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1 Preliminaries

The set of positive integers (including 0) is denoted by N and for a positive integer n, the
set {1,...,n} of integers is denoted as [n]. For m,n € N, we write [m,n] for the interval
{m,...,n}. For a set V and = € V, the singleton {z} shall be often written simply as x.
The power set of a finite set V' is denoted by 2V and we write |V| to denote the size of V. A
partition of a set V is a collection {V7,...,V,,} of non-empty and pairwise non-intersecting
subsets of V, called blocks, such that | J,,., Vi = V. For an equivalence relation = on
V x V, we denote by V/= the set of equivalence classes of = and write [Y]= to denote the
equivalence class of Y € V. Recall that the set of equivalence classes forms a partition.

A set system S is a pair (S, S) where S is a finite set and S is a collection of subsets of S.
We refer to S as the ground set, and members of S as hyperedges. We use boldface capital
letters to denote set systems, e.g., S, M; capital letters for ground sets, e.g., S, M; and
calligraphic letters for set of hyperedges, e.g., S, M. We follow [6] for our graph terminology.
For a graph G, we denote by V(G) its vertex set, and by F(G) its edge set; an edge between
2 and y in an undirected graph is denoted by zy (equivalently yz). It is common to call
vertices of a tree nodes.

We are going to prove the following.

» Theorem 1. Let k and q be positive integers. There is an elementary function f such that
every first-order formula ¢ of quantifier-rank q can be checked in time f(k,q) - poly(n) in
graphs of linear clique-width at most k.

We organise this section as follows. The notion of linear clique-width is introduced in
Section 1.1, while first-order logic and Feferman-Vaught Theorem are introduced in Section
1.2.

1.1 Linear clique-width

We will follow [1] for the definition of linear clique-width as we will use their semi-group
structure. If k is a positive integer, a graph G is said k-labeled if every vertex of G receives
a label from [k], and each vertex of G labeled i is called an i-labeled vertex. The labeling
function of a k-labeled graph is denoted by ag. The following operations are defined on
k-labeled graphs:

Relabeling operation For every function f : [k] — [k], let ps be the operation that takes as
input a k-labeled graph G and outputs the k-labeled graph G with labeling function
f coag.

Join operation For every symmetric subset S of [k] x [k], let ®g be the binary operation
that takes as inputs two k-labeled graphs G and H and outputs the k-labeled graph K
where ax = ag U ay, and K is obtained from the disjoint union of G and H and adding
all edges in the set {zy | x € G,y € H, (ag(x),an(y)) € S}. We denote K as G ®s H.

Constant For every i € [k], let i be the k-labeled graph with a single vertex labeled ¢ and no
edge.

Adding a vertex For every ¢ € [k] and X C [k], let a;, x be the operation that takes as
input a k-labeled graph G and outputs G ®gi with labeling function ag U «; where
S={i} x XUX x {i}.

Let LCW, be the alphabet {a; x | i € [k], X C K]} U {ps | f: [kK] — [K]}. A width-k
linear clique-width expression is a word over the alphabet LCWy. Every width-%k linear

clique-width expression w can be evaluated inductively into a k-labeled graph, denoted by
val(w), as follows:
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val(py) is the empty-graph,
al(a; x) is the k-labeled graph i,
(
(

< <

al(upy) is the k-labeled graph ps(val(u)),
al(ua; x) is the k-labeled graph a; x (val(uw)).

<

The linear clique-width of a graph G, denoted by lew(G), is the least k such that there
is a word w in LCW, with G is isomorphic to val(w) after forgetting the labels of val(w).

1.2 First-order logic

We refer to [4] for a complete presentation of FO logic, and we shortly introduce it now.
Define a vocabulary to be a finite set of relation names, each one being associated with an
arity in N. A relational structure A over the vocabulary ¥ (X-structure for short) consists in
a set A, called the universe, and for each relation name R € ¥, a relation R* C AF with k
the arity of R.

Let V be a countable set of variables, each being either a variable ranging over individual
elements of the universes, called an FO wvariable, and use lower-case letters to denote them.
The atomic formulas are x = y and R(x1,...,x,) where R is a k-ary relation name of X,
x1,...,¢ are FO variables. An FO formula over X is either an atomic formula, or it is
of the inductive form —p, ¢ V ¥, Jzp, where ¢ and ¥ are FO formulas. We also use the
classical syntactic sugars « # y, Vaey, ¢ A, ¢ = 1, and ¢ <> ¢ for the formulas —(z = y),
—Jz—p, ~(—p A ), 7o Vb, and (¢ — ) A (¢ — @), respectively.

