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Abstract

In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-
time algorithm, Algorithmica 78(1):342-377, 2017], we presented a characterization of the linear
rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it
in polynomial time. In this paper, we investigate structural properties of distance-hereditary
graphs based on this characterization.

First, we prove that for a fixed tree T, every distance-hereditary graph of sufficiently large
linear rank-width contains a vertex-minor isomorphic to 7. We extend this property to bigger
graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear
rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every
tree T, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to
T. Our result implies that it is sufficient to prove this conjecture for prime graphs.

For a class ® of graphs closed under taking vertex-minors, a graph G is called a vertez-minor
obstruction for ® if G ¢ @ but all of its proper vertex-minors are contained in ®. Secondly, we
provide, for each k > 2, a set of distance-hereditary graphs that contains all distance-hereditary
vertex-minor obstructions for graphs of linear rank-width at most k. Also, we give a simpler
way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 1.

1 Introduction

Linear rank-width is a linear-type width parameter of graphs motivated by the rank-width of
graphs [33]. The vertez-minor relation is a graph containment relation which was introduced by
Bouchet [7, 8,10} [0} 11] in his studies of circle graphs and 4-regular Eulerian digraphs. The vertex-
minor relation has an important role in the theory of (linear) rank-width [29] B2, B0, 25, B1] as
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(linear) rank-width does not increase when taking vertex-minors of a graph. We provide concise
definitions in Section 21

The problem of computing linear rank-width has been discussed recently. Kashyap [26] proved
that it is NP-hard to compute matroid path-width on binary matroids. Proposition 3.1 in [32]
shows that the problem of determining the linear rank-width of a bipartite graph is equivalent to
the problem of determining the path-width of a binary matroid, and from this relation, we can show
that computing linear rank-width is NP-hard in general. Adler and the authors of this paper [3]
proved that the linear rank-width of distance-hereditary graphs, which are graphs of rank-width 1,
can be computed in time O(n?logn) where n is the number of vertices in an input graph. Jeong,
Kim, and Oum [24] showed that there is a constructive algorithm to test whether a given graph
has linear rank-width at most & in time f(k)-n? for some function f. Using this, they also proved
that for every fixed integer w, there is a polynomial-time algorithm to compute linear rank-width
on graphs of rank-width w.

In this paper, we focus on structural aspects of linear rank-width. The first result of the Graph
Minor series papers is that for a fixed tree T, every graph of sufficiently large path-width contains
a minor isomorphic to 7' [34], and this was later used by Blumensath and Courcelle [6] to define a
hierarchy of incidence graphs based on monadic second-order transductions. In order to obtain a
similar hierarchy for graphs, still based on monadic second-order transductions, Courcelle [14] asked
whether for a fixed tree T', every bipartite graph of sufficiently large linear rank-width contains a
vertex-minor isomorphic to 7. We conjecture that it is true for any graph.

Conjecture 1.1. For every fixed tree T, there is an integer f(T') such that every graph of linear
rank-width at least f(T') contains a vertex-minor isomorphic to T.

Recently, Kwon and Oum [28] claimed that for any positive integers m,n, if T is the disjoint
union of m copies of K1 ,, then such a function exists. However, it remains open in general.

We show that Conjecture [L.1] is true if and only if it is true in prime graphs with respect to
split decompositions [16]. A split in a graph is a vertex partition (A, B) such that |A|, |B| > 2
and the set of edges joining A and B induces a complete bipartite subgraph. Prime graphs are
graphs without splits and they form, with complete graphs and stars, the basic graphs in the theory
of canonical split decompositions developed by Cunningham [16]. They are also considered when
studying the rank-width of graphs because the rank-width of a graph is the maximum rank-width
over all its prime induced subgraphs.

We prove the following.

Theorem 1.2. Let p be a positive integer and let T be a tree. Let G be a graph such that every
prime induced subgraph of G has linear rank-width at most p. If G has linear rank-width at least
40(p + 2)|V(T)|, then G contains a vertez-minor isomorphic to T

A graph G is distance-hereditary if for every connected induced subgraph H of G and two
vertices v and w in H, the distance between v and w in H is the same as their distance in G. It is
known that every prime induced subgraph of a distance-hereditary graph has size at most 3 [10].
Together with this fact, our result implies that Conjecture [I.1]is also true for distance-hereditary
graphs.

To prove Theorem we essentially prove that for a fixed tree T, every graph admitting a
canonical split decomposition whose decomposition tree has sufficiently large path-width contains a
vertex-minor isomorphic to T'. Combining with a relation between the linear rank-width of a graph



Figure 1: The three vertex-minor obstructions for graphs of linear rank-width at most 1. The first
two graphs are distance-hereditary.

and the path-width of its canonical split decomposition, we obtain Theorem[I.2] We will obtain such
a relation in Section [} The vertex-minor relation cannot be replaced with the induced subgraph
relation because there is a cograph admitting a canonical split decomposition whose decomposition
tree has sufficiently large path-width [13, 22], but cographs have no P, as an induced subgraph.

In the second part, we investigate the set of distance-hereditary vertex-minor obstructions for
graphs of bounded linear rank-width. A graph is a vertex-minor obstruction for graphs of linear
rank-width £ if it has linear rank-width k+1 and every proper vertex-minor has linear rank-width at
most k. Robertson and Seymour [36] showed that for every infinite sequence Gy, Ga, ... of graphs,
there exist G; and G with ¢ < j such that G; is isomorphic to a minor of G;. In other words,
graphs are well-quasi-ordered under the minor relation. Interestingly, this property implies that
for any proper class C of graphs closed under taking minors, the set of minor obstructions for C is
finite.

Motivated by the Graph Minor Theorem [36] and its special case on tree-width [35], Oum [29] 31]
showed that for every infinite sequence G1, Go, ... of graphs of bounded rank-width, there exist G;
and G with ¢ < j such that G; is isomorphic to a vertex-minor of G;. We can obtain the following
as a corollary.

Theorem 1.3 (Oum [29]). For every class C of graphs with bounded rank-width that is closed under
taking vertex-minors, there is a finite list of graphs G1, Ga, ..., Gy, such that a graph is in C if and
only if it has no vertex-minor isomorphic to G; for some i€ {1,2,... ,m}.

Theorem implies that for every integer k, the class of all graphs of (linear) rank-width at
most k can be characterized by a finite list of vertex-minor obstructions. However, it does not give
any explicit number of necessary vertex-minor obstructions or bound on the size of such graphs.
Oum [32] proved that for each k, the size of a vertex-minor obstruction for graphs of rank-width
at most k is at most (6**1 —1)/5. For linear rank-width, obtaining such an upper bound on the
size of vertex-minor obstructions remains an open problem. Jeong, Kwon, and Oum [25] showed
that the number of vertex-minor obstructions for linear rank-width at most & is at least 22(3*).

Adler, Farley, and Proskurowski [I] obtained the set of all three vertex-minor obstructions for
graphs of linear rank-width at most 1, depicted in Figure [I} two of which are distance-hereditary.
In this paper, we construct a set of graphs containing all vertex-minor obstructions for graphs
of linear rank-width at most k& that are distance-hereditary. This is an analogous result to the
characterization of acyclic minor obstructions for graphs of path-width at most k, investigated by
Takahashi, Ueno, and Kajitani [37], and Ellis, Sudborough, and Turner [20]. As a similar work,
Koutsonas, Thilikos, and Yamazaki [27] characterized matroid obstructions for bounded matroid
path-width that are cycle matroids of outerplanar graphs.

Lastly, we obtain simpler proofs of known characterizations of graphs of linear rank-width at
most 1 [11 12].



The paper is organized as follows. Section[2]provides some preliminary concepts, including linear
rank-width and vertex-minors. In Section [3| we introduce necessary notions regarding split decom-
positions, and restate the structural characterization of linear rank-width on distance-hereditary
graphs. Section [d] presents a relation between the linear rank-width of a graph whose prime induced
subgraphs have bounded linear rank-width and the path-width of its decomposition tree. From this,
we prove Theorem in Section In Section [6 we provide a way to generate all vertex-minor
obstructions for graphs of bounded linear rank-width that are distance-hereditary graphs. Section|[7]
presents simpler proofs for known characterizations of the graphs of linear rank-width at most 1.

2 Preliminaries

In this paper, graphs are finite, simple and undirected. Our graph terminology is standard, see for
instance [19]. Let G be a graph. We denote the vertex set of G by V(G) and the edge set by E(G).
For X < V(G), we denote by G[X] the subgraph of G induced by X, and let G— X := G[V(G)\X].
Forv € V(G), we write G—x for G—{z}. For F' € E(G), let G—F := (V(G), E(G)\F). Similarly, for
e € E(G), we write G—e for G—{e}. For a vertex x of G, let Ng(z) be the set of neighbors of z in G
and we call |[Ng(x)| the degree of z in G. Two vertices x and y are twins if Ng(z)\{y} = Na(y)\{z}.
An edge e of a connected graph G is a cut-edge if G — e is disconnected. A vertex v in a connected
graph G is a cut verter if G — v is disconnected. A connected graph is 2-connected if it has at least
3 vertices and has no cut vertices.

A tree is a connected graph containing no cycles. A vertex of degree one in a tree is called
a leaf. A subcubic tree is a tree with maximum degree at most three, and a path is a tree with
maximum degree at most two. The length of a path is the number of its edges. A star is a tree
with a distinguished vertex, called its center, adjacent to all other vertices. A complete graph is
a graph with all possible edges. A graph G is called distance-hereditary if for every pair of two
vertices x and y of G the distance of x and y in G equals the distance of x and y in any connected
induced subgraph containing both = and y [4]. It is well-known that a graph is distance-hereditary
if and only if it can be obtained from a single vertex by repeatedly adding a vertex of degree
one, or creating a twin of a vertex in the graph [23]. An induced cycle of length at least 5 is not
distance-hereditary.

A subset F' of the edge set of G is called a matching if no two edges in F' share an end vertex.

For an edge e of a graph G, we denote by G/e the graph obtained by contracting e. A graph
H is a minor of a graph G if H is obtained from a subgraph of G by contractions of edges.

For a positive integer n, we denote by [n] the set {1,2,...,n}.

2.1 Linear rank-width

For sets R and C, an (R, C)-matriz is a matrix whose rows and columns are indexed by R and
C, respectively. For an (R,C)-matrix M and subsets X € R and Y < C, let M[X,Y] be the
submatrix of M whose rows and columns are indexed by X and Y, respectively.

Let G be a graph. We denote by Aq the adjacency matriz of G over the binary field; that is,
for v,w e V(G), Ag|v,w] = 1 if v is adjacent to w, and Ag[v,w] = 0, otherwise. For a graph G,
let cutrky, : 2V(@) x 2V(@) — 7 be the function such that cutrkl(X,Y) := rank(Ag[X,Y]) for all
X,Y < V(G), where rank is computed over the binary field. The cut-rank function of G is the



function cutrke : 2¥(%) — Z where for each X < V(G),
cutrkg(X) := cutrkf (X, V(G)\X).

An ordering (z1,...,x,) of the vertex set V(G) is called a linear layout of G. If |V (G)| = 2, then
the width of a linear layout (z1,...,x,) of G is defined as

 dmax{eutrkg({z1, ..., 2i})},

and if |V(G)| = 1, then the width is defined to be 0. The linear rank-width of G, denoted by
Irw(G), is defined as the minimum width over all linear layouts of G.

