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Abstract. Every property de�nable in monadic second order logic can be checked in
polynomial-time on graph classes of bounded clique-width. Clique-width is a graph parameter
de�ned in an algebraical way, i.e., with operations �concatenating graphs� and that generalize
concatenation of words. Rank-width, de�ned in a combinatorial way, is equivalent to the
clique-width of undirected graphs. We give an algebraic characterization of rank-width and
we show that rank-width is linearly bounded in term of tree-width. We also propose a notion
of rank-width of directed graphs and a vertex-minor inclusion for directed graphs. We show
that directed graphs of bounded rank-width are characterized by a �nite list of �nite directed
graphs to exclude as vertex-minor.

Many graph classes do not have bounded rank-width, e.g., planar graphs. We are interested
in labeling schemes on these graph classes. A labeling scheme for a property P in a graph G
consists in assigning a label, as short as possible, to each vertex of G and such that, we can
verify if G satis�es P by just looking at the labels. We show that every property de�nable in
�rst order logic admit labeling schemes with labels of logarithmic size on graph classes that
have bounded local clique-width. Bounded degree graph classes, minor closed classes of graphs
that exclude an apex graph as a minor have bounded local clique-width.

If x and y are two vertices and X is a subset of the set of vertices and Y is a subset of the
set of edges, we let Conn(x, y,X, F ) be the graph property: x and y are connected by a path
that avoids the vertices in X and the edges in F . This property is not de�nable by a �rst
order formula. We show that it admits a labeling scheme with labels of logarithmic size on
planar graphs. We also show that Conn(x, y,X, ∅) admits short labeling schemes with labels
of logarithmic size on graph classes that are �planar gluings� of graphs of small clique-width
and with limited overlaps.
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Graph Structurings: Some

Algorithmic Applications

We can use graphs to model many real-life networks, e.g., social networks, railway networks,
Internet network. And studying the properties of these networks, e.g., the connectivity or the
reachability, is equivalent to studying the structural properties of the underlying graphs that
represent them. Algorithms follow from such study. It is thus natural to focus our attention
on graphs and their many algorithmic as well as structural questions. We can cite the Seven
Königsberg Bridges modeled and solved as a graph problem by Euler [Eul59].

A common tool to solve algorithmic problems on graphs is the notion of graph decompo-
sition. There are several types of graph decomposition, each of them being suitable for some
problems and more than others. For instance, the decomposition of 2-connected graphs into
3-connected components [Tut66] is not a priori suitable for solving NP-Hard problems but can
be used as a tool when dealing with 2-connected graphs, particularly for reducing problems
on 2-connected graphs to problems on 3-connected graphs. However, as mentioned in [Rao06],
graph decompositions can be classi�ed into two families:

1. Canonical graph decompositions that are de�ned by means of certain substitutions or
compositions of patterns. We can cite the modular decomposition [Gal67] or the split
decomposition [Cun82] as examples of such decompositions.

2. Graph decompositions that are de�ned by �reducing� graphs to other graphs that we
call here target graphs and that are mostly trees. To these decompositions are associated
graph parameters that measure how di�cult it is to reconstruct graphs from the target
graphs. We can cite the tree-decomposition with its associated graph parameter called
tree-width [RS83] and the rank-decomposition with its associated graph parameter called
rank-width [Oum05b] as examples of such decompositions.

The goal with graph decompositions of the second type is to transfer the algorithmic as
well as the structural properties of the target graphs to the decomposed graphs. In this case
the smaller is the associated parameter the better it is, because the associated parameter
measures how close are the decomposed graphs from the target graphs.

Many NP-Hard problems admit linear time algorithms on trees [CDG+07]. If the target
graphs of the graph decompositions are trees, we can hope to transfer the algorithmic results
from trees to the graphs that admit small value of the associated graph parameter. Moreover,
many graph classes that have an underlying tree-structure admit linear time algorithms for

1



2 Graph Structurings: Some Algorithmic Applications

several NP-Hard problems. This is the case for instance of chordal graphs [Dir61], series-
parallel graphs [TNS82] and k-partial trees [Arn85]. However, if a reduction to trees allows
to transfer the algorithmic results of trees, not all graphs can be reduced to trees, otherwise
we would have P=NP. For instance, the algorithmic results for trees can be transferred to
graphs that have tree-width bounded by some �xed value [Cou90, ALS91] and not all graphs
have tree-width bounded by a �xed value (planar graphs and chordal graphs have unbounded
tree-width). It is thus important to identify classes of graphs that can be reduced to trees with
respect to a graph decomposition. A common way to do that is to characterize graph classes
by excluded con�gurations by means of relations on graphs such as the minor relation [RS83]
or the vertex-minor relation [Oum05b]. These characterizations can lead to recognition algo-
rithms that are not always the most e�cient ones and do not always help to build an optimal
decomposition. An example is the quadratic time algorithm by Robertson and Seymour for
checking if a graph has tree-width at most k [RS95]. A better one by Bodlaender [Bod96]
gives an optimal tree-decomposition.

Another approach for solving in polynomial time algorithmic questions is the use of al-
gebraic tools, which consists in the de�nition of operations on graphs that generalize the
concatenation of words. They allow to construct graphs from basic graphs in a simple way
and there are several advantages to have algebraic de�nitions of graph decompositions:

• Analogously to context-free languages of words, we can de�ne context-free sets of graphs
by systems of equations. We can therefore use tools of universal algebra and derive
algorithmic results for the study of certain classes of graphs [BC06, Cou90, CER93].

• We can give uniform constructions for solving in linear time large classes of problems ex-
pressible in monadic second order logic. Such constructions are presented in the articles
[Cou90, Cou93, CER93, CMR00, Mak04] and in the survey by Grohe [Gro07].

• For algorithmic purposes, we need sometimes graph decompositions of logarithmic height
and of small width, that we call balanced decompositions (see for instance the articles
[Bod88, BH98, CV03]). Algebraic tools allow to give uniform proofs for the existence of
balanced decompositions (Chapter 6).

Let us give an example of a set of graph operations. A graph with two distinguished
vertices, named respectively s-vertex and t-vertex, is called a 2-terminal graph. Given two
2-terminal graphs, G1 and G2, we denote by G1//G2 the 2-terminal graph obtained by gluing
the s-vertices of G1 and G2 and the same for the t-vertices. And we denote by G1 • G2

the 2-terminal graph obtained by gluing the t-vertex of G1 with the s-vertex of G2 and by
considering the s-vertex of G1 and the t-vertex of G2 as the distinguished vertices of G1 •G2.
Figure 1 shows examples of these two operations.

Series-parallel graphs are generated by terms written with the operations // and • and
the basic graph a which represents a graph with a single edge, one end-vertex colored by s
and the other by t [TNS82]. Thus, to any series-parallel graph corresponds at least one term
written with symbols in {//, •,a}. It is worth noticing that several terms can generate the
same graph. Figure 2 shows a series-parallel graph and a term that generates it.

Many polynomial time algorithms on series-parallel graphs are based on such terms that
generate the input graphs. The linear time algorithms of [Cou90] are also based on algebraic
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Figure 1: The two graphs in the top represent two 2-terminal graphs G1 (left) and G2 (right).
The two graphs in the bottom are G1//G2 (left) and G1 • G2 (right). The distinguished
vertices are the blue ones, labeled respectively by s and t.

t

s

(a)

•
•

•

//•

•

• •

//

(b)

(c)

a

a //a

a aa

aa•

aa

a

a

(((a • a) • (((a • a)//(a • a))//(a • a))) • (a • a))//(a • a)

Figure 2: (a) represents a series-parallel graph, (b) a term that represents it and (c) the
syntactic tree of the term.

de�nitions. It is then interesting to give algebraic de�nitions for graph decompositions that
do not have one. In this perspective our work has the following motivations.

• To give algebraic de�nitions when they do not exist.

• To compare various notions of graph parameters associated with graph decompositions.

• To give a uniform proof for the existence of balanced decompositions.

• To give results that are easily implementable.
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• To propose other types of graph decompositions and, particularly graph decompositions
where the target graphs are not trees and, to study the algorithmic results that we can
obtain.

Graph Classes of Bounded Clique-Width

Clique-width [CER93, CO00] is a graph parameter de�ned in an algebraic way. It measures
how many colors we need to construct a graph by using as basic graphs, single colored vertices
and, as graph operations: (1) the disjoint union, (2) unary operations that change colors (3)
and unary operations that add edges between colored vertices. Clique-width is more general
than tree-width in that every class of graphs of bounded tree-width has bounded clique-width
[CO00, CR05] and the converse is false (cliques have clique-width 2 and unbounded tree-
width). Clique-width is interesting because problems expressible in monadic second order
logic can be solved in cubic time on graph classes of bounded clique-width by combining
results from [CMR00] and [HO07, OS06]. However, deciding if the clique-width of a graph is
at most k is NP-complete [FRRS06] and for �xed k ≥ 4, there is no known polynomial time
algorithm that decides whether a given graph has clique-width at most k (for k ≤ 3, there
exists a polynomial time algorithm [CHL+00]).

In their investigations of the recognition of undirected graphs of clique-width at most k,
Oum and Seymour introduced the notion of rank-width of undirected graphs [Oum05b, OS06].
Rank-width is equivalent to clique-width in the sense that the same classes of graphs have
bounded clique-width and bounded rank-width. As for clique-width, deciding the rank-width
of an undirected graph is NP-complete [HOSG08] but deciding whether the rank-width of an
undirected graph is at most k can be done in cubic time [HO07]. Contrary to the case of
clique-width, there is a notion of minor, called vertex-minor, related to rank-width. Moreover,
graphs of rank-width at most k are characterized by a �nite list of excluded vertex-minors
[Oum05b].

Clique-width is de�ned for undirected as well as for directed graphs. However, rank-width
is de�ned only for undirected graphs and, does not have any algebraic de�nition in Oum's
works. Our work on rank-width has the following motivations.

• To better understand the notion of rank-width and perhaps to contribute to the proof of
a Vertex-Minor Theorem conjectured by Oum [Oum08a, Oum09], saying that undirected
graphs are well-quasi-ordered under vertex-minor ordering.

• To extend the notion of rank-width to directed graphs and, in the future to relational
structures.

• To �nd an algebraic de�nition for these notions of rank-width.

We will propose a notion of rank-width for directed graphs and we will give an algebraic
de�nition for rank-width. We will also relate the two notions of minor and of vertex-minor
and as a consequence we will prove that rank-width is linearly bounded in term of tree-width.



5

Labeling Schemes

We can represent graphs by adjacency lists or by adjacency matrices. However, the two
representations can present some drawbacks when the number of vertices is large. Typically,
answering adjacency queries needs to search in an adjacency list while the use of adjacency
matrices requires O(n2)-memory space if n is the number of vertices even if the graph is sparse.
Even if answering the adjacency takes constant-time in adjacency matrices, it cannot be used
in many algorithms because of space constraints. Moreover, it is frequently useful to have a
distributed representation of a network because we want each node to have a partial knowledge
(only) of the network. We need then a more compact representation of graphs which allows
to answer adjacency queries relatively quickly. One way consists in assigning to each vertex a
label, as short as possible, such that we can answer the adjacency query about two vertices just
by looking at their labels. This is commonly known under the name of implicit representation
[Spi03]. We can �nd in the book [Spi03] and the PhD thesis [Lab07] classes of graphs where
short implicit representations, say by labels of logarithmic size, are de�ned. For instance, if
a graph with n vertices excludes a �xed minor, then it admits an implicit representation that
uses labels of size at most 2 log(n) +O(log(log(n))) (measured in bits) [GL07].

In other algorithms, the adjacency is not the only frequently asked query. For instance,
a common query in managing routing networks is the existence of a path between two nodes
and if it does exist, the description of this path. We can generalize the notion of labeling
from adjacency to any property P . Formally, given a property P (x1, . . . , xm, X1, . . . , Xq)
that depends on vertices x1, . . . , xm and sets of vertices X1, . . . , Xq and an injective function
f : N→ N, an f -labeling for P in a graphG of a �xed class C consists in assigning to each vertex
of G a label of size O(f(|VG|)) and such that given a1, . . . , am ∈ VG and Y1, . . . , Yq ⊆ VG, we
can test whether G satis�es P (a1, . . . , am, Y1, . . . , Yq) just by looking at the labels of a1, . . . , am

and the labels of the vertices in Y1, . . . , Yq. For example, the k-vertex connectivity query admits
a (k2 · log)-labeling in the class of graphs [Kor07b]. In the articles [GKK+01, GP03a] several
labelings are presented for the distance query and the approximate distance query in many
graph classes, e.g., planar graphs, graph classes of bounded tree-width, . . .

The use of decompositions and of algebraic de�nitions of decompositions can also help to
get uniform constructionsf of f -labelings for large classes of properties. For instance, Courcelle
and Vanicat [CV03] proved that every property expressible in monadic second order logic
admits an (f(k) · log)-labeling on classes of graphs of clique-width at most k, the function f
depends on k and on the property. Their proof relies deeply on tree-automata and the fact
that if a graph has clique-width k, then it can be generated by a balanced term that uses
operations de�ning clique-width and a number of basic graphs that depends only on k. We
will see how to get a similar result for properties expressible in �rst order logic on certain
classes of graphs of unbounded clique-width.

Graph Classes of Unbounded Clique-Width

Many real-life classes of graphs do not have bounded clique-width (Johansson proved for
instance that random graphs have unbounded clique-width [Joh98]). Moreover, it is interesting
by itself to study classes of graphs of unbounded clique-width from an algorithmic point of
view. However, for many of them - bounded degree graph classes, planar graphs, or classes
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of graphs that exclude an apex graph1 as a minor - for each positive integer r, the tree-width
of the ball of radius r of each vertex is bounded by a function that depends only on r. In
addition, Baker and later Eppstein et al. used this fact to give polynomial time approximation
algorithms for many NP-Hard problems in respectively planar graphs [Bak94] and classes of
graphs that exclude an apex graph as a minor[Epp00, DH04a, DH04b].

In this thesis we investigate f -labelings in graph classes of unbounded clique-width that are
obtained by gluing graphs of small clique-width and particularly classes of graphs of bounded
local clique-width (the clique-width of each ball of radius r is bounded by a function depending
on r). We can cite graph classes of bounded degree, planar graphs or classes of graphs that
exclude an apex graph as a minor as such classes of graphs. This work is inspired by the
results of Frick and Grohe [FG01b, Fri04] stating that every property expressible in �rst order
logic admits an almost linear time algorithm in graph classes of bounded local tree-width (the
tree-width of each ball of radius r is bounded by a function depending on r). We adapt to
our case several of their de�nitions.

Dynamic Graphs

In graph theory, most of the results deal with static graphs, i.e., with graphs that do not
change in time. However, in real-life networks - the Internet network or any cellular telephone
network - vertices may be lost or some new vertices can join the network. We model these
networks by dynamic graphs. The algorithms in dynamic graphs must take into account these
changes. And there is a particular challenge for dynamic graphs in algorithmic graph theory.

If an algorithm uses a data structure, how can one maintain the data structure
at each change without recomputing it in total? Moreover, the maintaining time
must be bounded in terms of the number of changes.

Paul et al. study this question for recognition algorithms [CP06, GP07] and, Thorup et al.
construct oracles for routing queries in networks [TZ05, PT07, DTCR08].

When we deal with f -labelings of properties in dynamic graphs, it is not clear how to
compute the labels of the new vertices without recomputing all the labels. Indeed, in most
cases the algorithm that computes the labels takes into account the whole graph (c.f. [CV03])
and not only each node locally. To our knowledge only labelings for routing and distance
queries are considered in dynamic trees [KPR04, Kor07a, KP07, Kor08].

In this thesis we investigate log-labelings for the existence of paths in sub-graphs of planar
graphs. We then extend the result to other classes of graphs obtained by planar gluings of
graphs of small clique-width with limited overlaps. For that purpose we introduce two new
types of graph decomposition based respectively on partitions of vertices and on partitions of
edges. They can be seen as generalizations of the strong tree-decomposition of Seese [See85]
and of tree-decomposition.

1A graph is an apex graph if there exists a vertex such that its deletion yields a planar graph.
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Overview of the Results

The thesis is organized into two parts: Part I, composed of Chapters 2 to 7, is devoted to graph
classes of bounded clique-width through the notion of rank-width and Part II, composed of
Chapters 8 to 10, is devoted to labelings on certain graph classes of unbounded clique-width.

In Chapter 1 we present all the necessary de�nitions (sets, graphs, terms, ...), the notions
of clique-width, rank-width, vertex-minor and the notions of graph operation and of monadic
second order logic. We also present some basic results used throughout the other chapters.

Chapter 2 introduces the notion of a σ-symmetric matrix, which generalizes that of a
symmetric matrix. We de�ne a notion of rank-width for σ-symmetric matrices and derive
from the works by Bouchet [Bou87, Bou88] a notion of vertex-minor for them. We prove in
particular that σ-symmetric matrices of rank-width at most k are characterized by a �nite list
of σ-symmetric matrices, which generalizes the result of Oum [Oum05b] in undirected graph
classes of bounded rank-width.

In Chapter 3 we derive from the results of Chapter 2 a notion of rank-width for directed
graphs, called GF (4)-rank-width, and a notion of vertex-minor for directed graphs. We also
de�ne another notion of rank-width for directed graphs, called bi-rank-width, and based on a
representation of directed graphs by an adjacency matrix over GF (2). We prove that these
two notions are equivalent, in the sense that the same classes of graphs have bounded bi-rank-
width and bounded GF (4)-rank-width. We �nally derive from the works by Bouchet and
Fon-Der-Flaass [Bou87, FDF96] a notion of vertex-minor, named bvertex-minor, for bi-rank-
width.

In Chapter 4 we de�ne algebraic graph operations that characterize exactly undirected
graphs of rank-width at most k as follows:

an undirected graph G has rank-width at most k if and only if it is generated by
a term in T (Rk, Ck)

where Rk is a �nite set of binary graph operations, Ck is a �nite set of constants, both
depending on k. We will also give algebraic graph operations for GF (4)-rank-width and
bi-rank-width.

In Chapter 5 we prove that the two notions of rank-width for directed graphs are equivalent
to clique-width. We give a cubic time algorithm to check if a directed graph has GF (4)-
rank-width (resp. bi-rank-width) at most k. As a consequence, we propose a cubic time
approximation algorithm for directed graphs of clique-width at most k.

Chapter 6 de�nes a uniform framework for constructing balanced graph decompositions.
Our framework uni�es the results of Bodlaender et al. [Bod88, BH98] and of Courcelle et al.
[CV03, CT07]. We will also apply it to rank-width and prove in particular that undirected
graph classes of rank-width at most k admit rank-decompositions of logarithmic height and
of width at most 2k.

Chapter 7 relates minor inclusion and vertex-minor inclusion. As a consequence we prove
that rank-width is linearly bounded in term of tree-width.

In Chapter 8 we show that each property expressible in �rst order logic admits a log-
labeling on certain classes of graphs of bounded local clique-width. These classes contain
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classes of graphs that exclude an apex graph as a minor, unit-interval graphs and classes of
graphs of bounded degree.

In Chapter 9 we show that there exists a log-labeling for connectivity (the existence of
paths) in sub-graphs of planar graphs. For that purpose we will combine geometrical tools,
logical tools from [CV03] and bipolar orientations of 2-connected planar graphs.

In Chapter 10 we introduce two new types of graph decomposition with associated graph
parameters, based respectively on partitions of vertices and partitions of edges. We extend
the log-labeling of Chapter 9 to classes of graphs that have bounded width with respect to
the two decompositions. These classes of graphs can be seen as planar gluings of graphs of
small clique-width with limited overlaps.



Chapter 1

Notations and Basic De�nitions

Sets. For two sets A and B, we let A− B be the set {x ∈ A | x /∈ B} and we let A4B be
the set (A − B) ∪ (B − A). When the context is clear we will write u to denote the set {u}.
Let V be a set and X ⊆ V , X denotes the set V −X and 2V denotes the power-set of V . All
graphs and trees in this thesis are �nite. We denote by N and R the �elds of natural integers
and of real numbers respectively. For every positive integer k, we let [k] be the set {1, . . . , k}
([0] is then the empty set). If F is a �nite �eld, we denote by F k, for any positive integer k,
the set of row-vectors over F of length k.

Relational Structures. A relational signature is a �nite set Σ = {R,S, T, . . .} of relation
symbols, each of which given with an arity ar(R) ≥ 1. We denote by STR[Σ] the set of
all �nite relational Σ-structures A = 〈A, (RA)R∈Σ 〉 where RA ⊆ Aar(R). The set A is called
the domain of A. More informations on relational structures can be found in the books
[Wec92, Wir] or in the survey [Cou96].

C-Colored Relational Structures. Let C be a �nite set of colors and Σ a relational sig-
nature. A C-colored relational Σ-structure A = 〈A, (RA)R∈Σ 〉 is a relational Σ-structure
whose elements are all colored with colors in C (uncolored relational Σ-structures are consid-
ered as relational Σ-structures whose vertices have all the same color). Formally, a C-colored
relational Σ-structure A is represented by the relational Γ-structure 〈A, (RA)R∈Σ, (ca,A)a∈C 〉
where Γ = Σ ∪ {ca | a ∈ C} and such that for every x ∈ A, there exists a unique color
a in A such that ca,A(x) holds. Therefore, we can denote it by 〈A, (RA)R∈Σ, labA 〉 where
labA : A→ C.

Disjoint Union. The disjoint union A ⊕B of two relational structures A ∈ STR[Σ] and
B ∈ STR[Γ] is the relational structure C ∈ STR[Σ ∪ Γ] whose domain is C = A ∪ B with
A ∩B = ∅ (otherwise one takes a copy of A) and for any R ∈ Σ ∪ Γ, we have RC = RA ∪RB

where RA = ∅ if R ∈ Γ− Σ and RB = ∅ if R ∈ Σ− Γ.

Graphs. We deal with directed as well undirected graphs. A simple graph G is represented
by the couple (VG, EG) where VG is the set of vertices and EG is either a set of ordered pairs
of vertices if G is directed, or a set of unordered pairs if G is undirected. EG is called the

9
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set of arcs (or edges) if G is directed (or undirected). An arc from x to y is denoted by
(x, y) (y is called the target and x the source). An edge between x and y is denoted by xy
(equivalently yx). Two vertices x and y are said adjacent in a directed (resp. undirected)
graph G if (x, y) ∈ EG or (y, x) ∈ EG (resp. xy ∈ EG). We use the term graph to denote an
undirected as well as a directed graph. Graphs are simple and without loops. We denote by
G the class of all graphs.

A tree is an acyclic connected graph. A forest is a disjoint union of trees. A tree T is rooted
if there exists a distinguished node r called the root of T . Then a rooted tree is directed so
that all nodes are reachable from the root by a directed path. A rooted forest is a forest where
all the trees, which are its connected components, are rooted. If T is a rooted tree and u ∈ VT ,
we denote by T ↓ u the sub-tree of T rooted at u, induced by the set of all descendants of u.
In order to avoid confusions in technical lemmas, the vertices of trees will be called nodes and
the nodes of degree 1 in rooted trees are called leaves.

We denote by G[X] the sub-graph of G induced by X ⊆ VG and we let G\X be the
sub-graph G[VG − X]. For F ⊆ EG we also denote by G[F ] the sub-graph of G induced by
F ⊆ EG (EG[F ] = F and VG[F ] is the set of vertices incident to an edge in F ). The context
will specify when using G[Y ] whether Y is a set of vertices or a set of edges/arcs. For x ∈ VG,
we denote by NG(x) the set of vertices adjacent to x; a vertex in NG(x) is called a neighbor
of x.

A simple graph G can be seen as a relational {E}-structure where E, a binary relation,
is symmetric when G is undirected. In this case a graph G is the relational {E}-structure
〈VG, EG 〉 where VG is its set of vertices and EG ⊆ VG × VG. For a graph G, a vertex x
and an edge/arc e, we let incG(e, x) express that e is incident with x. A graph G can also
be seen as a relational {inc}-structure and be represented by the relational {inc}-structure
〈VG ∪ EG, incG 〉 where VG is its set of vertices, EG its set of edges and incG ⊆ EG × VG.
From now on by graphs we mean relational {E}-structures, unless otherwise speci�ed.

Terms. Let F be a set of functions and C a set of constants. We denote by T (F,C) the set
of �nite well-formed terms built with F ∪ C. They will be handled also as labeled, directed
and rooted ordered trees in the usual way. The tree corresponding to a term t in T (F,C)
has for set of nodes the set Nt of occurrences in t of the symbols from F ∪ C; its root is
the occurrence of the �rst symbol in the usual pre�x notation; it is directed so that every
node is reachable from the root by a directed path; each node is labeled by the symbol of
which it is an occurrence and edges are ordered so as to represent the order of arguments of a
function symbol. For a term t ∈ T (F,C), we denote by OccL(t) the �nite set of occurrences
of constants in t and by Synt(t) the syntactic tree of t.

Let F be a set of binary functions. We de�ne the reduced term of t ∈ T (F,C) as red(t) ∈
T ({∗}, {#}) where ∗ is binary and # is a constant. It is obtained by replacing every binary
symbol by ∗, every constant by # and by deleting the unary symbols. Formally,

red(t) = # if t ∈ C,
red(f(t)) = red(t) if f ∈ F is unary,

red(f(t1, t2)) = ∗(red(t1), red(t2)) if f ∈ F is binary.

Notice that Synt(t) and red(t) are rooted. We now de�ne the notion of context which will
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be mostly used when dealing with balanced terms.

De�nition 1.1 (Contexts) Let F be a set of functions and C a set of constants. A context

is a term in T (F,C ∪ {u}) having a single occurrence of the variable u (a nullary symbol). We
denote by Cxt(F,C) the set of contexts and by Id the particular context u. Let s be a context
and t a term or context, we denote by s[t/u] the term or context obtained by replacing u in s by
t. We de�ne two binary operations on terms and contexts:{

s ◦ s′ = s[s′/u] belonging to Cxt(F,C) for s, s′ in Cxt(F,C),
s • t = s[t/u] belonging to T (F,C) for s in Cxt(F,C) and t in T (F,C).

Equivalence of Graph Parameters. A graph parameter wd is a function G → N that is
invariant under isomorphism. Two graph parameters, say wd and wd′, are equivalent if there
exist two increasing integer functions f and g such that for any graph G,

f(wd′(G)) ≤ wd(G) ≤ g(wd′(G)).

Composition of Multivalued Functions. Let f : A → 2B and g : B → 2C be two
multivalued functions. We denote by g◦f the mapping A→ 2C such that g◦f(a) = g(f(a)) =⋃
{β(b) | b ∈ f(a)}. We also use ◦ for the normal composition of unary functions. We denote

by IdA the identity function A→ A. For sets A1, . . . , Am, A, a function f : A1×· · ·×Am → 2A

is called an m-ary multivalued function.

We now recall the notions of clique-width, m-clique-width, rank-width and monadic second
order logic.

1.1 Clique-Width and M-Clique-Width

The de�nition of clique-width is from [CO00].

De�nition 1.2 (Clique-Width of Graphs) Let k be a positive integer. We recall the fol-
lowing operations.

(C1) For an undirected [k]-colored graph G = 〈VG, EG, labG 〉 and for distinct i, j ∈ [k], we
denote by ηi,j(G) the undirected [k]-colored graph K = 〈VG, EK , labG 〉 where

EK = EG ∪ {xy | x, y ∈ VG and x 6= y and i = labG(x), j = labG(y)}.

(C1') For a directed [k]-colored graph G = 〈VG, EG, labG 〉 and for distinct i, j ∈ [k], we denote
by αi,j(G) the directed [k]-colored graph K = 〈VG, EK , labG 〉 where

EK = EG ∪ {(x, y) | x, y ∈ VG and x 6= y and i = labG(x), j = labG(y)}.

(C2) For a [k]-colored graph G = 〈VG, EG, labG 〉 and for distinct i, j ∈ [k], we denote by ρi→j(G)
the [k]-colored graph K = 〈VG, EG, labK 〉 where

labK(x) =

{
j if labG(x) = i,

labG(x) otherwise.
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(C3) For each i ∈ [k], i denotes a [k]-colored graph with a single vertex colored by i and no edge.
We let Cc

k = {i | i ∈ [k]}.1

For k ≥ 1 we let F uc
k be the set {⊕, ηi,j , ρi→j | i, j ∈ [k]} and F dc

k be the set
{⊕, αi,j , ρi→j | i, j ∈ [k]}. Every term t in T (F uc

k , Cc
k) (resp. T (F dc

k , Cc
k)) de�nes, up to iso-

morphism, an undirected (resp. a directed) [k]-colored graph val(t). The clique-width of a graph
G, denoted by cwd(G), is the minimum k such that G = val(t) where t ∈ T (F uc

k , Cc
k) if G is

undirected and t ∈ T (F dc
k , Cc

k) if G is directed.

Example 1.1 gives two examples of terms that generate respectively an undirected graph
and a directed graph.

Example 1.1 We will use the notation i(x) to mean that the vertex x is in bijection with this
constant i. We let G0, G1, . . . , G5 and G be the undirected graphs on Figure 3 (i)-(vii). We
will explain how to construct G by means of clique-width operations and we will use for that
purpose the undirected graphs G0, . . . , G5, which are sub-graphs of G. They illustrate how G
is constructed. The graph G0 is generated by the term t0 = (1(c) ⊕ 1(d)) ⊕ (2(a) ⊕ 3(b)). It
consists of 4 isolated vertices. The graph G1 is generated by the term t1 = η1,2(t0), which adds
the edges between a, colored by 2 and, c and d, colored by 1. It is worth noticing that the term
η2,1(t0) also generates G1. The term t2 = η1,3(t1) adds edges between b, colored by 3 and, c
and d, colored by 1. Then it generates the graph G2. The graph G3 is generated by the term
t3 = η4,2(t1 ⊕ 4(e)). The term t3 adds the vertex e, colored by 4, and adds the edge between a
and e. The term t4 = ρ4→3(ρ3→2(ρ2→1(t3))) changes respectively the color of a into 1 with the
operation ρ2→1, the color of b into 2 with the operation ρ3→2 and the color of e into 3 with the
operation ρ4→3. It does not change the other colors and then generates the graph G4. The graph
G5 is generated by the term t5 = ρ2→1(ρ4→3(η4,3(η4,2(4(f) ⊕ t4)))). It adds the edges between
f and, e and b. The graph G is isomorphic to the graph generated by the term η2,3(t4 ⊕ 2(g)).
It is also isomorphic to the graph generated by the term η4,3(t4 ⊕ 4(g)). Then the graph G has
clique-width at most 4. We can prove that it has exactly clique-width 4.

We now consider the directed graphs
−→
G1,
−→
G2 and

−→
G on Figure 4 (i)-(iii). The directed graphs

−→
G1 and

−→
G2 are used in order to illustrate how

−→
G is constructed by means of clique-width op-

erations. The graph
−→
G1 is generated by the term

−→
t1 = ρ4→1(α1,2(α2,3(α4,3((1(x3) ⊕ 2(x4)) ⊕

(3(x5) ⊕ 4(x2)))))). This term �rst create the vertices x3, x4, x5 and x2 and then, adds the

arcs (x5, x2), (x4, x5) and (x3, x4), in this order. The graph
−→
G2 is generated by the term

−→
t2 = ρ4→2(ρ3→2(α4,1(α4,3(α2,4(4(x1)⊕

−→
t1 ))))). The graph

−→
G is isomorphic to the graph gener-

ated by the term α1,3(3(x6)⊕
−→
t2 ). Then the graph

−→
G has clique-width at most 4 (we can prove

that it has exactly clique-width 4).

Contrary to the case of tree-width, there is no known polynomial-time algorithm for the
recognition of graphs of clique-width at most k for �xed k > 3 (for k ≤ 3 there exists one
for undirected graphs [CHL+00]) which produces a term that uses cwd(G) colors and that
de�nes G. Note that the clique-width checking problem is NP-Hard when k is part of the
input [FRRS06].

1We can de�ne constants with loops by letting for each i the constant i` be a graph with single vertex
colored by i with a loop. However we will not need them.



1.1. Clique-Width and M-Clique-Width 13
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Figure 3: Undirected graphs of Example 1.1.

(iii)

x6

(ii)

x2x5x4x3

2(x1)
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1(x2) 1(x3) 2(x4) 2(x5) 1(x2)

x1

Figure 4: Directed graphs of Example 1.1.

We now de�ne the notion of edge-colored graphs used in Section 4.3 for de�ning graph
operations that handle algebraically the notion of bi-rank-width (Section 3.1). We will also
de�ne the notion of clique-width of edge-colored graphs, a notion used in Chapter 10. The
notion of clique-width of edge-colored graphs is used in [FMR08] for counting the number of
assignments of a propositional formula.

De�nition 1.3 (Edge-Colored Graphs and Clique-Width of Edge-Colored Graph)
Let A be a �nite set. An A-edge-colored graph is a graph whose edges/arcs are colored by colors
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in A. An A-edge-colored graph G can be seen as the relational structure 〈VG, (Ea
G)a∈A 〉, also

denoted by G, where for every a in A and every pair of vertices (x, y), Ea
G(x, y) holds if and only

if there is an edge between x and y colored by a. It is undirected if for all pair of vertices (x, y)
and all a in A we have Ea

G(x, y) holds if and only if Ea
G(y, x) holds. We de�ne the following

operations.

(AC1) For an undirected [k]-colored A-edge-colored graph2 G = 〈VG, (Ea
G)a∈A, labG 〉, for a color

b in A and for distinct i, j ∈ [k], we denote by ηb
i,j(G) the undirected [k]-colored A-edge-

colored graph K = 〈VG, (Ea
K)a∈A, labG 〉 where:

Ea
K =

{
Ea

G if a 6= b,

Ea
G ∪ {(x, y), (y, x) | x, y ∈ VG and x 6= y and i = labG(x), j = labG(y)} otherwise.

We add b-colored edges between vertices colored by i and vertices colored by j. The colors
of the vertices are not modi�ed.

(AC1') For a directed [k]-colored A-edge-colored graph G = 〈VG, (Ea
G)a∈A, labG 〉, for a color b in

A and for distinct i, j ∈ [k], we denote by αb
i,j(G) the directed [k]-colored A-edge-colored

graph K = 〈VG, (Ea
K)a∈A, labG 〉 where

Ea
K =

{
Ea

G if a 6= b

Ea
G ∪ {(x, y) | x, y ∈ VG and x 6= y and i = labG(x), j = labG(y)} otherwise.

We add b-colored arcs between vertices colored by i and vertices colored by j. The colors of
the vertices are not modi�ed.

(AC2) For a [k]-colored A-edge-colored graph G = 〈VG, (Ea
G)a∈A, labG 〉 and for distinct i, j ∈ [k],

we denote by ρi→j(G) the [k]-colored A-edge-colored graph K = 〈VG, (Ea
G)a∈A, labK 〉

where

labK(x) =

{
j if labG(x) = i,

labG(x) otherwise.

We just recolor the vertices of G. The colors of the edges are not modi�ed.

We let F u
k,A = {⊕, ηa

i,j , ρi→j | i, j ∈ [k], a ∈ A} and F d
k,A = {⊕, αa

i,j , ρi→j | i, j ∈ [k], a ∈ A}.
The clique-width of an A-edge-colored graph G is the minimum k such that G is isomorphic to
val(t) for some term t in T (F u

k,A, C
c
k) if G is undirected, otherwise t is in T (F d

k,A, C
c
k).

An A-edge-colored graph is shown on Figure 7 (iii).

Let us now de�ne the last notion of this section, the one of m-clique-width, a graph pa-
rameter, de�ned as clique-width in terms of graph operations, and equivalent to clique-width.
Courcelle and Twigg used it to prove that we can label each vertex of an undirected n-vertex
graph G of clique-width k by a bit sequence of size at most O(k2 · log(n)2) and determine for
any X ⊆ VG, the distance of two vertices u and v in G \X, just by looking at the labels of u,
v and of the vertices in X [CT07].

2The vertices and the edges of G are colored.
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De�nition 1.4 (M-Clique-Width) Let k be a positive integer. A k-multicolored graph is a
2[k]-colored graph. Hence a vertex may have zero, one or several colors in [k]. We de�ne the
following operations.

(M1) for R ⊆ [k]2, for mappings g, h : [k] → 2[k], called recolorings, and for undirected k-
multicolored graphs G = 〈VG, EG, labG 〉 and H = 〈VH , EH , labH 〉 such that VG∩VH = ∅
(otherwise we replace H by a disjoint copy) we denote by G ⊗R,g,h H the undirected k-
multicolored graph K = 〈VG ∪ VH , EK , labK 〉 where:

EK = EG ∪ EH ∪ {xy | x ∈ VG, y ∈ VH and R ∩ (labG(x)× labH(y)) 6= ∅},

labK(x) =

{
(g ◦ labG)(x) = {a | a ∈ g(b), b ∈ labG(x)} if x ∈ VG,

(h ◦ labH)(x) if x ∈ VH .

(M2) for R,R′ ⊆ [k]2, for recolorings g, h : [k] → 2[k] and for directed k-multicolored graphs
G = 〈VG, EG, labG 〉 and H = 〈VH , EH , labH 〉 such that VG ∩ VH = ∅ (otherwise we
replace H by a disjoint copy) we denote by G⊗R,R′,g,hH the directed k-multicolored graph
K = 〈VG ∪ VH , EK , labK 〉 where:

EK = EG ∪ EH ∪ {(x, y) | x ∈ VG, y ∈ VH and R ∩ (labG(x)× labH(y)) 6= ∅}
∪ {(y, x) | x ∈ VG, y ∈ VH and R′ ∩ (labG(x)× labH(y)) 6= ∅}

labK(x) =

{
(g ◦ labG)(x) if x ∈ VG,

(h ◦ labH)(x) if x ∈ VH .

(M3) For each A ⊆ [k], A denotes a k-multicolored graph with a single vertex colored by A and
no edge/arc. We let Cum

k = {A | A ⊆ [k]}.

For k ≥ 1 we let F um
k = {⊗R,f,g | R ⊆ [k]2, f, g : [k]→ [k]} and F dm

k = {⊗R,R′,f,g | R,R′ ⊆
[k]2, f, g : [k] → [k]}. Every term t ∈ T (F um

k , Cum
k ) (resp. t ∈ T (F dm

k , Cum
k )) de�nes, up

to isomorphism, an undirected (resp. directed) k-multicolored graph val(t). The m-clique-width

of an undirected (resp. directed) graph G, denoted by mcwd(G), is the minimum k such that
G = val(t), where t ∈ T (F um

k , Cum
k ) (resp. t ∈ T (F dm

k , Cum
k )).

One can verify that the graph on Figure 3 (vii) has m-clique-width 2. M-clique-width and
clique-width are two equivalent graph parameters as proved in the following.

Proposition 1.1 ([CT07]) For every graph G, mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1.

We will show in Chapter 6 that if an undirected graph G with n vertices has m-clique-
width at most k then, it is the value of a 3-balanced term, i.e., of height at most 3 · log(n),
belonging to T (F um

2k , Cum
2k ).

In their investigations of recognition algorithms for the clique-width of undirected graphs,
Oum and Seymour introduced the notion of rank-width of undirected graphs, which is a graph
parameter equivalent to clique-width for undirected graphs. We now introduce this notion.
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1.2 Rank-Width and Vertex-Minor

We recall the de�nition of rank-width of undirected graphs [Oum05b, OS06], based on the
branch-width of a symmetric function, and give some results. Other results will be recalled
when necessary.

Let V be a set and f : 2V → Z. We say that f is symmetric if for anyX ⊆ V, f(X) = f(X);
f is submodular if for any X,Y ⊆ V, f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ). We �rst de�ne
the notion of layout of symmetric functions [RS91].

De�nition 1.5 (Sub-Cubic Trees) A sub-cubic tree is a tree such that the degree of each
node is at most 3. By replacing in a sub-cubic tree T every induced path x−u1−u2−· · ·−un−y
by the edge x − y, and by deleting the intermediate vertices u1, . . . , un, one transforms T into a

tree T ′ such that every node has degree 1 or 3 and N
(1)
T ′ = N

(1)
T (we denote by N

(i)
T the set of

nodes of degree i). We will denote T ′ by Red(T ).

De�nition 1.6 (Layout) A layout of a symmetric function f : 2V → Z is a pair (T,L) of a

sub-cubic tree T and a bijective function L : V → N
(1)
T . Each edge e of T induces a bipartition

(Xe, Xe) of N
(1)
T , and thus a bipartition (Xe, X

e) = (L−1(Xe),L−1(Xe)) of V . (By convention

if T is rooted and e = (u,w) we will assume that Xe = L−1(N (1)
T↓w); we will omit the superscript

e when the context is clear.)

We can now introduce the branch-width of a symmetric function [RS91].

De�nition 1.7 (Branch-Width) Let (T,L) be a layout of a symmetric function f . The
branch-width of an edge e of T is f(Xe). The branch-width of a layout (T,L), denoted by
bwd(f, T,L), is the maximum branch-width over all edges of T . The branch-width of f , denoted
by bwd(f), is the minimum branch-width over all layouts of f .

One can verify easily that if (T,L) is a layout of branch-width k of a symmetric function
f , then (Red(T ),L) is also a layout of branch-width k of f .

One example of a graph parameter de�ned by using the branch-width of symmetric func-
tions is the notion of branch-width of a graph, a graph parameter equivalent to tree-width and
de�ned by Robertson and Seymour [RS91] (see the surveys [Bod98, Bod05]).

De�nition 1.8 (Branch-Width of a Graph [RS91]) Let G = 〈VG, EG 〉 be a graph. For
a set X of edges, let TX be the set of vertices incident to at least one edge in X. Let η : 2EG → N
be de�ned such that for each X ⊆ EG, η(X) =

∣∣∣{TX ∩ TEG−X}
∣∣∣. The function η is symmetric.

The branch-width of G, denoted by bwd(G), is the branch-width of η.

We will use the notion of branch-width of a graph in Section 7.4. It is important to not
confuse the branch-width of a graph with the branch-width of a symmetric function.

We can now de�ne the rank-width of undirected graphs, also based on branch-width of
symmetric functions. We let rk be the rank-function of matrices [Lip91]. For sets R and C, an
(R,C)-matrix is a matrix where the rows are indexed by elements in R and columns indexed
by elements in C. We simply write R-matrix when R = C. We call |R| × |C| the order of an
(R,C)-matrix. For an (R,C)-matrixM , if X ⊆ R and Y ⊆ C we letMY

X be the sub-matrix of
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M where the rows and the columns are indexed by X and Y respectively and we let M\X be
the (R−X,C−X)-matrixMC−X

R−X . The adjacency matrix of a graph G = 〈VG, EG 〉 (directed
or not) is the VG-matrix AG where (AG)y

x = 1 if and only if there is an edge or an arc between
x and y.

De�nition 1.9 ([Oum05a]) Let G be an undirected graph. For any X ⊆ VG, we let ρG(X) =
rk
(
(AG)X

X

)
. Then ρG is a symmetric function. The rank-width of an undirected graph G, denoted

by rwd(G), is the branch-width of the function ρG.

Example 1.2 We let G be the undirected graph on Figure 3 (vii). The induced sub-graph
G[{e, a, c, b, f}] is isomorphic to the cycle C5. Hence, G is not a distance-hereditary graph.
Therefore, the rank-width of G is at least 2. Figure 5 shows a layout of the function ρG of
branch-width 2 because ρG({e, f, g}) = rk(A) = 2 where:

A =

a b c d

e 1 0 0 0
f 0 1 0 0
g 0 0 0 0

Hence the rank-width of G is 2.

a

b

c

d

f

g

e

Figure 5: A layout of the function ρG where G is the undirected graph on Figure 3 (vii).

Oum and Seymour proved that rank-width is equivalent to clique-width [OS06].

Proposition 1.2 ([OS06]) For an undirected graph G, rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

In [Oum05b] Oum de�nes the notion of vertex-minor of undirected graphs derived from
the works of Bouchet on circle graphs [Bou88].

De�nition 1.10 Let G be an undirected graph and x ∈ VG. The undirected graph obtained by
applying a local complementation at x to G is

G ∗ x = 〈VG, EG4{yz | xy, xz ∈ EG, z 6= y} 〉 .

An undirected graph H is locally equivalent to an undirected graph G if H can be obtained by
applying a sequence of local complementations to G. We say that H is a vertex-minor of G if H
can be obtained by applying a sequence of vertex deletions and local complementations to G.
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The graph G ∗ x is obtained by edge-complementing the sub-graph of G induced by the
vertices adjacent to x. We now recall the following by Oum.

Lemma 1.1 ([Oum05b]) Let G be an undirected graph. If H is locally equivalent to G then
the rank-width of H is equal to the rank-width of G. If H is a vertex-minor of G then the
rank-width of H is at most the rank-width of G.

Example 1.3 Figure 6 shows the undirected graph G ∗ e where G is the undirected graph on
Figure 3 (vii). We can verify that the layout on Figure 5 is also a layout for G ∗ e of same
branch-width because ρG∗e({e, f, g}) = rk(A′) = 2 where

A′ =

a b c d

e 1 0 0 0
f 1 1 0 0
g 1 0 0 0

f

b

d

a

c

G ∗ e

e

g

Figure 6: Local complementation at e of the undirected graph on Figure 3 (vii).

Undirected graphs of rank-width at most k are characterized by a �nite list of excluded
vertex-minors as stated in the following.

Theorem 1.1 ([Oum05b]) For each k there is a �nite list Ck of undirected graphs having at
most (6k+1 − 1)/5 vertices such that an undirected graph G has rank-width at most k if and
only if no undirected graph in Ck is isomorphic to a vertex-minor of G.

As for clique-width, checking the rank-width of a graph is NP-complete [HOSG08] when
k is part of the input. However, for �xed k there exists a cubic-time FPT algorithm that
decides if a given graph has rank-width at most k due to Oum and Hliněný. (For �xed k,
several approximation algorithms for recognizing undirected graphs of rank-width at most k
had been given by Oum et al. [Oum05a, OS06].)

Theorem 1.2 ([HO07]) For �xed k there exists an O(n3)-time algorithm that for an undi-
rected graph G with |VG| = n, either outputs a layout of the function ρG of branch-width at
most k or con�rms that the rank-width of G is larger than k.
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Contrary to that of clique-width, the de�nition of rank-width of undirected graphs is
combinatorial. An algebraic characterization of rank-width of undirected graphs has been
given in terms of algebraic graph operations [CK09]. We will give the proof in Chapter 4 in a
more general context.

As for clique-width, we will extend the notion of rank-width of undirected graphs to
undirected A-edge-colored graphs.

De�nition 1.11 Let A be a �nite set of colors. If G is an undirected A-edge-colored graph
then, for each a ∈ A we let Ga be the sub-graph of G consisting of VG and its a-colored edges,
i.e., Ga = 〈VG, E

a
G 〉. A layout of a graph G is a pair (T,L) where T is a sub-cubic tree and

L : VG → N
(1)
T is a bijection. For every undirected A-edge-colored graph G we let

rwdA(G) = min
{

max
a∈A
{bwd(ρGa , T,L)} | (T,L) is a layout of G

}
.

Example 1.4 Let A = {a, b}. An undirected A-edge-colored graph G is shown on Figure 7 (iii).
The graphs Ga and Gb and, a layout (T,L) of G are shown on Figure 7 (i), (ii) and (iv). One can
verify that (T,L) is a layout of branch-width 2 for ρGa and ρGb

.

x6

x1

x4 x5

a

a

a
a

a

x6

x1

x4 x5

b

b

b b

(i) (ii)

(iii)

(iv)

x1 x6

x3 x5 x4 x2

x2x3x2x3

x6

x1

x4 x5

a b

a

a
a

a

b

b b
x3 x2

Figure 7: An A-edge-colored graph G where A = {a, b} and a layout of G.

1.3 Monadic Second Order Logic

In this section we introduce the notions of �rst order logic and of monadic second order logic.
The terminologies are from [BC06, Cou93].
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Let Σ be a relational signature and A be a relational Σ-structure. We will use lower case
variables x, y, z, . . ., called FO variables, to denote elements in A and upper case variables
X,Y, Z, . . ., called set variables, to denote subsets of A. The Σ-atomic formulas are x = y,
x ∈ X and R(x1, . . . , xar(R)) for any R ∈ Σ. A �rst order formula over Σ (FOΣ formula for
short) is a formula formed from Σ-atomic formulas with Boolean connectives ∧, ∨, ¬, ⇒ and
element quanti�cations ∃x, ∀x. A monadic second order formula over Σ (MSOΣ formula for
short) is formed from FOΣ formulas with set quanti�cations ∃X, ∀X. If the context is clear,
we will omit the subscript Σ. An occurrence of a variable which is not under the scope of a
quanti�er is called a free variable; a formula without free variables is called a sentence. If χ
is a set of lower and upper case variables, we denote by MSOΣ(χ) (resp. FOΣ(χ)) the set
of MSOΣ formulas (resp. FOΣ formulas) with free variables in χ. If the free variables of a
formula ϕ are x1, . . . , xm, Y1, . . . , Yq we will write ϕ(x1, . . . , xm, Y1, . . . , Yq).

If P is a property of relational Σ-structures, we write P (x1, . . . , xm, Y1, . . . , Yq) to mean
that P depends on elements of the domains x1, . . . , xm and sets of elements of the domains
Y1, . . . , Yq. A property P (x1, . . . , xm, Y1, . . . , Yq) of relational Σ-structures is MSO-de�nable
(resp. FO-de�nable) if there exists an MSO (resp. FO) formula ϕ(x1, . . . , xm, Y1, . . . , Yq)
such that a relational Σ-structure A satis�es P if and only if ϕ is true in the relational
Σ-structure A. A formula, MSO as well as FO, is quanti�er-free if the formula contains no
quanti�er. And we denote by QFΣ the set of quanti�er-free formulas in FOΣ. For every
positive integer m notice that, up to a decidable equivalence that re�nes logical equivalence,
the set QFΣ({x1, . . . , xm}) is �nite [CW05].

We will denote by MS1 the set of MSO{E} formulas and by MS2 the set of MSO{inc}
formulas. The property stating that a graph contains an Hamiltonian cycle is MS2-de�nable
but notMS1-de�nable (this can be proved by showing that if Hamiltonicity isMS1-de�nable,
then the language {anbn} is regular). Thus we can express more properties withMS2 formulas
than with MS1 formulas. Here is an example of an FO formula that expresses that a vertex
x has degree at most 4:

∀y1∀y2∀y3∀y4∀y5

 ∧
1≤i≤5

E(x, yi)⇒
∨

1≤i<j≤5

yi = yj


The following MS1 formula expresses that a graph is 3-colorable.

∃X1∃X2∃X3

 ∧
1≤i<j≤3

�Xi ∩Xj = ∅� ∧ ∀x
∨

i∈[3]

x ∈ Xi ∧ ∀x∀y
∧

i∈[3]

(x ∈ Xi ∧ y ∈ Xi ⇒ ¬E(x, y))

 .

The formulas that express properties of graphs when we do not care about the structure
that represents them are called MS or FO formulas. We use the usual notation A |= ϕ to say
that the formula ϕ is true in the relational structure A. The quanti�er-rank of a formula ϕ,
denoted by qr(ϕ), is de�ned inductively as follows:

qr(ϕ) = 0 if ϕ is an atomic formula,

qr(ϕσψ) = max{qr(ϕ), qr(ψ)} if σ ∈ {∧,∨},
qr(σxϕ) = 1 + qr(ϕ) if σ ∈ {∃,∀},
qr(¬ϕ) = qr(ϕ) .
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1.4 Graph Operations

We will now introduce graph operations in a logical point of view in terms of relational
structures representing graphs. We use the de�nitions from [BC06].

De�nition Scheme. Let Σ and Γ be two relational signatures and L be a logical language.
An L-de�nition scheme D of type Σ→ Γ is a tuple (ψ, (θR)R∈Γ) where:

ψ ∈ LΣ({x}),
θR ∈ LΣ({x1, . . . , xar(R)}) for each R ∈ Γ.

Let A ∈ STR[Σ] and B ∈ STR[Γ]. We say that D de�nes the Γ-structure B from A if

(QF1) B = {a | A |= ψ(a)},

(QF2) for each R ∈ Γ,

RB = {(a1, . . . , aar(R)) ∈ Bar(R) | A |= θR(a1, . . . , aar(R))}.

The structure B is uniquely determined by A and D. Therefore, we can use a functional
notation and we write B = D̂(A). Notice that if A is isomorphic to A′ then D̂(A) is isomorphic
to D̂(A′)

We recall that the notions of de�nition scheme and of quanti�er-free operation are de�ned
in a more general context in [BC06]. However, the de�nitions given here are enough for our
purposes. We recall a result that is proved in detail in [BC06].

Proposition 1.3 Let Σ and Γ be relational signatures and let D be an MS-de�nition scheme
of type Σ → Γ. Then, for every MS formula ϕ(x1, . . . , xm, Y1, . . . , Yq) on relational Γ-
structures, there exist an MS formula ϕ#(x1, . . . , xm, Y1, . . . , Yq) on relational Σ-structures
such that for every relational Γ-structure B and every relational Σ-structure A with B = D̂(A):

B |= ϕ⇐⇒ A |= ϕ#

Graph Operation. A quanti�er-free operation γ from STR[Σ] to STR[Γ] is a function
de�ned by a QFΣ-de�nition scheme D of type Σ → Γ such that γ(A) = D̂(A) for all A ∈
STR[Σ].

We now give examples of quanti�er-free operations. Let k be a �xed positive in-
teger. We recall that an undirected [k]-colored graph is represented by the structure
〈VG, EG, c1,G, . . . , ck,G 〉 where ci,G(x) is true if and only if x has color i. It is easy to verify
that ηi,j (one of the graph operations that de�ne clique-width, see Section 1.1) is de�ned by
the following quanti�er-free operation (ψ, θE , (θc`

)`∈[k]) where:

ψ = true,

θE(x1, x2) = E(x1, x2) ∨
(
x1 6= x2 ∧

((
ci(x1) ∧ cj(x2)

)
∨
(
cj(x1) ∧ ci(x2)

)))
,

θc`
(x) = c`(x) for ` ∈ [k].
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Another example of a quanti�er-free operation is the edge-complement, which is not a
basic operation de�ning clique-width. However it can be used; the decidability result and
algorithmic results of [CMR00, CMR01] (FPT algorithms) remain valid. Notice also that
edge-addition is a particular case of quanti�er-free operation.

In this way we get a unique notion covering several types of graph operations, and uniform
proofs for several cases. In the works by Courcelle et al. [BC06, Cou92, Cou93, CER93,
CMR00, CMR01, Mak04] it is shown how to verify MS formulas on graphs generated by
terms written with quanti�er-free operations and disjoint union.
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Chapter 2

Rank-width of σ-Symmetric Matrices

Clique-Width is more general than tree-width because every class of simple graphs that has
bounded tree-width has bounded clique-width [CO00, CR05]. However, contrary to tree-
width, for �xed k ≥ 4 there is no polynomial-time algorithm that checks if a given graph has
clique-width at most k. If k is part of the input, the clique-width checking as well as the
tree-width checking problems are NP-complete [ACP87, FRRS06].

Oum and Seymour [Oum05a, Oum05b, OS06] introduced the notion of rank-width of
undirected graphs in their investigations of recognition algorithms for graphs that have clique-
width at most k, for �xed k. Rank-width is equivalent to clique-width (Proposition 1.2)
but, rank-width has better algorithmic properties than clique-width: undirected graphs of
rank-width at most k are characterized by a �nite list of excluded con�gurations (Theorem
1.1) and can be recognized by a cubic-time algorithm (Theorem 1.2). Moreover, this cubic-
time recognition algorithm gives rise to a cubic-time approximation algorithm for recognizing
undirected graphs of clique-width at most k. However, clique-width is de�ned for directed
as well as undirected graphs. It is thus natural to ask for a similar notion of rank-width for
directed graphs.

We introduce for that purpose the notion of σ-symmetric matrices which extends that of
symmetric matrices (the adjacency matrix of an undirected graph is a symmetric matrix).
We extend the notion of rank-width for a similar notion of rank-width and of vertex-minor
to σ-symmetric matrices. We will see that our de�nitions of rank-width and of vertex-minor
coincide with De�nitions 1.9 and 1.10 when we deal with undirected graphs. We will also
extend Theorem 1.1 to σ-symmetric matrices. All the results in this chapter are technical
but easy adaptations of the proofs of Oum [Oum05b, Sections 4,5] and can be seen as their
generalizations as we will see in Sections 2.2 and 2.3. We will see in Chapter 3 that our
notion of σ-symmetric matrices is useful for the extension of the notion of rank-width to
directed graphs. Oum [Oum05c] also de�ned a notion of vertex-minor for symmetric and
skew-symmetric matrices, however, this notion is incomparable to the one de�ned in this
chapter.

In Section 2.1 we introduce the notion of σ-symmetric matrices and the notion of rank-
width of σ-symmetric matrices. In Section 2.2 we introduce the notion of vertex-minor of
σ-symmetric matrices derived from the works of Bouchet [Bou87] and we adapt some results of
Oum, particularly [Oum05b, Proposition 4.3, Lemma 4.4]. In Section 2.3 we extend Theorem
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1.1 to σ-symmetric matrices by adapting the proofs of [Oum05b, Section 5].

We will denote by + and · the binary operations of any �eld and by 0 and 1 the neutral
elements of + and · respectively.

2.1 Rank-Width of σ-Symmetric Matrices

See Section 1.2 for the notions of layout and of branch-width of a symmetric function. We
will now introduce the σ-symmetric matrices and the notion of F -rank-width.

De�nition 2.1 (σ-Symmetric Matrices) Let F be a �nite �eld and let σ : F → F be an
automorphism. A V -matrix M over F for some �nite set V is said σ-symmetric if My

x = σ(Mx
y )

for every x, y ∈ V .

Notice that σ-symmetric matrices are di�erent from skew-symmetric matrices. We assume
σ to be an automorphism, that means that σ(0) = 0 and σ(1) = 1 and in a skew-symmetric
matrix M if My

x = 1, then Mx
y = −1 and there is no automorphism that maps 1 to −1.

However, any symmetric matrix M is a σ-symmetric matrix since My
x = Mx

y and we let σ be
the identity automorphism. We let rk be the rank-function of matrices.

De�nition 2.2 (Cut-Rank Function) Let F be a �nite �eld and let σ : F → F be an
automorphism. The cut-rank function of a σ-symmetric V -matrixM is the function ρF

M : 2V → N
where for all X ⊆ V , we have ρF

M (X) = rk(MX
X ).

Let AG be the adjacency VG-matrix of an undirected graph G. One can easily verify
that the function ρG de�ned in De�nition 1.9 is the same as ρGF (2)

AG
and is then the cut-rank

function of AG over GF (2). We now prove that ρF
M is symmetric and submodular. We �rst

recall the submodular inequality of the matrix rank-function [Oum05b].

Proposition 2.1 [Oum05b, Proposition 4.1] Let M be an (R,C)-matrix over a �eld F . Then
for all X1, Y1 ⊆ R and X2, Y2 ⊆ C, we have:

rk
(
MX2

X1

)
+ rk

(
MY2

Y1

)
≥ rk

(
MX2∩Y2

X1∪Y1

)
+ rk

(
MX2∪Y2

X1∩Y1

)
.

Lemma 2.1 Let F be a �nite �eld and let σ : F → F be an automorphism. Then for every
σ-symmetric matrix M , the function ρF

M is symmetric and submodular.

Proof. Let M be a σ-symmetric V -matrix for some �nite set V . The �rst statement is clear.
By de�nition ρF

M (X) = rk(MX
X ) = rk(MX

X
) for all X ⊆ V . Then one applies Proposition 2.1

to get the second statement.

We can now de�ne the F -rank-width of σ-symmetric matrices.

De�nition 2.3 (F -Rank-Width) Let F be a �nite �eld and let σ : F → F be an automor-
phism. A layout of a σ-symmetric matrix M is a layout of ρF

M . The F -rank-width of M , denoted
by rwdF (M), is the branch-width of the function ρF

M .
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Since the rank-width of an undirected graph G is the branch-width of the function ρG and
since ρG = ρ

GF (2)
AG

, De�nition 2.3 coincides with De�nition 1.9 when we deal with undirected
graphs represented by their adjacency matrix over GF (2).

For any σ-symmetric V -matrix M , we can construct an undirected graph G(M) where
VG(M) = V and there exists an edge between x and y in VG(M) if and only if My

x 6= 0. M
is said connected if and only if G(M) is connected. MX

X is a connected component of M if
G(M)[X] is a connected component ofG(M) forX ⊆ V . It is then clear that the F -rank-width
of M is the maximum of the F -rank-widths of its connected components.

2.2 Vertex-Minor

In order to extend the theory of isotropic systems [Bou88] to directed graphs, Bouchet [Bou87]
generalized the notion of local complementation and of locally equivalent to directed graphs.
He de�ned the local complementation at x of G as the directed graph represented by the
matrix A′G over GF (2) where (A′G)y

z = (AG)y
z +(AG)x

z · (AG)y
x. When we deal with undirected

graphs this de�nition coincides with the one of local complementation of undirected graphs
(see De�nition 1.10). The use of local complementation of directed graphs allows Bouchet
[Bou87] to give in particular a cubic-time algorithm for �nding a split1 in a directed graph.
Later Fon-Der-Flaass proved that two n-vertex graphs G and H are locally equivalent if and
only if a system of n2 equations with 3n indeterminates has a solution in GF (2) [FDF96]. We
extend this de�nition of local complementation to σ-symmetric matrices. We will use it in
Chapter 3 in order to de�ne a notion of vertex-minor for directed graphs.

Let p be a prime number. A �eld F has characteristic p if for every a ∈ F we have
a+ · · ·+ a︸ ︷︷ ︸

p

= 0 (see [LN97] for more informations on �nite �elds). A �eld of characteristic p

is noted GF (pr) where r ≥ 1 and pr is its number of elements.

De�nition 2.4 (Lc-Complementation) Let F be a �nite �eld and let σ : F → F be an
automorphism. Let M be a σ-symmetric V -matrix and let x be in V . The V -matrix obtained by
applying an lc-complementation at x to M is M ∗ x where for all x1, x2 in V ,

(M ∗ x)x2
x1

=

{
Mx2

x1
+Mx

x1
·Mx2

x if x1 6= x2 and x /∈ {x1, x2},
Mx2

x1
Otherwise.

It is worth noticing that if My
x = 0, then the rows and the columns of M and of M ∗x indexed by

y are equal. Also the rows and columns of M and of M ∗ x indexed by x are equal. We say that
N is lc-equivalent to M if N can be obtained by applying a sequence of lc-complementations to
M . We call N a vertex-minor of M if N = (M ′)X

X where X ⊆ V and M ′ is lc-equivalent to M .

One can easily verify from De�nition 1.10 that if an undirected graph H is isomorphic to
G ∗ x where G is an undirected graph and x ∈ VG, then the following holds

(AH)x2
x1

=

{
(AG)x2

x1
+ (AG)x

x1
· (AG)x2

x if x1 6= x2,

(AG)x2
x1

Otherwise.

1Let G be a directed graph. A bipartition (X, Y ) of VG is a split if and only if |X|, |Y | ≥ 2 and rk((AG)Y
X) = 1

[Bou87].
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Then an undirected graph H is a vertex-minor, as de�ned in De�nition 1.10, of an undirected
graph G if and only if AH is a vertex-minor of AG. We now prove some properties of vertex-
minors of σ-symmetric matrices.

Lemma 2.2 Let F be a �nite �eld and let σ : F → F be an automorphism. Let M be a
σ-symmetric V -matrix and let x be in V . Then

1. M ∗ x is a σ-symmetric V -matrix.

2. M ∗ x ∗ · · · ∗ x = M if F is of characteristic p (we apply the local complementation at x
p times consecutively).

Proof. 1. Let N = M ∗ x. It is su�cient to prove that Nx1
x2

= σ(Nx2
x1

) for any x1, x2 ∈
V, x1 6= x2.

Nx1
x2

= Mx1
x2

+Mx
x2
·Mx1

x

= σ(Mx2
x1

) + σ(Mx2
x ) · σ(Mx

x1
)

= σ(Mx2
x1

) + σ(Mx
x1
·Mx2

x )
= σ(Mx2

x1
+Mx

x1
·Mx2

x )
= σ(Nx2

x1
).

2. For the sake of clarity we prove it when F is of characteristic 3. It is also su�cient to prove
that Mx2

x1
= (M ∗ x ∗ x ∗ x)x2

x1
for x1, x2 ∈ V, x1 6= x2.

(M ∗ x ∗ x ∗ x)x2
x1

= (M ∗ x ∗ x)x2
x1

+ (M ∗ x ∗ x)x
x1
· (M ∗ x ∗ x)x2

x

= (M ∗ x)x2
x1

+ (M ∗ x)x
x1
· (M ∗ x)x2

x + (M ∗ x)x
x1
· (M ∗ x)x2

x

= Mx2
x1

+Mx
x1
·Mx2

x +Mx
x1
·Mx2

x +Mx
x1
·Mx2

x

= Mx2
x1

since a+ a+ a = 0 for all a ∈ F .

Lemma 2.2 (1) proves that the lc-complementation is well-de�ned over σ-symmetric ma-
trices.

Lemma 2.3 Let F be a �nite �eld and let σ : F → F be an automorphism. Let M be a
σ-symmetric V -matrix for some �nite set V and let x be in V . Then for every X ⊆ V ,

ρF
M (X) = ρF

M∗x(X).

Proof. We can assume that x ∈ X since the rank function rk is symmetric. For y ∈ X the
lc-complementation at x results in adding a multiple of the row indexed by x to the row
indexed by y. This operation is repeated for all y ∈ X. In each case, the rank of the matrix
does not change. Hence ρF

M (X) = ρF
N (X).
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Proposition 2.2 If N is lc-equivalent to M , then the F -rank-width of N is equal to the F -
rank-width of M . If N is a vertex-minor of M , then the F -rank-width of N is at most the
F -rank-width of M .

Proof. The �rst statement is obvious by Lemma 2.3. Since taking sub-matrices does not
increase the rank, it does not increase the F -rank-width. So the second statement is true.

It is clear that Lemma 1.1 is a corollary of Proposition 2.2. We refer to books like [Lip91] for
terminologies on linear algebra. The following is an easy adaptation of [Oum05b, Proposition
4.3].

Proposition 2.3 Let F be a �nite �eld of characteristic 2 and let σ : F → F be an automor-
phism. Then for every σ-symmetric V -matrix M , every x ∈ V and every X ⊆ V − {x},

ρF
(M∗x)\x(X) = rk

(
1 M

V−(X∪x)
x

Mx
X M

V−(X∪x)
X

)
− 1

Proof. Let M be a σ-symmetric V -matrix and let x ∈ V and X ⊆ V . Let N be the set
{y | My

x 6= 0} and Y = V − (X ∪ x). We denote by J = (Mx
x1
·Mx2

x )x1∈X∩N,x2∈Y ∩N . Then

ρF
(M∗x)\x(X) = rk((M ∗ x)Y

X)

= rk

(
(M ∗ x)Y ∩N

X∩N (M ∗ x)Y−N
X∩N

(M ∗ x)Y ∩N
X−N (M ∗ x)Y−N

X−N

)
= rk

(
MY ∩N

X∩N + J MY−N
X∩N

MY ∩N
X−N MY−N

X−N

)

= rk

1 MY ∩N
x MY−N

x

0 MY ∩N
X∩N + J MY−N

X∩N

0 MY ∩N
X−N MY−N

X−N

− 1

Recall that My
x = 0 for all y ∈ Y −N . Then, for each x1 ∈ X ∩N :

Mx
x1
·
(
1 MY ∩N

x MY−N
x

)
=
(
Mx

x1
JY ∩N

x1
MY−N

x

)
.

Then

Mx
x1
·
(
1 MY ∩N

x MY−N
x

)
+AV

x1
=
(
Mx

x1
MY ∩N

x1
MY−N

x1

)
where

A =

1 MY ∩N
x MY−N

x

0 MY ∩N
X∩N + J MY−N

X∩N

0 MY ∩N
X−N MY−N

X−N


Then

rk(A) = rk

 1 MY ∩N
x MY−N

x

Mx
X∩N MY ∩N

X∩N MY−N
X∩N

0 MY ∩N
X−N MY−N

X−N

− 1

= rk

(
1 MY

x

Mx
X MY

X

)
− 1.
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Therefore ρF
(M∗x)\x(X) = rk

(
1 MY

x

Mx
X MY

X

)
− 1.

The following lemma is thus the same as [Oum05b, Lemma 4.4], we just add it for com-
pleteness since the statement concerns σ-symmetric matrices and not only undirected graphs.

Lemma 2.4 Let F be a �nite �eld of characteristic 2 and let σ : F → F be an automorphism.
Let M be a σ-symmetric V -matrix and let x be in V . Assume that (X1, X2) and (Y1, Y2) are
partitions of V − {x}. Then

ρF
M\x(X1) + ρF

(M∗x)\x(Y1) ≥ ρF
M (X1 ∩ Y1) + ρF

M (X2 ∩ Y2)− 1.

