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Karl Menger : Untersuchungen über allgemeine Metrik, 1928

Metric Betweenness

If (X , d) is a metric space, then z is between x and y if

d(x , y) = d(x , z) + d(z , y).

In other words z is between x and y if z lies in the line [x , y ].



Hans Reichenbach : The direction of time, 1956

Causal Betweenness

Event B is causally between A and C if

P(A ∩ C ) > P(A)P(C )

P(C |B) > P(C |A)

P(A|B) > P(A|C )

P(A ∩ C |B) > P(A|B)P(C |B)

P(B \ A)P(B \ C ) > 0



Robert J. Bumcrot : Betweenness geometry in lattices, 1964

Lattice Betweenness Relations

y is between x and z if x ≤ y ≤ z or z ≤ y ≤ x .

⇐⇒ (x + yz)y = y + x(y + z)

⇐⇒ (x + y)(y + z) = y
⇐⇒ y(x + z) = y
⇐⇒ y + xz = y



Others in Graph Theory and Related

I Everett and Seidman.
The Hull Number of a Graph, 1985

I Vašek Chvátal in Antimatroids and convexity spaces.
Antimatroids, Betweenness, Convexity, 2009

I Many others in Graph Theory.
See Survey by Pelayo, 2004



Betweenness Relations

A betweenness on a ground set V is a ternary relation B such that

B(x , z , y) ⇐⇒ B(y , z , x)

B(x , z , y) is pronounced “z is between x and y ”.

A betweenness relation B is also seen as the implicational system
ΣB

xz → y whenever y is between x and z

Ex. B = {(a, c , b), (b, c , a), (b, a, d), (d , a, b), (a, c , d), (d , c , a)}.
ΣB = {ab → c , bd → a, ad → c}



Examples of Betweenness Relations from Graph Theory

Monophonic path. A vertex z is between x and y if z is in a
chordless path between x and y .√

Direct implication system and forms an antimatroid in
chordal graphs (Chvátal’2009).

Geodesic. A vertex z is between x and y if it is in a shortest path
between x and y .√

A special case of metric betweenness relations.√
Applications of geometry to graph theory.

Clique. ΣC(G) := {xy → V (G ) | xy /∈ E (G )}.√
X is convex if and only if X is a clique.√
We will see a characterization of such convexities.
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From Betweenness Relations to Convexity

X ⊆ V is said convex if X =
⋃

x ,y∈X
{z | xy → z ∈ Σ}, in other

words X closed under Σ.

Ex. Σ = {ab → c , bd → a, ad → c}.
{a, b} is not convex, but {a, b, c , d} is.

The set of convex sets is denoted by FΣ.

Which geometric properties are satisfied ?
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Example
Convex Sets of the Geodesic Betweenness in a Graph

a b

c

d

(a) A graph G

{}

{a,c}

{a}

{b,d}{b,c}{a,d}

{a,b,c,d}

{c} {d} {b}

(b) Convex sets of G for the
geodesic betweenness



Convexity Spaces

Definition (See for instance Kay and Womble’ 1971)
(X ,F) is a convexity space if

I ∅ and X ∈ F ,
I F is closed under intersection

Members of F are called convex sets and is a lattice wrt inclusion.

The closure or convex hull of a set Y , F(Y ), is the smallest
convex set containing it.

Theorem (Monteiro, Portugaliae Mathematica, 1941)
The set of convexity spaces over X is a closure system and forms a
lattice when structured under inclusion.

? Caratheodory. x ∈ F(S), then ∃Y ⊆ S , |Y | ≤ c and x ∈ F(Y ).
? Helly.

⋂
Y∈G⊆F Y = ∅, then ∃H ⊆ G, |H| ≤ h and

⋂
Y∈H Y = ∅

? Radon. If |Y | ≥ r , then Y = Y1 ⊕ Y2 with F(Y1) ∩ F(Y2) 6= ∅.



