Linear Rank-Width and Linear Clique-Width of Trees

Mamadou M. Kanté Isolde Adler

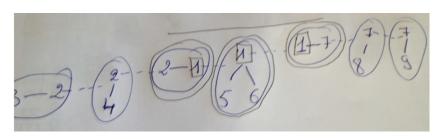
LIMOS - Université Blaise Pascal WG 2013

Graph Parameters

- Two famous graph parameters : tree-width and clique-width, and equivalent/variant complexity measures
- Tree-width and path-width play an important role in the Graph Minors Project
- Clique-width is important in complexity theory and its equivalent graph parameter rank-width has many structural properties and is linked to a Matroid Minors Project conducted by Geelen et al.
- Path-width has many structural characterisations, while linear rank-width: a little is known
- Characterisation of linear rank-width of trees

- Path-Width
- 2 Linear Rank-Width
- 3 Linear Rank-Width and Path-Width of Trees
- 4 Linear Clique-Width of Trees

Path-width(1)



Path-Width of G

 $\operatorname{wd}(P,B) := \max\{|B_t| \mid t \in V(P)\} - 1$ $\operatorname{pwd}(G) := \min\{\operatorname{wd}(P,B) \mid (P,B) \text{ path decomposition of } G\}.$

(ロ) (個) (注) (注) 注 り(@

Path-width(2)

- Disjoint union of caterpillars = path-width 1
- $pwd(T_h) = \lceil h/2 \rceil$
- $pwd(G) \le twd(G) \cdot log(n)$
- Computation of the path-width of $TWD(\leq k)$ in polynomial time, even linear for trees
- Trees are obstructions to bounded path-width

Path-width(2)

- Disjoint union of caterpillars = path-width 1
- $pwd(T_h) = \lceil h/2 \rceil$
- $pwd(G) \le twd(G) \cdot log(n)$
- Computation of the path-width of $TWD(\leq k)$ in polynomial time, even linear for trees
- Trees are obstructions to bounded path-width
- A characterisation by cops and robber game

Path-width(3): invisible robber game

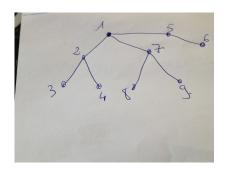
- k cops and 1 invisible robber
- cops move by helicopter
- robber moves through paths not containing cops (she can identify cops positions)
- cops win if they have a strategy to catch the robber (land a helicoper on the robber position)
- minimum number of cops

Sommaire

- Path-Width
- 2 Linear Rank-Width
- 3 Linear Rank-Width and Path-Width of Trees
- 4 Linear Clique-Width of Trees

Linear Rank-Width

- take any linear ordering x_1, \ldots, x_n of the vertices
- width = $\max_{1 \le i \le n-1} \{ \text{rk}(A_G[\{x_1, \dots, x_i\}, -]) \}$
- linear rank-width of G, Irwd(G) = minimum over all linear orderings

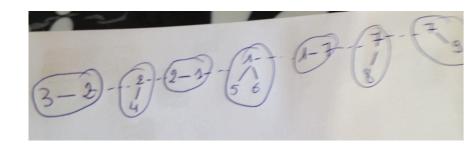


$$3, 2, 4, \cdot 1, 8, 7, 9, 5, 6$$

Sommaire

- Path-Width
- 2 Linear Rank-Width
- 3 Linear Rank-Width and Path-Width of Trees
 - PWD is an Upper-Bound to LRWD
 - LRWD is an Upper Bound to PWD of Trees
- 4 Linear Clique-Width of Trees

$Irwd(G) \leq pwd(G)$



3, 2, 4, 1, 5, 6, 7, 8, 9

$pwd(T) \leq Irwd(T)$

- Take a linear layout v_1, v_2, \dots, v_n of width k := lrwd(T).
- Clear vertices in this ordering with at most k + 1 cops.

Initialisation: Put i cops in vertices v_1, \ldots, v_i such that $X_i := \{v_1, \ldots, v_i\}$ is a basis for $M_i := A_T[X_i, Y_i := V_T \setminus X_i]$.

Inductive step : if X_ℓ is cleared, clear $X_{\ell+1}$ while maintaining the following invariants

- * each vertex b of a basis B_i of M_i is either occupied or its neighbours in $Y_{\ell+1}$ are occupied,
- \star cops occupy exactly $|B_{\ell+1}|$ vertices

Clearing Step(1)

- Either $v_{\ell+1}$ is linearly independent of B_{ℓ} in $M_{\ell+1}$ or not.
- Either $v_{\ell+1}$ is occupied by a cop or not after step ℓ .

To verify invariants, we need:

- * Clear $v_{\ell+1}$ and put a cop either on it or on its neighbours in $Y_{\ell+1}$ if it is linearly independent of B_{ℓ} in $M_{\ell+1}$.
- ★ Free cops in B_{ℓ} that are not in the "chosen" basis of $M_{\ell+1}$.

To do so, construct B-basic trees

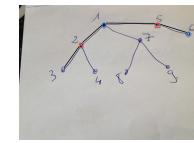
B-basic tree

For (X, Y) a cut, B a basis of $A_T[X, Y]$ and $x \in X$

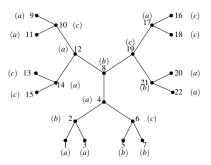
- Take $B' \subseteq B$ spanning x.
- Let $T' := T[B' \cup x \cup (N(B' \cup x) \cap Y)].$

Properties

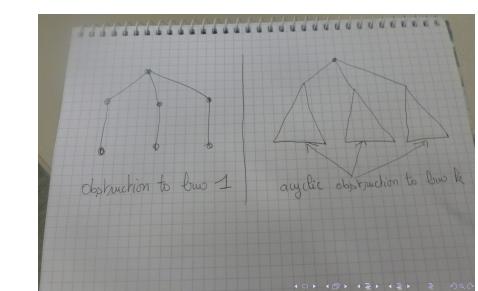
- T' is connected and leaves are from X.
- Vertices in $N(B' \cup x) \cap Y$ have degree 2.
- $\bullet |N(B' \cup x) \cap Y| = |B'|.$



A strategy



A consequence : acyclic obstructions



Sommaire

- Path-Width
- 2 Linear Rank-Width
- 3 Linear Rank-Width and Path-Width of Trees
- 4 Linear Clique-Width of Trees

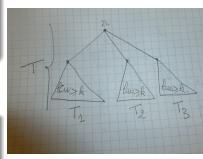
Linear Clique-Width of Trees

Lemma

If T_1 , T_2 , T_3 have linear clique-width at least k, then T has linear clique-width > k + 1.

Proposition

If T is a disjoint union of stars, then lcw(T) = pw(T) + 2, otherwise lcw(T) = pw(T) + 1.



Thank you!!