Proof. Let M ′ be de�ned such that (M ′)y
x = My

x if x 6= y and (M ′)x
x = 1. It is clear that for

everyX ⊆ V we have ρF
M (X) = ρF

M ′(X). We have Y2 = V −(Y1∪{x}) andX2 = V −(X1∪{x}).
By Proposition 2.3 we have :

ρF
M\x(X1) + ρF

(M∗x)\x(Y1) = rk(MX2
X1

) + rk

(
1 MY2

x

Mx
Y1

MY2
Y1

)
− 1

By de�nition we have (M ′)Y2∪x
Y1∪x =

(
1 MY2

x

Mx
Y1

MY2
Y1

)
. Then

ρF
M\x(X1) + ρF

(M∗x)\x(Y1) = rk((M ′)X2
X1

+ rk((M ′)Y2∪x
Y1∪x)− 1

≥ rk((M ′)X2∪Y2∪x
X1∩Y1

) + rk((M ′)X2∩Y2
X1∪Y1∪x)− 1 by Proposition 2.2

≥ ρF
M ′(X1 ∩ Y1) + ρF

M ′(X1 ∪ Y1 ∪ x)− 1 by De�nition of ρF
M ′

However, the cut-rank function ρF
M ′ is symmetric (Lemma 2.1), i.e., ρF

M ′(X1 ∪ Y1 ∪ x) =
ρF

M ′(X2 ∩ Y2). Then

ρF
M\x(X1) + ρF

(M∗x)\x(Y1) ≥ ρF
M ′(X1 ∩ Y1) + ρF

M ′(X2 ∩ Y2)− 1

≥ ρF
M (X1 ∩ Y1) + ρF

M (X2 ∩ Y2)− 1.

2.3 Excluded Vertex-Minors

In this section we consider that we have �xed a �nite �eld F of characteristic 2 and
an automorphism σ : F → F . We will extend Theorem 1.1 to σ-symmetric matrices over
F . We will adapt the proofs by Oum [Oum05b, Section 5]. We �rst recall some de�nitions
[GGRW03, Oum05b].

LetM be a σ-symmetric V -matrix and let (A,B) be a bipartition of V . A branching of B is

a triple (T, r,L) where T is a sub-cubic tree with a �xed node r ∈ N (1)
T and L : B → N

(1)
T −{r}

is a bijection. For an edge e of T and a node v of T , we let Tev be the set of nodes in the
component of T\e not containing v and we let Yev = L−1(N (1)

Tev
). We say that B is k-branched
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if there exists a branching (T, r,L) such that for each edge e of T , we have ρF
M (Yer) ≤ k. It is

worth noticing as in [Oum05b] that if A and B are k-branched, then the F -rank-width of M
is at most k.

The following lemma is already proved in [Oum05b, Lemma 5.1] for GF (2). But the proof
is independent of the �eld. It uses the fact that the cut-rank function is symmetric, submodular
and integer-valued. Since only the statement changes, we include it for completeness of the
proof.

Lemma 2.5 LetM be a σ-symmetric V -matrix of F -rank-width k. Let (A,B) be a bipartition
of V such that ρF

M (A) ≤ k. If there is no tripartition (A1, A2, A3) of A such that ρF
M (Ai) <

ρF
M (A) for all i ∈ [3], then B is k-branched.

Proof. Assume for every tripartition (A1, A2, A3) of A, we have ρF
M (Ai) ≥ ρF

M (A) for some
i ∈ [3].

Claim 2.1 If (X1, X2) is a bipartition of V with ρF
M (X1) ≤ k, then either ρF

M (B ∩X1) ≤ k
or ρF

M (B ∩X2) ≤ k.

Proof of Claim 2.1. Let (A ∩ X1, A ∩ X2, ∅) be a tripartition of A. Then either
ρF

M (A∩X1) ≥ ρF
M (A) or ρF

M (A∩X2) ≥ ρF
M (A); assume, ρF

M (A∩X1) ≥ ρF
M (A). By submodu-

larity, ρF
M (A∪X1) ≤ ρF

M (A)+ρF
M (X1)−ρF

M (A∩X1) ≤ k. So, ρF
M (A∪X1) = ρF

M (B∩X2) ≤ k.

We let (T,L) be a layout of M of F -rank-width k. We may assume that |V | ≥ 3 and k > 0,
otherwise it is trivial.

Claim 2.2 There exists a degree-3 node s of T such that for each edge e of T , ρF
M (Yes∩B) ≤ k.

Proof of Claim 2.2. We construct an orientation of T . Let e be an edge of T and let u and
v be the ends of e. If ρF

M (Yev ∩B) ≤ k, then we orient e from u to v. By Claim 2.1 each edge
receives at least one orientation.

First assume that there exists a node v of T that is connected to every other node of T by
a directed path in T . Since k ≥ 1, each edge incident to a leaf has been oriented away from
that leaf. Hence we may assume that v has degree 3. Then the claim follows with s = v.

Next, assume there exists no node reachable from every other node. Then there exists a pair
of edges e and f and a node w on the path connecting e and f such that neither e nor f
is oriented toward w. Let Y2 = V − (Yew ∪ Yfw). Since e and f are oriented away from w,
ρF

M ((Yfw ∪ Y2) ∩B) ≤ k and ρF
M ((Yew ∪ Y2) ∩B) ≤ k. By submodularity,

ρF
M (Yew ∩B) + ρF

M (Yfw ∩B) ≤ ρF
M ((Yfw ∪ Y2) ∩B) + ρF

M ((Yew ∪ Y2) ∩B)
≤ 2k.

This contradicts the fact that neither e nor f is oriented toward w.
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Let s be a node satisfying Claim 2.2, let e1, e2 and e3 be the edges of T incident to s. Note
that by assumption ρF

M (Yeis∩A) ≥ ρF
M (A) for some i ∈ [3]; assume i = 1. By sub-modularity,

ρF
M ((Ye2s ∪ Ye3s) ∩B) = ρF

M (Ye1s ∪A)

≤ ρF
M (Ye1s) + ρF

M (A)− ρF
M (Ye1s ∩A)

≤ ρF
M (Ye1s) ≤ k.

Now we construct a branching (T ′, r,L′) of B. Let T ′ be a tree obtained from the minimum
subtree of T containing both e1 and nodes in L(B) by subdividing e1 with a node b, adding
a node, denoted by r, of degree 1 adjacent to b (we delete all the degree-2 nodes). For each
x ∈ B, we let L′(x) be the node of degree 1 of T ′ induced by L(x). Then (T ′, r,L′) is a
branching of B. By Claim 2.2 for each edge e of T ′, we have ρF

M (Yer) ≤ k. So B is k-branched.

Let g : N → N be a function. A σ-symmetric V -matrix is called (m, g)-connected if for
every partition (A,B) of V , ρF

M (A) = ` < m implies |A| ≤ g(`) or |B| ≤ g(`). This notion
will help us to bound the order of the minimal σ-symmetric matrices that every σ-symmetric
matrix of F -rank-width k must exclude as vertex-minors.

Lemma 2.6 Let f : N → N be a non-decreasing function. Let M be a (m, f)-connected σ-
symmetric V -matrix and let x be in V . Then either M\x or (M ∗ x)\x is (m, 2f)-connected.

Proof. We continue to follow the proof of [Oum05b, Lemma 5.2].

Suppose neitherM\x nor (M ∗x)\x is (m, 2f)-connected. Then there are bipartitions (A1, A2)
and (B1, B2) of V − {x} such that

a = ρF
M\x(A1) |A1| > 2f(a) |A2| > 2f(a)

b = ρF
(M∗x)\x(B1) |B1| > 2f(b) |B2| > 2f(b).

We may assume that a ≥ b and that |A1 ∩B1| > f(a). By Lemma 2.4 we have

ρF
M (A1 ∩B1) + ρF

M (A2 ∩B2) ≤ a+ b+ 1.

Thus either ρF
M (A1 ∩B1) ≤ a or ρF

M (A2 ∩B2) ≤ b. So by hypothesis either |A1 ∩B1| ≤ f(a)
or |A2 ∩B2| ≤ f(b); suppose |A2 ∩B2| ≤ f(b). Similarly we also have either |A2 ∩B1| ≤ f(a)
or |A1 ∩ B2| ≤ f(b). Since |A1 ∩ B2| = |B2| − |B2 ∩ A2| > f(b) we have |A2 ∩ B1| ≤ f(a).
Then |A2| = |A2 ∩B1|+ |A2 ∩B2| ≤ f(a) + f(b) ≤ 2f(a); a contradiction.

We let g(n) = (6n − 1)/5. Note that g(0) = 0, g(1) = 1 and g(n) = 6g(n − 1) + 1 for
all n ≥ 1. We now prove that the minimal σ-symmetric matrices that have F -rank-width at
least k + 1 are (k + 1, g)-connected.

Lemma 2.7 Let k ≥ 1 and let M be a σ-symmetric V -matrix for some �nite set V . If M
has F -rank-width larger than k but every proper vertex-minor of M has F -rank-width at most
k, then M is (k + 1, g)-connected.
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Proof. We follow the proof of [Oum05b, Lemma 5.3]. We assume M connected since the
F -rank-width of M is the maximum of the F -rank-width of its connected components. It is
now easy to see that M is (1, g)-connected.

Suppose m ≤ k and M is (m, g)-connected but M is not (m + 1, g)-connected. Then there
exists a partition (A,B) with ρF

M (A) = m such that |A| > g(m), |B| > g(m). Also either
A or B is not k-branched (rwdF (M) > k). We may assume that B is not k-branched. Let
x ∈ A.

By Lemma 2.6, either M\x or (M ∗ x)\x is (m, 2g)-connected; assume M\x is (m, 2g)-
connected. Since M\x and (M ∗x)\x are proper vertex-minors of M , they both have F -rank-
width at most k. Let (A1, A2, A3) be a tripartition of A−{x}. Since |A| > g(m) = 6g(m−1)+1
there exists an i ∈ [3] such that |Ai| > 2g(m − 1). Since M\x is (m, 2g)-connected and
|Ai| > 2g(m− 1),

ρF
M\x(Ai) ≥ m ≥ ρF

M\x(A− {x}).

Therefore by Lemma 2.5, B is k-branched in M\x. Since B is not k-branched in M there
exists W ⊆ B such that

ρF
M (W ) = ρF

M\x(W ) + 1.

Thus, the column vectors ofMV−(W∪x)
W do not spanMx

W . So, the column vectors ofMV−(B∪x)
W

do not span Mx
W . Hence, the column vectors of MV−(B∪x)

B do not span Mx
B. Therefore,

ρF
M\x(B) = ρF

M (B)− 1 = m− 1.

This implies that |B| ≤ 2g(m− 1) or |A− {x}| ≤ 2g(m− 1). A contradiction.

We can now prove the main theorem of this chapter, which is a generalization of [Oum05b,
Theorem 5.4]. Notice that, as in [GGRW03, Oum05b], Lemma 2.7 is the key lemma in the
proof of the main theorem.

Theorem 2.1 (Excluded Vertex-Minors) Let k ≥ 1 and let M be a σ-symmetric V -
matrix for some �nite set V . If M has F -rank-width larger than k but every proper vertex-
minor of M has F -rank-width at most k, then |V | ≤ (6k+1 − 1)/5.

Proof. Let x ∈ V . We may assume that M\x is (k + 1, 2g)-connected by Lemmas 2.6
and 2.7. Since M\x has F -rank-width k, there exists a biparitition (A,B) of V − {x}
such that |A| ≥ 1

3(|V | − 1) and |B| ≥ 1
3(|V | − 1) and ρF

M\x(A) ≤ k. By (k + 1, 2g)-
connectivity, either |A| ≤ 2g(k) or |B| ≤ 2g(k). Therefore |V | − 1 ≤ 6g(k) and consequently
|V | ≤ 6g(k) + 1 = g(k + 1).
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It is surprising that the bound (6k+1 − 1)/5 does not depend neither on F nor on σ, but
that is because our proof technique is based on the branch-width of ρF

M and not on F or σ.
However, the branch-width depends on F since there is no reason that the rank of a matrix
is the same in two di�erent �elds. In the following corollary, which is a generalization of
[Oum05b, Corollary 5.5], the set of forbidden σ-matrices as vertex-minors depends on F and
σ.

Corollary 2.1 Let F be a �nite �eld of characteristic 2 and let σ : F → F be an automor-
phism. For each positive integer k, there is a �nite list C(F,σ)

k of σ-symmetric (`× `)-matrices,
` ≤ (6k+1 − 1)/5 such that a σ-symmetric matrix M has F -rank-width at most k if and only

if no σ-symmetric matrix in C(F,σ)
k is isomorphic to a vertex-minor of M .

Proof. We follow again the proof of [Oum05b, Corollary 5.5]. If k < 0 we let Ck = ∅. If k = 0,

we let C(F,σ)
0 = {Ia | a ∈ F, a 6= 0} where Ia =

(
0 a
a 0

)
. It is clear that M has F -rank-width

at most 0 if and only if M has no vertex-minor isomorphic to some Ia ∈ C(F,σ)
0 . Let k ≥ 1.

Let C(F,σ)
k be the set of σ-symmetric matrices N such that rwdF (N) > k and every proper

vertex-minor of N has F -rank-width at most k. By Theorem 2.1, C(F,σ)
k is �nite and each

σ-symmetric matrix in C(F,σ)
k has order (`× `) where ` ≤ (6k+1 − 1)/5.

Let M be a σ-symmetric matrix of F -rank-width at most k. Since every matrix in C(F,σ)
k has

F -rank-width larger than k, no matrix in C(F,σ)
k is isomorphic to a vertex-minor of M .

Conversely, assume that the F -rank-width of M is larger than k and let N be a proper
vertex-minor of M of minimum size such that rwdF (N) > k. Then there exists a matrix

N ′ ∈ C(F,σ)
k isomorphic to N .

We will give an upper bound on the size of C(F,σ)
k . Let F (F,σ)

` be the set of σ-symmetric
V -matrices over F where |V | = `. One can verify that:

|F (F,σ)
` | = |F |`−1 × |F |`−2 × · · · × |F |.

By Corollary 2.1, if a σ-symmetric matrix M is an excluded vertex-minor for σ-symmetric
matrices of F -rank-width k, then the order of M is `× ` where ` ≤ (6k+1 − 1)/5. Therefore,
the size of C(F,σ)

k is bounded by
∑

k+1≤j≤` |F
(F,σ)
j | where ` = (6k+1− 1)/5. This upper bound

is of no help for a concrete computation. Moreover, the bound (6k+1 − 1)/5 seems to be far
from optimal. But, we were not able to improve it.

2.4 Conclusion

We have de�ned a notion of rank-width for σ-symmetric matrices over a �eld F and a notion
of vertex-minor for σ-symmetric matrices over F . We have generalized Theorem 1.1 to σ-
symmetric matrices over a �nite �eld of characteristic 2. There are two open questions:
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(Q2.1) Generalize Theorem 2.1 to σ-symmetric matrices over all �nite �elds.

(Q2.2) Give an algorithm to recognize if a σ-symmetric matrix is a vertex-minor of another
σ-symmetric matrix.

We will use the results of this chapter to de�ne a notion of rank-width for directed graphs
in Chapter 3.
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Chapter 3

Rank-Width of Directed Graphs

There are several ways to de�ne the notion of rank-width for directed graphs. We de�ne two
possible notions: one based on σ-symmetric matrices, called GF (4)-rank-width, and another
based on a coding of directed graphs by undirected graphs, called bi-rank-width. We compare
the two de�nitions in this chapter. In Section 3.1 we introduce the two notions of rank-width
for directed graphs and de�ne for each of them a notion of vertex-minor. We prove in Section
3.2 that the two notions are equivalent, i.e., that a class of directed graphs has bounded
GF (4)-rank-width if and only if it has bounded bi-rank-width.

3.1 Rank-Width of Directed Graphs

3.1.1 GF (4)-Rank-Width

We recall that GF (4) has four elements {0, 1, a, a2} with the property that 1+a+a2 = 0 and
a3 = 1 and is of characteristic 2.

De�nition 3.1 (GF (4)-Rank-Width) For a directed graphG, we denote by FG the VG-matrix
over GF (4) where:

(FG)y
x =


0 i� (x, y) /∈ EG and (y, x) /∈ EG

a i� (x, y) ∈ EG and (y, x) /∈ EG

a2 i� (y, x) ∈ EG and (x, y) /∈ EG

1 i� (x, y) ∈ EG and (y, x) ∈ EG

We let σ : GF (4)→ GF (4) be an automorphism such that σ(1) = 1, σ(0) = 0, σ(a) = a2

and σ(a2) = a. It is then clear that FG is a σ-symmetric VG-matrix. The GF (4)-rank-width of
G, denoted by rwd (4 )(G), is the GF (4)-rank-width of FG.

Remark 3.1 Let G be an undirected graph. We denote by
−→
G the directed graph obtained from

G by replacing each edge by two opposite edges. By the de�nition of
−→
G , we have AG = F−→

G
.

Then rwd (4 )(
−→
G) = rwd(G) (see Lemma 3.2).

37
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Example 3.1 We consider the directed graph G on Figure 4 (iii) (Chapter 1, Section 1.1). The
VG-matrix over GF (4) of G is:

FG =

x1 x2 x3 x4 x5 x6

x1 0 a a a2 a 0
x2 a2 0 0 0 a a

x3 a2 0 0 a 0 a

x4 a 0 a2 0 a 0
x5 a2 a2 0 a2 0 0
x6 0 a2 a2 0 0 0

Figure 8 shows a layout of the function ρ
GF (4)
G of branch-width 2. One can verify that for every

pair (z, t) of vertices in G, we have ρ
GF (4)
G ({z, t}) = 2. Then the GF (4)-rank-width of G is 2.

x1x4
x3x2 x5 x6

Figure 8: A layout of ρGF (4)
G where G is the directed graph on Figure 4 (iii).

Let G be a directed graph and let FG be the VG-matrix that represents its adjacencies.
Then in any layout (T,L) of ρGF (4)

FG
, the vertices of G are in bijection with the nodes of degree

1 in T . Then a layout of ρGF (4)
FG

measures how some bipartitions of VG are connected by using
the VG-matrix FG. We will now de�ne our �rst notion of vertex-minor for directed graphs by
using De�nition 2.4.

Let G be a directed graph and let x be a vertex of G. An lc-complementation of G at
x is the graph represented by the VG-matrix FG ∗ x, noted G ∗ x. We say that a directed
graph H is lc-equivalent to a directed graph G if H can be obtained from G by a sequence of
lc-complementations and H is a vertex-minor of G if H can be obtained from G by a sequence
of lc-complementations and of vertex-deletions. Thus, a directed graph H is a vertex-minor
of a directed graph G if and only if FH is a vertex-minor of FG. One can verify, using the
de�nition of lc-complementation, that if H = G ∗ x, then H is obtained from G by modifying
the sub-graph induced on the neighbors of x as shown by Table 11.

Example 3.2 We consider the directed graph G on Figure 4 (iii). Figure 9 shows the directed
graph obtained by applying an lc-complementation at x4 of G. One can verify that the layout on
Figure 8 of G is also a layout of G ∗ x4 and of same branch-width.

1x → y means (x, y) is an arc and not (y, x); x ← y means (y, x) is an arc and not (x, y); x ↔ y means
(x, y) and (y, x) are arcs and x1 ⊥ x2 means no arc between x1 and x2.
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G G ∗ x
x1 ⊥ x2 x1 ↔ x2

x1 → x2 x1 ← x2

x1 ← x2 x1 → x2

x1 ↔ x2 x1 ⊥ x2

G G ∗ x
x1 ⊥ x2 x1 → x2

x1 → x2 x1 ⊥ x2

x1 ← x2 x1 ↔ x2

x1 ↔ x2 x1 ← x2

(a) (b)

Table 1: (a) Uniform Case: x1 ← x→ x2 or x1 → x← x2 or x1 ↔ x↔ x2. (b) Non Uniform
Case: x1 ← x← x2 or x1 → x↔ x2 or x1 ↔ x→ x2.

x3

x6

x5

x4

x1

x2

Figure 9: The directed graph G ∗ x4 where G is the directed graph on Figure 4 (iii).

Note that when G is an undirected graph, then when applying an lc-complementation of−→
G at x ∈ VG, the sub-graph of

−→
G induced on the neighbors of x is edge-complemented, i.e., if

z ↔ y ∈ V−→
G
, then z ⊥ y holds in

−→
G ∗x and vice-versa (see Table 1). Therefore,

−→
G ∗x =

−−−→
G ∗ x.

We get this theorem as a consequence of Corollary 2.1.

Theorem 3.1 For each k, there is a �nite list Ck of directed graphs having at most (6k+1−1)/5
vertices such that a directed graph G has GF (4)-rank-width at most k if and only if no directed
graph in Ck is isomorphic to a vertex-minor of G.

In a graphG, directed or not, a vertex ofG is a pendant vertex if it has only one neighbor. A
distance hereditary graph is an undirected graph with a single vertex or that can be obtained
from a distance hereditary graph by adding an isolated vertex or a pendant vertex or by
creating twins2. Oum proved that an undirected graph has rank-width at most 1 if and only
if it is a distance hereditary graph [Oum05b]. We will give a similar characterization for graph
classes of GF (4)-rank-width at most 1. Let us �rst give some de�nitions.

De�nition 3.2 (Oriented Distance Hereditary Graphs) Let G be a directed graph. Two

vertices x and y of G are called dtwins if ρ
GF (4)
G ({x, y}) ≤ 1. A directed graph is called an oriented

distance hereditary graph if and only if it is a directed graph with a single vertex or it can be obtained
by creating dtiwns, adding an isolated vertex or adding a pendant vertex to an oriented distance
hereditary graph.

2In an undirected graph G two vertices x and y are twins if for all z ∈ VG − {x, y}, EG(x, z) holds if and
only if EG(y, z) holds.
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Example 3.3 Figure 10 shows an oriented distance hereditary graph G and a layout of ρ
GF (4)
G

of branch-width 1. The following pairs of vertices are dtiwns: (x4, x3), (x4, x6), (x, 4, x7) and
(x2, x8).

x2

x7

x3

x6

x1

x3

x1

x2 x8

x5

x6

(ii)(i)

x4 x7

x4

x5 x8

Figure 10: (i) An oriented distance hereditary graph G. (ii) A layout of the function ρGF (4)
G

of branch-width 1.

We will prove that directed graphs of GF (4)-rank-width at most 1 are exactly oriented
distance hereditary graphs. Notice that if G is an oriented distance hereditary graph, the
graph obtained from G by forgetting the orientations of the arcs is a distance hereditary
graph and this motivates the terminology oriented distance hereditary. However, we do not
have any characterization of oriented distance hereditary graphs in terms of distance, whereas
distance hereditary graphs have one. We will follow the same ideas as in [Oum05b, Section
7].

Proposition 3.1 Let G be a directed graph and let x and y be dtwins such that G\x has at
least one arc. Then rwd (4 )(G\x) = rwd (4 )(G)

Proof. By de�nition of vertex-minor we have rwd (4 )(G\x) ≤ rwd (4 )(G). We will prove that
rwd (4 )(G\x) ≥ rwd (4 )(G). Let (T,L) be a layout of branch-width k = rwd (4 )(G\x) of the

function ρGF (4)
G\x . By de�nition of layouts of ρGF (4)

G\x there is a bijection L between VG\x and

N
(1)
T . Let v = L(y) and let u ∈ VT such that uv ∈ ET . Let T ′ be obtained from T as follows:

VT ′ = VT ∪ {u′, w | u′, w /∈ VT },
ET ′ = (ET − {uv}) ∪ {uu′, u′v, u′w}.

We let L′ : VG → N
(1)
T ′ such that:

L′(z) =

{
L(z) if z ∈ VG − {x},
w otherwise.

It is clear that (T ′,L′) is a layout of ρ
GF (4)
G . We claim that bwd(ρGF (4)

G , T ′,L′) =
bwd(ρGF (4)

G\x , T,L).
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It is clear that the branch-width of the edges u′v and u′w are at most 1. Since x and y
are dtwins, the branch-width of the edge uu′ is at most 1. Moreover, the other edges of T ′

are in T , then their branch-width in (T ′,L′) is equal to their branch-width in (T,L). Since

G\x has at least one arc, we have rwd (4 )(G\x) ≥ 1, i.e., bwd(ρGF (4)
G , T ′,L′) = rwd (4 )(G\x).

Therefore, rwd (4 )(G\x) ≥ rwd (4 )(G).

Proposition 3.2 Let G be a directed graph such that rwd (4 )(G) = 1. Then there exist x and
y such that x and y are dtwins or x is the only neighbor of y.

Proof. Assume that |VG| ≥ 3, otherwise the proposition is trivially true. Let (T,L) be

a layout of the function ρ
GF (4)
G of branch-width 1. There exists at least one node u of T

adjacent with two nodes in N
(1)
T , say v and w. We let x and y such that L(x) = v and

L(y) = w. Let u′ be the node adjacent with u and di�erent from v and w. The partition
induced by T\uu′ is ({x, y}, VG − {x, y}). Since rwd (4 )(G) = 1, the branch-width of the edge
uu′ is at most 1. This means that either x and y are dtwins, or y is the only neighbor of x or
x is the only neighbor of y.

Proposition 3.3 A directed graph G has GF (4)-rank-width at most 1 if and only if G is an
oriented distance hereditary graph.

Proof. By Proposition 3.1 and De�nition 3.2, an oriented distance hereditary graph has
GF (4)-rank-width at most 1. Conversely by Proposition 3.2, if a directed graph has
GF (4)-rank-width 1, it is an oriented distance hereditary graph.

3.1.2 Bi-Rank-Width

We will now de�ne our second notion of rank-width for directed graphs, named bi-rank-width
and based on matrices over GF (2). Let G be a directed graph and x a vertex of G. We �rst
observe that the neighbors of each vertex x can be grouped into two groups: the set of vertices
y ∈ VG such that (x, y) ∈ EG and the set of vertices z ∈ VG such that (z, x) ∈ EG. We will
use this observation in order to de�ne the bi-rank-width of directed graphs based on matrices
over GF (2).

De�nition 3.3 (Bi-Rank-Width) Let G be a directed graph. We let AG be the VG-matrix
over GF (2) where (AG)y

x = 1 if and only if (x, y) ∈ EG.

For every two disjoint subsets X and Y of VG, we let (A+
G)Y

X = (AG)Y
X and (A−G)Y

X =(
(AG)X

Y

)T
. For everyX ⊆ VG, we let ρ

(bi)
G (X) = rk

(
(A+

G)X
X

)
+rk

(
(A−G)X

X

)
. It is straightforward

to verify that ρ
(bi)
G is symmetric and submodular.

The bi-rank-width of a directed graph G, denoted by brwd(G), is de�ned as the branch-width

of the function ρ
(bi)
G .
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Example 3.4 We still let G be the directed graph on Figure 4 (iii). The following table shows
the adjacency VG-matrix AG of G.

AG =

x1 x2 x3 x4 x5 x6

x1 0 1 1 0 1 0
x2 0 0 0 0 1 1
x3 0 0 0 1 0 1
x4 1 0 0 0 1 0
x5 0 0 0 0 0 0
x6 0 0 0 0 0 0

We now illustrate matrices of the form (A+
G)Y

X and (A−G)Y
X . Let X = {x1, x2, x4} and Y =

{x3, x4, x6}. We have:

(A+
G)Y

X =

x3 x5 x6

x1 1 1 0
x2 0 1 1
x4 0 1 0

(A−G)Y
X =

x3 x5 x6

x1 0 0 0
x2 0 0 0
x4 1 0 0

Hence ρ
(bi)
G (X) = 4. One can verify that the bi-rank-width of G is 3 and the layout of ρ

GF (4)
G on

Figure 8 is also a layout of ρ
(bi)
G of branch-width 3.

Remark 3.2 Let G be an undirected graph. We denote by
−→
G the directed graph obtained from

G by replacing each edge by two opposite edges. By the de�nition of
−→
G , for every two disjoint

subsets X and Y of G, we have (A+
G)Y

X = (A−G)Y
X = (AG)Y

X . Therefore, brwd(
−→
G) = 2 · rwd(G).

We now de�ne a notion of vertex-minor inclusion having a �good behavior� for bi-rank-
width.

De�nition 3.4 ([FDF96]) The local complementation of a directed graph G at its vertex x is
the directed graph G′ represented by the VG-matrix AG′ where:

(AG′)x2
x1

=

{
(AG)x2

x1
+ (AG)x

x1
· (AG)x2

x if x1 6= x2,

(AG)x2
x1

Otherwise.

A directed graphH is b-locally equivalent to a directed graph G ifH can be obtained from G by
a sequence of local complementations. A directed graph H is a bvertex-minor of a directed graph
G if H can be obtained from G by a sequence of vertex deletions and local complementations.

Let H be obtained from a directed graph G by applying a local complementation at x.
Then only the sub-graph induced on the neighbors of x is modi�ed. Let x1 and x2 be two
neighbors of x. One can verify that (x1, x2) ∈ EH if and only if (x1, x2) /∈ EG and, (x1, x) ∈ EG
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x3

x6

x5

x4

x1

x2

Figure 11: A directed graph obtained by applying a local complementation at x4 on G, the
directed graph on Figure 4 (iii).

G

x x

H

Figure 12: H is obtained from G by applying a local complementation at x and similarly G
is obtained from H by applying a local complementation at x.

and (x, x2) ∈ EG or (x1, x2) ∈ EG and, (x1, x) /∈ EG or (x, x2) /∈ EG. It is also clear that the
local complementation at x of H is G. Figures 11 and 12 illustrate local complementation of
directed graphs.

We have a lemma similar to Proposition 2.2 and to Lemma 1.1.

Lemma 3.1 If H is b-locally equivalent to G, then the bi-rank-width of H is equal to the
bi-rank-width of H. If H is a bvertex-minor of G, then the bi-rank-width of H is at most the
bi-rank-width of G.

Proof. Fon-Der-Flaass [FDF96] proved that rk((A+
G)Y

X) is invariant with respect to local
complementation. Since (A−G)Y

X = (A+
G)X

Y , the bi-rank-width is invariant with respect to local
complementation. Since taking sub-matrices does not increase the rank, it does not increase
the bi-rank-width.

Remark 3.3 It is open whether for every positive integer k there exists a �nite list Ck of directed
graphs such that a directed graph has bi-rank-width at most k if and only if it does not contain
any directed graph in Ck as a bvertex-minor. We can notice that graphs of bi-rank-width at most
k are not well-quasi-ordered by bvertex-minor inclusion. In fact the class F of directed even cycles
such that each vertex has either in-degree 2 or out-degree 2, are of bounded bi-rank-width and are
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not well-quasi-ordered by bvertex-minor inclusion since none of them is a bvertex-minor of another.
Figure 13 illustrates such cycles.

It is also worth noticing that a directed graph H can be a vertex-minor of a directed graph
G without being a bvertex-minor of G and vice-versa as shown by Figures 13 and 14 or, Figures
9 and 11. It is open whether there exists a notion of vertex-minor inclusion on directed graphs,
independent of the adjacency representations of directed graphs, that could be called vminor, and
such that if a directed graph H is a vminor of G, then the bi-rank-width (resp. GF (4)-rank-width)
of H is at most the bi-rank-width (resp. GF (4)-rank-width) of G.

G2

H = (G2 ∗ x) \ x

G1

x

Figure 13: G1 and G2 are graphs in F . H is a vertex-minor of G2 and cannot be a bvertex-
minor of G2. In fact for any x ∈ VG2 , the local complementation at x of G2 does not change
G2.

G1 G2G

x x

x2

x

x2x1 x1 x2 x1

Figure 14: G1 is a bvertex-minor of G and G2 is a vertex-minor of G. G1 is not isomorphic
to G2 and one can verify that we can not get G2 as a bvertex-minor of G1 and vice-versa.

3.2 GF (4)-Rank-Width and Bi-Rank-Width are Equivalent

We now prove that bi-rank-width and GF (4)-rank-width are equivalent complexity measures.
In Chapter 5 we will prove that they are equivalent to clique-width.
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Proposition 3.4 For every directed graph G, we have

rwd (4 )(G) ≤ brwd(G) ≤ 4 · rwd (4 )(G).

Before proving the proposition, we recall some technical properties about ranks of matrices,
particularly ranks of matrices with coe�cients in {0, 1} over the �elds GF (2) and GF (4).

Lemma 3.2 (i) Let M be a matrix with entries in {0, 1}. If the rank of M over GF (2) is
k, then the rank of M over GF (4) is k.

(ii) if A and B are two matrices over a �eld F , then rk(A + B) ≤ rk(A) + rk(B). Let
a ∈ F, a 6= 0, then rk(a ·A) = rk(A).

Proof. (i) is immediate since GF (4) is an extension of GF (2).

(ii) The column-bases of A and of B generate all the column-vectors of A + B. See for
instance [Lip91].

Lemma 3.3 For each bipartition (X,X) of VG we have

(FG)X
X = a · (A+

G)X
X + a2 · (A−G)X

X .

Proof. Consequence of the de�nitions of FG, A
+
G and A−G.

Proof of Proposition 3.4. We �rst prove that rwd (4 )(G) ≤ brwd(G). Assume that

brwd(G) = k and let (T,L) be a layout of branch-width k of ρ(bi)
G . We claim that (T,L)

is also a layout of branch-width at most k of ρGF (4)
FG

.

It is su�cient to prove, for each edge e of T , that ρGF (4)
FG

(Xe) ≤ ρ
(bi)
G (Xe) in order to prove

that the GF (4)-rank-width of (T,L) is at most k.

By Lemmas 3.2 and 3.3, for each edge e of T , we have

rk
(
(FG)Xe

Xe

)
≤ rk

(
(A+

G)Xe

Xe

)
+ rk

(
(A−G)Xe

Xe

)
≤ ρ(bi)

G (Xe).

We can then conclude that ρGF (4)
FG

(Xe) ≤ ρ(bi)
G (Xe).

We now prove that brwd(G) ≤ 4 · rwd (4 )(G). Assume that rwd (4 )(G) = k and let (T,L)
be a layout of branch-width k of ρGF (4)

FG
. We claim that (T,L) is also a layout of branch-

width 4k of ρ(bi)
G . Let e be an edge of T and let M1 = (A+

G)Xe

Xe and M2 = (A−G)Xe

Xe . Let
π1, π2, π3 : GF (4)→ GF (2) be such that:
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π1(b) =

{
0 if b ∈ {0, a2}
1 if b = {1, a}

π2(b) =

{
0 if b ∈ {0, a}
1 if b = {1, a2}

π3(b) =

{
0 if b ∈ {0, 1}
1 if b = {a, a2}

It is clear that Mj = πj

(
(FG)Xe

Xe

)
for j = 1, 2. It is easy to see that each πj , j = 1, 2, 3 is an

homomorphism with respect to +. Moreover, for every b and c in GF (4), we have

π1(b · c) = π1(b) · π1(c) + π3(b) · π3(c)
π2(b · c) = π2(b) · π2(c) + π3(b) · π3(c)
π3(b · c) = π1(b) · π1(c) + π2(b) · π2(c)

We let v1, . . . , vk be the column-bases of (FG)Xe

Xe . Then for each column-vector v we have:

v =
∑
i≤k

αi · vi

and for j = 1, 2 we have

πj(v) =
∑
i≤k

πj(αi · vi)

=
∑
i≤k

(πj(αi) · πj(vi) + π3(αi) · π3(vi)).

Thus every column-vector of Mj is a linear combination of 2k vectors, i.e., rk(Mj) ≤ 2k.
Therefore, brwd(G) ≤ 4 · rwd (4 )(G).

3.3 Conclusion

We have de�ned two notions of rank-width for directed graphs, named GF (4)-rank-width and
bi-rank-width. GF (4)-rank-width is de�ned by using a coding of the adjacencies of directed
graphs by σ-symmetric matrices over GF (4), while bi-rank-width is de�ned by using a coding
of directed graphs by two undirected graphs. We have de�ned two notions of vertex-minor
inclusion for directed graphs, one related to GF (4)-rank-width and named vertex-minor, and
another related to bi-rank-width, called bvertex-minor. While graphs of GF (4)-rank-width
are characterized by �nitely excluded vertex-minors (by using results of Chapter 2), we have
no such result for bi-rank-width. We �nish this chapter with some questions:
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(Q3.1) Fon-Der-Flaass proved that two n-vertex graphs G and H are b-locally equivalent if and
only if a system of n2 equations with 3n indeterminates has a solution in GF (2). Can
we �nd a similar characterization for lc-equivalent directed graphs?

(Q3.2) Does there exist a polynomial-time algorithm to check if a directed graph is a vertex-
minor (resp. bvertex-minor) of another directed graph?

(Q3.3) Can we �nd a CMS-characterization of the notion of vertex-minor of directed
graphs? Notice that for undirected graphs Courcelle and Oum [CO07] gave a C2MS-
characterization of vertex-minor. One might think of a C4MS-characterization in the
case of directed graphs.

The analogous of question (Q3.2) for vertex-minor of undirected graphs is still open. How-
ever, Courcelle and Oum proved that it is decidable in polynomial-time when restricted to
undirected graphs of bounded rank-width, by using the C2MS-characterization of vertex-
minor of undirected graphs [CO07]. In our case if we have an answer to (Q3.3) we will also
be able to give an answer for (Q3.2) when restricted to classes of directed graphs of bounded
GF (4)-rank-width by using [CMR00].

We will de�ne in Chapter 4 some graph operations that handle algebraically graphs of
small bi-rank-width (resp. GF (4)-rank-width). A specialization of these operations will give
an exact algebraic characterization of undirected graphs of rank-width at most k as proved in
[CK09].

We will prove in Chapter 5 that a class of directed graphs has bounded GF (4)-rank-width
(resp. bi-rank-width) if and only if it has bounded clique-width and derive from the results of
[HO07] that for �xed k there exists a cubic-time algorithm that given a directed graph either
outputs that the bi-rank-width (resp. GF (4)-rank-width) is larger than k or outputs a layout

of branch-width k of the function ρ(bi)
G (resp. ρGF (4)

FG
).
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Chapter 4

Algebraic Characterization of

Rank-Width

A class of undirected graphs has bounded clique-width if and only if it has bounded rank-
width1 [OS06]. However, clique-width has the advantage of being de�ned in terms of graph
operations and the algorithmic results on clique-width are based on these operations [CMR00,
CMR01, CV03]. In order to solveMS problems on an undirected graph G of small rank-width,

one may transform an optimal layout of ρGF (2)
G into a clique-width expression. This approach

is based on results by Oum and Seymour [OS06]. However, we prove in this chapter that there

is no need to transform an optimal layout of ρGF (2)
G into a clique-width expression in order

to solve MS problems on a graph of small rank-width because we give algebraic expressions
that characterize rank-width of undirected graphs and fall into the framework of Section 1.4.
We prove that an undirected graph has rank-width at most k if and only if it is the value of a
term in T (Rk, Ck) where Rk is a set of algebraic graph operations and Ck is a set of constants,
both depending on k. We give here a more general proof in order to propose graph operations
that handle algebraically classes of graphs of bounded GF (4)-rank-width and bi-rank-width.
We �rst introduce the notion of F -rank-width for certain edge-colored graph classes where F
is a �nite �eld.

De�nition 4.1 (F -Rank-Width of Graphs) Let F be a �nite �eld and let σ : F → F be
an automorphism. An edge-colored graph G is over (F, σ) if its edges are colored by elements in

F and if for every pair of vertices (x, y) and every a in F , Ea
G(x, y) holds if and only if E

σ(a)
G (y, x)

holds and for every pair of vertices (x, y) there exists a unique a in F such that Ea
G(x, y) holds,

hence E
σ(a)
G (y, x) holds. We can then de�ne an adjacency matrix of an edge-colored graph over

(F, σ) as the VG-matrix FG over F where for every pair of vertices (x, y) we have (FG)y
x = a if

and only if Ea
G(x, y) holds.

We have clearly (FG)x
y = σ((FG)y

x), hence FG is a σ-symmetric matrix. The F -rank-width of

a graph G over (F, σ), denoted by rwdF (G), is the F -rank-width of FG.

A graph H over (F, σ) is a vertex-minor of a graph G over (F, σ) if FH is a vertex-minor of
FG.

1We will see in Chapter 5 that our two notions of rank-width of directed graphs are also equivalent to
clique-width.

49
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We can see an undirected graph as a {0, 1}-edge-colored graph where for every pair of
vertices (x, y), E1

G(x, y) holds if and only if there is an edge between x and y and E0
G(x, y)

holds if and only if there is no edge between x and y. Clearly this coding of G transforms it
into a graph over (GF (2), σ1) where σ1(0) = 0 and σ1(1) = 1. Hence, the GF (2)-rank-width
of G is the same as the rank-width of ρG given in De�nition 1.9. By using also the de�nition
of the VG-matrix FG of a directed graph given in De�nition 3.1, we can consider a directed
graph G as an edge-colored graph over (GF (4), σ2) where σ2(a) = a2 and σ2(a2) = a. Then
De�nition 4.1 is a generalization of GF (4)-rank-width. We do not know any application of
this generalization except that considering F -rank-width will help us to extend the operations
in [CK09] in such a way that we can de�ne operations that handle algebraically directed graph
classes of small GF (4)-rank-width.

We assume that the set of vertices of each graph is linearly ordered. This will help us to
de�ne our operations, based on linear transformations of matrices, in an unambiguous way. Let
H and G be two graphs over (F, σ). Clearly if H is obtained from G by an lc-complementation
at x, i.e., FH is obtained from FG by an lc-complementation at x, then H is obtained from G
by modifying the sub-graph induced on the neighbors of x. However, how this sub-graph is
modi�ed depends on F and σ. As a consequence of Corollary 2.1 we get the following.

Corollary 4.1 Let F be a �nite �eld of characteristic 2 and let σ : F → F be an automor-
phism. For each k, there is a �nite list C(F,σ)

k of graphs over (F, σ) having at most (6k+1−1)/5
vertices such that a graph G over (F, σ) has F -rank-width at most k if and only if no graph in

C(F,σ)
k is isomorphic to a vertex-minor of G.

Let F be a �nite �eld and let σ : F → F be an automorphism. We will de�ne in
Section 4.1 graph operations that handle algebraically classes of graphs over (F, σ) of small
F -rank-width. In Section 4.2 we specialize these operations and give graph operations that
characterize exactly undirected graphs of rank-width at most k. We also give a specialization
of the former operations in Section 4.3 in order to propose graph operations that handle
algebraically directed graph classes of small bi-rank-width.

4.1 Algebraic Coloring of Graphs

Let F = {0, 1, a1, . . . , aq} be a �nite �eld and let σ : F → F be an automorphism. If a graph
G over (F, σ) is an edge-colored graph whose edges are colored with elements of F then, it is a
relational structure 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G 〉 where Ea
G(x, y) holds if and only if (FG)y

x = a

holds if and only if Eσ(a)
G (y, x) holds. Since in this section all graphs are over (F, σ), unless

otherwise speci�ed, we will omit the expression �over (F, σ)� for clarity when necessary.

Let k be a positive integer. An F k-coloring of a graph G is a mapping γ : VG → F k

with no constraint on the values of γ for adjacent vertices2 and an F k-colored graph G
is the graph 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G , γG 〉, still denoted by G, and where γG is an F k-
coloring of 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G 〉. In this way an F k-colored graph G is a graph
whose vertices are colored with colors from F k and its edges with colors from F . A
graph G = 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G 〉 is made canonically into an F k-colored graph with
γG(x) = (0, · · · , 0) for each x. We de�ne some operations on these graphs.

2It is worth noticing that for each x ∈ VG, γG(x) is a row vector.
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De�nition 4.2 (Recoloring) For a mapping h : F k → Fm and an F k-colored graph G, we let
Recolh(G) be the Fm-colored graph K = 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G , γK 〉 where γK = h ◦ γG.

For each vertex x of G, the operation Recolh changes the color of x into h(γG(x)). It does
not modify the relations, hence does not modify the colors of the edges.

De�nition 4.3 (Graph products) Let f : F k × F ` → F , g : F k → Fm and h : F ` → Fm

be arbitrary mappings. For G, F k-colored and H, F `-colored, such that VG ∩ VH = ∅, we let
G⊗f,g,hH be the Fm-colored graphK = 〈VG∪VH , E

0
K , E

1
K , E

a1
K , . . . , E

aq

K , γK 〉 where for α ∈ F ,

Eα
K = Eα

G ∪ Eα
H ∪ {(x, y) | x ∈ VG, y ∈ VH and f(γG(x), γH(y)) = α},
∪ {(y, x) | x ∈ VG, y ∈ VH and f(γG(x), γH(y)) = σ−1(α)},

γK(x) =

{
(g ◦ γG)(x) if x ∈ VG,

(h ◦ γH)(x) if x ∈ VH .

The operations ⊗f,g,h adds colored edges between two disjoint graphs, that are the two
arguments. This is a di�erence with clique-width where a single binary operation ⊕ is used,
and ηa

i,j (resp. αa
i,j) applied to G ⊕ H may add colored edges (resp. arcs) to G and to H.

This behavior of the operation ⊗f,g,h are analogous to the ones of the binary operations that
de�ne NLC-width [Wan94] except that these later do not color edges.

De�nition 4.4 (Constants) For each u ∈ F k, we let u be a constant denoting a graph with
one vertex colored by u and no edge. If we need to specify such a graph with a particular vertex x,
we use u(x) instead of u. We denote by CF

k the set {u | u ∈ F 1 ∪ · · · ∪ F k}. In some occasions
we will use a constant ∅k to denote the empty F k-colored graph.

Example 4.1 We let G be the directed graph on Figure 4 (iii). For 1 ≤ i ≤ 5 we let fi :
GF (4)1 ×GF (4)1 → GF (4), gi, hi : GF (4)1 → GF (4)1 be mappings such that:

f1(1, 1) = a, g1(1) = (a), h1(1) = (a2),
g2(1) = (a),

f3(1, a) = a,

f4(1, a) = f4(1, 1) = a2, g4(1) = (a), h4(a) = (a2)

f5(1, 1) = a2, f5(a2, a2) = a2, f5(a, 1) = f5(1, a) = f5(1, a2) = a.

For all x, y in GF (4)1, if fi(x, y) is not de�ned, we let fi(x, y) = 0 and if gi(x) (resp. hi(x)) is
not de�ned, we let gi(x) = (x) (resp. hi(x) = (x)). We claim that the graph G is isomorphic to
the graph de�ned by the term t5 = t3 ⊗f5,g5,h5 t4 where

t1 = (1)(x3)⊗f1,g1,h1 (1)(x6),
t3 = (1)(x1)⊗f3,g3,h3 t1,

t2 = (1)(x2)⊗f2,g2,h2 (1)(x4),
t4 = (1)(x5)⊗f4,g4,h4 t2.

The term t1 constructs the arc x3 → x6 and recolors x3 into (a) and x6 into (a2). The term t3
constructs the arc x1 → x3. The term t2 creates the two vertices x2 and x4 and, recolors x2 into
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(a). The term t4 adds the arcs x2 → x5 and x4 → x5 and, recolors x5 into (a) and x2 into (a2).
The term t5 adds the arcs x4 → x1, x2 → x6, x1 → x5, x1 → x2 and x3 → x4. The graph
constructed by t5 is clearly isomorphic to G.

Remark 4.1 1. The disjoint union of G, F k-colored and H, F `-colored with k ≤ ` is G⊗f,g,h

H where f(u, v) = 0, g(u) = (u, 0, · · · , 0) ∈ F ` and h(v) = v for all u ∈ F k and all v ∈ F `.

2. We have G⊗f,g,h H = H ⊗f̃ ,h,g G where f̃(u, v) = σ(f(v, u)).

3. The recoloring operations can actually be combined with other operations. The following
rules are clear:

Recolm(u) = v if v = m(u).
Recolm(G⊗f,g,h H) = G⊗f,m◦g,m◦h H.

Recolm(G)⊗f,g,h Recolm′(H) = G⊗f ′,g◦m,h◦m′ H

where f ′(u, v) is de�ned as f(m(u),m′(v)). Let us also note that

G⊗f,g,h ∅k = Recolg(G).

Let n ∈ N. We let BF
n be the �nite set of operations Recolh, ⊗f,g,h where g : F k → Fm,

h : F ` → Fm and f : F k × F ` → F are mappings such that k, `,m ≤ n. Without loss of
generality we may assume k, l,m 6= 0. For n ≥ 1, every term t ∈ T (BF

n , C
F
n ) has for value an

Fn-colored graph, denoted by val(t), or actually the family of all graphs isomorphic to such
a graph.

We now explain how such operations �t into the logical framework of [CMR00, Cou92].

De�nition 4.5 (F k-colored graphs as binary relational structures) Let us introduce
unary relations ci,α for i ∈ [n] and α ∈ F . The meaning of ci,α(x) = true will be �the i-th
component of γG(x) is α�. Hence, an F k-colored graph G = 〈VG, E

0
G, E

1
G, E

a1
G , . . . , E

aq

G , γG 〉,
for k ≤ n, is described exactly by the relational structure with domain VG that we will also denote
by G:

〈VG, E
0
G, E

1
G, E

a1
G , . . . , E

aq

G , c1,0
G , . . . , cn,0

G , c1,1
G , . . . , cn,1

G , . . . , c
1,aq

G , . . . , c
n,aq

G 〉 .

For an F k-colored graph, the predicates ci,αG (x), for k + 1 ≤ i ≤ n and α ∈ F , will be
false. Every relational structure of this form, and such that for each α ∈ F , Eα

G is σ-symmetric

(Eα
G(x, y) holds if and only if E

σ(α)
G (y, x) holds) and irre�exive (Eα

G(x, x) never holds) represents
an F k-colored graph G, k ≤ n.

Quanti�er-free operations are de�ned in Section 1.4.

Proposition 4.1 For each positive integer n, we have

1. The operations Recolh are quanti�er-free operations for any mapping h : F k →
Fm, k,m ≤ n.
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2. The operations ⊗f,g,h are expressible in terms of ⊕ and quanti�er-free operations for all
mappings f : F k × F ` → F, g : F k → Fm and h : F ` → Fm, k, `,m ≤ n.

Proof. (1) is clear.

(2) Let n be a �xed positive integer. We consider F k-colored graphs for k ≤ n. In addition
to the unary predicates c1,0, . . . , cn,aq , we will use auxiliary unary ones d1,0, . . . , dn,aq (di,α /∈
{c1,0, . . . , cn,aq}). If K = G⊗f,g,h H, then

K = α(η0(η1(ηa1(. . . (ηaq(G⊕ β(H))) . . .))))

where β replaces in H each ci,α by di,α (i.e., di,α
β(H)(x) holds if and only if ci,αH (x) holds, and

then, ci,αβ(H)(x) does not hold), ηα creates �edges� in Eα
K , by rede�ning Eα

G(x, y) with the

following formula where in the de�nition of Eα′ , u and v range over Fn (we let u[i] denote
the i-th component of u):

Eα
G(x, y) ∨ Eα

H(x, y) ∨ Eα′(x, y) ∨ Eα′(y, x)

and Eα′(x, y) is

∨
f(u,v)∈{α,σ−1(α)}

( ∧
a∈F

( ∧
u[`]=a

c`,a(x) ∧
∧

u[`] 6=a

¬c`,a(x) ∧
∧

v[s]=a

ds,a(y) ∧
∧

v[j] 6=a

¬ds,a(y)
))
.

The operation α performs the recolorings de�ned by g and h.

In the case of undirected graphs considered as graphs over (GF (2), σ1), we consider all
the couples created by the operation η0 as non-edges. The same holds for directed graphs
considered as graphs over (GF (4), σ2).

Theorem 4.1 For each monadic second-order graph property P and for each n ∈ N, there
exists an algorithm that checks in O(|t|)-time for every term t ∈ T (BF

n , C
F
n ) if the graph de�ned

by this term satis�es P .

Proof. This result is proved in [CMR00] for T (F uc
n , Cc

n) instead of T (BF
n , C

F
n ), but it extends

to all quanti�er-free de�nable operations as proved in [Cou92]. The logical foundations of
this result are presented in details by Makowsky in [Mak04].

Given a graph G that we know is the value of a term in T (BF
n , C

F
n ), we need an algorithm

that constructs this term in order to use Theorem 4.1. We will see in Chapter 5 that if a
graph G is the value of a term in T (BF

n , C
F
n ), then we can construct in O(|VG|3) a term in

T (BF
m, C

F
m) that de�nes G, m = 2 · |F |n.
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4.2 Algebraic Operations for F -Rank-Width of Graphs

Let F = {0, 1, a1, . . . , aq} be a �nite �eld and let σ : F → F be an automorphism. All the
graphs in this section are over (F, σ) and for clarity we will omit the expression �over (F, σ)�
when the context is clear. We specialize the operations de�ned in the previous section by
taking advantage of the vector space structure of F k over the �eld F . We denote by MT the
transpose of a matrix M and we let Ok,` and Ik denote respectively the (k × `)-null matrix
and the (k × k)-identity matrix.

Let k ≥ 1. With an F k-colored graph G = 〈VG, E
0
G, E

1
G, E

a1
G , . . . , E

aq

G , γG 〉, we associate
the (VG, [k])-color matrix ΓG, the row vectors of which are the vectors γG(x) in F k for x in
VG. We de�ne the color-rank of G as the rank of ΓG and we denote it by crk(G). Clearly,
crk(G) ≤ k if G is F k-colored3. We now de�ne specializations of the operations de�ned in
Section 4.1.

De�nition 4.6 (Linear recolorings) A recoloring Recolh is linear if h : F k → Fm is a linear
function, in other words, if for some (k ×m)-matrix N and all F k-colored graphs G, we have by
letting H = Recolh(G),

ΓH = ΓG ·N,

i.e., γH(x) = γG(x) ·N for each x in VG.

If Recolh and Recolh′ are linear recolorings, described respectively by N and N ′, then Recolh◦
Recolh′ is linear and is described by N ′ ·N .

De�nition 4.7 (Bilinear product of graphs) We consider the operations ⊗f,g,h where:

- f : F k × F ` → F is bilinear, hence de�ned by f(u, v) = (u · M) · vT where M is a
(k × `)-matrix;

- the recoloring mappings g : F k → Fm and h : F ` → Fm are linear.

We order the graph K = G⊗f,g,h H by preserving the orderings of VG and VH and letting x < y
for x ∈ VG and y ∈ VH . In terms of products of matrices we have thus:

FK =
(

AG ΓG ·M · ΓT
H

σ(ΓH ·MT · ΓT
G) AH

)
,

ΓK =
(

ΓG ·N
ΓH · P

)
where M,N and P are the matrices describing f, g and h respectively. We will use in this case
the notation ⊗M,N,P for ⊗f,g,h.

3The color-rank of G should not be confused with its rank, de�ned as the rank of its adjacency matrix FG

over F . All ranks are relative to F .
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Remark 4.2 1. If K = G⊗M,N,P H is Bm-colored, then we have:

(FK)VH
VG

= ΓG ·M · ΓT
H ,

(ΓK)[m]
VG

= ΓK[VG] = ΓG ·N,

(ΓK)[m]
VH

= ΓK[VH ] = ΓH · P.

Since for all matrices,

rk(A ·B) ≤ min{rk(A), rk(B)},

we have

crk(K[VG]) = rk((ΓK)[m]
VG

) ≤ rk(ΓG) ≤ k,

and symmetrically,

crk(K[VH ]) = rk((ΓK)[m]
VH

) ≤ rk(ΓH) ≤ `.

2. We have K = G⊗M,N,P H = H ⊗MT ,P,N G if (FK)VH
VG

= (FK)VG
VH

.

3. The following rules are clear:

RecolQ(u) = v if v = u ·Q,
RecolQ(G⊗M,N,P H) = G⊗M,N ·Q,P ·Q H,

RecolQ(G)⊗M,N,P RecolQ′(H) = G⊗Q·M ·Q′T ,Q·N,Q′·P H,

G⊗M,N,P ∅k = RecolN (G).

We let RF
n ⊆ BF

n be the set of linear recolorings RecolN and bilinear products ⊗M,N,P

where M,N and P are respectively (k× `), (k×m) and (`×m)-matrices for k, `,m ≤ n. We
denote by val(t) the graph de�ned, up to isomorphism, by a term t ∈ T (RF

n , C
F
n ). This graph

is the value of the term in the corresponding algebra. Two terms are equivalent if they de�ne,
up to isomorphism, the same graph.

Remark 4.3 We can transform every term t ∈ T (RF
n , C

F
n ) into a term t′ ∈ T (RF

n , C
F
n ) where

each constant u ∈ Fn and each operation RecolN or ⊗M,N,P is such that M,N and P are
(n× n)-matrices. For that, we use the following recursive rules:

t′ =


(u, 01,n−k) if t = u and u ∈ F k,

RecolN ′(t′1) if t = RecolN (t1),
t′1 ⊗M ′,N ′,P ′ t′2 if t = t1 ⊗M,N,P t2.

where M,N and P are respectively (k × `), (k ×m) and (`×m)-matrices and

M ′ =
(

M 0k,n−`

0n−k,` 0n−k,n−`

)
N ′ =

(
N 0k,n−m

0n−k,m 0n−k,n−m

)
P ′ =

(
P 0`,n−m

0n−`,m 0n−`,n−m

)
.

It is straightforward to verify that t′ is equivalent to t. So, without loss of generality, we can
replace RF

n by R
′F
n consisting of bilinear products ⊗M,N,P whereM,N and P are (n×n)-matrices.

We also use Remark 4.2(3) showing that recolorings can be combined with bilinear products.
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Our objective is to prove the following, which is the main theorem of this chapter.

Theorem 4.2 (Algebraic Characterization of Rank-Width) Let G be a graph over
(F, σ) where FG is symmetric. Then G has F -rank-width at most n if and only if G is the
value of a term in T (RF

n , C
F
n ).

We will prove it in two steps. We �rst prove the following stronger proposition which is
the �if direction�.

Proposition 4.2 Let G = val(t) where t ∈ T (RF
n , C

F
n ). Then rwdF (G) ≤ n if FG is sym-

metric. Otherwise, rwdF (G) ≤ 2n.

We recall that s • t = s[t/u] for s ∈ Cxt(RF
n , C

F
n ), t ∈ T (RF

n , C
F
n ) and Id is the particular

context u. Before proving Proposition 4.2, we state and prove the following lemma.

Lemma 4.1 Let t = c • t′ where t′ ∈ T (R
′F
n , CF

n ), c ∈ Cxt(R
′F
n , CF

n ) − {Id}. If we let
G = val(t) and H = val(t′), then

(FG)VG−VH
VH

= (ΓH ·B σ(ΓH ·B′))

ΓG[VH ] = ΓH · C

for some matrices B,B′ and C. If FG is symmetric then, σ(ΓH ·B′) = ΓH ·B′.

Proof. We use an induction on the structure of c. We have several cases:

(a) c = Id⊗M,N,P t
′′.

We let K = val(t′′). Then G = H ⊗M,N,P K. We have, as observed above,

(FG)VK
VH

= ΓH ·M · ΓT
K ,

ΓG[VH ] = ΓH ·N.

Hence we take B = M · ΓT
K , B

′ = 0 and C = N . The last assertion is clear.

The proof is similar if c = t′′ ⊗M,N,P Id, we take B = 0, B′ = MT · ΓT
K because

(FG)VK
VH

= σ(ΓH · MT · ΓT
K) and C = P . The second assertion is clear since

σ(ΓH ·MT · ΓT
K) = ΓH ·MT · ΓT

K if FG is symmetric.

(b) c = c′ ⊗M,N,P t
′′ where c′ ∈ Cxt(R′F

n , CF
n )− {Id}.

We let K = val(t′′) and G′ = val(c′ • t′). Hence, G = G′ ⊗M,N,P K. We recall that:

FG =
(

FG′ ΓG′ ·M · ΓT
K

σ(ΓK ·MT · ΓT
G′) FK

)
.

Hence

(FG)VG−VH
VH

=
(
(FG′)VG′−VH

VH

(
ΓG′ ·M · ΓT

K

)VK

VH

)
.
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By inductive hypothesis, (FG′)VG′−VH

VH
= (ΓH ·B′ σ(ΓH ·B′′)) and ΓG′[VH ] = ΓH ·C ′.

We now prove that
(
ΓG′ ·M · ΓT

K

)VK

VH
= ΓH · C ′′ for some matrices C ′′.(

ΓG′ ·M · ΓT
K

)VK

VH
= (ΓG′)[n]

VH
·M · ΓT

K by de�nition,

= ΓG′[VH ] ·M · ΓT
K by de�nition,

= ΓH · C ′ ·M · ΓT
K by inductive hypothesis.

Hence (FG)VG−VH
VH

=
(
ΓH(B′ C ′ ·M · ΓT

K) σ(ΓH · B′′)
)
. We now consider ΓG[VH ].

We have:

ΓG =
(

ΓG′ ·N
ΓK · P

)
.

Then ΓG[VH ] = (ΓG′ ·N)[n]
VH

= (ΓG′)[n]
VH
·N = ΓH · C ′ ·N .

If FG is symmetric, σ(ΓH · B′′) = ΓH · B′′, this proves the lemma, because the case of
c = t′′ ⊗M,N,P c

′ is similar.

We can now prove Proposition 4.2.

Proof of Proposition 4.2. Let G = val(t) where t ∈ T (RF
n , C

F
n ). We transform it into a

term t̃ in T (R
′F
n , Cn) with red(t̃) = red(t). We take red(t̃) as a layout of G. We claim that

the F -rank-width of this layout is at most n. It is su�cient to prove that, for each subterm t′

of t,

rk((FG)
VG−Vval(t′)
Vval(t′)

) ≤ 2n.

Let t′ be a subterm of t and let H = val(t′). By Lemma 4.1, we have (FG)VG−VH
VH

=
(
ΓH ·

B σ(ΓH · B′)
)
. Assume �rst that FG is not symmetric. It is clear that (FG)VG−VH

VH
=(

ΓH ·B 0
)

+
(
0 σ(ΓH ·B′)

)
, i.e., rk((FG)VG−VH

VH
) ≤ rk(ΓH ·B) + rk(ΓH ·B′) because

rk(A + B) ≤ rk(A) + rk(B) [Lip91]. Then rk((FG)VG−VH
VH

) ≤ 2n since H is Fn-colored and
rk(A ·B) ≤ min{rk(A), rk(B)}.

Assume now that FG is symmetric. By Lemma 4.1, we have σ(ΓH · B′) = ΓH · B′. Hence
(FG)VG−VH

VH
= ΓH(B B′). Then rk((FG)VG−VH

VH
) ≤ n.

We have then proved that if t ∈ T (RF
n , C

F
n ) and G = val(t) is such that FG is symmetric,

then rwdF (G) ≤ n. For proving the converse direction, stated as Proposition 4.5, we need
some technical lemmas. Let us introduce some de�nitions before. We write G = H ⊗M K
instead of H ⊗M,N,P K if we do not care about the coloring of G but only about its vertices
and edges. More precisely ⊗M is an abbreviation for ⊗M,O,O where O denotes zero-matrices.
We recall that a graph without colors has all its vertices colored by a row vector (0, · · · , 0).
For X ⊆ VG, we denote by ρF

G(X) the rank of (FG)VG−X
X , which is by de�nition ρF

FG
(X) (cf.

the de�nition of F -rank-width of σ-symmetric matrices in Chapter 2).
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Let G be a graph and (V1, V2) be a bipartition of its vertices such that ρF
G(V1) = m. We say

that vertices x1, . . . , xm in V1 form a vertex basis of G[V1] with respect to G if their associated
row vectors in (FG)V2

V1
are independent. Vertices x1, . . . , xp in V1 with p ≥ ρF

G(V1) form a vertex
generator of G[V1] with respect to G if their associated row vectors generate the row vectors
of (FG)V2

V1
. We now introduce the notion of presentation, which will allow us to construct a

term in T (RF
n , C

F
n ) from a layout by induction. For u = (u1, . . . , uk) in F k, we let σ(u) be

the row vector (σ(u1), . . . , σ(uk)) in F k and for a matrix M = (mi,j) over F , we let σ(M) be
the matrix (σ(mi,j)) over F .

De�nition 4.8 (Presentation) Let G = 〈VG, E
0
G, E

1
G, E

a1
G , . . . , E

aq

G 〉 and let (V1, V2) be a

bipartition of VG with A = (FG)V2
V1
. Let X = {z1, . . . , zp} ⊆ V1 be a vertex generator of G[V1]

with respect to G. The set of row vectors AV2
zi

generates the same vector space as the set of all
row vectors of A. Then for each x ∈ V1, there exists a row vector bx = (bxz1 , . . . , bxzp) in F p such
that

AV2
x = bx ·

(
AV2

z1
+ · · ·+AV2

zp

)T

Clearly, for each z ∈ X, the row vector bz is such that, for each z′ ∈ X,

bzz′ =

{
1 if z = z′,

0 otherwise.

For each x ∈ V1 −X and each z ∈ X, bxz can be any element of F . By hypothesis, G is linearly
ordered, hence V1 is linearly ordered, the order induced by the order of G. We let v1, . . . , vn be

the order of V1 induced by the order of G. We let N be the (V1, X)-matrix
(
bv1 , . . . , bvn

)T
, i.e.,

for each i in [n], the i-th row of N is bvi .

Let H ′ be an Fn-coloring of G[V1] such that γH′(vi) = (0, . . . , 0, 1, 0, . . . , 0) with 1 at i-th
position. We let H be such that:

H =

{
RecolN (H ′) if FG is symmetric,

Recol(N σ(N))(H ′) otherwise.

We call (H,N,X) a presentation ofG[V1] relative toG. It is clear thatH is an F p-coloring ofG[V1]
and ΓH = N if FG is symmetric, otherwise H is an F 2p-coloring of G[V1] and ΓH =

(
N σ(N)

)
.

Proposition 4.3 Let G be a graph over (F, σ) and let (V1, V2) be a biparition of VG. Let
X ⊆ V1 and Y ⊆ V2 be vertex generators of G[V1] and G[V2] respectively, both with respect to
G. Let (H,N,X) and (K,P, Y ) be presentations of G[V1] and G[V2] respectively, both relative
to G. Then (FG)V2

V1
= N ·M · σ(P T ) where M = (FG)Y

X . Furthermore, G = H ⊗M ′ K where
if p = |X| and q = |Y |

M ′ =


M if FG is symmetric,(

0p,q M

0p,q 0p,q

)
otherwise.

Proof. For convenience we let A = FG. By de�nition, that (H,N,X) is a presentation of
G[V1] relative to G means that AV2

V1
= N · AV2

X . Similarly AV1
V2

= P · AV1
Y since (K,P, Y )
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is a presentation of G[V2] relative to G. Then AX
V2

= P · AX
Y , i.e., AV2

X = σ((P · AX
Y )T ) =

σ((AX
Y )T ) · σ(P T ). But AY

X = σ((AX
Y )T ). Hence, AV2

V1
= N ·M · σ(P T ).

We now prove that G = H ⊗M ′ K. It is su�cient to prove that AV2
V1

= (FG′)V2
V1

where
G′ = H ⊗M ′ K. Assume �rst that FG is not symmetric. By de�nition of a presentation, we
have ΓH =

(
N σ(N)

)
and ΓK =

(
P σ(P )

)
. It is now clear that (FG′)V2

V1
= N ·M ·σ(P T )

Assume now that FG is symmetric. By de�nition of a presentation, we have ΓH = N and
ΓK = P . Hence, (FG′)V2

V1
= ΓH ·M · ΓT

K = N ·M · P T = N ·M · σ(P T ) = AV2
V1
.

Remark 4.4 1. If k = rk((FG)V2
V1

) in Proposition 4.3, we have necessarily p = |X| ≥ k, q =
|Y | ≥ k. If p = q = k, then X and Y are vertex bases of G[V1] and G[V2] respectively, both
with respect to G.

2. If V1 ⊆ V and X is a vertex basis of G[V1] with respect to G, then there is a unique
presentation (H,N,X) of G[V1] relative to G .

Example 4.2 We let G be a directed graph such that V1 is the set {x1, . . . , x6} and V2 is the
set {y1, . . . , y7} and let A = (FG)V2

V1
be the following.

A =

y1 y2 y3 y4 y5 y6 y7

x1 a a2 1 a 0 0 0
x2 0 0 0 a2 a 1 1
x3 a2 0 a 1 0 a2 0
x4 a2 1 a 0 a 1 1
x5 a2 0 a a2 1 0 a2

x6 0 1 0 0 1 0 a2

We choose X = {x1, x2, x3} and Y = {y2, y5, y6} as vertex bases of G[V1] and G[V2] respec-
tively, both with respect to G. We have thus the following linear relations:

AV2
x4

= a ·AV2
x1

+AV2
x2
,

AV2
x5

= a2 ·AV2
x2

+AV2
x3
,

AV2
x6

= a ·AV2
x1

+ a2 ·AV2
x2

+AV2
x3

and,

AV1
y1

= a ·AV1
y2

+ a ·AV1
y5

+AV1
y6
,

AV1
y3

= a2 ·AV1
y2

+ a2 ·AV1
y5

+ a ·AV1
y6
,

AV1
y4

= a ·AV1
y2

+ a ·AV1
y5

+ a2 ·AV1
y6
,

AV1
y7

= a ·AV1
y5
.
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The corresponding GF (4)6-colorings H and K of G[V1] and G[V2] are respectively de�ned by:

x1 1 0 0 1 0 0
x2 0 1 0 0 1 0
x3 0 0 1 0 0 1
x4 a 1 0 a2 1 0
x5 0 a2 1 0 a 1
x6 a a2 1 a2 a 1

y1 a a 1 a2 a2 1
y2 1 0 0 1 0 0
y3 a2 a2 a a a a2

y4 a a a2 a2 a2 a

y5 0 1 0 0 1 0
y6 0 0 1 0 0 1
y7 0 a 0 0 a2 0

We have

M = AY
X =

y2 y5 y6

x1 a2 0 0
x2 0 a 1
x3 0 0 a2

M ′ =
(

03,3 M
03,3 03,3

)

We can check for an example that:

γH(x4) ·M ′ · γK(y5) =
(
0 0 0 1 a 0

)
·
(
0 1 0 0 1 0

)T = a = Ay5
x4

γH(x1) ·M ′ · γK(y2) =
(
0 0 0 a2 0 0

)
·
(
1 0 0 1 0 0

)T = a2 = Ay2
x1

γH(x5) ·M ′ · γK(y1) =
(
0 0 0 0 1 0

)
·
(
a a 1 a2 a2 1

)T = a2 = Ay5
x4

We can now state some basic properties of presentations.