Caterpillars and complete graphs have linear rank-width at most 1. Ganian [2I] gave a char-
acterization of graphs of linear rank-width at most 1, and called them thread graphs. Adler and
Kanté [2] showed that linear rank-width and path-width coincide on forests, and therefore, there is
a linear-time algorithm to compute the linear rank-width of forests. It is easy to see that the linear
rank-width of a graph is the maximum over the linear rank-widths of its connected components.

For a linear layout L of a graph G and two vertices v and w, we denote by v <p, w if v = w or
v appears before w in the linear layout. For two orderings (v1,va,...,v,) and (wi, wa, ..., wn), let

(V1,02, ..., 0p) @ (W1, W2, ..., W) = (V1,V2, ..., U, W1, W2, . .., Wyy).

2.2 Vertex-minors

For a graph G and a vertex x of G, the local complementation at x in G is an operation to replace the
subgraph induced by the set of neighbors of x with its complement. The resulting graph is denoted
by G x. If a graph H can be obtained from G by applying a sequence of local complementations,
then G and H are called locally equivalent. A graph H is called a vertex-minor of a graph G
if H can be obtained from G by applying a sequence of local complementations and deletions of
vertices. Bouchet [I1] observed that local complementations do not change the cut-rank function.
This directly implies that every vertex-minor H of G satisfies that Irw(H) < Irw(G).

Lemma 2.1 (Bouchet [11]; See Corollary 2). Let G be a graph and let x be a vertex of G. Then
for every subset X of V(G), we have cutrkg(X) = cutrkgy, (X).

For an edge zy of G, let Wi := Ng(z) n Na(y), Wa = (Ng(z)\Na(y))\{y}, and W3 :=
(Na(y)\Ng(z))\{z}. The pivoting on zy of G, denoted by G A zy, is the operation to flip the
adjacencies between distinct sets W; and W}, and swap the vertices x and y. Flipping the adjacency
between two vertices v and w is an operation that adds an edge if there was no edge between v
and w, and removes an edge, otherwise. It is known that G A zy = Gxxxysx = Gxy*xx *y [32)
Proposition 2.1]. See Figure |2| for an example. A graph H is called a pivot-minor of a graph G if
H can be obtained from G by applying a sequence of pivotings on edges and deletions of vertices.
Observe that every pivot-minor of a graph is a vertex-minor of the graph, because of the relation
Gray=G*xxy=*x.

2.3 Path-width

A path decomposition of a graph G is a pair (P, B), where P is a path and B = (By),y(p) is a
family of vertex subsets of G such that



G G A vw

Figure 2: An example of pivoting.

1. for every v € V(G) there exists t € V(P) such that v € By,
2. for every uwv € E(G) there exists t € V(P) such that {u,v} S By,
3. for every v € V(G), the set {t € V(P) : v € B} induces a subpath of P.

The width of a path decomposition (P, B) is defined as max{|By| : t € V(P)} — 1. The path-width
of G, denoted by pw(G), is defined as the minimum width over all path-decompositions of G.

It is well known that if H is a minor of G, then pw(H) < pw(G). Robertson and Seymour [34]
first proved that for a fixed tree T', every graph of sufficiently large path-width contains a minor
isomorphic to 7. Bienstock, Robertson, Seymour, and Thomas [5] optimized the necessary function,
and Diestel [I8] later provided a short proof of it.

Theorem 2.2 (Bienstock, Robertson, Seymour, and Thomas [5]; Diestel [I8]). For every forest F,
every graph with path-width at least |V (F)| — 1 has a minor isomorphic to F'.

We recall the following theorem which characterizes the path-width of trees and is used for
computing their path-width in linear time.

Theorem 2.3 (Ellis, Sudborough, and Turner [20]; Takahashi, Ueno, and Kajitani [37]). Let T be
a tree and let k be a positive integer. The following are equivalent.

(1) T has path-width at most k.

(2) For every node x of T, at most two of the subtrees of T — x have path-width k and all other
subtrees of T — x have path-width at most k — 1.

(3) T has a path P such that for each node v of P and each connected component T' of T — v not
containing a node of P, pw(T') < k — 1.

3 Linear rank-width of distance-hereditary graphs

In this section, we recall the characterization of the linear rank-width of distance-hereditary graphs
investigated by Adler and the authors of this paper [3]. For this characterization, we need to
introduce split decompositions and the new notion of limbs introduced in [3]. We will follow the
definition for split decompositions used by Bouchet [10].

A split in a connected graph G is a vertex partition (X,Y) of G such that |X|,|Y] > 2 and
cutrkg(X) = 1. Prime graphs are connected graphs that do not have a split. Note that every
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Figure 3: An example of replacing a bag B with its simple decomposition. Circles indicate bags
and dotted edges indicate marked edges. When we replace a bag B with its simple decomposition,
other marked edges are still marked edges.

connected graph with at most 3 vertices is a prime graph, by definition. Also, one can observe that
every connected graph on 4 vertices admits a split, and it is not a prime graph.

A marked graph is a connected graph D with a matching M (D) where every edge in M (D) is
a cut-edge. Every edge in M (D) is called a marked edge, and the end vertices of marked edges are
called marked vertices. The connected components of D — M (D) are called bags of D. The edges in
E(D)\M (D) are called unmarked edges, and the vertices that are not marked are called unmarked
vertices.

If (X,Y) is a split in a graph G, then we construct a new marked graph D such that

e V(D) =V(G)u {2y} for two distinct new vertices 2’,y' ¢ V(QG),
e F(D)=E(G[X]) v E(G[Y]) u{z'y'} U E" where

E' := {2’z : x € X and there exists y € Y such that zy € E(G)}u
{y/y : y € Y and there exists x € X such that zy € F(G)},

e 7'y is a marked edge, and all edges in E’ are unmarked edges.

The marked graph D is called a simple decomposition of G. See Figure [3| for an example.

A split decomposition of a connected graph G is a marked graph D defined inductively to be
either G or a marked graph defined from a split decomposition D’ of G by replacing a bag with its
simple decomposition. For a marked edge xy of a marked graph D, the recomposition of D along
xy is the marked graph (D A zy) — {z,y}. For a split decomposition D, let G[D] denote the graph
obtained from D by recomposing all marked edges. Note that if D is a split decomposition of G,
then G[D] = G.

Since each marked edge of a split decomposition D is a cut-edge and all marked edges form a
matching, if we contract all unmarked edges in D, then we obtain a tree. We call it the decomposition
tree of G associated with D and denote it by Tp. To distinguish the vertices of Tp from the vertices
of G or D, the vertices of Tp will be called nodes. For a node v of Tp, we write bagp(v) to denote
the bag of D with which it is in correspondence, and for a bag B of D, we write nodep(B) to
denote the node of Tp with which it is in correspondence. Two bags of D are called adjacent bags
if their corresponding nodes in T are adjacent. A sequence of bags By — By — - -+ — B,,, is called



a path of bags if for each i € [m — 1], B; and B, are adjacent bags, and all of By, Bs,..., By,
are pairwise distinct. Clearly, for two bags B and B’, there is a unique path of bags from B to B/,
which corresponds to the path from nodep(B) to nodep(B’) in Tp. We denote by distp(B, B’) the
distance from nodep(B) to nodep(B’) in Tp; in other words, it is one less than the number of bags
in the unique path of bags from B to B’ in D.

3.1 Canonical split decompositions and local complementations

A split decomposition is called canonical if each bag is either a prime graph, a star, or a complete
graph, and every recomposition of a marked edge in D results in a split decomposition without the
same property. The following is due to Cunningham and Edmonds [I5], and Dahlhaus [17].

Theorem 3.1 (Cunningham and Edmonds [I5]; Dahlhaus [I7]). Every connected graph G has a
unique canonical split decomposition, up to isomorphism, and it can be computed in time O(|V (G)|+

[E(G)])-

A bag is called a prime bag if it is a prime graph on at least 5 vertices, and a bag is called a
complete bag or a star bag if it is a complete graph or a star, respectively.

Let D be a split decomposition of a connected graph GG with bags that are either a prime graph,
a complete graph or a star. The type of a bag of D is either P, K, or S depending on whether it
is a prime graph, a complete graph, or a star, respectively. The type of a marked edge uv is AB
where A and B are the types of the bags containing u and v respectively. If A =S or B = S, then
we can replace S by S, or S. depending on whether the end vertex of the marked edge is a leaf or
the center of the star, respectively. Bouchet characterized canonical split decompositions in terms
of the types of marked edges.

Theorem 3.2 (Bouchet [10]). Let D be a split decomposition of a connected graph whose bags are
either a prime graph, a complete graph, or a star. Then D is a canonical split decomposition if and
only if it has no marked edge of type KK or S,S..

We will use the following characterizations of trees and of distance-hereditary graphs.
Theorem 3.3 (Bouchet [10]).

(1) A connected graph is distance-hereditary if and only if every bag of its canonical split decom-
position is of type K or S.

(2) A connected graph is a tree if and only if every bag of its canonical split decomposition is a star
bag whose center is an unmarked vertez.

We now relate the split decompositions of a graph and the ones of its locally equivalent graphs.
Let D be a split decomposition of a connected graph. A vertex v of D represents an unmarked
vertex x (or is a representative of z) if either v = x or there is a path of even length from v to x in
D starting with a marked edge such that marked edges and unmarked edges appear alternately in
the path. Two unmarked vertices x and y are linked in D if there is a path from x to y in D such
that unmarked edges and marked edges appear alternately in the path. Linkedness of unmarked
vertices exactly represents the adjacency relation between those vertices in the original graph.

Lemma 3.4 (Adler, Kanté, and Kwon [3]). Let D be a split decomposition of a connected graph
G. Let v' and w' be two vertices in a same bag of D, and let v and w be two unmarked vertices of
D represented by v’ and w’', respectively. The following are equivalent.
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Figure 4: Examples of local complementation and pivoting in a split decomposition.

1. v and w are linked in D.
2. vw € E(Q).
3. v'w' € E(D).

A local complementation at an unmarked vertex x in a split decomposition D, denoted by D =z,
is the operation to replace each bag B containing a representative w of x with B * w. Bouchet
observed that D =z is a split decomposition of G[D] =z, and M (D) = M (D = z). To see why D * z
is a split decomposition of G[D] = z, let us consider the bag containing x as a root bag R. For a
bag B, if B contains no representative of x, then it is easy to see that for any unmarked vertex
contained in the sub-decomposition rooted at B, it is not adjacent to x in the original graph, and
therefore, this part should be the same in the split decomposition of G[D] * x. Assume that a bag
B’ contains a representative of z. By the definition of representativity, there is a unique vertex in
B’ that is a representative of , say u. Let v, w be two neighbors of u in B’. Note that every vertex
represented by v in D is adjacent to every vertex represented by w in D if and only if v is adjacent to
w by Lemma Observe that after applying local complementation at x, the adjacency relations
between the set of vertices represented by v and the set of vertices represented by w are changed,
and therefore, the adjacency relation between v and w in the split decomposition of G[D]*x should
be different from their adjacency in D. It means that B’ % u is a correct shape of the bag in the
split decomposition of G[D] = z. A formal proof of this fact can be found in Bouchet [10, Section
4].

Two split decompositions D and D’ are locally equivalent if D can be obtained from D’ by
applying a sequence of local complementations at unmarked vertices. As expected, this local
complementation also preserves the property that the split decomposition is canonical.

Lemma 3.5 (Bouchet [10]). Let D be the canonical split decomposition of a connected graph G. If
x is a vertex of G, then D = x is the canonical split decomposition of G * x.