A variable is free in a formula if it is not bound by a quantifier (3 or V). We write
©(x1,...,Tp) to say that 1,...,x, are among the free variables of ¢. An FO sentence is an
FO formula without free variables. The size of a formula ¢ is simply defined as the number
of symbols in it and is denoted by ||. The quantifier-rank of an FO formula ¢, denoted by
qr(y), is defined inductively as follows:

0 if ¢ is atomic,
~Jar(y) if o =,
qr(p) = .
max{qr(¢1),qr(2)} if ¢ = ¥1 Vo,
1+ qr(v) if o = Jx).

An FO formula is quantifier-free if its quantifier-rank is 0. We denote by FO(X) the set of
first-order formulas over ¥, and by FO?(X) the set of first-order sentences of quantifier-rank
at most ¢q. We simply write FO or FO? when ¥ is clear from the context. We denote by
FO1[t] the set of FO formulas with quantifier-rank at most ¢ and having at most ¢ free
variables.

Let A be a X-structure and ¢ be an FO formula. A V-valuation on A is a mapping v
that assigns to each FO variable of V an element of A. We say that (A, ) models ¢, denoted
by (A,v) = ¢, when one of the following cases holds: ¢ is R(x1,...,xy) for some relation
name R of arity k and (v(z1),...,v(zx)) € RY pis 2 =y and v(z) = v(y); ¢ is 1 V @2
and (A, v) models both @1 or vs; ¢ is Jxb and there exists a V-valuation v’ on A such
that (A,v/) E ¢ and v and v/ agree on all variable names other than . We say that A
models a formula ¢, denoted by A = o, if (A,v) = ¢ for some V-valuation v on A. If p(x) is
a formula with z a free variable, then for a structure A and u € A, we write ¢[u/z] to mean
that any V-valuation on A we will consider for ¢ will map x to u.

For a vocabulary ¥, let us denote by S* the set of relational structures over the vocabulary
Y. A class of relational structures over ¥ is a subset € of S* which is closed under isomorphism.
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If £ is a set of FO formulas, we define the L-theory of a X-structure A, denoted by Thz(A),
as the set of formulas in £ that A models. It is worth mentionning that Thz(A) = Th,(B
whenever A is isomorphic to B.

2 Proof of Theorem 1

As we have seen above, one can associate with each graph G of linear clique-width at most k
a word in LCW; that can be evaluated into G. Using the semi-group homomorphism h,
defined in [1], that maps every word in LCW} into an element of a semi-group of size at

QQOW, we obtain from Simon’s Factorisation Forest Theorem that every graph G of

most
linear clique-width at most k& admits a tree-like decomposition of height, called h-rank of G,
at most 3227, We will prove, by induction, that any FO-formula of quantifier-rank ¢ can
be solved in time f(q) - poly(n), where f is a tower of exponentials of height depending only
on the h-rank of G. We introduce Simon’s Factorisation Forest Theorem in Section 2.1, the
semi-group homomorphism in Section 2.2, an upper-bound on the number of FO?-theories
based on the structure of the Simon’s Forest Factorisation in Section 2.3, and the algorithm
in Section 2.4 which uses Colcombet’s deterministic algorithm for computing Simon’s Forest

Factorisation.

2.1 Simon’s forest factorisation theorem

Remind that a semi-group is a set S equipped with an associative binary operation. Notice
also that A* is the set of finite words over the alphabet A, while AT is the set of non-empty
finite words over A, and each equipped with concatenation - is a semi-group. An idempotent
element in a semi-group (S,0) is an element e such that e o e = e. For two semi-groups
(S1,01) and (Sa,09), a semi-group homomorphism is a function h : S; — Sa such that
h(zx o1 y) = h(x) o2 h(y).

Let (S,0) be a semi-group and A an alphabet. For a semi-group homomorphism A :
AT — S, an h-factorisation of a word w € A* is a sequence (wq, ..., wy) such that
1. w=w, -wy---- W,
2. |w;| < |w]| for all ¢ € [n], and
3. h(wy) = h(ws) = - -+ = h(wy,) is idempotent if n > 3.