Convexity Spaces
Several studied parameters

√
We can define/study Caratheodory, Helly and Radon numbers.

h + 1 ≤ r ≤ ch + 1 (Kay&Womble’71)
√

Y is a hull set if X = F(Y ).
What is the size of a minimum hull set ?

√
Geodetic sets, . . .
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Convexity Spaces Associated with Betweenness Relations

(X ,FΣ) is a convexity space for betweenness relation Σ on X .

injective ? × Σ1 := {ad → b, ad → c , ac → b} and
Σ2 := Σ1 \ {ad → b}, then FΣ1 = FΣ2 .

surjective ? × every convexity space from a betweenness relation
contains all singletons.

We can associate a canonical, Σc := {xy → z | z ∈ Σ(x , y)}
=⇒ FΣ = FΣc

Question
Are convexity spaces from betweenness relations a sublattice of the
lattice of all convexity spaces ?
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Lattice of Betweenness Relations

FX := {FΣ | Σ betweenness relation on X}.

Theorem 1 (Beaudou, K., Nourine, 2012)
Given FΣ1 and FΣ2 , we have

FΣ1 ∧ FΣ2 = FΣ1 ∩ FΣ2 = FΣ1∪Σ2

FΣ1 ∨ FΣ2 = FΣ1∩Σ2

√
FX is closed under intersection and then is a closure system√
Structured under inclusion is a meet-sublattice of the lattice of

convexity spaces over X .

FX is not a join-sublattice
With X := {1, 2, 3, 4}, Σ1 := {12→ 4} and Σ2 := {23→ 4}
FΣ1 ∪ FΣ2 = 2X \ {{1, 2, 3}} but FΣ1 ∨ FΣ2 = 2X .



Lattice of Betweenness Relations

Proof Ingredients√
Canonical betweennesses√
The following.

Proposition (Demetrovics et al., 1992)
FΣ := 2X \ ⋃

ab→c∈Σ

[{a, b},X \ c] for betweenness relation Σ on X .
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Poset of Irreducible Elements

Proposition 1 (BKN)
The meet-irreducible are co-atoms and the join are atoms.

Corollary 1 (BKN)
Bip(FX ) := (JFX ,MFX ,⊆) where

JFX := {F⊥ ∪ {S} | S ∈ 2X \ F⊥} where F⊥ = {∅,X} ∪ {{x} | x ∈ X}
MFX := {2X \ [ab,X \ {c}] | a, b, c ∈ X}.

Corollary 2 (BKN)
|MFX | =

(n
2

)
(n − 2)2n−3 and |JFX | = 2n − (n + 2).



Example of Bip(FX )

Figure : Irreducible poset for n = 4
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Algorithmic Aspects of Betweenness Relations
Hull Number (HN)
Input. A betweenness relation Σ
Output. Compute a hull set of minimum size
√

HN is NP-complete even on the geodesic betweenness of
bipartite graphs (Araujo et al., 2011)√

Its complexity is open for the geodesic betweenness in several
graph classes.

Optimal Cover Problem (OCP)
Input. A betweenness relation Σ
Output. Compute a betweenness relation Σ′ ≡ Σ of minimum size

Remarks√
OCP = computation hydra number.√
NP-complete for general convexity spaces (Maier, 1980), but

open for betweenness relations.



Geodesic Betweenness in Graphs

Its complexity was open for more than 25 years in the case of
chordal graphs.

Theorem (KN, 2012)

I One can compute in time O(m + n) a hull set of minimum size
in distance-hereditary graphs (anecdotic).

I One can compute in time O(n3) a hull set of minimum size in
chordal graphs.

A graph is distance-hereditary if distances are preserved in
connected induced subgraphs.

A graph is chordal if it does not contain cycles of length ≥ 4.
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Chordal Graphs

A vertex is simplicial if its neighbourhood is a clique.

A perfect elimination ordering of G is an ordering (x1, . . . , xn)
such that xi is simplicial in G [{xi , . . . , xn}].