Let x and y be linked unmarked vertices in a split decomposition D, and let P be the path in D
linking x and y such that unmarked edges and marked edges appear alternately in the path. Note
that if B is a bag of type S containing an unmarked edge of P, then the center of B is a representative
of either x or y. The pivoting on xy of D, denoted by D A zy, is the split decomposition obtained
as follows: for each bag B containing an unmarked edge of P, if v, w € V(B) represent respectively
z and y in D, then we replace B with B A vw. It is worth noticing that by Lemma [3.4) we have
vw € E(B), hence B A vw is well-defined.



Lemma 3.6 (Adler, Kanté, and Kwon [3]). Let D be a split decomposition of a connected graph
G. If zy € E(G), then D Axy = D % x %y * x.

3.2 Removing vertices

Let G be a distance-hereditary graph and let D be its split decomposition. Let S be a vertex set
of G. We explain how we transform D into a split decomposition of G — S. Note that the split
decomposition obtained from D by removing vertices in S is not necessarily a split decomposition
because the resulting marked graph may have bags of size at most 2. In this case, we need to
recompose a marked edge incident with each bag of size at most 2 unless the resulting marked
graph has at most two vertices.

Suppose that D is canonical. We frequently consider connected components T' of D — V(B),
for a bag B of D. This will be used to define limbs in the next subsection. For a bag B of D
and a connected component 7" of D — V(B), let us denote by (,(D, B,T) and (.(D, B,T) the end
vertices of the marked edge in D linking B and T that are in V(B) and in V(T respectively.
Subscripts b and ¢ stand for bag and component, respectively. We always treat T as a canonical
split decomposition and regard (.(D, B,T) as an unmarked vertex.

3.3 Limbs and characterization of linear rank-width

To present the characterization of the linear rank-width of distance-hereditary graphs, we need
the new notion called limbs [3]. For an unmarked vertex y in D and a bag B of D containing a
marked vertex representing y, let T be the connected component of D — V(B) containing y, and
let v :=((D,B,T) and w := (3(D, B,T). We define the limb L := Lp[B,y] with respect to B and
y as follows:

1. if B is of type K, then £ :=T xv — v,
2. if B is of type S and w is a leaf, then £ :=T — v,
3. if B is of type S and w is the center, then £ :=T A vy — v.

While T is a canonical split decomposition, £ may not be a canonical split decomposition, because
deleting v may create a bag of size 2. We analyze the cases when such a bag appears, and describe
how to transform it into a canonical split decomposition. Suppose that a bag B’ of size 2 appears
in £. If B’ has no adjacent bags in £, then B’ itself is a canonical split decomposition. We may
assume that there is a bag adjacent to B’.

1. (B’ has one adjacent bag Bj.)
If v; € V(By) is the marked vertex adjacent to a vertex of B’ and r is the unmarked vertex
of B’ in L, then we remove the bag B’ and replace v; with r. In other words, we recompose
along the marked edge connecting B’ and Bj.

2. (B’ has two adjacent bags By and Bs.)
If v € V(By) and vy € V(B3) are the two marked vertices that are adjacent to the two marked
vertices of B’, then we remove B’ and add a marked edge vve. If the new marked edge vyvo
is of type KK or S,S., then by recomposing along viv2, we finally transform the limb into a
canonical split decomposition.

10
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Figure 5: An example of a limb £p[B,y|. Let Bs be the bag containing y and let B— B; — Ba — B3
be the path in D from B to Bs. Let vvi, vavs and vqvs the marked edges between, respectively, B
and Bi, By and Bs, and By and Bs. Let T be the connected component of D — V(B) containing
y. Then Lp[B,y] is T A v1y — v1. The bags of Lp[B,y] corresponding to B;, By and Bs are
respectively obtained by doing a pivoting on viv2, v3vy and yvs.

S8
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Let LCp[B,y| be the canonical split decomposition obtained from Lp[B,y] and we call it the
canonical limb. Let LGp[B,y] be the graph obtained from Lp[B,y] by recomposing all marked
edges. For a bag B of D and a connected component 7" of D — V(B), we define fp(B,T) as the
linear rank-width of LGp[B,y] for some unmarked vertex y € V(T'). It was shown that fp(B,T)
does not depend on the choice of y.

Proposition 3.7 (Adler, Kanté, and Kwon; Proposition 3.4 of [3]). Let B be a bag of D and let y be
an unmarked vertex of D represented by a vertex w in B. Let x € V(G[D]). If an unmarked vertex
y' is represented by w in D = x, then LGp|B,y] is locally equivalent to LGpy[(D * z)[V(B)], ']
Therefore, fp(B,T) = fpsa((D % 2)[V(B)],Ty) where T and T, are the components of D — V(B)
and (D = x) — V(B) containing y, respectively.

As a variant of Theorem distance-hereditary graphs of bounded linear rank-width can be
characterized using limbs.

Theorem 3.8 (Adler, Kanté, and Kwon [3]). Let k be a positive integer and let D be the canonical
split decomposition of a connected distance-hereditary graph G. Then the following are equivalent.

(1) G has linear rank-width at most k.

(2) For each bag B of D, D—V (B) has at most two connected components T such that fp(B,T) =
k, and every other connected component T' of D — V(B) satisfies that fp(B,T') < k — 1.

(8) Tp has a path P such that for each node v of P and each connected component H of D —
V(bagp(v)) containing no bags bagp(w) with w € V(P), fp(bagp(v),H) < k — 1.

4 Path-width of decomposition trees

To prove Theorem we derive a relation between the linear rank-width of a graph whose prime
induced subgraphs have bounded linear rank-width and the path-width of its decomposition tree.

11



Proposition 4.1. Let p be a positive integer. Let G be a connected graph whose prime induced
subgraphs have linear rank-width at most p, and let D be the canonical split decomposition of G,
and let Tp be the decomposition tree of G associated with D. Then lrw(G) < 2(p+2)(pw(Tp) +1).

We prove Proposition by induction on the path-width of Tp. If its path-width is 0, then
it consists of one node, and the result directly follows from the given condition that every prime
induced subgraph has linear rank-width at most p. Note that complete graphs and stars have linear
rank-width at most 1. We assume that the path-width of T is at least 1. Using Lemma [2.3] T
contains a path P such that for each node v of P and each connected component 1" of T' — v not
containing a node of P, pw(T”) < k — 1. So, by induction, we can obtain an upper bound of the
linear rank-width of split decompositions corresponding to such components 7”. From this, we will
obtain an upper bound of the linear rank-width of the whole graph.

We need the following lemma. We point out that Lemma does not require D to be a
canonical split decomposition, and this relaxation will be useful for an easier argument in the main
proof.

Lemma 4.2. Let k and p be positive integers. Let B be a bag of a split decomposition D with two
unmarked vertices x and y such that for every connected component H of D—V (B), rw(G[H]) < k.
If B has a linear layout of width at most p whose first and last vertices are x and y respectively,
then G[D] has a linear layout of width at most 2p + k whose first and last vertices are x and y
respectively.

Proof. Let G := G[D], and let Lp := (w1, ws,...,w,) be a linear layout of B of width at most p
such that z = w; and y = wy,. For each j € [m],

1. if w; is an unmarked vertex, then let L; := (w;), and

2. if w; = (D, B, H) for some connected component H of D — V(B), then let L; be a linear
layout of G[H] — (.(D, B, H) having width at most k.

We define L := L1 ® Lo ® -+ - @ L,,,. We observe that L is a linear layout of G. For each j € [m],
we choose an unmarked vertex y; represented by w;. If w; is an unmarked vertex, then y; = w;.

We claim that L has width at most 2p+k. It is sufficient to prove that for every w € V(G)\{z, y},
cutrtkg({v : v <p w}) < 2p+ k. Let w € V(G)\{z,y} and let S, = {v : v <, w} and Ty, :=
V(G)\Sy.

Let H; be a connected component of D — V(B) such that (,(D, B, H;) = w;. Observe that if
all vertices in V(H;) n V(G) are contained in S, then all vertices in V(H;) n V(G) that have a
neighbor in T, have exactly the same set of neighbors in T3, which is Ng(y;) n Ti. Therefore,
when we compute the rank of the matrix A(G)[Sw, Tw], we can replace all vertices in V (H;) NV (G)
with y;. The same observation holds for connected components fully contained in T,,. Also, for
two distinct connected components Hj,, H;, of D — V(B) where all vertices of V(Hj,) n V(G) are
contained in S, and all vertices of V(Hj,) n V(G) are contained in T}, y1 and y» are adjacent in G
if and only if (,(D, B, Hj,) is adjacent to (,(D, B, Hj,) in B. This is an implication of Lemma

Having it, we can observe that if w is an unmarked vertex in B, then

cutrkg(Sy) = cutrkp({v : v <p, w}) < p.

Thus, we may assume that w is contained in some connected component H of D — V(B). Let
Jj € [m] such that (,(D, B, H) = wj.

12



Note that H is the unique component of D — V' (B) possibly intersecting both S,, and T,,. Since
all vertices of V(H) n V(G) having a neighbor in V(G)\V(H) have the same neighborhood in
V(G)\V(H) (that is, (V(H) n V(G),V(G)\V(H)) is a split), we have

(1) cutrkf(Sw, Tw\V (H)) < max{cutrkp({v : v <p, wj_1}),cutrkp({v: v <p, w;})} <p.

el
(2) cutrk (Sw\V(H), Tyw) < max{cutrkp({v:v <p, wj_1}),cutrkp({v : v <p, w;})} <p.
(3) cutrki(Sy " V(H), Ty nV(H)) < k.

Therefore, we have

cutrkg(Sy) < cutrk (Sw, Tw\V (H)) + cutrk (Sw\V (H), Tw)
+ cutrk (Sw NV (H), Ty 0 V(H))
<p+p+k<2p+Ek.

We conclude that L is a linear layout of G of width at most 2p + k whose first and last vertices
are x and y, respectively. O

Proof of Proposition[{.1. We prove it by induction on k := pw(Tp). If k = 0, then Tp consists of
one node, and G is either a prime graph, a complete graph, or a star. Note that complete graphs
and stars have linear rank-width at most 1. Thus, we have Irw(G) < p < 2(p +2). We may assume
that k > 1

Since pw(Tp) = k > 1, by Theorem there exists a path P := vivy--- v, in Tp such that for
each node v in P and each connected component 7' of Tp — v not intersecting P, pw(T) < k — 1.
For each i € [n], let B; := bagp(v;). By induction hypothesis, for each i € [n] and each connected
component H of D — V/(B;) not intersecting J; <<, V(B;), we have Irw(G[H]) < 2(p + 2)k.

Now, let us modify the given canonical split decomposition by two additional unmarked vertices
so that we can easily apply Lemma For each i € [n], let Lp, be a linear layout of B; of width
at most p. First, we add a twin of the first vertex of Lp, in B; such that the added vertex is
unmarked. Similarly, we add a twin of the last vertex of Lp, in B, such that the added vertex is
unmarked. Let x; be the vertex added to B; and ¥, be the vertex added to B,,. It is not difficult
to see that Bj has a linear layout of width at most p whose first vertex is z1, and B,, has a linear
layout of width at most p whose last vertex is .