The h-rank of a word w € A* is defined inductively as follows : single letters have h-rank
1, and for every w € A* of length at least 2, its h-rank is

1+ min < max {h-rank of wz}> .
(w1,...,wy) is an h-factorisation of w \ 1<i<n

Tmre Simon proved in [14] that the h-rank of any word is upper-bounded by a function

on the size of the target semi-group, which we refer below with the improvement given in [9].

» Theorem 2 (Simon's Forest Factorisation Theorem [9]). Let S be a finite semi-group and
let h: A* — S be a semi-group homomorphism. Then, every word w € AT has h-rank at
most 3 - |S].

2.2 A semi-group for words in LCW,

Our proof will be an induction based on the h-rank of words in LCWI, for some semi-group
homorphism h. Let’s define this semi-group homomorphism borrowed from [1].
A k-derivation is a triple o = (G, \,y) where
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G is a k-labeled graph, called underlying graph of o,
X : G — 2lF assigns to each vertex z of G its profile,
v : [k] — [K] is a relabeling function.

An atomic k-derivation is a k-derivation whose underlying graph has at most one vertex.

The composition of two k-derivations o1 = (G1, A\1,71) and o2 = (Ga, A2,72), denoted
by 01 ® 09, is the k-derivation o obtained as follows :

the underlying graph of ¢ is the graph obtained from the disjoint union of p.,(G1) and

G2 where we add an edge between a vertex x of G; and a vertex y of Gy whenever

ag, () € A2(y). Notice that the labeling function of the underlying graph of o is

720G, Uag,.

The profile of o is A U~y ! o Aa.

The relabeling function of ¢ is v, o0 7;.

As claimed in [1] it is not hard to see that ® is associative, and so the set of k-derivations
equipped with the composition operation ® is a semi-group. Let Sy be the semi-group
generated by the set of atomic k-derivations. It is not hard to see that Sy, is finitely generated.
The following proved in [1] is a reformulation of width-% linear clique-width expressions.

» Lemma 3 ([1, Lemma 4.2]). If G has linear clique-width at most k, then it is the underlying
graph of a k-derivation from Sk.

Let 0 = (G,\,7) be a k-derivation. For ¢ = (i,X) € [k] x 2/*| we call the set of
i-labeled vertices of G with profile X a c-class and denote it by o[c]. Let Cj denote the
set {(i, X) € [k] x 2"}, that we call for simplicity classes. We are now ready to define the
finite semi-group T}, called abstraction semi-group, which is a substructure of the abstraction
semi-group defined in [1].

» Definition 4. The abstraction of a k-derivation o, denoted by o], is the triple (L,~)
where:

L is the set {c € Cy, | o[c] # 0}, i.e., the set of non-empty c-classes.

v s the relabeling function of o.

The following now summarises the semi-group structure of T}, the set of abstractions of
k-derivations and is corrolary of the fact that "having the same abstraction" is a congruence
in Sk

» Lemma 5 ([1]). There is an associative operation [®] such that [o1 ® 03] = [01] [®][o2].
Moreover, the set Ty, has size at most 920"

The induction will be on k-derivations, and so we will for simplicity use first-order logic
on k-derivations instead of graphs. We will consider each k-derivation o = (G, A,~) as the
relational structure over the vocabulary edg representing the edge relation of the underlying
graph G, k constants cy, ..., ck representing the set [k] and disjoint from the vertex set of
the underlying graph, the predicate P, for a class ¢ € Cy, where P.(z) holds if x is a vertex
and belongs to the c-class, and binary predicate p representing the relabeling function v (we
can add the axiom that p is a function on every formula using p). We will need the following
which is straighforward.

» Lemma 6. Let k and q be positive integers. If the two k-derivations o1 and oo are such
that Thpoa(01) = Thpoa(o2), then [o1] = [o2].
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Proof. If ¢ € Cy, is a class such that o1[c] # 0, but o2[c] = 0, then the formula P.(z) will be
satisfied by o1, but not go. One checks in a similar way that they have the same relabeling
function. |

It is well-known from Feferman-Vaught Theorem [7] that the FO-theory of a generalised
product of two structures can be computed from the FO-theories of the two operands, where
examples of generalised products are quantifier-free transductions [11]. We refer to [4] for the
definition of transductions, however it is not hard to prove that the composition operation of
k-derivations is a quantifier-free transduction.

» Observation 7. Let k be a positive integer. There is a quantifier-free transduction T on
the vocabulary of k-derivations such that o1 ® o9 = 7(01 ® 02), for every two k-derivations
01 and g2.

