theory of each σs, for s ∈ [n],305

is already computed). We can now use the same procedure as in the binary case to306

compute the FOq-query of σ1 ⊗ · · · ⊗σt+1. Since we keep only the non-equivalent307

ones, by Proposition 10, the time complexity is upper-bounded by a polynomial on308

222·(fℓ−1(q)+1)2q·22(2fℓ−1(q))2q

.309
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