Fact 4.1 Let G be a graph with a biparition (V1, V2) of VG. Let (H,N,X) and (K,P, Y )
be presentations of G[V1] and G[V2] respectively, both relative to G. Let Z ⊆ V1 ∪ V2 and
M = (FG)Y

X . Then

G[Z] = H[Z ∩ V1]⊗M K[Z ∩ V2].

Fact 4.2 Let G be a graph. If X ′ ⊆ X ⊆ V ⊆ VG and X ′, X are vertex generators of G[V ]
with respect to G, then:

(FG)VG−V
V = N · (FG)VG−V

X ,

(FG)VG−V
X = N ′ · (FG)VG−V

X′ ,

for some (V,X)-matrix N and some (X,X ′)-matrix N ′ and

(FG)VG−V
V = (N ·N ′) · (FG)VG−V

X′ .

Proposition 4.4 Let G be a graph over (F, σ) and V ⊆ VG, and let (V1, V2) be a bipartition
of V . Let (H1, N1, X1) and (H2, N2, X2) be presentations of G[V1] and G[V2] respectively,
both relative to G. Then there exist a vertex basis Z ⊆ X1 ∪X2 of G[V ] and a presentation
(H,N,Z) of G[V ] relative to G such that

H = H1 ⊗M,P1,P2 H2

where M is an (X1, X2)-matrix, P1 is an (X1, Z)-matrix and P2 is an (X2, Z)-matrix if FG is
symmetric, otherwise M,P1 and P2 are respectively (2h×2k),(2h×2`) and (2k×2`)-matrices
where h = |X1|, k = |X2| and ` = |Z|.
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Proof. We let n = |V1|, m = |V2| and |VG−V | = p. We �rst assume that FG is symmetric. By

Proposition 4.3, we haveG = H1⊗M ′K whereM ′ = (FG)X2∪(VG−V )
X1

and (K,N ′
2, X2∪(VG−V ))

is a presentation of G[VG − V1] relative to G with:

N ′
2 =

@
@

@
X2 VG − V

V2 N2 0m,p

VG − V 0p,k Ip

Hence, by Fact 4.1, G[V ] = (H1 ⊗M ′ K) [V1 ∪ V2] = H1 ⊗M H2 where M = (M ′)X2
X1

since

K[V2] = H2,

(N ′
2)

X2
V2

= N2,

(X2 ∪ (VG − V )) ∩ V2 = X2.

It remains to de�ne Z,P1 and P2 such that (H,N,Z) is a presentation of G[V ] relative to G
where:

H = H1 ⊗M,P1,P2 H2,

N =
(

ΓH1 · P1

ΓH2 · P2

)
.

Let X1 = {x1, . . . , xh}, X2 = {y1, . . . , yk} and ` = ρF
G(V ). We let A = (FG)VG−V

V .

Claim 4.1 X1 ∪X2 is a vertex generator of G[V ] with respect to G.

Proof of Claim 4.1. We consider the matrix (FG)VG−V1
V1

. Its row vectors are generated by

those associated with X1. Thus, so are those of (FG)VG−V
V1

which are projections of the latter

ones. Similarly the row vectors of (FG)VG−V
V2

are generated by those associated with X2.
Hence, X1 ∪X2 is a vertex generator of G[V1 ∪ V2] with respect to G.

One can thus �nd a vertex basis Z ⊆ X1 ∪ X2. It consists of ` vertices. Without loss of
generality, we can assume that Z = {x1, . . . , xh′ , y1, . . . , yk′} for some h′ ≤ h and k′ ≤ k. Let
W = VG − V . For each s such that h′ < s ≤ h, we have a vector ws such that:

AW
xs

= ws ·
(
AW

x1
, · · · , AW

xh′
, AW

y1
, · · · , AW

yk′

)T
.

We let

P1 =


Ih′ 0h′,`−h′

wh′+1
...
wh

 .
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Thus P1 is an (X1, Z)-matrix. Similarly, for k′ < u ≤ k, we have w′u such that:

AW
yu

= w′u ·
(
AW

x1
, · · · , AW

xh′
, AW

y1
, · · · , AW

yk′

)T
.

We let

P2 =


0k′,`−k′ Ik′

w′k′+1
...
w′k

 .

It is an (X2, Z)-matrix. We let H = H1 ⊗M,P1,P2 H2. Let x ∈ V1 and z ∈ W . We wish to
prove that:

Az
x = γH(x) ·

(
Az

x1
, · · · , Az

xh′
, Az

y1
, · · · , Az

yk′

)T
.

Since (H1, N1, X1) is a presentation of G[V1], we have

(FG)z
x = γH1(x) ·

(
(FG)z

x1
, · · · , (FG)z

xh

)T

But P1 is de�ned in such a way that:(FG)z
x1

...
(FG)z

xh

 = P1 ·
(
(FG)z

x1
, · · · , (FG)z

xh′
, (FG)z

y1
, · · · , (FG)z

yk′

)T
.

Hence,

(FG)z
x = γH1(x) · P1 ·

(
Az

x1
, · · · , Az

xh′
, Az

y1
, · · · , Az

yk′

)T

But, it is clear that γH1(x) · P1 = γH(x).

The proof is similar for (FG)z
y for y ∈ V2 and z ∈W . It remains now to consider non symmetric

σ-symmetric matrices. Let

M =
(

0h,k (M ′)X2
X1

0h,k 0h,k

)
P ′

1 =
(
P1 0h,`

0h,` σ(P1)

)
P ′

2 =
(
P2 0k,`

0k,` σ(P2)

)
.

We let

H = H1 ⊗M,P ′
1,P ′

2
H2,

N =
(

ΓH1 · P ′
1

ΓH2 · P ′
2

)
.

Clearly (H,N,Z) is a presentation of G[V ] relative to G. This terminates the proof of the
proposition.
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Example 4.3 Let G be a directed graph. We let V1 be the set {x1, . . . , x6}, V2 be the set
{y1, . . . , y6} and W = VG − V be the set {z1, . . . , z5}. We let A = FG. The matrix AV2∪W

V1∪V2
is

(we can leave the sub-matrix AV2
V2

unde�ned):

A =

y1 y2 y3 y4 y5 y6 z1 z2 z3 z4 z5
x1 a a2 1 a 0 0 a2 a2 a2 0 a2

x2 0 0 0 a2 a 1 1 1 0 a2 1
x3 a2 0 a 1 0 a2 a a 0 1 a

x4 a2 1 a 0 a 1 0 0 1 a2 0
x5 a2 0 a a2 1 0 1 1 0 a2 1
x6 0 1 0 0 1 0 0 0 1 a2 0
y1 0 1 a2 a a

y2 0 0 a2 a 0
y3 0 a 1 a2 a2

y4 1 1 1 0 1
y5 a a2 a 0 0
y6 a2 0 1 1 a

We can verify that we have the following linear relations between rows of AV2∪W
V1

and AV1∪W
V2

:

AV2∪W
x4

= a ·AV2∪W
x1

+AV2∪W
x2

,

AV2∪W
x5

= a2 ·AV2∪W
x2

+AV2∪W
x3

,

AV2∪W
x6

= a ·AV2∪W
x1

+ a2 ·AV2∪W
x2

+AV2∪W
x3

and,

AV1∪W
y1

= a ·AV1∪W
y2

+ a ·AV1∪W
y5

+AV1∪W
y6

,

AV1∪W
y3

= a2 ·AV1∪W
y2

+ a2 ·AV1∪W
y5

+ a ·AV1∪W
y6

,

AV1∪W
y4

= a ·AV1∪W
y2

+ a ·AV1∪W
y5

+ a2 ·AV1∪W
y6

,

AV1∪W
y7

= a ·AV1∪W
y5

.

Vertex bases of G[V1] and of G[V2] with respect to G are respectively {x1, x2, x3} and {y2, y5, y6}.
The GF (4)6-colorings H and K of G[V1] and of G[V2] are the same as in Example 4.2. Among
{x1, x2, x3, y2, y5, y6}, one can select {x3, y2, y5} as a vertex basis of G[V1 ∪ V2] with respect to
G. Then we have the following linear relations:

AW
x1

= a ·AW
x3

+AW
y2
,

AW
x2

= a2 ·AW
x3
,

AW
y6

= AW
x3

+ a2 ·AW
y5
.

We have then

M =
(

03,3 M ′

03,3 03,3

)
P ′

1 =
(
P1 03,3

03,3 σ(P1)

)
P ′

2 =
(
P2 03,3

03,3 σ(P2)

)
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where

M ′ =

y2 y5 y6

x1 a2 0 0
x2 0 a 1
x3 0 0 a2

P1 =

x3 y2 y5

x1 a 1 0
x2 a2 0 0
x3 0 0 1

P2 =

x3 y2 y5

y2 0 1 0
y5 0 0 1
y6 1 0 a2

One can verify for an example that γH(x1) · P ′
1 =

(
a 1 0 a2 1 0

)
and γK(y6) · P ′

2 =(
1 0 a2 1 0 a

)
.

We can now prove the converse direction of Theorem 4.2.

Proposition 4.5 Let G be a graph over (F, σ) that has F -rank-width at most n. Then G is
the value of a term t where:

t ∈

{
T (RF

n , C
F
n ) if FG is symmetric,

T (RF
2n, C

F
2n) otherwise.

Proof. We let G be such that rwdF (G) ≤ n. We �rst assume G to be connected.

Let (T,L) be a layout of ρF
G of branch-width n; we can assume T cubic since (Red(T ),L) is

also a layout of branch-width n of ρF
G. Let us select a node s of degree 1 of T as root, and

direct T accordingly, from the root towards the other vertices of degree 1. The weight of a
node u of T is the number of the nodes of T ↓ u, the sub-tree of the directed tree T rooted at
u.

For every arc of T of the form −→vu, we let Gu be the induced subgraph of G, the vertices of
which are the leaves of T ↓ u, and Gv the induced subgraph of G, the vertices of which are
the leaves not in T ↓ u.

Claim 4.2 One can choose for each u di�erent from the root of T , a presentation (Hu, Nu, Xu)
of Gu with |Xu| = r(u) where r(u) is the width of −→vu, and a term tu in T (RF

n , C
F
n ) if FG is

symmetric, otherwise tu is in T (RF
2n, C

F
2n), that de�nes Hu, such that if u has two sons w and

w′, then tu = tw ⊗M,N1,N2 tw′ for some matrices M,N1 and N2.

Proof of Claim 4.2. By induction on the weight w(u) of u.

If w(u) = 1, then Gu is a singleton graph. Since G is assumed connected, r(u) = 1. We take
tu = (1) if FG is symmetric, otherwise tu = (1 1).

Let w(u) 6= 1. Then u has two sons w and w′ and they have smaller weights than u. By
inductive hypothesis, there exist presentations (Hw, Nw, Xw) of Gw and (Hw′ , Nw′ , Xw′) of
Gw′ .

By Proposition 4.4, there exist matricesM,N1 andN2 such that (Hu, Nu, Xu) is a presentation
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of Gu where

Hu = Hw ⊗M,N1,N2 Hw′

Nu =
(

ΓHw ·N1

ΓHw′ ·N2

)
,

Xu ⊆ Xw ∪Xw′ is a vertex basis of Gu.

If FG is symmetric, M,N1 and N2 have order (r(w), r(w′)), (r(w), r(u)) and (r(w′), r(u)).
Otherwise, they are matrices of order (2·r(w), 2·r(w′)), (2·r(w), 2·r(u)) and (2·r(w′), 2·r(u)).

By inductive hypothesis, there also exist tw and tw′ that de�ne Hw and Hw′ respectively.
We let then tu = tw⊗M,N1,N2tw′ . It is clear that t de�nesHu. This completes the general case.

We can now �nish the proof of the proposition. For the case of u where r → u, r being the
root of T , G is de�ned by tu ⊕M,0,0 t where tu is obtained by Claim 4.2 and

t =

{
(1) if FG is symmetric,

(1 1) otherwise.
M =


(FG)L

−1(r)
y if FG is symmetric,(

0 (FG)L
−1(r)

y

0 0

)
otherwise.

where y is the vertex basis of G\L−1(r) with respect of G chosen by Claim 4.2.

If G is not connected, then G = H1 ⊕ · · · ⊕ Hk where H1, . . . ,Hk are connected and
rwd(Hi) ≤ n for each i. We let t1, . . . , tk be terms denoting H1, . . . ,Hk respectively. Then we
can take t1 ⊗0,0,0 t2 ⊗0,0,0 · · · ⊗0,0,0 tk to denote G and ⊗0,0,0 is equivalent to ⊕, the disjoint
union of uncolored graphs. This ends the proof.

As corollaries we get the following theorems.

Theorem 4.3 ([CK09]) An undirected graph G has rank-width at most n if and only if G is

the value of a term t in T (RGF (2)
n , C

GF (2)
n ).

Theorem 4.4 ([Kan08]) Let G be a directed graph. If G has GF (4)-rank-width at most n,

then G is the value of a term t in T (RGF (4)
2n , C

GF (4)
2n ). If G = val(t) for t ∈ T (RGF (4)

n , C
GF (4)
n ),

then rwd (4 )(G) ≤ 2n.

Remark 4.5 1. Any layout (T,L) of G of branch-width n is made into a term t such that
Red(red(t)) = T .

2. The procedure that transforms a layout (T,L) of width k of a graph G into a term t
in T (RF

k , C
F
k ) or T (RF

2k, C
F
2k) can be done in time O(|VG|2). Our algorithm consists in

transforming each internal node u of T that partitions VG into (V1, V2,W ) into a binary
operation ⊗M,N,P . For that purpose, we need a vertex basis B1 of (FG)VG−V1

V1
, a vertex basis

B2 of (FG)VG−V2
V2

and a vertex basis B3 of (FG)W
V1∪V2

. By Proposition 4.5, we can construct

a vertex basis of (FG)W
V1∪V2

by using a basis of (FG)W
B1∪B2

, which is a (2k × |W |)-matrix.
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By using Gauss pivot algorithm [Lip91], we can �nd a basis of (FG)W
B1∪B2

in O(k2 · |VG|)-
time. We can then construct for each internal node of T , the matrices M,N and P in

O(k2 · |VG|)-time, because for each vertex x of G, the basis of (FG)VG−{x}
x is {x} (G is

connected). Since |T | = O(|VG|), we can construct the term t in time O(|VG|2).

It is clear that if t ∈ T (RF
n , C

F
n ), then t ∈ T (BF

n , C
F
n ). We will prove in the following

proposition that if t ∈ T (BF
n , C

F
n ), then t ∈ T (RF

|F |n , C
F
|F |n).

Proposition 4.6 Let t ∈ T (BF
n , C

F
n ), then t ∈ T (RF

qn , CF
qn) where F = {a1, . . . , aq}.

Proof. Let t ∈ T (BF
n , C

F
n ) and without loss of generality we may assume that all operations

f, g, h are de�ned within Fn. Let α : Fn → [qn] be a bijective function that enumerates the
set of vectors in Fn. For each u ∈ Fn, we let u̇ ∈ F qn

with u̇[α(u)] = 1 and u̇[i] = 0 for
i 6= α(u). We construct an expression t′ ∈ T (RF

qn , CF
qn) with these rules:

(i) if t = u, we let t′ = u̇,

(ii) if t = Recolh(t1), we let t′ = RecolN (t′1) for some (qn × qn)-matrix N , de�ned below,

(iii) if t = t1 ⊗f,g,h t2, we let t′ = t′1 ⊗M,N,P t
′
2 for some (qn × qn)-matrices M,N,P , de�ned

below.

For Rule (ii), we let N be a (qn × qn)-matrix such that if h(u) = v, then N
α(v)
α(u) = 1 and

N
α(w)
α(u) = 0 for w 6= v. It is easy to verify that v̇ = u̇ ·N where v = h(u) for each u ∈ Fn.

For Rule (iii), we construct g and h as in h in the case of Rule (ii). To express f as a

bilinear form, we let M be the (qn × qn)-matrix such that Mα(v)
α(u) = f(u, v) for all u, v. It is

straightforward to verify that f(u, v) = u̇ ·M · v̇T .

Question 4.1 For each term t ∈ T (BF
n , C

F
n ) can we have t ∈ T (RF

p(n), C
F
p(n)) for some polyno-

mial p?

Remark 4.6 It seems better for veri�cation purposes to use the operations in BF
n for the fol-

lowing reason. The graph operations are de�ned for colored graphs. In order to use logical tools
explained in [CMR00, DF99, FG06, Mak04], we represent the colors by unary relations and the
graph operations are represented by quanti�er-free operations over the signature formed with the
adjacency relation and the unary relations used to describe the colored graphs. For instance, if F is
a �nite �eld, De�nition 4.5 shows how to represent the colors of F k-colored graphs and Proposition
4.1 shows how to code operations in BF

n by quanti�er-free operations. In the linear-time algorithms
based on the methodology presented in [CMR00, DF99, FG06, Mak04], the hidden constants de-
pend on the number of relations used to describe colored graphs. Hence, using less relations yields
smaller (although large) constants. However, concrete implementations should be done to decide.
One can use for instance MONA [HJJ+95]. Moreover, practical experience, although insu�cient,
shows that this is not the only point to take into account. The PhD thesis of Soguet [Sog08]
presents some trials of concrete implementations.
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4.3 Algebraic Operations for Bi-Rank-Width

In this section we will de�ne graph operations that handle algebraically undirected edge-
colored graphs that are not necessarily over some (F, σ) for some �nite �eld F and automor-
phism σ : F → F . We recall that if A is a �nite set, we do not assume any structure on A,
then an undirected A-edge-colored graph G is represented by the structure 〈VG, (Ea

G)a∈A 〉.
For an arbitrary edge-colored graph G, we cannot de�ne an adjacency matrix because, for
every pair of vertices (x, y), we can have two or more colors, say a and b in A and such that
Ea

G(x, y) and Eb
G(x, y) holds.

For any �nite set A, we can assume that it is linearly ordered by a relation <A, by �xing
any linear relation. Therefore, to any �nite set A corresponds a bijection αA : A → |A| such
that for every a, b in A we have αA(a) < αA(b) if and only if a <A b. We now extend the
operations in RF

n as follows.

De�nition 4.9 Let A be a �nite set and let αA be the bijection induced by the linear relation
on A and let p = |A|. Let M1, . . . ,Mp be (k × `)-matrices, N and P be respectively (k ×m)
and (`×m)-matrices, all over GF (2). For undirected A-edge-colored graphs G, GF (2)k-colored
and H, GF (2)`-colored, we let K = G ⊗M1,...,Mp,N,P H be the undirected GF (2)m-colored A-
edge-colored graph 〈VG ∪ VH , (Ea

K)a∈A, γK 〉 where as usual we assume VG ∩ VH = ∅ and for
a ∈ A:

Ea
K = Ea

G ∪ Ea
H ∪ {(x, y), (y, x) | γG(x) ·MαA(a) · γH(y)T = 1},

γK(x) =

{
γG(x) ·N if x ∈ VG,

γH(x) · P if x ∈ VH .

We let U
([p])
n be the set of binary operations ⊗M1,...,Mp,N,P where the matrices Mi are (k× `)-

matrices and the matrices N,P are (k × `)-matrices and (` ×m)-matrices for k, `,m ≤ n. We
obtain in this way a complexity measure on A-edge-colored graphs:

Rwd (A)(G) = min{k | G = val(t), t ∈ T (U ([p])
k , C

GF (2)
k )}.

We recall that if G is an A-edge colored graph, then we denote by Ga the undirected graph
〈VG, E

a
G 〉, i.e., we have an edge xy in EGa if and only if (x, y) is in Ea

G. It is clear that if

G = val(t) for some term t in T (U ([p])
k , C

GF (2)
k ) and a ∈ A, then Ga = val(ta) where ta ∈

T (RGF (2)
k , C

GF (2)
k ) is obtained from t by replacing each operation ⊗M1,...,Mp,N,P by ⊗Mi,N,P

where αA(a) = i. It follows that rwd(Ga) ≤ Rwd (A)(G) for each a ∈ A.
If G is an undirected A-edge-colored graph, we have de�ned in De�nition 1.11 the notion

of rank-width for G and denote it by rwdA(G). We now relate rwdA(G) and Rwd (A)(G). We
recall that if t is a term in T (F,C), we denote by OccL(t) the �nite set of occurrences of
constants in t.

Proposition 4.7 Let A be a set of p edge-colors. For every undirected A-edge-colored graph
G, we have

1
p
Rwd (A)(G) ≤ rwdA(G) ≤ Rwd (A)(G).
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Proof. Let t ∈ T (U ([p])
k , C

GF (2)
k ) be a term de�ning G. Let L be the bijection between VG

and OccL(t). We let (T = red(t),L) be a layout of G. Clearly for each a in A, (T,L) is also
a layout of ρGa . Hence, for each a, bwd(ρGa , T,L) is at most k since ta ∈ T (RGF (2)

k , C
GF (2)
k ).

Hence, rwd(G) ≤ maxa∈A{bwd(ρGa , T,L)} ≤ k, which proves that rwdA(G) ≤ Rwd (A)(G).

For the inequality Rwd (A)(G) ≤ p·rwdA(G), let us consider a layout (T,L) of G that witnesses
rwdA(G) = k. Hence, bwd(ρGa , T,L) is at most k for each a ∈ A. For each a ∈ A, there

exists by Proposition 4.5 a term ta ∈ T (RGF (2)
k , C

GF (2)
k ) that de�nes Ga. For any a, b ∈ A,

we have red(ta) = red(tb). To simplify the proof we assume that A = {a, b} and a < b, i.e.,
αA(a) = 1, αA(b) = 2. The extension to p > 2 will be straightforward.

We now show how ta and tb can be merged into a single term (Example 4.4 illustrates it).
We need a claim with an easy proof but numerous assumptions. Let G = Ga ∪ Gb and
H = Ha ∪Hb. Assume that Ga and Gb have color matrices ΓGa ,ΓGb

, both of order |VG| × k.
Assume that Ha and Hb have similar matrices ΓHa ,ΓHb

.

Assume now that a graph K is obtained from G and H by taking their disjoint union
and adding a-edges and b-edges. We assume that the a-edges are added by the operation
Ga ⊗Ma,Na,Pa Ha giving Ka which also involves recolorings by Na, Pa. Assume that the b-
edges are added by Gb ⊗Mb,Nb,Pb

Hb giving Kb.

Let us de�ne for G the color-matrix ΓG =
(
ΓGa ΓGb

)
of order |VG| × 2k, and similarly ΓH =(

ΓHa ΓHb

)
of order |VH | × 2k. We let �nally ΓK =

(
ΓKa ΓKb

)
of order (|VG|+ |VH |)× 2k.

Then we have:

Claim 4.3 K = G⊗M,M ′,N,P H where

M =
(
Ma 0
0 0

)
M ′ =

(
0 0
0 Mb

)
N =

(
Na 0
0 Nb

)
P =

(
Pa 0
0 Pb

)

Proof of Claim 4.3. The veri�cation is routine from the numerous assumptions.

By using the fact that ta and tb have the same �shape�, i.e., red(ta) = red(tb), their operations
can be merged by the above claim so as to form a single term t in T (U ([p])

2k , C
GF (2)
2k ) that

de�nes G. Note that red(t) = red(ta).

Example 4.4 Let A = {a, b} with a < b. An undirected A-edge-colored graph G is shown on
Figure 7 (iii). The graphs Ga and Gb and, a layout (T,L) of G are shown on Figure 7 (i), (ii) and
(iv). (T,L) is a layout of branch-width 2 for ρGa and ρGb

. The terms ta and tb that constructs
respectively Ga and Gb are shown on Figure 15 (i) and (ii) where, for every i in [5], we have
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fi = ⊗Mi,a,Ni,a,Pi,a and gi = ⊗Mi,b,Ni,b,Pi,b
with:

Mi,a Ni,a Pi,a

f1 (0) (1 0) (0 1)
f2 (0) (0 1) (1 0)

f3 (1 1) (1 0)
(

0 1
0 0

)
f4 (0) (0 1)

(
1 0
0 1

)
f5

(
0 1
1 0

) (
0
0

) (
0
0

)

Mi,b Ni,b Pi,b

g1 (0) (0) (1)
g2 (0) (1 0) (0 1)
g3 (0) (1 0) (0 1)

g4 (0 1) (0)
(

1 0
0 1

)
g5

(
1 0
1 1

) (
0
0

) (
0
0

)

For each i in [5], we let hi = ⊗Mi,M ′
i ,Ni,Pi

where

Mi M ′
i Ni Pi

h1

(
0 0
0 0

) (
0 0
0 0

) (
1 0 0
0 0 0

) (
0 1 0
0 0 1

)
h2

(
0 0
0 0

) (
0 0
0 0

) (
0 1 0 0
0 0 1 0

) (
1 0 0 0
0 0 0 1

)
h3

(
1 1 0
0 0 0

) (
0 0 0
0 1 0

) (
1 0 0 0
0 0 1 0

) 0 1 0 0
0 0 0 0
0 0 0 1


h4

(
0 0 0
0 0 0

) (
0 0 0
0 0 1

) (
0 1 0
0 0 0

) 
1 0 0 1
0 0 0 0
0 0 1 0
0 0 0 1


h5


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 1




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


One can verify that t e�ectively constructs the undirected A-edge-colored graph G.

We now explain how to consider a term in T (U ([2])
k , C

GF (2)
k ) as one de�ning a di-

rected graph. For directed graphs G, GF (2)n-colored and H, GF (2)`-colored, we let
K = G⊗M1,M2,N,P H be the directed graph 〈VG ∪ VH , EK , γK 〉 where:

EK = EG ∪ EH ∪ {(x, y) | x ∈ VG, y ∈ VH and γG(x) ·M1 · γH(y) = 1} ∪
{(y, x) | x ∈ VG, y ∈ VH and γG(x) ·M2 · γH(y) = 1}

γK(x) =

{
γG(x) ·N if x ∈ VG,

γH(x) · P otherwise.

By using the construction above, we can inductively construct a directed graph val(t) from

a term t in T (U ([2])
k , C

GF (2)
k ). Then a term t in T (U ([2])

k , C
GF (2)
k ) can be considered as one

de�ning a directed graph or one de�ning an undirected A-edge-colored graph, depending on
the used algebra. In the rest of this section, we will consider terms in T (U ([2])

k , C
GF (2)
k ) as

terms that de�ne directed graphs.
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f3 f4

f5

f2
f1

g3 g4

g5

g2
g1(1)(x1)

(1)(x3) (1)(x5) (1)(x4) (1)(x2)

(1)(x6) (1)(x1)

(1)(x5)

(1)(x6)

(1)(x2)
(1)(x3) (1)(x4)

ta tb

h3 h4

h5

h2
h1

t

(1 1)(x6)

(1 1)(x2)(1 1)(x4)(1 1)(x5)(1 1)(x3)

(1 1)(x1)

Figure 15: A term t that de�nes the A-edge-colored graph G on Figure 7 (iii).

We now prove that the operations in U ([2])
k handle algebraically graphs of bi-rank-width

at most k. We recall that if (T,L) is a rooted layout and e = (u, v), then Xe = L−1(N (1)
T↓v)

where T ↓ v is the the sub-tree of T rooted at v induced by the set of all descendants of v
(Chapter 1).

Proposition 4.8 Let G be a graph of bi-rank-width k. Then there exists a term t in
T (U ([2])

k , C
GF (2)
k ) such that G is isomorphic to val(t).

Proof. Let (T,L) be a layout of branch-width k of ρ(bi)
G . We can assume that each node of T

has degree 1 or 3 since (Red(T ),L) is also a layout of ρ(bi)
G of branch-width k. We take a node

r of degree 1 as root and direct T such that each node of degree 1 is reachable from r. Hence,
T de�nes a linear order ≤ on VG. We de�ne the two undirected graphs Ga = 〈VG, EGa 〉 and
Gb = 〈VG, EGb

〉 where :

EGa = {xy | x < y and (x, y) ∈ EG},
EGb

= {yx | x < y and (y, x) ∈ EG}.

It is clear that (EGa , EGb
) is a bipartition of EG. Moreover, (T,L) is a layout of ρGa of

branch-width p where p = maxe∈ET
{ρGa(Xe)}. It is also a layout of ρGb

of branch-width q
where q = maxe∈ET

{ρGb
(Xe)}. We recall that p+ q = k.



4.4. Conclusion 71

By Theorem 4.2, we can construct a term ta in T (RGF (2)
p , C

GF (2)
p ) that de�nes Ga and

similarly a term tb in T (RGF (2)
q , C

GF (2)
q ) de�ning Gb. It is straightforward to see that

red(ta) = red(tb). By using the same ideas as in Claim 4.3, one can merge the terms ta and

tb in order to construct a term t ∈ T (U ([2])
k , C

GF (2)
k ) de�ning a graph isomorphic to G.

We now prove a kind of converse.

Proposition 4.9 Let G be a directed graph isomorphic to val(t) where t is in

T (U ([2])
k , C

GF (2)
k ). Then brwd(G) ≤ 2 · k.

Proof. Let t ∈ T (U ([2])
k , C

GF (2)
k ) be such that G is isomorphic to val(t). The term t de�nes

a linear order ≤ on VG because there exits a bijection L between VG and OccL(t) which is
naturally ordered. We de�ne the two undirected graphs Ga = 〈VG, EGa 〉 and Gb = 〈VG, EGb

〉
where :

EGa = {xy | x < y and (x, y) ∈ EG},
EGb

= {yx | x < y and (y, x) ∈ EG}.

By de�nition (EGa , EGb
) is a bipartition of EG. We let ta be t where we replace each operation

⊗M1,M2,N,P by ⊗M1,N,P and tb be t where we replace each operation ⊗M,M2,N,P by ⊗M2,N,P .
By the de�nitions of ta, tb, Ga and Gb it is clear that val(ta) = Ga and val(tb) = Gb. We
also have red(t) = red(ta) and red(t) = red(tb). Let this term be denoted by T . We claim

that (T,L) is a layout of branch-width at most 2k of ρ(bi)
G . It is su�cient to prove, for each

sub-term t′ of t, that ρ(bi)
G (VH) ≤ 2k where H is isomorphic to val(t′).

Let t′ be a subterm of t with H isomorphic to val(t′). By Lemma 4.1, (AGa)
VG−VH
VH

= ΓH ·B
and (AGb

)VG−VH
VH

= ΓH ·B′. But, by the de�nitions of Ga and of Gb, we also have ρGa(VH) =

rk
(
(A+

G)VG−VH
VH

)
and ρGb

(VH) = rk
(
(A−G)VG−VH

VH

)
. Hence,

ρ
(bi)
G (VH) ≤ rk(ΓH ·B) + rk(ΓH ·B′)

≤ 2 · rk(ΓH) ≤ 2k

since H is GF (2)`-colored, ` ≤ k and rk(A ·B) ≤ min{rk(A), rk(B)}.

4.4 Conclusion

Let F be a �nite �eld and let σ : F → F be an automorphism. We have proposed alge-
braic graph operations that handle algebraically graph classes over (F, σ) that have bounded
F -rank-width. These graph operations are quanti�er-free and then we can use the logical
framework of [Cou92, CMR00, Mak04] to solve MS-de�nable problems on graphs generated
by such operations. A specialization of these operations characterize exactly the rank-width
of undirected graphs (Theorem 4.3). In the case of directed graphs, these operations do not
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yield an exact algebraic characterization of GF (4)-rank-width (Theorem 4.4). We have also
de�ned graph operations that handle algebraically directed graphs of bi-rank-width at most
k (Propositions 4.8 and 4.9). It is open to �nd graph operations that characterize exactly
directed graphs of GF (4)-rank-width at most k as follows:

a directed graph has GF (4)-rank-width at most k if and only if G = val(t) for

some term t in T (R(4)
k , C

(4)
k )

where R(4)
k is a �nite set of graph operations, C(4)

k is a �nite set of constants, both depending
on k.



Chapter 5

Recognition Algorithms

We recall that checking an upper bound to the rank-width of an undirected graph is NP-
complete [HOSG08] and for �xed k, there exists a cubic-time algorithm that recognizes the
undirected graphs of rank-width at most k (see Section 1.2, Theorem 1.2). In this chapter
we prove that for �xed k, we can check if a directed graph has bi-rank-width or GF (4)-rank-
width at most k. In Section 5.1 we introduce some auxiliary graph operations and compare
clique-width, GF (4)-rank-width and bi-rank-width. We give the recognition algorithms for
bi-rank-width and GF (4)-rank-width in Section 5.2.

5.1 Other Width Parameters and Comparisons

Our objective in this section is to prove the following proposition.

Proposition 5.1 For every directed graph G,

1. 1
2brwd(G) ≤ cwd(G) ≤ 2brwd(G)+1 − 1.

2. rwd (4 )(G) ≤ cwd(G) ≤ 2 · 4rwd(4)(G) − 1.

Before proving it, we �rst de�ne some derived graph operations built from operations
de�ning m-clique-width. We also prove some basic preliminary results. We recall that a C-
colored graph G = 〈VG, EG 〉 is de�ned as G = 〈VG, EG, labG 〉 where labG(x) ∈ C for each
x ∈ VG.

De�nition 5.1 (Derived M-Clique-Width Operations De�ning Undirected Graphs)
Let k be a positive integer. For R ⊆ [k] × [k], for mappings g, h : [k] → [k] and for undirected
[k]-colored graphs G and H, we de�ne the undirected [k]-colored graph K = G ⊗R,g,h H if G
and H are disjoint (otherwise we replace H by a disjoint copy) where

VK = VG ∪ VH ,

EK = EG ∪ EH ∪ {xy | x ∈ VG, y ∈ VH and (labG(x), labH(y)) ∈ R},

labK(x) =

{
g(labG(x)) if x ∈ VG,

h(labH(x)) if x ∈ VH .

73
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We denote by F u
k the set of all operations ⊗R,g,h where R ⊆ [k] × [k] and g, h : [k] → [k].

Every term t in T (F u
k , C

c
k) denotes, up to isomorphism, an undirected graph val(t).

De�nition 5.2 (Derived M-Clique-Width Operations De�ning Directed Graphs)
Let k be a positive integer. For R ⊆ [k]× [k], R′ ⊆ [k]× [k], for mappings g, h : [k]→ [k] and for
directed [k]-colored graphs G and H, we de�ne the directed [k]-colored graph K = G⊗R,R′,g,h H
if G and H are disjoint (otherwise we replace H by a disjoint copy) where

VK = VG ∪ VH ,

EK = EG ∪ EH ∪ {(x, y) | x ∈ VG, y ∈ VH and (labG(x), labH(y)) ∈ R}
∪ {(y, x) | x ∈ VG, y ∈ VH and (labG(x), labH(y)) ∈ R′},

labK(x) =

{
g(labG(x)) if x ∈ VG,

h(labH(x)) if x ∈ VH .

We let F d
k be the set of all binary operations ⊗R,R′,g,h where R,R′ ⊆ [k]× [k] and g, h : [k]→

[k]. Every term t in T (F d
k , C

c
k) denotes, up to isomorphism, a directed graph val(t).

We introduce a last notation. Let G = 〈VG, EG 〉 be a graph. Let r ∈ T ({∗}, {#}) and
L : VG → OccL(r) be a bijection between VG and OccL(r). As in De�nition 1.6, for each

arc e = (u, v) of r, we let Xe be the set N (1)
T↓v. For each edge e of r we let IndG(e) be the

cardinality of L−1(Xe)/∼e where ∼e is the equivalence relation on Ye = L−1(Xe) de�ned by

x ∼e y if and only if ∀z ∈ Ye

(
xz ∈ EG ⇐⇒ yz ∈ EG

)
if G is undirected and, if G is directed, ∼e is de�ned by

x ∼e y if and only if ∀z ∈ Ye

(
(x, z) ∈ EG ⇐⇒ (y, z) ∈ EG

)
∧
(
(z, x) ∈ EG ⇐⇒ (z, y) ∈ EG

)
In a way, if G is undirected and IndG(e) = k, this will induce a coloring of Xe that can

be used in order to construct inductively a term in T (F u
k , C

c
k). We state this construction in

the following lemma, which has an easy proof by induction.

Lemma 5.1 Let G be an undirected graph and let r be a term in T ({∗}, {#}) given with a
bijection between VG and OccL(r). If for each edge e of r, we have IndG(e) ≤ k, then G is
de�ned by a term t in T (F u

k , C
c
k) such that red(t) = r.

By Lemma 5.1, if an undirected graph G has clique-width at most k, then it is the value
of a term in T (F u

k , C
c
k). We will prove a similar result for directed graphs. Let us �rst give

the main ideas. If a directed graph G has clique-width at most k, then G = val(t) for some
term t in T (F dc

k , Cc
k). This term t de�nes a left-right order ≤ on VG which is a linear order.

The idea is to partition the edges of G into two parts E1 and E2 such that (x, y) ∈ E1 if and
only if x ≤ y and (x, y) ∈ EG and, (x, y) ∈ E2 if and only if x ≤ y and (y, x) ∈ EG. For each
i = 1, 2, we let Gi be the undirected graph obtained from G[Ei] by forgetting the orientations
of the edges. We then use Lemma 5.1 with input red(t) to construct a term ti in T (F u

k , C
c
k)
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and such that Gi = val(ti). We �nally �glue� the two terms t1 and t2 in order to construct a
term t̃ in T (F d

k , C
c
k) such that red(t̃) = red(t1) = red(t2) = red(t). A similar idea was used

to prove Proposition 4.7.

Lemma 5.2 Let G be a directed graph. If cwd(G) ≤ k, then G = val(t) for some term t in
T (F d

k , C
c
k).

Proof of Lemma 5.2. Let t be a term in T (F dc
k , Cc

k) that de�nes G. The term t de�nes a
linear order ≤ on VG because VG is in bijection with OccL(t) and the occurrences of constants
have a natural left-right order. We denote by L this bijection. We de�ne the two undirected
graphs G+ = 〈VG, EG+ 〉 and G− = 〈VG, EG− 〉 where :

EG+ = {xy | x < y and (x, y) ∈ EG},
EG− = {yx | x < y and (y, x) ∈ EG}.

Informally, for any x, y ∈ VG, xy ∈ EG+ if and only if x < y and (x, y) ∈ EG and yx ∈ EG−

if and only if x < y and (y, x) ∈ EG. Let T = red(t). Then for each edge e of T , we have
IndG+(e) ≤ k and IndG−(e) ≤ k since IndG(e) ≤ k.

By Lemma 5.1, there exist expressions t+ and t− in T (F u
k , C

c
k) such that G+ = val(t+) and

G− = val(t−) such that red(t+) = T and red(t−) = T . With the help of the proof of Lemma
2.1, we can ensure that for each vertex x ∈ VG, if L(x) = i in t, then L(x) = i in t+ and in t−.
We can also ensure that a node u in T is labeled by ⊗R,g,h in t+ if and only if it is labeled by
some ⊗R′,g,h in t− with same mappings g, h. We then construct an expression t̃ ∈ T (F d

k , C
c
k)

from t+ and t− as follows:

t̃ =

{
i if t+ = t− = i,
t̃1 ⊗R,R′,g,h t̃2 if t+ = t+1 ⊗R,g,h t

+
2 and t− = t−1 ⊗R′,g,h t

−
2 .

It is a straightforward induction to prove that t̃ e�ectively de�nes G.

We now explain how to prove Proposition 5.1. By Proposition 4.8, if a directed graph G has
bi-rank-width at most k, then G is isomorphic to val(t) for some term t in T (U [2]

k , C
GF (2)
k ). By

Proposition 4.9, if G is a directed graph isomorphic to val(t) where t is in T (U ([2])
k , C

GF (2)
k ),

then the bi-rank-width of G is at most 2k. For proving Proposition 5.1 (1) we prove the
followings.

(i) If G = val(t) where t ∈ T (F dc
k , Cc

k), then G = val(t̃) for some term t̃ in T (U ([2])
k , C

GF (2)
k ).

(ii) If G = val(t) where t ∈ T (U ([2])
k , C

GF (2)
k ), then G = val(t̃) for some term t̃ in

T (F c
k′ , C

c
k′), k

′ = 2k+1 − 1.

In order to prove (i) we use Lemma 5.2 which transforms a term t in T (F dc
k , Cc

k) into a

term t̃ in T (F d
k , C

d
k). The idea is to show how to construct a term t̂ in T (U ([2])

k , C
GF (2)
k ) from

t̃. For that purposes, we transform each color i ∈ [k] into a color Ω(i) ∈ GF (2)k and each
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operation ⊗R,R′,g,h into an operation ⊗M,M ′,N,P such that, for every i and j in [k], we have
(i, j) is in R (resp. (i, j) ∈ R′) if and only if Ω(i) ·M ·Ω(j)T = 1 (resp. Ω(i) ·M ′ ·Ω(j)T = 1).
For the inductive construction to work, we must also guarantee that, for each i in [k], we have
Ω(g(i)) = Ω(i) ·N and similarly Ω(h(i)) = Ω(i) · P .

In order to prove (ii), we transform each color u ∈ GF (2)k into a color β(u) where
β : GF (2)k → [2k] is a bijective function. As in (i), we construct inductively a term t̃ in

T (F dc
k′ , C

c
k) from t in T (U ([2])

k , C
GF (2)
k ) by showing how to transform each operation ⊗M,M ′,N,P

into operations using clique-width operations. Let us explain the main idea of the induction
and assume t = t1 ⊗M,M ′,N,P t2; we let H1 = val(t1) and H2 = val(t2). The �rst step con-
sists in replacing each color u in H1 and H2 by the color β(u) and we denote the obtained
graphs by H̃1 and H̃2. The idea is to replace t by t̃ = h(g(αR(H̃1 ⊕ H̃2))) where αR is a
derived clique-width operation that adds the arcs between H1 and H2 by using the α op-
eration of clique-width and g renames the colors in H̃1 and h renames the colors in H̃2 by
using the renaming operation of clique-width and such that g(β(u)) = β(u ·N)) and similarly
h(β(v)) = β(v · P ). We assume the arcs in H1 and in H2 are already constructed. We now
give the derived operations:

• We let αR be the combination of operations αi,j where i = β(u), j = β(v) and u·M ·vT =
1 or u ·M ′ · vT = 1. However, we may have u = v and then i = j. To overcome this
di�culty, we use the isomorphic copy [2k]′ of [2k] and replace each color i in H̃2, by i′; αR

becomes the combination of operations αi,j′ where i = β(u), j = β(v) and u ·M ·vT = 1
and of the operations αj′,i where i = β(u), j = β(v) and u ·M ′ · vT = 1.

• We want now to recolor the vertices in H̃1 and H̃2. If we recolor the vertices of H̃2 �rst,
we could change their colors when recoloring the vertices of H̃1. For that purposes, we
recolor them last. Since we want to rename a color i′ into j and we know that we will not
rename the color j (the vertices of H̃1 are already recolored), we can use a combination
of the operations ρi′→j where β(u) = i, β(v) = j and u · P = v in order to recolor the

vertices of H̃2.

But, the recoloring of the vertices in H̃1 can cause some di�culties. Indeed, for some u
in GF (2)k, we may have u ·N = v and v ·N = u (similarly for P but, since we rename
colors from L′ to L, this causes no di�culties). Then in order to rename β(u) to β(v)
and β(v) to β(u) by using the unary operation ρ, we may need an auxiliary color, hence
we will use more than k′ colors. In order to overcome this second di�culty, we will
rename the colors in a suitable way that ensures that we no more need any auxiliary
color for the recoloring. We now show how to do that. We distinguish two cases, when
g is bijective (Remark 5.1) and when it is not (Lemma 5.3).

Let L be a �nite set. For a recoloring g : L → L, we denote by ρg the operation that
renames every color i ∈ L into the color g(i) ∈ L.

Remark 5.1 Let L be a �nite set of colors. Every operation ρg for a bijection of g : L→ L can
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be eliminated because of the rules:

ρg(G⊕H) = ρg(G)⊕ ρg(H),
ρg(αi,j(G)) = αg(i),g(j)(ρg(G)),

ρg(ρi→j(G)) = ρg(i)→g(j)(ρg(G)),

ρg(i) = j if j = g(i).

Lemma 5.3 Let L be a �nite set of colors. If g : L → L is not a bijection, then ρg is
equivalent to a composition of operations ρi→j , i, j ∈ L.

Proof. By induction on the cardinality |L| of L. For |L| = 1, the statement is trivially true
since the only mapping g : L→ L is a bijection.

Let |L| ≥ 2. Let R = {g(i) | i ∈ L} ⊂ L denote the range of g. Since g is not a bijection, R
is a proper subset of L. Let a ∈ L − R, L′ = L − {a}, and let g′ be the restriction of g to
L′. By construction, the range of g′ is contained in L′, so we may consider g′ as a function
g : L′ → L′. We have two cases:

CASE 1. g′ is not a bijection. Then by induction, ρg′ can be expressed as a composition of
operations ρi→j for i, j ∈ L′. It is easy to see that by extending such a composition with
the operation ρa→g(a), we obtain a composition of operations of the form ρi→j de�ning ρg for
i, j ∈ L.

CASE 2. g′ is a bijection. Consider the directed graph G with the vertex set L′, where there
is an arc from i to j if and only if j = g′(i) (if g′(i) = i we introduce a loop from i to i).
Clearly, every vertex in G is of out-degree 1. Moreover, since g′ is a bijection, every vertex in
G is of in-degree 1. It follows that the graph G is the disjoint union of cycles C1, . . . , Cp of
length 1 or more for some p ≥ 1. Let C ∈ {C1, . . . , Cp} and write C = (x1, . . . , xr). We can
represent the part πC of g′ given by C (that is, x2 = g′(x1), . . . , xr = g′(xr−1), x1 = g′(xr)) as
a composition of operations of the form ρi→j as follows:

πC = ρa→x1 ◦ ρx1→x2 ◦ · · · ◦ ρxr−1→xr ◦ ρxr→a.

Finally, using the fact that di�erent πCi 's are independent of each other (except of the use of
the auxiliary variable a), we can express ρg as a composition of operations of the form ρi→j ,
as follows:

πCp ◦ · · · ◦ πC1 ◦ ρa→g(a).

This completes CASE 2 and with it the proof of the lemma.

Proof of Proposition 5.1. Let G be a directed graph.

1. We �rst prove that, if cwd(G) ≤ k, then G is the value of a term in T (U ([2])
k , C

GF (2)
k ).

By Lemma 5.2, if cwd(G) = k, then G is the value of a term t in T (F d
k , C

c
k). Let
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Ω : [k] → GF (2)k where Ω(i) = (0, · · · , 0, 1, 0, · · · , 0) with 1 at i-th position. We use

the following rules to transform t into t̂ in T (U ([2])
k , C

GF (2)
k ):

t̂ =

{
u if t = i and Ω(i) = u,

t̂1 ⊗M,M ′,N,P t̂2 if t = t1 ⊗R,R′,g,h t2.

where M,M ′, N and P are (k × k)-matrices over GF (2) with

N j
i = 1 if and only if j = g(i),

P j
i = 1 if and only if j = h(i),

M j
i = 1 if and only if (i, j) ∈ R and

(M ′)j
i = 1 if and only if (i, j) ∈ R′.

It is straightforward to verify that Ω(i) ·N = Ω(g(i)), Ω(i) ·P = Ω(h(i)) and that (i, j) ∈
R if and only if Ω(i) ·M · Ω(j)T = 1 and (i, j) ∈ R′ if and only if Ω(i) ·M ′ · Ω(j)T = 1.

We now prove that, if G = val(t) where t ∈ T (U ([2])
k , C

GF (2)
k ), then cwd(G) ≤ 2k+1 − 1.

We let β : GF (2)k → [2k] be a bijective function that enumerates GF (2)k. We use the
following rules to transform t into t̂, a clique-width expression of width at most 2k+1−1
(for S ⊆ [k]× [k], we let αS be (◦(i,j)∈Sαi,j)):

t̂ =

{
i if i = β(u) and t = u,
ρh(ρg(αR′(αR(t̂1 ⊕ (◦i∈B ρi→i′)(t̂2))))) if t = t1 ⊗M,M ′,N,P t2

where g(β(u)) = β(u ·N), h(β(v)′) = β(v · P ) for all u, v ∈ GF (2)k with

B = β(GF (2)k − {
(
0 · · · 0

)
}),

R = {(β(u), β(v)′) | u ·M · vT = 1},
R′ = {(β(v)′, β(u)) | u ·M ′ · vT = 1}.

The operation ρg is the one constructed by Lemma 5.3 and since ρh renames β(v)′ into
β(v · P ), Lemma 5.3 is not needed to construct ρh.

We verify by induction with Lemma 5.3 and Remark 5.1 that val(t̂) = G and that we use
at most 2k+1−1 colors. We recall that we do not need to rename the color β(

(
0 · · · 0

)
)

into β(
(
0 · · · 0

)
)′ because for all matricesN of appropriate dimension, u·N = u where

u =
(
0 · · · 0

)
.

By Propositions 4.8 and 4.9, we have

1
2
brwd(G) ≤ cwd(G) ≤ 2brwd(G)+1 − 1.

2. The same technique as in [OS06, Proposition 6.3] yields the result. This concludes the
proof.
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5.2 Recognition Algorithms for Directed Graphs

In this section, we will prove that for �xed k, there exists a cubic-time algorithm that given
a directed graph G either outputs that it has bi-rank-width larger than k or outputs a layout
of branch-width k of ρ(bi)

G . We also prove that if F is a �nite �eld and σ : F → F is an
automorphism, then there exists a cubic-time algorithm that, given a graph over (F, σ), either
outputs that it has F -rank-width larger than k or outputs a layout of the function ρF

G of
branch-width at most k. We can then derive an approximation cubic-time algorithm for
clique-width of directed graphs.

Let f : 2V → Z be a symmetric function. Oum and Hliněný [HO07] de�ned the notion of
branch-width of a partition of V . Let P be a partition of V . For every subset Z of P, we let
fP(Z) = f(

⋃
Y ∈Z Y ). The function fP is symmetric, and sub-modular if f is sub-modular

[HO07]. We can then de�ne the branch-width of P as the branch-width of fP and a layout
of P as a layout of fP . We will use this notion in order to give the recognition algorithms of
directed graphs of bi-rank-width and GF (4)-rank-width at most k.

5.2.1 Recognizing Graphs of Bounded Bi-Rank-Width

Bi-rank-width is de�ned by using a coding of directed graphs by two undirected graphs. A
�naive idea�, which �nally is the good one, consists in using a similar coding for recognizing the
directed graphs of bi-rank-width at most k. For that purposes, we will use an idea from [HO07]
which consists in duplicating each vertex x of G into (x, 1) and (x, 2) and then constructing
an undirected bipartite graph B(G) such that, if x → y in G, then we have (x, 1) − (y, 2)
in B(G) and no more edges. Now, if we want to use recognition algorithms for undirected
graphs of rank-width k, we have to show that rwd(B(G)) = f(brwd(G)) for some function f
and show how to transform an optimal layout of the function ρB(G) into an optimal layout of

the function ρ(bi)
G . However, we were not able to prove such a statement. To overcome this

di�culty, we borrow another idea from [HO07] that consists in de�ning the branch-width of
the partition {(x, 1), (x, 2) | x ∈ VG} of VB(G). We will �rst show that, for every subset X of

VG, we have ρB(G)(X ×{1, 2}) = ρ
(bi)
G (X). As a consequence, if we can �nd a layout (T,L) of

ρB(G) such that, for every x in VG, we have a node v in T that is adjacent to both L((x, 1))

and L((x, 2)), we can transform it into a layout, of same branch-width, of ρ(bi)
G . The di�culty

is now to �nd such a layout that witnesses the branch-width of ρ(bi)
G , which fortunately exists

by using some results from [HO07]. We now make precise these constructions.

For each directed graph G, we let B(G) be the simple undirected bipartite graph associated
with G where:

VB(G) = VG × {1, 2},
EB(G) = {{(v, 1), (w, 2)} | (v, w) ∈ EG} ∪ {{(v, 1), (v, 2)} | v ∈ VG} .

Figure 16 shows a directed graph G and the corresponding undirected bipartite graph
B(G).

Lemma 5.4 Let G be a directed graph. For every subset X of VG, we have

ρB(G)(X × {1, 2}) = ρ
(bi)
G (X).
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G
t z

x y

(x, 2) (y, 2) (z, 2) (t, 2)

B(G)

(z, 1)(x, 1) (y, 1) (t, 1)

Figure 16: A directed graph G and its corresponding undirected bipartite graph B(G).

Proof. From the de�nition of B(G), we have

ρB(G)(X × {1, 2}) = rk
(
(AB(G))

X×{1,2}
X×{1,2}

)
= rk

(
(AB(G))

X×{2}
X×{1}

)
+ rk

(
(AB(G))

X×{1}
X×{2}

)
= rk

(
(A+

G)X
X

)
+ rk

(
(A−G)X

X

)
.

We thus conclude that ρB(G)(X × {1, 2}) = ρ
(bi)
G (X).

Let us discuss some consequences of the lemma above. For each x ∈ VG, we let Px =
{(x, 1), (x, 2)}. We let Π(G) = {Px | x ∈ VG}. It is worth noticing that Π(G) is a perfect

matching. Lemma 5.4 implies that, for every subset Y of Π(G), we have ρΠ(G)
B(G)(Y ) = ρ

(bi)
G (X)

where Y = X × {1, 2}. The following is an analogous of the one in [HO07, Corollary 7.2].

Corollary 5.1 Let p : VG → Π(G) be the bijective function such that p(x) = Px. If (T,L)
is a layout of branch-width k of ρΠ(G)

B(G), then (T,L ◦ p) is a layout of branch-width k of ρ(bi)
G .

Conversely if (T,L) is a layout of branch-width k of ρ(bi)
G , then (T,L ◦ p−1) is a layout of

branch-width k of ρΠ(G)
B(G).

We now recall a useful result from Hliněný and Oum [HO07].

Lemma 5.5 ([HO07]) Let k be a �xed interger. Let G be a graph with n vertices such that

ρ
Π(G)
B(G) = k. Then one can construct in O(n3)-time a layout of branch-width at most k of ρΠ(G)

B(G).

We can give the recognition algorithm for bi-rank-width for �xed k.

Theorem 5.1 (Checking Bi-Rank-Width at most k) For �xed k, there exists a cubic-
time algorithm that for a directed graph G, either outputs a layout of branch-width at most k
of ρ(bi)

G or con�rms that the bi-rank-width of G is larger than k.

Proof. Let G be a directed graph with n vertices. We can construct B(G) in O(n2)-time. We
apply the algorithm of Lemma 5.5 with input (Π(G), k). If it con�rms that the branch-width

of ρΠ(G)
B(G) is greater than k, then brwd(G) > k (Lemma 5.4). If it outputs a layout of ρΠ(G)

B(G) of
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branch-width at most k, we can transform it into a layout of ρ(bi)
G of branch-width at most k

in O(n)-time by Corollary 5.1.

Corollary 5.2 For �xed k, there exists a cubic-time approximation algorithm that, for a di-
rected graph G, either outputs a clique-width expression of width at most 22k+1−1 or con�rms
that the clique-width of G is larger than k.

Proof. Let G be a directed graph with n vertices. We run the algorithm of Proposition 5.1
with input G and 2k. If it con�rms that brwd(G) > 2k, then cwd(G) > k. If it outputs a

layout of ρ(bi)
G of branch-width at most 2k, we can transform it into a clique-width expression

of width at most 22k+1 − 1 by Proposition 4.8, 4.9 and 5.1 in O(n2)-time.

5.2.2 Recognizing Graphs of Bounded F -Rank-Width

Let F be a �nite �eld and let σ : F → F be an automorphism. We now give, for �xed k, a
recognition algorithm for graphs over (F, σ) of F -rank-width at most k (c.f. Chapter 4 for the
de�nition of F -rank-width). Before, let us recall some useful concepts borrowed from Oum
and Hliněný [HO07] that help them to give a cubic-time algorithm for recognizing undirected
graphs of rank-width at most k (Theorem 1.2). We refer to Schrijver [Sch03] for our matroid
terminology.

De�nition 5.3 (Matroids) A pair M = (S, I) is called a matroid if S is a �nite set and I is
a nonempty collection of subsets of S satisfying the following conditions

(M1) if I ∈ I and J ⊆ I, then J ∈ I,

(M2) if I, J ∈ I and |I| < |J |, then I ∪ {z} ∈ I for some z ∈ J − I.

For U ⊆ S, a subset B of U is called a base of U if B is an inclusionwise maximal subset of U
and belongs to I. It is easy to see that, if B1 and B2 are bases of U ⊆ S, then B1 and B2 have
the same size. The common size of the bases of a subset U of S is called the rank of U , denoted
by rM (U). A set B ⊆ S is a base of M if it is a base of S.

Let A be an (m×n)-matrix. Let S = {1, . . . , n} and let I be the collection of all those subsets
I of S such that the columns of A with index in I are linearly independent. Then M = (S, I) is
a matroid. If A has entries in a �eld F , then M is said representable over F and A is called a
representation of M .

We now de�ne the branch-width of matroids. Let M = (S, I) be a matroid. We let λM be
de�ned such that for every subset U of S, λM (U) = rM (U)+ rM (S−U)− rM (S)+1 and call it
the connectivity function of M . The function λM is symmetric and sub-modular [Sch03, HO07].
The branch-width of M , denoted by bwd(M), is the branch-width of λM and a layout of M is a
layout of λM .

De�nition 5.4 (Partitioned Matroids [HO07]) A pair (M,P) is called a partitioned ma-

troid if M = (S, I) is a matroid and P is a partition of S. A partitioned matroid (M,P) is
representable over F if M is representable over F . For a matroid M = (S, I) and a partition P
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of S, we let λPM be the connectivity function of the partitioned matroid (M,P), i.e., for every
Z ⊆ P, we have λPM (Z) = λM (

⋃
Y ∈Z Y ). The branch-width of (M,P), denoted by bwd(M,P),

is the branch-width of λPM and a layout of (M,P) is a layout of λPM .

We now recall the following by Hliněný and Oum.

Theorem 5.2 ([HO07]) Let k be �xed and F be a �xed �nite �eld. Then there exists an
O(n3)-time algorithm that takes as input a representable matroid M = (S, I) over F given
with its representation and a partition P of S, |S| = n, and outputs a layout of branch-width
at most k of λPM , or con�rms that the branch-width of (M,P) is strictly greater than k.

We can now derive our algorithm from Theorem 5.2. For a set X, we let X ′ be a copy of
it de�ned as {x′ | x ∈ X}. Let G be a graph over (F, σ) and let FG be its adjacency matrix
over F . Let Bin(G) be the matroid on VG ∪ V ′

G represented by the (VG, VG ∪ V ′
G)-matrix

VG V ′
G

VG

(
I|VG| FG

).
For each x ∈ V , we let Px = {x, x′} and we let Π(G) = {Px | x ∈ VG}. We now prove the

following which is a counterpart of [Oum05b, Proposition 3.1].

Proposition 5.2 Let G be a graph over (F, σ) and let M = Bin(G). Then for every X ⊆
VG, λ

Π(G)
M (P ) = 2 · ρF

G(X) + 1 where P = {Px | x ∈ X}.

Proof. For X ⊆ V and P = {Px | x ∈ X}, we have

λ
Π(G)
M (P ) = rM(X ∪X ′) + rM(VG −X ∪ (VG −X)′)− rM(VG ∪ V ′

G) + 1

= rk

(
0 (FG)X

VG−X

I|X| (FG)X
X

)
+ rk

(
0 (FG)VG−X

X

I|VG|−|X| (FG)VG−X
VG−X

)
− |VG|+ 1

= |X|+ rk((FG)X
VG−X) + |VG −X|+ rk((FG)VG−X

X − |VG|+ 1

= 2 · ρF
G(X) + 1.

As a corollary we get the following.

Corollary 5.3 Let G be a graph over (F, σ). Let M = Bin(G) and let p : VG → Π(G)
be the bijective function such that p(x) = Px. If (T,L) is a layout of λΠ(G)

M of branch-width
2k+ 1, then (T,L◦ p) is a layout of ρF

G of branch-width k. Conversely, if (T,L) is a layout of

branch-width k of ρF
G, then (T,L ◦ p−1) is a layout of branch-width 2k + 1 of λΠ(G)

M .

We can now deduce for �xed k, a recognition algorithm for graphs of F -rank-width at
most k, and in particular for directed graphs of GF (4)-rank-width at most k.

Theorem 5.3 (Checking F -Rank-Width at most k) For �xed k, there exists a cubic-
time algorithm that, for a graph G over (F, σ), either outputs a layout of ρF

G of branch-width
at most k or con�rms that the F -rank-width of G is larger than k.



5.3. Conclusion 83

Proof. Let G be a directed graph with n vertices. We run the algorithm of Theorem
5.2 with input M = (Bin(G),Π(G)) and 2k + 1 (Proposition 5.2). If it con�rms that
bwd(Bin(G),Π(G)) > k, then the F -rank-width of G is greater than k. If it outputs a

layout of λΠ(G)
M of branch-width at most 2k + 1, we can transform it into a layout of ρF

G of
branch-width at most k by Corollary 5.3.

Corollary 5.4 For �xed k, there exists a cubic-time algorithm that, for a graph G over (F, σ),
either outputs a term in T (RF

2k, C
F
2k) that generates G or con�rms that the F -rank-width of G

is larger than k.

We have seen in Proposition 4.6 that if a graph over (F, σ) is the value of a term t in
T (BF

k , C
F
k ), then it is the value of a term in T (RF

qk , C
F
qk) where q is the number of elements

in F . Then with Corollary 5.4, for every graph G over (F, σ) that is the value of a term in
T (BF

k , C
F
k ), we can construct in cubic-time a term in T (BF

2·qk , C
F
2·qk) for it.

5.3 Conclusion

Courcelle in [Cou06a] shows how to encode directed graphs by undirected graphs by using
MS-de�nition schemes and in both directions. This gives by using [HO07] approximation
algorithms for the bi-rank-width of directed graphs. Here, we avoid such encodings and we
get, by adapting the proof of Hliněný and Oum an exact algorithm. It is important not
only to check that the rank-width of a graph is at most k, but also to produce an associated
decomposition (here a layout). If after that, one wishes to check an MS-de�nable property
by the methods explained in [CMR00, Mak04], based on �nite automaton on terms, where
automaton are built from MS formulas, he can use graph operations that handle graphs of
rank-width k. The construction of such automaton is outside the scope of the present work.

We have seen that for �xed k, there exist algorithms that decide if a directed graph has
bi-rank-width (resp. GF (4)-rank-width) at most k and if so outputs a layout of branch-width

k of ρ(bi)
G (resp. ρGF (4)

G ). However these algorithms are deeply based on the results of Oum and
Hliněný, especially on Theorem 5.2, which is not really implementable. It is thus a challenge
to �nd implementable algorithms for bi-rank-width as well as GF (4)-rank-width. It is also a
challenge, for �xed k, to �nd a polynomial-time algorithm that, given a graph, either outputs
that it has clique-width larger than k, or outputs a clique-width expression that uses at most
k colors.
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Chapter 6

Balanced Graph Expressions

For algorithmic purposes, it is useful and sometimes crucial to have for given graphs tree-
structurings based on trees of logarithmic height hence, in our case to have a-balanced binary
terms, i.e, with syntactic trees of height at most a(log(n)+1) where n is the number of nodes
and a is a constant. For instance, the labeling schemes of [CV03, CT07] are de�ned as follows
and use such notion.

• Given a binary term t that represents a graph G (the leaves of the term are in bijection
with the vertices of G), we run an automaton on G hence, each node of t is assigned a
state of the automaton.

• Each vertex x of G is assigned a label that is, roughly, a sequence of states met on the
unique path from the root of t to the leaf of t that represents the vertex x.

Then in order to have labels of size O(log(|VG|) in the labeling schemes considered in [CV03,
CT07], it is important that the given term has logarithmic height.

Another practical use of balanced terms is the design of parallel algorithms. This is done
for instance by Bodlaender for the design of parallel algorithms in order to construct minimum-
width tree-decompositions of graphs or to solve some NP-complete problems [Bod88, BH98].
Balanced terms play also an important role in succinct representations of graphs, particularly
succinct representations of graphs by Boolean functions as considered in [MR06, NW05]1.
Bodlaender [Bod88] proved that every graph of tree-width k admits a 2-balanced binary tree-
decomposition of width at most 3k + 2. Courcelle and Twigg [CT07] proved that every
graph of m-clique-width k admits a 6-balanced m-clique-width expression of width at most
2k. However, the proofs of Bodlaender and Courcelle et al. used the same ideas. We give
a unifying framework that covers several particular cases. In particular, we prove that every
undirected graph of rank-width k admits a 3-balanced layout witnessing rank-width.

1As in [CV03, CT07] these labelings are de�ned as sequences of values met on the unique path from the
root to a leaf, or more precisely at distance 1 of the nodes of this path.
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6.1 General Framework

The notions of many-sorted algebras are presented in [Cou96, Wec92, Wir]. We present here
the needed de�nitions. We recall the notions of binary signature for the purposes of this
chapter.

Let S be a countable set whose elements are called sorts. A binary S-signature is a pair
(F,C) where F is a set of binary function symbols, each of them having a type s1 × s2 → s
where s1, s2, s ∈ S, and C is a set of nullary symbols, each of them having a type s in S. A
nullary symbol is called a constant. We say that a binary T -signature (F,C) is a sub-signature
of a binary S-signature (F ′, C ′) if T ⊆ S, F ⊆ F ′, C ⊆ C ′ and the types of the elements
of F and C are the same for (F ′, C ′) and for (F,C). We recall that T (F,C) denotes the set
of �nite well-formed terms written with symbols from F ∪ C (see Chapter 1). We denote by
T (F,C)s the set of �nite well-formed terms of sort s (the sort of a term in T (F,C) is that of
its �rst symbol in pre�x notation). Let χ be a set of S-sorted variables, i.e., each variable x
in χ has a sort s in S. We denote by T (F,C ∪ χ) the set of well-formed terms written with
symbols in F ∪ (C ∪ χ).

Let (F,C) be a binary S-signature. An (F,C)-algebra is an element M =
〈(Ms)s∈S , (fM)f∈F , (bM)c∈C 〉, where for each s in S,Ms is a nonempty set, called the domain
of sort s ofM, for each f ∈ F of type s1× s2 → s, fM : Ms1 ×Ms2 →Ms is a total mapping
and for each b ∈ C of type s, bM is a constant of sort s, i.e., is a member of Ms.

De�nition 6.1 (Height of a Term) Let (F,C) be a binary S-signature for some countable set
of sorts S. For every term t in T (F,C) we let ht(t), called the height of t, be de�ned inductively
as follows:

ht(t) =

{
1 if t = c ∈ C
1 + max{ht(t1), ht(t2)} if t = f(t1, t2)

Let a be a positive real number. A term t in T (F,C) is a-balanced if ht(t) = a · log(|t|+ 1).

The de�nition of a balanced term is meaningful in the case |t| = 1. All logarithms are in
base 2.

De�nition 6.2 (Equivalence of Terms) Let (F,C) be a binary S-signature for some count-
able set of sorts S and let C be a class of (F,C)-algebras. Two terms t and t′ in T (F,C) are
equivalent with respect to C if, for every (F,C)-algebraM in C , we have valM(t) = valM(t′).
We denote by 'C the equivalence of terms with respect to the class of (F,C)-algebras C . We
omit the subscript C when C is implicitly assumed.

We can now introduce some de�nitions and basic properties before stating and proving
the main theorem of this chapter. See De�nition 1.1 for the de�nition of contexts. We �rst
de�ne the notion of special terms introduced by Courcelle and Vanicat in [CV03].

De�nition 6.3 (Special Terms) Let (F,C) be a binary S-signature for some countable set of
sorts S and let S be the set T (F ∪ {◦, •}, C ∪ {Id}). We let Sc and St be the least subsets of S
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such that:

St = Sc • St ∪ f(St, St) ∪ b,

Sc = Sc ◦ Sc ∪ f(St, Sc) ∪ f(Sc, St) ∪ f(St, Id) ∪ f(Id, St)

with rules for each f in F and each b in C. We denote them by SPEt(F,C) and SPEc(F,C) if
we need to specify F and C. Note that Id /∈ St ∪ Sc.

The notions of context and the operations ◦ and • extend clearly in presence of sorts. We have
actually several operations ◦, • and several constants Id depending on sorts, but we will overlook
this technical point.

For every term c ∈ SPEt(F,C) ∪ SPEc(F,C), we let Eval(c) be de�ned inductively as
follows:

Eval(c) =



b ∈ C if c = b,

f(Eval(t1), Eval(t2)) ∈ T (F,C) if t = f(t1, t2) and t1, t2 ∈ St,

Eval(c1) • Eval(t) ∈ T (F,C) if c = c1 • t and c1 ∈ SC , t ∈ St,

f(u,Eval(t)) ∈ Cxt(F,C) if c = f(Id, t) and t ∈ St,

f(Eval(t), u) ∈ Cxt(F,C) if c = f(t, Id) and t ∈ St,

f(Eval(c1), Eval(t)) ∈ Cxt(F,C) if c = f(c1, t) and c1 ∈ Sc, t ∈ St

f(Eval(t), Eval(c1)) ∈ Cxt(F,C) if c = f(t, c1) and c1 ∈ Sc, t ∈ St,

Eval(c1) ◦ Eval(c2) ∈ Cxt(F,C) if c = c1 ◦ c2 and c1, c2 ∈ Sc.