We can therefore state the following version of Feferman-Vaught Theorem for the ®
operation. We refer to [7, 11] for more information.

» Theorem 8 ([7, Theorem 5.4]). Let s and q be positive integers. Then, for every sequence
01,...,05 of k-derivations, Thppe(o) depends only on Throa(o1),..., Throd(os).

For a positive integer ¢, we write 01 =, 02 if Throa(01) = Throa(o2). Notice that =, is
an equivalence relation, and by Lemma 6, if 01 =, 09, then [01] = [02]. We can derive the
following as a corollary of Theorem 8.

» Lemma 9. Let k and g be positive integers. If o1 and o are two =4-equivalent k-derivations,
then, for every two k-derivations o; and o, it holds that oy ® 01 Q 0r =4 01 R 02 ® 0.

Proof. By Theorem 8, the =;-equivalence class of 0, ® 01 ® o, depends only on the =4-
equivalence classes of o7, 01 and o,.. Since 01 and o9 are =4-equivalent, the statement follows
by Theorem 8. <

2.3 An upper-bound on the number of FO‘-theories

Let hy : Sp — T} be the semi-group homomorphism described in Section 2.2. Let fi(q) =
' . 29 2(2f271(<1))2q

2k'2k'kk, and for every ¢ > 1, let fi(q) = g2* e (s . It is not hard to check
that for every ¢, fy(q) is a tower of 2 whose height depends only on £. We are going to prove

the following, which combines with Lemma 3 and Theorem 2 implies Theorem 1.

» Proposition 10. Let g be a fized positive integer. The number of =4-equivalence classes
on k-derivations of hy-rank at most ¢ is upper-bounded by fi(q).

The proof will be by induction on the hy-rank of k-derivations of Sj, and we follow the
structure of Simon’s factorisation.

Basic case. By definition, every atomic k-derivation has hi-rank 1. Because the underlying
graph of each atomic k-derivation is a single vertex, an atomic k-derivation is obtained by
choosing a label, the profile of the single vertex and a labeling function. So, the number
of atomic k-derivations is upper-bounded by k - 2% - k*. Since each satisfied FO-formula
corresponds to a family of non-isomorphic substructure, each FO?-theory corresponds to

a family of family of substructures. So, the number of equivalence classes of =, on atomic
2&-42’“-1@’“

k-derivations is upper-bounded by f1(q) = 2
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Binary factorisation. Assume that a k-derivation o of hi-rank £ is equal to o1 ® o9 and the
hy-rank of both o7 and of o3 is at most £ — 1. From Theorem 8, one can decide Thrpa (o)
from Throa(o1) and Thpod(o2), i.e., each equivalence class of =, on k-derivations of hj-rank
at most ¢ admitting a binary factorisation is a subset of pairs of equivalence classes on

k-derivations of hi-rank at most £ — 1, whose number is upper-bounded by g2fe-1(@e-a@

Unranked factorisation. Assume now that a k-derivation o = (G, \,~) of hg-rank ¢ is equal
t0 01 ® 02 ® -+ ® oy, with hg(o1) = hi(o2) = -+ = hg(on) = hix(o) = (L,7) is idempotent,
and, for each i € [n], the hi-rank of o; is at most £ — 1. Notice that because hy(o) is
idempotent, the function + is also idempotent (on the semi-group of functions [[k] — [k]]),
and then by the definition of the operation ®, the relabeling function of each k-derivation
o;, for i € [n], is 7. So, let’s denote o5 by (Gg, As,7), for each s € [n]. As noticed in [1], we
have (i) = 14, for each i € y([k]). Similarly, a c-class is non-empty in o, if and only if it is
non-empty in oy if and only if it is non-empty in o, for all s,¢ € [n]. Since all the o;’s have
the same relabeling function, by Lemma 9, we can derive the following.

» Lemma 11. The two k-derivations o and R1 @ Ra® -+ @ Ry, are =4-equivalent where R
is any representative of the =,-equivalence class of o5, for each s € [n].