Assume for a moment that n > 2. For each i € [n — 1], let y; and x;11 be the marked vertices
of B; and B;1, respectively, such that y;x;,1 is the marked edge connecting B; and B;, 1. If y; is
not the end vertex of Lp,, then we reorder Lp, so that y; is the end vertex. Similarly, if ;41 is
not the first vertex of Lp, ,, then we reorder Lp, , so that z;;; is the first vertex. Until now, the
width of each Lp, may increase by at most 2. This is because the rank of a matrix increase by at
most 1 when we move one element in the column indices (resp. the row indices) to the row indices
(resp. the column indices).

Note that the resulting decomposition is not necessarily canonical, as we may add a twin of
a vertex in a prime graph. But this is not a problem when we apply Lemma By the above
modification, we know that for each i € [n], there is a linear layout of B; of width at most p + 2
whose first and last vertices are z; and y;, respectively.

We define the following sub-decompositions. See Figure [f for an illustration. If n = 1, then let
D1 := D. Otherwise,
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Figure 6: The sequence of sub-decompositions D1, ..., D, in Proposmon 4 1

1. let D; be the connected component of D — V(Bs) containing By,
2. let D,, be the connected component of D — V(B,_1) containing B,,, and

3. for each i € {2,3,...,n—1}, let D; be the connected component of D — (V(B;—1) u V(Bj+1))
containing B;.

We regard the vertices x; and y; as unmarked vertices of D;.

Recall that pw(7T') < k—1 for every node v of P and every connected component 7" of Tp —v not
intersecting P. Therefore, Irw(G[H]) < 2(p + 2)k, for each connected component H of D; — V(B;),
by induction hypothesis. Thus, by Lemma 4.2 G[D;] has a linear layout L; of width at most
2(p+2)+2(p+2)k =2(p+2)(k + 1) whose first and 1ast vertices are z; and y;, respectively. For
each i € [n], let L} be the linear layout obtained from L; by removing z; and y;. Then it is not
hard to check that

LQ@L’Z@...@L%

is a linear layout of G' having width at most 2(p + 2)(k + 1). We conclude that lrw(G) < 2(p +
2)(pw(Tp) + 1). O

For distance-hereditary graphs, the following establishes a lower bound and the tight upper
bound of linear rank-width with respect to the path-width of their canonical split decompositions.

Proposition 4.3. Let D be the canonical split decomposition of a connected distance-hereditary
graph G. Then 5 pw(Tp) < Irw(G) < pw(Tp) + 1.

The upper bound part is tight. For instance, every complete graph with at least two vertices
has linear rank-width 1 and the path-width of its decomposition tree has path-width 0. Also, for
each odd integer k = 2n + 1 with n > 1, every complete binary tree of height k (each path from a
leaf to the root has distance k) has linear rank-width [k/2] = n+ 1, and its decomposition tree has
path-width [(k — 1)/2] = n. (Note that the linear rank-width and the path-width of a tree are the
same [2].) We will need the following lemmas.

Lemma 4.4. Let G be a graph and let uwv € E(G). Then pw(G) < pw(G/uv) + 1.

Proof. Let (P,B) be an optimal path-decomposition of G/uv, and let z be the contracted vertex
in G/uv. It is not hard to check that a new path-decomposition obtained by removing z and
adding u and v in each bag containing z is a path-decomposition of G. We conclude that pw(G) <
pw(G/uv) + 1. O
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Lemma 4.5. Let G be a graph. Let u be a vertex of degree 2 in G such that vi,vy are the neighbors
of u in G and vive ¢ E(G). Then pw(G) < pw(G/uvy/uvy) + 1.

Proof. Let w be the contracted vertex in G /uvy /uvy, and let (P, B) be an optimal path-decomposition
of G/uvy/uvy of width t := pw(G/uvi/uve). We may assume that no two adjacent bags in (P, B)
are equal.

We obtain a path-decomposition (P, B’) from (P, B) by replacing w with v; and vy in all bags
containing w. Note that (P,B’) is a path-decomposition of G — u. Since no two adjacent bags in
(P, B) are equal, no two adjacent bags in (P, B) are equal. We explain how to add u in the current
decomposition.

We first assume that there are two adjacent bags By and Bs in (P, B’) containing both v; and
vg, respectively. We obtain a path-decomposition (P’,B”) from (P,B’) by subdividing the edge
between Bj and Bs, and adding a new bag B’ = (By n By) u {u}. Since By and By are not the
same, |By N By| <t + 1 and therefore, |B'| <t + 2. Thus, (P’,B”) is a path-decomposition of G of
width at most ¢ + 1, and pw(G) < pw(G/uvy/uve) + 1.

Now we may assume that there is only one bag B in (P, B’) containing both v; and vy. In this
case, since v1vy ¢ E(G), we can obtain a path decomposition of G by replacing this bag B with a
sequence of two bags By and Bz, where By := B\{v2} U {u} and By := B\{v1} u {u}. This implies
that pw(G) < pw(G/uvy/uvy) + 1. O

We are now ready to prove Proposition We need the split decomposition characterization
of graphs of linear rank-width at most 1 proved by Bui-Xuan, Kanté, and Limouzy [12] for the
base case, which can be easily obtained by Theorem We give a proof of this characterization
in Theorem [T.11

Proof of Proposition[{.3. (1) Let us first prove that pw(7p) < 21Irw(G) by induction on the linear
rank-width of G. Let k := Irw(G). If k = 0, then G consists of a vertex, and pw(Tp) = 0. If k = 1,
then by Theorem H, Tp is a path and we have pw(Tp) < 1 < 2k. Thus, we may assume that
k = 2. By Theorem there exists a path P in Tp such that

e for every node v in P and every connected component H of D — V(bagp(v)) containing no
bag in {bagp(w) [ we V(P)}, fp(bagp(v), H) <k —1.

Let v be a node of P and C be a connected component of D — V(bagp(v)) containing no bag
bagp(w) with w € V(P). Let y be an unmarked vertex of C represented by (.(D,bagp(v),C),
and let L := LCp[V (bagp(v)),y]. By induction hypothesis, the decomposition tree 77, of L has
path-width at most 2k — 2. We claim that pw(T¢) < 2k — 1, where T is the decomposition tree
of C. By the definition of canonical limbs, either T, = T or T}, is obtained from T using one of
the following operations:

1. Removing a node of degree 1.
2. Removing a node of degree 2 with its neighbors vy, vy and adding an edge vivs.
3. Removing a node of degree 2 with its neighbors v, v9 and identifying v; and wvo.

The first two cases can be regarded as contracting one edge. So, pw(T¢) < pw(1r) + 1 <
(2k —2) 4+ 1 =2k — 1 by Lemma The last case corresponds to contracting two edges incident
with a vertex of degree 2. By Lemma pw(Te) < pw(Tp) +1 <2k —1.
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Figure 7: Splitting an edge in Lemma

Therefore, for each node v of P and each connected component T” of Tp — v not containing
a node of P we have that pw(7”) < 2k — 1. By Theorem Tp has path-width at most 2k, as
required.

(2) We prove that Irw(G) < pw(Tp)+1 by induction on the path-width of Tp. Let k := pw(Tp)
If k£ = 0, then Tp consists of one node. Since G is distance-hereditary, G should be a star or a
complete graph, and therefore, we have lrw(G) < 1 = pw(Tp) + 1. We may assume that k > 1.

By Theorem there exists a path P = vgvy - - - vpv,41 in Tp such that for every node v in P
and every connected component F' of Tp — v containing no nodes of P, pw(F') < k — 1. Let v be
a node of P and let C' be a connected component of D — V' (bagp(v)) containing no bags bagp(w)
with w € V(P). By induction hypothesis, G[C] has linear rank-width at most (k —1) + 1 = k. By
the definition of limbs, we conclude that fp(bagp(v),C) < k. Thus, by Theorem we conclude
that r'w(G) < k + 1. O

We could not confirm that the lower bound in Proposition [4.3]is tight. We leave the following
as an open question.

Question 1. Let D be the canonical split decomposition of a connected distance-hereditary graph
G. Is it true that pw(Tp) < Irw(G)?

5 Containing a tree as a vertex-minor

In this section, we prove our first main result.

Theorem Let p be a positive integer and let T be a tree. Let G be a graph such that every
prime induced subgraph of G has linear rank-width at most p. If Irw(G) = 40(p + 2)|V(T)|, then G
contains a vertex-minor isomorphic to T.

To prove it, we observe that the decomposition tree of the canonical split decomposition of G
has large path-width using Theorem [£.] The main argument of this section is that if G admits a
canonical split decomposition whose decomposition tree has sufficiently large path-width, then G
contains a vertex-minor isomorphic to 7.

We first prove that every tree is a vertex-minor of some subcubic tree having slightly more
vertices. For a tree T', we denote by ¢(T') the sum of the degrees of vertices of T' whose degrees are
at least 4. Every subcubic tree T' satisfies that ¢(T") = 0.

Lemma 5.1. Let k be a positive integer and let T be a tree with ¢(T) = k. Then T is a pivot-minor
of a tree T with ¢(T") =k —1 and |[V(T")| = |V(T)| + 2.
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Figure 8: Reducing from G[{b,71,72,...,7s}] in Lemma

Proof. Since ¢(T') = 1, T has a vertex of degree at least 4. Let v € V(T) be a vertex of degree at
least 4, and let vy, vs,. .., v, be its neighbors. We obtain T” from T by replacing the edge vv, with
the path vpopivi, removing vve and adding an edge between p; and ve. It is easy to verify that
(T" A p1p2) — {p1,p2} = T. We depict this procedure in Figure m We observe that p; and po are
vertices of degree at most 3 in 7”, and the degree of v in 7" is one less than the degree of v in T.
Therefore, we have ¢(T") = k — 1. O

Lemma 5.2. Fvery tree T is a piwot-minor of a subcubic tree T' with |V (T")| < 5|V (T)|.

Proof. By Lemma T is a pivot-minor of a subcubic tree 77 with |V(T")| < |V(T)| + 2¢(T).
Since ¢(T) < 2|E(T)| < 2|V (T)|, we conclude that |V (T")| < |V(T)| + 2¢(T) < 5|V (T)|. O

We recall that by (2) of Theorem a connected graph is a tree if and only if every bag
of its canonical split decomposition is a star bag whose center is an unmarked vertex. The basic
strategy is to extract the canonical split decomposition of a subcubic tree from the canonical split
decomposition of G. To do this, we will obtain a star from each prime bag, without changing too
much the shape of the obtained canonical split decomposition. Lemma [5.4] describes how to obtain
a star from a prime graph as a vertex-minor, without applying local complementations at some
special vertices, which will correspond to marked vertices.

We observe that every prime graph on at least 5 vertices is 2-connected. This is because if a
connected graph G contains a cut vertex v and 11,75, ..., T,, are connected components of G — v

and 77 has smallest number of vertices, then (V T) v {v} Ujea,...my V(T )) is a split of G. We
use this observation in Lemma [5.4]

Lemma 5.3. Let abc be an induced path in a 2-connected graph G. By applying local complemen-
tations at vertices in V(G)\{a, b}, we can obtain G’ locally equivalent to G such that G'[{a,b,c}] is
a triangle.

Proof. As b is not a cut vertex of G, there is a path from a to ¢ in G — b. Let rir2--- 75 be the
shortest path from ¢ = r1 to a = r4 in G—b. Note that s > 3 as a is not adjacent to c. See Figure[§]
for an illustration.

We prove by induction on s that there exists a graph G’, obtained from G by applying local
complementations only at vertices in {ri,rs,...,7rs_1} and such that G'[{a, b, c}] is a triangle. We
illustrate this procedure in Figure[8] Assume that s = 3. If b is adjacent to 79, then we remove this
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edge by applying a local complementation at ¢ = r;. And then we apply a local complementation
at ry to create an edge between a and c. Then abc becomes a triangle.