We can now de�ne what we mean by commutativity of a function in a binary S-signature.

De�nition 6.4 (Commutativity) Let S be a countable set of sorts. A binary S-signature
(F,C) is commutative with respect to a class of (F,C)-algebras C (that will be implicitly assumed
in most cases) if for every f ∈ F of type s1 × s2 → s, there exists a function f̃ in F of type
s2 × s1 → s such that:

f̃M(x, y) = fM(y, x) (1)

for allM ∈ C , all x ∈ Ms1 and all y ∈ Ms2 . If a binary S-signature is not commutative, we let
F ′ ⊆ F be the set of functions f for which we do not have f̃ satisfying (1), then we can enrich F
into F̂ = F ∪ {f̂ | f ∈ F ′} and de�ne

f̂M(x, y) = fM(y, x) if f ∈ F ′.

It is clear that F̂ is commutative with respect to the considered class C . It is �nite if F is, and
the set of sorts is the same.

The commutativity of the binary operations of the signature plays a signi�cant role in our
framework. Commutative binary operations allow us to rearrange terms. We now de�ne a
decomposition of terms using the notion of comb-term and the commutativity property.

De�nition 6.5 (Comb-Term) Let (F,C) be a binary S-signature for some countable set of
sorts S and let χ be an S-sorted set of variables. A comb-term is a term in T (F,C ∪ χ) of the
form

q = f1(x1, f2(x2, . . . , fn(xn, xn+1)) . . .)
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where x1, . . . , xn+1 are in χ. It contains no constant. We denote it also by q(x1, . . . , xn, xn+1) in
order to specify the list of variables and the order in which they occur.

De�nition 6.6 (Comb-Decomposition) Let (F,C) be a binary S-signature for some count-
able set of sorts S and let χ be an S-sorted set of variables. The comb-decomposition of a term
t ∈ T (F,C)−C is the unique writing of t as q(t1, . . . , tn, b) where q(x1, . . . , xn+1) is a comb-term,
b ∈ C and for each i in [n], the term ti is in T (F,C).

We now de�ne a notion of comb-decomposition for contexts in SPEc(F,C) and it makes
sense only if F is commutative. For every c ∈ Cxt(F,C)− {Id}, we de�ne Comb(c) and seq(c)
inductively as follows:

(CS1) Comb(c) = f(x1, u) and seq(c) = (t) if c = f(t, Id).

(CS2) Comb(c) = Comb(c′) and seq(c) = seq(c′) if c = f(c1, t) and c′ = f̃(t, c1).

(CS3) Comb(c) = f(x1, q(x2, . . . , xn+1, u)) and seq(c) = (t) · seq(c′) if c = f(t, c1), c1 6= Id and
Comb(c′) = q(x1, . . . , xn, u).

(CS4) Comb(c) = q′(x1, . . . , xp, q
′′(xp+1, . . . , xn+p, u)) and seq(c) = seq(c′) · seq(c′′) if c =

c′ ◦ c′′ (so that c′ 6= Id, c′′ 6= Id), Comb(c′) = q′(x1, . . . , xp, u) and Comb(c′′) =
q′′(x1, . . . , xn, u).

Example We let c = f(g(u, a), h(b, d)). Then c ' f̃(h(b, d), g̃(a, u)) and Comb(c) =
f̃(x1, g̃(x2, u)), seq(c) = (h(b, d), a).

We now give easy properties for Comb(c) and seq(c).

Fact 6.1 If Comb(c) = q(x1, . . . , xn, u) and seq(c) = (t1, . . . , tn) then

c ' q(t1, . . . , tn, u).
Eval(c) ' q(Eval(t1), . . . , Eval(tn), u).

Proof. By induction on the structure of c.

In the following, we will extend the equivalence relation ' by letting

Eval(t) ' t and Eval(c) ' c

for terms in SPEt(F,C) ∪ SPEc(F,C). The notion of �exibility, which is de�ned below,
generalizes the notion of associativity.

De�nition 6.7 (Flexibility) Let S be a countable set of sorts and let χ be an S-sorted set
of variables. We let (F ′, C ′) and (F,C) be two binary S-signatures such that (F,C) ⊆ (F ′, C ′)
and we let C be a set of (F ′, C ′)-algebras. We say that (F ′, C ′) is (F,C)-�exible if the following
conditions hold:

(F1) F and F ′ are commutative.
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(F2) There exist three mappings: q 7→ q̂, q 7→ f q and (q, q′) 7→ f q,q′ which satisfy the following
properties:

(F2.1) If q(x1, u) is the comb-term g(x1, u), then q̂ = x1 and f q = g.

(F2.2) For every comb-term q(x1, . . . , xn, u) in T (F,C ∪ χ) with n ≥ 2, q̂(x1, . . . , xn) is a
comb-term in T (F ′, C ∪ χ), f q ∈ F ′ and q 'C f q(q̂, u).

(F2.3) For every two comb-terms q(x1, . . . , xp, u) and q′(x1, . . . , xn, u) in T (F,C ∪ χ), we
have f q,q′ ∈ F ′ and

q̂′′ 'C f q,q′(q̂(x1, . . . , xp), q̂′(xp+1, . . . , xp+n))

where q′′ = q(x1, . . . , xp, q
′(xp+1, . . . , xp+n, u)).

Remark 6.1 1. If q = g(x1, u) is a comb-term, then Property (F2.2) also holds from the
de�nitions of q̂ and f q.

2. If F = {f} and f is associative and commutative (with respect to C ), then (F,C) is (F,C)-
�exible. It is clear that every term t in T (F,C) is equivalent to a term t̃ in T (F,C) of height
dlog(|t|+1)e. The notion of �exibility generalizes this condition and will give a similar result.

Our objective is to prove the following.

Theorem 6.1 (Balanced Terms) Let (F ′, C ′) be an (F,C)-�exible binary S-signature for
some countable set of sorts S. Every term t in T (F,C) of size n is equivalent to a 3-balanced
term t′ in T (F ′, C ′). Moreover, this term can be constructed in O(n·log(n))-time, if we assume
that q̂, f q, f q,q′ can be constructed in O(|q|)-time.

The proof of this theorem consists in transforming a term in T (F,C) into a 3-balanced
term in SPEt(F,C). Then we transform the obtained term in SPEt(F,C) into a term in
T (F ′, C ′) of same height by replacing each binary operation ◦ or • by a binary operation in
F ′. The use of • and of ◦ is from [CV03]. The notion of �exibility is new.

For terms t in SPEt(F,C)∪SPEc(F,C) we denote by |t|FC the number of occurrences of
symbols from F ∪ C, by |t|0 the number of occurrences of ◦ and •, and, by |t|Id the number
of occurrences of Id. It is clear from the recursive equations de�ning special terms that:

|t| = |t|FC + |t|0 + |t|Id if t ∈ SPEt(F,C) ∪ SPEc(F,C),
|t|Id = |t|0 if t ∈ SPEt(F,C),
|c|Id = |c|0 + 1 if c ∈ SPEc(F,C).

The following is proved in [CV03]. Since F is a set of binary functions, each term in T (F,C)
has odd size.

Proposition 6.1 [CV03, Lemmas 1 and 2] Let (F,C) be a binary S-signature for some count-
able set of sorts S.

1. Every term t ∈ T (F,C) of size n = 2p + 1, for p ≥ 1, can be written t = c1 • f(t1, t2)
where:
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1.1 c1 ∈ Cxt(F,C) with |c1| ≤ p and is of maximal size with this property.

1.2 ti ∈ T (F,C) with |ti| ≤ p+ 1 for each i = 1, 2.

2. Every context c ∈ Cxt(F,C) of size n = 2p+1, for p ≥ 1, can be written c = c1◦f(c2, t1)
or c = c1 ◦ f(t1, c2) where:

2.1 c1, c2 ∈ Cxt(F,C) with |c1| ≤ p is of maximal size with this property and then
|c2| ≤ p+ 1.

2.2 t1 ∈ T (F,C) with |t1| ≤ 2p− 1.

Remark 6.2 Let t = f(s1, s2), p = (|s1|+ |s2|)/2. If |s1| − 2 ≤ |s2| ≤ |s1|+ 2, then in case (1)

of the proposition we must take c1 = u. If |s1| = |s2|+ 2, then the �larger context� c′1 = f(u, s2)
has size 2 + |s2| ≥ p+ 1 since p+ 1 = (|s1|+ |s2|)/2 + 1 = |s2|+ 2, hence c1 is of maximal size
≤ p. If |s1| = |s2| or if |s2| = |s1|+ 2 the same argument works.

Similarly if c = f(c′, s2) and |c′| ≤ |s2| + 2 (in particular if c′ = u) we must take c1 = u
to satisfy (2). Taking the �larger context� c′1 = f(u, s2) would necessitate |c′1| ≤ p that is
2 + |s2| ≤ (|c′|+ |s2|)/2, i.e., |c′| ≥ |s2|+ 4.

We now show how to transform a term in T (F,C) into a term in SPEt(F,C). A more
careful proof than the one of [CV03, Theorem 1] gives the following result.

Theorem 6.2 Let (F,C) be a binary S-signature for some countable set of sorts S. For every
term t in T (F,C)−C, one can construct a term tb in SPEt(F,C) such that |tb|FC = |t|FC =
|t|, Eval(tb) = t, ht(tb) ≤ 3 · log(|t| − 1) and |tb| ≤ 2 · |t| − 1. This term can be constructed in
O(|t| · log(|t|))-time.

Proof. We construct tb by induction on the structure of t ∈ T (F,C). For that purpose,
we will simultaneously construct for c ∈ Cxt(F,C), a context cb in SPEc(F,C) such that
Eval(cb) = c, |cb|FC = |c|FC , ht(cb) ≤ 3 log(|c| − 1) + 2 and |cb| ≤ 2 · |c| − 1. Note that
|c| = |c|FC + 1.

CASE 1. t ∈ T (F,C) and have size |t| = 2p+ 1.

CASE 1.1. If |t| = 3, then we let tb = t. It is clear that ht(tb) = 2 < 3 log(|t| − 1) and
|tb| = |t| ≤ 2 · |t| − 1.

CASE 1.2. If |t| = 2p+ 1 > 3. Then we use Proposition 6.1 and we write t = c1 • f(t1, t2).

CASE 1.2.1. c1 = u. This means that
∣∣∣|t1| − |t2|∣∣∣ ≤ 2. Assume on the contrary that

|t1| ≥ |t2|+ 4, then |f(u, t2)| = 2 + |t2| ≤ p = (|t1|+ |t2|)/2 and c1 is not of maximal size
such that (1.1) of Proposition 6.1 holds, because it can be replaced by a �larger context�,
e.g., f(u, t2). It is clear now that |p1 − p2| ≤ 1 where |ti| = 2pi − 1 for i = 1, 2. We can
then deduce for i = 1, 2 that 2pi ≤ |t| − 1. We let tb = f(tb1, t

b
2). We �rst prove that

ht(tb) ≤ 3 log(|t| − 1).
If we assume for i = 1, 2 that ti /∈ C, then we have by inductive hypothesis:

1 + ht(tbi) ≤ 1 + 3 log(2pi)
≤ 1 + 3 log((|t| − 1)/2)
= −2 + 3 log(|t| − 1) < 3 log(|t| − 1).
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And since ht(tb) = max{1 + ht(tb1), 1 + ht(tb2)}, we have ht(tb) < 3 log(|t| − 1). We now
prove that |tb| ≤ |t| − 1.

|tb| = |tb1|+ |tb2|+ 1
≤ 2|t1| − 1 + 2|t2| − 1 + 1
≤ 2(|t1|+ |t2|)− 1 < 2 · |t| − 1.

The particular case |t1| = 1 implies |t2| = 3, |t| = 5 and tb = t. Then ht(t) = 3 < 3 log(4) =
6.

CASE 1.2.2. c1 6= u. We have |c1| ≤ p, |ti| ≤ p + 1. We let tb = cb1 • f(tb1, t
b
2). We must

prove that:

1 + ht(cb1) ≤ 3 log(2p)

2 + ht(tbi) ≤ 3 log(2p) for i = 1, 2

By inductive hypothesis we have:

1 + ht(cb1) ≤ 1 + 3 log(p− 1) + 2 ≤ 3 log(p) + 3 = 3 log(2p)

2 + ht(tbi) ≤ 2 + 3 log(p) < 3 log(2p) for i = 1, 2.

We now prove that |tb| ≤ 2|t| − 1. We have:

|tb| = |cb1|+ |tb1|+ tb2|+ 2
≤ 2|c1| − 1|+ 2|t1| − 1 + 2|t2| − 1 + 2 (by inductive |hypothesis)

≤ 2(|c1|+ |t1|+ |t2|)− 1 = |2 · |t| − 1.

CASE 2. We now consider the case of c ∈ Cxt(F,C) of size n = 2p+ 1.

CASE 2.1. If n = 3, then we let cb = c and the result holds, as above for CASE 1.1.

CASE 2.2. Next we consider the case |c| = 2p + 1 > 3. By Proposition 6.1, we have
c = c1 ◦ f(c2, t1) or c = c1 ◦ f(t1, c2) with c1 of maximal size, |c1| ≤ p. We only consider the
�rst case (by symmetry).

CASE 2.2.1. c1 = u. This means that c = f(c2, t1), |c2| ≤ |t1|+2, because, if |c2| ≥ |t1|+4,
then c1 = u could be replaced by a �larger context�, e.g., f(u, t1). We take cb = f(cb2, t

b
1).

We have |c2| = 2p2 + 1, |t1| = 2p1 + 1, p2 ≤ p1 + 1. The proof is similar to CASE 1.2.1.
We must prove that:

1 + ht(tb1) ≤ 3 log(2p) + 2,

1 + ht(cb2) ≤ 3 log(2p) + 2.

We have by inductive hypothesis that

1 + ht(tb1) ≤ 1 + 3 log(|t1| − 1) ≤ 1 + 3 log(|c| − 1) < 3 log(|c| − 1) + 2.

We also have that 1 + ht(cb2) ≤ 1 + 3 log(2p2) + 2. Since 4p2 ≤ 2p2 + 2(p1 + 1) = |c| − 1,
then

1 + ht(cb2) ≤ 3 + 3 log((|c| − 1)/2) = 3 log(|c| − 1) < 3 log(|c| − 1) + 2.



92 Chapter 6. Balanced Graph Expressions

We now prove that |cb| ≤ 2 · |c| − 1.

|cb| = |cb2|+ |tb1|+ 1 by de�nition,

≤ 2|c2| − 1 + 2|t1| − 1 + 1 by inductive hypothesis,

≤ 2(|c2|+ |t1|)− 1 < 2 · |c| − 1.

CASE 2.2.2. c1 6= u. Then we let cb = cb1 ◦ f(cb2, t
b
1). We have |c1| ≤ p, |c2| ≤ p + 1 and

|t1| ≤ 2p− 1. We must prove that

1 + ht(cb1) ≤ 3 log(2p) + 2,

2 + ht(cb2) ≤ 3 log(2p) + 2,

2 + ht(tb1) ≤ 3 log(2p) + 2.

By using induction we have

1 + ht(cb1) ≤ 1 + 3 log(p− 1) + 2 < 3 + 3 log(p) = 3 log(2p).

And

2 + ht(cb2) ≤ 2 + 3 log(p) + 2 = 3 log(2p) + 1.

And

2 + ht(tb1) ≤ 2 + 3 log(2p− 2) < 3 log(2p) + 2.

For the size of |cb| we have

|cb| = |cb1|+ |cb2|+ |tb1|+ 2
≤ 2|c1| − 1 + 2|c2| − 1 + 2|t1| − 1 + 2
≤ 2(|c1|+ |c2|+ |t1|)− 1 = 2 · |c| − 1.

In all these cases, we get |tb|FC = |t|FC and |cb|FC = |c|FC by induction. We now discuss the
running time of this procedure.

The decomposition of Proposition 6.1 can be found in time O(|t|). Nevertheless, if t is a
context, the application of Proposition 6.1 can give a big sub-term in T (F,C) of size O(a · |t|),
a > 1/2 and the two others of size at most |t|/2. Applying again Proposition 6.1 to the big
sub-term will give three terms of size at most |t|/2. Then we can apply the same algorithm
to at most �ve terms of size at most |t|/2. So, the total time is O(|t| · log(|t|). This completes
the proof.
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We can now state a proposition which shows how to transform a term in SPEt(F,C) into
a term in T (F ′, C ′) when (F ′, C ′) is (F,C)-�exible. The notion of �exibility makes it possible
to eliminate the operations ◦ by using Condition (F2.3) that replaces ◦ by some function f q,q′

in F ′. Similarly for the operations • by using Conditions (F2.1) and (F2.2) which replace •
by some function f q in F ′.

Proposition 6.2 If (F ′, C ′) is (F,C)-�exible, then for every term t in SPEt(F,C), one can
de�ne a term t̃ in T (F ′, C ′) that is equivalent to t and such that |t̃|F ′C′ = |t|FC and ht(t̃) ≤
ht(t). Moreover, t̃ can be constructed in O(|t|)-time.

We will �rst show how to deduce Theorem 6.1 from this proposition and Theorem 6.2.

Proof of Theorem 6.1. Let t be a term in T (F,C) of size n. By using Theorem 6.2, we can
construct in O(n · log(n))-time a term tb ∈ SPEt(F,C) such that Eval(tb) = t, |tb|FC = |t|
and ht(tb) ≤ 3(log(|t|) + 1).

By Proposition 6.2, one can transform tb into t′ = t̃b such that |t′| = |t′|F ′C′ = |tb|FC = |t| and
ht(t′) ≤ ht(tb) ≤ 3 · (log(|t|) + 1). The term t′ has exactly the same size as t, it is equivalent
to t and is 3-balanced. Moreover, the construction can be done in O(n · log(n))-time.

We can now prove Proposition 6.2.

Proof of Proposition 6.2. We de�ne below two mappings:

t 7→ t̃ and c 7→ c̃

where t ∈ SPEt(F,C) and c ∈ SPEc(F,C) such that t̃, c̃ ∈ T (F ′, C ′) and, |t̃|F ′C′ = |t|FC

and |c̃|F ′C′ = |c|FC − 1. We de�ne them simultaneously by structural induction.

For t ∈ SPEt(F,C),

(i) If t = b ∈ C, then we let t̃ = b.

(ii) If t = f(t1, t2) and f ∈ F , then we let t̃ = f(t̃1, t̃2).

(iii) If t = c • t1, then we let t̃ = f q(c̃, t̃1).

For c ∈ SPEc(F,C),

(iv) If c = f(c′, t) where c′ ∈ SPEc(F,C), t ∈ SPEt(F,C) and f ∈ F , then we apply the
following rules to f̃(t, c′)2, and, if c = f(t, c′), directly to c.

(i') If c = f(t, Id), then we let c̃ = t̃.

(ii') If c = f(t, c′) and c′ ∈ SPEc(F,C), then we let c̃ = f q,q′(t̃, c̃′) where q = f(x1, u)
and q′ = Comb(c′).

2f̃ is de�ned by the commutativity condition on F .
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(v) If c = c1 ◦ c2, then we let c̃ = f q1,q2(c̃1, c̃2) where q1 = Comb(c1) and q2 = Comb(c2).

We now prove that t̃ ' t.

Claim 6.1 1. For every term c ∈ SPEc(F,C), if Comb(c) = q(x1, . . . , xn, u) and seq(c) =
(t1, . . . , tn), then we have c̃ ' q̂(t1, . . . , tn).

2. For every term t ∈ SPEt(F,C), we have t̃ ' t.

Proof of Claim 6.1. We use the induction de�ning t̃ and c̃ for proving simultaneously (1)
and (2). Let c ∈ SPEc(F,C). Then

(a) The case of c = f(c′, t) follows by the induction hypothesis and the commutativity of F .

(b) Consider the case c = f(t, Id). Then q = Comb(c) = f(x1, u), f q = f , q̂ = x1 and we
have q̂(t) = t, c̃ = t̃ hence c̃ ' q̂(t) by using (2) and induction.

(c) Consider the case c = f(t, c′), c′ 6= Id. Let q = Comb(c), q′ = Comb(c′). We have
q = f(x1, q

′(x2, x3, . . . , xn+1, u)) where we assume that q′ has variables (x1, . . . , xn, u).
Hence, c̃ = f r,q′(t̃, c̃′) where r = f(x1, u). Using induction, we have t ' t̃ and c̃′ '
q̂′(t2, t3, . . . , tn+1) where seq(c) = (t, t2, . . . , tn+1). By Condition (F2.3) of �exibility, we
have

q̂ ' f r,q′(x1, q̂′(x2, . . . , xn+1)).

Hence,

q̂(t, t2, . . . , tn+1) ' f r,q′(t, q̂′(t2, . . . , tn+1))

' f r,q′(t, c̃′)

' f r,q′(t̃, c̃′)

using the induction (for t ' t̃). This completes the case.

(d) It remains the case c = c1 ◦ c2. We let Comb(ci) = qi, i = 1, 2, seq(c1) =
(t1, . . . , tp), seq(c2) = (tp+1, . . . , tn). Then c̃ = f q1,q2(c̃1, c̃2). By inductive hypoth-
esis, c̃1 ' q̂1(t1, . . . , tp) and c̃2 ' q̂2(tp+1, . . . , tn). We also have Comb(c) = q =
q1(x1, . . . , xp, q2(xp+1, . . . , xn, u)). By Condition (F2.3) of �exibility,

q̂(t1, . . . , tn) ' f q1,q2(q̂1(t1, . . . , tp), q̂2(tp+1, . . . , tn)).

This gives c̃ ' q̂(t1, . . . , tn) as wanted.

Now we consider a term t ∈ SPEt(F,C).

(e) If t ∈ C, then t̃ = t, hence t̃ ' t.
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(f) If t = f(t1, t2), then t̃ = f(t̃1, t̃2) and the desired equivalence follows since ti ' t̃i by
inductive hypothesis.

(g) If t = c • t′, then we have Comb(c) = q(x1, . . . , xn, u), seq(c) = (t1, . . . , tn),
t ' q(t1, . . . , tn, t′) and t̃ = f q(c̃, t̃′) by the de�nitions. By the induc-
tive hypothesis, c̃ ' q̂(t1, . . . , tn) and by Condition (F2.2) of �exibility,
q(t1, . . . , tn, t′) ' f q(q̂(t1, . . . , tn), t′). Hence, t ' t̃ since by the inductive hy-
pothesis t̃′ ' t′. This completes the proof.

The above de�nitions and Claim 6.1 give that t̃ ∈ T (F ′, C ′) is equivalent to t. It is also clear
that t̃ is constructed in O(|t|)-time.

It remains to compare the sizes and heights of t and t̃, and c and c̃. We denote by |t|b the
number of occurrences of a symbol b in a term or a context t. We can easily prove by induction
that:

|t̃|F ′C′ = |t|FC and ht(t̃) ≤ ht(t),
|c̃|F ′C′ = |c|FC − 1 and ht(c̃) ≤ ht(c).

One can even prove that:

|t̃|b = |t|b and |c̃|b = |c|b for each b ∈ C.

The only case which does not yield equality of heights is case (i') in the de�nition of c̃. This
ends the proof of the proposition.

6.2 Applications to Graph Algebras

We apply in this section Theorem 6.1 to several graph complexity measures. It will su�ce to
check the �exibility condition for appropriate super-signatures of the signatures that de�ne
graphs of width at most k. As an application of Theorem 6.2 we obtain the following results
collected in one theorem.

Theorem 6.3 1. Every undirected graph of m-clique-width k is the value of a 3-balanced
term in T (F um

2k , Cum
2k ).

2. Every directed graph of m-clique-width k is the value of a 3-balanced term in
T (F dm

3k , Cum
3k ).

3. Every undirected graph (resp. directed graph) of clique-width k is the value of a 3-balanced
term in T (F uc

k′ , C
c
k′) (resp. T (F dc

k′ , C
c
k′)) where k

′ ≤ k · 2k (resp. k′ ≤ k · 22k).

4. Every graph of rank-width k is the value of a 3-balanced term in T (RGF (2)
2k , C

GF (2)
2k ).

5. Every graph of GF (4)-rank-width k is the value of a 3-balanced term in

T (RGF (4)
12k , C

GF (4)
12k ).
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6. Every term in T (BF
k , C

F
k ) is equivalent to a 3-balanced term T (BF

k+qk , C
F
k+qk).

Some width measures have thus a better behavior than others with respect to the possi-
bility of balancing terms without increasing width too much. By Theorem 6.1, we need only
prove �exibility properties for each of the operations that de�ne the widths considered in the
theorem. We will prove each statement separately for clarity.

Let u be a set of colors in [k] (resp. a row vector). We denote by u�n the set u∩ [n] (resp.
the restriction of u to the n �rst coordinates). It will be useful to use a new constant ∅ for
denoting the empty graph (of any type). This constant will be eliminated at some stage of
the proofs.

Proof of Theorem 6.3 (1). We will prove that (F um
2k , Cum

2k ) is (F um
k , Cum

k )-�exible. For
clarity, we will denote the color k + i as i′, for each i ∈ [k].

By de�nition, the signatures F um
k and F um

2k are commutative. We let q(x1, . . . , xn, u) be a
comb-term x1 ⊗1 (x2 ⊗2 (. . . (xn ⊗n u)) . . .) where ⊗i ∈ F um

k for each i and n ≥ 2.

Construction of q̂ and ⊗q. It is clear that the graph q(G1, . . . , Gn,H) (for pairwise dis-
joint 2[k]-colored graphs G1, . . . , Gn,H) can be described as the (disjoint) union of K =
q(G1, . . . , Gn, ∅) and of H ′ = q(∅, ∅, . . . , ∅,H) augmented with edges between VK and VH′ =
VH , created by the operations of q. The objective is to have q(G1, . . . , Gn,H) = K ′ ⊗R,g,h H
where K ′ is K with an additional coloring by δ′ : VK → 2[k]′ , that will indicate how should be
linked the vertices of K and those of H.

The graph K ′ = q̂(G1, . . . , Gn) will be K with coloring function δK′ de�ned by δK′(x) =
δK(x) ∪ δ′(x) ⊆ [k] ∪ [k]′. The mapping h can be de�ned as

Recolh1 ◦Recolh2 ◦ . . . ◦Recolhn = Recolh1◦h2◦...◦hn

where ⊗i = ⊗Ri,gi,hi
for each i. We now de�ne δ′.

For each i ∈ [k] and for some vertex w /∈ VG1 ∪ . . . ∪ VGn , we let i(w) be the isolated vertex
w colored by i. We let Ti = q(G1, . . . , Gn, i(w)) and N(Ti, w) be the set of vertices x of
Ti, x 6= w that are linked to w (are its neighbors). The auxiliary coloring δ′ is de�ned by
δ′(x) = {i′ | x ∈ N(Ti, w)}.

We let ⊗q be the operation ⊗R,g,h1◦...◦hn where R = {(i′, i) | i ∈ [k]}, g(j) = {j}, g(j′) = ∅ for
j ∈ [k]. Letting K ′ be de�ned from K = q(G1, . . . , Gn, ∅) and δ′, we have

Claim 6.2 For all 2[k]-colored graphs G1, . . . , Gn and H, we have q(G1, . . . , Gn,H) = K ′ ⊗q

H.

Proof of Claim 6.2. We let G = q(G1, . . . , Gn,H). The vertices of G and of K ′ ⊗q H are
the same, and they have the same colors, all in [k], since g �erases� all colors from [k]′. The
edges inside G1, . . . , Gn and H are the same from the de�nitions of q, K ′ and ⊗q. So are the
edges between Gi and Gj , j 6= i for the same reasons.



6.2. Applications to Graph Algebras 97

It remains to compare the edges between x in VK′ and y in VH . If xy is an edge in K ′ ⊗q H,
this means that i′ ∈ δK′(x) and i ∈ δH(y) for some i, hence xw is in q(G1, . . . , Gn, i(w)).
From the de�nitions of the m-clique-width operations, x is linked to all y′ in H such that
i ∈ δH(y′), and in particular to y. Hence xy in G = q(G1, . . . , Gn,H). The proof is similar in
the other direction.

Next, we must de�ne q̂ = x1⊗′1(x2⊗′2(. . . (xn⊗′n∅) . . .)) in such a way thatK ′ = q̂(G1, . . . , Gn).
We recall that ⊗i = ⊗Ri,gi,hi

and we let ⊗′i = ⊗Ri,g′i,h
′
i
where g′i : [k]→ 2[k]∪[k]′ is de�ned by

g′i(j) = gi(j) ∪ {l′ | l ∈ [k], (j,m) ∈ Ri for some m ∈ hi+1(. . . (hn−1(hn(l))) . . .)}

and h′i : [k] ∪ [k]′ → 2[k]∪[k]′ is de�ned by: h′i(j) = hi(j), h′i(j
′) = {j′}. Note the particular

case i = n. We can take R′
n = ∅ instead of Rn, h′n(j) = ∅ for all j ∈ [k] ∪ [k]′.

Claim 6.3 For all 2[k]-colored graphs G1, . . . , Gn, we have K ′ = q̂(G1, . . . , Gn).

Proof of Claim 6.3. We let K = q(G1, . . . , Gn, ∅) and K ′ be K with the additional coloring
δ′. Hence, K ′ and q̂(G1, . . . , Gn) have the same vertices, with same colors from [k] as one
checks from the way the recolorings g′i are de�ned.

We let x ∈ Gi and we consider δ′(x) ⊆ [k]′. Then l′ ∈ δ′(x) if and only if x is linked to
w in q(G1, . . . , Gn, l(w)) which means that for some (j,m) ∈ Ri, we have j ∈ δGi(x) and
m ∈ hi+1(hi+2(. . . (hn(l)) . . .)). Thus, l′ ∈ δ′(x) implies l′ ∈ g′i(j); hence l′ is a color of x in
Gi ⊗′i (Gi+1 ⊗′i+1 (. . . (Gn ⊗′n ∅) . . .)). Since the recolorings h′i do not modify the colors from
[k]′, l′ is a color of x in q̂(G1, . . . , Gn). The argument is similar in the other direction, hence
the colors are the same in K ′ and in q̂(G1, . . . , Gn).

We now compare edges. Those with two ends in any Gi are the same in both graphs. Let
x ∈ VGj and y ∈ VGi be linked in K ′, for j < i. This means that for some l and m, we have
(l,m) ∈ Rj , l ∈ δGj (x) and m ∈ hj+1(hj+2(. . . (hi−1(gi(δGi(y))) . . .)). But, this edge also
exists in q̂(G1, . . . , Gn) because (l,m) ∈ Rj and m ∈ h′j+1(h

′
j+2(. . . h

′
i−1(g

′
i(δGi(y))) . . .)) since

h′a � [k] = ha for each a. This concludes the proof.

Next we de�ne the operations ⊗q,q′ and verify Condition (F2.3) of �exibility.

De�nition of the operations ⊗q,q′. Let q = x1 ⊗1 (x2 ⊗2 (. . . (xp ⊗p u) . . .)) and q′ =
xp+1⊗p+1 (xp+2⊗p+2 (. . . (xn⊗n u)) . . .) so that q′′ = x1⊗1 (x2⊗2 (. . . (xn⊗n u)) . . .). We let
⊗q,q′ = ⊗R,g,h where:

R = {(i′, i) | i ∈ [k]},
g(i) = {i}, g(i′) = {j′ | i ∈ hq′(j)},
h(i) = hq(i), h(i′) = {i′} for all i ∈ [k],

and we recall that hq is the composition of the recolorings de�ned by q and applied to u.
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Claim 6.4 For all 2[k]-colored graphs G1, . . . , Gn, we have

q̂′′(G1, . . . , Gn)︸ ︷︷ ︸
K′′

= q̂(G1, . . . , Gp)︸ ︷︷ ︸
K

⊗q,q′ q̂′(Gp+1, . . . , Gn)︸ ︷︷ ︸
K′

.

Proof of Claim 6.4. The vertices of K ′′ and of K ⊗q,q′ K ′ are the same. We now compare
the colors.

Let x ∈ VGi ⊆ VK with colors δK(x) ⊆ [k]∪[k]′. Its colors from [k] are the same inK and inK ′′

by the various de�nitions. Let j′ ∈ δK′′(x). We have x ∈ N(q′′(G1, . . . , Gp, . . . , Gn, j(w)), w).
Hence, for some l ∈ hq′(j), we have l′ ∈ δK(x). Conversely, if l′ ∈ δK(x) and l ∈ hq′(j), then
we have x ∈ N(q(G1, . . . , Gp, l(w)), w). Hence, x ∈ N(q′′(G1, . . . , Gp, . . . , Gn, j(w)), w) and
j′ ∈ δK′′(x). It follows that

δK′′(x) ∩ [k]′ = {j′ | l ∈ hq′(j) for some l′ ∈ δK(x)}

=
⋃

l′∈δK(x)

{j′ | l ∈ hq′(j)}

= g(δK(x)) ∩ [k]′ since g(l′) = {j′ | l ∈ hq′(j)}.

We now compare the colors in K ′′ and in K ′ of x ∈ VGi ⊆ VK′ , p + 1 ≤ i ≤ n. Let
j ∈ δK′(x) ∩ [k]. Then x has color j in q′(Gp+1, . . . , Gn, ∅), hence all colors from hq(j) in
the graph q′′(G1, . . . , Gn, ∅), whence also in K ′′. Conversely, if x has colors l in K ′′, it must
have in K ′ some color j such that l ∈ hq(j). Hence, δK′′(x) ∩ [k] = hq(δK′(x)) as was to
be proved. Consider now j′ ∈ δK′(x). Then x ∈ N(q′(Gp+1, . . . , Gn, j(w)), w). But, we also
have x ∈ N(q′′(G1, . . . , Gn, j(w)), w). Hence, j′ ∈ δK′′(x) ∩ [k]′. A similar argument gives
δK′′(x) ∩ [k]′ ⊆ δK′(x) ∩ [k]′, hence δK′′(x) ∩ [k]′ = δK′(x) ∩ [k]′ as was to be proved. Hence,
δK′′(x) = h ◦ δK′(x).

We now compare the edges of K ′′ and of K ⊗q,q′ K
′. Clearly, those with two ends

in K or in K ′ are the same in both graphs. We consider x ∈ VGj ⊆ VK and
y ∈ VGj′ ⊆ VK′ , for 1 ≤ j ≤ p < j′ ≤ n. Assume xy in K ′′. We also have xy in
q′′(G1, . . . , Gn, ∅) = q(G1, . . . , Gp, q

′(Gp+1, . . . , Gn, ∅)︸ ︷︷ ︸
G′

). We have i ∈ δGj (x) and l ∈ δG′(y),

l′ ∈ δK(x) and also l ∈ δK′(y) since the colors from [k] are the same in G′ and in
q̂′(Gp+1, . . . , Gn) = K ′. Hence, xy is an edge in K ⊗q,q′ K ′. Conversely, if xy in K ⊗q,q′ K ′,
then l′ ∈ δK(x), l ∈ δK′(y) for some l and we obtain that xy is an edge in K ′′. This completes
the proof that K ′′ = K ⊗q,q′ K ′.

It remains to eliminate the constant ∅. Let k be a positive integer. For any R ⊆ [k]× [k], g, h :
[k]→ 2[k] and undirected 2[k]-colored graphs G and H, it is clear that:

1. G⊗R,g,h ∅ is equivalent to g(G) where g(G) is the graph G where each x is now labeled
with g ◦ labG(x).



6.2. Applications to Graph Algebras 99

2. g(G)⊗R,g′,h H is equivalent to G⊗R′,g′◦g,h H where R′ = {(i, j) | g(i)× j ∩R 6= ∅}.

By using the two rules above, one can eliminate the constant ∅. This �nishes the proof of
Theorem 6.3 (1).

We now prove Theorem 6.3(2).

Proof of Theorem 6.3(2). Let G be a directed graph of m-clique-width k. Then G is the
value of some term t in T (F dm

k , Cum
k ). Let us explain how to construct the operations f q and

f q,q′ .

Let q(x1, . . . , xn, u) be a comb-term x1 ⊗1 (x2 ⊗2 (· · · (xn ⊗n u) · · · )) where for each i ≤ n
the operation ⊗i = ⊗Ri,R′

i,gi,hi
is in F dm

k . As in Theorem 6.3(1), for each x ∈ VGi , the idea
is to store in q̂(G1, . . . , Gn) not only {j | (δGi(x) × hi+1 ◦ · · · ◦ hn(j)) ∩ Ri 6= ∅} but also
{j | (δGi(x)×hi+1 ◦ · · · ◦hn(j))∩R′

i 6= ∅}. For that purpose, we will use two isomorphic copies
of {1, . . . , k}, that we denote by {1′, . . . , k′} and {1′′, . . . , k′′}. We let ⊗q = ⊗R,R′,g,h where

g(j) = {j}, g(j′) = g(j′′) = ∅,
R = {(i′, i) | i ∈ [k]}, R′ = {(i′′, i) | i ∈ [k]},
h = h1 ◦ · · · ◦ hn.

One can verify by using the same techniques as in Theorem 6.3(1) that for every 2[k]-colored
directed graphs G1, . . . , Gn and H, we have q(G1, . . . , Gn,H) = q̂(G1, . . . , Gn)⊗q H.

Similarly, for every two comb-terms q = x1 ⊗1 (x2 ⊗2 (· · · (xp ⊗p u) · · · )) and q = x1 ⊗p+1

(xp+2 ⊗p+2 (· · · (xn ⊗n u) · · · )) so that q′′ = x1 ⊗1 (x2 ⊗2 (· · · (xn ⊗n u) · · · )), we let ⊗q,q′ =
⊗R,R′,g,h where:

R = {(i′, i) | i ∈ [k]}, R′ = {(i′′, i) | i ∈ [k]}
g(i) = {i}, g(i′) = {j′ | i ∈ hq′(j)}, g(i′′) = {j′′ | i ∈ hq′(j)}
h(i) = hq(i), h(i′) = {i′}, h(i′′) = {i′′} for all i ∈ [k],

where hq = h1 ◦ · · · ◦ hp and hq′ = hp+1 ◦ · · · ◦ hn.

Again one can verify that for every G1, . . . , Gn, we have q̂′′(G1, . . . , Gn) =
q̂(G1, . . . , Gp)⊗q,q′ q̂′(Gp+1, . . . , Gn).

We now prove Theorem 6.3 (3). See De�nitions 5.1 and 5.2 for the de�nitions of the
operations in F u

k and F d
k .

Proof of Theorem 6.3 (3). We prove it �rst for undirected graphs. Let G be an undirected
graph of clique-width k. Then G is the value of a term in T (F uc

k , Cc
k). By Lemma 5.1, G is

also the value of a term t in T (F u
k , C

c
k) which is an m-clique-width expression.

By the proof Theorem 6.3 (1), one can transform t into a 3-balanced term t̃ with the par-
ticularity that for each sub-terms t′′ of t̃ and for each vertex x ∈ VH , H = val(t′′), we have
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δH(x) = {i} ∪ L where i ∈ [k] and L ⊆ [k]′. By Proposition 1.1, we can transform t̃ into a
clique-width expression of width at most k · 2k.

For the directed case, by Lemma 5.2, if cwd(G) = k, then G is the value of a term t in
T (F d

k , C
c
k). By the proof of Theorem 6.3(2), t can be transformed into a 3-balanced term t̃

in T (F dm
k , Cum

k ) with the particularity that for each sub-terms t′′ of t̃ and for each vertex
x ∈ VH , H = val(t′′), we have δH(x) = {i}∪L1∪L2 where i ∈ [k] and L1 ⊆ [k]′ and L2 ⊆ [k]′′.
By Proposition 1.1, we can transform t̃ into a clique-width expression of width at most k ·22k.

We now prove Theorem 6.3 for the case of rank-width.

Proof of Theorem 6.3 (4). We denote by 0k,` the (k×`)-null matrix and by Ik,` the (k×`)-
identity matrix. We will prove that (RGF (2)

2k , C
GF (2)
2k ) is (RGF (2)

k , C
GF (2)
k )-�exible. We let ∅k

denote the GF (2)k-colored null graph.

The signatures RGF (2)
k and RGF (2)

2k are commutative from Remark 3.3. We let q(x1, . . . , xn, u)
be a comb-term x1⊗1 (x2⊗2 (. . . (xn⊗n u)) . . .) where ⊗i = ⊗Mi,Ni,Pi ∈ R

GF (2)
k for each i and

n ≥ 2. We recall that we can consider Mi, Ni and Pi as (k × k)-matrices.

Construction of q̂ and of ⊗q. We let q̂ = x1 ⊗′1 (x2 ⊗′2 (. . . (xn ⊗′n ∅k)) . . .) where ⊗′i =
⊗M ′

i ,N
′
i ,P

′
i
with M ′

i , N
′
i are (k × 2k)-matrices and P ′

i are (2k × 2k)-matrices and such that:

M ′
i =

(
Mi 0k,k

)
N ′

i =
(
Ni Mi ·QT

i

)
P ′

i =
(
Pi 0k,k

0k,k Ik,k

)
where Qi = Pn · Pn−1 · . . . Pi+1 for i = 1, . . . , n. We let ⊗q = ⊗M,N,P where:

M =
(

0k,k

Ik,k

)
N =

(
Ik,k

0k,k

)
P = Pn · Pn−1 · . . . · P1.

Claim 6.5 For all disjoint GF (2)k-colored graphs G1, . . . , Gn and H, we have

q(G1, . . . , Gn,H)︸ ︷︷ ︸
G

= q̂(G1, . . . , Gn)︸ ︷︷ ︸
K

⊗qH.

Proof of Claim 6.5. We let G′ = K⊗qH. Clearly, the vertices of G and of G′ are the same.
We �rst verify that γG(x) = γG′(x) for each vertex x. Let y ∈ VH . By de�nition of q, we have
γG(y) = γH(y) ·Pn · . . . ·P1. Then it is clear that γG(y) = γG′(y) since P = Pn ·Pn−1 · . . . ·P1.

Now, let x ∈ VGi . We have γG(x) = γGi(x) · Ni · Pi−1 · . . . · P1. By de�nition of q̂, we have
γK(x) =

(
γGi(x) ·Ni · Pi−1 · . . . · P1 γGi(x) ·Mi · (Pn · Pn−1 · . . . · Pi+1)T

)
. It is then clear

that γG′(x) = γK(x) ·N = γG(x).

We now compare the edges of G and of G′. It is clear that the edges inside G1, . . . , Gn and
H are the same in G and in G′. So are the edges between Gi and Gj , j 6= i. It remains to
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compare the edges between x ∈ VK and y ∈ VH . Let x ∈ VGi and y ∈ VH . It is su�cient to
prove that γK(x) ·M · γH(y)T = γGi(x) ·Mi · (γH(y) · Pn · Pn−1 · . . . · Pi+1)T . We have by
de�nition of q̂ that γK(x) =

(
γGi(x) ·Ni · Pi−1 · . . . P1 γGi(x) ·Mi · (Pn · Pn−1 · . . . · Pi+1)T

)
.

Hence,

γK(x) ·M · γH(y)T = γK(x) ·
(

0k,k

Ik,k

)
· γH(y)T

= γGi(x) ·Mi · (Pn · . . . · Pi+1)T · γH(y)T .

This �nishes the proof of the claim.

De�nition of the Operations ⊗q,q′. Let q = x1 ⊗1 (x2 ⊗2 (. . . (xp ⊗p u)) . . .) and q′ =
xp+1⊗p+1 (xp+2⊗p+2 (. . . (xn⊗n u)) . . .) so that q′′ = x1⊗1 (x2⊗2 (. . . (xn⊗n u)) . . .). We let
⊗q,q′ = ⊗M,N,P where:

M =
(

0k,k 0k,k

Ik,k 0k,k

)
N =

(
Ik,k 0k,k

0k,k QT
q′

)
P =

(
Qq 0k,k

0k,k Ik,k

)

where Qq = Pp · Pp−1 · . . . P1 and Qq′ = Pn · Pn−1 · . . . · Pp+1.

Claim 6.6 For all disjoint GF (2)k-colored agraphs G1, . . . , Gn, we have

q̂′′(G1, . . . , Gn)︸ ︷︷ ︸
K′′

= q̂(G1, . . . , Gp)︸ ︷︷ ︸
K

⊗q,q′ q̂′(Gp+1, . . . , Gn)︸ ︷︷ ︸
K′

.

Proof of Claim 6.6. Clearly, the vertices of K ′′ and of K ⊗q,q′ K are the same. We now
compare their colors. Let G = K ⊗q,q′ K ′. By the de�nition of q̂′′, for each x ∈ VGi , for
1 ≤ i ≤ n, we have γK′′(x) =

(
γGi(x) ·Ni · Pi−1 · . . . P1 γGi(x) ·Mi · (Pn · . . . · Pi+1)T

)
. We

now prove that γG(x) = γK′′(x).

Let x ∈ VGi ⊆ VK , for 1 ≤ i ≤ p. By de�nition of q̂, we have γK(x) =(
γGi(x) ·Ni · Pi−1 · . . . · P1 γGi(x) ·Mi · (Pp · . . . · Pi+1)T

)
. Hence,

γG(x) = γK(x) ·N

=
(

γGi(x) ·Ni · Pi−1 · . . . · P1

γGi(x) ·Mi · (Pp · . . . · Pi+1)T

)T

·
(
Ik,k 0k,k

0k,k QT
q′

)
=
(

γGi(x) ·Ni · Pi−1 · . . . · P1

γGi(x) ·Mi · (Pp · . . . · Pi+1)T · (Pn · . . . · Pp+1)T

)
= γK′′(x).
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We now consider x ∈ VGi ⊆ VK′ , for p + 1 ≤ i ≤ n. By de�nition of q̂′, we have γK′(x) =(
γGi(x) ·Ni · Pi−1 · . . . · Pp+1 γGi(x) ·Mi · (Pn · . . . · Pi+1)T

)
. Hence,

γG(x) = γK′(x) · P

=
(
γGi(x) ·Ni · Pi−1 · . . . · Pp+1

γGi(x) ·Mi · (Pn · . . . · Pi+1)T

)
·
(
Qq 0k,k

0k,k Ik,k

)
=
(
γGi(x) ·Ni · Pi−1 · . . . · Pp+1 · Pp · . . . · P1

γGi(x) ·Mi · (Pn · . . . · Pi+1)T

)
= γK′′(x).

We now compare the edges of K ′′ and of K⊗q,q′K ′. Clearly, those with two ends in K or in K ′

are the same in both graphs. We consider x ∈ VGj ⊆ VK and y ∈ VGj′ ⊆ VK′ , for 1 ≤ j ≤ p <
j′ ≤ n. By de�nition, we have an arc xy inK ′′ if and only if we have an arc in q(G1, . . . , Gn, ∅).
Then it is su�cient to prove that γK(x)·M ·γK′(y)T = γGi(x)·Mi ·(γGj (y)·Nj ·Pj−1 ·. . .·Pi+1)T .
By de�nition,

γK(x) ·M · γK′(y)T =
(

γGi(x) ·Ni · Pi−1 · . . . · P1

γGi(x) ·Mi · (Pp · . . . · Pi+1)T

)T

·
(

0k,k 0k,k

Ik,k 0k,k

)
·
(
γGj (y) ·Nj · Pj−1 · . . . · Pp+1

γGj (y) ·Mj · (Pn · . . . · Pj+1)T

)T

= γGi(x) ·Mi · (Pp · . . . · Pi+1)T · (γGj (y) ·Nj · Pj−1 · . . . · P T
p+1)

= γGi(x) ·Mi · (γGj (y) ·Nj · Pj−1 · . . . · Pi+1)T .

This completes the proof of the claim.

By Remark 3.3, one can eliminate the constant ∅k in the constructed term. This terminates
the proof of Theorem 6.3 (3).

We now prove Theorem 6.3 (5).

Proof of Theorem 6.3 (5). Let G be a directed graph of GF (4)-rank-width k. By Propo-

sition 3.2, we have brwd(G) ≤ 4k. Then G is the value of a term in T (U ([2])
4k , C

GF (2)
4k ) by

Proposition 4.8. It is easy to see that this term can be transformed into a 3-balanced term t̃ in
T (U ([2])

12k , C
GF (2)
12k ) by using the proof of Theorem 6.3 (3). Let us explain in few words the idea.

Let q(x1, . . . , xn, u) be a comb-term x1⊗1 (x2⊗2 (. . . (xn⊗n u) . . .)) where ⊗i = ⊗Mi,M ′
i ,Ni,Pi

.
For each x ∈ VGi , the idea is to store in q̂(G1, . . . , Gn) not only γGi(x) ·Ni · Pi−1 · . . . · P1 and
γGi(x) ·Mi · (Pn · . . . · Pi+1)T but also γGi(x) ·M ′

i · (Pn · . . . · Pi+1)T . I omit all the technical
proofs which are not of any interest since they are the same as in the proof of Theorem 6.3
(3).

One can verify by using Lemma 3.3 that we can transform t̃ into a term in T (RGF (4)
12k , C

GF (4)
12k )

that generates the same graph by transforming each operation ⊗M1,M2,N,P into an operation
⊗M,N,P where M = a ·M1 + a2 ·M2. This terminates the proof.
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We can now prove Theorem 6.3 (6).

Proof of Theorem 6.3 (6). Let F be a �xed �eld with q elements. Let α : F k → [qk] be
a bijective function that enumerates the set F k. We claim that (BF

k+qk , C
F
k+qk) is (BF

k , C
F
k )-

�exible. Recall that by Remark 3.1 (2), (BF
k+qk , C

F
k+qk) and (BF

k , C
F
k ) are commutative. We

will also use the constant ∅k which will be eliminated by Remark 3.1 (3).

We let q(x1, . . . , xn, u) be a comb-term x1⊗1(x2⊗2(. . . (xn⊗nu)) . . .) where⊗i = ⊗fi,gi,hi
∈ BF

k

for each i and n ≥ 2.

Construction of q̂ and of ⊗q. We let q̂ = x1 ⊗′1 (x2 ⊗′2 (. . . (xn ⊗′n ∅k)) . . .) where ⊗′i =
⊗f ′i ,g

′
i,h

′
i
with f ′i : F k × F k+qk → {0, 1}, g′i : F k → F k+qk

and h′i : F k+qk → F k+qk
are such

that:

f ′i(u, v) = fi(u, v �k),

g′i(u) = w where

{
w[j] = gi(u)[j] if 1 ≤ j ≤ k,
w[α(z) + k] = fi(u, v) where v = hi+1(hi+2(. . . (hn(z))) . . .),

h′i(v) = w where w[j] =

{
hi(v �k)[j] if 1 ≤ j ≤ k,
v[j] otherwise.

Note the particular case i = n. We can take f ′n(u, v) = 0 and h′n(v) = (0, 0, . . . , 0) for all
v ∈ F k+qk

.

We let ⊗q = ⊗f,g,h where f : F k+qk × F k → {0, 1}, g : F k+qk → F k and h : F k → F k are
de�ned as follows:

f(u, v) = u[α(v) + k],
g(u) = u�k,

h(v) = h1(h2(. . . (hn(v))) . . .).

Claim 6.7 For all disjoint F k-colored graphs G1, . . . , Gn and H, we have

q(G1, . . . , Gn,H)︸ ︷︷ ︸
G

= q̂(G1, . . . , Gn)︸ ︷︷ ︸
K

⊗qH.

Proof of Claim 6.7. We let G′ = K ⊗q H. The proof is as for the previous similar claims.
We �rst compare the edges between x ∈ VGi and y ∈ H. We have:

xy ∈ EG ⇐⇒ fi(γGi(x), hi+1(hi+2(. . . (hn(γH(y))) . . .))) = 1
⇐⇒ g′i(γGi(x))[α(γH(y)) + k] = 1 (by de�nition of ⊗′i)
⇐⇒ γK(x)[α(γH(y)) + k] = 1 (by de�nition of ⊗′j) for 1 ≤ j < i

⇐⇒ xy ∈ EG′ (by de�nition of ⊗q).

One can easily verify that x has the same color in G and in G′.
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De�nition of the Operations ⊗q,q′ Let q = x1 ⊗1 (x2 ⊗2 (. . . (xp ⊗p u)) . . .) and q′ =
x1 ⊗p+1 (xp+2 ⊗p+2 (. . . (xn ⊗n u)) . . .) so that q′′ = x1 ⊗1 (x2 ⊗2 (. . . (xn ⊗n u)) . . .). We let
⊗q,q′ be ⊗f,g,h (in the de�nition z denotes elements of F k):

f(u, v) = u[α(v �k) + k],

g(u) = w where

{
w[j] = u[j] if 1 ≤ j ≤ k,
w[α(z) + k] = u[α(v) + k] where v = hq′(z),

h(v) = w where w[j] =

{
hq(v �k)[j] if 1 ≤ j ≤ k,
v[j] otherwise.

and hq = h1 ◦ h2 ◦ . . . ◦ hp and hq′ = hp+1 ◦ hp+2 ◦ . . . ◦ hn.

Claim 6.8 For all disjoint F k-colored graphs G1, . . . , Gn, we have

q̂′′(G1, . . . , Gn)︸ ︷︷ ︸
K′′

= q̂(G1, . . . , Gp)︸ ︷︷ ︸
K

⊗q,q′ q̂′(Gp+1, . . . , Gn)︸ ︷︷ ︸
K′

.

Proof of Claim 6.8. It is clear that the vertices of K ′′ and of G = K ⊗q,q′ K ′ are the same.
We �rst compare the colors.

Let x ∈ VGi ⊆ VK , 1 ≤ i ≤ p. From the de�nition of q̂′′, γK′′(x) = w where

w[j] = h1(h2(. . . (hi−1(gi(γGi(x)))) . . .))[j] if 1 ≤ j ≤ k,
w[α(z) + k] = fi(γGi(x), v) where v = hi+1(hi+2(. . . (hn(z))) . . .).

By the de�nition of q̂, we have γK(x) = w where w is de�ned as above with n = p. It is then
clear from the de�nition of ⊗q,q′ that γK′′(x)�k = γG(x)�k. We thus have

γG(x)[α(z) + k] = γK(x)[α(v) + k] where v = hq′(z) (de�nition of ⊗q,q′)

= fi(γGi(x), v
′) where v′ = hi+1(hi+2(. . . (hp(hq′(z)))) . . .)

= γK′′(x).

Let y ∈ VGi ⊆ VK′ , p+ 1 ≤ i ≤ n. By the de�nition of q̂′′ we have γK′′(y) = w where

w[j] = h1(h2(. . . (hi−1(gi(γGi(x)))) . . .))[j] if 1 ≤ j ≤ k,
w[α(z) + k] = fi(γGi(y), v) where v = hi+1(hi+2(. . . (hn(z))) . . .).

By the de�nition of q̂′, we have γK(y) = w where

w[j] = hp+1(. . . (hi−1(gi(γGi(x)))) . . .)[j] if 1 ≤ j ≤ k,
w[α(z) + k] = fi(γGi(y), v) where v = hi+1(hi+2(. . . (hn(z))) . . .).

By the de�nition of ⊗q,q′ , we have γG(y) = w where

w[j] = h1(h2(. . . (hp(γK′(x)�k)) . . .))[j] if 1 ≤ j ≤ k,
w[α(z) + k] = fi(γGi(y), v) where v = hi+1(hi+2(. . . (hn(z))) . . .).
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Hence, γK′′(x) = γG(x).

We now compare the edges of K ′′ and of G. Clearly, those with two ends in K ′ or in K
are the same in the two graphs. We consider x ∈ VGj ⊆ VK and y ∈ VGj′ ⊆ VK′ , for
1 ≤ j ≤ p < j′ ≤ n. Assume that xy in K ′′. We also have xy in

q′′(G1, . . . , Gn, ∅k) = q(G1, . . . , Gp, q
′(Gp+1, . . . , Gn, ∅k)︸ ︷︷ ︸

G′

).

Then

xy in K ′′ ⇐⇒ fj(γGj (x), hj+1(. . . (hp(γG′(y))) . . .)) = 1

⇐⇒ γK(x)[α(γG′(y)�k) + k] = 1
⇐⇒ γK(x)[α(γK′(y)�k) + k] = 1

⇐⇒ xy in G (by de�nition of ⊗q,q′).

This terminates the proof of the claim.

By Using Remark 3.1 (3) we can remove the constant ∅ which terminates the proof of
Theorem 6.3 (6).

Remark 6.3 For the proof of Theorem 6.3 (6) we need colors in F k+qk ' F k × F qk
instead of

F 2k because, for instance if G = q(G1, . . . , Gn,H), for each x ∈ VGi , we need to store the set of
colors v ∈ F k such that fi(γGi(x), hi+1(hi+2(. . . (hn(v)) . . .))) = 1 to be able to construct ⊗q.
And |{u ∈ F k}| = qk. We do not know any algebraic structure like the lattice of subsets or the
vector space on F k that makes possible to express this information in a more compact way.

6.3 Conclusion

We have de�ned a framework that uni�es all known balancing theorems and we give new
results, especially for rank-width of undirected graphs.

In [Cou93] Courcelle de�ned a set of graph operations, denoted by HRk, and a set of
constants Ct

k such that a graph G has tree-width at most k if and only if G is the value of a
term in T (HRk+1, C

t
k+1). By using terms in T (HRk, C

t
k), we can prove that every graph of

tree-width at most k is the value of a 3-balanced term in T (HR3k−1, C
t
3k−1). However, the

proof is not immediate since we need to transform the operations HRk into binary operations
suitable for our framework.

For the case of branch-width of graphs (see De�nition 1.8), we can de�ne a set of binary
graph operations F b

k in the spirit of the operations HRk and prove that a graph has branch-
width at most k if and only if it is the value of a term in T (F b

k , C
t
k). By using this term, we

can prove, by using our framework, that every graph of branch-width at most k is the value
of a 3-balanced term in T (F b

2k, C
t
2k).

We �nish this chapter with two questions:
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(Q6.1) In our balancing results we obtain 3-balanced terms by using Theorem 6.2. Can we
improve the 3 in Theorem 6.2?

(Q6.2) The time complexity of our balancing results also depend on Theorem 6.2. Can we
prove that the algorithm of Theorem 6.1 works in O(n)-time in most cases or �nd an
alternative linear-time algorithm?



Chapter 7

Rank-width Compared to Tree-width

Tree-width is a well-known graph parameter because of the many positive results it yields.
EveryMS-de�nable property admits a linear-time algorithm on graph classes of bounded tree-
width [Cou90, ALS91] and �nite graph classes that have decidable MS theory have bounded
tree-width. Moreover, it plays an important role in structural graph theory, particularly in
the fundamental series of papers on graph minors by Robertson and Seymour [RS83]-[RS04].
Clique-width has also positive algorithmic results [CMR00] and its equivalent graph parameter
rank-width has positive structural results [Oum05b, Oum05c, Oum08a]. It is thus natural to
compare tree-width and, rank-width and its equivalent parameters. It is known that if an
undirected graph has tree-width k, then it has clique-width at most 3 · 2k−1− 1 [CR05] and if
an undirected graph has rank-width `, then it has clique-width at most 2`+1−1 [OS06]. We can
thus suspect a linear relation between tree-width and rank-width. And because rank-width
and clique-width are equivalent graph parameters, this linear relation could be necessarily of
the form:

if an undirected graph has tree-width k, then it has rank-width at most a · k + b,
where a and b are �xed constants.

For proving this, we developed a technique of independent interest: simulation of edge
contractions, one of the operations that yield minor inclusion, by means of local complemen-
tations and vertex deletions (the operations that de�ne vertex-minor inclusion). We prove
that if an undirected graph has tree-width k, then it has rank-width at most 4 · k + 2. How-
ever, the optimal inequality is with k+1, proved in a completely di�erent way. We reproduce
a proof by Oum (private communication) for the purpose of comparison with the �rst and for
closing the topic.

We will �rst recall the de�nitions of tree-width and its related notions in Section 7.1 and
recall useful lemmas for our purposes. In Section 7.2 we prove that local complementations
and vertex deletions can simulate edge contractions. As an application, we prove in Section
7.3 that the rank-width of a graph is linearly bounded in term of its tree-width. In particular,
we prove a lemma relating strong tree-width and clique-width. In Section 7.4 we will give a
proof of the tighter upper bound by Oum.

107
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7.1 Tree-Width and Related Notions

The notions of tree-decomposition and of tree-width [RS86] was introduced by Robertson and
Seymour in their graph minor series. Tree-decompositions and its related notions have been
studied for the last two decades. See for instance the articles and surveys by Bodlaender et
al. [Bod96, BE97, Bod05, Bod06, RS86, See85]. We will recall some de�nitions and needed
results.

De�nition 7.1 ([RS86]) A tree-decomposition of a graph G = 〈VG, EG 〉 is a pair (T, f) such
that T = 〈VT , ET 〉 is a tree, f is a mapping associating with every node u of T a subset f(u) of
VG such that:

(T1)
⋃

u∈VT
f(u) = VG,

(T2) for each edge xy or arc (x, y) of G, there exists one node u in VT with x, y in f(u),

(T3) for all u, v, w ∈ VT , if v is on the path from u to w in T then f(u) ∩ f(w) ⊆ f(v).

In (T2) it is convenient, for each edge xy or arc (x, y) to choose one node u such that x, y ∈ f(u).

The width of a tree-decomposition (T, f) is maxu∈VT
{|f(u)|} − 1. The tree-width of a graph

G, denoted by twd(G), is the minimum width over all tree-decompositions of G.

We now recall the de�nition of a strong tree-decomposition [See85].

De�nition 7.2 ([See85]) A strong tree-decomposition of a graph G = 〈VG, EG 〉 is a pair
(T, f) as in De�nition 7.1 such that:

(S1) {f(u) | u ∈ VT } is a partition of VG,

(S2) for each edge xy or arc (x, y) of G:

(S2.1) either there exists a node u in VT with x, y ∈ f(u),

(S2.2) or there exists an edge uv in ET with x ∈ f(u) and y ∈ f(v) or vice-versa.

The edges xy or arcs (x, y) of type (S2.2) are called the shared edges or arcs of G. This notion is
relative to a chosen strong tree-decomposition.

The width of a strong tree-decomposition (T, f) is maxu∈VT
|f(u)|. The strong tree-width of

a graph G, denoted by stwd(G), is the minimum width over all strong tree-decompositions of G.

Let (T, f) be a rooted (strong) tree-decomposition of a graph G. We say that (T, f)
is rooted if T is. For u ∈ VT , we call f(u) the box of u and we denote by G ↓ u the graph
G[
⋃

v∈VT↓u
f(v)]. In the rest of the chapter we consider rooted tree-decompositions and rooted

strong tree-decompositions.

Clique-width can be considered as more powerful than tree-width. It is known that
bounded tree-width implies bounded clique-width and not vice-versa (cliques have unbounded
tree-width but have clique-width 2). The following theorem gives an upper-bound on the
clique-width of graphs of bounded tree-width.
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Theorem 7.1 ([CR05, CO00]) Let G be a graph. Then{
cwd(G) ≤ 3 · 2twd(G)−1 if G is undirected,

cwd(G) ≤ 2twd(G)+2 − 1 if G is directed.

Remark 7.1 In the proofs of Theorem 7.1, the tree of an optimal tree-decomposition is made
into that of a term that uses clique-width operations. This is useful for algorithmic applications.

Theorem 7.1 combined with Proposition 1.2 gives the inequality rwd(G) ≤ 3× 2twd(G)−1.
We will improve this bound and prove that rank-width is linearly bounded in term of tree-
width in the following proposition.

Proposition 7.1 For every graph G, rwd(G) ≤ 4× twd(G) + 2.

Proposition 7.1 is the �rst result showing that the rank-width of an undirected graph is
linearly bounded in term of its tree-width. The consequence is that the bound relating clique-
width and rank-width is relatively optimal. In fact Corneil and Rotics [CR05] proved that for

any k, there exists a graph of tree-width k with clique-width at least 2b
k
2
c−1.

However, Oum improves the bound relating rank-width and tree-width [Oum08b]. He
proves the following (which is tight).

Proposition 7.2 ([Oum08b]) For every graph G, rwd(G) ≤ twd(G) + 1.

We will give a proof of Proposition 7.2, based on tangles [RS91] and branch-width, in
Section 7.4. Regarding the proofs of Propositions 7.1 and 7.2 we can ask the following question.

Question 7.1 In the proofs of Propositions 7.1 and 7.2, how an optimal tree-decomposition of
an undirected graph G is transformed into a layout of the function ρG? Precisely, can we transform
an optimal tree-decomposition of G into a layout of the function ρG that reaches the announced
bound at most?

We will discuss on this question at the end of Section 7.4. If G is an undirected graph and
e = xy an edge of G, the contraction of e consists in deleting the vertex x and adding the
edges {yz | z ∈ NG(x)−NG(y), z 6= x, y}. For F ⊆ EG, we denote by G/F the simple graph
obtained from G by contracting the edges of F . An undirected graph H is a minor of an
undirected graph G if H can be obtained from G by applying a sequence of edge contractions,
vertex deletions and edge deletions. Robertson and Seymour proved that for every k there
exists a �nite list Fk of undirected graphs such that an undirected graph G has tree-width at
most k if and only if it has no minor isomorphic to an undirected graph in Fk [RS86]. This
result is an analogous to Theorem 1.1 that deals with rank-width of undirected graphs. We
will show in the next section how to simulate edge contractions by vertex-minor operations.
Let us now recall and prove some lemmas.

Lemma 7.1 ([Bod98]) Let G be a graph of tree-width k. Then G has a tree-decomposition
(T, f) of width k such that:

1. For each u ∈ VT , we have |f(u)| = k + 1.
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2. For each (u, v) ∈ ET , we have |f(u) ∩ f(v)| = k.

Lemma 7.2 Let (T, f) be a tree-decomposition of width k of a graph G. There exist a graph
H and a strong tree-decomposition (T, g) of H of width k + 1 such that G = H/F where F is
the set of shared edges. The graph H[F ] is a forest.

Proof. We let H = (VH , EH) where:

VH = {xu | u ∈ VT and x ∈ f(u)},
EH = {xuxv | (u, v) ∈ ET and x ∈ f(u) ∩ f(v)} ∪

{xuyu | u ∈ VT and x, y ∈ f(u) and the edge xy or the arc (x, y) is in f(u)}.

For each u ∈ VT , we let g(u) = {xu | x ∈ f(u)}. It is easy to verify that (T, g) is a strong tree-
decomposition of H, the shared edges are the edges {xuxv | (u, v) ∈ ET and x ∈ f(u)∩ f(v)}.
They form a set F that spans a forest and G = H/F (by the de�nition of tree-decomposition).
See Figure 17 for an example. The shared edges are dotted and marked by ε (because they
are in �ne contracted).

H

ε

G

ε

ε

εε
ε

εε

Figure 17: A graph G and the corresponding graph H. F is the set of edges labeled by ε.

7.2 Vertex-Minor Reductions and Edge Contractions

Let G be a graph. We say that J ⊆ EG is good in G if G[J ] is a forest and G/J has no loop
nor multiple edges. This is equivalent to saying that in G every cycle contains at least 3 edges
not in J . If a rooted forest is reduced to one arc f , we will denote it by {f}. If G is a directed
graph, we denote by und(G) the simple undirected graph obtained from G by omitting the
direction of the arcs.
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Let F be a rooted forest. We denote by V root
F the set {x ∈ VF | x is a root} and by V nroot

F

the set VF − V root
F , i.e, the vertices that are the targets of some arcs in F . We say that F is

a rooted forest in G if Eund(F ) ⊆ EG, i.e., G[Eund(F )] is a subgraph of G. We say that F is a
good rooted forest in G if F is a rooted forest in G and Eund(F ) is good in G. Let us de�ne
two operations.

De�nition 7.3 (Lc-deletion) Let G be a graph and x ∈ VG. The graph obtained by applying
an lc-deletion at x to G is G � x = (G ∗ x)\x.

It is clear that G �x is a vertex-minor of G. We note that G �x � y is not necessarily equal
to G � y � x. Figure 18 gives an illustration of De�nition 7.3.

G ⋄ x

2

3

4
6

1

3

7

1

7

5

5

x

4

G

2

6

Figure 18: A graph G and the graph G � x.

De�nition 7.4 (Local augmentation) Let G be a graph and F be a rooted forest in G. The
graph obtained by applying a local augmentation at F to G is G� F = 〈VG�F , EG�F 〉 where:

VG�F = VG ∪ {xt | x ∈ V nroot
F },

EG�F = EG ∪ {xty | x ∈ V nroot
F and xy ∈ EG and (x, y) /∈ F and (y, x) /∈ F}

∪ {xtyt | x, y ∈ V nroot
F and xy ∈ EG}.

xt is a new vertex.

We illustrate the construction of De�nition 7.4 with an example. Figure 19 shows a graph
G, a rooted forest F in G and the graph G � F . The connected components of F are T1

induced by {a, b, c, d} with root 1 and T2 induced by {e} with root 6. One can verify that we
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have V root
F = {1, 6} and V nroot

F = {2, 3, 4, 5, 7}. Then

VG�F = VG ∪ {2t, 3t, 4t, 5t, 7t},
EG�F = EG ∪ {{2t, 8}, {2t, 9}, {4t, 6}, {4t, 10}, {4t, 11}, {5t, 12}, {5t, 13}, {7t, 12}, {7t, 14}}

∪ {{3t, 4t}, {3t, 5t}}.
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Figure 19: A graph G, a rooted forest F in G and the graph G� F .