Let Azﬁé be an alphabet where letters are in one-to-one correspondence with a fixed set
of representatives of the =;-equivalence classes on k-derivations of hj-rank at most £ — 1.
By inductive hypothesis, the size of AZ) , is upper-bounded by f;_i(¢q). Because each o,
for s € [n] has hg-rank at most ¢ — 1, we can replace the word oy02 -0, by the word
w(o) = wiws - --w, on A}, where, for each s € [n], w, is the =g -representative of o, in
AZ,Z. By Lemma 11, the two k-derivations o and w; @ wa ® - - - ® wy, are =4-equivalent. Our
goal is to prove that if n > 2¢, then there is a set F of words wjws ---w, of length at
most 2q on the alphabet AZ,@ and such that the =4-equivalence class of ¢ can be derived
from the =,-equivalence classes of words in the set F. Let’s add the new letter (] as the
triple (0, A,7), and for every k-derivation o’ = (G’,X,7’), the k-derivation ¢’ ® ()] is the
k-derivation (p(G'), X,y o).

For a word w = wy ---w, on AZ,@ U {07}, an FO formula 6 and a V-valuation v on
Wy @ we ® - - - @ w,, we denote by b%? the predicate (w1 @ Wy @ -+ @w,,v) = 0.

» Lemma 12. Let q and t be positive integers and let ¢ be an FO-formula in FO[t]. If
n > 2(q+1t)+ 1, then, for every V-valuation v on o of the t variables of ¢, there is a set of
F, of pairs (w,0) and a boolean function By, using the predicates {b%;" | (w,0) € F,}, where
each w is a word on AZ,@ U{0}} and is of length at most 2(q +t) and 0 a sub-formula of ¢,
such that

(o,v) E o if and only if B, is satisfiable.

Proof. The proof is by induction on |¢| 4+ ¢ and follows the structure of FO formulas.

1. If ¢ is quantifier-free, i.e., ¢ = 0, then the satisfiability of ¢ depends only on the k-
derivations in the Forest Factorisation of o that contain v(z), for z a free variable in ¢.
Let 0,,...,0;. be the k-derivations that contain v(z), for all free variables x of ¢ (with
r < t). Then, let w be obtained from w(o) by removing the letters whose indices are
not in {i1,...,i,} and by adding @} between w;, and w;,,, when i; < i1 — 1, i.e., i;
and 7;41 are not consecutive, and possibly after w;, if i, # n. Let F, = {(w,¢)} and
B, =b%". Tt is straigforward to check that (o, v) satisfies ¢ if and only if B, holds.

2. If ¢ = =, then by inductive hypothesis there are a set Fy, and a boolean function By
on {b%" | (w,0) € Fy} such that (o,v) satisfies ¢ if and only if By, is satisfied, i.e., (o, v)
satisfies ~¢ if and only if =B, is satisfied. We therefore let F, = F,, and B, = ~B,.
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3. If ¢ = 1)1 V 1bg, then by inductive hypothesis, there are, respectively, sets F; and Fa, and
boolean functions By and By on, respectively, {b%" | (w,0) € F1} and {b%" | (w,0) € Fa},
such that (o,v) satisfies ¢; (resp. 12) if and only if By (resp. Bs) is satisfied. Let
Fo=F1UF; and B, = By V By. We can thus conclude by inductive hypothesis that
(0,v) satisfies ¢ if and only if B, is satisfied.

4. Assume finally that ¢ = Jxtp. For each vertex u € V(G), let v, be the V-valuation on
o where v, (z) = u and v, (y) = v(y) for every other free variable in ¥. By inductive
hypothesis, there are a set F, and a boolean function B, on {b%* | (w,0) € F,}
such that (o,1/) satisfies ¢ if and only if B, is satisfied. Let 7, = U, ey () Fu and
B, = Vyev(a)Bu. We therefore have by inductive hypothesis that (o, v) satisifies ¢ if
and only if B, is satisfied.

<

The following shows that we can replace ¢ by a finite number of k-derivations so that the
=,-equivalence of o can be derived from their =;-equivalence classes.
(Q))Zq

fo—
» Lemma 13. Let g be a positive integer. There are at most (fo_1(q) + 1)% - 92

pairs (w, ) with w a word of length at most 2q on AZ,Z U{0}} and 6 a formula in FOY [t]
with ¢ +t < q.

Proof. First, The number of words on the alphabet A , U {0]} and of length at most

2q is upper-bounded by (f,—1(q) + 1)%¢. Now, each 6 in FOY [t] with ¢’ +¢ < ¢ is also
a formula in FO? by replacing 6 by 3z ---2,:0. For each such word w = wy -+ - w,, let
o(w) be w1 @wa ® -+ ®w,. By applying Theorem 8, we obtain that the number of distinct

(zfz_l(Q))%z

FOYtheories among such o(w) is upper-bounded by 2 . Therefore, the number of

. . 9 2(2f£_1(Q))2q
such pairs is upper-bounded by (fr—1(g) +1)%7-2 . <

We can now give an upper-bound on the number of =, -equivalence classes.