We borrow ideas from Database Theory and use the following
results by Dirac’61, Fulkerson-Gross’65 and Tarjan-Lueker’76.

Theorem 1

(i) Every chordal graph has at least two simplicial vertices.
(ii) G is chordal iff it has a perfect elimination ordering.
(iii) A perfect elimination ordering of a chordal graph can be

computed in time O(n + m).



Functional Dependencies

A functional dependency on a ground set V is a pair (X , y),
written X → y , with X the premise and y the conclusion.

An implicational system is set of functional dependencies on V .

F is closed if y ∈ F whenever X ⊆ F , for all X → y ∈ Σ.

The closure of X , Σ(X ), is the smallest closed set containing X .

A key is an inclusionwise minimal set X such that Σ(X ) = V .



Betweenness Relations as Implicational Systems

A Betweenness relation is an implicational system with premises of
size 2.

To every graph G , we associate the implicational system

ΣG :=
⋃

x ,y∈V

{xy → z | z in a shortest path between x and y}.

Fact 1
K is a minimum key of ΣG iff K is a minimum hull set of G .



The Algorithm

A vertex x is an extreme point in Σ if x is not a conclusion.

Ex. Simplicial vertices are extreme points in ΣG .

Algorithm

1. Construct Σ := ΣG and take a perfect elimination ordering
(x1, . . . , xn).

2. For each i , decide whether to put xi in the key and let
Σ := Σ \ xi .

3. The remaining implicational system, if exists, is with premises
of size 1. Compute a key and add it to the already computed
one.

4. Return the computed key.



Correctness

Σ′ := Σ \ x1 \ . . . \ xi .

Lemma 1
If xi+1 is an extreme point in Σ′, then any key of Σ′ is of the form
K ∪ {xi+1} where K is a key of Σ′ \ xi+1 defined as

{zy → t ∈ Σ′ | z , t, y 6= Σ′({xi+1})}
⋃

{y → z | yx → z ∈ Σ′ and x ∈ Σ′({xi+1}), y , z /∈ Σ′({xi+1})}.

Remove from Σ \ x1 \ . . . \ xi all those vertices that can be obtained
from xi+1 to get Σ \ x1 \ . . . \ xi \ xi+1.



Correctness

Σ′ := Σ \ x1 \ . . . \ xi .

Lemma 2
If xi+1 is not an extreme point in Σ′, then it appears as a
conclusion only in functional dependencies with premises of size 1.
Define Σ′ \ xi+1 as

Σ′ \ {zxi+1 → y ∈ Σ′}
)
∪
(
{tz → y | zxi+1 → y , t → xi+1 ∈ Σ′}

)
A minimum key in Σ′ \ xi+1 is a minimum key in Σ′. Conversely, to
any minimum key in Σ′, one can associate a minimum key in
Σ′ \ xi+1.

We cannot decide whether to put xi+1 in a key, however we can
replace it safely from Σ \ x1 \ . . . \ xi .



Time Complexity

Proposition 1
For every graph G , ΣG can be computed in time at most O(n3).

Proposition 2
If Σ is an implicational system on V with premises of size 1, then a
minimum key of Σ can be computed in time O(|V |+ |Σ|).



Example

A chordal graph G and its associated implicational system.

3

1

2

4

5

6

7

12→ 567
13→ 47
15→ 6
16→ 7
23→ 5
24→ 3567
27→ 56
36→ 57
45→ 37
46→ 7



Example

1 is an extreme point in Σ and set K := {1}

Σ

12→ 567
13→ 47
15→ 6
16→ 7
23→ 5
24→ 3567
27→ 56
36→ 57
45→ 37
46→ 7

Σ \ 1
2→ 567
3→ 47
5→ 6
6→ 7
23→ 5
24→ 3567
27→ 56
36→ 57
45→ 37
46→ 7



Example

2 is an extreme point in Σ \ 1 and set K := {1, 2}

Σ

12→ 567
13→ 47
15→ 6
16→ 7
23→ 5
24→ 3567
27→ 56
36→ 57
45→ 37
46→ 7

Σ \ 1
2→ 567
3→ 47
5→ 6
6→ 7
23→ 5
24→ 3567
27→ 56
36→ 57
45→ 37
46→ 7

Σ \ 1 \ 2
3→ 4
4→ 3
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Clique-Width

A complexity measure based on Graph Grammars.