The main result of this section is the following.
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Theorem 7.2 (Vertex-Minor and Minor Relations) Let G be a graph and F a good
rooted forest in G. Then G/Eund(F ) is a vertex-minor of G� F .

In order to prove Theorem 7.2, we prove how to simulate edge contractions by vertex-minor
operations. For that purpose we use the operations � and � de�ned above in this section. We
begin by proving some technical lemmas.

Fact 7.1 Let G be a graph and let f = (y, x) be such that {f} is a good rooted forest in G.
Then (G� {f}) � x � xt = G/e where e = yx.

Proof. We let NG(x) = {y, z1, . . . , zm}. The e�ect of contracting e can be described as
follows:

(a) deletion of x and the edges incident to x,

(b) creation of edges between y and zi for each i ∈ [m].

Since {f} is a good rooted forest in G, there is no edge in G between y and any zi for any
i ∈ [m]. The e�ect of applying lc-deletion at x to G� {f} is thus:

(1) creation of edges between y and zi for each i ∈ [m] (that is (b)),

(2) creation of edges zizj where zizj /∈ EG, i 6= j,

(3) deletion of edges zizj ∈ EG, i 6= j,

(4) deletion of x and the incident edges to x (that is (a)).

The lc-deletion applied at x links y to zi, deletes x, but also deletes existing edges between
the neighbors zi of x (that is (3)) and creates edges in place of non-existing ones (that
is (2)). Since {f} is good we have NG�{f}(xt) = {z1, . . . , zm}. Therefore, an lc-deletion
at xt undoes (2) and (3) and deletes xt and its incident edges. Then (G�{f})�x�xt = G/e.

We now generalize Fact 7.1.

Lemma 7.3 Let G be a graph. Let F be a good rooted forest in G and let f = (y, x) be an
arc in F where x is a leaf. Then (G� F ) � x � xt = (G/e) � (F − {f}) where e = yx.

We distinguish two cases: either y is a root or not (see Figures 20 and 21 for illustrations).
For more readability we prove the two cases in two di�erent claims.

Claim 7.1 Let F be a good rooted forest in G and let f = (y, x) be an arc in F where y is a
root and x is a leaf. Then (G� F ) � x � xt = (G/e) � (F − {f}) where e = yx.

Proof. Let NG(x) = {y, z1, . . . , zm}. The e�ect of contracting the edge yx in G can be
described as follows:
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(a) deletion of x and its incident edges,

(b) creation of edges between y and zi for each i ∈ [m].

Since F is a good rooted forest in G, y is not adjacent to any zi in G. But in G/e, y is
adjacent to all zi. We get:

V(G/e)�(F−{f}) = (VG − {x}) ∪ {zt | z ∈ V nroot
F and z 6= x},

E(G/e)�(F−{f}) = (EG − {xz | xz ∈ EG}) ∪ {yzi | i ∈ [m]}
∪ {yzt

i | i ∈ [m] and zi ∈ V nroot
F }

∪ {utz | u ∈ V nroot
F and u 6= x and uz ∈ EG and (u, z), (z, u) /∈ F}

∪ {utzt | u, z ∈ V nroot
F and u, z 6= x and uz ∈ EG}.

We have NG�F (x) = {z1, . . . , zm} ∪ {zt
i | i ∈ [m] and zi ∈ V nroot

F } ∪ {y}. Therefore, the e�ect
of applying an lc-deletion at x to G� F can be described as follows:

(1) creation of edges yzi for each i ∈ [m] (that is (b)),

(2) creation of edges yzt
i for each zi ∈ V nroot

F (edges created in (G/e) � (F − {f})),

(3) creation of edges zizj , zizt
j , z

t
iz

t
j where zizj /∈ EG and i 6= j and of edges zizt

i for each
zi ∈ V nroot

F ,

(4) deletion of edges zizj , zizt
j and z

t
iz

t
j where zizj ∈ EG and i 6= j,

(5) deletion of x and its incident edges (that is (a)).

By de�nition, NG�F (xt) = {z1, . . . , zm} ∪ {zt
i | i ∈ [m] and zi ∈ V nroot

F }. Then the e�ect of
applying an lc-deletion at xt to (G� F ) � x can be described as follows:

(3') deletion of edges zizj , zizt
j , z

t
iz

t
j where zizj /∈ EG and i 6= j, and of edges zizt

i for each
zi ∈ V nroot

F (in order to undo (3)),

(4') creation of edges zizj , zizt
j and z

t
iz

t
j where zizj ∈ EG and i 6= j (in order to undo (4)),

(5') deletion of xt and its incident edges.

Then we have:

V(G�F )�x�xt = (VG − {x}) ∪ {zt | z ∈ V nroot
F }\{xt},

E(G�F )�x�xt = (EG − {xz | xz ∈ EG}) ∪ {yzi | i ∈ [m]}
∪ {yzt

i | i ∈ [m] and zi ∈ V nroot
F }

∪ {utz | u ∈ V nroot
F and u 6= x and uz ∈ EG and (u, z), (z, u) /∈ F}

∪ {utzt | u, z 6= x and u, z ∈ V nroot
F and uz ∈ EG}.

We thus deduce that (G� F ) � x � xt = (G/e) � (F − {f}).
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x

f

y

Figure 20: F and {f} with y a root.

Claim 7.2 Let F be a good rooted forest in G and let f = (y, x) be an arc in F where y is a
non-root and x is a leaf. Then (G� F ) � x � xt = (G/e) � (F − {f}) where e = yx.

Proof. Let NG(x) = {y, z1, . . . , zm}. As in Claim 7.2 the e�ect of contracting the edge yx in
G can be described as follows:

(a) deletion of x and its incident edges,

(b) creation of edges between y and zi for each i ∈ [m].

Since F is a good rooted forest in G, y is not adjacent to any zi in G, but it is in G/e. We
get:

V(G/e)�(F−{f}) = (VG − {x}) ∪ {zt | z ∈ V nroot
F and z 6= x},

E(G/e)�(F−{f}) = (EG − {xz | xz ∈ EG}) ∪ {yzi | i ∈ [m]}
∪ {yzt

i | i ∈ [m] and zi ∈ V nroot
F }

∪ {utz | u ∈ V nroot
F and u 6= x and uz ∈ EG and (u, z), (z, u) /∈ F}

∪ {utzt | u, z ∈ V nroot
F and u, z 6= x and uz ∈ EG}

∪ {ytzi | i ∈ [m]} ∪ {ytzt
i | i ∈ [m] and zi ∈ V nroot

F }.

We have NG�F (x) = {z1, . . . , zm} ∪ {zt
i | i ∈ [m] and zi ∈ V nroot

F } ∪ {y}. Then the e�ect of
applying an lc-deletion at x to G� F is the same as in Claim 7.1.

By de�nition, NG�F (xt) = {z1, . . . , zm} ∪ {zt
i | i ∈ [m] and zi ∈ V nroot

F } ∪ {yt}. So an lc-
deletion at xt in (G � F ) � x has the same e�ect as in Claim 7.1 with two additional steps
which create two types of edges:

(1') creation of edges ytzi for each i ∈ [m] (edges created in (G/e) � (F − {f})),

(2') creation of edges ytzt
i for each zi ∈ V nroot

F (edges created in (G/e) � (F − {f})).
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Then we have:

V(G�F )�x�xt = (VG − {x}) ∪ {zt | z ∈ V nroot
F }\{xt},

E(G�F )�x�xt = (EG − {xz | xz ∈ EG}) ∪ {yzi | i ∈ [m]}
∪ {yzt

i | i ∈ [m] and zi ∈ V nroot
F }

∪ {utz | u ∈ V nroot
F and u 6= x and uz ∈ EG and (u, z), (z, u) /∈ F}

∪ {utzt | u, z 6= x and u, z ∈ V nroot
F and uz ∈ EG}

∪ {ytzi | i ∈ [m]} ∪ {ytzt
i | i ∈ [m] and zi ∈ V nroot

F }.

We thus deduce that (G� F ) � x � xt = (G/e) � (F − {f}).

f

y

x

Figure 21: F and {f} with y not a root.

Proof of Lemma 7.3. We considered the two cases (y root or not) in Claim 7.1 and in
Claim 7.2. In both cases, we have (G� F ) � x � xt = (G/e) � (F − {f}).

We can now prove Theorem 7.2 by using Fact 7.1 and Lemma 7.3.

Proof of Theorem 7.2. We prove it by induction on the size of F . Let V nroot
F = {x1, . . . , xk}.

Its elements are numbered from leaves to internal nodes in inverse topological order. We claim
that G/Eund(F ) = (· · · ((G� F ) � x1 � xt

1) � · · · ) � xk � xt
k.

If F = {f}, let f = (y, x1). From Fact 7.1, we have G/e = (G� {f}) � x1 � xt
1 where e = yx1.

We now assume that |F | ≥ 2 and let F = F1 ∪ {f} where f = (y, x1) and x1, the target of f ,
is a leaf. We let e = yx1. By de�nition, we have G/Eund(F ) = (G/e)/Eund(F1).

We observe that the edges incident to the vertices xt
1, . . . , x

t
k in G � F are de�ned relatively

to the pair (G,F ) according to the de�nition of the operation �. We also observe that F1 is
a good rooted forest in G/e and then the non-root vertices of F1 are x2, . . . , xk.

By Lemma 7.3, (G � F ) � x1 � xt
1 = (G/e) � F1. Then the edges incident to x2, . . . , xk and

xt
2, . . . , x

t
k are the same in (G� F ) � x1 � xt

1 and in (G/e) � F1. Therefore, we get

(· · · ((G� F ) � x1 � xt
1) � · · · ) � xk � xt

k = (· · · (((G/e) � F1) � x2 � xt
2) � · · · ) � xk � xt

k.
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By the inductive hypothesis, we have

((G/e) � F1) � x2 � xt
2) � · · · ) � xk � xt

k = (G/e)/Eund(F1) = G/Eund(F ).

Then G/Eund(F ) = (· · · ((G� F ) � x1 � xt
1) � · · · ) � xk � xt

k.

7.3 Application to Rank-Width

In this section we prove Proposition 7.1. We �rst prove that clique-width is linearly bounded
in term of strong tree-width.

Lemma 7.4 Let G be a graph, then cwd(G) ≤ 2× stwd(G) + 1.

Proof. Let (T, f) be a rooted strong tree-decomposition of width k of G. To prove the lemma,
we introduce a binary operation. We �rst consider the particular case of the trees.

Let K and H be trees with one distinguished node labeled by 1 and all other nodes labeled
by 0. We let K �H be obtained from K ⊕H, where K and H are disjoint, by a new edge
from the distinguished node of K to the one of H, and the distinguished node of K is made
the distinguished one of the resulting tree. Clearly,

K �H = ρ2→0(η1,2(K ⊕ ρ1→2(H))) (2)

All trees can be generated from the operation � and the constant 1.

Let n,m ≤ k. Assume now that K is a graph with distinguished vertices labeled from 1
to n, each label for one vertex. All other vertices are labeled by 0. Let H be similar with
distinguished vertices labeled from 1 to m. Let tK and tH be terms that de�ne respectively
K and H as explained above. For R ⊆ [n]× [m], we de�ne

K �R H =
(
◦i∈[m] ρi′→0

) (
◦(i,j)∈R ηi,j′

) (
tK ⊕

(
◦i∈[m] ρi→i′

) (
tH
))

(3)

Claim 7.3 The simple loop-free undirected graphs of strong tree-width ≤ k are generated by
the operations

1. �R for R ⊆ [k]× [k],

2. ηi,j for i, j ∈ [k], i 6= j,

3. and the basic graphs 1⊕ 2⊕ · · · ⊕ n for 1 ≤ n ≤ k.

It is clear from Claim 7.3 that cwd(G) ≤ 2k + 1 if stwd(G) ≤ k.
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We can now prove Claim 7.3.

Proof of Claim 7.3. We �rst color each box f(u) with colors from 1 to |f(u)| using a
mapping γu, each label for one vertex (see Figure 22 for an example). We prove by induction
on the number of nodes of T that for each u ∈ VT , the graph G ↓ u labeled so that the vertices
in f(u) are labeled from 1 to |f(u)| and all others are labeled by 0, is generated by the above
operations.

Let Ru = {(γu(x), γu(y)) | x, y ∈ f(u) and xy ∈ EG} and assume that |f(u)| = n. Let

tu = (◦(i,j)∈Ru
ηi,j)(1⊕ 2⊕ · · · ⊕ n).

It is clear from the de�nition of Ru, that val(tu) = G[f(u)]. If VT = {u}, we have G = G[f(u)],
then the claim is veri�ed. Now assume that v1, . . . , vp are the children of u (p = 2 in Figure
22). By the inductive hypothesis, for each child vi of u, G ↓ vi, labeled as explained above, is
generated by the above operations.

Let Ri = {(γu(x), γvi(y)) | x ∈ f(u), y ∈ f(vi) and xy ∈ EG} for i = 1, . . . , p. It is clear
that Ri ⊆ [k] × [k] for i = 1, . . . , p. By the de�nition of strong tree-decompositions and the
inductive hypothesis, it only remains to add the shared edges between vertices of f(u) and
vertices of f(vi) for i = 1, . . . , p. From the de�nition of Ri, if x ∈ f(u), y ∈ f(vi) and xy ∈ EG,
then (γu(x), γvi(y)) ∈ Ri. We let

t = (((val(tu)�R1 G ↓ v1 �R2 G ↓ v2) . . .)�Rp G ↓ vp.

It is easy to verify that the above expression de�nes G ↓ u as wanted (see Figure 22 for an
example). If u is the root of T , we have G = G ↓ u. Then the claim is proved.

We illustrate the proof of Lemma 7.4 with an example, taking p = 2. Figure 22 shows a
part of a strong tree-decomposition of a graph G (the sub-tree of the strong tree-decomposition
rooted at u). The node u has two children v1 and v2. One can verify we have:

R1 = {(1, 1), (1, 2), (2, 2)},
R2 = {(1, 1), (3, 1), (4, 3)},

G ↓ u = (G[f(u)]�R1 G ↓ v1)�R2 G ↓ v2.

One can easily verify the following from the construction of Claim 7.3.

Remark 7.2 If for each (u, v) ∈ ET the shared edges between f(u) and f(v) are incident to at
most k − i vertices in f(v), then cwd(G) ≤ 2k − i+ 1.
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Figure 22: Illustrating the proof of Claim 7.3.

We can now prove Proposition 7.1.

Proof of Proposition 7.1. Let (T, f) be a rooted tree-decomposition of width k of G satis-
fying the condition of Lemma 7.1. By Lemma 7.2, we can build a graph H, a forest F and a
strong tree-decomposition (T, g) of H with G = H/EF . The notation g is as in Lemma 7.2.
Let ~F = (VF , E~F ) where

E~F = {(xu, xv) | xuxv ∈ EF and (u, v) ∈ ET }.

It is clear that und(~F ) = F . By the de�nition of F , H/EF has no loops nor multiple edges,
so EF is good in H. Then ~F is a good rooted forest in H.

By Lemma 1.1 and Theorem 7.2, we have rwd(G) ≤ rwd(H � ~F ). We now prove that
rwd(H � ~F ) ≤ 4k + 2.

Let h(u) = g(u) ∪ {xt
u | xu ∈ V nroot

~F
}. It is easy to prove that (T, h) is a strong tree-

decomposition of H � ~F of width at most 2k+ 1. We have 2k+ 1 instead of 2(k+ 1) because,
for each u ∈ VT , the size of the set {xu | xu ∈ V nroot

~F
} is at most k and then the size of the

set {xt
u | xu ∈ V nroot

~F
} is at most k. It is easy to verify (from the de�nition of (T, f)) that,

for each (u, v) ∈ ET in (T, h), the shared edges between the vertices of h(u) and the vertices
of h(v) are incident to at most 2k vertices in h(v). Then by Lemma 7.4 and Remark 7.2,
cwd(H � ~F ) ≤ 4k + 2.

By Proposition 1.2, we have rwd(H � ~F ) ≤ 4k + 2. Then rwd(G) ≤ 4k + 2.
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7.4 A Proof of Proposition 7.2

This proof is due to Oum (private communication). The notion of branch-width of an undi-
rected graph is de�ned in De�nition 1.8, however we recall the following notations. If G is
an undirected graph, for every subset X of EG we let TX be the set of vertices incident to at

least one edge in X and we let ηG(X) =
∣∣∣{TX ∩TEG−X}

∣∣∣ where ηG : 2EG → N. We now recall

the notion of tangles [RS91].

Let G be a graph. It is common, given a bipartition (A,B) of EG such that ηG(A) = ηG(B)
is a small integer, to view one of A or B as the �small part� of the bipartition. In [RS91] the
following example is given: if H is a minor of G, isomorphic to a large complete graph, then
for every bipartition (A,B) such that ηG(A) is small, exactly one of A or B has a sub-graph
contracted to a vertex of H; in this case we consider the other as the �small part�. Informally,
the notion of tangle [RS91] can be seen as an axiomatization of a family of �small parts�.

De�nition 7.5 (Tangles [RS91]) Let V be a set and let f : 2V → N be a symmetric and
sub-modular function with f(∅) = 0. Let k be a positive integer. A collection T of subsets of V
is called an f -tangle of order k + 1 if it satis�es the following conditions:

(TA1) For all A ⊆ V , if f(A) ≤ k, then either A ∈ T or V −A ∈ T .

(TA2) If A,B,C ∈ T , then A ∪B ∪ C 6= V .

(TA3) For all v ∈ V , we have V − {v} /∈ T .

The notion of tangle can be also seen as a kind of duality to the notion of branch-width
of symmetric functions, as showed by Robertson and Seymour [RS91].

Theorem 7.3 ([RS91]) Let f : 2V → N be a symmetric and sub-modular function with
f(∅) = 0. There is no f -tangle of order k + 1 if and only if the branch-width of the function
f is at most k.

We can now prove the following and then Proposition 7.2.

Proposition 7.3 Let k ≥ 2. If an undirected graph G has rank-width at least k + 1, then G
has branch-width at least k + 1.

Proof. We assume G connected without loss of generality. Since the rank-width of G is larger
than k, there exists a ρGF (2)

G -tangle T of order k+1. Let U = {X ⊆ EG | ηG(X) ≤ k and TX ∈
T }. We claim that U is an ηG-tangle of order k + 1.

1. Suppose that ηG(X) ≤ k for a set X of edges. We need to show that either X ∈ U
or EG − X ∈ U . Suppose that X /∈ U and EG − X /∈ U . Then TX /∈ T . Since
ρ

GF (2)
G (TX) ≤ k and T is a ρGF (2)

G -tangle, we know that (VG − TX) ∈ T . Similarly,
we deduce that (VG − TEG−X) ∈ T . Moreover, since ηG(X) ≤ k, TX ∩ TEG−X ∈ T
(any set of at most k vertices belongs to a ρGF (2)

G -tangle of order k + 1). This leads a
contradiction because (VG − TX) ∪ (TX ∩ TEG−X) ∪ (VG − TEG−X) = VG which violates
Condition (TA2) in De�nition 7.5.
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2. Suppose that X ∪Y ∪Z = EG for three sets X,Y, Z ∈ U . If v /∈ TX ∪TY ∪TZ , then v is
an isolated vertex. Since G is connected, there is no such v. Thus TX ∪ TY ∪ TZ = VG

and TX , TY , TZ ∈ T . A contradiction (violation of Condition (TA2) in De�nition 7.5).

3. For each edge e ∈ EG, ηG({e}) ≤ 2 and therefore if k ≥ 2, then T{e} ∈ T . So, {e} ∈ U .

We checked all conditions of De�nition 7.5 by (1)-(3). This completes the proof.

Corollary 7.1 For every graph G, rwd(G) ≤ max{bwd(G), 1}.

Proof. By Proposition 7.3, if the branch-width of G is larger than 1, then the rank-width of
G is at most the branch-width of G. If the branch-width of G is 1, then G is a forest and
therefore the rank-width of G is 1. If the branch-width of G is 0, then G is a matching and
therefore the rank-width of G is 1.

Proof of Proposition 7.2. Robertson and Seymour [RS91] proved that bwd(G) ≤
twd(G) + 1. And by Corollary 7.1, rwd(G) ≤ bwd(G).

We now try to give an answer to Question 7.1. One can verify that the proof of Proposition
7.1 is constructive. Given a graph G and an optimal tree-decomposition (T, f) of G, we
construct a graph, denoted by H � F , from (T, f) and construct a strong tree-decomposition
(T, g) of H � F . We then construct from (T, g) a clique-width expression t, that uses 4k + 2
colors, of H �F . Finally, by the proof of Proposition 1.2 in [OS06], t can be transformed into

a layout of the function ρGF (2)
G of branch-width at most 4k + 2.

Regarding the proof of Proposition 7.2, it is not clear how to get a layout of G. If from a
tree-decomposition of G of width k, we can get a layout of the function of ηG of branch-width
k + 1 [RS91], the proof of Proposition 7.2 does not inform on how to transform a layout of

the function ηG of branch-width k into a layout of the function ρ
GF (2)
G of branch-width k.

In fact, in a layout (T,L) of the function ηG the leaves of T are in bijection with the edges

of G, whereas in a layout (T,L) of the function ρGF (2)
G the leaves of T are in bijection with

the vertices of G. Oum gives another proof of Proposition 7.2 in [Oum08b] that is also a
non-constructive proof. Therefore, if with our proof technique we get an upper bound that
is not tight, it has the advantage of being constructive, which is not the case for the known
proofs of Proposition 7.2.

7.5 Conclusion

We have shown how to simulate edge contractions by duplicating certain vertices and by using
vertex-minor operations. As an application of these techniques we have shown that rank-width
is linearly bounded in term of tree-width.

We can also simulate edge deletions. Let G be a simple undirected graph and let e = xy
be an edge linking x and y in G. If we introduce a new vertex x′ adjacent to x and y, we
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obtain a graph G′; by applying a local complementation at x′, we delete the edge e; deleting
the vertex x′, we get the graph G-e which is G without the edge e, and G-e is a vertex-minor
of G′. We have then shown how to simulate deletion of edges by vertex-minor operations.

Oum conjectured that graphs are well-quasi-ordered by the vertex-minor relation [Oum05b,
Oum05c] and proved this fact for graph classes of bounded rank-width [Oum08a]. In this
chapter we prove that minor-operations can be simulated by vertex-minor operations. The
techniques shown in this chapter can perhaps help to tackle the conjecture.

We now conclude this part, concerning graph classes of bounded rank-width, by two ta-
bles that summarize the known results. Because of space constraints, we use the following
abbreviations.

Abbreviation Full Expression

A. C Algebraic Characterization
R. A. Recognition Algorithm
F. C. Forbidden Con�gutations
W. P. Width Parameter
C. T. Cubic-Time
Approx Approximation

W. P. A. C. R. A. F. C.

Clique-Width YES (De�nition) Approx C. T. [OS06, HO07] NO
Rank-Width YES (Theorem 4.3) Exact C. T. [HO07] YES [Oum05b]

Table 2: Summary of the results concerning undirected graphs.

W. P. A. C. R. A. F. C.

Clique-Width YES (De�nition) Approx C. T. (Corollary 5.2) NO
GF (4)-Rank-Width Approx (Theorem 4.4) Exact C. T. (Theorem 5.3) YES (Theorem 3.1)
Bi-Rank-Width Approx (Propositions 4.8, 4.9) Exact C. T. (Theorem 5.1) NO

Table 3: Summary of the results concerning directed graphs.
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Labeling Schemes for Graph Classes of

Unbounded Rank-Width

Decompositions and Algorithmic Results

There are many types of graph decompositions, which are useful for investigating graph struc-
tures and for algorithmic purposes. We have in particular.

(T1) Canonical graph decompositions: decomposition of connected graphs into 2-connected
graphs, decomposition of 2-connected graphs into 3-connected components [Tut66], mod-
ular decomposition [Gal67] or split-decomposition [Cun82].

(T2) Graph decompositions associated with graph parameters and their corresponding
or equivalent de�nitions by algebraic terms written with graph operations: tree-
decomposition [RS86] with its associated graph parameter tree-width or rank-
decomposition [Oum05b] and its associated graph parameter rank-width.

(T3) Graph decompositions that give some structural informations on certain classes of
graphs: decompositions of graph classes that exclude a �xed graph as a minor
[RS03, Gro07, KM07, DGK07], decompositions of perfect graphs in [CRST03] or of
claw-free graphs [CS08a, CS08b].

(T4) Other decompositions driven by the search of some structural informations: the sparse
decomposition of graph classes that exclude a �xed graph as a minor in [AGMW07].

The decompositions in (T1)-(T3) are mostly based on a tree describing the graphs and
this has many algorithmic applications:

(T1) Decompositions in (T1) can be used as a pre-processing step in some algorithms. In
[Cre07] the modular decomposition is used in the recognition of dynamic cographs,
interval graphs or permutation graphs and split decomposition is used in [GP07] for the
recognition of dynamic distance hereditary graphs. They can also be used for solving
NP-complete problems as done in [Rao08]. We will use in Chapter 9 the decomposition
of connected graphs into 2-connected graphs and the one of 2-connected graphs into
3-connected graphs as tools.

(T2) Decompositions in (T2) can yield meta-theorems for constructing polynomial-time al-
gorithms for MS-de�nable properties. For instance, it is known that every MS-
de�nable property can be checked in linear-time on graph classes of bounded tree-width
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[Cou90, ALS91, Bod96] and can be checked in cubic-time on graph classes of bounded
rank-width [CMR00, HO07].

(T3) The decomposition of graph classes that exclude a �xed graph as a minor in [RS03] can
be used in order to give meta-theorems for FO-de�nable properties. Grohe and Flum
[FG01a] proved that every FO-de�nable property can be checked in polynomial-time on
graph classes that exclude a minor.

However, graphs arising from concrete and real problems are not usually decomposable
in the above ways. Moreover, Johansson [Joh98] proved that random graphs do not have
bounded clique-width (the same statement is probably true for other cases). Several methods
exist in order to try to overcome this di�culty.

• One can de�ne local versions of graph parameters or graph properties, e.g., local tree-
width [FG01b, FG01a] or locally excluding a minor [DGK07].

• One can de�ne other notions of graph decompositions a la (strong) tree-decomposition
that are not based on trees, but on other graph classes as done in [Sch97, WT07].

In the second part of this thesis we will propose decompositions that are based on locally
boundedness of clique-width and decompositions that are roughly planar gluings of graphs of
small clique-width with limited overlaps. These decompositions will be used for constructing
labeling schemes. Let us �rst review the existing algorithmic meta-theorems that concern
graph classes of unbounded clique-width.

One of the �rst algorithmic meta-theorems concerning graph classes of unbounded clique-
width is the theorem by Seese [See96] stating that every FO-de�nable property admits a linear-
time algorithm on graph classes of bounded degree. Eppstein [Epp00] observed that many
graph classes of unbounded tree-width, e.g., planar graphs, bounded degree graph classes,
share a property: the tree-width of every r-neighborhood1 of every vertex depends only on
r. Such graph classes are said to have bounded local tree-width. Eppstein [Epp00] used this
fact and generalized to graph classes that exclude an apex graph2 as a minor the polynomial-
time approximation algorithms for many NP-complete problems (minimum independent set,
H-matching, ...) by Baker [Bak94] on planar graphs. Frick and Grohe [FG01b, Fri04] used
the locality theorem of FO formulas by Gaifman [Gai82] and showed that every FO-de�nable
property can be checked in almost linear-time on graph classes of bounded local tree-width,
which generalized the Seese's result. However, it is not the only way to get similar algorithmic
results to the ones for tree/rank-width since many graph classes do not have bounded local tree-
width. For instance, Grohe et al. considered polynomial-time algorithms for FO-de�nable
properties on graph classes that exclude a �xed graph as a minor [FG01a] or that locally
exclude a minor [DGK07] and, Nešetřil and Ossona de Mendez considered polynomial-time
algorithms for some FO-de�nable properties on graph classes of bounded expansion [NdM06a].
Note that graph classes of bounded expansion and graph classes that locally exclude a minor
are incomparable. The surveys [Gro07, Kre08] reviews algorithmic results on the graph classes
considered in [FG01b, FG01a, DGK07] and others.

1The r-neighborhood of a vertex x is the set of vertices at distance at most r from x.
2An apex graph is a graph such that for some vertex v, the apex, G \ v is planar.
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These decompositions can be also linked with results on graph structure. For instance, a
minor-closed class of graphs has bounded local tree-width if and only it does not contain all
apex-graphs as minors [Epp00, DH04a, DH04b]. There is no known such characterization for
graph classes of bounded local tree/rank-width. The survey [KM07] presents some structural
theorems and algorithmic applications on minor-closed classes of graphs.

The decompositions based on local boundedness of graph invariants are not the only ways
to extend results by Courcelle et al. [Cou90, CMR00]. Another technique consists in general-
izing the notion of (strong) tree-decomposition as considered in [Sch97, DK05]. Precisely, we
can ask, in the de�nition of tree-decomposition (see De�nition 7.1), the graph T to be in a
class H of graphs. Hence, we have a notion of H-decomposition and of H-width. Ina Schiering
[Sch97] considered such decompositions in a logical point of view and proved, in particular,
that the satisfaction of an MS formula ϕ on a graph G can be translated into the satisfaction
of anMS formula ϕ̃ on the H-decomposition of G. A consequence of this result is that if every
MS-de�nable property admits a polynomial-time algorithm on H, then every MS-de�nable
property admits a polynomial-time algorithm on graph classes of bounded H-width. On the
other hand, Diestel and Kühn [DK05] investigated the notion of strong H-width (see De�ni-
tion 7.2 for the notion of strong tree-width). Their goal was to de�ne a hierarchy on graphs
with the minor relation in order to give more structural informations than the one stating that
a class of graphs has unbounded tree-width if and only it contains all planar graphs as minors.
However, it is di�cult to derive important structural properties than that of sparsity with
their proposed hierarchies because the proposed hierarchies either are too naive or contain too
many levels [DK05].

We now review some results on labeling schemes.

Labeling Schemes

We �rst de�ne formally the notion of labeling schemes and then we recall some results.

De�nition 7.6 (Labeling Scheme) Let Σ be a relational structure and let A = 〈A, (RA)R∈Σ 〉
be a relational Σ-structure. Let f : N → N be a mapping. An f -labeling of A is an injective
mapping J : A→ {0, 1}∗ such that for every x ∈ A, |J(x)| ≤ O(f(|A|)). If Y ⊆ A, we let J(Y )
be the set {J(y) | y ∈ Y }. Y is de�ned from J(Y ) by injectivity. Let P (x1, . . . , xm, Y1, . . . , Yq)
be a property on relational Σ-structures. An f -labeling scheme for P on a class of relational

Σ-structures C is a pair of two algorithms (A,B) where:

(L1) A constructs for each Σ-structure A ∈ C an f -labeling J .

(L2) For every a1, . . . , am ∈ A and W1, . . . ,Wq ⊆ A, B veri�es whether
P (a1, . . . , am,W1, . . . ,Wq) holds in A by taking as input the (m + q)-tuple
(J(a1), . . . , J(am), J(W1), . . . , J(Wq)).

For a mapping f : N→ N, a class C of relational Σ-structures admits an f -labeling scheme for
a class of properties P if C admits an f -labeling scheme for each property P ∈ P.

We will say that a class of structures C admits a short labeling scheme for a property P (resp.

a class of properties P) if there exists an f -labeling scheme for P (resp. P) on C such that for
every n-vertex graph G in C, we have n = O(exp(f(n))).
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In distributed networks some properties are frequently asked and the nodes of the network
must act locally, i.e., the nodes do not have a global knowledge of the network, in order to give
an answer. For instance, when routing informations in distributed networks, each node must
decide if there exists a path between itself and the destination by using its local knowledge
of the network. One solution consists in storing the whole graph in each node. However, the
sizes of the considered networks are often huge and because of space constraints we cannot
store all the graph in each node. Moreover, if we use the whole network, the answer to each
query often takes at least linear-time in the size of the network and we would like to reduce
this time because of the sizes of the networks. One way for addressing these problems, i.e.,
each node acts locally and gives the answer relatively quickly, is to use labeling schemes3.
However, we are interested in short labeling schemes because of space constraints and this
raises two questions:

1. Given a property P , for what classes of graphs can we construct a short labeling scheme?

2. Given a class of graphs C, can we characterize the properties that admit a short labeling
scheme on C?

Short labeling schemes for some particular properties are studied for many graph classes
that have unbounded clique-width. For instance, it is proved in [GL07] that we can label the
vertices of every n-vertex graph that exclude a �xed graph H as minor with labels of size
2 log(n)+O(log(log(n))) and checks the adjacency of two vertices by using their labels. Other
properties are also studied, e.g., distance [GP03a, GP03c, GKK+01], routing [AGMW07,
AGM+08] or connectivity [Kor07b]. Some log2-labeling schemes for distance are given in
[GKK+01], e.g., for graph classes of bounded tree-width or chordal graphs. However, there
are some negative results. For instance, Gavoille et al. [GPPR04] showed that the minimal
size of labels for distance is Θ(log2(n)) on trees with n nodes (to be compared with the
log-labeling scheme for interval graphs [GP03b]) and is Ω(n1/3) for n-vertex planar graphs.
Korman [Kor07b] gave a (k2 · log)-labeling scheme for k-vertex connectivity in all graphs.

Similarly to the meta-theorems constructing polynomial-time algorithms forMS-de�nable
properties on graph classes of bounded tree/clique-width, Courcelle and Vanicat [CV03] gave
a meta-theorem for labeling schemes of MS-de�nable properties, stated in the following and
that will be used as a tool for certain cases of graph classes of unbounded clique-width.

Theorem 7.4 Let k be a positive integer. Then

1. For every MS1-de�nable property P (x1, . . . , xm, Y1, . . . , Yq), there exists a log-labeling
scheme (A,B) for P on the class of graphs of clique-width at most k. Moreover, A
computes the labels in O(n3)-time or in O(n · log(n))-time if the clique-width expression
of the input n-vertex graph is given.

2. For every MS2-de�nable property P (x1, . . . , xm, Y1, . . . , Yq), there exists a log-labeling
scheme (A,B) for P on the class of graphs of tree-width at most k. Moreover, A computes
the labels in O(n · log(n))-time, n is the number of vertices of the input graph.

3Note that if we remove the restriction of locality when answering the queries, another way is the use of
oracles, i.e., a central node that answers each query. In general, there is a pre-computation of the network in
order to answer queries as quickly as possible, more often in at most logarithmic-time, and the size of the data
structure constructed by the pre-computation algorithm should be linear in the size of the network. This is
done in the articles by Thorup et al. [DTCR08, PT07, Tho07, TZ05].
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The proof of Theorem 7.4 combines the construction of [CV03] that works for graphs given
with their decompositions, and parsing results by Bodlaender [Bod96] for tree-width and, by
Hliněný , Oum and Seymour [HO07, OS06] for clique-width. Notice also that this theorem
relies deeply on tree-automaton and the fact that every graph of clique-width k is generated
by a 3-balanced term in T (Fk′ , Ck′) where k′ = k ·2k (more precise results are given in [CV03]
and Theorem 6.3). A priori, the fact that many interesting graph classes do not have bounded
clique-width limits the impact of this theorem. However, we will see in the second part of this
thesis that it can be useful for labeling schemes of some properties on graph classes that have
bounded local clique-width.

Overview of the Results

In Chapter 8 we prove that every FO-de�nable property admits a log-labeling scheme on
certain classes of graphs of bounded local clique-width that contain planar graphs, unit-interval
graphs, graphs of bounded degree, .... We also prove that the FO-properties considered in
[NdM06a] also admit log-labeling schemes on graph classes of bounded expansion.

In Chapter 9 we consider the particular property of connectivity. Precisely, we denote by
Conn(x, y,X, F ) the graph property that expresses that x and y are connected by a path that
avoids vertices in X and edges in F . We prove that this property admits a log-labeling scheme
on planar graphs.

In our investigations of graph classes of unbounded clique-width, we are also interested
in graph classes that are constructed by gluing graphs of small clique-width with limited
overlaps. We introduce two new decompositions and associated widths in the spirit of [Sch97,
Die05, WT07], one based on partitions of edges, called H-e-decomposition and the other on
partitions of vertices, called H-v-decomposition. We prove in Chapter 10 that the property
Conn(x, y,X, ∅) admits a log-labeling scheme on some graph classes of small H-e-width (resp.
H-v-width).
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Chapter 8

Labeling Schemes for FO-de�nable
Properties

This chapter is organized as follows. In Section 8.1 we review the locality theorem by Gaifman
[Gai82] and a decomposition of some FO formulas by Frick [Fri04]. In Section 8.2 we recall the
de�nition of local tree-width and we recall some results about it. In Section 8.3 we introduce the
notion of local clique-width and of nicely locally cwd-decomposable, a notion similar to the one
of nicely locally tree-decomposable introduced by Frick [Fri04]. We recall some results about
local bounded clique-width for completeness, also from [Gro07]. In Section 8.4 we prove that
every FO-de�nable property admits a log-labeling scheme on nicely locally cwd-decomposable
graph classes. We conclude by some remarks in Section 8.5.

8.1 Review of Tools from Logic

Let G be a graph and let x and y be in VG. For a positive integer r, we let dG(x, y) be the
distance between x and y in G and for a subset X of VG, we let N r

G(X), the r-neighborhood
of X, be the set {y | dG(x, y) ≤ r for some x ∈ X}.

Let us �rst recall some results by Gaifman [Gai82] and Frick [Fri04] that show how to
decompose �rst order formulas into simpler formulas. Their decompositions are given for FO
formulas without free set variables. However, those decompositions extend to FO formulas
with free set variables since each free set variable can be seen as an unary relation and distance
does not depend on unary relations.

De�nition 8.1 (Local Formulas) Let r and t be positive integers.

1. An FO formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is t-local around (x1, . . . , xm) if for every G, every
a1, . . . , am ∈ VG and every W1, . . . ,Wq ⊆ VG, we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) i� G[N ] |= ϕ(a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G({a1, . . . , am}).
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2. An FO formula ϕ(Y1, . . . , Yq) is basic (t, s)-local if it is equivalent to a formula of the form

∃x1 · · · ∃xs

 ∧
1≤i<j≤s

d(xi, xj) > 2t ∧
∧

1≤i≤s

ψ(xi, Y1, . . . , Yq)


where ψ(x, Y1, . . . , Yq) is t-local around its unique free variable x.

For instance, the query d(x, y) ≤ 2t is a t-local formula around {x, y} since two vertices
x and y are at distance at most 2t in G if and only if they are at distance at most 2t in the
t-neighborhood of {x, y}.

Informally, the satisfaction of a t-local formula ϕ(x̄, Y ) around x̄ depends only on the
t-neighborhood of x̄. And a basic (t, s)-local formula is satis�ed in a graph if and only if there
exist s pairwise disjoint t-neighborhoods, each of them satisfying a t-local formula around one
free FO variable. We can now recall the decomposition of FO formulas into t-local and basic
(t, s)-local formulas. This decomposition says roughly that a formula ϕ(x̄, Y ) is satis�ed in
a graph if and only if there exist pairwise disjoint su�ciently large neighborhoods of x̄ that
satisfy some local properties.

Theorem 8.1 ([Gai82]) Every FO formula ϕ(x̄, Y ) with the free variables x̄ =
(x1, . . . , xm) and Y = (Y1, . . . , Yq) is logically equivalent to a Boolean combination
B(ϕ1(u1, Y ), . . . , ϕp(up, Y ), ψ1(Y ), . . . , ψh(Y )) where:

• each ϕi is a t-local formula around ui ⊆ x̄,

• each ψi is a basic (t′, s)-local formula.

If ϕ is a sentence, then only basic (t′, s)-local sentences occur in the Boolean combination B.
Furthermore, B can be computed e�ectively, and t′ ≤ 7q−1, s ≤ m+q and t ≤ 1

2(7q−1) where
q is the quanti�er-rank of ϕ.

In Theorem 8.1 one can hope that the number of t-local formulas and of basic (t′, s)-local
sentences is bounded. Unfortunately, Dawar et al. [DGKS07] showed that the number of local
formulas is necessarily explosive, i.e., is not bounded by any function.

With Theorem 8.1 in order to give short labeling schemes for FO-de�nable properties on
graph classes of bounded local clique-width1 we must be able to check the validity of basic
(t′, s)-local sentences and also be able to give short labeling schemes for t-local formulas.
However, if it is easy to verify basic (t′, s)-local sentences on graph classes of bounded local
clique-width (Lemma 8.2), short labeling schemes for t-local formulas is not so easy. Indeed,
our objective is to use Theorem 7.4, which concerns graph classes of bounded clique. Therefore,
we need to decompose graphs into sub-graphs of small clique-width with limited overlaps
and such that the t-neighborhood of each tuple is contained in a sub-graph. But, such a
decomposition is too restrictive. Frick [Fri04] met the same di�culty for the counting of
solutions of FO formulas on graph classes of bounded local tree-width. To overcome this
di�culty, he distinguished tuples by using the intersection of their t-neighborhoods and gave
a decomposition of t-local formulas. We will see that this decomposition is also useful in the

1The notion of local clique-width and of local tree-width is given in De�nition 8.2
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labeling schemes for FO-de�nable properties on graph classes of bounded local clique-width.
We now introduce this decomposition of t-local formulas.

Let m, t ≥ 1. The t-distance type of an m-tuple ā is the undirected graph ε = ([m], Eε)
where Eε(i, j) i� d(ai, aj) ≤ 2t + 1. The satisfaction of a t-distance type by an m-tuple can
be expressed by a t-local formula:

ρt,ε(x1, . . . , xm) =
∧

(i,j)∈Eε

d(xi, xj) ≤ 2t+ 1 ∧
∧

(i,j)/∈Eε

d(xi, xj) > 2t+ 1.

A t-connected m-tuple is anm-tuple that satis�es a connected t-distance type form-tuples.
We now recall a normal form for t-local formulas by Frick [Fri04] that uses t-distance types.

Lemma 8.1 ([Fri04]) Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ = (x1, . . . , xm),
m ≥ 1. For each t-distance type ε with ε1, . . . , εp as connected components, one can com-
pute a Boolean combination F t,ε(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp) of formulas ϕi,j with free
variables in x̄ and in (Y1, . . . , Yq) such that:

• the free FO variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction of x̄ to εi),

• each ϕi,j is t-local around x̄ | εi (x̄ | εi is a t-connected s-tuple where s is the size of the
connected component εi),

• for each m-tuple ā and each q-tuple of sets (W1, . . . ,Wq), G |= ρt,ε(ā) ∧ ϕ(ā,W1,
. . . ,Wq) if and only if G |= ρt,ε(ā) ∧ F t,ε(. . . , ϕi,j(ā | εi,W1, . . . ,Wq), . . .).

This lemma says that given ϕ, a t-local formula around an m-tuple and ε, a t-distance
type of m-tuples, one can �nd a Boolean combination F t,ε of t-local formulas, each around
t-connected tuples, and such that if an m-tuple satis�es ε, then it satis�es ϕ if and only if
it satis�es F t,ε. Then given ϕ, a t-local formula around an m-tuple and a decomposition of
a graph that guarantees that the m · (2t + 1)-neighborhood of each vertex is contained in
sub-graph of small clique-width, we can guarantee that each connected tuple of size at most
m is contained in a sub-graph of small clique-width. This will allow us to give short labeling
schemes for t-local formulas as proved in Lemma 8.5.

8.2 Graph Classes of Bounded Local Tree-Width

We �rst give the following de�nition.

De�nition 8.2 (Local Width) Let gp-width be a graph parameter where the gp-width of a
graph G is denoted by gp(G).

1. The local gp-width of a graph G is the function lgpG : N → N de�ned by lgpG(t) =
max{gp(G[N t

G(a)]) | a ∈ VG}.

2. A class C of graphs has bounded local gp-width if there is a function f : N → N such that
lgpG(t) ≤ f(t) for every G ∈ C and t ∈ N.
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Eppstein de�ned in [Epp00] the notion of local tree-width for graph isomorphisms and in
order to generalize the algorithms by Baker for planar graphs [Bak94] to graph classes that
exclude an apex graph as minor. He proved in particular that every minor-closed class of
graphs has bounded local tree-width if and only if it does not contain all apex-graphs as
minors. An apex graph is a graph such that for some vertex v, the apex, G \ v is planar.
Demaine et al. [DH04a, DH04b] proved that the local tree-width of every minor-closed class
of graphs of bounded local tree-width is bounded by a linear function (The function given by
Eppstein [Epp00] was doubly exponential).

Frick and Grohe [FG01b], by using Theorem 8.1, proved that every FO-de�nable property
can be checked in almost linear-time on classes of graphs of bounded local tree-width and
in linear-time on minor-closed classes of graphs of bounded local tree-width. In database
theory we are in general not only interested that a property is veri�ed, but we want also to
count the set of solutions or to list the set of solutions. For instance, for every MS-de�nable
property we can count the set of solutions in linear-time on graph classes of bounded tree-
width [CMR01, FMR08]. We can also list the set of solutions in time proportional to the set
of solutions after a linear-time pre-processing [CMR01]. Frick [Fri04] considered the counting
and listing problem on graph classes of bounded local tree-width. By Theorem 8.1, for every
FO formula ϕ(x1, . . . , xm, Y1, . . . , Yq), there exist positive integers r, s and t such that the
satis�ability of ϕ on a graph G depends only on the r-neighborhoods of {x1, . . . , xm} and
on the t-neighborhoods of s vertices that are at distance at least 2t. Then to have a chance
to list or to count the set of solutions for an FO-de�nable property P (x1, . . . , xm) on graph
classes of bounded local tree-width, an idea is to cover these graphs by sub-graphs of small
tree-width, in order to use results in [CMR01], that have limited intersections, and such that
the r-neighborhood of each m-tuple is contained in at least one of these sub-graphs. However,
this covering is too restrictive: we cannot at the same time restrict the intersections of the
covers and ask for the r-neighborhood of eachm-tuple to be included in a cover, that moreover
must have small tree-width. What happens if we ask for the r-neighborhood of each vertex,
instead of each m-tuple, to be included in a sub-graph of small tree-width, but the union of q
such sub-graphs must have tree-width that depends on q? This will allow to solve at least the
case of formulas with only one free FO variable and for instance on planar graphs that admit
such decompositions. In fact, Frick [Fri04] proved that such decompositions are enough for the
counting and the listing of solutions for FO formulas by using Lemma 8.1. For that purpose
he introduced the notion of nicely locally tree-decomposable graph classes and proved that for
every FO formula, we can count the number of solutions in linear-time and list the set of
solutions in time proportional to the size of the set of solutions [Fri04]2. We will see in Section
8.4 that this notion of nicely locally tree-decomposable is also enough for labeling schemes.
We now de�ne, in a more general context, the notion of nicely locally tree-decomposable.

De�nition 8.3 (Covering Graphs) Let gp-width be a graph parameter where the gp-width
of a graph G is denoted by gp(G). Let r, ` ≥ 1 and g : N → N. An (r, `, g)-gp cover of a graph
G is a family T of subsets of VG such that:

(CC1) For every a ∈ VG, there exists a U ∈ T such that N r
G (a) ⊆ U .

(CC2) For each U ∈ T , there exist less than ` many V ∈ T such that U ∩ V 6= ∅.
2Durand et al. improved this result on graph classes of bounded degree [BDG07] by using di�erent tech-

niques based on elimination of quanti�ers.
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(CC3) For each U ∈ T , we have gp(G[U ]) ≤ g(1).

An (r, `, g)-gp cover is nice if condition (CC3) is replaced by condition (CC4) below:

(CC4) For all U1, . . . , Uq ∈ T , for q ≥ 1, we have gp(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is (nicely) locally gp-decomposable if there is a polynomial-time algorithm
that given a graph G ∈ C and r ≥ 1, computes a (nice) (r, `, g)-gp cover of G for suitable ` and
g depending on r.

As in [Fri04], we incorporate the polynomial-time requirement in order to minimize the
number of notions to be used.

It is clear that if a class of graphs is nicely locally gp-decomposable, then it is locally
gp-decomposable. Notice that a locally gp-decomposable class of graphs has also bounded
local gp-width. We do not know if every class of graphs of bounded local tree-width is (nicely)
locally tree-decomposable and it seems not. However, important classes of graphs of bounded
local tree-width are nicely locally tree-decomposable.

Example 8.1 1. Every graph of bounded tree-width is obviously nicely locally tree-
decomposable.

2. Frick proved that classes of graphs of bounded degree and planar graphs are nicely locally
tree-decomposable [Fri04].

3. Frick and Grohe proved that every minor-closed class of graphs of bounded local tree-width
is nicely locally tree-decomposable [Fri04, FG01b].

We notice that the notion of covering a graph by blocks by imposing some properties on
the blocks is not new. For instance, Peleg [Pel93] showed that for every positive integer r,
every graph can be covered by sub-graphs of small radius (depending on r) and such that the
r-neighborhood of each vertex in contained in some sub-graph; this covering can be found in
polynomial-time and is independent of the notions of tree-width and of clique-width. Another
example of covering of graphs can be found in [AGMW07] where Abraham et al. proved that
every graph that excludes a �xed graph as a minor can be decomposed into sub-graphs of
small diameter and with limited overlaps.

8.3 Graph Classes of Bounded Local Clique-Width

Planar graphs, graph classes of bounded degree, apex-minor-free graph classes have bounded
local tree-width and are in fact nicely locally tree-decomposable [Fri04]. However, many
classes of graphs do not have bounded local tree-width. Many classes of graphs that do not
have bounded tree-width have bounded clique-width. What can we say about classes of graphs
of bounded local clique-width and graph classes that are (nicely) locally cwd-decomposable?
We investigate these classes. One can easily adapt the results by Frick and Grohe [FG01b] in
order to prove that every FO-de�nable property can be checked in polynomial-time on classes
of graphs of bounded local clique-width (Lemma 8.2). There is no known minor inclusion
related to clique-width, however one exists for rank-width, the vertex-minor inclusion (Section
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1.2). Since rank-width is equivalent to clique-width (Proposition 1.2), one can then ask for a
characterization of vertex-minor closed classes of graphs of bounded local rank-width, hence
of bounded local clique-width.

We now give examples of graph classes of bounded local clique-width. For every graph
G and every positive integer m, we let Gm be the graph obtained from G by adding edges
between x and y whenever dG(x, y) ≤ m.

Fact 8.1 (i) Each class of graphs of bounded clique-width has bounded local clique-width.

(ii) Each class of graphs of bounded local tree-width has bounded local clique-width. Each
(nicely) locally tree-decomposable class of graphs is (nicely) locally cwd-decomposable.

(iii) The class of unit-interval graphs has bounded local clique-width and is nicely locally cwd-
decomposable.

(iv) Let m be a positive integer. Let C be a class of graphs of bounded local clique-width.
Then Cm = {Gm | G ∈ C} has bounded local clique-width.

Proof. (i) If a graph G has clique-width k, then for every W ⊆ VG, we have cwd(G[W ]) ≤ k
[CO00]. Then statement (i) is veri�ed.

(ii) It is known that if a class of graphs has bounded tree-width, then it has bounded clique-
width [CO00, CR05]. Then statement (ii) is veri�ed.

(iii) We will use a result by Lozin in [Loz08]. We let Hn,m be the graph 〈V1∪· · ·∪Vn, E
1∪E2 〉

with nm vertices such that:

Vi = {vi,1, . . . , vi,m},

E1 =
⋃

1≤i≤n

{vi,jvi,` | j, ` ≤ m, j 6= `},

E2 =
⋃

1≤i≤n−1

{vi,jvi+1,` | j ≤ ` ≤ m}.

Each subgraph induced by Vi is a complete graph. Figure 23 shows the graph H4,4. It is
proved in [Loz08] that the clique-width of Hn,m is at most 3n. Moreover, every unit-interval
graph with n vertices is an induced sub-graph of Hn,n [Loz08]. These two properties will be
used.

We �rst prove that unit-interval graphs have bounded local clique-width. Let G be a unit-
interval graph with n vertices. Then for every positive integer r and every vertex x of G,
the subgraph G[N r

G(x)] is isomorphic to an induced subgraph of Hr,n. Thus, for every vertex
x of G and every positive integer r, G[N r

G(x)] has clique-width at most 3r. (Bagan gives in
[Bag09] another proof stating that unit-interval graphs have bounded local clique-width.)

We now prove that the class of unit-interval graphs is nicely locally cwd-decomposable. Let
G be a unit-interval graph with n vertices. Hence, it is a subgraph of Hn,n = 〈V1 ∪ · · · ∪
Vn, E

1, E2 〉. Without loss of generality, we may assume G connected. We can also assume
that VG =

⋃
1≤i≤n V

′
i where V ′

i = {vi,i1 , . . . , vi,i`} with 1 ≤ i1 ≤ i2 ≤ · · · ≤ i` ≤ n. For each
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1 ≤ i ≤ n, we let Ui = N r+1
G (vi,i1). We let g : N→ N be de�ned by g(q) = 3 · q · (r + 1). We

claim that {Ui | 1 ≤ i ≤ n} is a nice (r, 2r + 3, g)-cwd cover. It is clear by construction that
for every 1 ≤ i ≤ n and every vertex v in V ′

i , the set N
r
G(v) is a subset of Ui.

We now prove that for every positive integer q, if we take q subsets Uj1 , . . . , Ujq , then the
subgraph G[Uj1∪· · ·∪Ujq ] has clique-width at most 3·q·(r+1). Assume that j1 ≤ j2 ≤ · · · ≤ jq
and let G1, . . . , Gp be the connected components of G[Uj1 ∪ · · · ∪ Ujq ]. We need only prove
the claim for each connected component. Let G1 be one of them. It is of the form, without
loss of generality, G[Uj1 ∪ · · · ∪ Uj`1

] with the property that j1 ≤ · · · ≤ j`1 . Thus, G1 is an
induced subgraph of Hj`1

·(r+1),n, hence has clique-width at most 3 · `1 · (r + 1). Hence, the
clique-width of G[Uj1 ∪ · · · ∪ Ujq ] is at most 3 · q · (r + 1).

Let v be a vertex in V ′
i for 1 ≤ i ≤ n. By construction, v can only be in

Ui, Ui−1, . . . , Ui−(r+1), Ui+1, . . . , Ui+(r+1). Thus, v is in at most 2(r + 1) + 1 sets Ui. This
concludes the proof.

(iv) Let us sketch the proof. Let G be a graph in C. For every vertex x of G and every positive
integer r, we have N r

Gm(x) = N rm
G (x). One easily veri�es that Gm[N r

Gm(x)] = G′[N rm
G (x)]

where G′ = (G[N (r+1)m
G (x)])m. It is proved in [ST07] that if a graph H has clique-width k,

then Hm has clique-width at most 4 · (m + 1)k. Hence, for every graph G in C and every
positive integer r, lcwdGm

(r) ≤ 4 · (m+ 1)f(r(m+1)) where f is the function that bounds the
local clique-width of graphs in C.

H4,4

V1

V2

V3

V4

v1,4

v2,1

v3,1

v1,1

v4,1v4,4

v3,4

v2,4

Figure 23: The graph H4,4. Each Vi, for 1 ≤ i ≤ 4, induces a clique.

We now prove that every FO formula can be checked in polynomial-time on graph classes
that have bounded local clique-width. For a graph G and W ⊆ VG, we let the r-kernel of W
in G be the set Kr

G(W ) = {a ∈ VG | N r
G(a) ⊆W}.
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Lemma 8.2 ([FG01b]) Let C be a class of graphs of bounded local clique-width. Then for
every graph G with n vertices in C and every FO formula ϕ, we can decide if G veri�es ϕ in
O(n4)-time.

Frick and Grohe proved in [FG01b, Lemma 8.3] that given a graph G which is in a class
C of graphs of bounded local tree-width, two positive integers r and m and a subset P of VG,
one can check in linear-time if there exist a1, . . . , am in P that are pairwise at distance at least
r. With help of Theorem 1.2 the same thing can be proved for graph classes of bounded local
clique-width, stated in the following.

Lemma 8.3 ([FG01b, Gro07]) Let C be a class of graphs of bounded local clique-width and
let r andm be two positive integers. Then there exists an O(n3)-time algorithm that given an n-
vertex graph G ∈ C and P ⊆ VG, decides if there exist a1, . . . , am in P such that dG(ai, aj) > r
for all 1 ≤ i < j ≤ m.

We can now prove Lemma 8.2.

Proof of Lemma 8.2. It is enough to verify the statement for FO sentences. By Theorem
8.1 a graph veri�es an FO sentence if and only if it veri�es a Boolean combination of basic
(t, s)-local sentences for some positive integers t and s. We can then only show how to verify
basis (t, s)-local sentences. By de�nition, a basic (t, s)-local sentence ϕ is of the form:

∃x1 · · · ∃xs

 ∧
1≤i<j≤s

d(xi, xj) > 2t ∧
∧

1≤i≤s

ψ(xi)


where ψ(x) is a t-local formula around x. Let G be an n-vertex graph that is in a class
C of graphs of bounded local clique-width and let f be the function that bounds the local
clique-width of graphs in C. For each a in VG, we can compute N t

G(a), of size at most n,
in O(n2)-time. By Theorem 1.2 and Proposition 1.2, for each a in VG, we can construct in
O(n3)-time a term t ∈ T (Fk, Ck), k ≤ 2f(t)+1 such that val(t) = G[N t

G(a)]. We can decide
if val(t) veri�es ψ(a) in linear-time by using t [CMR00]. Therefore, we can compute the set
P = {a ∈ VG | G |= ϕ(a)} in O(n4)-time. It is clear that ϕ is true in G if and only if there
exists a1, . . . , am ∈ P such that d(ai, aj) > 2r for 1 ≤ i < j ≤ m. And this can be veri�ed in
O(n3)-time by Lemma 8.3. This �nishes the proof.

8.4 Labeling for FO-de�nable Properties

Our objective is to prove the following.

Theorem 8.2 1. Every FO-de�nable property without free set variables admits a log-
labeling scheme on each locally cwd-decomposable class of graphs.

2. Every FO-de�nable property admits a log-labeling scheme on each nicely locally cwd-
decomposable class of graphs.
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With Theorem 8.1 and Lemma 8.2 the next step before proving Theorem 8.2 is to show
that each t-local formula admits a log-labeling scheme on locally cwd-decomposable classes of
graphs as shown by the lemma below.

Lemma 8.4 Let C be a locally cwd-decomposable class of graphs and let
ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-local formula around x̄ = (x1, . . . , xm). Then there ex-
ists a log-labeling scheme (A,B) for ϕ on C. Furthermore, A computes the labels in
polynomial-time.

Proof. Let G be in a locally cwd-decomposable class with n = |VG|. We �rst construct the
labeling and we therefore explain how to decide ϕ by using these labels. We let T be an
(r, `, g)-cwd cover of G where r = m · (2t + 1). We recall that each G[U ] for U ∈ T has
clique-width at most g(1). We assume that each U ∈ T has an index encoded as a bit string
pUq. For each vertex x, there exist less than ` many U ∈ T such that x ∈ U . Therefore,
there are at most n · ` sets in T . Hence pUq has length O(log(n)). We can now construct the
labeling of G in order to decide ϕ.

By Theorem 7.4, we can label each vertex x ∈ U with a label LU (x) of size O(log(n)) and
decide if dG[U ](x, y) ≤ 2t+ 1 just by using LU (x) and LU (y). For each x ∈ VG, we let:

L(x) =
((

pUq, LU (x) | N2t+1
G (x) ⊆ U

)
,
(
pUq, LU (x) | x ∈ U and N2t+1

G (x) * U
))
.

It is clear that |L(x)| = O(log(n)) since each x is in at most ` sets U in T . Notice that by
using L(x) we can recover the set {pUq | x ∈ U}.

Let ε be a t-distance type of m-tuples with ε1, . . . , εp as connected components. By Lemma
8.1, there exists a Boolean combination F t,ε(ϕε

1,1, . . . , ϕ
ε
1,j1

, . . . , ϕε
p,1, . . . , ϕ

ε
p,jp

) such that for
every a1, . . . , am ∈ VG and every W1, . . . ,Wq ⊆ VG,

G |= ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq) i� G |= ρt,ε(ā) ∧ F t,ε(. . . , ϕε
i,j(ā | εi,W1, . . . ,Wq), . . .).

For each G[U ] and each ϕε
i,j , we apply Theorem 7.4 which constructs a log-labeling JU,ε

i,j on
G[U ] for ϕε

i,j . For each vertex x, we let

Jε =
((

pUq, JU,ε
1,1 (x), . . . , JU,ε

p,jp
(x)
)
| N t

G(x) ⊆ U
)
.

It is clear that for each ε and each x ∈ VG, we have |Jε(x)| = O(log(n)). There exist at most
k′ = 2m(m−1)/2 t-distance type graphs for m-tuples; we enumerate them by ε1, . . . , εk

′
. For

each x, we let

J(x) =
(
L(x), Jε1(x), . . . , Jεk′ (x)

)
.

It is clear that |J(x)| = O(log(n)) and is computed in polynomial-time. Let a1, . . . , am ∈ VG

and W1, . . . ,Wq ⊆ VG. We now explain how to decide if G |= ϕ(a1, . . . , am,W1, . . . ,Wq) by
using J(a1), . . . , J(am) and J(W1), . . . , J(Wq).

T is an (r, `, g)-cwd cover for r = m(2t + 1). Then for every x and y in VG, we have
dG(x, y) ≤ 2t+ 1 if and only if there exists a U ∈ T such that dG[U ](x, y) ≤ 2t+ 1. Therefore,
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by using L(a1), . . . , L(am) from J(a1), . . . , J(am), we can construct the t-distance type ε
satis�ed by a1, . . . , am; let ε1, . . . , εp be the connected components of ε. We recover from
J(a1), . . . , J(am) the labels Jε(a1), . . . , Jε(am). We use r = m(2t + 1) in order to warranty
that if (a1, . . . , ap), p ≤ m is a t-connected p-tuple, then there exists a U ∈ T such that
N t

G(a1, . . . , ap) ⊆ U . Then for every ā | εi, by using for instance Jε(b) for b ∈ ā | εi,
we can recover a set Ui ∈ T such that N t

G(ā | εi) ⊆ Ui. It remains to recover Wj ∩ Ui

for each j ≤ q. But by using the labels L(x) we can recover the set {pUq | x ∈ U},
hence we can recover, for each W ⊆ VG and U ∈ T , the set W ∩ U . Therefore, for
each j ≤ q, we can recover Wj ∩ Ui from J(Wj). We can then decide if G satis�es
F t,ε(ϕε

1,1(ā | ε1,W1 ∩ U1, . . . ,Wq ∩ U1), . . . , ϕε
p,jp

(ā | εp,W1 ∩ Up, . . . ,Wq ∩ Up)). And this is
su�cient by De�nition 8.1 and Lemma 8.1.

We can now prove Theorem 8.2. We will prove the two statements separately.

Proof of Theorem 8.2 (1). Let G belong to a locally cwd-decomposable class with |VG| = n.
Let P (x1, . . . , xm) be an FO-de�nable property described by the FO formula ϕ(x1, . . . , xm).
By Theorem 8.1, ϕ is equivalent to a Boolean combination B(ϕ1(u1), . . . , ϕp(up), ψ1, . . . , ψh)
where each ϕi is a t-local formula around ui ⊆ x̄ and each ψi is a basic (t′, s)-local sentence
for suitable t, t′ and s.

By Lemma 8.2, we can decide in O(n4)-time each sentence ψi. Let b = (b1, . . . , bh) where
bi = 1 if G satis�es ψi and 0 otherwise. By Lemma 8.4, there exists a log-labeling Ji for each
ϕi(ui), 1 ≤ i ≤ p on G. For each x, we let J(x) = (J1(x), . . . , Jp(x), b). It is clear that |J(x)| =
O(log(n)). We now explain how to decide ϕ(a1, . . . , am) just by using J(a1), . . . , J(am).

From J(a1), . . . , J(am), we can recover the truth value of each sentence ψi. And by Lemma
8.4, we can decide if G |= ϕi(ā | ui) just by using Ji. Therefore, we can decide if G satis�es
B(ϕ1(ā | u1), . . . , ϕp(ā | up), ψ1, . . . , ψh), hence if G satis�es ϕ(a1, . . . , ap) by using only
J(a1), . . . , J(am).

We can now prove Theorem 8.2 (2). But before let us de�ne the intersection graph of a
cover of a graph G, i.e., a family T of subsets of VG the union of which is VG.

De�nition 8.4 (Intersection Graph) Let G be a graph and let T be a cover of G. The
intersection graph of T is the graph G(T ) where VG(T ) = {xU | U ∈ T } and xUxV ∈ EG(T ) if
and only if U ∩ V 6= ∅.

It is clear that if T is an (r, `, g)-cwd cover of a graph, then G(T ) has maximum degree at
most `. Let m be a positive integer, a distance-m coloring of a graph G is a proper coloring
of Gm, where Gm is the graph with VG as set of vertices and for every x, y ∈ VG, xy ∈ EGm

if and only if dG(x, y) ≤ m. Then in a proper distance-m coloring, vertices at distance at
most m have di�erent colors. If ∆(G) is the maximum degree of a graph G, then G admits a
proper coloring with ∆(G)+1 colors. Since G(T ) has maximum degree at most `, then G(T )
admits a proper distance-m coloring with `O(m) colors since G(T )m has maximum degree at
most `O(m).
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We say that two sets of vertices W and W ′ of a graph G touch if W ∩W ′ 6= ∅ or there
exists an edge between a vertex of W and one of W ′. It is clear that if W =

⋃
1≤i≤pWi ⊆ VG

and Wi,Wj pairwise do not touch, then G[W ] is the disjoint union of the graphs G[Wi]. It
follows that cwd(G[W ]) = max{cwd(G[Wi]) | 1 ≤ i ≤ p}.

Proof of Theorem 8.2 (2). Let G belong to a nicely locally cwd-decomposable class with
|VG| = n. By Lemma 8.4, it is su�cient to consider FO formulas ϕ(Y1, . . . , Yq) of the form:

∃x1 · · · ∃xm

 ∧
1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m

ψ(xi, Y1, . . . , Yq)


where ψ(x, Y1, . . . , Yq) is t-local around x. We show that there exists a log-labeling scheme
for such formulas on nicely locally cwd-decomposable classes of graphs. We consider for the
sake of clarity the particular case of m = 2.

Let T be a nice (r, `, g)-cwd cover of G where r = 2t+ 1. We let γ be a distance-3 coloring of
the intersection graph of T . For every 2 colors i and j, we let Gi,j be the graph induced by
the union of the sets U ∈ T of colors i and j (possibly i = j).

Claim 8.1 cwd(Gi,j) ≤ g(2).

Proof of Claim 8.1. Let T 2 = {U ∪ U ′ | U,U ′ ∈ T , U ∩ U ′ 6= ∅}. The vertex set of the
graph Gi,j is a union of sets in T ∪ T 2. No two sets of this union touch: if a set U ∪ U ′ is
such that U ∩ U ′ 6= ∅ and meets some U ′′ ∈ T with U ′′ 6= U and U ′′ 6= U ′, then we have
γ(U) = i, γ(U ′) = j 6= i and U ′′ meets U or U ′. It can have neither color i nor color j
because γ is a distance-3 coloring and U,U ′ and U ′′ are pairwise at distance at most 2.
Now, if there exists an edge between a vertex x in U ∪ U ′ and a vertex y in U ′′ ∈ T , then
there exists a set W ∈ T such that x and y are in W . Hence, U ′′ and U are at distance
at most 3, similarly for U ′′ and U ′. Thus, U ′′ can have neither color i nor color j. We can
then conclude that Gi,j is a disjoint union of graphs G[U ∪ U ′] with U ∪ U ′ ∈ T 2 and of
graphs G[U ] for U ∈ T that do not touch pairwise. Since cwd(G[U∪U ′]) ≤ g(2), we are done.

Claim 8.2 Let x ∈ K2t
G (U) and y ∈ K2t

G (U ′) for some U,U ′ ∈ T . Then dG(x, y) > 2t if and
only if dG[U∪U ′](x, y) > 2t.

Proof of Claim 8.2. It is clear that if dG(x, y) > 2t, then dG[U∪U ′](x, y) > 2t since
dG(x, y) ≤ dG[U∪U ′](x, y). For proving the converse direction, assume that dG(x, y) ≤ 2t.
Then there exists in G a path of length at most 2t from x to y. This path is also in G[U ]
since x ∈ K2t

G (U). Hence, it is also in G[U ∪ U ′]. Therefore, dG[U∪U ′] ≤ 2t.

Let us now give to each vertex x of G the smallest color i such that x ∈ K2t
G (U) and γ(U) = i

and denote it by γ(x). Hence, a vertex has one and only one color. We can then consider G
as the structure 〈VG, EG, c1G, . . . , clG 〉 where l = `O(1) and ciG(x) holds if and only if x has
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color i. For each pair of colors (i, j), we consider the formula ψi,j(Y1, . . . , Yq) (possibly i = j):

∃x∃y
(
d(x, y) > 2t ∧ ψ(x, Y1, . . . , Yq) ∧ ψ(y, Y1, . . . , Yq) ∧ ci(x) ∧ cj(y)

)
.

By Theorem 7.4, we can construct for each formula ψi,j a log-labeling, Ji,j in the graph
Gi,j . We also compute the truth value bi,j of ψi,j(∅, . . . , ∅) in Gi,j ; we get a vector b of �xed
length by concatenating all bi,j . We let J(x) =

(
γ(x), (Ji,j(x) | x ∈ VGi,j ), b

)
. It is clear that

|J(x)| = O(log(n)).