Proof of Proposition 10. By Lemma 12, for every k-derivation o of hj-rank ¢ and admitting
a Forest Factorisation into oy - - - 0, either n < 2¢ or, for every FO sentence ¢ in FOY, there
are a family F, of pairs (w,§) with 6 a sentence in FO?, w a word of length at most 2¢
on Aj ,U{0}} and a boolean function By, on {8 | (w,0) € F,} such that o satisfies ¢ if
and only if B, is satisfied. By Lemma 13, the number of such pairs is upper-bounded by

(fo—1(q) + 1) 22(2”,1((1))%. Let’s denote by T the set of such pairs and let B be the set of
boolean functions on subsets of 7. We can conclude that every FO? sentence satisfied by such
a o is associated with a a boolean function in B. It is worth noticing that the satisfaction of
any boolean function in B does depend only on the FO%-theories of k-derivations of hj-rank
at most £ — 1. Therefore, we can consider that for every k-derivation o, its FO?-theory is
the set

{B, € B| B, is satisfied and B,, is associated with (o, ¢)}.

Now, since the number of boolean functions on p variables is upper-bounded by 2P, the
fefl(‘l))2q

2 2(2 . .
2 , i.e., the number of possible

set B is then upper-bounded by 2% (fe-1(a)+1)

2-(fe—1(a)+1

FOYtheories is upper-bounded by 22 ) <

124 22(2f€71(0))2q
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2.4 The algorithm

It is proved in [8] that if a graph has linear clique-width at most k, then one can compute
in time 20%°) . 3 a width-p linear clique-width expression with p < 2¥ + 1, i.e., if a graph
G has linear clique-width at most k, then for some p < 2¥ 4 1, one can construct in time
20(K°) . 13 4 word w using atomic p-derivations in Sp, evaluating into a p-derivation o having
G as underlying graph. Moreover, any FO-sentence ¢ on G can be translated into an
FO%sentence ¢# on o with the property that G satisfies o if and only if o satisfies ¢#. The
following version of Simon’s Factorisation Forest Theorem was proved in [2] and allows to

compute the Simon’s Forest Factorisation.

» Theorem 14 ([2]). Let X be an alphabet. For every finite semi-group S and every semi-
group homomorphism h : Xt — S, one can construct a deterministic finite state automata
that takes as input a word w in X and outputs in time O(|w|) a Simon’s Forest Factorisation
of w of h-rank at most 3 - |S]|.

The algorithm is then a classical bottom-up dynamic programming algorithm that
computes the FO%-theory by following the Forest Factorisation given by Theorem 14. Recall
that the height of the tree is upper-bounded by 3 - 2277 and p < 2F 4 1. The FOY-theory is
computed as follows:

1. If the h,-rank of o is 0, then ¢ is an atomic p-derivation. So, we compute all the

non-isomorphic atomic p-derivations that are substructures of o.

2. Assume now that the hy-rank of a subword ¢’ of ¢ is £. We compute the FO?-theory of

o’ as follows.

a. If ¢/ admits a binary factorisation into o; and g, then we have already computed
the FOY-theories of o1 and o5. Therefore, the FO%theory of ¢’ can be computed by
taking a subset 71 of the FO%theory of o1, a subset T of the FO%theory of o2 and a
boolean function on 77 U 7T5. Whenever the boolean function is satisfied, we add it to
the FOYtheory of o’ (by keeping only non-equivalent ones). Since the FO%theories
of o1 and of o are upper-bounded by f,—1(q), the computation can be done in time
920(fe-1(q)-fe-1(q))

b. If o’ admits an unranked factorisation into o105 ---0,, then we compute the FO?
from left to right as follows. Let ¢ be the maximum such that we have computed the
FO?-query of o1 ® - - - @ gy (recall that ¢ > 1 as the FO%-theory of each o, for s € [n],
is already computed). We can now use the same procedure as in the binary case to
compute the FO?-query of 01 ®---®0y11. Since we keep only the non-equivalent
ones, by Proposition 10, the time complexity is upper-bounded by a polynomial on

)24
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