A k-graph = each vertex has exactly one colour
in {1, . . . , k}.

G ⊕ H = disjoint union of k-graphs.

addi ,j(G ) = addition of edges between i -vertices
and j -vertices.
reni→j(G ) = recolour i -vertices into j -vertices.

i = a graph with one vertex coloured i .

2

3
3

1

2 2

1

3-graphe
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2

1

1
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1

3

G

⊕
3

3

41

2

K = (VG ∪VH ,EG ∪EH)

H
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Clique-Width

- Fk = {⊕, addi ,j , reni→j | i , j ∈ [k]}.
- Ck = {i | i ∈ [k]}

A term t in T (Fk ,Ck) defines a graph val(t).

val(t)

1 1

⊕

2 2

⊕

⊕

add1,2

t

cwd(G ) := min{k | G = val(t), t ∈ T (Fk ,Ck)}
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Monadic Second-Order Logic

A k-graph is the relational structure 〈VG , edgG , (piG )i∈[k]〉.

Atomic Formulas. x ∈ X , edg(x , y), pi (x), x = y .

MSO formulas. Boolean combinations and element/set
quantifications.

Ex. ∀X (x ∈ X ∧ ∀z , t(z ∈ X ∧ edg(z , t) =⇒ t ∈ X ) =⇒ y ∈ X ).

MSO optimisation. Find a tuple (Z1, . . . ,Zq) of (2VG )q such that

∑
1≤i≤q

|Zi | = opt

 ∑
1≤i≤q

∣∣Wj
∣∣ | G |= ϕ(W1, . . . ,Wq)

 .
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MSO and Clique-Width

Theorem 2 (Courcelle,Makowski,Rotics’00 and Oum’05)
Every MSO optimisation problem can be solved in time
O(f (k) · n3) in graphs of clique-width at most k . If clique-width
expression is given, it can be solved in time O(g(k) · n).



MSO definability of Hull Set

Proposition 3
If there exists an MSO formula ϕ(x , z , y) stating that z is in a
shortest path between x and y , then there exists an MSO formula
stating that X is a hull set.

Cl(X ) ≡ ∀x , y(x ∈ X ∧ y ∈ X =⇒ ¬∃z(ϕ(x , z , y))),

CH(X ,Y ) ≡ Cl(Y ) ∧ X ⊆ Y ∧ ∀Z (X ⊆ Z ∧ Z ⊆ Y =⇒ ¬Cl(Z ))

HullSet(X ) ≡ ∀Z
(
Z ( V =⇒ ¬CH(X ,Z )

)



Hull Number of DH Graphs

G is distance-hereditary iff chordless paths are shortest paths.

There exists an MSO formula stating that z is in a chordless path
between x and y in a graph.

Distance-Hereditary graphs have clique-width at most 3 and
clique-width expressions can be computed in time O(n + m).

Combine Theorem 2 and Proposition 3.



Plan

Introduction

Lattice of Betweenness Relations

Algorithmic Aspects of Betweenness Relations
Chordal Graphs
Other Graph Classes : Logic and Graph Operations

Concluding Remarks



Concluding Remarks

Conjecture. NP-complete in planar graphs, but polynomial in
bounded degree and clique-width bounded graphs.

Techniques for DH graphs can be used for other betweenness
relations (triangle paths, monophonic paths, etc.) to compute a
minimum hull set in clique-width bounded graphs.

Betweenness relations give dependence graphs and allow to MSO
define any betweenness relation. Characterise those of bounded
clique-width.

Dichotomy. Find a sharp line between tractable and intractable
cases. Can the lattice structure of betweenness relations can help ?



Thank you ! !
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