We assume that s > 4. Similarly, if b is adjacent to 79, then we remove this edge by applying
a local complementation at ¢ = r1, and then we apply a local complementation at ro to create
an edge between ¢ and r3. If b is not adjacent to 79, then we apply a local complementation at
ro to create an edge between ¢ and r3. Let G; be the resulting graph. Then rirsry---r5 is an
induced path in G; — b. Thus, by induction hypothesis, we can obtain G5 locally equivalent to G
by applying local complementations only at vertices in {ry,r3,...,75_1} such that Gs[{a,b,c}] is a
triangle. O

Lemma 5.4. Let G be a prime graph on at least 5 vertices, and let a,b,c € V(G). By applying
local complementations at vertices in V(G)\{a, b}, we can obtain G’ locally equivalent to G such
that acb is an induced path of G'.

Proof. We first create a triangle or an induced path of length 2 on {a,b,c} by applying local
complementations at vertices in V(G)\{a, b, c}. For this argument, a,b,c are symmetric. Without
loss of generality, we assume that the distance between a and b is at most the distance between a
and c¢ or between b and c. Let P = pi1ps - - - pm be a shortest path from a = p; to b = p,, in G. By
the distance property, ¢ ¢ V(P). We define

Gxpyxpgs - ®ppnp_q1 Hm>=3,
G := .
G otherwise.

It is not difficult to observe that a and b are adjacent in G;. Now, we take a shortest path
Q= qq2 gy from ¢ = ¢ to g, € {a,b} in G1. We define
G - Gixqeuqgs---xqp1 ifn=3,
2 Gy otherwise.

We observe that ¢ has a neighbor on {a,b} in Gy. Furthermore, if @ and b are not adjacent in Ga,
it means that the last local complementation removed this edge, and it implies that ¢ should be
adjacent to both a and b in Gy. Therefore, either Go[{a, b, c}] is a triangle or an induced path of
length 2.

We do not want to apply local complementations at a,b to create the required induced path.
If acb is already an induced path, then we are done. If Ga[{a,b,c}] is a triangle, then we apply a
local complementation at ¢. Therefore, we may assume that abc or bac is an induced path. Note
that G is still prime by Lemma 2.1 and therefore Gy is 2-connected.

Assume without loss of generality that abc is an induced path in G as the case bac is an induced
path is symmetric. We apply Lemma [5.3] Then by applying local complementations at vertices
in V(G)\{a, b}, we can obtain Gj3 locally equivalent to G5 such that Gs[{a,b,c}] is a triangle. By

applying a local complementation at ¢, we obtain the required path. A symmetric argument holds
when bac is an induced path in Go. This terminates the proof of the lemma. O

Starting from a split decomposition whose decomposition tree is a subdivision of a huge binary
tree, we will extract a split decomposition of some fixed binary tree. To do this, we need to explain
how we sequentially transform each bag into a star whose center is unmarked. Lemma deals
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with the case when a bag has two neighbor bags, and Lemma deals with the case when a bag
has three neighbor bags.

A canonical split decomposition D is rooted if we distinguish a leaf bag and call it the root of
D. Let D be a rooted canonical split decomposition with root bag R. A bag B is a descendant of
a bag B’ if B’ is on the path of bags from R to B in D, and in this case, we also say that B’ is an
ascendant of B. If B is a descendant of B’ and B and B’ are adjacent bags, then we call B a child
of B’ and B’ the parent of B. A bag in D is called a non-root bag if it is not the root bag.

Lemma 5.5. Let D be a rooted canonical split decomposition of a connected graph with root bag R
and let B be a mon-root bag of D such that

e D —V(B) has exactly two connected components Ty and Tr where Tr contains R,
e the parent of B is a star and (.(D, B,TR) is a leaf.

Then by possibly applying local complementations at unmarked vertices of D contained in V (T1) U
V(B) and deleting some unmarked vertices in B, we can transform D into a canonical split decom-
position D' containing a bag P such that

1. D' = V(P) consists of exactly two connected components Fr and F1,
2. Fr =Tg or Fr =Tr + (D, B,TR),

3. F1 is locally equivalent to T1, and

4. P 1s a star bag whose center is unmarked.

Proof. Let v := (3(D, B,Tg) and w := (,(D, B, T1). Let y be an unmarked vertex in D represented
by w. See Figure [9] for the setting.

First assume that B is a star bag. Since (.(D, B,TR) is a leaf, v is not the center of B because
D is a canonical split decomposition and every canonical split decomposition has no marked edge
of type SpS. by Theorem If its center is unmarked, then we are done. We may assume that the
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center of B is w. Since |V(B)| > 3, B contains at least one unmarked vertex, which is adjacent to
w. We choose an unmarked leaf vertex z in B. We observe that y is linked to z, that is, yz € E(G).
Then in D A yz, z becomes the center of a star, and Tk does not change. Also, T} is changed to
the decomposition obtained from T3 by pivoting yz’ where 2’ = (.(D, B,T1). Thus, the resulting
decomposition satisfies the required property. If B is a complete bag, then we choose an unmarked
vertex in B, and apply a local complementation at this vertex. Then the resulting decomposition
satisfies the required property.

Now, suppose that B is a prime bag. Choose an unmarked vertex z of B that is adjacent to
w. Since a prime graph with at least 5 vertices is 2-connected, there is always an unmarked vertex
adjacent to w. Note that y and z are linked.

Let B; be the child of B. If By is a star bag whose center is adjacent to B, then by pivoting yz we
transform Bj into a star bag having (.(D, B, T}) as a leaf. If B; is a complete bag, then we apply a
local complementation at y. In the resulting decomposition, either Bj is a prime bag or (.(D, B, T})
is a leaf of a star bag. Let B’ be the bag modified from B in the resulting decomposition. Note
that B’ is still a prime graph by Lemma

We apply Lemmawith (a,b,c) = (v,w, z). By Lemma we can modify B’ into an induced
path vzw by only applying local complementations at unmarked vertices in B’ and removing all
unmarked vertices in B’ except z. Note that the marked edges incident with B’ are still marked
edges that cannot be recomposed, as both have types 5,5, or S,P. Let D’ be the modified
decomposition and let P be the new bag in D’ modified from B’. Then D’ — V(P) has two
connected components Fr and F} where

o [p=Tror Fr =Tr = ((D,B,TR),
e [ is locally equivalent to 17, and
e P is a star whose center is unmarked,
as required. ]

Lemma 5.6. Let D be a rooted canonical split decomposition of a connected graph with root bag R
and let B be a mon-root bag of D such that

e D —V(B) has exactly three connected components Ty, Ts, and Tr where Tr contains R,
e the distance from nodep(B) to nodep(R) is at least 3 in Tp,

e the parent Py of B and its parent Py satisfy that nodep(Py) and nodep(Ps) have degree 2 in
TD7

e P and Py are stars whose centers are unmarked, and
e for each i € {1,2}, the child B; of B in T; satisfies that nodep(B;) has degree 2 in Tp.

Then by possibly applying local complementations at unmarked vertices of D contained in V (T1) U
V(Tz) v V(B) v V(P1) v V(P2) and deleting some unmarked vertices in V(T1) v V(Tz) v V(B) u
V(Py) u V(P) and recomposing some marked edges, we can transform D into a canonical split
decomposition D' containing a bag P such that

1. D' —V(P) consists of exactly three connected components Fi, Fs, and Fg,
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Figure 10: When B is a complete bag and has an unmarked vertex in Lemma

2. FR = TR — (V(Pl) |\ V(PQ)),
3. for each i € {1,2}, F; is locally equivalent to T; or T; — V(B;), and
4. P 1is a star bag whose center is unmarked.

Proof. For each i € {1,2}, let z; be the center of P;, and let v := (,(D, B, Tr), and for each i € {1, 2},
let v; := ((D, B, T;), and y; be an unmarked vertex represented by v;.
We first deal with an easier case.

Case 1. B is either a star or a complete graph, and has an unmarked vertez.

The case when B is a complete graph is depicted in Figure We first transform B into a star
whose center is unmarked. Let z be an unmarked vertex in B.

Assume that B is a star. Since (.(D, B,TR) is a leaf of a star, v is not the center of B because
D is a canonical split decomposition. We may assume that the center of B is either v; or vo. By
symmetry, we may assume that it is v1. In this case, y; and z are linked in D. Thus, B becomes a
star whose center is z in D A y1z. If B is a complete bag, then we apply a local complementation
at z. Then B becomes a star whose center is z. Note that in any case, Tr does not change by
this local complementation as (.(D, B, TR) is a leaf of a star, and T; becomes a split decomposition
locally equivalent to T;.
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Figure 11: When B is a complete bag and has no unmarked vertices in Lemma

Let D1 be the resulting decomposition. Lastly, we transform D; into a split decomposition Do
as follows:

1. We pivot z129 and then remove all unmarked vertices contained in P; and Ps.

2. We recompose marked edges incident with P, and P». Equivalently, we remove all vertices
in P; and P» in the decomposition, and add a new marked edge between v and the marked
vertex in the parent of P, that is adjacent to Ps.

Note that D is canonical, as the new marked edge has the same type as before. Thus, we obtained
a required decomposition.

Now, we may assume that either B is a prime bag, or |V(B)| = 3.

Case 2. |V(B)| = 3.

An example case is depicted in Figure

Since |V(B)| = 3, B is either a star or a complete graph. We first modify B into a star whose
center is v1. First assume that B is a star. Since (.(D, B,Tg) is a leaf of a star, v is not the center
of B because D is a canonical split decomposition. Thus, the center of B is either v; or vo. We
may assume that the center of B is vy; otherwise, we already have that B is a star whose center
is v1. Since vy is adjacent to va, y1 and yo are linked in D. Then B becomes a star whose center
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is v1 in D A y1y2. If B is a complete bag, then we apply a local complementation at y;. Then B
becomes a star whose center is v;. Note that Tk does not change by this local complementation
as ((D, B,TR) is a leaf of a star and the center of the parent of B is unmarked. Let D; be the
resulting decomposition.

Let w be the marked vertex in P, that is adjacent to P;. We transform D; into a split decom-
position Dy as follows:

1. We pivot zixs.
2. We delete the vertices of V(P;), and add a marked edge between v and w.
3. We recompose the new marked edge vw (it is of type S,S.).

Observe that the bag B’ in Dy obtained by merging B and P, is a star whose center is vy, and
it contains an unmarked vertex xo. Moreover, Dy is canonical. Lastly, we pivot yjx2. Then
B’ becomes a star whose center is x2. Note that the connected components of Dy — V(B’) are
respectively Tr — (V(P1) v V(P2)) and F; and F such that F; is locally equivalent to 7; for
ie{l,2}.

Now, it remains to show the lemma when B is a prime bag. We reduce this case to Case 1
or Case 2 by applying Lemma Note that in the previous cases, we deduce that Fj is locally
equivalent to 7T; for each i € {1,2}. But when we transform B into a star bag, we may merge B
with one of its child bags.

Case 3. B is a prime bag.

Note that applying a local complementation at an unmarked vertex in B does not change the
fact that y; is represented by v1. This is because the alternating path from y; to v1 does not change
when we apply a local complementation at an unmarked vertex in B.