We now explain how to check the validity of ϕ(W1, . . . ,Wq) by using J(W1), . . . , J(Wq). From
J(x), for x ∈ Wi, 1 ≤ i ≤ q, we can recover the color of x. Then from J(W1), . . . , J(Wq), we
can determine those Gi,j such that VGi,j ∩ (W1 ∪ · · · ∪Wq) 6= ∅, and check if, for one of them,
Gi,j |= ψi,j(W1 ∩ VGi,j , . . . ,Wq ∩ VGi,j ). If one is found, we are done. Otherwise, we use the
bi,j 's to look for Gi,j such that Gi,j |= ψi,j(∅, . . . , ∅) and (W1 ∪ · · · ∪Wq) ∩ VGi,j = ∅. This
gives the correct results because of the following facts:

• If x ∈ K2t
G (U) and y ∈ K2t

G (U ′) satisfy the formula ψ (possibly U = U ′) and dG(x, y) >
2t, then dGi,j (x, y) > 2t. Hence, Gi,j |= ψi,j(W1∩VGi,j , . . . ,Wq ∩VGi,j ) where i = γ(U)
and j = γ(U ′).

• If Gi,j |= ψi,j(W1 ∩ VGi,j , . . . ,Wq ∩ VGi,j ) then we get G |= ϕ(W1, . . . ,Wq) by similar
argument (in particular dGi,j (x, y) > 2t implies dG[U∪U ′](x, y) > 2t which implies that
dG(x, y) > 2t by Claim 8.2).

For m = 1, the proof is similar with γ a distance-2 coloring and we use Gi,i instead of Gi,j .
For m > 2, the proof is the same. We take for γ a distance-(m+1) coloring of the intersection
graph. Then we consider graphs Gi1,...,im de�ned as (disjoint) unions of sets U1 ∪ · · · ∪ Um

for U1, . . . , Um in T , of respective colors i1, . . . , im. We can then prove that Gi1,...,im has
clique-width at most g(m) by using similar arguments as the ones used for Claim 8.1. This
terminates the proof of Theorem 8.2.

Frick in [Fri04] considered the case of counting queries for FO formulas on nicely locally
tree-decomposable classes, which consist in counting the number of solutions. We will prove
in this section that if a property is FO-de�nable, then we can count the set of solutions on
nicely locally cwd-decomposable classes of graphs. We de�ne formally the notion of counting
query.

De�nition 8.5 (Counting Query) Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a formula and let G be
a �nite graph. For W1, . . . ,Wq ⊆ VG, we let

#Gϕ(W1, . . . ,Wq) =
∣∣∣{(a1, . . . , am) ∈ V m

G | G |= ϕ(a1, . . . , am,W1, . . . ,Wq)
}∣∣∣.

The counting query of ϕ consists in determining #Gϕ(W1, . . . ,Wq) for given (W1, . . . ,Wq).
Let s be a positive integer. The counting query of ϕ modulo s consists in determining
#Gϕ(W1, . . . ,Wq) modulo s for given (W1, . . . ,Wq).
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The following theorem is an easy extension of Theorem 7.4.

Theorem 8.3 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an MS1 formula over graphs and k, s ∈ N.
There exists a log2-labeling scheme (resp. log-labeling scheme) on the class of graphs of clique-
width at most k for the counting query of ϕ (resp. counting query of ϕ modulo s).

We prove a similar theorem for nicely locally cwd-decomposable classes of graphs and FO
formulas.

Theorem 8.4 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an FO formula and s ∈ N. There exists a
log2-labeling scheme (resp. log-labeling scheme) for the counting query of ϕ (resp. counting
query of ϕ modulo s) on nicely locally cwd-decomposable classes.

We will �rst prove Theorem 8.4 for a particular case of t-local formulas on locally cwd-
decomposable classes.

De�nition 8.6 (t-Connected Formulas) A formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is t-connected
if for all G, all a1, . . . , am ∈ VG and all W1, . . . ,Wq ⊆ VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) i�

{∧
1≤i<j≤m d(ai, aj) ≤ t and

G[N ] |= ϕ(a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G({a1, . . . , am}).

Remark 8.1 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula. Then for all W ⊇
N t

G(a1, . . . , am),

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) i� G[W ] |= ϕ(a1, . . . , am,W1 ∩W, . . . ,Wq ∩W )

and because N t
G({a1, . . . , am}) ⊆ N2t

G (a1)

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) i� G[N2t
G (a1)] |= ϕ(a1, . . . , am,W1, . . . ,Wq).

Lemma 8.5 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula and let s be a positive
integer. Then there exists a log2-labeling scheme (resp. log-labeling scheme) for the counting
query of ϕ (resp. counting query of ϕ modulo s) on locally cwd-decomposable classes of graphs.

Proof. Let T be a (2t, `, g)-cwd cover of a locally cwd-decomposable n-vertex graph G. Let
γ be a distance-2 coloring of G(T ) with [`2 + 1] colors.

Claim 8.3 Let x ∈ K2t
G (U) and y ∈ U ′ with γ(U) = γ(U ′), U 6= U ′. Then dG(x, y) > 2t.

Proof of Claim 8.3. If this is not the case, then y ∈ U and xU and xU ′ are adjacent in H,
a contradiction since they have the same color.
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For each x, we color it by i, the smallest γ(U) such that x ∈ K2t
G (U). We can then consider G

as a structure 〈VG, EG, c1G, . . . , clG 〉 where l = [`2 + 1] and ciG(x) holds if and only if x has
color i. For each i ∈ [`2 + 1], let ϕi be the formula logically equivalent to

ϕ(x1, . . . , xm, Y1, . . . , Yq) ∧ ci(x1).

Then the following is clear.

Claim 8.4 #Gϕ(Y1, . . . , Yq) =
∑
i

#Gϕi(Y1, . . . , Yq).

We can now show that the counting query of ϕ admits a log2-labeling scheme on each locally
cwd-decomposable class of graphs. Before let us prove the following. Let Vi =

⋃
γ(U)=i

{U | U ∈

T }.

Claim 8.5 cwd(G[Vi]) ≤ g(1).

Proof. Vi is clearly a disjoint union of sets U ∈ T . From De�nition 8.3, each G[U ] has
clique-width at most g(1). Therefore cwd(G[Vi]) ≤ g(1).

Claim 8.6 #Gϕi(Y1, . . . , Yq) = #G[Vi]ϕi(Y1, . . . , Yq).

Proof of Claim 8.6. If ϕ(a1, . . . , am,W1, . . . ,Wq) holds and a1 has color i, then a1 ∈
K2t

G (U) for some U, γ(U) = i. Hence, a2, . . . , am ∈ N2t
G (a1) and G[N2t

G (a1)] |=
ϕ(a1, . . . , am,W1, . . . ,Wq), hence G[Vi] |= ϕ(a1, . . . , am,W1, . . . ,Wq).

If G[Vi] |= ϕi(a1, . . . , am,W1, . . . ,Wq), then ciG(a1) and
∧

1≤l<s≤m

dG[Vi](al, as) ≤ t. But

dG(al, as) = dG[Vi](al, as) = dG[U ](al, as) where a1 ∈ U and γ(U) = i. And since
N t

G({a1, . . . , am}) ⊆ Vi, then G |= ϕi(a1, . . . , am,W1, . . . ,Wq).

By Theorem 8.3 and Claims 8.5 and 8.6, there exists a log2-labeling Ji for the counting
query of each ϕi. For each x ∈ VG, we let J(x) = (J1(x), . . . , J`+1(x)). It is clear that
|J(x)| ≤ O(log2(n)) and is a log2-labeling for the counting query of ϕ by Claim 8.4. By
Theorem 8.3, labels of size O(log(n)) is su�cient for the counting query of each ϕi modulo
s.

We now prove Theorem 8.4.

Proof of Theorem 8.4. Let ϕ(x̄, Y ) be an FO formula with free variables in x̄ = (x1, . . . , xm)
and in Y = (Y1, . . . , Yq). By Theorem 8.1, ϕ is logically equivalent to a Boolean combination
of t-local formulas around x̄ and basic (t′, s)-local formulas. We have proved that each basic
(t′, s)-local formula admits a log-labeling scheme on nicely locally cwd-decomposable classes



8.4. Labeling for FO-definable Properties 145

of graphs in Theorem 8.2 (2). It remains then to prove that the counting query of a t-local
formula admits a log2-labeling scheme on each nicely locally cwd-decomposable class of graphs.

Let ψ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ = (x1, . . . , xm). By Lemma 8.1 (see [Fri04,
Sections 5,6] for technical details), we can reduce the counting query of ψ to the counting
query of �nitely many formulas of the form ρt,ε(x̄) ∧ ϕ′(x̄, Y1, . . . , Yq) that can be expressed
as

ϕ′(x̄, Y1, . . . , Yq) =
∧

1≤i<j≤p

d(x̄ | εi, x̄ | εj) > 2t+ 1 ∧
∧

1≤i≤p

ϕi(x̄ | εi, Y1, . . . , Yq)

where each ϕi is t-local and (m · (2t + 1))-connected. We can then assume that ψ is of the
form ϕ′(x̄, Y1, . . . , Yq).

Let T be a nice (r, `, g)-cwd cover where r = m·(2t+1) and let γ be a distance-(m+1) coloring
of the intersection graph of T . For every m-tuple of colors (i1, . . . , im), we let Gi1,...,im be the
graph G[V ] where V is the union of all sets U ∈ T such that γ(U) ∈ {i1, . . . , im}. We have
then cwd(G[V ]) ≤ g(m) (same arguments as in Claim 8.1). We color each vertex with the
smallest color i such that x ∈ Kr

G(U) and γ(U) = i. Again we can consider G as a structure
〈VG, EG, c1G, . . . , clG 〉 where l = `O(m) and ciG(x) holds if and only if x has color i. We let
ϕ′i1,...,ip

be

∧
1≤i<j≤p

d(x̄ | εi, x̄ | εj) > 2t+ 1 ∧
∧

1≤`≤p

(ϕ`(x̄ | ε`, Y1, . . . , Yq) ∧ ci`(z`))

where z` is the �rst variable of each tuple x̄ | ε`. We have then:

Claim 8.7 #Gψ(Y1, . . . , Yq) =
∑

(i1,...,im)

#Gϕ
′
i1,...,im

(Y1, . . . , Ym).

We let H = Gi1,...,im . One can easily prove by using the same arguments as in the proof of
Claim 8.2 that:

Claim 8.8 dG(x̄ | εi, x̄ | εj) > 2t+ 1 if and only if dH(x̄ | εi, x̄ | εj) > 2t+ 1.

It follows again that:

Claim 8.9 #Gϕ
′
i1,...,im

(Y1, . . . , Yq) = #Hϕ
′
i1,...,im

(Y1, . . . , Yq).

By Theorem 8.3, and Claims 8.7, 8.8 and 8.9, there exist a log2-labeling scheme for the
counting query of each t-local formula. And a log-labeling scheme is enough for modulo
counting. This �nishes the proof.
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8.5 Other Results and Concluding Remarks

We have proved that every FO-de�nable property admits a log-labeling scheme on nicely
locally cwd-decomposable classes of graphs. If we restrict the FO-de�nable properties to
FO-de�nable properties without set arguments, we have a log-labeling scheme on locally cwd-
decomposable classes of graphs. However, we do not know if these two classes of graphs are dif-
ferent since several important classes of graphs we know are nicely locally cwd-decomposable.
A future work is to better understand the graphs that are (nicely) locally cwd-decomposable.
It is also not known if every class of graphs of bounded local clique-width is locally cwd-
decomposable. We also notice that in the de�nition of (nicely) locally cwd-decomposable, the
�polynomial-time� appears for constructing the (nice) (r, `, g)-cwd covers, hence for construct-
ing the labels. However, this aspect has no in�uence on the sizes of the labels nor in the time
taken for answering the queries. For completeness sake, we review here how to get similar
results to the ones in Section 8.4 for other classes of graphs.

A graph has arboricity at most k if it is the union of k edge-disjoint forests (independently
of the orientations of its edges). We prove the following.

Fact 8.2 Let k be a positive integer and let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a quanti�er-free FO
formula. Then there exists a log-labeling scheme on the classes of graphs of arboricity at most
k.

Proof. Let G be a forest with edges anyway directed. Let us choose a root r and let f+, f− :
VG → VG be mappings such that:

f+(u) = v i� u→ v in G and v is on the unique undirected path between u and r.

f−(u) = v i� u← v in G and v is on the unique undirected path between u and r.

The edge relation in G is de�ned by:

EG(u, v)⇐⇒ v = f+(u) ∨ u = f−(v). (4)

Let G be now a graph of arboricity k and represented by the structure 〈VG, EG, P1G, . . . , PmG 〉
where PiG is an unary relation. Then G is the union of k edge-disjoint forests F1, . . . , Fk. We
can, for each forest Fi, construct two mappings (f+

i , f
−
i ) such that EG[Fi](u, v) holds if and

only if v = f+
i (u) ∨ u = f−i (v). We can then de�ne the edge relation of G in a similar way

as in (4) with 2k unary functions by letting:

EG(u, v)⇐⇒
∨

i∈[k]

v = f+
i (u) ∨ u = f−i (v). (5)

For each vertex x of G, we let b(x) be the bit sequence of size m and such that the i-th bit
is 1 if and only if PiG(x) holds. If vertices are numbered from 1 to n and pxq is the bit
representation of the index of x, then we let

J(x) =
(
pxq, pf+

1 (x)q, pf−1 (x)q, . . . , pf+
k (x)q, pf−k (x)q, b(x)

)
.

It is clear that given J(a1), . . . , J(am) and J(W1), . . . , J(Wq), we can test if G satis�es ϕ
since by looking at the labels we can verify the adjacency of two vertices with the help of
Equation (5), the equality of two vertices and then the membership of a vertex into a set,
and for each vertex x, we can verify if PiG(x) holds by looking at the b part of its label.
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An example of a quanti�er-free formula is E(x, y) that says that x and y are adjacent.
Then the adjacency has a log-labeling scheme on classes of graphs of bounded arboricity. Can
we extend the results of Sections 8.4 to classes of graphs of bounded arboricity? Here is a
proposition that limits the extension.

Let ϕ0(x, y) be the t-local formula that expresses that x and y are connected by a path of
length at most 2:

∃z(z 6= x ∧ z 6= y ∧ E(x, z) ∧ E(z, y)). (6)

We prove the following.

Proposition 8.1 Let C be the class of graphs of arboricity at most 2. Every labeling scheme
(A,B) for ϕ0 on C must use labels of size at least

⌊√
n
2

⌋
for certain graphs with n vertices.

Proof. With every (simple and undirected) graph G, we associate a graph G̃ as follows:

V eG = VG ∪ {zx,y | x, y ∈ VG and xy ∈ EG},
E eG = {xzx,y | xy ∈ EG}.

In other words, G̃ is obtained from G by subdividing each edge xy with a new vertex denoted
by zx,y. The following properties hold for G̃:

(1) VG ⊆ V eG and |V eG| ≤ |VG|+ |EG|.

(2) For all x, y ∈ VG, xy ∈ EG if and only if ϕ0(x, y) is true in G̃.

(3) G̃ is of arboricity at most 2.

The �rst two points are straightforward from the construction of G̃. We orient each edge e of
G and we get a directed graph, that we denote by ~G. We let:

F1 = {xzx,y | (x, y) ∈ E ~G},
F2 = {zx,yy | (x, y) ∈ E ~G}.

Clearly, neither F1 nor F2 has a cycle in G̃. Then G̃ has arboricity at most 2 since (F1, F2) is
clearly a bipartition of E eG.
By using a simple counting argument, one can show that every labeling scheme for adjacency
queries in simple and undirected graphs with n vertices requires some labels of size at

least 1
n log2

(
2(n

2)
)

= (n − 1)/2 bits. Hence, adjacency requires labels of size bn/2c in all

graphs. Using (2) above, we conclude that any labeling scheme for ϕ0 on the graph family
Fn = {G̃ | G has n vertices} requires labels of size at least

⌊
n
2

⌋
. Let G̃ be in Fn and let

ñ = |V eG|. Using (1), we have ñ ≤ n + |EG| ≤ n(n+1)
2 , i.e., n ≥

√
2ñ. Hence, any labeling

scheme for ϕ0 on Fn requires labels of size at least
⌊√

2en
2

⌋
=
⌊√ en

2

⌋
.
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Can we however �nd other graph classes of bounded arboricity, that are not locally cwd-
decomposable, where we can extend the results of Section 8.4 even with a less powerful logic?
We give here an example of such a class where some properties, that are de�nable by some
particular FO formulas, admit a log-labeling scheme.

Nešetřil and Ossona de Mendez in their works on graph isomorphisms and on minor-
closed classes of graphs, de�ned the class of graphs of bounded expansion [NdM06b, NdM06a,
NdM08a]. These classes of graphs can be seen as a generalization of graphs of bounded degree
and minor-closed classes of graphs. There are several equivalent de�nitions, we will however
use the following. (Figure 24 shows inclusion relations between the many classes de�ned or
cited in this chapter.)

De�nition 8.7 (Bounded Expansion) A class C of graphs has bounded expansion if for every
integer p, there exists a constant N(C, p) such that for every G ∈ C, one can partition VG in at
most N(C, p) parts such that any i ≤ p of them induce a sub-graph of tree-width at most i− 1.

For i = 1, De�nition 8.7 implies that each part is a stable set, hence the partition can be
seen as a proper vertex-coloring. The notion of bounded expansion is new and appears in the
series of papers by Nešetřil and Ossona de Mendez [NdM06b, NdM06a, NdM08a, NdM08b,
NdM08c] where they unify many theorems on minor-closed classes of graphs and bounded
degree graph classes. We now recall a result by Nešetřil and Ossona de Mendez [NdM06a]
on properties that admit linear-time algorithms on classes of graphs of bounded expansion.
Before let us de�ne these properties.

De�nition 8.8 (Bounded Formulas) An FO formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is basic

bounded if, for some p ∈ N, we have the following equivalence for all graphs G, all a1, . . . , am ∈ VG

and all W1, . . . ,Wq ⊆ VG,

G |= ϕ (a1, . . . , am,W1, . . . ,Wq) i� G[X] |= ϕ (a1, . . . , am,W1 ∩X, . . . ,Wq ∩X)

for some X ⊆ VG such that |X| ≤ p and a1, . . . , am ∈ X. (If this is true for X, then G[Y ] |=
ϕ(a1, . . . , am,W1 ∩ Y, . . . ,Wq ∩ Y ) for every Y ⊇ X.)

An FO formula is bounded if it is a Boolean combination of basic bounded formulas.

Note that the negation of a basic bounded formula is not necessarily basic bounded, how-
ever it is bounded. For instance, the formula d(x, y) ≤ r is basic bounded for p = r + 1. Its
negation is not basic bounded. Note also that the formula ϕ0 in Equation (6) is also bounded.

Nešetřil and Ossona de Mendez proved the following.

Theorem 8.5 ([NdM06a]) Let P (x1, . . . , xm, Y1, . . . , Yq) be a graph property de�nable by a
bounded FO formula and let C be a class of graphs of bounded expansion. Then there exists a
linear-time algorithm that given a graph G ∈ C and P , decides whether G satis�es P or not.

We prove the following.

Proposition 8.2 Every graph property de�nable by a bounded FO formula admits a log-
labeling scheme on classes of graphs of bounded expansion.
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Proof. Let G be in a class of graphs of bounded expansion with n = |VG| and let ϕ be a basic
bounded formula with bound p. We let N = N(C, p). By De�nition 8.7, we can partition VG

into V1 ] V2 ] · · · ] VN , Vi 6= ∅ such that for every i ≤ p, twd(G[V1 ∪ · · ·Vi]) ≤ i− 1.

For every α ⊆ [N ] of size p, we let Vα =
⋃
i∈α

Vi; then the tree-width of G[Vα] is at most p− 1.

Each vertex u belongs to less than (N − 1)p−1 sets Vα.

Hence, a basic bounded formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is true in G if and only if it is true
in some G[X] with |X| ≤ p, hence in some G[Vα] such that x1, . . . , xm ∈ Vα. For each α, we
construct a log-labeling Jα of ϕ on G[Vα] with Theorem 7.4 (recall that twd(G[Vα]) ≤ p− 1).
We also determine for each α, the truth value of ϕ(∅, . . . , ∅) in G[Vα]. For each x ∈ VG, we let

J(x) =
((

(pαq, Jα(x), tα) | x ∈ Vα

)
,
(
(pαq, tα) | x /∈ Vα

))
.

We have clearly |J(x)| = O(log(n)) since the family of pairs (α, tα) is of �xed size (depends on
p). We now explain how to decide ϕ by using the labels only. Assume �rst that ϕ has at least
one free FO variable. Given J(a1), . . . , J(am), we can determine all those sets α such that
Vα contains a1, . . . , am. Using the components Jα(·) of J(a1), . . . , J(am) and the labels in
J(W1), . . . , J(Wq), we can determine if, for some α, G[Vα] |= ϕ(a1, . . . , am,W1∩Vα, . . . ,Wq ∩
Vα), hence whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq).

It remains to consider the case of a basic bounded formula without free FO variable, i.e., is of
the form ϕ(Y1, . . . , Yq). From J(W1), . . . , J(Wq), we get D = {α | Vα ∩ (W1 ∪ · · · ∪Wq) 6= ∅}.
By using the Jα(·) components of the labels in J(W1) ∪ · · · ∪ J(Wq), we can determine if,
for some α ∈ D, we have G[Vα] |= ϕ(W1 ∩ Vα, . . . ,Wq ∩ Vα). If one is found we, conclude
positively. Otherwise, we look for some tβ = true where β /∈ D. This gives the �nal answer.

Now assume that ϕ is a bounded FO formula, i.e., is a a Boolean combination of basic
bounded formulas ϕ1, . . . , ϕt. For each basic bounded formula ϕi, we apply the procedure
above to get a log-labeling Ji. For each x, we let J(x) = (J1(x), . . . , Jt(x)). It is of size
O(log(n)) and gives the desired result.

Let H be a �xed undirected graph with p vertices. The following two FO formulas are
basic bounded:

• ϕ(x1, . . . , xp) = �the sub-graph induced on {x1, . . . , xp} is isomorphic to H�.

• ϕ(x1, . . . , xp) = �the sub-graph induced on {x1, . . . , xp} has a sub-graph isomorphic to
H�.

We �nish this chapter with some open questions. Grohe et al. proved that every FO-
de�nable property admits a polynomial-time algorithm on classes of graphs that exclude a
minor [FG01a] and classes of graphs that locally exclude a minor [DGK07]. A class C of
graphs locally excludes a minor if, for every r ∈ N, there exists a graph Hr such that for
every G ∈ C and every a ∈ VG, the graph Hr is not a minor of G[N r

G(a)]. We conjecture the
following.
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Conjecture 8.1 Every FO-de�nable property admits a log-labeling scheme on classes of
graphs that exclude a minor and classes of graphs that locally exclude a minor.

Bounded expansion

Bounded arboricityBounded local clique−width

Locally cwd−decomposable
Bounded local tree−width

Nicely locally cwd−decomposable Locally tree−decomposable

Nicely locally tree−decomposable

Bounded degree

Excludes a minor

Planar

Apex minor−free

Figure 24: An arrow means an inclusion of graph classes. Bold boxes are classes studied in
this chapter.



Chapter 9

Short Labeling for Connectivity

Queries on planar graphs

We construct a log-labeling scheme for a speci�c (but important) MS-de�nable query on
planar graphs, a class of graphs that has unbounded clique-width, but bounded local clique-
width. Hence, Theorem 7.4 does not apply. However, it will be useful as a tool in our
constructions.

In Section 9.1 we de�ne some notations and explain the idea of our labeling scheme. In
Section 9.2 we introduce the notion of embeddings of planar graphs and prove some basic
lemmas. We introduce in Section 9.3 some tools that allow to represent properties by unary
functions. We prove our main theorem for the case of 3-connected planar graphs in Section
9.4. We extend the proof to 2-connected planar graphs in Section 9.5. We �nally give a proof
for connected planar graphs in Section 9.6. We conclude by some remarks in Section 9.7.

9.1 Preliminaries

The graphs in this chapter are undirected, unless otherwise speci�ed. We will sometimes write
x− y (resp. x→ y) to denote an undirected edge between x and y (resp. an arc from x to y).
We denote by E(x) the set of edges or arcs incident with x. See Chapter 1 for other notations
or terminologies. A partial order ≤F on the nodes of a rooted forest F is de�ned as follows:

x ≤F y if and only if every path from a root to x goes through y.

Hence, the roots are the maximal elements.

A vertex x of a graph G is a separating vertex if the sub-graph G\x has more connected
components than G. A connected graph is 2-connected if it has no separating vertex. A
biconnected component of a connected graph G is a maximal 2-connected sub-graph of G
(maximal with respect to inclusion). We denote by Bcc(G) the set of biconnected components
of G. Two vertices x and y of a graph G are separated by X ⊆ VG if they are in di�erent
connected components of G\X.

A circular sequence over a set E is a nonempty sequence s = (e1, . . . , en) of pairwise
distinct elements of E. The term circular refers to equality: we de�ne (e1, . . . , en) and
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(ei, . . . , en, e1, . . . , ei−1) as equal circular sequences. If s1 = (e1, . . . , ep) and s2 = (f1, . . . , fq)
are sequences of pairwise distinct elements of a set E, we will denote by s1 • s2 the con-
catenation of s1 and s2 and by s1 ◦ s2, the circular sequence, one representation of which is
s1 • s2 = (e1, . . . , ep, f1, . . . , fq).

De�nition 9.1 (Connectivity Query) Given a graph G, two vertices x and y in VG, a set of
vertices X ⊆ VG−{x, y} and a set of edges F ⊆ EG, we let Conn(x, y,X, F ), called connectivity

query, denote the graph property that expresses that x and y are connected by a path that avoids
vertices in X and edges in F , i.e., x and y are connected by a path in (G − F )\X. We write
it Conn(x, y,X) if F = ∅. We call the pair (X,F ) the data of the query; its size is de�ned as
|X|+ |F |.

We now state the main theorem of this chapter.

Theorem 9.1 (Main Theorem of this Chapter) There exists a log-labeling scheme
(A,B) for the connectivity query on the class of simple undirected planar graphs. If n is
the number of vertices of the input graph, A computes the labels in O(n · log(n))-time and B
gives the answer in O(m2)-time where m is the size of the data.

We now sketch the main ideas of the proof. The principal idea is to use geometrical tools
and the decomposition of connected graphs into biconnected components.

If G is a plane graph (see De�nition 9.2), we denote by G+ the planar graph obtained
by adding one vertex, called face-vertex, in the middle of each face and edges between the
face-vertex and the vertices of G incident with that face. If G is 2-connected, the graph G+

is simple and can be embedded in the plane with integer coordinates and edges represented
by straight-line segments by using Schnyder's algorithm [Sch90]; we �x such an embedding
E . For X ⊆ VG, we de�ne its barrier, denoted by Bar(X), as a set of straight-line segments
representing some edges of G+ such that x and y in VG −X are separated by X in G if and
only if they are separated in R2 by Bar(X) (see Proposition 9.1). If from labels attached
to the vertices of X we can deduce the set of straight-line segments forming Bar(X), and if
we also know the coordinates of x and y, then we can test whether x and y are separated in
R2 by Bar(X) in time O(m2) where m is the number of segments forming Bar(X) by using
geometric tools (see De�nition 9.4 and Theorem 9.3).

To be able to construct Bar(X) from the labels of vertices in X, we attach to each vertex z
of G, not only its own pair of coordinates in the �xed embedding, but also those of a bounded
number of adjacent vertices in G+ (see Sections 9.2 and 9.3). However, this proof only works
for 3-connected planar graphs, or rather for planar graphs such that every two vertices are
incident with a bounded number of faces (see Section 9.4). Therefore, an additional treatment
is needed for biconnected components. We will use for that the decomposition of 2-connected
graphs into 3-connected components; then try to recognize simple cases where x and y are
separated by one or two vertices of the given set X such that if these cases do not apply, we
are reduced to connectivity queries in the plane. Happily, those simple cases areMS-de�nable
and since the decomposition is a tree, we can use Theorem 7.4 to recognize them (see Section
9.5). Finally, we use the decomposition of connected graphs into biconnected components and
again use Theorem 7.4 to recognize simple cases that, when they do not occur, reduce to some
connectivity queries in the plane (see Section 9.6).
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We will give the proofs for F = ∅. We will consider the case where F 6= ∅ in the proof of
Theorem 9.1 (see the end of Section 9.6). Therefore from now on, by connectivity query we
mean connectivity query of the form Conn(x, y,X).

9.2 Plane Graphs

We recall here simple de�nitions and basic facts on plane graphs. See the books by Dies-
tel [Die05] and by Mohar and Thomassen [MT01] for more detailed de�nitions, particularly
regarding topological de�nitions.

De�nition 9.2 (Embeddings in the Plane) A planar embedding of a graph G = 〈VG, EG 〉
is a pair of mappings E = (p, s) such that:

(P1) the mapping p : VG → R2 associates with each vertex x ∈ VG, the point p(x) representing
it in the plane,

(P2) the mapping s : EG → 2R2
associates with every edge e = xy a closed curve segment

with ends p(x) and p(y), such that for every two distinct edges e and f in EG, we have
z ∈ s(e) ∩ s(f) if and only if z = p(x) and x is incident with e and with f .

A planar embedding is a straight-line embedding if each curve s(e) is a straight-line segment. A
plane graph is the equivalence class of a planar embedding of a graph with respect to homeomor-
phism. We will write a plane graph G as a triple 〈VG, EG, FG 〉 where FG is the set of faces. If
Y ⊆ EG, we let E(Y ) be the union of curve segments s(e) for e ∈ Y .

If G is a plane graph, for each x ∈ VG, we let E
0(x) be the circular sequence of edges incident

with x for the anti-clockwise orientation of the plane; (e′, x, e) is a corner at x if e′ follows e in
E0(x).

We can thus consider a plane graph G as a combinatorial object which consists of a graph
〈VG, EG 〉, the circular sequence E0(x) for each x ∈ VG and of a corner belonging to the
external face. We only consider embeddings of graphs in the plane, not in the sphere; for this
reason we distinguish the external face with help of some corner. Notice that several plane
graphs may have the same underlying planar graph G even if G is 3-connected. See [MT01]
for more details about embeddings of graphs in the plane.

Let E = (p, s) be a planar embedding of a plane graph G and let C be a cycle in G. We
say that a vertex x ∈ VG, not belonging to C, is inside C if p(x) is in the bounded component
of R2 −E(C). We say that two distinct vertices x and y in VG, not belonging to Y ⊆ EG, are
separated by E(Y ) if they are in di�erent connected components of R2−E(Y ). These properties
do not depend on E ; they will be used for plane graphs, independently of embeddings.

We now de�ne the planar graph G+ associated with a plane graph G.

De�nition 9.3 (Augmented Planar Graph) Let G be a connected plane graph. We asso-
ciate with it a connected planar graph G+ = 〈VG ∪ FG, EG ∪ E′ 〉 where:

E′ = {fx | x ∈ VG, f ∈ FG and there exist e, e′ ∈ EG such that (e, x, e′) is a corner of f}.

The graph G+ is called the augmented planar graph of G and a vertex of G+ in FG is called a
face-vertex.
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Notice that if G+ = 〈VG∪FG, EG∪E′ 〉 we have an edge fx in E′ for each corner (e, x, e′)
of f . Therefore, if x is a separating vertex, we may have several edges between x and f because
a face f may have several corners at x.

For a simple planar graph G with n vertices, the maximum number of faces m = 2n− 4 is
obtained when G is triangulated. Hence, G+ has at most 3n − 4 vertices. Every embedding
E = (p, s) of G can be extended into an embedding E+ of G+ in the following obvious way:
for each f ∈ FG we de�ne p(f) as any point in the open subset of R2 corresponding to the
face f and we draw curve segments between this point and the points, representing vertices
in VG, adjacent to f (see Figure 25 for an example). In general, several non homeomorphic
embeddings E+ can be associated with E because the edges incident with the external face of
G can be drawn in di�erent ways, even if G is 3-connected. Hence G+ is a planar graph (and
not a plane graph) associated with a plane graph G.

Example 9.1 Figure 25 shows a plane graph G with vertices t, x, w, u, y, z, v represented by
black dots and continuous edges. It also shows the graph G+. Its face-vertices are represented
by small circles. The one marked A represents the external face. There are three parallel edges
between A and x, because x is the separating vertex of 3 biconnected components (there are 3
corners around x).

w x

z
u

A

b

y

e

d

c

f

a

t

v

Figure 25: An augmented graph G+.

The following lemma is straightforward to establish.

Lemma 9.1 If G is a connected plane graph, then the planar graph G+ is triangulated. It is
simple if and only if G is 2-connected.

We now de�ne the notion of a barrier of a set of vertices. This notion will allow to
transform the connectivity query to a geometrical one.

De�nition 9.4 (The Barrier of a Set of Vertices) Let G = 〈VG, EG, FG 〉 be a plane
graph and let G+ = 〈VG ∪ FG, EG ∪ E′ 〉 be its augmented graph (E′ is the set of edges linking
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a face-vertex to vertices of G). For X ⊆ VG we let Bar(X), the barrier of X, be the set:

Bar(X) = {fx ∈ E′ | f ∈ FG, x ∈ VG and there exists y ∈ X with fy ∈ E′}.

If E+ is a planar embedding of G+, we let Bar(X, E+) be the set E+(Bar(X)).

If a face f has several corners at a vertex x ∈ X, then all the edges of G+ between f and
x are in Bar(X). This can happen if and only if x is a separating vertex. A vertex of X may
not be the end of any edge of Bar(X) (see Example 9.2). Note that Bar(X, E+) is a closed
(and even compact) subset of R2. See Examples 9.2 and 9.3 that illustrate cases of vertices
separated by Bar(X, E+).

Example 9.2 We use the graph G on Figure 25. Then Bar({x}) = {a, b, c}. It separates u
and w from y and z and from t and v. The barrier Bar({y}) is empty. We have Bar({u, x}) =
{a, b, c, d, e, f}.

Example 9.3 Figure 26 shows the augmented graph H+ of a plane graph H. It is simple since
H is 2-connected. So, we can draw it with straight-lines segments. The barrier of {x, y} consists
of 6 (thick) dotted edges and separates u from v and w.

vx

u y

w

Figure 26: An augmented graph H+.

Proposition 9.1 Let G be a connected plane graph and let E+ = (p, s) be a planar embedding
of G+. For every X ⊆ VG and x, y ∈ VG −X, the vertices x and y are separated by X if and
only if p(x) and p(y) are separated by Bar(X, E+).

Proof. Assume x and y connected by a path in G\X. They are still connected by this path
in G+ and this path has no vertex in any edge of Bar(X). Hence, p(x) and p(y) are in the
same connected component of R2 −Bar(X, E+).

For the converse direction, let us assume that x and y are not connected in G\X. Since Y ⊆ X
implies Bar(Y ) ⊆ Bar(X), it is enough to prove the result for a minimal separator X of x
and y. Let X be so; the set EG can be partitioned into EG = Ex ∪ Ey such that:

(a) x ∈ VG[Ex], y ∈ VG[Ey ] and VG[Ex] ∩ VG[Ey ] = X;
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(b) G[Ex] and G[Ey] are connected;

(c) The circular sequence of edges incident with each z ∈ X can be written E◦(z) = E1(z)◦
E2(z) where E1(z) is a sequence enumerating the set of edges Ex ∩ E(z) and E2(z) is
similar for the set Ey ∩ E(z).

We modify G by replacing each vertex z ∈ X by an edge ez = zz′ and such that z is
adjacent to E1(z) and z′ to E2(z). Precisely, we make G into a plane graph G′ with vertex set
VG′ = VG∪{z′ | z ∈ X}, edge set EG′ = {ez | z ∈ X}∪{wz | w ∈ VG−X,wz ∈ E1(z)}∪{wz′ |
w ∈ VG−X,wz ∈ E2(z)}∪{wz | w, z ∈ VG−X,wz ∈ EG} and with circular sequences E′0(z)
for each z ∈ VG′ such that:{

E′◦(z) = E1(z) ◦ (ez),
E′◦(z′) = E2(z) ◦ (ez)

for every z ∈ X,

and

E′◦(z) = E◦(z) if z ∈ VG −X.

It is clear that G′ is a plane graph and that E(X) de�ned as {ez | z ∈ X} is a minimal edge-cut
of G′. Hence, E(X) is a cycle in the dual plane graph G′∗ (see Diestel [Die05, Proposition
4.6.1]) that furthermore separates x and y. This cycle can be written as a circular sequence of
edges (e1, . . . , ep) for some enumeration z1, . . . , zp of X. (Notice that if X = {x1}, this cycle
consists of two parallel edges.) Let f1, . . . , fp be the faces of G′ such that in G′∗ we de�ne the
edge ei as fifi+1 for 1 ≤ i < p, and the edge ep as fpf1.

We denote by f1, . . . , fp the faces of G, resulting respectively from f1, . . . , fp by the con-
traction of edges ez for all z ∈ X. It is clear that fi is adjacent in G+ to zi and zi+1 for
i = 1, . . . , p− 1 and that fp is adjacent to zp and z1. In any embedding E+ of G+, the cycle
formed by the circular sequence of vertices (z1, f1, z2, f2, z3, . . . , zp, fp) separates x and y.

We illustrate the proof of Proposition 9.1 with Example 9.4.

Example 9.4 A plane graph G is shown on Figure 27. Its vertices x and y are separated by
X = {u, v, z}. Figure 28 shows the result of replacing u, v, z by the edges eu, ev and ez which are
dotted. It also shows the edges of the cycle E(X) in the dual graph G′∗. The contraction of the
dotted edges gives the desired cycle in G+ (see Figure 29).

Proposition 9.1 transforms the problem of connectivity query to a geometrical problem. We
need now, given the set Bar(X), be able to decide if p(x) and p(y) are in di�erent connected
components in R2−Bar(X, E+) where E+ = (p, s) is an embedding of G+. We will explain in
Section 9.4 how to do that when the set Bar(X, E+) is a set of straight-line segments which
is su�cient for our purposes (see Sections 9.4, 9.5 and 9.6). We will now explain in the next
section how to label each vertex of a planar graph in order to recover the set Bar(X) from
the labels of the vertices in X.
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Figure 27: A plane graph G; X = {u, v, z}.
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Figure 28: The plane graph G′ and the cycle E(X) in its dual.

v

x

z

y

u

Figure 29: The plane graph obtained by contracting the edges ez, z ∈ X.

9.3 Representation of Properties and Functions by Unary Func-
tions

We introduce the new notion of the representation of a property with m arguments or an m-
ary multivalued function, by a �xed number of unary functions. We will then use it in order
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to label vertices of plane graphs so that we can recover Bar(X) from the labels of vertices in
X.

De�nition 9.5 (Formulas over Unary Function Symbols) Let F be a �nite set of unary
function symbols and let X be a �nite set of lower case variables. We denote by B(F ,X ) the
set of quanti�er-free formulas that are Boolean combinations of atomic formulas of the forms
x = y, x = f(y), f(x) = g(y), f = g for x, y ∈ X and f, g ∈ F .

Notice that we do not allow formulas of the form x = f(g(y)), hence B(F ,X ) is not the
set of all quanti�er-free formulas over F and X

De�nition 9.6 (Representations by Unary Functions) Let F be a �nite set of unary
function symbols, let V be a �nite set and let X = {x1, . . . , xm}. For each f ∈ F , we let
fV : V → V be a total function and we denote by FV the family (fV )f∈F . We say that a relation
R ⊆ V m is represented by FV and ϕ(x1, . . . , xm) ∈ B(F ,X ) if:

R = {(a1, . . . , am) ∈ V m | ϕ(a1, . . . , am) holds}.

Let ϕ(x1, . . . , xm, y) ∈ B(F ,X ∪{y}) be a disjunction of formulas of the form ψ∧(y = f(xi))
or ψ ∧ (y = xi) with ψ(x1, . . . , xm) ∈ B(F ,X ). An m-ary multivalued function g : V m → 2V is
represented by FV and ϕ if for every (a, a1, . . . , am) ∈ V m+1, the relation a ∈ g(a1, . . . , am) is
represented by FV and ϕ.

Let C be a class of graphs where for each graph G ∈ C, a set XG is identi�ed. Let R be an m-
ary relation on C such that for every graph G ∈ C, RG ⊆ Xm

G and let g be an m-ary multivalued
function on C such that for every graph G ∈ C, gG : Xm

G → 2Xm
G . We say that R (resp. g)

is representable by k functions if there exist a set of k unary total functions F and a formula
ϕR(x1, . . . , xm) ∈ B(F ,X ) (resp. a formula ϕg(x1, . . . , xm, y) ∈ B(F ,X ∪ {y})) such that for
every graph G ∈ C, the relation RG (resp. the m-ary multivalued function gG) is represented by
FG and ϕR (resp. ϕg).

We can now use this notion for the labeling of connectivity query on planar graphs. In
order to prove that a given relation on a class C of graphs is representable by k functions, we
will always de�ne for a �xed graph G ∈ C, the functions and then give the appropriate formula.
Note that if an m-ary multivalued function is represented by F and ϕ ∈ B(F , {x1, . . . , xm, y})
where F is a �nite set of functions, then |g(a1, . . . , am)| ≤ m·(|F|+1) for all (a1, . . . , am) ∈ V m.
Notice also that partial functions g for which |g(a1, . . . , am)| ≤ 1 can be represented by F and
a formula ϕ ∈ B(F , {x1, . . . , xm, y}) with help of Convention 9.1.

Convention 9.1 In all the constructions below, for every graph G, we will de�ne partial functions
fG : XG → XG such that fG(x) 6= x for every x. We make them total by letting fG(x) = x
instead of �fG(x) is unde�ned�.

With this convention whenever f(x) appears, we need to conjunct it with the atomic
formula f(x) 6= x. However, for readability we will omit the atomic formulas f(x) 6= x.

Lemma 9.2 The adjacency query in graphs of arboricity at most k is representable by k
functions from vertices to vertices. The adjacency query and edge directions in directed graphs
of arboricity at most k are representable by 2k functions from vertices to vertices.
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Proof. We need only consider simple graphs because we can replace a set of parallel edges by
a single edge without changing adjacency. The edge set of every graph G of arboricity at most
k can be partitioned into k sets E1, E2, . . . , Ek such that G[Ei] is a forest for each i ∈ [k], that
we can assume to be rooted (we choose a root ri and orient the edges of G[Ei] appropriately).
For each i ∈ [k], we de�ne the function giG : VG → VG as follows:

giG(x) = y if and only if y is the father of x in G[Ei].

We have clearly giG(x) 6= x for every x ∈ VG. We can therefore extend each function giG into
a total one by Convention 9.1. Then x and y are adjacent if and only if the following formula
holds: ∨

16i6k

(x = gi(y) ∨ y = gi(x)).

For representing edge directions, we replace each function giG by two partial functions g+
iG :

VG → VG and g−iG : VG → VG as follows:

g+
iG(x) = y if and only if giG(x) = y and there is an arc x→ y.

g−iG(x) = y if and only if giG(x) = y and there is an arc y → x.

Notice that we have g+
iG(x) = g−iG(x) = y if there is a pair of directed opposite edges between

x and y. We use again Convention 9.1 to extend them into total functions. Again x and y are
adjacent if and only if the following formula holds:∨

16i6k

(
x = g+

i (y) ∨ x = g−i (y)
)
∨
(
y = g+

i (x) ∨ y = g−i (x)
)
.

There is an arc from x to y (resp. from y to x) if ϕ1 (resp. ϕ2) holds:

ϕ1(x, y) =
∨

16i6k

(x = g−i (y) ∨ y = g+
i (x)).

ϕ2(x, y) =
∨

16i6k

(x = g+
i (y) ∨ y = g−i (x)).

This �nishes the proof.

Since every planar graph has arboricity at most 3, we have the following as a corollary.

Corollary 9.1 The adjacency query in planar graphs is representable by 3 functions from
vertices to vertices. The adjacency query and edge directions in directed planar graphs are
representable by 6 functions from vertices to vertices.

We now explain how to represent the set Bar(X) by �nitely many functions. However,
two vertices can be adjacent to an unbounded number of faces and then given a set X, the set
Bar(X) could be unbounded. We will therefore explain how to do that for classes of planar
graphs where each pair of vertices is incident with a bounded number of faces.
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De�nition 9.7 (m-Face Bounded Planar Graphs and Face Selection Functions)
Let G be a plane graph and let x and y be two distinct vertices. We let Faces(x, y) be the
set {f ∈ FG | f is incident with both x and y}. We say that G is m-face bounded if for
every x, y ∈ VG, x 6= y, we have |Faces(x, y)| ≤ m. The distinct vertices x and y veri�es the
same-face property, denoted by sf(x, y), if and only if |Faces(x, y)| ≥ 1.

An m-tuple of face selection functions is an m-tuple (Selecti)i∈[m] of partial functions: VG ×
VG → FG such that for every two distinct vertices x and y,

Selecti(x, y) 6= Selectj(x, y) for i, j ∈ [m], i 6= j,

Selecti(x, y) ∈ Faces(x, y) for all i ∈ [m],
Faces(x, y) = {Select1(x, y), . . . , Selectm(x, y)} if |Faces(x, y)| ≤ m.

For every positive integer m, the m-tuple of face selection problem consists in the de�nition of an
m-tuple of face selection functions.

Note that we do not require Selecti(x, y) = Selecti(y, x) for all i ∈ [m]. An example of
a class of planar graphs that are 2-face bounded is the class of 2-connected graphs obtained
from simple 3-connected graphs by the replacement of some edges by paths (such graphs have
unique embeddings in the sphere).

Proposition 9.2 The same-face property in plane graphs is representable by 15 functions.
For every m, the same-face property and the m-tuple of face selection problem in plane graphs
are representable by 15 + 3m functions.

Proof. Let G be a simple connected plane graph and let G+ = 〈VG ∪ FG, EG ∪ E′ 〉 be its
augmented planar. By Lemma 9.2, the adjacency in G+ is represented by 3 functions that we
denote g+

1 , g
+
2 and g+

3 . One can verify that for every distinct two vertices x and y, sf(x, y)
holds if and only if the following formula ϕ holds:∨

1≤i,j≤3

g+
i (x) = g+

j (y) ∈ FG (7a)

∨
∨

1≤i,j≤3

g+
i (x) ∈ FG ∧ g+

j (g+
i (x)) = y (7b)

∨
∨

1≤i,j≤3

g+
i (y) ∈ FG ∧ g+

j (g+
i (y)) = x (7c)

∨ ∃f ∈ FG

( ∨
1≤i,j≤3

g+
i (f) = x ∧ g+

j (f) = y
)
. (7d)

We now de�ne a set F of 15 functions in order to transform ϕ into a formula ϕ′ ∈ B(F , {x, y}).
For every i ∈ [3] we let g′iG : VG → FG be such that for every x ∈ VG,

g′iG(x) = if g+
iG(x) ∈ FG, then g

+
iG(x) else undefined.

We can then replace in ϕ the sub-formula g+
i (x) = g+

j (y) ∈ F by g′i(x) = g′j(y). For every
i, j ∈ [3], we let gi,jG : VG → VG be such that for every x ∈ VG:

g′i,jG(x) = if g+
iG(x) ∈ FG and g+

jG(g+
iG(x)) is defined, then g+

jG(g+
iG(x))

else undefined.
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We can then replace in ϕ the sub-formulas g+
i (x) ∈ FG ∧ g+

j (g+
i (x)) = y and g+

i (y) ∈ FG ∧
g+
j (g+

i (y)) = x by respectively gi,j(x) = y and gi,j(y) = x.

It remains now to eliminate the existential quanti�er in the sub-formula (7d) in ϕ. For that
we de�ne an auxiliary planar graph H, with VH = VG and xy ∈ EH if and only if for some
i, j ∈ [3] and f ∈ FG, we have g

+
iG(f) = x and g+

jG(f) = y. We can obtain a planar embedding
of H from an embedding of G because one adds to each face of G at most 3 edges. Therefore,
H is a planar graph and by Lemma 9.2, the adjacency is representable by 3 functions from
VH to VH , hence from VG to VG, that we denote by h1G, h2G and h3G. Condition (7d) can
thus be replaced by: ∨

1≤i≤3

(
hi(x) = y ∨ hi(y) = x

)
.

Hence, the same-face property is representable by the 15 functions g′i, g
′
i,j , hi for i, j ∈ [3].

We now show how to de�ne and represent an m-tuple of face selection functions. We will
use cases (7a)-(7d) that characterize the same-face property. We �rst observe that they are
mutually exclusive in the sense that each face of Faces(x, y) is speci�ed by one and only one
of them.

We �rst �x a linear order on FG, therefore we can consider any subset of FG as an ordered
set, the order inherited from the order of FG. Let x and y be 2 distinct vertices of G and let
f ∈ FG. If f ∈ Faces(x, y), we de�ne the (x, y)-type t of f as follows:

t =



(a, i, j) if f = g′iG(x) = g′jG(y)
(b, i, j) if f = g′iG(x) and y = g′i,jG(x)
(c, i, j) if f = g′iG(y) and x = g′i,jG(y)
(d, j) if f is the j-th face in the ordered set F (x, y) ⊆ Faces(x, y)

formed from the faces that have not type neither (a, i, j),
neither (b, i, j) neither (c, i, j).

We have clearly F (x, y) = F (y, x). Note that the (y, x)-type of f is (a, j, i) or (c, i, j) or
(b, i, j) or (d, j) if its (x, y)-type is respectively (a, i, j), (b, i, j), (c, i, j) or (d, j).

For every i ∈ [3] and every j ≥ 1, we let hi,jG : VG → FG be de�ned as follows:

hi,jG(x) = f if hiG(x) is defined and f is the j-th element of F (x, hiG(x)).

For every x, y ∈ VG, x 6= y and j ≥ 1, there is at most one face f of (x, y)-type (d, j) and it
is characterized by the formula ϕj :

∨
1≤i≤3

((
f = hi,j(x) ∧ y = hi(x)

)
∨
(
f = hi,j(y) ∧ x = hi(y)

))
. (8)
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Similarly, for each t ∈ {a, b, c} × [3]× [3], there is at most one face f of (x, y)-type t and it is
characterized by the formula ϕi,j :

ϕi,j =


f = g′i(x) ∧ f = g′j(y) if f has (x, y)-type (a, i, j),
f = g′i(x) ∧ y = g′i,j(x) if f has (x, y)-type (b, i, j),
f = g′i(y) ∧ x = g′i,j(y) if f has (x, y)-type (c, i, j).

(9)

Let us now order types lexicographically. We get thus for each pair (x, y) of distinct
vertices a linear order of the set Faces(x, y) (which can be di�erent from the linear order
inherited from the one of FG). We let Selecti(x, y) be the i-th element of this set and let
Fm = {g′i, g′i,j , hi, hi,` | i, j ∈ [3], ` ∈ [m]}. It is clear that, for each i ≤ m, one can express
f = Selecti(x, y) by a formula ϕ(x, y) ∈ B(Fm, {x, y}) which is a disjunction of the formulas
ϕi,j and ϕj in Equations (9) and (8). Hence, we have speci�ed an m-tuple of face-selection
functions.

Remark 9.1 With 15 + 3(m + 1) functions one can represent the property that two vertices x
and y are incident with at most m faces. For doing so we use the negation of the formula in
B(Fm+1, {x, y}) that describes the expression of f = Selectm+1(x, y).

9.4 The Case of 2-Connected Face Bounded Plane Graphs

We prove in this section a particular case of Theorem 9.1. For every m ≥ 1, we let Cm be
the set of simple m-face bounded 2-connected planar graphs. The class of 2-connected planar
graphs obtained from 3-connected planar graphs by replacing some edges by paths are graphs
in C2. The class of planar graphs of degree at most d is included in Cd. We prove the following.

Theorem 9.2 (Case of m-Face Bounded 2-Connected Planar Graphs) There exists
an (m · log)-labeling scheme (A,B) for connectivity query on the class of graphs Cm. If n
is the number of vertices of the input graph, A computes the labels in O(m · n)-time and B
gives the answer in O(s2)-time where s ≥ 2 is the size of the data.

We �rst prove the following which a consequence of many results.

Proposition 9.3 For every simple 2-connected planar graph with n vertices, one can construct
in O(n)-time a corresponding plane graph G, its augmented planar graph G+ and a straight-
line embedding of G+ with positive integer coordinates in [3n− 6].

Proof. Let G be a simple 2-connected planar graph with n vertices. We can construct in
O(n)-time a plane graph G = 〈VG, EG, FG 〉 as a consequence of the well-known linear-time
planarity testing algorithms (see for instance [HT74]). There is at most 2n − 4 faces in
G, hence 2n − 4 face-vertices in the augmented planar graph G+ of G. We can therefore
construct the planar graph G+ in O(n)-time (G+ has at most 3n − 4 vertices and at most
9n edges). Since G is assumed 2-connected, the planar graph G+ is simple. We can thus
construct a straight-line embedding of G+ with coordinates in [3n − 6] with the Schnyder's
algorithm [Sch90].
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If G is a 2-connected m-face bounded plane graph, by means of 15 + 3m functions we can
determine, for every 2 distinct vertices z and t, the set of at most m faces incident with both
z and t. Therefore, we can determine, for every set X ⊆ VG, the set Bar(X). By Proposition
9.3, the augmented planar graph G+ of G admits a straight-line embedding. It remains then
to show how to verify that p(x) and p(y) are separated by Bar(X, E+) if E+ = (p, s) is an
embedding of G+.

If x and y are points in R2, we denote by [x, y] ⊆ R2 the straight-line segment with ends
x and y. Two straight-line segments [x, y] and [x′, y′] are non-crossing if [x, y] ∩ [x′, y′] ⊆
{x, y} ∩ {x′, y′}. A �nite set Y of pairwise non-crossing straight-line segments is called a
subdivision of the plane. The union

⋃
Y of the segments in Y is a closed subset of R2. We

need an algorithm for the following problem:

Input: A subdivision Y of the plane and 2 points p and q.

Output: Are p and q separated by
⋃
Y ?

This problem is equivalent to the problem of identifying, for each of the point, the con-
nected component of N2−

⋃
Y that contains it and is called in [dBKOS91, Sno04] the planar

point location problem. Many algorithms, that use di�erent techniques, had been proposed
(see for instance the article [ST86] or the book [dBKOS91]). All these algorithms are based on
the following principle: construct a data-structure from which one can identify the connected
component that contains a given point. The goal is to obtain a data-structure of size linear
and each query takes logarithmic-time. We recall the following one (one can also choose any
other implementation).

Theorem 9.3 [dBKOS91, Theorem 6.8] Let Y be a subdivision of the plane consisting of m
straight-line segments. One can construct in O(m · log(m))-expected time a data structure of
size O(m) from which one can identify in O(log(m))-time, in the worst case, the connected
component in N2 −

⋃
Y that contains a given point p ∈ N2 −

⋃
Y . One can therefore test in

O(log(m))-time whether two elements of N2 −
⋃
Y are separated by

⋃
Y .

We can now prove Theorem 9.2.

Proof of Theorem 9.2. Let G be a plane graph in Cm with n vertices. Let E+ = (p, s) be a
straight-line embedding of G+ constructed by Proposition 9.3. Clearly, |C(x)| ≤ 2 · dlog(n)e+
2 · log(3) for every x ∈ VG+ .

By Proposition 9.2 and Convention 9.1 the m-face selection problem is representable by p =
15 + 3m functions, i.e., by means of p functions f1, . . . , fp we can associate with every z, t ∈
VG, z 6= t the set of at most m faces incident with both. For every vertex z in VG, we let

D(z) =
(
p(z), p(f1(z)), . . . , p(fp(z))

)
.

We have clearly |D(z)| = O(m · log(n)). Let x and y be two vertices of G and let
X ⊆ VG − {x, y} be given by their labels. We now explain how to decide if x and y are
separated by X by using only their labels. By Proposition 9.2, we can associate, for every
two distinct vertices z and t, the set of the at most m faces incident with both by using
f1(z), . . . , fp(z), f1(t), . . . , fp(t). Since we can recover for every i ∈ [p] and every z ∈ VG the
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value of fi(z) from D(z), we can therefore de�ne from the set {D(z) | z ∈ X} the set of
straight-line segments forming Bar(X, E+) in O(|X|2)-time (E+ is a straight-line embedding).
By Theorem 9.3, we can construct in O(s · log(s))-expected time, where s = |Bar(X)|, a data
structure and decide in O(log(s))-time if p(x) and p(y) are separated by Bar(X, E). And this
su�cient by Proposition 9.1.

It remains to bound the size of Bar(X), hence Bar(X, E+) since Bar(X) = Bar(X, E+). We
claim that Bar(X) ≤ m·(3·|X|−6). To see this, consider the sub-graph G′ = G+[Bar(X)]. It
is a plane bipartite graph with vertex set X ′∪F for some X ′ ⊆ X ⊆ VG and F ⊆ FG (we recall
that a vertex of X may not occur in Bar(X)). Let H be the graph with vertex set X ′ and an
edge between z and t whenever there is f ∈ F such that (zf, f, tf) is a corner of G′. It is clear
that H is planar, that |EH | = |EG′ | = |Bar(X)| and that there are no more than m parallel
edges in H between two vertices. It follows that |EH | ≤ m · (3 · |X ′| − 6) ≤ m · (3 · |X| − 6).
This �nishes the proof.

9.5 The Case of 2-Connected Planar Graphs

In this section we prove Theorem 9.1 for the case of 2-connected planar graphs. Since two
vertices z and t may be incident with an unbounded number of faces, we may have in Bar(X)
an unbounded number of paths z− f − t, associated with all faces f incident with both z and
t. In our labeling scheme in order to build Bar(X, E+), we need the coordinates p(f) of all
these faces but they cannot be encoded as lists (p(f1), . . . , p(fk)) of bounded length attached
to vertices z and t. However, we can overcome this di�culty by replacing this unbounded
number of paths by only one of them if there are at least 3 faces incident with both z and t.
We obtain in this way the reduced barrier RBar(X, E+) ⊆ Bar(X, E+). But in some cases,
the reduced barrier cannot witness that two vertices x and y are separated by X. In order to
overcome this second di�culty we borrow tools from Di Battista and Tamassia [BT96] and
use the decomposition of 2-connected components into 3-connected components. The bad
cases can be reduced to the geometrical tools used in Section 9.4, hence we can use Theorem
9.3 and to cases where the vertices are separated by attachment vertices of the 3-connected
components. These later cases can be de�ned by MS formulas and since the decomposition
into 3-connected components is a tree we can use Theorem 7.4.

In Section 9.5.1 we present the decomposition of 2-connected planar graphs into 3-
connected components with help of bipolar orientations studied for instance in [dFdMR95]. In
Section 9.5.2 we present the reduced barrier and prove Theorem 9.1 for the case of 2-connected
planar graphs stated as follows.

Theorem 9.4 (Case of 2-Connected Planar Graphs) There exists a log-labeling scheme
(A,B) for the connectivity query on the class of 2-connected planar graphs. If n is the number
of vertices of the input graph, A computes the labels in O(n · log(n))-time and B gives the
answer in O(m2) if m ≥ 2 is the size of the data.

We recall �rst the de�nition of colored trees as relational structures. Let A be a �nite set
of labels and let TA be the relational signature {E, (nlaba)a∈A, (elaba)a∈A)} on graphs such
that for every relational TA-structure T = 〈VT , ET , (nlabaT )a∈A, (elabaT )a∈T 〉, VT is its set of



9.5. The Case of 2-Connected Planar Graphs 165

vertices, ET its adjacency relation and for every a ∈ A and every x, y ∈ VT we have nlabaT (x)
if and only if x is colored by a and we have elabaT (x, y) if and only if the edge xy (resp. arc
(x, y)) is colored by a. We denote by T (A) the class of relational TA-structures that are trees.

9.5.1 Bipolar Plane Graphs and Polar Pairs

In this section we show all the tools borrowed from [BT96] with help of the bipolar orientations
of planar graphs. We prove also some technical properties that will be used in Section 9.5.2.
We now de�ne the notion of bipolar plane graphs. The border of a face in a plane graph is the
set of edges that bound the face.

De�nition 9.8 (Bipolar Graphs and Bipolar Plane Graphs) A bipolar graph is a di-
rected graph G, without circuits, having a unique vertex of in-degree 0, called its South pole

and denoted by s(G), a unique vertex of out-degree 0, called its North pole and denoted by n(G)
and such that every vertex v in VInt(G) = V (G)− {s(G), n(G)}, called an internal vertex, is on
a directed path from s(G) to n(G).

A directed plane graph G is a bipolar plane graph if it is bipolar as a graph and has a planar
embedding such that the two poles are incident with the external face.

In a bipolar plane graph G, a face f ∈ FG is called a border face of G if its border consists
of two disjoint directed paths, called respectively left-border and right-border of f , from a vertex
s(f), called its South pole, to a vertex n(f), called its North pole. If the external face of G is a
border face of G, the left-border and the right-border of f are called respectively left-border and
the right-border of G.

Figure 30 shows a bipolar plane graph; its left-border is the path (f1, f12) and its right-
border is the path (f14, f15, f17).

A bipolar graph with adjacent poles is 2-connected. We recall the following properties of
bipolar plane graphs proved in [ET76, dFdMR95].

Lemma 9.3 Let G be a 2-connected planar graph with n vertices. Then for every edge e = xy

of G, we can construct in O(n)-time an orientation
−→
G of G that is a bipolar plane graph with

North pole x and South pole y.

We can cite two di�erent algorithms for constructing bipolar orientations. The �rst, due to
Even and Tarjan [ET76], constructs for every 2-connected graph G and every edge e a bipolar
orientation in O(|VG|+|EG|)-time. Their algorithm constructs the bipolar orientation by using
Depth-First-Search algorithms. Since planar graphs has O(n) edges, the algorithm in [ET76]
constructs a bipolar orientation in O(n)-time. The second algorithm, due to de Fraysseix et
al. [dFdMP95], takes as input a planar map of a 2-connected planar graph G with n vertices
and an edge of G and constructs a bipolar orientation in O(n)-time. Since, a planar map of
a planar graph G can be computed in linear-time [HT74] we are done. More informations on
bipolar graphs and bipolar orientations of undirected graphs are given in [dFdMR95].

Lemma 9.4 ([TT86, dFdMR95]) For every planar embedding of a 2-connected bipolar
plane graph G,
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1. The incoming arcs of each vertex x ∈ VG appear consecutively in the circular incidence
sequence of x and so do the outgoing arcs.

2. Each face f ∈ FG is a border face of G.

By Lemma 9.4, we can write the circular sequence of arcs incident with x as
−→
in(x)◦−→out(x)

where
−→
in(x) (resp.

−→
out(x)) is the sequence of incoming (resp. outgoing) arcs of x. We denote

−→
out(s(G)) by −→s (G) and

−→
in(n(G)) by −→n (G). We now de�ne a way to decompose a bipolar

plane graph into smaller bipolar ones by means of substitutions of edges by graphs. The
disjoint union of sets is denoted by ].

De�nition 9.9 (Decomposition of Bipolar Plane Graphs) Let R be a bipolar plane
graph with m edges denoted e1, . . . , em. Let H, G1, . . . , Gm be bipolar plane graphs. We write
H = R(G1, . . . , Gm) if and only if the following conditions (D1)-(D5) hold:

(D1) VR ∩ VInt(Gi) = ∅ and VInt(Gi) ∩ VInt(Gj) = ∅ for all i, j ∈ [m], i 6= j.

(D2) For every ei = (si, ni) ∈ ER, we have si = s(Gi) and ni = n(Gi) where i ∈ [m].

(D3) VH = VR ∪ VG1 ∪ · · · ∪ VGm .

(D4) EH = EG1 ] · · · ] EGm .

(D5) For every x ∈ VH , we have

−−→
inH(x) =

{−−→
inGi(x) if x ∈ VInt(Gi),−−−−→
n(Gi1) • · · · •

−−−−→
n(Gim) if x ∈ VR and

−−→
inR(x) = (ei1 , . . . , eim).

−−−→
outH(x) =

{−−−→
outGi(x) if x ∈ VInt(Gi),−−−−→
s(Gi1) • · · · •

−−−−→
s(Gim) if x ∈ VR and

−−→
outR(x) = (ei1 , . . . , eim).

If H = R(G1, . . . , Gm), we say that H decomposes into G1, . . . , Gm. We have

VInt(R(G1, . . . , Gm)) = VInt(R) ] VInt(G1) ] · · · ] VInt(Gm).

A sub-graph H of a bipolar plane graph G is called a factor of G if:

1. H contains all directed paths in G from s(H) to n(H).

2. H contains all edges of G incident with a vertex of VInt(H).

Informally, with Conditions (D1)-(D4) we could say that H is obtained from R by the
replacement of an edge ei by the graph Gi. Clearly, by these conditions, H is bipolar with
s(H) = s(R) and n(H) = n(R). Condition (D5) relatesH,R,G1, . . . , Gm as plane graphs, and
not only as graphs as do Conditions (D1)-(D4). Condition (D5) means that planar embeddings
are preserved in the replacement in R of ei by Gi.

Note that if H is a factor of G, then there exists a bipolar plane graph R such that G
results from the replacement in R of some edge e by H. We recall a particular decomposition
of bipolar plane graphs.
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De�nition 9.10 (Parallel-Composition) Let R be a bipolar plane graph that consists of
m ≥ 2 parallel edges, from s(R) to n(R) such that −→n (R) = (e1, e2, . . . , em) and −→s (R) =
(em, . . . , e2, e1). If H = R(G1, . . . , Gm), then we call H the parallel-composition of G1, . . . , Gm

and we denote it by G1// · · · //Gm.

A bipolar plane graph which is the parallel composition of bipolar plane graphs G1, . . . , Gm is
called a //-graph. A bipolar plane graph which is not a //-graph is called a //-atom.

We call a //-graph that is a factor of a bipolar plane graph a //-factor.

The parallel operation // is associative and not necessarily commutative. We now de�ne
a notion of hierarchical decomposition of bipolar plane graphs based on parallel-composition
and decomposition of bipolar plane graphs in terms of simple bipolar plane graphs. If u is a
node in a rooted tree T we denote by d(u) the out-degree of u, i.e., the number of children of
u; we also recall that we denote by T ↓ u the sub-tree of T rooted at u ∈ VT (Chapter 1).

De�nition 9.11 (Decomposition Tree of Bipolar Plane Graphs) A decomposition tree

T of a bipolar plane graph G is a labeled rooted ordered tree where each internal node is labeled
by a parallel operation // or a simple //-atom R that is not an edge such that:

(DT1) The leaves of T are labeled by the edges of G.

(DT2) If an internal node u of T is labeled by a parallel operation, then each of its children is labeled
by an edge of G or a simple //-atom that is not an edge. Such a node is called a //-node.

(DT3) If an internal node u of T is labeled by a simple //-atom R with m ≥ 2 edges, then each
of its children is labeled by an edge of G or a parallel operation. Such a node is called a
non-//-node.

(DT4) val(T ) = G where:

val(T ) =


e if T is a leaf labeled by e,

R(val(T1), . . . , val(Tm)) if T = R(T1, . . . , Tm),
val(T1)// · · · //val(Tm) if T = //(T1, . . . , Tm).

Let T be a decomposition tree of a bipolar plane graph G and let u be a node of T . We let
G(u) be the bipolar plane graph val(T ↓ u) and we denote s(G(u)) by s(u) and n(G(u)) by n(u).
If u is a //-node with children, in this order, u1, . . . , ud(u), we let Fj(u) be the face whose border
cycle consists of the right-border of G(uj) and the left-border of G(uj+1) for j = 1, . . . , d(u)− 1.

A polar pair is a pair of vertices of the form (s(u), n(u)) for some node u of T ; it is called a //-
polar pair if u is a //-node. We say that a polar pair (z, t) separates x and y if {z, t}∩{x, y} = ∅
and (z, t) = (s(u), n(u)) for some node u such that x ∈ VInt(G(u)) and y /∈ VInt(G(u)) or
vice-versa by exchanging z and t.

We illustrate De�nition 9.11 with Example 9.5.
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Example 9.5 A bipolar plane graph G with VG = {s, n, a, b, c, d, k,m, p, q} and EG =
{f1, . . . , f17} is shown on Figure 30. The graph G can be expressed by:

G = R1

(
f1, f2,

(
f3//R3(f4, f5)

)
,
(
f6//R4(f7, f8)

)
,
(
f9//R5(f10, f11)

)
f12, f13

)
,

//R2

(
f14, f15,

(
f16//f17

))
where R1, . . . , R5 are shown on Figure 32. The corresponding tree is on Figure 31. The pairs
(s, b), (a, c), (c, b), (c, n) are polar, the pairs (c, b), (a, c) are //-polar and the pairs (s, k), (d, n)
are not polar.
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b
m
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n
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f15
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f6

f8

f9

f12

f16
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f1

f3

q
f10f11

Figure 30: A bipolar plane graph.

//

R1

f1

f3

f2 // // //

R3

f4 f5

f6 R4

f7

f9 R5

//f15f14

R2

f12 f13

f17f16

f8 f10 f11

Figure 31: The decomposition tree of the graph on Figure 30.

Lemma 9.5 Let T be a decomposition tree of a bipolar plane graph and let R1, . . . , Rp be the
//-atoms associated with the non-//-nodes of T enumerated as u1, . . . , up. Then VInt(G) =⊎
1≤i≤p

VInt(Ri). The sets VInt(Ri) are all nonempty.