We apply Lemma with (a,b,c¢) = (v,va,v1) so that B is transformed into an indued path
vvive. Note that applying a local complementation at vy can be simulated by applying a local
complementation at y;. Since B is a prime graph on at least 5 vertices, by Lemma [5.4] we can
modify B into an induced path vvive by only applying local complementations at unmarked vertices
in B and y;. Then we remove all the other vertices of B.

Note that the marked edge connecting B and P is still a valid marked edge as (.(D, B,TR)
is a leaf of a star. However, for i € {1,2}, the marked edge incident with v; and (.(D, B, T;) may
have type S,S.. In this case, we recompose this marked edge so that the resulting decomposition
is canonical.

Let D; be the modified decomposition. Since both nodep(P;) and nodep(P;) have degree 2 in
Tp, the bag B’ of Dy modified from B still has 3 adjacent bags in Dy. As B’ is a star bag of D,
we can reduce the remaining steps to Case 1 or Case 2 depending on the size of B’, from which
we can construct the required canonical split decomposition. O

We are ready to prove the main result of the section. We note that for a graph H, any subdivision
of H contains a vertex-minor isomorphic to H. We will use this fact. For a tree T, let n(T") be the
tree obtained from T by replacing each edge with a path of length 4.

Proof of Theorem[1.3 Let t := |V (T')| and suppose that Irw(G) = 40(p+2)t. By Lemmal5.2] there
exists a subcubic tree 7" such that T is a vertex-minor of 77 and |V (7”)| < 5t. We consider the tree
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n(T") which is the tree obtained from 7" by replacing each edge with a path of length 4. Observe
that |V (n(T"))| < 20t.

Let D be the canonical split decomposition of G and let Tp be the decomposition tree of
D. Since Irw(G) = 40(p + 2)t, by Proposition pw(Tp) = 20t — 1. Since |V (n(T"))| < 20t,
from Theorem Tp contains a minor isomorphic to n(7”). Since the maximum degree of
n(T") is at most 3, Tp contains a subgraph 7 that is isomorphic to a subdivision of n(7”). Let
D1 := D[U,ev(1y) V(bagp(v))]. Observe that Dy is not necessarily a decomposition of an induced
subgraph of GG, as the unmarked vertex which was a marked vertex before does not correspond to
a real vertex of G.

(Preprocess 1) To make it as a decomposition of an induced subgraph of G, we obtain a new
decomposition Dy from D1 as follows: For every unmarked vertex x of Dy that was a marked vertex
in D, there is a vertex y € V(G) represented by = in D. We choose such a vertex and replace x
with y. We can observe that D is a canonical split decomposition of an induced subgraph of G,
and Tp, is isomorphic to Tp,.

(Preprocess 2) We choose a leaf bag Rs of Do and regard it as the root of Dy. We first transform
Ry into a star where the marked vertex in R is a leaf by applying local complementations. Let
v be the marked vertex of Ry, and v’ be a neighbor of v in Ry, and w be an unmarked vertex of
Dy represented by v. If Ry is a star whose center is unmarked, then we do nothing. If Rs is a star
whose center is v, then we pivot v'w. If Ry is a complete bag, then we apply local complementation
at v'. Then Ry becomes a star whose center is unmarked.

Assume that Ry is a prime bag and let C' be the child of Ro. If C' is a star whose center c¢ is
adjacent to v, then we do a pivot at v'w to turn C into a star with c as a leaf. If C' is a complete
graph, then we apply a local complementation at w. The bag modified from C is either a prime
graph or a star whose leaf is adjacent to v. Let R, be the resulting bag from Rs.

Now, we choose one more unmarked vertex v” in R, adjacent to v. Such a vertex exists as

, is 2-connected. Applying Lemma to R, with (a,b,c) = (v,v',v"), there exists a sequence
x1, %2, ...,y of vertices in V(R))\{v,v'} such that vv”v’ is an induced path of Rz % zg % - - xy.
We apply this sequence of local complementations and then remove all vertices in R, except v, v/,
and v”. By the previous procedure, the resulting decomposition is canonical and the bag modified
from R, is a star whose center is unmarked.

Let D3 be the resulting decomposition, and R3 be the root bag that is modified from Rs. Note
that T'p, is isomorphic to Tp,. Now we describe the main steps to find 7" as a vertex-minor.

As Tp, is isomorphic to a subdivision of 7(7”), there is a subdivision mapping ¢ from 7" to Tp,
such that for each edge e of T”, g(e) is a path of length at least 4. Note that g(V(1”)) is exactly
the union of the set of all leaves and the set of all vertices of degree at least 3 in Tp,.

A bag B in a rooted canonical split decomposition is good if every bag on the path from B
to the root bag is a star whose center is unmarked. Let By, Bo, ..., B,, be an ordering of bags in
{bagp,(v) : v e g(V(T"))} such that

o for each i € {2,3,...,m}, every ascendant bag of B; in the set {bagp, (v) : v € g(V(T"))} is
contained in {Bj, Ba, ..., B;_1}.

Such an ordering can be found using BFS. Clearly, B; = Rs. For each i € {2,3,...,m}, let F(B;)
be the bag B in {Bj, Bs, ..., B;_1} such that B is an ascendant bag of B;, and B is closest to B;.
We will construct below a sequence Fi, Fb, ..., F,, of rooted canonical split decompositions such
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that nodep,(Bj) € V(TF,) for 1 < i,j < m, and for convenience we keep continuing calling B; the
bag bagp, (nodep,(B;)).
We construct a sequence of canonical split decompositions Fi, Fs, ..., F,, such that

e Dy =F1,
e for each i € [m — 1], G[Fj41] is a vertex-minor of G[Fj],
e in each F; with i € [m],

— B, B,,...,B; are good,
— when ¢ > 2, for B e {Bs,...,B;}, distp (B, F(B)) > 1,

— for Be {Bi+1,Bi+2, ce ,Bm}, lfF(B) € {Bl,BQ, ce ,Bi}, then dlStFl(B,F(B)) > 3, and
otherwise distg, (B, F(B)) = 4.

By (Preprocess 2), By = R3 is good in Ds. Thus, F} = D3 is indeed a sequence satisfying the
above conditions.

We describe how we can construct Fj,; from F; satisfying the above three conditions. Let us
consider the bag B;,1. First assume that B;,; is good. Then F; 1 = F; satisfies the conditions as
well (because distg, (Bit+1, F(Bi+1)) = 3 = 1), so, we can set ;11 = F;. Thus, we may assume that
Bi11 is not good in Fj.

As F(BZ) € {Bl,Bg,. . .,Bi}, we know that diStFi(BZ'Jrl’F(BfL'Jrl)) > 3. Let F(BlJrl) =U; —
Uy — -+ — Uy = B;41 be the path of bags in F; from F(B;;1) to Bji1, where y > 4.

We recursively apply Lemma to Uz, Us,...,Uy_1 so that the bag modified from each of
Us,Us,...,Uy_1 is a star whose center is unmarked. Note that when we apply Lemma to
Us,Us, ..., Uy_1, the decomposition tree does not change.

Next we apply Lemma [5.6]to B;11 so that the bag modified from B, is a star whose center is
unmarked. When we apply Lemma [5.6/to B; 1, some child bags of B;;; may be merged with B; ;.
Thus if U is a bag with F(U) = B;;1, then the value distg, (U, B;+1) may decrease by at most 1.

Let F;11 be the resulting decomposition. We can verify that in Fj, 1,

e B, Bs,...,B;11 are good,
e for Be {BQ, - 7Bi+1}7 diStFi+l(B,F(B)) =1,

e for B € {Bi+2,...,Bm}, if F(B) € {BI,B2,...’BIL'+1}’ then diStFi+l(B,F(B)) = 3, and
otherwise distp,, , (B, F(B)) = 4.

Thus, we can find such a sequence I, Iy, ..., F,,.

Let Dy := F,,. Note that T, is isomorphic to a subdivision of 7", and every bag of Dy is a
star whose center is unmarked. Therefore, G[D4] is isomorphic to a tree that can be obtained from
a subdivision of 7" by adding some leaves, and in particular, G[ D] contains an induced subgraph
isomorphic to a subdivision of T”. Thus, G contains a vertex-minor isomorphic to 7”, and also
contains a vertex-minor isomorphic to T', as required. ]
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6 Distance-hereditary vertex-minor obstructions for graphs of bounded
linear rank-width

In this section, we describe a way to generate all vertex-minor obstructions for graphs of bounded
linear rank-width that are distance-hereditary graphs. It generalizes the constructions developed
by Jeong, Kwon, and Oum [25].

For a distance-hereditary graph G, a connected distance-hereditary graph G’ is a one-vertex
DH-extension of G if G = G’ — v for some vertex v € V(G'). For convenience, if G’ is a one-vertex
DH-extension of G, and D and D’ are canonical split decompositions of G and G’ respectively,
then D’ is also called a one-vertex DH-extension of D.

Let Dy, Dy and D3 be three canonical split decompositions. For each i € {1,2,3}, let D} be a
one-vertex DH extension of D; with a new unmarked vertex w; and such that w; is not contained
in a star bag centered at w;. Furthermore, we choose an unmarked vertex z; linked to w;. Let B
be a complete graph or a star, on three vertices vy, ve,vs. For each i € {1,2,3}, let D! be a split
decomposition such that

1. if B is a complete graph, then D} := D/ « w;,
2. if B is a star with center v;, then D! := D} A w;z;,
3. if B is a star with v; a leaf, then D} := D/.

Let N(D1, Dy, D3, K) be the set of all possible canonical split decompositions obtained from the
disjoint union of such DY, DY, D% and a complete bag B on three vertices v1, va,v3, by adding the
marked edges vjwy, vows, and vsws. For i € {1,2,3}, let N(Dy, D2, D3, (S,i)) be the set of all
possible canonical split decompositions obtained from the disjoint union of such DY, D}, D% and a
star bag B on three vertices vy, vo, v3 whose center is v;, by adding the marked edges vywy, vows,
and vsws.

For a set D of canonical split decompositions, let

A(D) := N(Dl,DQ,Dg,K)> U g N (D1, Dy, Ds, (S,4) |,

<D1,D2,D3€'D D17D27D3€'D,’L’€{1,2,3}
Dt :=Du {D': D' is a one vertex DH-extension of D € Dj.

For each non-negative integer k, we recursively construct the set Wy of canonical split decom-
positions as follows.

1. Uy := {K3} (K3 is the canonical split decomposition of itself.)
2. For k>0, let Upyq := A(T]).
We prove the following.

Theorem 6.1. Let k be a non-negative integer. Every distance-hereditary graph of linear rank-width
at least k + 1 contains a vertex-minor isomorphic to a graph whose canonical split decomposition is
isomorphic to a decomposition in V.

We prove some intermediate lemma.
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Figure 12: A shorten procedure described in Lemma

Lemma 6.2. Let D be the canonical split decomposition of a connected distance-hereditary graph
containing two distinct bags By and Bz, and for each i € {1,2}, let T; be the connected component
of D —V(B;) such that T; contains Bs_;. If

e (y(D, B1,T1) is not the center of a star and
e By is a star bag and (p(D, Bo,Ts) is a leaf of Bo,

then there exists a canonical split decomposition D" such that
1. G[D] has G[D'] as a vertez-minor,

D[V(Tx)\V(11)] = D'[V(T2)\V (T1)],

DV(T)\V(T2)] = D'[V(T)\V(T2)], and

e e

either By and Bs are adjacent in D', or there is a path of bags By — B — By in D' such that
|V(B)| =3 and B is a star bag whose center is unmarked.