It is proved in [BT96] with help of [HT73] that every bipolar plane graph has a unique
decomposition tree computable in linear-time, that we state in the following.
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h1

a

c

p

R4

h′

2

h′

1

c
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q

R5

h2”

h1”

Figure 32: The graphs R1, R2, R3, R4 and R5 (cf Figure 31 and Example 9.5).

Proposition 9.4 Let G be a bipolar plane graph with n vertices. Then it has a unique de-
composition tree T that has O(n) nodes and can be computed in O(n)-time. Moreover, if
R1, . . . , Rp are the simple //-atoms associated with the non-//-nodes of T , then the total size
of
⊎

1≤i≤pERi is O(n).

If T is the decomposition tree of a bipolar plane graph G, then the leaves of T are in
bijection with the edges of G (cf. Example 9.5 and Figures 30 and 31). Hence, if u ∈ VT is
a leaf, then G(u) is an edge of G; if u is a //-node, then G(u) is a //-factor of G, otherwise
G(u) is a //-atom of G.

The idea of our labeling scheme is to identify in the decomposition tree the polar pairs that
can separate the two vertices. If these cases of separations do not apply, we use geometrical
tools.

A polar pair (s(u), n(u)) is not a //-polar pair in the following few cases: u is a leaf and
the corresponding edge is simple or it is (s(u), n(u)) and G(u) is a //-atom. It follows that if
a polar pair separates x and y, it is necessarily a //-polar pair. It is clear that if x and y are
separated by a polar pair (z, t), then they are separated by the set {z, t}. Since only //-polar
pairs can separate vertices, one can ask when a pair of vertices form a //-polar pair. We do
not have a complete answer however, we give a su�cient condition which is enough for our
purposes as we will see later.

Lemma 9.6 Let G be a bipolar plane graph with adjacent poles and let x and y be two vertices
of G. If x and y are incident with 3 common faces, then they form a //-polar pair.

Let us �rst prove two technical facts.

Claim 9.1 Let G be a bipolar plane graph with adjacent poles and let x and y be two vertices
of G incident with at least 3 faces f, g and h. Then x and y are on a same border of each face
f, g and h.

Proof of Claim 9.1. Assume that x and y are not on a same border of f . Then none of
them is a pole of f . Let p1 and p2 be respectively the left-border and the right-border of f



170 Chapter 9. Connectivity Query on Planar Graphs

and assume that p1 contains x.

CASE 1. f is the external face. By hypothesis s(f) = s(G) and n(f) = n(G) are adjacent.
Let C = x− f − y − g − x, C ′ consisting of p1 and the edge s(f)− n(f), and C ′′ consisting
of p2 and the edge s(f)− n(f), be 3 cycles of G+ (note that C ′ and C ′′ are also cycles of G).
Note that s(f)− n(f) 6= p2 since p2 must contain y which is not a pole of f . C has only x in
common with C ′ and has only y in common with C ′′. The face g must be included in C ′ or
in C ′′ and the two cases contradict the planarity of G+ (see for instance [Cou00]).

CASE 2. f is not the external face; at least one of g and h, say g, is not the external face
of G. We let p3 and p4 be respectively 2 shortest paths from n(f) to n(G) and from s(f) to
s(G). We consider the cycle C = x− f − y− g− x and the cycle C ′, consisting of p1, p3, the
left-border of G and p4. C has only x in common with C ′. The face g must be included in C ′

and this contradicts the planarity of G+.

Hence, x and y are on a same border of each face f, g and h.

Claim 9.2 Let G be a bipolar plane graph with adjacent poles and let x and y be two vertices
of G incident with at least 3 faces f, g and h. At least one of f, g or h has (y, x) or (x, y) as
pair of poles.

Proof of Claim 9.2. By Claim 9.1, x and y are linked by a path and we can assume without
loss of generality that there exists a directed path from y to x in G. We claim that at least
f, g or h has (y, x) as pair of poles.

In the plane graph G+ we have 3 paths y− f −x, y− g−x and y−h−x, and without loss of
generality we have around x the circular order (xf, xg, xh). Because of planarity (see [Cou00])
we have necessarily around y the circular order (yf, yh, yg). Without loss of generality we can
assume that g is inside the cycle C ′′ of G+ de�ned as x − f − y − h − x. Let p1 and p2 be
respectively the left-border and the right-border of g and assume that p1 contains x and y.

We will prove that x = n(g). If this is not the case we let x′ be the vertex following x on p1.
The right-border of f (resp. the left-border of h) contains x. Let z (resp. t) be the vertex
that precedes x on this border. Figure 33 shows a part of G+ around x.

We must have around x the following cyclic order of edges: z → x, t → x and x → x′ by
Lemma 9.4(1). We have the edge gx between z → x and t → x. But we also have the edge
x′g in G+. We have then two cycles, x− g − x′ ← x and the cycle y

∗→ z → x← t
∗← y, that

contradicts the planarity of G+. Hence, x = n(g) and similarly y = s(g).

We can now prove Lemma 9.6.

Proof of Lemma 9.6. Let G be a bipolar plane graph with adjacent poles and let T be the
decomposition tree of G. Let x and y be two vertices of G incident with 3 faces f, g and h
(and possibly others). By Claims 9.1 and 9.2, at least f, g or h has (x, y) or (y, x) as pair of
poles. Without loss of generality we assume that g as (y, x) as pair of poles.
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x′

x

f
z g t

h

Figure 33: Illustration of Claim 9.2.

We consider the induced sub-graph G[U ] where U consists of x, y and of all the vertices that
lie inside the cycle x − f − y − g − x. It is a factor of G with poles s(g) = y and n(g) = x.
The sub-graph G[U ′] with U ′ de�ned similarly from the cycle x− g− y−h−x is also a factor
with the same poles. Hence, G[U ∪ U ′] = G[U ]//G[U ′] and is a //-factor of G. Hence, (y, x)
is a //-polar pair of G.

As a consequence of Lemma 9.6 we get the following.

Lemma 9.7 Let G be a bipolar plane graph with adjacent poles and let m ≥ 3 be a positive
integer. Two vertices x and y are incident with exactly m faces if and only if they are the
poles of G(u) for some //-node u such that:

1. either u is the root and u has m sons,

2. or u is not the root and it has m− 1 sons.

The �rst step of the labeling scheme is to prove that we can decide when a pair of vertices
(z, t) forms a polar pair and separates two vertices x and y by means of labels of size O(log(n)),
n is the number of vertices of the input graph.

De�nition 9.12 (Polar-Pair Separation Query) We denote by pps(x, y, z, t), called the
polar-pair separation query, the graph property on bipolar plane graphs that expresses that the
vertices x and y are separated by the polar pair (z, t).

Proposition 9.5 There exists a log-labeling scheme (A,B) for the polar-pair separation query
on the class of bipolar plane graphs. Moreover, if n is the number of vertices of the input graph,
A computes the labels in O(n · log(n))-time and B gives the answer in constant-time.

We �rst explain the main ideas. We want to apply Theorem 7.4 to decomposition trees.
However, the decomposition tree of a bipolar plane graph does not give su�cient informations
for answering the polar-pair separation query. The idea is to transform the decomposition
tree T into a tree T ∗, that encodes enough information about G, some nodes of which are (or
correspond bijectively to) the vertices of G. Letting u1, . . . , up be the non-//-nodes of T with
associated graphs R1, . . . , Rp respectively, we let a vertex x of G belonging to VInt(Ri) be a son
of ui. (The poles of G are represented in a special way as sons of the root.) The major problem
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is to identify polar pairs. We will use auxiliary unary functions in addition to the information
encoded in T ∗. Consider a polar pair (z, t) with {z, t} = {s(u), n(u)} 6= {s(G), n(G)}. There
are two cases (up to exchanging z and t):

CASE 1. z, t ∈ VInt(Ri) and there is an arc z → t or t → z in Ri, which is actually a place
where a bipolar plane graph G(u) is substituted so that z = s(u) and t = n(u) (De�nitions
9.10 and 9.11). Since Ri is planar, we can use Corollary 9.1 and represent such arcs (and their
directions) by 6 unary functions (gi for i = 3, . . . , 8). If t ∈ {g4(z), g6(z), g8(z)}, then there is
an arc z → t and we let u be a son of z in T ∗ with the arc z → u labeled by i ∈ {4, 6, 8}. If
t ∈ {g3(z), g5(z), g7(z)}, then there is an arc t → z and we let u be a son of t with the arc
t → u labeled by i ∈ {3, 5, 7}. It follows that for a node u, son of a node z representing a
vertex of G such that the arc z → u is labeled by i ∈ {3, 4, . . . , 8}, we have that z and gi(z)
are the poles of G(u). Furthermore, z is the South pole if i is even and the North pole if i is
odd.

CASE 2. z ∈ VInt(Ri), t is a pole of Ri. In this case we let g1(z) = t if t is the South pole
and g2(z) = t if t is the North pole. These values of g1 and g2 represent respectively arcs from
t = s(Ri) to z and from z to t = n(Ri) of Ri, to which some G(u) is substituted. Similarly as
in the previous case, we let in T ∗ the node u be a son of z (with arc z → u labeled by 1 or 2).
If z → u is labeled by 1 or 2, then z is the South pole or the North pole of G(u) respectively.

To conclude this informal presentation, we state that the tree T ∗ (to be de�ned formally
below) belongs to T (A) where A is the set of labels {P,N,V, 1, . . . , 8}. The nodes labeled
V correspond bijectively to the vertices of G; those labeled by N are the non-//-nodes of T
(the decomposition tree of the considered graph); those labeled by P are some of the //-nodes
of T . The integers 1, . . . , 8 are arc labels used as explained above to encode, together with
functions g1, . . . , g8, the arcs of the graphs Ri and consequently the polar pairs of G.

We now give the precise de�nition of T ∗. It is worth noticing that if a bipolar plane graph
has its poles adjacent, then in its decomposition tree T the root is a //-node; if R1, . . . , Rp

are the //-atoms associated with the non-//-nodes u1, . . . , up of T , then (VInt(Ri))1≤i≤p is a
partition of VG (Lemma 9.5). We recall that for i ∈ [p], if each ui has vi1 , . . . , vim as outgoing
arcs in this order, then each arc ui → vij corresponds to the arc ej in Ri. An arc z → t labeled

j is denoted by z
j→ t.

De�nition 9.13 (The Labeled Tree T ∗) Let G be a bipolar plane graph with adjacent poles
and let T be its decomposition tree. We let u1, . . . , up be its non-//-nodes with associated graphs
R1, . . . , Rp. For each i ∈ [p], we let gα

i,j , j ∈ [3], α ∈ {+,−} be the functions that represent the
directions of arcs in Ri. We let g1, . . . , g8 : VInt(G)→ VG be such that for each x in VInt(Ri),

g1(x) = s(Ri) if s(Ri)→ x,

g2(x) = n(Ri) if x→ n(Ri),
g2j+1(x) = y if g−i,j(x) = y and y ∈ VInt(Ri) for j ∈ {1, 2, 3},
g2j+2(x) = y if g+

i,j(x) = y and y ∈ VInt(Ri) for j ∈ {1, 2, 3}.

The labeled tree of G, denoted by T ∗ ∈ T (A) where A ∈ {V,P,N, 1, . . . , 8}, is de�ned such
that:
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(T1) VT ∗ = VG ∪ {u ∈ VT | v ≤T u for some non-//-node v}.

(T2) A node of T ∗ is labeled by V if and only if it belongs to VG, by P if and only if it is a
//-node of T and by N if and only if it is a non-//-node of T .

(T3) ET ∗ = E ∪ E′ ∪ E1
1 ∪ E1

2 ∪ · · · ∪ E
p
1 ∪ E

p
2 where:

(T3.1) E = {u→ v ∈ ET | u, v ∈ VT ∗ and u is a //-node and v is a non-//-node}. They are
unlabeled.

(T3.2) E′ = {r 1→ s(G), r 2→ n(G) | r the root of T}.
(T3.3) For each i ∈ [p], we have

(T3.3.a) Ei
1 =

⋃
v∈VT∗

{ui → z, z
j→ v | ui → v ∈ ET corresponds to t → z ∈ Ri and

gj(z) = t with j ∈ {1, 3, 5, 7}}.

(T3.3.b) Ei
2 =

⋃
v∈VT∗

{ui → z, z
j→ v | ui → v ∈ ET corresponds to z → t ∈ Ri and

gj(z) = t with j ∈ {2, 4, 6, 8}}.

Remark 9.2

1. Given a bipolar plane graph G, we construct the tree T ∗ in linear-time:

Step 1. The decomposition tree T of G is constructed in linear-time (Proposition 9.4).

Step 2. We construct the functions g1, . . . , g8 : VInt(G) → VG by using Corollary 9.1
and this in linear-time because by Lemma 9.5 (VInt(Ri))1≤i≤p is a partition of VG and by
Proposition 9.4 we have

⊎
1≤i≤pERi is O(n), n is the number of vertices of G.

Step 3. The tree T ∗ is then constructed by using T and g1, . . . , g8. And this is done in
linear-time since we use the arcs of T .

2. From the tree T ∗ and the associated functions g1, . . . , g8, one can almost reconstruct G,
but not always exactly. For an example, if in the graph G on Figure 30 (Example 9.5), one
deletes the arc f17, the tree T

∗ and the functions gi do not change. But, the decomposition
tree on Figure 31 is modi�ed. For another example without parallel edges, let E = (• →
• → •)//(• → • → •)//(• → •) be a bipolar plane graph. Then the trees T ∗ associated
with E and the bipolar plane graph (• → • → •)//(• → • → •) are the same. Apart from
the arcs between the vertices of a polar pair, the graph G can be reconstructed from T ∗ and
g1, . . . , g8.

3. We will see that the arcs which are not encoded by T ∗ play no role in the determination of the
separation of vertices by polar pairs. However, we could encode g1, . . . , g8 in T ∗ by additional
edges, making it into a graph. This graph would not have bounded clique-width because
one can recover G from it by an MS-de�nition scheme. Therefore, we would not be able
to use Theorem 7.4 because MS-de�nition schemes preserves boundedness of clique-width
[Cou97, EvO97] whereas 2-connected planar graphs do not have bounded clique-width.

We illustrate De�nition 9.13 with Example 9.6.
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Example 9.6 We use the graph of Example 9.5. The table below shows mappings g1, . . . , g5.
The mappings g6, g7, g8 are everywhere unde�ned. The graphs R1, . . . , R5 are shown on Figures
32 and the decomposition tree of G is shown on Figure 31.

R1 R2 R3 R4 R5

a b c d k m p q

g1 s s s a a c

g2 n n n b c b

g3 a

g4 c k

g5 c

The tree T ∗ is shown on Figure 34. For each node labeled by V, we indicate between paren-
theses the corresponding vertex of G for helping to understand the construction.

P

N N

V(a) V(b) V(c) V(d) V(k)

P P

N

V(q)

N

V(m)

V(s) V(n)
1 2

34 5

V(p)

N

P

Figure 34: The tree T ∗ of the graph on Figure 30.

Before proving Proposition 9.5 we prove a last technical lemma on labeled trees T ∗ con-
structed in De�nition 9.13. We let ppsl(u1, u2, u3, u4), a property on labeled trees T ∗, mean:

u1, u2, u3 are labeled by V, u4 is labeled by P or N, u3 ≤T ∗ u4 and (u1, u2) =
(s(u4), n(u4)).

Claim 9.3 Let G be a bipolar plane graph, let T ∗ be its labeled tree and let
χ = {u1, u2, u3, u4, x1, . . . , x8, y1, . . . , y8, zs, zn}. Then there exists a formula
ψ(u1, u2, u3, u4, x1, . . . , x8, y1, . . . , y8, zs, zn) in MSTA

(χ) such that for every x, y, z ∈ VG and
every u ∈ VT ∗ , ppsl(x, y, z, u) holds if and only if:

T ∗ |= ψ
(
x, y, z, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y), s(G), n(G)

)
.

Proof of Claim 9.3. The condition �u1, u2, u3 are labeled by V, u4 is labeled by P or N,
u3 ≤T ∗ u4� is expressed by the following formula θ(u1, u2, u3, u4):

(V(u1) ∧V(u2) ∧V(u3)) ∧ (N(u4) ∨P(u4)) ∧ (�there exists a directed path from u4 to u3�).
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The only di�culty is then to express the condition (u1, u2) = (s(u4), n(u4)). We distinguish
several cases.

CASE 1. u4 is the root or u4 is a son of the root which is labeled by P (hence u4 is labeled by
N). In this case (u1, u2) = (s(u4), n(u4)) = (s(G), n(G)). Then in this case for every x, y, z ∈
VG and u ∈ VT ∗ , ppsl(x, y, z, u) holds if and only if T ∗ |= θ(x, y, z, u)∧ψ1(x, y, u, s(G), n(G))
where ψ1(u1, u2, u4, zs, zn) is:(

�u4 is the root� ∨ �the father of u4 is the root labeled by P�
)
∧ (u1 = zs ∧ u2 = zn).

CASE 2. u4 is not the root and is labeled by P; hence it is not a son of the root (by the
way T ∗ is constructed). Its father u is labeled by V, hence is a vertex of G and u is one of
the two poles of G(u4). Let j ∈ [8] be the label of the arc u → u4. Then the other pole
of G(u4) is gj(u). It follows in this case that, for every x, y ∈ VG and u ∈ VT ∗ , we have
(x, y) = (s(u), n(u)) if and only if T ∗ |= θ′(x, y, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y)) where
θ′(u1, u2, u4, x1, . . . , x8, y1, . . . , y8) is the formula:�u1 is the father of u4� ∧

∨
j=2,4,6,8

u2 = xj

 ∨
�u2 is the father of u4� ∧

∨
j=1,3,5,7

u1 = yj

 .

Therefore, in this case for every x, y, z ∈ VG and u ∈ VT ∗ , ppsl(x, y, z, u) holds
if and only if T ∗ |= θ(x, y, z, u) ∧ ψ2(x, y, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y)) where
ψ2(u1, u2, u4, x1, . . . , x8, y1, . . . , y8) is:

(�u4 is not the root� ∧P(u4)) ∧ θ′(u1, u2, u4, x1, . . . , x8, y1, . . . , y8).

CASE 3. u4 is not the root, is labeled by N, hence its father u′′ is labeled by P and is
not the root otherwise Case 1 applies. The father u′ of u′′ is labeled by V. We have
(s(u4), n(u4)) = (s(u′′), n(u′′)) and u′ ∈ {s(u4), n(u4)} as in Case 2. It follows in this
case that for every x, y ∈ VG and u ∈ VT ∗ , we have (x, y) = (s(u), n(u)) if and only if
T ∗ |= θ′′(x, y, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y)) where θ′′(u1, u2, u4, x1, . . . , x8, y1, . . . , y8) is
the formula:�u1 is the grand-father of u4� ∧

∨
j=2,4,6,8

u2 = xj

 ∨
�u2 is the grand-father of u4� ∧

∨
j=1,3,5,7

u1 = yj

 .

Therefore, in this case for every x, y, z ∈ VG and u ∈ VT ∗ , ppsl(x, y, z, u) holds
if and only if T ∗ |= θ(x, y, z, u) ∧ ψ3(x, y, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y)) where
ψ2(u1, u2, u4, g1(u1), . . . , g8(u1), g1(u2), . . . , g8(u2)) is:

(�u4 is not the root� ∧N(u4) ∧ �the father of u4 is not the root�) ∧ θ′′(u1, u2, u4, x1, . . . , x8, y1, . . . , y8).

The 3 cases above complete the condition (u1, u2) = (s(u4), n(u4). There-
fore, for every x, y, z ∈ VG and every u ∈ VT ∗ , ppsl(x, y, z, u) holds if
and only if T ∗ |= ψ(x, y, z, u, g1(x), . . . , g8(x), g1(y), . . . , g8(y), s(G), n(G) where
ψ(u1, u2, u3, u4, x1, . . . , x8, y1, . . . , y8, zs, zn) is the formula:

θ ∧ (ψ1 ∨ ψ2 ∨ ψ3).

This �nishes the proof of the claim.
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We can now prove Proposition 9.5.

Proof of Proposition 9.5. Let G be a bipolar plane graph with n vertices and let T be
its decomposition tree. Let T ∗ ∈ T (A) be the labeled tree constructed from T and G where
A = {V,P,N, 1 . . . , 8}. Let χ = {u1, u2, u3, u4, x1, . . . , x8, y1, . . . , y8, zs, zn}.

For every x, y, z, t ∈ VG, pps(x, y, z, t) holds if and only if the following holds:

∃u
((
ppsl(x, y, z, u) ∧V(t) ∧ t ≮T u

)
∨
(
ppsl(x, y, t, u) ∧V(z) ∧ z ≮T u

)
It follows from Claim 9.3 that one can build a formula
ϕ(u1, u2, u3, u4, x1, . . . , x8, y1, . . . , y8, zs, zn) in MSTA

(χ) such that pps(x, y, z, t) holds if
and only if

T ∗ |= ϕ
(
x, y, z, t, g1(x), . . . , g8(x), g1(y), . . . , g8(y), s(G), n(G)

)
. (10)

By Theorem 7.4, we can construct a log-labeling L for ϕ on T ∗. Recall that the vertices of G
are nodes of T ∗. For every x ∈ VG, we let

J(x) = (L(x), L(g1(x)), . . . , L(g8(x)), L(s(G)), L(n(G))) .

We have clearly |J(x)| = O(log(n)) and by Equivalence (10), we can determine for every
x, y, z, t ∈ VG if (z, t) is a polar pair separating x and y by using J(x), J(y), J(z) and J(t).
This ends the proof.

9.5.2 Reduced Barriers and the Proof of Theorem 9.4

We have seen with Proposition 9.5 that we can label the vertices of a bipolar plane graph G
with labels of size O(log(|VG|)) and such that for every X ⊆ VG and every x and y in VG, we
can check whether x and y are separated by a polar pair (z, t) ∈ X ×X. We will see in this
section that if x and y are not separated by a polar pair (z, t) ∈ X×X, then their connectivity
is reduced to the use of geometrical tools. For that purpose we need some more de�nitions
and a proposition which extends Proposition 9.1.

Let G be a bipolar plane graph and let T be its decomposition tree. For every //-polar
pair (z, t), we let Select(z, t) = F1(u), called the Select function, where u is the //-node such
that (z, t) = (s(u), n(u)) (F1(u) is de�ned in De�nition 9.11). We notice that any other face
Fj(u) would work for j ≤ d(u)− 1.

De�nition 9.14 (Reduced Barriers for Bipolar Plane Graphs) Let G be a bipolar
plane graph with adjacent poles and let G+ be its augmented graph. For every two distinct
vertices x and y, we let

RBar({x, y}) =

{
Bar({x, y}) if x and y are incident with at most 2 faces,

{fx, fy | f = Select(x, y)} otherwise.

For every X ⊆ VG, we let RBar(X) =
⋃
{RBar({x, y}) | x, y ∈ X, x 6= y} and we call it the

reduced barrier of X.

If E+ = (p, s) is an embedding of G+, we let RBar(X, E+) be the set {s(e) | e ∈ RBar(X)}.
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If two distinct vertices of G, say z and t, are incident with at least 3 faces, then they form
a //-polar pair, (z, t) or (t, z) by Lemma 9.6. Therefore, for every 2 distinct vertices z and t in
VG, RBar({z, t}) is well-de�ned. We now prove the following which relates the connectivity
of 2 vertices in G\X with RBar(X).

Proposition 9.6 Let G be a bipolar plane graph with adjacent poles and let E+ = (p, s) be an
embedding of G+. Let X ⊆ VG and let x, y ∈ VG −X, x 6= y. Then x and y are separated by
X if and only if either:

(a) x and y are separated by a polar pair (z, t) ∈ X ×X or

(b) p(x) and p(y) are separated in the plane by RBar(X, E+).

Proof. Let G,X, x, y be as in the statement. If (a) or (b) holds, then x and y are separated by
X (for the second case, we observe that RBar(X, E+) ⊆ Bar(X, E+) and we use Proposition
9.1).

Let us conversely assume that x and y are separated by X, but (a) does not hold. By
Proposition 9.1, they are separated in the plane by Bar(X, E+). As in the proof of Proposition
9.1 we need only prove the result for a minimal separator Y ⊆ X of x and y, because if x
and y are separated by RBar(Y, E+), they are also by RBar(X, E+). Hence, we assume that
X = {x1, . . . , xm} is a minimal separator of x and y in G. We �rst assume that m ≥ 3. Then
Bar(X) has the structure shown on Figure 35, where, for each i ∈ [m], {fi,1, . . . , fi,pi} is the
set of faces incident with xi and xi+1 (letting xm+1 denote also x1).

fm,pm

f2,1f1,1

xm−1

fm,1

f1,2

f2,p2
f1,p1

fm−1,pm−1

f2,2

fm−1,1
x2 x3

x1 xmfm−1,2

fm,2

Figure 35: A barrier illustrating the proof of Proposition 9.6.

Then RBar(X) is obtained from Bar(X) by removing for each i such that pi ≥ 3 all ver-
tices fi,j (and the incident edges) but one, so that RBar(X) contains a cycle going through
x1, . . . , xm. If x and y are separated by Bar(X, E+) and not by RBar(X, E+), this means
that one and only one of them is inside a cycle xi − fi,j − xi+1 − fi,j+1 − xi of Bar(X) such
that fi,j or fi,j+1 (or both) has been removed. This implies that pi ≥ 3 hence that xi and



178 Chapter 9. Connectivity Query on Planar Graphs

xi+1 form a //-polar pair (by Lemma 9.6). Furthermore, the set of vertices that are inside
this cycle are the internal vertices of G(uj) where uj is the j-th son of the //-node u with
poles xi and xi+1. Hence, x and y are separated by the polar pair (xi, xi+1) or (xi+1, xi), i.e.,
(a) holds. But we assumed the contrary. Hence, (b) must hold.

If m = 2 and p1 = p2 = 1, then Bar(X) = RBar(X) hence (b) holds. If p1 + p2 ≥ 3, then
by Lemma 9.6, x1 and x2 form a polar pair. As for the case m ≥ 3 we get that x and y are
separated by RBar(X, E+), otherwise (a) holds.

We cannot have m = 1 because the graph is assumed 2-connected. This ends the proof.

The following example is an illustration of De�nition 9.14 and Proposition 9.6.

Example 9.7 For clarity on Figure 36 we number faces from 1 to 8 but we do not show the edges
of G+ incident with the face-vertices 1, . . . , 8. The set Bar({z, t}) contains the 4 paths z − i− t
for i = 2, 6, 7, 8. Note that (z, t) is a //-polar pair. The reduced barrier RBar({z, t}) contains
only one of them, say z−2− t. The set RBar({z, t, c}) contains then z−2− t, t−3−c, t−4−c,
c − 5 − z. This reduced barrier separates b and d. The edges z − 2 and 2 − t are useful for that
because without them b and d are not separated. RBar({a, z}) = Bar({a, z}) = {z − 2, 2− a}
and the graph G\{a, z} is connected. Note that a and z do not form a polar pair.

n
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f
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z

b
e 76d

Figure 36: The graph of Example 9.7.

We now prove a last technical lemma. We let pp(x1, x2), called the polar-pair property,
be the property on bipolar plane graphs that expresses that the pair of vertices (x1, x2) is a
//-polar pair.

Lemma 9.8 The polar-pair property and the Select function in bipolar plane graphs are rep-
resentable by 12 functions.

Proof. The proof is a variant of that of Proposition 9.2. Let G be a bipolar plane graph. We
let H be the simple directed graph with VH = VG and an arc x → y if and only if (x, y) is
a //-polar pair. It is planar because these arcs can be inserted without crossing in a planar
embedding of G by adding this arc in a face Fj(u), j ≤ d(u) where u is the node of T such
that (x, y) = (s(u), n(u)). By Corollary 9.1, we can represent the directions of arcs in H with
6 functions g+

iH , g
−
iH : VH → VH for i ∈ [3] such that:

g+
iH(x) = y implies x→ y,

g−iH(x) = y implies y → x.
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Each arc is represented by a unique such clause. Hence, with the 6 functions gα
iH , i ∈ [3], α ∈

{+,−}, we can represent the polar-pair property pp.

We now de�ne 6 partial functions hα
iG for i ∈ [3], α ∈ {+,−} as follows:

h+
iG(x) = Select(x, g+

iG(x)),
h−iG(x) = Select(g−iH(x), x).

Then for every 2 distinct vertices x, y ∈ VG, the face-vertex f = Select(x, y) is characterized
by the following formula:(

y = g+
i (x) ∧ f = h+

i (x)
)
∨
(
x = g−i (y) ∧ f = h−i (y)

)
.

Then we can represent the Select function Select by the 12 functions gα
i , h

α
i , i ∈ [3], α ∈

{+,−}.

We can now prove Theorem 9.4.

Proof of Theorem 9.4. Let G be a 2-connected planar graph with n vertices and let G+ be
its augmented graph. By Remark 9.2 (1), we can construct the labeled tree T in O(n)-time.
By Proposition 9.5, we can construct in O(n · log(n))-time a log-labeling K for the polar-
pair separation query on G. By Proposition 9.3, we can construct a straight-line embedding
E+ = (p, s) of G+ with coordinates in [3n − 6]. By Proposition 9.2 and Remark 9.1, we can
represent with 24 = 15+3·3 functions f1, . . . , f24 the property that 2 vertices are incident with
at most 2 faces. By Lemma 9.8, we can represent with 12 functions g1, . . . , g12 the polar-pair
property and the Select function Select. Hence, for every vertex x in VG, we let

J(x) =
(
p(x), p(f1(x)), . . . , p(f24(x)), p(g1(x)), . . . , p(g12(x)),K(x)

)
.

It is clear that the labeling J is constructed in O(n · log(n))-time and for every x ∈ VG we
have |J(x)| = O(log(n)). We now explain how to decide the connectivity of 2 distinct vertices
x, y ∈ VG in G\X where X ⊆ VG − {x, y} by using the labels.

Step 1. For every pair of vertices (z, t) ∈ X×X, we can verify by using p(g1(z)), . . . , p(g12(z))
and p(g1(t)), . . . , p(g12(t)) if (z, t) or (t, z) forms a //-polar pair by Lemma 9.8 and if so, decides
if it separates x and y by using K(x),K(y),K(z) and K(t) by Proposition 9.5. If x and y are
separated by a //-polar pair (z, t) ∈ X ×X, then we can report that they are separated by
X by Proposition 9.6. Otherwise, we perform Step 2.

Step 2. We can decide if (z, t) ∈ X × X are incident with at most 2 faces by Proposition
9.2 and Remark 9.1 and if so, determine the at most 2 faces by using p(f1(z)), . . . , p(f24(z))
and p(f1(t)), . . . , p(f24(t)). By Proposition 9.2, if they are incident with at least 3 faces we
can recover Select(z, t) by using p(g1(z)), . . . , p(g12(z)) and p(g1(t)), . . . , p(g12(t)) (see Lemma
9.8). Since G+ is a straight-line embedding, we can determine RBar(X, E+). Finally, we can
test if x and y are separated by RBar(X, E+) by using Theorem 9.3 and this is su�cient by
Proposition 9.6. This gives the �nal answer.
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Given a //-polar pair (z, t), we can answer if they separate x and y in constant-time
(Proposition 9.5); therefore it takes O(|X2|)-time to decide if x and y are separated by a
//-polar pair in X in Step 1. In Step 2, for every pair (z, t) ∈ X ×X we take constant-time
to construct RBar({z, t}); therefore it takes O(|X2|)-time to construct RBar(X, E+). By
Theorem 9.3, it takes O(m · log(m))-expected time to decide if p(x) and p(y) are separated
by RBar(X, E+) where m = RBar(X, E+) = O(|X|). This �nishes the proof.

9.6 The General Case

We prove in this section Theorem 9.1 and we will use for that the decomposition of connected
graphs into biconnected components. We recall that we denote by Bcc(G) the set of bi-
connected components of a connected graph G.

De�nition 9.15 (The Rooted Tree BC(G) of G) Let G be a connected graph. We let
W (G), disjoint from VG, be a set in bijection with Bcc(G) by bcc : W (G) → Bcc(G). We
denote by BC(G) the tree with set of nodes VG∪W (G) and with set of edges {wv | v ∈ VG, w ∈
W (G) and v ∈ Vbcc(w)}.

We choose a vertex r of G, that belongs to a unique biconnected component, to be the root
of BC(G). From this choice, BC(G) is directed, rooted with partial order ≤BC(G) and r is the
greatest element. The tree BC(G) is called the rooted tree of G and handled as the relational
structure 〈V (G) ∪W (G),V,W,member, root 〉 where for every v, w ∈ VBc(G),

V(v) holds if and only if v ∈ VG

W(v) holds if and only if v ∈W (G)
member(v, w) holds if and only if v ∈ VG, w ∈W (G) and v ∈ Vbcc(w)

root(v) holds if and only if v ∈ VG and is the root of BC(G).

For each C ∈ Bcc(G), the set VC has a ≤BC(G)-greatest element, called the leader of C and
denoted by leader(C). For each vertex x of G di�erent from r, we denote by mother(x) and call
it the mother of x, the ≤BC(G)-maximal node w of W (G) such that x ∈ Vbcc(w).

A vertex of G has degree at least 2 in BC(G) if and only if it is a separating vertex in G.

De�nition 9.16 (Problematic Biconnected Components) Let G be a connected graph
and let BC(G) be its rooted tree. The unique path in BC(G) between 2 distinct vertices x and
y in VG is denoted by p(x, y). For a subset X of VG and two vertices x and y in VG − X, we
say that a biconnected component C of G is problematic for (x, y,X) if bcc−1(C) is on the path
p(x, y) and C contains at least 2 vertices of X.

The following lemma is clear from the de�nition of problematic biconnected components.

Lemma 9.9 Let G be a connected graph and let x, y ∈ VG and X ⊆ VG−{x, y}. We denote by
C1, . . . , Cm the problematic biconnected components for (x, y,X) and for every 1 ≤ i ≤ m− 1,
we let xi be a vertex between bcc−1(Ci) and bcc−1(Ci+1) in p(x, y); we let x0 = x and xm = y.
The vertices x and y are separated by X if and only if either:
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(a) p(x, y) goes through some z ∈ X or,

(b) there exists an 1 ≤ i ≤ m such that the vertices xi−1 and xi are separated by X ∩ VCi in
G.

As for the proof of Theorem 9.4 we will use Theorem 7.4 in order to identify the separating
vertices and to determine the problematic biconnected components. We let the two following
properties of the nodes of BC(G) that are MS-de�nable:

ϕ1(u1, u2, u3) =
∧

1≤i<j≤3

�ui 6= uj� ∧
∧

1≤i≤3

V(ui) ∧ �p(u1, u2) goes through u3�.

ϕ2(u1, u2, u3, u4, u5) =
∧

1≤i<j≤5

�ui 6= uj� ∧
∧

i=1,2,4,5

V(ui) ∧ W(u3) ∧
∧

i=4,5

member(ui, u3) ∧

�p(u1, u2) goes through u3�.

For every x, y, z ∈ VG, the property ϕ1(x, y, z) holds if and only if p(x, y) goes through z. And
for every x, y, z, t ∈ VG and every u ∈ W (G), the property ϕ2(x, y, u, z, t) holds if and only
bcc(u) is a problematic biconnected component for (x, y, {z, t}). Our next aim is to prove the
following proposition, stated with the notation of De�nition 9.15 and Lemma 9.9.

Proposition 9.7 Let G be a connected planar graph with n vertices. There exists a log-
labeling M0 for the properties ϕ1, ϕ2, ≤ and member on G. One can also build a log-labeling
M of G such that for every x, y ∈ VG and X ⊆ VG:

1. we can determine fromM(x),M(y) andM(X) whether p(x, y) goes through some z ∈ X.
Otherwise,

2. if C1, . . . , Cm are the problematic biconnected components for (x, y,X), then we can
determine in O(|X2|)-time from M(x),M(y) and M(X) the label M0(bcc−1(Ci)), the
sets M0(X ∩ VCi) for i in [m] and the labels M0(x1), . . . ,M0(xm−1) where the vertices
x1, . . . , xm−1 are leaders of some of the problematic biconnected components such that
(x0 = x, xm = y):

Conn(x, y,X)⇐⇒
∧

1≤i≤m

Conn(xi−1, xi, X ∩ VCi).

Moreover, the labelings M and M0 are constructed in O(n · log(n))-time.

Proof. The order ≤BC(G) is de�nable by an MS formula since we can de�ne by an MS
formula the existence of a directed path between two nodes of a rooted forest.

Notice that |VBC(G)| ≤ 2|VG|. By Theorem 7.4, we can construct a log-labeling Ki of BC(G)
for each property ϕi, 1 ≤ i ≤ 2. We can also construct log-labelings K3 and K4 for the
properties u1 ≤ u2 and member(u1, u2) respectively. For each node u in VBC(G), we let
M0(u) = (K1(u),K2(u),K3(u),K4(u)) and for each vertex x in VG, we let

M(x) =
(
M0(x),M0(mother(x)),M0(leader(mother(x)))

)
.
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(If x is the root we mark the last two components as �unde�ned�). We now explain given x
and y in VG and a subset X of VG−{x, y}, how to check the statements by usingM(x), M(y)
and M(X).

For each z ∈ X, by using the K1-parts ofM0(x),M0(y), andM0(z), we can check if ϕ1(x, y, z)
holds. Hence, we can check whether p(x, y) goes through some vertex in X. This test takes
time O(|X|).

Otherwise, let C1, . . . , Cm be the problematic components for (x, y,X). The path p(x, y) can
be of 3 possible types depending on how its nodes are related under ≤B(G); we denote below
<B(G) by < for readability.

CASE 1. x < C1 < C2 < · · · < Cm < y or the same by changing < into >,

CASE 2. x < C1 < C2 < · · · < Cp > Cp+1 · · · > Cm > y,

CASE 3. x < C1 < C2 < · · · < Cp < w > Cp+1 · · · > Cm > y where w is either a vertex or a
biconnected component that is not problematic.

In Case 1 we let xi be the leader of Ci for i = 1, . . . ,m− 1 (in the other variant of Case 1 we
interchange x and y). For Case 2, we let xi be the leader of Ci for i = 1, . . . , p − 1 and we
let xi be the leader of Ci+1 for i = p, . . . ,m− 1. For Case 3, we let xi be the leader of Ci for
i = 1, . . . , p and we let xi be the leader of Ci+1 for i = p+ 1, . . . ,m− 1.

If a biconnected component C is a problematic biconnected component, it must be the mother
of some vertex z ∈ X. Therefore, for each pair (z, t) ∈ X × X, by using the K2-parts
of M0(x),M0(y),M0(z),M0(t) and M0(mother(z)) (resp. M0(mother(t))), we can decide if
bcc(mother(z)) (resp. bcc(mother(t))) is a problematic biconnected component for (x, y,X).
We can then determine the set Z = {M0(bcc−1(Ci)) | i = 1, . . . ,m}.

By using the K3-parts of M0(x) and M0(y), we can check whether x < y or y < x, hence we
can identify if Case 1 holds. It remains to identify Cases 2 and 3. By using the K3-parts of
M0(x),M0(y) and the set Z we can check whether Case 2 or 3 holds. If Case 2 or Case 3
holds, we can determine Cp. (Notice that with Case 3 we cannot determine w.)

We now show how to determine, for each problematic biconnected component Ci, the label
M0(xi). Since each component Ci is problematic we know at least one z ∈ X ∩ VCi such that
Ci = bcc(mother(z)). Since M(z) contains M0(leader(mother(z))) for each z ∈ X we can
determine the leaders of the problematic components, whence the desired lists x1, . . . , xm−1

and M0(x1), . . . ,M0(xm−1).

It remains to determine for each problematic biconnected component Ci, the setM0(X∩VCi).
By de�nition, if Ci = bcc(mother(z)) for some z ∈ X, then X∩VCi is the set of elements t ∈ X
such that member(t,mother(z)). By using the K4-parts of M0(t) and of M0(mother(z)), we
can determine when member(t,mother(z)) does hold. This �nishes the proof.
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Remark 9.3 With Proposition 9.7 we only have the labelsM0(xi) of the xi's. However, we want
to use Proposition 9.7 in such a way that it gives us other labels (typically some indices in the
plane, to be de�ned later) of the xi's and not only their labels M0. For that purposes, we use the
following notation. If J : VG → L is an injective mapping, then we let for every x in VG

M [J ](x) =
(
J(x),M0(x),M0(mother(x)),M0(leader(mother(x))), J(leader(mother(x)))

)
.

It is clear that by using the labeling M [J ] instead of M we determine clearly the labels
(M0(xi), J(xi)) of the xi's and if, for every x, we have |J(x)| ≤ O(f(|VG|)) for some function f ,
then |M [J ](x)| ≤ O(log(|VG|) + f(|VG|)).

We now explain how to label the vertices so that we can verify Conn(xi−1, xi, X ∩VCi) for
each i. We use the same notations as in Proposition 9.7. It is clear that Conn(xi−1, xi, X∩VCi)
holds if and only if Conn(x′i−1, x

′
i, X∩VCi) holds where x

′
i−1, denoted by AttG(xi−1, C), is the

�rst vertex of C met by p(xi−1, bcc
−1(C)) in BC(G) and similarly for x′i = AttG(xi, C). Note

that for each vertex xi the vertex AttG(xi, C) is a separating vertex of G. Then we need for
each x and a biconnected component C of G, to be able to determine the vertex AttG(x,C).
One way for doing that is to store the set of separating vertices of each biconnected component
C and given x, test if one of the separating vertices of C is equal to AttG(x,C). However, a
biconnected component may have an unbounded number of separating vertices and we cannot
encode them as a �nite list of bounded size. To overcome this di�culty, we take the rooted tree
and fuse the labeled trees T ∗(C) of all the biconnected components of G. Then we distinguish
the two cases of Proposition 9.6:

1. we use logical tools in order to determine the case where AttG(xi−1, C) and AttG(xi, C)
are separated by a polar pair in Xi ×Xi where Xi = X ∩ VCi . If not,

2. we prove that xi−1 and xi are separated by RBar(X ∩ VCi) if and only if they are
separated by X ∩ VCi .

Therefore, we no more need to determine the vertices AttG(x,C). We need now de�nitions
and notations. Let us �rst show how to combine the trees T ∗(C).

De�nition 9.17 (The Representing Tree BT ∗(G)) Let G be a connected planar graph
and let BC(G) be its rooted tree. For each biconnected component C of G we let n(C) be
leader(bcc−1(C)) and choose a vertex of C adjacent with n(C), that we denote by s(C). Each
bi-connected component C of G is transformed into a bipolar plane graph with North pole n(C)
and South pole s(C).

For each C ∈ Bcc(G) we let T ∗(C) be the labeled tree associated to the decomposition tree
of the bipolar plane graph associated with C. If C is reduced to a single edge s(G) → n(G), we
let T ∗(C) be the tree s(G) 1← N 2→ n(G).

We de�ne BT ∗(G), called the representing tree of G, as the union of the trees T ∗(C) for all
C ∈ Bcc(G). These trees have in common the nodes that are vertices of G. We let Root(C) be
the root of T ∗(C). It is not in VG.

The tree BT ∗(G) depends not only on the chosen orientation of BC(G) but also on the
bipolar orientations of the biconnected components. We illustrate De�nition 9.17 with Exam-
ple 9.8.
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Example 9.8 Let W be the directed plane graph of Figure 37. Its biconnected components are
bipolar. Letting g3 map 4 to 14 (note in our example no other value of g3 and no other function
g4, . . . , g8 are needed), its tree BT ∗(G) is shown on Figure 38.
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Figure 37: A directed plane graph W .

V(1)NV(2) V(3)

P

V(7)
N

V(8)
P

N

V(14)

V(10)
N

P

NV(12)

V(13)

V(9)
V(4)

V(5) N V(6)

N

1 2 1 2

2

1

2 1

2

2

1

1

3

P

N

P

2I

1

IV

II

V

VI

V(11)
VII

III

Figure 38: The tree BT ∗(G) of the graph on Figure 37.

We state the following simple properties of BT ∗(G).

Lemma 9.10 Let G be a planar graph and let BT ∗(G) be its representing tree. Then:

(i) The graph BT ∗(G) is a directed tree.

(ii) The nodes of BT ∗(G) labeled by V are the vertices of G.

(iii) The nodes of BT ∗(G) of indegree 0 are in bijection by a function, that we will denote by
Root, with Bcc(G) and thus with W (G).
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(iv) For each C ∈ Bcc(G), n(C) is the unique vertex x such that Root(C) 2→ x in BT ∗(G)
and s(C) is the unique vertex y such that Root(C) 1→ y. The nodes of T ∗(C) are the
nodes of BT ∗(G) accessible from Root(C) by a directed path and T ∗(C) is the sub-tree
of BT ∗(G) induced on this set.

(v) The tree BT ∗(G) has O(n) nodes.

Proof. All these facts are clear from the de�nitions.

We now de�ne formally the vertex AttG(x,C) for every vertex x ofG and every biconnected
component C of G.

De�nition 9.18 (Attachment Vertices) For every vertex x of G and every biconnected com-
ponent C of G, we let

AttG(x,C) =


x if x ∈ C,
x′ if x /∈ C and x′ is the unique vertex of C

on the path in BC(G) that links x and bcc−1(C).

In other words AttG(x,C) is the �rst vertex of C on any path in G from x to some vertex
of C. We omit the sub-script when non necessary. We �rst need to be able to state in BT ∗(G)
that a vertex x′ is AttG(x,C). For that purposes, we prove that the rooted tree BC(G) of G
can be de�ned from BT ∗(G) by an MS-de�nition scheme (MS-de�nition schemes are de�ned
in Section 1.4).

Lemma 9.11 For every connected planar graph G the rooted tree BC(G) of G can be de�ned
from the representing tree BT ∗(G) of G by an MS-de�nition scheme.

Proof. Let BT ∗(G) be the representing tree of G of a connected planar graph. Let D =
(ψ, θV, θW, θmember, θroot, θ≤) be the MS-de�nition scheme where:

ψ(u) = �u has indegree 0� ∨V(u)
θV(u) = V(u)
θW(u) = �u has indegree 0�
θroot(u) = �maximal element of the re�exive and transitive closure of <0�

θmember(u1, u2) = �u2 has indegree 0� ∧V(u1)
∧ �there exists a directed path from u2 to u1

θ≤(u1, u2) = u1 = u2 ∨ u1 <
∗
0 u2

where for all nodes u, v of BT ∗(G),

u <0 v if and only if
(
θW(u) ∧ θV(v) ∧ u 2→ v) ∨ (member(u, v) ∧ ¬(v 2→ u)

)
.

It is clear that D is an MS-de�nition scheme that de�nes BC(G).
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Lemma 9.11 combined with Proposition 1.3 says that every MS formula ϕ on BC(G) can
be translated into an MS formula ϕ# on BT ∗(G) such that ϕ holds in BC(G) if and only if
ϕ# holds in BT ∗(G). In particular, we get the following.

Corollary 9.2 The properties ϕ1, ϕ2,≤ and member on rooted trees can be translated into
MS queries on representing trees, that we denote by ϕ#

1 , ϕ
#
2 ,≤# and member#.

We now prove that x′ = AttG(x,C) is de�nable by an MS formula on BT ∗(G).

Lemma 9.12 Let G be a connected planar graph and let BT ∗(G) be the representing tree of
G. There exists an MS formula α(u1, u2, u3) relative to BT ∗(G) such that for any nodes
u, u′ and w of BT ∗(G), we have BT ∗(G) |= α(u, u′, w) if and only if u, u′ are vertices of G,
w = Root(C) for some biconnected component C of G and u′ = AttG(u,C).

Proof. We let α(u1, u2, u3) express the following: u1 and u2 are labeled by V, w has
in-degree 0, there is a directed path from w to u2 and either u1 = u2 or there is an undirected
path between u1 and u2 containing an arc y → u2 that does not belong to the path from w to
u2. From the de�nition of AttG(x,C) these conditions are clearly equivalent to the condition
u2 = AttG(u1, C) where u3 = Root(C).

Example 9.9 We consider the tree on Figure 38. The nodes marked by I, . . . , V II are those of
the form Root(C). We have in particular 10 = Att(2, C) = Att(6, C) = Att(5, C) = Att(10, C)
where VII=Root(C). The validity of the de�nition of α can be checked on these examples.

We now prove that the property �x′ = AttG(x,C) and y′ = AttG(y, C) are separated by a
polar pair in VC� is de�nable by an MS formula in BT ∗(G). For nodes u1, u2, u3, u4 and u5

we let pps1(u1, u2, u3, u4, u5) mean:

�u5 = Root(C) for some biconnected component C and (u1, u2) is a polar pair of
C separating u3 and u4.�

We let pps′(u1, u2, u5) be the property:

∃u3∃u4

(
α(u1, u3, u5) ∧ α(u2, u4, u5) ∧ pps1(u1, u2, u3, u4, u5)

)
It is clear that the property pps′(z, t, x, y, w) holds if and only if (z, t) is a polar pair of bcc(w)
separating AttG(x, bcc(w)) and AttG(y, bcc(w)). We now prove that there exists a log-labeling
that veri�es the statements of Proposition 9.7 and that is furthermore, a log-labeling for pps′.

Proposition 9.8 Let G be a connected planar graph with n vertices and let BT ∗(G) be its
representing tree. There exist log-labelings R0 and R on BT ∗(G) such that for every x, y in
VG and every subset X of VG − {x, y}:

(i) we can determine from R0(x), R0(y) and R0(X) whether p(x, y) goes through some z ∈
X. Otherwise,
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(ii) if C1, . . . , Cm are the problematic biconnected components for (x, y,X), then we can
determine in O(|X2|)-time from R0(x), R0(y) and R0(X) the label R0(bcc−1(Ci)), the
sets R0(X ∩ VCi) for i ∈ [m] and R0(x1), . . . , R0(xm−1) where the vertices x1, . . . , xm−1

are leaders of some of the problematic biconnected components such that (x0 = x, xm =
y):

Conn(x, y,X)⇐⇒
∧

1≤i≤m

Conn(xi−1, xi, X ∩ VCi).

(iii) For each i ∈ [m], by using R0(xi−1), R0(xi), R0(bcc−1(Ci)) and R0(X ∩ VCi), we can
determine in O(|X|2)-time whether AttG(xi−1, Ci) and AttG(xi, Ci) are separated by
some polar pair in (X ∩ VCi)

2.

Moreover, the labelings R0 and R are constructed in O(n · log(n))-time.

Proof. For every biconnected component C of G, the labeled tree T ∗(C) is the union of
directed paths in BT ∗(G) originating from Root(C). Then the set of nodes of T ∗(C) is MS-
de�nable in BT ∗(G). Therefore, the query pps1 on C can be translated into a query pps#1
on BT ∗(G) (Proposition 1.3), hence the query pps′ can be expressed by an MS formula in
BT ∗(G). By Theorem 7.4, there exists a log-labeling for the properties ≤#,member#, ϕ#

1 , ϕ
#

and pps#1 . For each vertex x in VG, we let

R(x) =
(
R0(x), R0(mother(x)), R0(leader(mother(x)))

)
.

If n is the number of vertices of G, the labeling R0 is constructed in O(n · log(n))-time, hence
the labeling R (Theorem 7.4). It is also clear that |R(x)| ≤ O(log(n)) for every x in VG. We
now explain given R(x), R(y) and R(X) how to verify the statements (i)-(iii).

By Lemma 9.11 and Proposition 9.7, by using R(x), R(y) and R(X) we can verify the
statements (i)-(ii). The label R0(x) contains a log-labeling for pps′. Then by using
R0(xi−1), R0(xi) and R0(X ∩ VCi), we can verify statement (iii).

It remains to label the vertices in order to answer queries Conn(x, y,X) when X is con-
tained in a biconnected component and X does not contain any polar pair of C that separates
x and y. For that purposes we will adapt the notion of barriers and reduce such connectivity
queries to the connectivity queries in the plane as in Sections 9.4 and 9.5.

De�nition 9.19 (Augmented Graphs of Biconnected Components) For every graph
H, we let Spl(H) = 〈VH , E

′ 〉 where E′ = {xy | x, y ∈ VH and x and y are adjacent in H}.
For every connected plane graph G, we let G− = Spl(G+) where G+ is the augmented graph of
G.

For every connected plane graph G and every biconnected component C of G, we let FG(C)
be the set {f ∈ FG | there exist x, y ∈ VC and xy ∈ EC and fx, fy ∈ EG+}.

Let G be a connected plane graph and let G+ be its augmented graph. For every biconnected
component C of G, we let E−(C) be the restriction of E+ to G−[VC ∪ FG(C)] where E+ is an
embedding of G+.
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For every connected plane graph G and every biconnected component C of G, the following
relates an embedding of C+ with E−(C).

Lemma 9.13 Let G be a simple connected plane graph and let E+ be an embedding of G+.
Then E−(C) is an embedding of C+.

Proof. Let E− be the restriction of E+ to G−. It is clear that E+ and E− coincide in C and
form an embedding E ′ of C. Each face f ∈ FG(C) de�nes a unique face f ′ of E ′. We let
α : FG(C)→ FC be the mapping that maps every face f ∈ FG(C) into a face α(f).

We �rst prove that α is injective. Assume this is not the case and let f1 and f2 be 2 distinct
faces in FG(C) such that α(f1) = α(f2). The border Γ of f1 (considered as a face of G)
contains at least one edge of C and at least one edge not in C, that separates f1 and f2 in
E+ and does not in E− (since we assume f1 6= f2 and α(f1) = α(f2)). Hence, Γ contains a
nonempty path with no edge in C that links two distinct vertices of C, i.e., the union of this
path and C is a 2-connected sub-graph of G. A contradiction because C is a biconnected
component. It follows that α is injective.

We now prove that α is surjective. Let g ∈ FC and let E ′(g) be the corresponding open subset
of the plane associated with g in the embedding E ′. The associated embedding by E+ of each
biconnected component of G is either in R2 − E ′(g) or in E ′(g) ∪ E ′(Γ) where Γ is the border
of g. It is clear that E ′(g) −

⋃
{E(D) | D is a biconnected component of G, D 6= C} is E(f)

for some face f ∈ FG(C) and that g = α(f). Hence, α is a bijection.

We �nish the proof by showing that G−[VC ∪ FG(C)] is simple. In G+[VC ∪ FG(C)]
there are several edges between f (such that g = α(f) as above) and a vertex x of G
if some biconnected component D of G is embedded by E+ in E ′(g) ∪ E ′(Γ), Γ is the
border of g and is such that VD ∩ VC = {x}. In G−[VC ∪ FG(C)] only one remains in such a
case between f and x. Then the restriction of E+ to G−[VC ∪FG(C)] is an embedding of C+.

The following example is an illustration of Lemma 9.13.

Example 9.10 We consider the graph G+ on Figure 25. It is not simple. Let G− be obtained
by deleting a and c, and let E− be the corresponding planar embedding. Let C be the biconnected
component with VC = {x, t, v}. Then the restriction of E− to G−[VC∪FG(C)] is shown on Figure
39. It is an embedding of C+.

We now de�ne the reduced barriers for connected planar graphs.

De�nition 9.20 (Reduced Barriers for Connected Planar Graphs) Let G be a con-
nected plane graph, let G+ be its augmented planar graph and let G− be Spl(G+). For every 2
distinct vertices x and y of G, we let

RBar({x, y}) =

{
Bar({x, y}) ∩ EG− if x and y are incident with at most 2 faces,

{fx, fy | f = Select(x, y)} otherwise.

For every X ⊆ VG, we let RBar(X) =
⋃

x,y∈X

x 6=y

RBar({x, y}).
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Figure 39: Illustration of Example 9.10.

The following relates RBar(X) and Bar(X) when X is contained in a biconnected com-
ponent.

Lemma 9.14 Let G be a plane graph and let C be a biconnected component of G. Let X be
a subset of VC and let x and y be in VG −X that either belong to VC or are connected to VC

by paths that do not go through X and such that AttG(x,C) and AttG(y, C) are not separated
by a polar pair of C in X ×X. Then x and y are separated in G by X if and only if p(x) and
p(y) are separated by RBar(X, E0) where E0 = (p, s) is a straight-line embedding of G−.

Proof. Assume that x and y are separated by RBar(X, E0) and let us extend E0 into an
embedding E+ of G+ with edges in EG+−EG− represented by curve segments so that E− = E0.
If x and y are separated in the plane by RBar(X, E0), they are separated by RBar(X, E−),
hence they are also separated by X in G.

For the other direction, let x and y be separated by X in G. Let x′ in VC − X be x
if x ∈ VC or be linked to x by a path avoiding X. Let y′ be de�ned similarly from y.
Clearly, x′ and y′ are separated in C by X. Hence, they are separated in the plane by
RBar(X, E−(C)) (Proposition 9.6. But by Lemma 9.13, E−(C) is the embedding of C+

de�ned as a restriction of E0 = E−. Hence x′ and y′ are separated by RBar(X, E0) in the
plane. Each of the two paths linking x to x′ and y to y′ avoids X, hence is in a connected com-
ponent of R2−RBar(X, E0). Hence, x and y are also separated in the plane by RBar(X, E0).

We illustrate Lemma 9.14 with Example 9.11.

Example 9.11 We use the graph W of Example 9.8. Figure 40 shows the graph W−. We
have FW = {A,B,C, . . . , F,G,H}. We do not show in full all edges incident with A. Let
Z be the biconnected component with VZ = {1, 4, 5, 9, 14}, s(Z) = 9, n(Z) = 1. Then Z+

consists of Z augmented with the following edges: A − 1, A − 5, A − 9, , C − 1, C − 5, C −
14, C − 4, D − 4, D − 14, D − 5, E − 4, E − 5, E − 9,H − 1,H − 4,H − 9. It is clear that
Z+ = W−[{1, 4, 5, 9, 14, A, C,D,E,H}].

Let X = {1, 4, 5}. Condition (a) of Lemma 9.9 shows that 2 and 3, and 9 and 14 are separated
by X. Note that 4 and 5 form a //-polar pair. They are incident with 3 faces; 1 and 4 form also
a polar pair but not a //-polar pair.

We can now prove Theorem 9.1.
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Figure 40: A graph W−.

Proof of Theorem 9.1. We �rst consider connectivity queries when we only exclude vertices.

Let G be a connected planar graph with n vertices. If G is m-face bounded 2-connected,
by Theorem 9.2 there exists a log-labeling J for the connectivity query on G that veri�es
all the statements. If G is 2-connected, by Theorem 9.4 there exists a log-labeling J for
the connectivity query on G that veri�es all the statements. Assume now that G is not
2-connected.

By a linear-time algorithm, we can construct the rooted tree BC(G) of biconnected compo-
nents. We construct the representing tree BT ∗(G) in linear-time (each T ∗(C) is computed
in time linear in the number of edges of C and the number of edges of all C is exactly the
number of edges of G, which is at most 3n).

We transform G into a plane graph that we still denote by G. We can therefore construct G+.
We let G− = Spl(G+) and we de�ne a straight-line embedding E0 = (p, s) of G− by [Sch90].
Each vertex of G−, i.e, each element x in VG ∪ FG, has a pair of integer coordinates p(x) of
size at most 2 · (dlog(n)e+ log(3)).

By Proposition 9.2 and Remark 9.1, we can represent with 24 functions f1, . . . , f24 the property
that 2 vertices are incident with at most 2 faces. For every x ∈ VG, we let

C0(x) = (p(x), p(f1(x)), . . . , p(f24(x))) .

By Lemma 9.8, in each biconnected component D of G, we can represent the polar-pair
property and the Select function with 12 functions gD

1 , . . . , g
D
12. For each x ∈ VG if D =

mother(x) we let

C ′
0(x) = (CD

1 (x), CD
1 (leader(D)))

where CD
1 (x) = (p(gD

1 (x)), . . . , p(gD
12(x))) (if x is the root of BC(G), then CD

1 (x) is �unde-
�ned�). For each x ∈ VG, we let R(x) and R0(x) be the labels of x constructed by Proposition
9.8. For each x ∈ VG, we let C(x) = (C0(x), C ′

0(x)) and J(x) = R[C](x).
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It is clear that for every x ∈ VG, |J(x)| = O(log(n)) and is constructed in O(n · log(n))-time.
It remains to explain now how to check the connectivity of x and y in G\X given J(x), J(y)
and J(X).

By using the R-parts of J(x), J(y) and J(X), we can verify if p(x, y) goes through some z ∈ X
(Proposition 9.8) and if it does, we can answer that x and y are disconnected by X in G by
Lemma 9.9.

Otherwise, let C1, . . . , Cm be the problematic biconnected components for (x, y,X) and let
x1, . . . , xm−1 that are leaders of some problematic biconnected components such that (x0 =
x, xm = y):

Conn(x, y,X)⇐⇒
∧

1≤i≤m

Conn(xi−1, xi, X ∩ VCi).

By Proposition 9.8 and Remark 9.3; by using R(x), R(y) and R(X); we can determine
(R0(x1), C(x1)), . . . , (R0(xm−1, C(xm)) and R0(bcc−1(C1)), . . . , R0(bcc−1(Cm) and for each
1 ≤ i ≤ m the set {(R0(z), C(z)) | z ∈ X ∩ VCi}. For each 1 ≤ i ≤ m, by using
R0(xi−1), R0(xi) and R0(X∩VCi), we can check if there exists a polar pair in Ci that separates
AttG(xi−1, Ci) and AttG(xi, Ci) (see Proposition 9.8). If one such i is found, then we can re-
port that x and y are disconnected. Otherwise, by Lemma 9.14, for each i = 1, . . . ,m, we have
Conn(xi−1, xi, X ∩ VCi) if and only if p(xi−1) and p(xi) are separated by RBar(X ∩ VCi , E0).
By Theorem 9.3, we can decide if p(xi−1) and p(xi) are separated by RBar(X ∩ VCi , E0)
if we know RBar(X ∩ VCi , E0). It remains to explain how to get the ends of the edges in
RBar(X ∩ VCi) since E0 is a straight-line embedding.

Let z and t be 2 distinct vertices in X ∩ VCi . If z and t are incident with at most 2 faces,
then we can determine these at most 2 faces that are incident with z and t by using C0(z)
and C0(t) (Proposition 9.2). Now assume that z and t are incident with at least 3 faces. At
least one of them, say z, has bcc−1(Ci) as mother. We have 2 cases:

CASE 1. bcc−1(Ci) is also the mother of t. By de�nition of C ′
0, we can determine

p(gCi
1 (t)), . . . , p(gCi

12 (t)) and by Lemma 9.8, we can therefore determine p(Select(z, t)) and
then RBar({z, t}).

CASE 2. bcc−1(Ci) is not the mother of t and therefore t is the leader of bcc−1(Ci). By
de�nition of C ′

0, we have stored in C ′
0(z) the values of p(gCi

1 (t)), . . . , p(gCi
12 (t)). Again by

Lemma 9.8, we can therefore determine RBar({z, t}).

Therefore, for every (z, t) ∈ X×X we can determine RBar({z, t}) and then we can determine
RBar(X).

We now explain how to handle queries with excluded edges. For that we transform G by
subdividing each edge (or only each unsafe edge, for which deletion may have to be handled),
i.e., by inserting a new vertex we on each edge e. We obtain a graph G′ which is simple,
connected and planar. It is clear that x and y are connected in (G−F )\X if and only if they
are connected in G′\X ′ where X ′ = X ∪ {we | e ∈ F}. Hence, we can apply to G′ the above
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described construction, and we obtain a log-labeling J ′ of the vertices of G′, whereas we wish
a log-labeling J of the edges and the vertices of G, since edges to delete are speci�ed as pairs
of adjacent vertices. We will again use unary functions to specify edges from pairs of vertices.

We let g1, g2, g3 : VG → VG be the 3 functions that represent adjacency in G (see Corollary
9.1). We let g4, g5, g6 : VG → VG′ be the 3 functions de�ned as follows:

gi+3(x) = we if e = x− gi(x).

It is clear that for every edge e = xy, the vertex we ∈ VG′ is characterized by the following
formula: ∨

1≤i≤3

((
we = gi+3(x) ∧ y = gi(x)

)
∨
(
we = gi+3(y) ∧ x = gi(y)

))
.

Therefore, the binary function Edg : VG × VG → VG′ is representable by the functions
g1, . . . , g6. For every x ∈ VG, we then let

J(x) =
(
J ′(x), p(g1(x)), p(g2(x)), p(g3(x)), J ′(g4(x)), J ′(g5(x)), J ′(g6(x))

)
.

Therefore, given a pair of 2 vertices z and t such that e = zt ∈ EG by using the formula J(z)
and J(t) we can determine J ′(we). Hence, for every 2 distinct vertices x and y and every
X ⊆ VG − {x, y}, and every F ⊆ EG, we can verify if x and y are connected in (G − F )\X
by using J ′(x), J ′(y), J ′(X) and {J ′(z), J ′(t) | zt ∈ F}.

9.7 Conclusion

For our labeling scheme we combine several tools: geometrical tools (in particular the planar
point location), logical tools (we use Theorem 7.4 on trees) and the bipolar orientations of
2-connected planar graphs, particularly the decomposition tree of bipolar plane graphs de�ned
in [BT96]. The used geometrical tools are appropriate for connectivity queries but, do not
extend to distance queries. The proof we give works for planar graphs and is devoted to a
very particular query. Extensions to other queries are not in view.

We will see in Chapter 10 how to extend this labeling scheme to more classes of graphs
by introducing decompositions of graphs similar to the ones of Schiering et al. [Sch97, DK05,
WT07]. Apart from the extension of the labeling scheme to more classes of graphs, we can
ask further questions.

1. If a planar graph is modi�ed by addition of vertices and/or edges, how can we update
the labels as e�ciently as possible?

2. Can we extend our labeling scheme to graph classes of bounded genus?

3. Can we propose a labeling scheme for the distance or even the approximate distance in
sub-graphs of planar graphs? A labeling scheme for exact distance should use labels of
size at least Ω(n1/3) on planar graphs with n vertices [GKK+01].



Chapter 10

Short Connectivity Query Labeling on

Graph Classes of Unbounded

Clique-Width

10.1 Introduction

Our objective is to extend the labeling for connectivity queries on planar graphs to more
classes of graphs, particularly to certain graph classes that have bounded local clique-width.
The idea is to use decompositions that reduce the problem to that for planar graphs or for other
graph classes where the connectivity query admits a short labeling scheme. Furthermore, we
would like these decompositions to be enough general so that we can transfer other algorithmic
and structural results, e.g., boundedness of local clique-width that holds for planar graphs.
For that purposes, we de�ne two types of decompositions, based on vertex-partitions and on
edge-partitions. We now introduce the main ideas of the decompositions considered in this
chapter.

Decompositions Based on Vertex-Partitions

Given a partition {V1, . . . , Vm} of the vertex-set of a graph G, the sub-graph induced by each
Vi is connected, our idea is to construct a graph H, called quotient graph, that encodes the
edges between the di�erent parts. For instance, the graph H could be the adjacency graph of
the parts (two parts are adjacent if and only if there exists an edge between the two parts,
Figure 41 is an illustration). In this case, in order to reconstruct G from H and the parts,
we color the edges of H and the vertices of the graphs Gi = G[Vi] in such a way that the
color of each edge of H linking Vi and Vj informs on the way to reconstruct the edges between
Gi and Gj . However, if the links between two parts are too complicated, we will need many
colors to encode adjacencies and this is not satisfactory. Moreover, we would like to be able to
color each part e�ciently (say in time proportional to the size of the part and the number of
links between this part and the other parts of the partition). Then the structure of the links
between parts can be used to parameterize such decompositions and we can also make some
constraints on the parts or on the quotient graph. For instance, we can impose each part to be
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in a class of graphs of bounded clique-width and the graph H to be planar. An example of such
a decomposition is the strong tree-decomposition. However, in strong tree-decompositions the
parameter is the size of the parts and not the structure of the links between parts. When a
class of graphs has strong tree-width k, the links between the parts are described in a simple
way (by using for instance (k × k)-matrices).

G5

G1
G2

(a)

G4

G3

G1 G2

G5 G4
G3

(b)

Figure 41: (a) is a partition of a graph G and (b) is the associated graph quotient.

The quotient graph as de�ned above (see Figure 41) is not suitable for labeling schemes
of connectivity query because, informally, we may miss some paths. We will instead use a
slightly di�erent coding of the adjacencies and call this coding a v-skeleton. Intuitively it is
de�ned as follows: if xi1 , . . . , xmi are the vertices of Vi adjacent to vertices of other parts, we
replace in the quotient graph the vertex that represents Vi by the pattern described on Figure
42 and if xis is adjacent to xjr of Vj we add an edge between xis and xjr . See Figure 42 for
an illustration of the v-skeleton associated with H on Figure 41.

(a)

G1 G2

G3

G4G5

(b)

Figure 42: (a) represents the vertices of the v-skeleton associated with G1 and (b) is the
v-skeleton of the vertex-partition on Figure 41.

We choose for our notion of decomposition vertex-partitions where the edges between parts
are described by bipartite graphs, of small size. Then the vertices in each part are partitioned
into classes of an equivalence relation that describes how the vertices of the part are linked
to vertices of the other parts. In this case, the v-skeleton has a more compact representation
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(instead of coding all the vertices that are linked to vertices in other parts, we just code
their equivalence classes). For instance, the split decomposition [Cun82] is a decomposition
based on bipartitions of vertices where the links between the two parts are described by
the bipartite graph shown on Figure 43. Note however that the split decomposition is not
subsumed by our notion of decomposition because in split decomposition, adjacencies between
vertices of di�erent parts are encoded as paths in the decomposition [Cun82, Cou06b] while
in our decomposition if two vertices in di�erent parts are adjacent, their equivalence classes
are adjacent.