Proof. If B; and By are adjacent bags in D, then we are done. We assume that B; and Bs are not
adjacent. Let By = Uy — Uy — -+ - — U,;, = Bs be the path of bags in D. Also, let P = pips...pr be
the shortest path from (,(D, B1,T1) = p1 to (D, Ba,T5) = pg in D. Note that £ > 4 as m > 3.

Suppose that there exists a bag U; containing exactly two consecutive vertices p;, pj41 of P.
In this case, we remove U; and remove all the connected components of D — V(U;) that contain
neither By nor By, and add a marked edge p;_1pj+2. This procedure corresponds to removing all
unmarked vertices in the removed sub-decomposition. Since this operation does not change the
parts D[V (T2)\V (T1)] and D[V (T1)\V (T2)], applying this operation consecutively, we may assume
that for each i € {2,3,...,m — 1}, U; contains three consecutive vertices of P. In other words, Uj;
is a star whose center is adjacent to neither a vertex of U;_1 nor to a vertex of U;;1. See 2) of
Figure

Suppose that m > 4. Note that Us contains ps, p3,ps and Us contains ps, pg, pr. Take two
unmarked vertices x3 and xg of D that are represented by p3 and pg, respectively. Observe that
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x3 and zg are linked in D. Let D' := D A xzxg. Notice that D'[V(Uz2)] and D'[V(Us)] are stars
whose centers are adjacent to each other. Moreover, D'[V(T2)\V(11)] = D[V (T2)\V (T1)] and
similarly, D'[V(T1)\V (T2)] = D[V (T1)\V (T>)]. For each i € {2,3}, we delete from D’, U; and all
the connected components of D' — V' (U;), except the two connected components containing B and
By respectively, and add the marked edge p1pg. See 3) and 4) of Figure By the assumption that
p1 is not the center of By, the marked edge incident with By is of type S,S, or K.S,. Therefore,
the resulting decomposition is a canonical split decomposition satisfying the conditions (1), (2),
(3), and the number of bags containing P is decreased by two.

Applying this procedure recursively, at the end, we obtain a canonical split decomposition such
that either B} and By are adjacent, or there is a path of bags By — B — By such that B is a star
bag whose center is adjacent to neither B; nor Bs. In the latter case, we remove all unmarked
leaves of B, and remove all connected components of D — V' (B) containing neither B; nor By, and
replace the center of B with an unmarked vertex represented by it. Then we obtain the required
decomposition. ]

The next proposition says how we can replace limbs having linear rank-width &£ > 1 into a
canonical split decomposition in \I’,j_l using Lemma In this proposition, we sometimes remove
unmarked vertices from a given split decomposition, to take a split decomposition of the graph
obtained by removing the corresponding vertices. We described this operation in Section

Proposition 6.3. Let D and A be the canonical split decompositions of some connected distance-
hereditary graphs. Let B be a star bag of D, v be a leaf of B, T be a connected component of
D — V(B) such that (,(D,B,T) = v, and let w be an unmarked vertex of D represented by v. If
LGp|B,w] has a vertex-minor that is either G[A] or a one-vertex DH extension of G[A], then there
exists a canonical split decomposition D', such that

1. D' is a vertex-minor of D,
2. either D' —V(T) =D —V(T) or D' =V (T) = (D —V(T)) *v, and

3. for some unmarked vertex w' of D' represented by v, LCp/[B,w'] is either A or a one-vertex
DH-extension of A.

Proof. Suppose that LG p[B, w] has a vertex-minor that is either G[A] or a one-vertex DH extension
of G[A]. Tt means that there exist a sequence x1,xa, ...,z of vertices of LGp[B,w] and S <
V(LGp[B,w]) such that (LGp[B,w] * x1 * x2 * ... * x,,) — S is either G[A] or a one-vertex DH-
extension of G[A]. So, there exists Q < V(Lp[B, w]) such that the graph obtained from (Lp[B, w]=*
X1 % T % ... % Ty)[Q] by recomposing all marked edges is either G[A] or a one-vertex DH-extension
of G[A]. As v is a leaf of B, Lp[B,w] is an induced subgraph of D. Thus, we have

(Lp[B,w] *xy *xg % ... % xp)[Q] = (D *x1 % x9 % ... %xy)[Q]

Let Dy = D % x1 % o3 % ... % . Note that D[V(B)] = Di[V(B)] as v is a leaf of B, and
{1, 20,...,2m} < V(T).
We choose a bag B’ in Dy such that

1. B’ has a vertex of @, and

2. distp, (B, B’) is minimum.
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Let us check that all the hypothesis of Lemma[6.2] with (By, B2) = (B, B) are satisfied. Let T} be
the connected component of D1 — V(B’) containing B and let T5 be the connected component of
Dy —V(B) containing B’. Let y := (,(D1, B’,T1). From the choice of B’, we have y ¢ Q; otherwise,
there exists an unmarked vertex represented by gy, and all the vertices on the path from y to it
should be contained in @, as ) induces a connected graph. In particular, the bag in 7} containing
a vertex adjacent to a marked vertex in B’ should contain a vertex of (), and this contradicts to
the minimality of the distance between B and B’. In addition, y is not the center of a star bag
because D;[Q] is connected and B’ has at least two vertices of (). Therefore, the bags B and B’
satisfy the hypothesis of Lemma with (By, Bs) = (B, B).

By applying Lemmaon B and B’, there exists a canonical split decomposition Ds such that

1. G[D1] has G[ D3] as a vertex-minor,
2. Di[V(Tu)\V(Th)] = Do[V (To)\V(T1)],
3. Di[V(T\V (To)] = Do[V(T1)\V (T3)],

4. either B and B’ are adjacent in Ds, or there exists a path of bags B — By — B’ in D5 such
that |V(Bs)| = 3 and By is a star bag whose center is unmarked.

We obtain D3 from Dy by removing the vertices of V(72)\V(T1) that are not contained in
Q v {y}, and then recomposing all new recomposable marked edges. Since recomposable marked
edges only appeared in the part V(T2)\V(11), we have Ds[V(T1)\V(12)] = DoV (T1)\V(12)].
Furthermore, the bag B, still exists in Dg if it exists in Ds. This is because

e the bag B’ contains at least two vertices of @ in Dy, and thus B’ remains as a bag of same
type in D3, and

e the type of the marked edge connecting B’ and B, does not change when recompositions are
applied.

Let By be the bag of D3 containing y. We divide into cases depending on whether B and Bs are
adjacent or not.

Case 1. B and Bs are adjacent in Ds.

In this case, D3 itself is the desired decomposition D’. Choose an unmarked vertex z in Dj
represented by v. Then £Cp,[B, z] is the same as the split decomposition obtained from (Lp[B, w]x*
X1 % Ty * ... % Ty)[Q] by recomposing all recomposable marked edges, which is either G[A] or a
one-vertex DH-extension of G[A].

Case 2. There exists a path of bags B — Bs — Ba such that |V (Bs)| = 3 and Bs is a star bag whose
center is unmarked.

Let ¢ be the center of Bg, and let ¢; and ¢o be two leaves of By that are adjacent to y and v,
respectively. Choose an unmarked vertex z of D3 represented by ¢, and let H := LCp,[Bs, z]. By
construction, H is either A or a one-vertex DH-extension of A.

If H = A, then we can regard LCp,[B,c| as a one-vertex DH-extension of A with the new
vertex c. Therefore, we may assume that H is a one-vertex DH-extension of A. Let a be the newly
added vertex a in H.

We would like to remove the extended vertex a from H, and then add ¢ to H so that we obtain
a new one-vertex extension of A which contains ¢. But this is not always possible because the
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operation of removing a may disconnect the remaining part of H from c. We first deal with this
special case.

Assume that By is a star whose center is an unmarked vertex in Ds. In this case this center
should be z. We obtain a new decomposition D4 by applying a local complementation at ¢, removing
¢ and recomposing a marked edge incident with Bs. Note that Dy is exactly the decomposition
obtained from the disjoint union of the two connected components of D3—V (B;) by adding a marked
edge yv, and thus it is canonical. Also, z is represented by v in Dy, and we have LCp,[B, z] = H.
Thus, Dy is the required decomposition.

Now we assume that ¢ is linked to at least two vertices of H in Dj3. Since H is a one vertex
DH-extension of A and A was chosen as a canonical split decomposition of a connected graph,
G[H] — a is connected. So, if we define D4 as the canonical split decomposition obtained from
D3 — a, then Dy is connected and LCp,[B, c] can be regarded as a one vertex DH-extension of A.
Therefore, D, is the required decomposition. ]

Proof of Theorem [6.1. We prove it by induction on k. If k = 0, then Irw(G) > 1 and G has an
edge. Thus, we may assume that k£ > 1.

Let D be the canonical split decomposition of G. Since G has linear rank-width at least k + 1,
by Theorem there exists a bag B in D with three connected components 71,75, T3 of D —V(B)
such that fp(B,T;) = k for each i € {1,2,3}.

We remove all connected components of D — V(B) other than T3, T5, T3, and for each marked
vertex w in B that was adjacent to some removed component, we choose a vertex w’ in D rep-
resented by B and replace w with w’. Note that the resulting decomposition is a canonical split
decomposition of an induced subgraph of G.

Now, if B is a star whose center is unmarked, then we apply a local complementation at this
vertex, and otherwise, we change nothing. Then we obtain a new decomposition by removing all
unmarked vertices in B. Let us denote by D’ this canonical split decomposition and denote by
B’ the bag modified from B, and denote by T7, T4, T4 the decompositions modified from T4, Ts, T,
respectively.

For each i € {1,2,3}, let v; := (D', B',T!) and w; := ((D', B',T}), and z; be an unmarked
vertex of D’ represented by v; in D'.

We define a new decomposition Dy as follows. If B’ is a star bag centered at vs, then let
D, := D'. If B is a complete bag, then let Dy := D'« z3. If B is a star bag centered at v; € {vy, v},
then let Dy := D * z; % z3. One easily checks that Di[{vi,v2,v3}] is a star centered at vs. Let
Bl := Di[{v1,v9,v3}] and, for j € {1,2,3}, let le := D1[V(T})]. Note that z; is still represented
by v;.

Since v and vy are leaves of B!, for each i € {1,2}, Lp,[B*, 2] = T}! —w; and by the induction
hypothesis, there exists a canonical split decomposition F; in ¥;_; such that £Gp, [B*, z;] has a
vertex-minor isomorphic to G[F;]. By applying Proposition to T} and Ty, we can obtain a
canonical split decomposition Dy satisfying that

1. Do[V(BY)] = D1[V(BY)],

2. Do[V(T3)] is either T4 or T3 = w3 (because T3 may be affected by applying local complemen-
tation at v or v9 when applying Proposition , and

3. for each i € {1,2}, LCp,[D2[V (B')], 2?] is isomorphic to a canonical split decomposition in

et}
‘I’,—:,l for some unmarked vertex 212 of D5 represented by v;.
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Let B? := D5[V(B')]. For each i € {1,2}, let T? be the connected component of Dy — V (B?)
containing 22, and w? := (.(Dq, B2, T?). Let w3 := wg, 22 := z3, and T2 := Dy[V(T3)].

Now, we want to transform B? into a star whose center is v by applying local complementations
at 23 and 22. We can verify that

1. (Dg# 23  22)[V(B?)] is a star whose center is v,
2. (Dy s 3+ BVTY] = T v wh v wd = T,

3. (Dax 3+ BV(T] = T3 v wl» 23

4 (Dye e VD] = TE 0 3w ud

We apply Proposition to Dy z% * z% and obtain a canonical split decomposition D3 so that
L. Ds[V(B?)] = (D2 23  23)[V(B?)] and Ds[V(I7)] = (D2 * 23 = 23)[V(T7)],
2. D3[V(T3)] is either (Dq * 23 % 23)[V(T§)] or (D * 23 * 23)[V(T3)] * w3, and

3. LCp,|Ds [V(Bg)] #3] is isomorphic to a canonical split decomposition in ¥} | for some un-
marked vertex 23 of D3 represented by vs.

Let B3 := D3[V(B?)]. Let T3 be the connected component of D3 — V(B?) containing 23, and
w3 = ((D3, B3, T3). Note that T35 — w3 € ¥, | and for i € {1,2}, 2?7 is still represented by v;
in D3. We define T3 := D3[V(T?)], T3 := D3[V(T3)] and define w3}, w3, 23,23 as the same as
w%, w%, z%, z%, respectively.

Now we claim that D3 € ¥, or Ds * 23 € \Ilk We observe two cases depending on whether T3
is equal to (Dg = 23 * 23)[V(T3)] or to (D * 23 * 23)[V (T3)] * w3.
Case 1. Ty = (Dg * 23 + 23)[V (T3)].

We observe that B3 is a star whose center is vy, and the three connected components of D3 —
V(B3) are TZ, T3 = w3 = 23, and T5. In this case, D3 * 23 € ¥}, because

1. (D3 # 23)[V(B?)] is a complete bag, and
2. the three components of D3 * 25 — V(B3) are T} = w?, T§ = w3, and T§ * w3,
and the limbs of Dj * 23 with respect to B® are T2 —w?, T — w2, and T§ — w3, which are contained
T T
in¥,
Case 2. Ts = (Dg % 23 « 23)[V(T3)] * w3.
We observe that B? is a star centered at vy, and the three components of D3 — V (B3) are T2,

T22 * w% * z% * w% = T22 A w%z%, and Tg’. We can see that D3 € U} because the limbs with respect
to B® are T¢ — w?, T4 — w3, and T§ — w}, which are contained in ¥} _,.

We conclude that G has a vertex-minor isomorphic to G[ D3] where D3 € Wy, as required. [J

In order to prove that ¥ is a minimal set of canonical split decompositions of distance-
hereditary vertex-minor obstructions for linear rank-width at most k, we need to prove that for
every D € Uy, G[D] has linear rank-width k + 1 and all its proper vertex-minors have linear rank-
width at most k. However, while Irw(G[D]) = k + 1 for all D € Uy, they are not minimal with
respect to having linear rank-width k£ + 1. For instance for many canonical split decompositions D
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in Wy, G[D] is not a vertex-minor obstruction for linear rank-width 1 as it contains either a; or v
as a proper vertex-minor (see Section . We guess that the following set ®;, would form a minimal
set of distance-hereditary vertex-minor obstructions, but we leave it as an open problem.

1. (I)o = {KQ}

2. For k>0, let &1 := A((I)k)

Our intuition is supported by the following.

Proposition 6.4. Let k be a non-negative integer and let D € ®y. Then lrw(G[D]) = k+ 1 and
every proper vertex-minor of G[D] has linear rank-width at most k.

We need the following two lemmas.
Lemma 6.5. Let D € ®;, and v be an unmarked vertex in D. Then D xv € ®y,.

Proof. We proceed by induction on k. We may assume that £ > 1. By the construction, there
exists a bag B of D such that the three limbs Dy, Do, D3 in D corresponding to the bag B are
contained in Pp_1.

Let B’ := B or B’ := B v be a bag of D v depending on whether v has a representative v’ in
B. Let D}, D} and DY be the three limbs of D v corresponding to the bag B’ such that D} and
D; came from the same component of D — V(B). One checks by Proposition that D] is locally
equivalent to D;. So by the induction hypothesis, D} € ®;_1. Furthermore, D * v is the canonical
split decomposition obtained from D] following the construction of ®j. Therefore, D x v € ®;. [

Lemma 6.6 (Bouchet [9]). Let G be a graph, v be a vertex of G and w be an arbitrary neighbor
of v. Then every proper vertex-minor obtained from G by deleting v is locally equivalent to either
G—v,Gxv—v, or G Avw —v.

Proof of Proposition[6.4. By construction, it is not hard to prove by induction with the help of
Theorem that lrw(G[D]) = k + 1 for every split decomposition D € ®. For the second
statement, by Lemmas and it is sufficient to show that if D € &, and v is an unmarked
vertex of D, then G[D] — v has linear rank-width at most k. We use induction on k to prove it.
We may assume that k£ > 1. Let B be the bag of D such that D — V(B) has exactly three limbs
that are contained in ®;_;. Clearly there is no other bag having the same property. Since B has
no unmarked vertices, v is contained in one of the limbs D’, and by induction hypothesis, G[D'] —v
has linear rank-width at most k — 1. Therefore, by Theorem G[D] — v has linear rank-width
at most k. O

We finish by pointing out that it is proved in [25] that the number of distance-hereditary vertex-
minor obstructions for linear rank-width k is at least 223"). One can easily check by induction that
the number of graphs in ¥y is bounded by 20(3%) Therefore, we can conclude that the number of

distance-hereditary vertex-minor obstructions for linear rank-width & is equal to 26(3°)
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7 Simpler proofs for the characterizations of graphs of linear rank-
width at most 1

In this section, we obtain simpler proofs for known characterizations of the graphs of linear rank-
width at most 1 using Theorem Theorem was originally proved by Bui-Xuan, Kanté, and
Limouzy [12].

Theorem 7.1 (Bui-Xuan, Kanté, and Limouzy [12]). Let G be a connected graph and let D be the
canonical split decomposition of G. The following two are equivalent.

(1) G has linear rank-width at most 1.
(2) G is distance-hereditary and Tp is a path.

Proof. We first prove that (2) implies (1). Let Tp := ujug - - - uy,. For each 1 < i < m, we take
any ordering L; of unmarked vertices in bagp (u;). Since G is distance-hereditary, by Theorem
each bag of D is a complete graph or a star. Thus, we can easily check that L1 ® Lo @®...® Ly, is
a linear layout of G having width at most 1.

We prove that (1) implies (2). Suppose that G has linear rank-width at most 1. From the known
fact that a connected graph has rank-width at most 1 if and only if it is distance-hereditary [32],
G is distance-hereditary. Suppose that Tp is not a path. Then there exists a bag B of D such that
B has at least three neighbor bags in D. Thus, D — V(B) has at least three components 7" where
fp(B,T) = 1. By Theorem G has linear rank-width at least 2, which is a contradiction. [

From Theorem (7.1}, we have a linear-time algorithm to recognize the graphs of linear rank-width
at most 1.

Theorem 7.2. For a given graph G, we can test whether G has linear rank-width at most 1 or not
in time O(|V(G)| + |E(G))).

Proof. We first compute the canonical split decomposition D of each connected component of G
using the algorithm from Theorem It takes O(|V(G)| + |E(G)]) time. Furthermore, this algo-
rithm outputs the type of each bag together. Note that each bag of a canonical split decomposition
of a connected distance-hereditary graph is either a complete graph or a star by Theorem [3.3] Thus,
if there is a prime bag, then we answer that G has linear rank-width more than 1.

Additionally, we check whether Tp is a path or not. By Theorem [7.1], if Tp is a path and each
bag is not prime, then we conclude that G has linear rank-width at most 1, and otherwise, G has
linear rank-width at least 2. O

The list of induced subgraph obstructions for graphs of linear rank-width at most 1 was charac-
terized by Adler, Farley, and Proskurowski [I]. The obstructions consist of the known obstructions
for distance-hereditary graphs [4], and the set Qr of the induced subgraph obstructions for graphs
of linear rank-width at most 1 that are distance-hereditary. See Figure [13| for the list of obstruc-
tions o, B;, v, in Q7 where 1 <@ <4,1<j<6,1<k<4. Thisset {r can be obtained from
Theorem in a much easier way than the previous result.

Recall that a graph H is called a pivot-minor of a graph G if H can be obtained from G by
applying a sequence of pivotings on edges and deletions of vertices.
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Figure 13: The induced subgraph obstructions for graphs of linear rank-width at most 1 that are
distance-hereditary.

type of B type of viw; | type of vows | type of vsws | induced subgraph
A complete bag KS, KS, KS, aq
KS, KS, KS, 9
KS, KS, KS, Qs
KS, KS, KS, oy
A star bag S.Se SpSp SpSp 51
with center at vq S.S,. SpSp SpK Bo
SeSe SpyK Sy K B3
S.K SpSp SpSp B4
S.K SpSp SpK Bs
S.K SpK SpK B6
A star bag SpSp SpSp SpSp Y
with center at SpK SpSp SpSp Y2
a vertex SpK SpK SpSp V3
other than v; SpK SpK SpK Y4

Table 1: Summary of all cases in Theorem
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Theorem 7.3 (Adler, Farley, and Proskurowski [I]). Let G be a connected graph. The following
are equivalent.

1. G has linear rank-width at most 1.

2. G 1is distance-hereditary and G has no induced subgraph isomorphic to a graph in
{an, ag, a3, au, B, Ba, Bs, Bas Bs, Be, 115 V2, 135 Y4}

3. G has no pivot-minor isomorphic to a graph in {Cs, Cs, a1, g, B1, B3, B4, Be}-
4. G has no vertex-minor isomorphic to a graph in {Cs, a1, 1}.

Proof. By Lemma ((1) — (4)) is clear as C5, a1 and [; have linear rank-width 2. We can
easily confirm the directions ((4) — (3) — (2)); see [1]. We add a proof for ((2) — (1)).

Suppose that G has linear rank-width at least 2 and it is distance-hereditary. Let D be the
canonical split decomposition of G. By Theorem [7.1] Tp is not a path. Thus there exists a bag B
of D such that D — V' (B) has at least three connected components 17, Ty, T3. For each i € {1, 2, 3},
let v; := (D, B,T;) and w; := (.(D, B,T;). We have three cases; B is a complete bag, or B is
a star bag with the center at one of v1,v9,v3, or B is a star bag with the center at a vertex of
V(B)\{Ul, V2, Ug}.

If B is a complete bag, then G has an induced subgraph isomorphic to one of a1, a9, a3, ay
depending on the types of the marked edges v;w;. If B is a star bag with the center at one of

v1, V2,3, then G has an induced subgraph isomorphic to one of 81, 82, ..., 8s. Finally, if B is a star
bag with the center at a vertex of V(B)\{vi,ve,v3}, then G has an induced subgraph isomorphic
to one of v1,72,73,74. We summarize all the cases in Table O

8 Conclusion

In this paper we used the characterization of the linear rank-width of distance-hereditary graphs
given in [3] to prove that Question is true if and only if it is true in prime graphs. Also, for each
non-negative integer k, we compute a set of distance-hereditary graphs such that every distance-
hereditary graph of linear rank-width at least k£ 4+ 1 contains a vertex-minor isomorphic to one of
the graphs in the set.

Computing an upper bound on the size of vertex-minor obstructions for graphs of bounded
linear rank-width is a challenging open question. Until now only a bound on obstructions for
graphs of bounded rank-width is known [32]. Secondly, resolving Question in all graphs seems
to require new techniques. We currently do not have any idea on how to reduce any graph of small
rank-width but large linear rank-width into a distance-hereditary graph whose decomposition tree
has large path-width. One might start with graphs of rank-width 2.
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