B2

B1

A2

A1

Figure 43: The bipartite graph that describes the links between splits.

Decompositions Based on Edge-Partitions

Given a partition {E1, . . . , Em} of the edge-set of a graph G, the sub-graph induced on each
Ei is connected, we can de�ne the quotient graph H as the intersection graph of the partitions
where an edge EiEj means that Ei and Ej shares at least one vertex. However, this represen-
tation is not interesting for labeling schemes of connectivity queries. We will prefer the one,
called e-skeleton where if a part Ei shares the vertices xi1 , . . . , xim with the other parts, it is
represented by a vertex linked with xi1 , . . . , xim . Figure 44 illustrates it.

(a)

G4 G3

G2G1

(b)

G1

G4

G2

G3

Figure 44: (a) is a partition of a graph G and (b) is the associated e-skeleton. The dashed
lines means that it is the same vertex.

An example of such a decomposition is the decomposition of a connected graph into the
tree of its biconnected components. As parameters, we can use the number of parts that
contain a vertex or the size of the set Ei ∩ (

⋃
j 6=iEj) for each i = 1, . . . ,m. We can also

impose some restrictions on the graphs induced by the parts or on the e-skeleton. Since the
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e-skeleton is not necessarily a tree in our framework, we will need to bound the two possible
parameters in order to get short labeling schemes for connectivity queries. An example of such
a decomposition is the domino tree-decomposition [BE97] where the e-skeleton is a tree and
each vertex is in at most two parts. However, general tree-decompositions are not handled
by our framework because in tree-decompositions there is no bound on the number of parts
that contain a vertex. Ding et al. [DOSV00, DDO+04] and Nešetřil and Ossona de Mendez
[NdM06b, NdM08a, NdM08b] considered decompositions based on edge-partitions, where each
bounded union of parts must have small tree-width, but there are no constraints on the number
of parts a vertex may belong to, or on the quotient or e-skeleton graph.

Summary of the Chapter

We de�ne in Section 10.2 the notion of H-v-decomposition and of H-v-width. We give a
su�cient condition for graph classes of small H-v-width to having bounded local clique-width.
In Section 10.3 we de�ne the notion of v-skeleton and we prove that some graph classes of
bounded H-v-width admit a log-labeling scheme for the connectivity query. In Section 10.4
we introduce the notions of H-e-decomposition, of H-e-width and of e-skeleton. We prove in
Section 10.4 that some graph classes of small H-e-width admit a log-labeling scheme for the
connectivity query.

We denote by P the class of undirected planar graphs and by CWD(≤ k) the class of
undirected graphs of clique-width at most k. For every graph G, every sub-graph H of G and
every X,Y ⊆ VG, we denote by p(H,X, Y ) the property that there exists a path between a

vertex of X and a vertex of Y in H. For convenience we write x
∗
− y to mean that x and y

are connected by a path in some graph that is clear from the context.

10.2 H-v-Decompositions of Undirected Graphs

We recall the de�nition of the notion of k-module [Joh03, Rao06] which generalizes the notions
of module [Gal67] and of bi-module [dM03, Rao06].

De�nition 10.1 (k-Modules of Graphs [Rao06]) Let G be a graph and let M ⊆ VG. We
say that M is a k-module of G if their exists a partition {M1, . . . ,Mk} of M such that for every
x, y ∈M i and for every z ∈ VG −M , we have

EG(x, z) if and only if EG(y, z).

Let M be a subset of VG. A pseudo-module of M with respect to G is a maximal subset M ′

ofM such that for all z ∈ VG−M , either z is adjacent to all vertices ofM ′ or to no vertex ofM ′.
For every M ⊆ VG, we denote by bmG(M) the number of pseudo-modules of M with respect to
G. If bmG(M) = k, we will denote by {M1, . . . ,Mk} the pseudo-modules of M with respect to
G.

Figure 45 shows a 4-module. On Figure 45, the setsM3 andM4 are pseudo-modules while
M1 and M2 are not pseudo-modules (lack of maximality). But, M1 ∪M2 is a pseudo-module.

One observes that a module is a 1-module and a subset M of VG is a k-module if and only
if bmG(M) ≤ k. The notion of k-module was used by Johnson [Joh03] in her investigations
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M

M1 M2 M3
M4

V −M

Figure 45: A 4-module in a graph.

of recognition algorithms for graph classes of clique-width at most k. She used the notion of
k-module in order to de�ne a decomposition called k-HB decomposition, that handles graph
classes of clique-width at most k. Rao also studied the notion of k-module in [Rao06] (de
Montgol�er [dM03] studied before the notion of 2-module). Rao [Rao06] gave a polynomial-
time algorithm that decides if a given graph has a k-module, for �xed k and gave also a
structure, computable in polynomial-time, that represents the set of k-modules in a graph.
He also de�ned in [Rao06] a decomposition, called décomposition k-modulaire, that is a tree
that represents some k-modules and an associated graph parameter, called largeur modulaire,
that is equivalent to clique-width. The following properties of k-modules are proved in [Rao06].

Lemma 10.1 ([Rao06]) Let G be a graph and let M be a subset of VG. Then

1. If M is a k-module of G, then M is also a k-module of G, the edge-complement of G.

2. If M is a k-module of G, then VG −M is a 2k-module of G.

For algorithmic purposes, we are interested, given a subset X of the set of vertices such
that bmG(X) ≤ `, in computing the set of pseudo-modules of X. The following proves the
existence of such an algorithm.

Lemma 10.2 Let G be an undirected graph with n vertices and let X ⊆ VG such that
bmG(X) ≤ `. We can compute the pseudo-modules X1, . . . , XbmG(X) of X in (|X| · n)-time.

Proof. Let G be an undirected graph with n vertices and assume the vertices are numbered
1 to n and G is given with its adjacency list. For each vertex x of X, we let l(x) be its
set of adjacent vertices in VG − X and we can assume it ordered. We use the following
algorithm:

Step 1. Let X1 = ∅, . . . , X` = ∅.

Step 2. Let x1 = 0, . . . , x` = 0.

Step 3. For each x ∈ X,

Step 3.1. For i = 1, . . . , `,

Step 3.1.1. If Xi 6= ∅ and l(x) = l(xi), then put x in Xi and go to Step 3.

Step 3.1.2. If Xi = ∅, then put x in Xi, let xi = x and go to Step 3.
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Step 4. Return X1, . . . , X`.

Note that at Step 3.1.1 the sets X1, . . . , Xi are all nonempty. It is clear that x and y are in
Xi if and only if l(x) = l(xi). And l(x) = l(xi) if and only if l(x)[j] = l(xi)[j] for all j ≤ n.
Then we can compare l(x) and l(x1) in O(n)-time. Since bmG(X) ≤ `, it is clear that we will
�nd at least one Xi such that l(x) = l(xi) for all x ∈ VG.

Since for each x we make at most `−1 comparisons and each comparison is done in O(n)-time,
we compute all the pseudo-modules of X in O(|X| · n)-time (each set l(x) can be ordered by
using any linear-time sorting algorithm for integers [CLR02]).

As a corollary we have the following.

Corollary 10.1 Let G be an undirected graph with n vertices. If {X1, . . . , Xp} is a partition
of VG and bmG(Xi) ≤ ` for each i ≤ p, then we can compute the pseudo-modules of all the
sets Xi in O(n2)-time.

Proof. Let G be an undirected graph with n vertices given with its adjacency list. For each
Xi we can compute the pseudo-modules of Xi in O(|Xi| · n)-time by Lemma 10.2. Then We

compute the pseudo-modules of all Xi in
(∑

1≤i≤pO(|Xi| · n)
)
-time. But,

∑
1≤i≤p

O(|Xi| · n) = O

n · ∑
1≤i≤p

|Xi|

 = O(n2)

because
∑

1≤i≤p |Xi| = n.

We now de�ne our �rst notion of graph decomposition in the spirit of [Sch97, WT07].
As in [Rao06] we will use the notion of k-module in order to de�ne a parameter for our
decomposition. Our decomposition is based on a vertex-partition and is not necessarily a tree,
contrary to the one de�ned in [Rao06].

De�nition 10.2 (H-v-Decomposition of Graphs) Let H be a class of undirected graphs.
An H-v-decomposition of an undirected graph G is a pair (H,χ) where χ : VH → 2VG is a mapping
and such that:

(HD1) the set {χ(u) | u ∈ VH} is a partition of VG and for every u ∈ VH , the sub-graph G[χ(u)]
is nonempty and connected.

(HD2) H is in H and if uv is in EH , then there exists x ∈ χ(u), y ∈ χ(v) such that xy is in EG.

(HD3) For every edge xy in EG,

(HD3.1) either there exists u ∈ VH such that x, y ∈ χ(u) or,

(HD3.2) there exist u and v in VH such that x ∈ χ(u), y ∈ χ(v) and uv ∈ EH .
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TheH-v-width of anH-v-decomposition (H,χ), denoted byH-wd(H,χ), is max
u∈VH

{bmG(χ(u)}.

The H-v-width of an undirected graph, denoted by H-wd(G), is the minimum H-v-width over all
H-v-decompositions of G.

If (H,χ) is an H-v-decomposition of a graph G, we call the vertices of H nodes in order to
distinguish them from the vertices of G.

We recall that P is the class of planar graphs. Figure 46 shows a P-v-decomposition of
P-v-width 3 of an undirected graph G.

G
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Figure 46: A graph G and a P-v-decomposition (H,χ) of G.

If G has an H-v-decomposition (H,χ) of H-v-width k, we want to relate the clique-width
of G with that of H and with max{cwd(G[χ(u)]) | u ∈ VH}. We �rst de�ne from (H,χ)
an edge-colored graph, denoted by Rel(H,χ,G), and relates the clique-width of G with the
tree-width of Rel(H,χ,G), and the clique-widths of the sub-graphs G[χ(u)] for u ∈ VH .

De�nition 10.3 (Edge-Colored Graphs from H-v-Decompositions) Let H be a class
of undirected graphs and let (H,χ) be an H-v-decomposition of an undirected graph G of H-v-
width at most `. We let Rel(H,χ,G) be the 2[`]-edge-colored directed graph obtained as follows:

1. As a graph it is obtained from H by orienting each edge of H.

2. Each arc (u, v) of Rel(H,χ,G) is colored by the set {(i, j) | χ(u)i and χ(v)j are adjacent}.

The orientation of H is arbitrary, however it is interesting to choose an orientation of H that
minimizes the clique-width of Rel(H,χ,G). This is not easy algorithmically. Presumably, it is
NP-hard.
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Figure 47 shows the directed graph Rel(H,χ,G), which is an edge-colored graph. For
instance the color (1, 2) in the list of colors of the arc (b, a) ∈ EH means that all vertices in
χ(b)1 are adjacent with all the vertices in χ(a)2.
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Rel(H, χ, G)

Figure 47: The graph Rel(H,χ,G) associated with the P-v-decomposition on Figure 46.

We now relate the tree-width of H and the clique-width of Rel(H,χ,G). The notion of
clique-width of edge-colored graphs is de�ned in De�nition 1.3, Section 1.1.

Lemma 10.3 Let H be a class of undirected graphs and let (H,χ) be an H-v-decomposition
of H-v-width at most ` of an undirected graph G. If Rel(H,χ,G) has tree-width at most k,
then Rel(H,χ,G) has clique-width at most 22·k′+1 where k′ = k · 2`.

Proof. We can prove that if K, a C-edge-colored directed graph where C is a �nite list of
colors, has tree-width at most k, then K has clique-width at most 22(k·|C|)+1 by modifying
the proof of [CO00, Theorem 5.5].

We now prove the following.

Proposition 10.1 Let H be a class of undirected graphs and let (H,χ) be an H-v-
decomposition of H-v-width ` of G. If twd(Rel(H,χ,G)) = t and k = max{cwd(G[χ(u)]) |
u ∈ VH}, then cwd(G) ≤ max{p · `, k · `}, where p = 22·(t·2`)+1.

Before, let us prove a technical lemma.

Lemma 10.4 Let G be a graph and let U be a subset of VG such that bmG(U) is at most `.
If cwd(G[U ]) ≤ k, then there exists a term tU such that:

(i) tU ∈ T (F uc
k×`, C

c
k×`).
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(ii) G[U ] = val(tU ).

(iii) Every x ∈ U is colored by i in val(tU ) if and only if x ∈ χ(U)i.

Proof of Lemma 10.4. Let U ⊆ VG be such that bmG(U) ≤ ` and cwd(G[U ]) ≤ k. Let t be
a term in T (F uc

k , Cc
k) and such that G[U ] = val(t). We use the following rules to transform

t into a term t̂ in T (F uc
k×`, C

c
k×`) that veri�es statements (i) and (ii) (for convenience we will

write x(i) to mean that i de�nes the vertex x):

t̂ =



x
(
(i, j)

)
if t = x(i) and x ∈ χ(U)j ,

t̂1 ⊕ t̂2 if t = t1 ⊕ t2,(
◦ 1≤j′≤`

1≤j′′≤`
η(i,j′),(j,j′′)

)
(t̂1) if t = ηi,j(t1),(

◦1≤j′≤` ρ(i,j′)→(j,j′′)

)
(t̂1) if t = ρi→j(t1).

It is straightforward to verify by induction that val(t̂) = val(t) and that if x ∈ χ(U)j has
color i in val(t), then it has color (i, j) in val(tU ). We let

tU =
(
◦ 1≤i≤k

1≤j≤`
ρ(i,j)→j

)
(t̂).

It is clear that the term tU veri�es statements (i)-(iii).

We can now prove Proposition 10.1.

Proof of Proposition 10.1. By Lemma 10.3, we have cwd(Rel(H,χ,G)) ≤ p where p =
22·(t·2`)+1. Let t be a term in T (FC

p , C
c
p) such that Rel(H,χ,G) = val(t) and for every u ∈ VH ,

we let tu ∈ T (F uc
k×`, C

c
k×`) such that G[χ(u)] = val(tu) (Lemma 10.4). For every i ∈ [p] and

every term tu, we let ρi(tu) =
(
◦1≤j≤` ρj→(i,j)

)
(tu). We use the following rules to transform

t into a term t̂ such that val(t̂) = G.

t̂ =


ρi(tu) if t = u(i),
t̂1 ⊕ t̂2 if t = t1 ⊕ t2,
η(i,s),(j,t)(t̂1) if t = ηs,t

i,j (t1),(
◦1≤m≤` ρ(i,m)→(j,m)

)
(t̂1) if t = ρi→j(t1).

It is clear that t̂ ∈ T (F uc
k′ , C

c
k′) where k

′ = max{p · `, k · `}. It is a straightforward induction
to verify that G = val(t̂).

For every undirected graph H, we let Hk denote any graph obtained from H with edges
colored with colors in 2[k] in all possible ways. For every class of undirected graphs H, we let
Hk be the set {Hk | H ∈ H}. As a consequence of Proposition 10.1 we get the following.

Proposition 10.2 Let ` and k be positive integers and let H be a class of undirected graphs
that has bounded local tree-width. Let C be a class of undirected graphs of H-v-width at most
`. If, for every G ∈ C, there exists an H-v-decomposition (H,χ) of H-v-width at most ` such
that for every u ∈ VH , cwd(G[χ(u)]) ≤ k, then C has bounded local clique-width.
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Proof. Let H be a class of graphs of bounded local tree-width and let f be the function
that bounds the local tree-width. Let (H,χ) be an H-v-decomposition of H-v-width at most
` of an undirected graph G in C such that for every u ∈ VH , the clique-width of G[χ(u)] is
at most k. One can verify that for every vertex x of G and every positive integer r, the set
N r

G(x) is included in V =
⋃

v∈Nr
H(u) χ(v) where x is in χ(u). By hypothesis, Rel(H,χ,G) is

in H` and since tree-width is independent of the colors of the edges, it has its local tree-width
bounded by f . The sub-graph G[V ] has radius at most r, hence its tree-width is bounded
by f(r). By Proposition 10.1, the clique-width of G[V ] is bounded by max{p · `, k · `) where
p = 22·f(r)·2`+1. Hence, the clique-width of G[N r

G(x)] is bounded since G[N r
G(x)] a sub-graph

of G[V ].

In the next section we apply H-v-decompositions to connectivity query when we only
exclude vertices.

10.3 Application of H-v-Decompositions to Labeling Scheme
for Connectivity Query

In this section we prove that certain classes of graphs of bounded H-v-width admit a short
labeling scheme for the connectivity query with excluded vertices only. The principal idea is
the following:

• Let H and D be classes of undirected graphs that admit short labeling schemes for
the connectivity query and assume that G has an H-v-decomposition (H,χ) of small
H-v-width such that for all u in VH , the sub-graph G[χ(u)] is in D.

• We will combine the labeling scheme for graphs in D and the labeling scheme for graphs
in H in order to construct a short labeling scheme for G.

However, the existence of a path between x and y in G\X cannot be veri�ed directly in
H. Assume for instance the following:

• in the graph G\X the only path between x and y should go through χ(v)i and χ(v)j for
some v in VH such that χ(v)i = {z} and χ(v)j = {t} and X ⊆ χ(v);

• moreover, there is no path in G[χ(v)]\X between z and t. But, there is a path in G\X
between z and t that does not go through χ(v).

If we use only the labeling scheme for H and the ones for all G[χ(u)] ∈ D (that are assumed
to be connected), there is no way to �nd the path between z and t and then between x and
y. To overcome this di�culty, we will use a di�erent coding of the H-v-decomposition, called
v-skeleton, that will allow us to �nd this path between z and t, and, instead of using a labeling
scheme for H, we will use a labeling scheme for the v-skeleton. Informally, the v-skeleton is a
graph with set of nodes that is the set of pseudo-modules and where there is an edge between
two pseudo-modules if and only if they are adjacent in G. We de�ne it formally now.
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De�nition 10.4 (v-Skeleton) Let H be a class of undirected graphs and let (H,χ) be an H-
v-decomposition of H-v-width ` of an undirected graph G. The v-skeleton of (H,χ), denoted by
Skl(H,χ), is the undirected bipartite graph 〈VSkl(H,χ)

, ESkl(H,χ)
〉 where:

VSkl(H,χ)
=
⋃

u∈VH

{u, u1, . . . , ubmG(χ(u))},

ESkl(H,χ)
=
⋃

u∈VH

{uui | 1 ≤ i ≤ bmG(χ(u))} ∪
⋃

uv∈EH

{uivj | (u, v) has color (i, j)}.

For every u ∈ VH , the vertex u of Skl(H,χ) is called a block-vertex and for every 1 ≤ i ≤
bmG(χ(u)), the vertex ui is called an attachment-vertex.

Informally for each u of H, we create new vertices, denoted u1, . . . , ubmG(χ(u)), associated
with u and we add edges between u and its associated vertices. The edge between ui and
vj code the edges between the pseudo-modules G[χ(u)i] and G[χ(v)j ], forming a bipartite
complete graph. Figure 48 shows the v-skeleton associated with the P-v-decomposition on
Figure 46. The blue edges represent edges between pseudo-modules and black ones represent
edges between block-vertices and their associated attachment-vertices.
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Figure 48: The undirected graph Skl(H,χ) of the P-v-decomposition (H,χ) on Figure 46.

Notice that with the v-skeleton we cannot still �nd directly the path between x and y by
just using a labeling of the v-skeleton for the same reasons as explained above. However, we
can construct a graph from the v-skeleton and �nd this path in this graph. This graph is
similar to the undirected graph BT ∗(G) in Section 9.6, but contrary to BT ∗(G) (De�nition
9.17) we have to construct it whenever we want to verify Conn(x, y,X, ∅). Fortunately, its
size depends only on the size of X and of the H-v-width of the H-v-decomposition. For that
purposes, we will adapt the notion of problematic components of Chapter 9. We make it
precise now.
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De�nition 10.5 (v-Problematic Block-Vertices) For every X ⊆ VG, a block-vertex u is
said to be v-problematic for X if X ∩ χ(u) 6= ∅; we let PX be the set {u | u is v-problematic for
X}, AX be the set {ui | u ∈ PX} and we let DX be the set {ui ∈ AX | χ(u)i ⊆ X}. We say
that ui in AX −DX is alive. For every x, y ∈ VG, every X ⊆ VG − {x, y} and every u ∈ VH , we
let

E(x,X) = {xui | x ∈ χ(u) and p(G[χ(u)]\X,x, χ(u)i)},
E(u,X) = {uiuj | ui, uj ∈ AX −DX and p(G[χ(u)]\X,χ(u)i, χ(u)j)}

E(x, y,X) = {uivj | ui, vj ∈ AX∪{x,y} −DX and p(Skl(H,χ)\(PX∪{x,y} ∪AX∪{x,y}), ui, vj)}

For every x, y ∈ VG and every X ⊆ VG−{x, y}, the problematic v-skeleton graph for (x, y,X),
denoted by Skl(H,χ)(x, y,X), is the undirected graph with vertex set the set {x, y}∪ (AX∪{x,y}−
DX) and edge set the set E(x,X) ∪ E(y,X) ∪ E(x, y,X) ∪

⋃
u∈PX

x,y /∈χ(u)

E(u,X).

Let (H,χ) be an H-v-decomposition of an undirected graph G; let x and y be two vertices
of G and let X be a subset of VG −{x, y}. We let u and v be the two nodes of H such that x
is in χ(u) and y is in χ(v). We explain informally what represent the edges of the undirected
graph K = Skl(H,χ)(x, y,X). The graph K is constructed with set of vertices the set of alive
attachment-vertices and, two new vertices that represent respectively x and y and, that we
still denote by x and y. We let e = wi−w` be an edge in K, then we have several cases.

Case 1. It is of the form x− ui and is then included in E(x,X). This edge means that there
exists at least one z in χ(u)i such that there exists a path in G[χ(u)]\X between x and z.
This represents any path in G[χ(u)]\X from x and ending with a vertex in χ(u)i.

Case 2. It is of form y − vj and is then included in E(y,X) and similarly to x, means that
there exists at least one z′ in χ(v)j such that there is a path in G[χ(v)]\X between y and z′.

Case 3. The edge e is not incident neither with x nor with y. We let si and s` be problematic
block-vertices for X ∪ {x, y} such that wi = si

ji
and w` = s`

j`
. We have several possible

meanings.

Case 3.1. si = s`. Then two cases:

Case 3.1.1. The edge e is in E(si, X). This represents some path in G[χ(si)]\X starting
from some vertex of G in χ(si)ji and ending in some vertex of G in χ(si)j` , i.e., there
exist some zi in χ(si)ji and some z` in χ(si)j` such that there exists a path in G[χ(si)]\X
between zi and z`. It is worth noticing that it may happen that there exists also some z′i
in χ(si)ji and some z′` in χ(si)j` such that there is no path in G[χ(si)]\X between z′i and
z′`.

Case 3.1.2. The edge e is in E(x, y,X). This edge means there exists a path in Skl(H,χ)

between wi = si
ji
and w` = si

j`
that does not go through any problematic block-vertex.

Since for each w in VH , the sub-graph G[χ(w)] is connected, we have a path in G\X
between any vertex zi of G in χ(si)ji and any vertex z` of G in χ(si)j` .

Case 3.2. si 6= s`. The edge wi − w` means there exists a path in Skl(H,χ) between wi and
w` that does not go through any problematic block-vertex. Since the sub-graph G[χ(w)] of
a block-vertex w is connected, we are sure that there exists a path between any vertex of G
in χ(si)ji and any vertex of G in χ(s`)j` . These edges are included in the set E(x, y,X).
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It is not surprising from this informal presentation that if there exists a path in K be-
tween x and y, then there exists a path in G\X between x and y. We will prove that it is
su�cient to look at the connectivity of x and y in K. Figure 49 shows the undirected graph
Skl(H,χ)(x, y,X) where x is in χ(a) and y is in χ(d). The v-problematic block-vertices are b, d
and f and, d1 is in DX . The blue edges represent edges in E(x, y,X) and black ones represent
edges in E(x,X) ∪ E(y,X) and red ones edges in E(u,X).

a1

a2

b1

b3

f1

Skl(H,χ)(x, y, X)

d2

b2

x

y

f2

a3

Figure 49: A problematic v-skeleton graph for (x, y,X) where (H,χ) is the P-v-decomposition
on Figure 46.

Remark 10.1 Let H be a class of undirected graphs and let (H,χ) be an H-v-decomposition
of H-v-width ` of G. For every x, y ∈ VG and every X ⊆ VG − {x, y} the undirected
graph Skl(H,χ)(x, y,X) has at most (` + 1) · |X| vertices. Therefore, the number of edges of
Skl(H,χ)(x, y,X) is at most O(`2 · |X|2).

We now prove that we can decide the connectivity of x and y in G\X by using
Skl(H,χ)(x, y,X). We have two cases: either x and y are in the same block-vertex (Lemma 10.6)
or they belong to di�erent block-vertices (Lemma 10.5). The proofs follow the cases presented
informally above and show how to glue the paths represented by the edges in Skl(H,χ)(x, y,X)
in order to construct a path in G\X and conversely.

Lemma 10.5 Let H be a class of undirected graphs and let (H,χ) be an H-v-decomposition
of an undirected graph G. For every x, y ∈ VG such that x ∈ χ(u), y ∈ χ(v), u, v ∈ VH , u 6= v
and every X ⊆ VG − {x, y}, the vertices x and y are connected in G\X if and only if the
vertices x and y are connected in Skl(H,χ)(x, y,X).

Proof. Let K = Skl(H,χ)(x, y,X) and let u ∈ VH and v ∈ VH be such that x ∈ χ(u) and
y ∈ χ(v), u 6= v.
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Assume �rst that x and y are connected in K and let p = x−ui−w1−w2− · · ·−wp− vj − y
be a shortest path. The edge x−ui mean that p(G[χ(u)]\(X ∩χ(u)), x, χ(u)i) holds, say is of

the form x
∗
− z where z ∈ χ(u)i. The edge ui − w1 mean that there exists a path in Skl(H,χ)

that does not go through PX∪{x,y} ∪AX∪{x,y}, i.e., there exists a path in G\X between z and
any vertex of χ(s1)j1 , w1 = s1j1 , say z1 ∈ χ(s1)j1 . Similarly for the edges vj − y and wp − vj ,
there exists a path in G\X between zp ∈ χ(sp)jp , wp = sp

jp
and z′ ∈ χ(v)j and between z′

and y. We now prove that for every 1 ≤ i ≤ p − 1, there exists a path in G\X between a
zi ∈ χ(si)ji , wi = si

ji
and a zi+1 ∈ χ(si+1)ji+1 , wi+1 = si+1

ji+1
. For every 1 ≤ i ≤ p − 1, there

exist 2 cases:

CASE 1. si = si+1. Then either the edge wi − wi+1 means that there exists a path which is
contained in G[χ(si)]\(X ∩ χ(s)) or there exists a path in Skl(H,χ) that does not go through
PX∪{x,y} ∪ AX∪{x,y}. In the two cases there exists a path between some vertex zi of χ(si)ji

and some vertex zi+1 of χ(si)ji+1 in G\X. Otherwise,

CASE 2. si 6= si+1. Then there exists a path in Skl(H,χ) between wi and wi+1 that does not
go through PX∪{x,y} ∪AX∪{x,y}, i.e., there exists a path in G\X between any zi ∈ χ(si)ji and
any zi+1 ∈ χ(si+1)ji+1 .

If si = si+1 = si+2, then one and only of the edges wi − wi+1 and wi+1 − wi+2 means there
exists a path in G[χ(si)]\(X ∩ χ(si)), otherwise p is not the shortest one. For each such edge
wi − wi+1, we choose zi and zi+1 be any of the possible paths in G[χ(si)]\(X ∩ χ(si)). We
can therefore choose the other vertices zi of G such that we can concatenate all these paths
in order to get a path in G.

Assume now that x and y are connected in G\X and let w1, . . . , wp be the attachment-
vertices of the v-problematic block-vertices for X, enumerated in this order, met by a path p
between x and y in G\X and assume that when a portion of p goes out of a block-vertex w
and returns to it, there is no possible path inside the block-vertex. Let i ≤ bmG(χ(u)) and

j ≤ bmG(χ(v)) be such that p = x
∗
− z

∗
− z′

∗
− y and z ∈ χ(u)i and z′ ∈ χ(v)j . The portions

x
∗
−z and z′

∗
−y are contained respectively in G[χ(u)]\(X ∩χ(u)) and G[χ(v)]\(X ∩χ(v)). Let

p = x
∗
− z

∗
− z1

∗
− z2

∗
−· · ·

∗
− zp

∗
− z′

∗
− y where zi ∈ χ(si)ji , wi = si

ji
. We have several cases.

CASE 3. w1 6= ui and wp 6= vj . Then u is not a v-problematic block-vertex forX and therefore

w1 6= uk for all k ≤ bmG(χ(u)). Therefore, z
∗
− z1 does not go through PX∪{x,y} ∪ AX∪{x,y}.

By de�nition of K, this portion is represented by an edge ui −w1 in K. Similarly for wp and
vj .

CASE 4. w1 = ui and wp 6= vj . From Case 1 the portion zp
∗
− z′ is represented by the edge

wp − vj in K. if w1 = ui, then z1 = z and this is represented by the edge x− ui.

CASE 5. w1 6= ui and wp = vj . This is similar to Case 2 where z
∗
− z1 is represented by the

edge ui − w1 and zp
∗
− y is represented by vj − y.
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CASE 6. w1 = ui and wp = vj . Again zp = z′ and z1 = z and the portions x
∗
− z

∗
− z1 and

zp
∗
− z′

∗
− y are represented by the edge x− ui and y − vj .

We claim now that the portions zi
∗
− zi+1 for 1 ≤ i ≤ p − 1 are represented by the edges

wi − wi+1 in K. We have two cases:

CASE 7. si = si+1. Then either the portion zi
∗
− zi+1 is contained in G[χ(si)]\(X ∩ χ(s)) or

does not go through any vertex of problematic block vertices. In the two cases there exists an
edge wi − wi+1 in K. Otherwise,

CASE 8. si 6= si+1. In this case the portion zi
∗
− zi+1 does not go through any vertex of

problematic block vertices. By de�nition, there exists an edge wi − wi+1 in K.

Therefore, x and y are connected in K, which ends the proof.

Lemma 10.6 Let H be a class of undirected graphs and let (H,χ) be an H-v-decomposition
of H-v-width at most ` of an undirected graph G. Let the vertices x and y of G be such that
x ∈ χ(u), y ∈ χ(u), u ∈ VH and let X ⊆ VG − {x, y}. Assume the followings:

(i) For each attachment-vertex ui of u, we know |NSkl(H,χ)
(ui)\DX |.

(ii) For each z ∈ {x, y} and each ui, we know if there exists a path in G[χ(u)]\(X ∩ χ(u))
between z and some vertex of χ(u)i.

(iii) For every ui, uj, we know if there exists a path in G[χ(u)]\(X ∩ χ(u)) between some
vertex of χ(u)i and some vertex of χ(u)j.

(iv) We know if there there exists a path between x and y in G[χ(u)]\(X ∩ χ(u)).

Then we can decide if x and y are connected by a path in G\X in O(`2 · |X|2)-time.

Proof. Let K = Skl(H,χ) and let x and y be connected in G\X. Let p be a path between x
and y in G\X. Then p can only be one of the following forms:

CASE 1. p is contained in G[χ(u)]\(X ∩ χ(u)).

CASE 2. p = x
∗
− z − z1 − z′

∗
− y where z, z′ ∈ χ(u)i for some i ≤ ` and z1 ∈ χ(v)j , v 6= u

and j ≤ bmG(χ(v)) where vj ∈ VK −DX .

CASE 3. p = x
∗
− zi1

∗
− zi2

∗
− · · ·

∗
− zip

∗
− y where zij ∈ χ(u)ij and zis

∗
− zis+1 is either contained

in G[χ(u)]\(X ∩ χ(u)) or does not go through u and x
∗
− z1 and zip

∗
− y are contained in

G[χ(u)]\(X ∩ χ(u)) and zip−1

∗
− zip does not go through u.
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CASE 4. p = x
∗
− zi1

∗
− zi2

∗
− · · ·

∗
− zip − z − zip+1

∗
− y where zij ∈ χ(u)ij , zis

∗
− zis+1 is

either contained in G[χ(u)]\(X ∩ χ(u)) or does not go through u and x
∗
− z1, zip−1

∗
− zip and

zip+1

∗
− y are contained in G[χ(u)]\(X ∩ χ(u)) and z ∈ χ(v)j , v 6= u and j ≤ bmG(χ(v)) with

vj ∈ VK −DX .

Since we can decide the existence of a path between x and some vertex of χ(u)i and for each
ui, we know |NSkl(H,χ)

(ui)\DX |, we can decide if Case 1 or Case 2 holds. (Note that Case 2
is a special case of Case 4.)

One can verify that for every attachment-vertices ui and uj of u, if there exists a path in G\X
between a vertex of χ(u)i and a vertex of χ(u)j , this path is either included in G[χ(u)]\(X ∩
χ(u)) or there exists a path in Skl(H,χ)(x, y,X) between ui and uj that does no go through
u. Conversely, if there exists a path between ui and uj in Skl(H,χ)(x, y,X) that does not go
through u, then there exists a path between every vertex of χ(u)i and every vertex of χ(u)j

in G\X.

By using Skl(H,χ)(x, y,X) we can verify if there exists a path between ui and uj in
Skl(H,χ)(x, y,X) that does not go through u in O(|X|2)-time (we can search a path in a
graph in O(n+m)-time where m is the number of edges and n the number of vertices). Since
we know for every ui, uj if there exists a path in G[χ(u)]\(X ∩ χ(u)) between some vertex of
χ(u)i and some vertex of χ(u)j , we can therefore decide if Case 3 holds. We can also decide
if a path of the form of Case 4 exists by using in addition |NSkl(H,χ)

(ui)\DX | for each ui.

Conversely, it is clear that if a path of the Case 1-4 is found, then the vertices x and y are
connected in G\X. This ends the proof.

We now introduce the last notations. Let P1 and P2 be the following properties:

- P1(x,X1, X) = �there exists a path between x and a vertex in X1 that avoids the vertices
of X�.

- P2(X1, X2, X) = �there exists a path between a vertex in X1 and a vertex in X2 that
avoids the vertices of X�.

The constraints on the v-skeletons and on the sub-graphs induced by the block-vertices
are formalized in the following de�nition.

De�nition 10.6 (Constraint H-v-Decompositions) LetH,D1 and D2 be 3 classes of undi-
rected graphs. We say that a class C of undirected graphs has an (H,D1,D2)-v-decomposition of
(H,D1,D2)-v-width at most ` if every graph G in C has anH-v-decomposition (H,χ) ofH-v-width
at most ` such that Skl(H,χ) ∈ D1 and for every u ∈ VH , the sub-graph G[χ(u)] ∈ D2.

We now state and prove the main theorem of this section.

Theorem 10.1 Let ` be a positive integer and let H,D1 and D2 be classes of undirected
graphs. Assume the followings:
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1. There exists an f1-labeling scheme for the connectivity query on D1 and for every G ∈ D1,
the f1-labeling on G is constructed in g1(|VG|)-time.

2. There exists an f2-labeling scheme for the adjacency query on D1 and for every G ∈ D1,
the f2-labeling on G is constructed in g2(|VG|)-time.

3. There exist f3-labeling schemes for the properties P1 and P2 on D2 and for every G ∈ D2,
the f3-labelings on G are constructed in g3(|VG|)-time.

Then there exists an O(`2 · (f1 + f2 + f3))-labeling scheme (A,B) for the connectivity query
on the class C of undirected graphs of (H,D1,D2)-v-width at most `. Moreover, if for every
graph G ∈ C with n vertices, we can construct an (H,D1,D2)-decomposition of (H,D1,D2)-v-
width at most ` in f(n), then for every graph G ∈ C, the algorithm A computes the labels in
max{f(n), O(n · g3(n)), g1(n), g2(n), O(n2)}-time and B gives the answer in O(`2 ·m2)-time
where m is the size of the data.

Proof. Let G ∈ C be an undirected graph with n vertices. We compute in f(n)-time an H-v-
decomposition (H,χ) of G such that Skl(H,χ) ∈ D1 and for every u ∈ VH , G[χ(u)] ∈ D2. It is
clear by de�nition of anH-v-decomposition that |VH | ≤ n and then Skl(H,χ) has O(n) vertices.
We can construct the pseudo-modules of all χ(u), u ∈ VH . Therefore, we can construct the
v-skeleton Skl(H,χ) of (H,χ).

By hypothesis, there exists an f1-labelingK for the connectivity query on Skl(H,χ). By hypoth-
esis, for each i, j ≤ ` and each u ∈ VH , we can construct f3-labelings for Pi = P1(x, χ(u)i, X)
and Pi,j = P2(χ(u)i, χ(u)j , X) on G[χ(u)], that we denote by Ji,u and Ji,j,u. It is worth notic-
ing that in Pi there are two free variables, x and X and, in Pi,j , there is one free variable,
X. There exists an f2-labeling K ′ for the adjacency query on Skl(H,χ) by hypothesis. We
compute the degree of each node w ∈ Skl(H,χ) that we denote by d(w). For each u ∈ VH and
each i ≤ `, we let Card(u, i) = |χ(u)i|. For every x ∈ VG such that x ∈ χ(u)i, we let

C(x) =
(
Card(u, 1), . . . , Card(u, `), d(u1), . . . , d(u`)

)
C ′(x) =

(
K ′(u1), . . . ,K ′(u`), i

)
,

L(x) =
(
J1,u(x), . . . , J`,u(x), J1,1,u(x), . . . , J1,`,u(x), . . . , J`,1,u(x), . . . , J`,`,u(x)

)
J(x) =

(
K(u),K(u1), . . . ,K(u`), C(x), C ′(x), L(x)

)
It is clear that |J(x) = O(`2 · (f1(n) + f2(n) + f3(n) + f4(n))) for every x ∈ VG. We now
explain given J(x), J(y) and J(X) how to verify if x and y are connected in G\X.

For each z ∈ VG, by using the K-part of J(z) we can determine the block-vertices u ∈ VH

such that z ∈ χ(u). We can therefore determine the set PX of v-problematic block-vertices for
X and the block-vertices u and v such that x ∈ χ(u) and y ∈ χ(v). For each w ∈ PX ∪{u, v},
we can determine the set Xw = {x | x ∈ χ(w)}. By comparing the K-parts of J(x) and
of J(y) we can decide if u = v or u 6= v. Let us �rst construct Skl(H,χ)(x, y,X). For each
w ∈ PX ∪ {u, v}, by using Card(u, i) of some vertex z ∈ Xw and by counting the number of
elements in Xw that has the color i, we can decide if wi ∈ DX or not. Then we can determine
the set DX and therefore the vertices of Skl(H,χ)(x, y,X).
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For every ui, we can determine if there exists a path in G[χ(u)]\Xu between some vertex of
χ(u)i and x by using Ji,u(x) and Ji,u(Xu). Similarly for y and each vi by using Ji,v(y) and
Ji,v(Xv). Then we can construct E(x,X) and E(y,X).

For each w ∈ PX ∪ {u, v}, by using Ji,j,w(Xw) we can determine if there exists a path in
G[χ(w)]\Xw between some vertex of χ(w)i and some vertex of χ(w)j . Then we can construct
the set E(w,X). By using K(wi), K(wj) of some vertex z ∈ Xw and K(PX ∪ {u, v}) we
can also determine if there exists a path in K that avoids PX ∪ {u, v}, i.e., we can construct
E(x, y,X). Therefore, we can construct the graph Skl(H,χ)(x, y,X) since we know how to
construct its set of edges.

If u 6= v, then by Lemma 10.5 the vertices x and y are connected in G\X if and only if x and
y are connected in Skl(H,χ)(x, y,X).

If u = v, then by Lemma 10.6 it remains to know |NSkl(H,χ)
(ui)\DX | (DX is the set of nodes wi

in Skl(H,χ) such that wi = si
ji
and χ(si)ji ⊆ X) for each ui = vi. By using d(u1), . . . , d(u`) in

J(x) we can determine the degree of each ui. For each wj ∈ DX , we know g1(wj), g2(wj) and
g3(wj) since there is at least one z ∈ Xw such that z ∈ χ(w)j . By using g1(ui), g2(u1), g3(u1)
and g1(wj), g2(wj), g3(wj) we can decide if ui and wj are adjacent or not. Therefore, by
comparing d(ui) and |{wj ∈ DX | ui and wj are adjacent in Skl(H,χ)}| we can determine
|NSkl(H,χ)(ui)\DX |.

As a consequence of the assumptions, Lemmas 10.5 and 10.6, and the de�nition of
Skl(H,χ)(x, y,X), we can decide the connectivity of x and y in G\X in O(`2 · |X|2).

It remains to bound the time for constructing the labeling J . Since Skl(H,χ) has O(n) vertices
we can construct, by hypothesis, the labeling K and K ′ in g1(n)-time and g2(n)-time respec-
tively. For each u ∈ VH we construct, by hypothesis, the labelings Ji,u and Ji,u,j in O(g3(nu))
where nu is the number of vertices of G[χ(u)]. Then we construct the labelings Ji,u and Ji,j,u

for all u ∈ VH in O(n · g3(n))-time. We compute the pseudo-modules of all χ(u), u ∈ VH

in O(n2)-time (Corollary 10.1). It is clear that if we know all the pseudo-modules we can
determine for all u and all i the number Card(u, i) in O(n)-time. We can construct the degree
of all vertices of Skl(H,χ) in O(m)-time (m is the number of edges) as follows:

1. Initialize the degree of all the vertices of G to 0.

2. For each edge e = xy of G, increase by 1 the degree of x and y.

We can therefore construct the labeling in max{f(n), O(n · g3(n)), g1(n), g2(n), O(n2)}-time.
This �nishes the proof.

As a corollary of Theorems 7.4, 9.1 and 10.1 we have the following which concerns planar
gluings of graphs of small clique-width.

Corollary 10.2 Let k and ` be positive integers and let H be a class of undirected graphs.
There exists an O(`2 ·f(k)·log)-labeling scheme (A,B) for the connectivity query on the class C
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of undirected graphs of (H,P, CWD(≤ k))-width at most ` where f(k) is the hidden constant
on the labeling for connectivity queries on graphs in CWD(≤ k). Moreover, if for every G ∈ C
with n vertices we can construct an (H,P, CWD(≤ k))-decomposition of (H,P, CWD(≤ k))-
width at most ` in f(n)-time, then for every G ∈ C with n vertices A computes the labels in
max{f(n), O(n4)}-time.

10.4 H-e-Decompositions of Undirected Graphs

In [Sch97, WT07] the notion of tree-width is generalized in such a way that instead of imposing
the decomposition to be a tree, it can be in any other class of graphs, that is speci�ed. For
instance, in [WT07] a notion of planar-decomposition and of planar-width is studied and they
show that graphs embeddable in a surface have such bounded planar-width. We use the same
ideas. However, in the de�nitions of [Sch97, WT07] the parameter is the size of the blocks and
a vertex may appear in an unbounded number of parts. This de�nition is not suitable for our
purposes because in our proof techniques we cannot handle decompositions where a vertex may
appear in an unbounded number of parts. For that purposes, we introduce decompositions
based on edge-partitions with a parameter that measures the number of parts that contain a
vertex and the number of vertices a block shares with other parts.

We de�ne the notions of H-e-decomposition and of H-e-width. The axioms of the de�nition
are also present in [Sch97].

De�nition 10.7 (H-e-Decomposition and H-e-Width) Let H be a class of undirected
graphs. An H-e-decomposition of an undirected graph G is a pair (H,χ) such that:

(CD1) H ∈ H and χ : VH → 2VG .

(CD2)
⋃

u∈VH

χ(u) = VG.

(CD3) For every u ∈ VH , the sub-graph G[χ(u)] is connected.

(CD4) For every u, v ∈ VH , if uv ∈ EH , then χ(u) ∩ χ(v) 6= ∅.

(CD5) For every edge xy ∈ EG, there exists u ∈ VH such that x, y ∈ χ(u):

(CD6) For every x ∈ VG, the sub-graph H[{u | x ∈ χ(u)}] is connected.

For every u ∈ VH , we let sh(u) =
∣∣∣χ(u)∩

( ⋃
v∈VH ,v 6=u

χ(v)

)∣∣∣ and we say that u shares sh(u)

vertices, that we denote by x1(u), . . . , xsh(u).

The H-spread of a H-e-decomposition (H,χ), denoted by H-spr(H,χ), is max
x∈VG

∣∣∣{u ∈ VH |

x ∈ χ(u)}
∣∣∣ and the H-block-width of a H-e-decomposition (H,χ), denoted by H-blk(H,χ), is

max{sh(u) | u ∈ VH}.
The H-e-width of an H-e-decomposition (H,χ), denoted by c-H-wd(H,χ), is max{H-

spr(H,χ),H-blk(H,χ)}. The H-e-width of an undirected graph, denoted by c-H-wd(G), is
the minimum H-e-width over all H-e-decompositions of G.
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If (H,χ) is an H-e-decomposition of a graph G, we call the vertices of H nodes in order to
distinguish them from the vertices of G.

Figure 50 shows an example of a P-e-decomposition. If two nodes u and v share a vertex
and are adjacent, we represent the two vertices in the two blocks and join them by a dashed
line. For instance, x2 is in χ(a)∩χ(b)∩χ(c)∩χ(g). There exists an edge in H between a and
b, then there exists a dashed line between the x2's in a and in b. There is no edge between
a and c, then there is no dashed line between the x2's in a and in c. We can verify that for
every vertex of G, the sub-graph H[{u | x ∈ χ(u)}] is connected. We omit the edges in the
blocks and the vertices that belong to one χ(u), for u ∈ VH .

G

a

b

c
d

e

f

g

a

b

c d e

f
g

(H, χ)
x1

x2 x3

x4

x2

x5

x5

x2
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Figure 50: A P-e-decomposition of P-e-width 4 of an undirected graph G.

Remark 10.2 Let H be a class of undirected graphs and let (H,χ) be an H-e-decomposition of
an undirected graph G of H-e-width at most `. Then every node u of H has degree at most `2.
If sh(u, v) = |χ(u) ∩ χ(v)| ≥ 1, then we say that u and v share sh(u, v) vertices, that we denote
by x1(u, v), . . . , xsh(u,v)(u, v).

In order to prove that some graph classes of bounded H-e-width admits short labeling
scheme for connectivity query, we follow the same proof techniques as in Section 10.3. For the
same reasons, we cannot use the quotient graph and we de�ne the notions of e-skeleton and
of problematic e-block-vertices.
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De�nition 10.8 (e-Skeleton and Problematic e-Block-Vertices) Let H be a class of
undirected graphs and let (H,χ) be an H-e-decomposition of H-e-width ` of an undirected graph
G. For every u ∈ VH , we let C(u) =

⋃
v∈NH(u)

{c1(u, v), . . . , csh(u,v)(u, v)}. The e-skeleton of

(H,χ), denoted by eSkl(H,χ), is the undirected bipartite graph 〈VeSkl(H,χ)
, EeSkl(H,χ)

〉 where:

VeSkl(H,χ)
=
⋃

u∈VH

({u} ∪ C(u)) ,

EeSkl(H,χ)
=
⋃

u∈VH

⋃
v∈NH(u)

{u− c1(u, v), . . . , u− csh(u,v)(u, v)}∪⋃
uv∈EH

{ci(u, v)− cj(v, u) | xi(u, v) = xj(v, u)}.

For every node u ∈ VH , we call u ∈ VeSkl(H,χ)
an e-block-vertex and we call the vertices uvi

e-attachment-vertices.

For every X ⊆ VG, an e-block-vertex u is said problematic for X if χ(u) ∩ X 6= ∅; We
let PX = {u | u is problematic for X}, P ′

X = {u | ∃w(χ(u) ∩ χ(w) 6= ∅ and w ∈ PX},
AX = {C(u) | u ∈ PX}, A′X = {C(u) | u ∈ P ′

X} and DX = {ci(u, v) ∈ AX ∪ A′X | ∃z(z ∈ X
and z = xi(u, v))}. For every x, y ∈ VG, every X ⊆ VG − {x, y} and every u ∈ VH , we let

E(x,X) =
⋃

u∈VH
x∈χ(u)

⋃
v∈NH(u)

{x− ci(u, v) | p(G[χ(u)]\X,x, xi(u, v))},

E(u,X) = {ci(u, v`)− cj(u, vs) | ci(u, v`), cj(u, vs) /∈ DX and(
p(G[χ(u)]\X,xi(u, v`), xj(u, vs)) or xi(u, v`) = xj(u, vs)

)
},

E(x, y,X) = {ci(u, v)− cj(w, s) | ci(u, v), cj(w, s) /∈ DX and(
p(eSkl(H,χ)\(PX ∪AX), ci(u, v), cj(w, s)) or xi(u, v) = xj(w, s)

)
}.

For every x, y ∈ VG and every X ⊆ VG−{x, y}, the problematic e-skeleton graph for (x, y,X),
denoted by eSkl(H,χ)(x, y,X), is the undirected graph 〈VeSkl(H,χ)(x,y,X), EeSkl(H,χ)(x,y,X) 〉 where:

VeSkl(H,χ)(x,y,X) = {x, y} ∪ (A′X∪{x,y} ∪AX∪{x,y})−DX ,

EeSkl(H,χ)(x,y,X) = E(x,X) ∪ E(y,X) ∪ E(x, y,X) ∪
⋃

u∈PX∪{x,y}∪P ′
X∪{x,y}

E(u,X).

Let H,D1 and D2 be 3 classes of undirected graphs. We say that a class C of undirected
graphs has an (H,D1,D2)-e-decomposition of (H,D1,D2)-e-width at most ` if every graph G ∈ C
has a H-e-decomposition (H,χ) of H-e-width at most ` such that eSkl(H,χ) ∈ D1 and for every
u ∈ VH the sub-graph G[χ(u)] ∈ D2.

For constructing the e-skeleton, we duplicate the shared vertices and two duplicated ver-
tices are adjacent if they represent the same vertex in G and the two e-block-vertices, to which
they belong, are adjacent. For instance, on Figure 50, the e-block-vertex b shares the vertices
x2 with the e-block-vertices a, c and g and is adjacent with all of them, a is not adjacent with
c and c is not adjacent with g. We create 3 copies of x2 adjacent with b, that we denote for
clarity by xb,a

2 , xb,g
2 , xb,c

2 , one copy of x2 adjacent with c, denoted by xc,b
2 , two copies of x2
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adjacent with a, denoted by xa,b
2 and xa,g

2 and two copies of x2 adjacent with g, denoted by
xg,a

2 and xg,b
2 . Then for each z and t in {a, b, c, g}, we create an edge between xz,t

2 and xt,z
2 if

zt is an edge of H. One can verify that if H is planar, then the e-skeleton is also planar.

Figure 51 shows the e-skeleton associated with the P-e-decomposition on Figure 50. Red
edges represent edges between e-block-vertices and their associated e-attachment-vertices and
blue edges, the edges between e-attachment-vertices that are copies of the same vertex in G.
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Figure 51: The associated undirected graph eSkl(H,χ) of the P-e-decomposition on Figure 50.

Figure 52 shows the problematic e-skeleton graph associated with (x, y,X) where x ∈ χ(f),
y ∈ χ(e), x9 ∈ X. The graph induced on I and II are cliques. For clarity, we do not show all
the edges. For instance, we do not show the edge between xa,b

1 in I and xg,d
6 in II; this edge

can represent the path xa,b
1 − a − x

a,g
3 − xg,a

3 − g − xg,d
6 or any other path that does not go

through e and f . Red edges represent paths inside e-block-vertices avoiding vertices in X and
the blue ones represent paths in eSkl(H,χ) that do not go through problematic e-block-vertices.

Remark 10.3 Notice that if (H,χ) is a H-e-decomposition of H-e-width at most ` of an undi-
rected n-vertex graph G, then the number of vertices of eSkl(H,χ) is O(`3 · n) and for every
x, y ∈ VG and X ⊆ VG−{x, y}, the graph eSkl(H,χ)(x, y,X) has at most 2+`3 · (|X|+2) nodes.

In the problematic e-skeleton, an edge w and w′ either means that w and w′ represent the
same vertex or there exists a path that does not go through any problematic e-block-vertex
or there exists a path in G[χ(si)]\X between the vertex represented by w and the vertex
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Figure 52: A problematic e-skeleton graph for (x, y,X) where (H,χ) is the P-e-decomposition
on Figure 50.

represented by w′. We relate the connectivity between two vertices in sub-graphs of G with
their connectivity in associated problematic e-skeletons.

Lemma 10.7 Let H be a class of undirected graphs and let (H,χ) be a H-e-decomposition of
H-e-width at most ` of an undirected graph G. For every x, y ∈ VG and every X ⊆ VG−{x, y},
the vertices x and y are connected in G\X if and only if the vertices x and y are connected in
eSkl(H,χ)(x, y,X).

Proof. Let K = eSkl(H,χ)(x, y,X) and assume �rst that x and y are connected in K by a
path p = x − ci(u, s) − cj1(w1, s1) − · · · − cjp(wp, sp) − cj(v, s′) − y, as shortest as possible.
The edge x− ci(u, s) means there exists a path in G[χ(u)]\(X ∩χ(u)) between x and xi(u, s).
Therefore, the edge ci(u, s) − cj1(w1, s1) means either xi(u, s) = xj1(w1, s1) or there exists

a path ci(u, s)
∗
− cj1(w1, s1) in eSkl(H,χ) that does not go through PX ∪ AX , i.e., is a path

xi(u, s)
∗
− xj1(w1, s1) in G\X. Similarly, for the edges cjp(wp, sp)− cj(v, s′) and cj(v, s′)− y,

there exists a path xjp(wp, sp)
∗
−xj(v, s′)

∗
−y in G\X. We now prove that for every 1 ≤ i ≤ p−1,

the edge wi − wi+1 is a path xji(wi, si)
∗
− xji+1(wi+1, si+1) in G\X:
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CASE 1. xji(wi, si) = xji+1(wi+1, si+1). Then the edge wi − wi+1 is an empty path in G\X.

CASE 2. xji(wi, si) 6= xji+1(wi+1, si+1). Then either there exists a path xji(wi, si)
∗
−

xji+1(wi+1, si+1) in G[χ(wi)]\X = G[χ(wi+1)]\X or there exists a path in K that does not go

through PX ∪AX , i.e., there exists a path xji(wi, si)
∗
− xji+1(wi+1, si+1) in G\X.

By concatenating the paths x
∗
−xi(u, s)

∗
−xj1(w1, s1), xjp(wp, sp)

∗
−xj(v, s′)

∗
− y and the paths

xji(wi, si)
∗
− xji+1(wi+1, si+1), we get a path x

∗
− y in G\X.

Assume now that x and y are connected in G\X by a path p such that if a portion of p goes
out of an e-block-vertex u from z and returns to it in t, there is no possible path between z and

t in G[χ(u)]\(X∩χ(u)). Let p = x
∗
−z1

∗
−z2

∗
−· · ·

∗
−zm

∗
−y such that z1 = xj1(w1, s1), . . . , zm =

xjm(wm, sm) and cj1(w1, s1), . . . , cjm(wm, sm) are the e-attachment-vertices of the problematic
e-block-vertices met by p in this order. There is clearly an e-block-vertex u that contains x and

a vertex z = xi(u, s) such that x
∗
−x1 = x

∗
−z

∗
−x1 where x

∗
−z is contained inG[χ(u)]\(X∩χ(u)).

Similarly for y, there is an e-block-vertex v that contains y and a vertex z′ = xj(v, s′) such

that xm

∗
− y = xm

∗
− z′

∗
− y where z′

∗
− y is contained in G[χ(v)]\(X ∩ χ(v)). We have four

cases:

CASE 3. x1 = z and xm = z′. In this case the paths x
∗
− z1 and xm

∗
− y are represented by

the edges x− ci(u, s) and y − cj(v, s) in K.

CASE 4. x1 = z and xm 6= z′. Then x
∗
−x1 is represented by the edge x− ci(u, s) and xm

∗
−z′

is a path that does not go through PX ∪ AX . Then by de�nition of eSkl(H,χ), there exists
c`m(rm, tm) and cj′(r′, t′) such that x`m(rm, tm) = xm, z′ = xj′(r′, t′) and there exists a path

in eSkl(H,χ) that does not go through PX ∪ AX . Then the path xm

∗
− z

∗
− y is represented in

K by the path cjm(wm, sm)− c`m(rm, tm)− cj′(r′, t′)− cj(v, s′)− y.

CASE 5. x1 6= z and xm = z′. Similarly to Case 2, xm

∗
−y is represented by the edge cj(v, s)−y

in eSkl(H,χ)(x, y,X) and x
∗
−x1 is represented by x−ci(u, s)−ci′(r, t)−c`1(r1, t1)−cj1(w1, s1)

where xi(u, s) = xi′(r, t) and x`1(r1, t1) = xj1(w1, s1).

CASE 6. x1 6= z and xm 6= z′. The portions x
∗
− x1 and xm

∗
− y are represented

in eSkl(H,χ)(x, y,X) respectively by x − ci(u, s) − ci′(r, t) − c`1(r1, t1) − cj1(w1, s1) and
cjm(wm, sm)− c`m(rm, tm)− cj′(r′, t′)− cj(v, s′)− y.

It remains to show that xi

∗
− xi+1 is represented in eSkl(H,χ)(x, y,X) by a path. We have two

cases:

CASE 7. The path xi

∗
− xi+1 is included in some G[χ(ri)]\(X ∩ χ(ri)) where xi = x`i

(ri, ti)
and xi+1 = x`i+1

(ri, ti+1). By de�nition, this path is represented in K by the path cji(wi, si)−
c`i

(ri, ti)− c`i+1
(ri, ti+1)− cji+1(wi+1, si+1).
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CASE 8. The path xi

∗
−xi+1 is not included in any e-block-vertex. Therefore, as in Cases 2-4

it is represented in K by some path cji(wi, si)− c`i
(ri, ti)− c`i+1

(ri+1, ti+1)− cji+1(wi+1, si+1)
where xji(wi, si) = x`i

(ri, ti) and x`i+1
(ri+1, ti+1) = xji+1(wi+1, si+1).

Therefore, if x and y are connected in G\X they are connected in K.

The following is the main theorem of this section.

Theorem 10.2 Let H,D1 and D2 be classes of undirected graphs and let ` be a positive integer.
Assume the followings:

1. There exists an f1-labeling scheme for the connectivity query on D1 and for every G ∈ D1,
the f1-labeling on G is constructed in g1(n)-time.

2. There exists an f2-labeling scheme for the connectivity query on D2 and for every G ∈ D2,
the f2-labeling on G is constructed in g2(n)-time.

Then there exists an O(`4 · (f1 + f2))-labeling scheme (A,B) for the connectivity query on the
class of (H,D1,D2)-e-width at most `. Moreover, if for every undirected graph G ∈ C, we
can construct a (H,D1,D2)-e-decomposition of (H,D1,D2)-e-width at most ` in f(n)-time,
then A computes the labels in max{f(n), g1(n), O(n · g2(n))},-time and B gives the answer in
O(`6 ·m2)-time where m is the size of the data.

Proof. Let G be an undirected graph with n vertices and let (H,χ) be a (H,D1,D2)-e-
decomposition of (H,D1,D2)-e-width at most `. By de�nition of eSkl(H,χ), we can construct
it in O(n)-time. By Remark 10.2, eSkl(H,χ) has O(`3 · n) nodes. By assumption, eSkl(H,χ) ∈
D1 and for every u ∈ VH , G[χ(u)] ∈ D2. We assume that each vertex x of G has a bit-
representation pxq. Since G has n vertices this bit-representation has size O(log(n)).

By hypothesis we can construct an f1-labeling J1 for the connectivity query on eSkl(H,χ)

in g1(n)-time and for each u ∈ VH we can construct an f2-labeling Ju for the connectivity
query on G[χ(u)] in g2(n)-time. For each u ∈ VH we let (the e-attachment-vertices of u are
denoted by c1(u), . . . , cd(u), d ≤ `2 and we denote by x(ci(u)) the vertex of G the node ci(u)
represents):

Cu =
(
(Ju(x(c1(u))), J1(c1(u)), px(c1(u))q), . . . , (Ju(x(cd(u))), J1(cd(u)), px(c1(u))q), J1(u)

)
.

If w is an e-attachment-vertex of u1 and represents a vertex x of G that is contained in
u1, . . . , us, s ≤ `, we let

C(w) =
(
Cu1 , . . . , Cus

)
.

For each x ∈ VG such that x is contained in u1, . . . , us, we let

Lu(x) =
(
Ju(x), C(c1(u)), . . . , C(cd(u))

)
for u ∈ {u1, . . . , us}.

J(x) =
(
Lu1(x), . . . , Lus(x)

)
.
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It is clear that |J(x)| ≤ O(`4 · (f1(n) + f2(n))) for every x ∈ VG and is computed in
max{f(n), g1(n), O(n ·g2(n))}-time. We now explain how to decide the connectivity of x ∈ VG

and y ∈ VG in G\X, X ⊆ VG−{x, y}. By Lemma 10.7, we need only explain how to construct
the problematic e-skeleton graph eSkl(H,χ)(x, y,X) from J(x), J(y) and J(X).

From J(z), z ∈ VG, we can clearly determine the set of e-block-vertices that contain it (we
can therefore determine for each u, the set X ∩ χ(u)). For each u that contains z, we can
determine by using Lu(z) the label of Ju(z) and the labels of the set of e-attachment-vertices
of u. For each e-attachment-vertex of u, by using its label we can determine the set of
e-block-vertices with their e-attachment-vertices that contain it. We can therefore determine
the labels of the nodes in eSkl(H,χ)(x, y,X). Since we have all the needed labels we can
determine the set of edges of eSkl(H,χ)(x, y,X) (by comparing px(ci(u))q and px(cj(v))q we
can determine if they represent the same vertex of G).

As a corollary we get the following.

Corollary 10.3 Let H be a class of undirected graphs and let k and ` be positive inte-
gers. Let D1,D2 ∈ {CWD(≤ k),P} be two classes of undirected graphs. There exists a
log-labeling scheme (A,B) for the connectivity query on the class of (H,D1,D2)-e-width at
most `. Moreover, if for every undirected graph G ∈ C, we can construct a (H,D1,D2)-e-
decomposition of (H,D1,D2)-e-width at most ` in f(n)-time, then A computes the labels in
max{f(n), O(n2 · log(n))}-time.

We now prove that K3,3-minor-free graphs of bounded degree admits a log-labeling scheme
for the connectivity query. We recall the following.

Lemma 10.8 Let G be a K3,3-minor-free graph with n vertices. For every edge e of G, there
is a matching M in G with the following properties:

(i) |M | ≤ 1
3 · (n− 2).

(ii) Each edge in M is disjoint from e.

(iii) Contracting M gives a planar graph.

Moreover, we can determine the set M in O(n)-time.

Proof. In [WT07] it is proved that such a matching can be found in O(n)-time if we have
as input the decomposition of G into clique-sum. In [Asa85] it is proved that this clique-sum
can be found in linear-time for K3,3-minor free graphs.

We denote by Gk the class of undirected graphs that have at most k vertices.

Corollary 10.4 Every K3,3-minor-free graph G with maximum degree ∆(G) admits a
(P,P,G4)-e-decomposition of (P,P,G4)-width at most 2 ·∆(G)−1. Moreover, this (P,P,G4)-
e-decomposition can be computed in linear-time.
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Proof. Let G be a K3,3-minor-free graph with n vertices and let ∆ be its maximum degree.
By Lemma 10.8, there exists a matching M of edges of G such that their contraction gives
a P-v-decomposition (H,χ) of G such that for every u ∈ VH , the sub-graph G[χ(u)] has at
most 2 vertices. Then every node u of H has degree at most 2(∆− 1). We transform (H,χ)
into a P-e-decomposition (H ′, χ′) of P-spread at most 2 ·∆− 1 and such that for each node u
of H ′, the sub-graph G[χ′(u)] has at most 4 vertices. We transform H as follows: each edge
uv of H is replaced by u− wuv − v where wuv is a new node. For each node w of H ′, we let

χ′(w) =

{
χ(u) if w ∈ VH ,

χ(u) ∪ χ(v) if w = wuv.

It is clear that (H ′, χ′) veri�es the desired properties and for every u ∈ VH the sub-graph
G[χ′(u)] ∈ G4. By Remark 10.3, eSkl(H′,χ′) is planar. It is clear that (H ′, χ′) is constructed
in linear-time.

It follows the following.

Proposition 10.3 Let d be a positive integer. Every class of K3,3-minor-free graphs of
maximum degree at most d admits a (d4 · log)-labeling scheme (A,B) for the connectivity
query. Moreover, if n is the number of vertices of the input graph, A computes the labels in
O(n · log(n))-time.

10.5 Conclusion

We have given two kinds of decompositions,H-v-decomposition associated withH-v-width and
H-e-decomposition associated with H-e-width. We use the two notions to extend the labeling
schemes for connectivity queries of planar graphs and of classes of graphs of bounded clique
to some classes of graphs that have bounded H-v-width and to some classes of graphs that
have bounded H-e-width. We have for instance identi�ed the classes of K3,3-minor free graphs
of bounded degree as classes of graphs of bounded P-e-width. There are several remaining
questions and we can cite among others:

1. Identify more classes of graphs that have bounded H-v-width and H-e-width.

2. If (H,χ) is an H-v-decomposition (resp. H-e-decomposition) of an undirected graph G,
what properties of G, e.g., labeling schemes, polynomial-time algorithms, etc., can we
derive from the properties of Skl(H,χ) (resp. eSkl(H,χ)) and of the sub-graphs G[χ(u)]?

3. Given a classH of undirected graphs and a positive integer `, how to recognize undirected
graphs of H-v-width (resp. H-e-width) at most `?

4. Find (nicely) locally cwd-decomposable graph classes that have (H,P, CWD(≤ k))-e-
decompositions of bounded H-e-width.
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Conclusion

Motivated mainly by algorithmic applications, but also by structural graph questions, we have
developed two themes:

1. better understanding of rank-width,

2. algorithmic meta-theorems beyond bounded clique-width and equivalent parameters.

Regarding the �rst theme we have given an algebraic characterization of the notion of rank-
width of undirected graphs based on linear transformations of matrices. These operations
allow to check MS-de�nable properties on graph classes of small rank-width more directly
than by using clique-width operations. We propose two possible de�nitions for the notion of
rank-width of directed graphs: one based on a coding of directed graphs by undirected ones,
called bi-rank-width, and one based on a coding of directed graphs by matrices over the �eld
GF (4), called GF (4)-rank-width. We also derive from the works by Bouchet [Bou87] and Fon-
Der-Flass [FDF96] two notions of vertex-minor, one related to bi-rank-width and the other to
GF (4)-rank-width and, we show that directed graphs of GF (4)-rank-width are characterized
by a �nite list of excluded directed graphs as vertex-minors. This result generalizes the one
by Oum [Oum05b] on undirected graphs. We also derive from the works by Hliněný and
Oum a cubic-time recognition algorithm for directed graphs of GF (4)-rank-width (resp. bi-
rank-width) at most k, which yields a cubic-time approximation algorithm for directed graphs
of clique-width at most k and produces the relevant decompositions, that are necessary for
algorithmic applications. As open questions, relevant to graph structure, we can cite:

(Q1) How to verify if two directed graphs are locally equivalent?

(Q2) How to decide if a directed graph is a vertex-minor of another directed graph?

(Q3) Are directed graph classes of bounded GF (4)-rank-width well-quasi-ordered? More gen-
erally, are directed graphs well-quasi-ordered by vertex-minor relation?

For tackling (Q2), we may hope to give a C4MS-characterization of the vertex-minor relation.
In this way we decide (Q2) for directed graph classes of small GF (4)-rank-width (Courcelle
and Oum [CO07] gave a C2MS-transduction of vertex-minor relation of undirected graphs
and derived a cubic-time algorithm for (Q2) in the case of undirected graphs).

Many graph operations handling the same graph classes of bounded clique-width, but
yielding di�erent width parameters, have been presented. In general, the more vertex color
manipulations the graph operations allow, the smallest is the corresponding width. Exper-
imental studies for model checking of MS-de�nable properties on graph classes of bounded
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clique-width should be conducted to obtain indications of the most e�cient representations
of graphs by algebraic terms. One can use for instance the MONA System [HJJ+95] as done
in [Sog08].

In the second part of this thesis, we investigate labeling schemes on graph classes of
bounded local clique-width. We prove that every FO-de�nable property admits a log-labeling
scheme on certain graph classes of bounded local clique-width including bounded degree graph
classes, minor-closed graph classes, unit-interval graphs. We also prove that the connectivity
query also admits a log-labeling scheme on planar graphs and on graphs that are obtained by
gluing graphs of small clique-width with limited overlaps. We can cite among the numerous
future research topics:

(Q4) Having a better understanding of the structure of graph classes of bounded local clique-
width and, a generalization of Eppstein's result concerning minor-closed graph classes
of bounded local tree-width.

(Q5) Does there exist a log-labeling scheme for connectivity query on graph classes of bounded
genus?

(Q6) Finding a labeling scheme on planar graphs for distances or approximate distances on
sub-graphs de�ned by excluded vertices/edges. For exact distances, such a labeling
scheme should use labels of size at least Ω(n1/3) for n-vertex planar graphs [GKK+01].

(Q6) Can one construct short labeling schemes where we can add vertices and edges?

All the short labeling schemes we have presented in Chapters 8 and 10 are based on
combinations of several short labeling schemes into a unique one. More generally, we think
interesting to study methods that combine several existing short labeling schemes for two
graph classes into a unique short one, for a class of graphs obtained by combinations of graphs
of the given classes.
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