On the Linear Rank-Width of Graphs Case of Distance-Hereditary Graphs

Isolde Adler Mamadou M. Kanté O-joung Kwon

LIMOS - Université Blaise Pascal GROW 2013 at Santorini, Greece

《曰》 《聞》 《臣》 《臣》 三臣

Introduction

- Linear rank-width not enough studied
 - Thread graphs = linear rank-width 1 (Ganian, 2010)
 - Obstructions for linear rank-width 1 (Adler et al., 2011)
 - Several other characterizations of linear rank-width 1 (Oum-Kwon, 2011; Kanté et al., 2012)

• A lot to do : structural as well as in algorithmic graph theory

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Characterization of bounded linear rank-width via vertex-minor/pivot-minor
- (Number of) Obstructions for linear rank-width k
- Tractable problems? How compared to path-width/rank-width?

Iinear rank-width and path-width coincide in forests

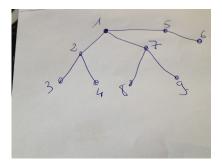
- \implies linear time algorithm for the computation
- \implies quasi-linear time for witnessing an optimal layout
- Characterization of linear rank-width of distance-hereditary graphs via split decomposition

 \implies Polynomial time algorithm for witnessing an optimal layout

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Linear Rank-Width

- take any linear ordering x_1, \ldots, x_n of the vertices
- width = $\max_{1 \le i \le n-1} \{ \mathsf{rk}(A_G[\{x_1, ..., x_i\}, -] \}$
- linear rank-width of G, *lrwd*(G) = minimum over all linear orderings



3, 2, 4,
$$\cdot$$
 1, 8, 7, 9, 5, 6
rk $\begin{pmatrix} 1 & 8 & 7 & 9 & 5 & 6 \\ 3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 の�?

$Irwd(G) \leq pwd(G)$

5

$3,\ 2,\ 4,\ 1,\ 5,\ 6,\ 7,\ 8,\ 9$

(日) (四) (문) (문)

臣

- Take a linear layout v_1, v_2, \ldots, v_n of width k := lrwd(T).
- Clear vertices in this ordering with at most k + 1 cops.

Initialisation : Put *i* cops in vertices v_1, \ldots, v_i such that $X_i := \{v_1, \ldots, v_i\}$ is a basis for $M_i := A_T[X_i, Y_i] := V_T \setminus X_i]$.

Inductive step : if X_{ℓ} is cleared, clear $X_{\ell+1}$ while maintaining the following invariants

★ each vertex *b* of a basis B_i of M_i is either occupied or its neighbours in $Y_{\ell+1}$ are occupied,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \star cops occupy exactly $|B_{\ell+1}|$ vertices

- Either $v_{\ell+1}$ is linearly independent of B_{ℓ} in $M_{\ell+1}$ or not.
- Either $v_{\ell+1}$ is occupied by a cop or not after step ℓ .

To verify invariants, we need :

- * Clear $v_{\ell+1}$ and put a cop either on it or on its neighbours in $Y_{\ell+1}$ if it is linearly independent of B_{ℓ} in $M_{\ell+1}$.
- ★ Free cops in B_ℓ that are not in the "chosen" basis of $M_{\ell+1}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

To do so, construct B-basic trees

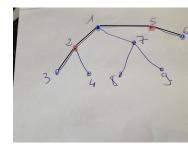
For (X, Y) a cut, B a basis of $A_T[X, Y]$ and $x \in X$

• Take
$$B' \subseteq B$$
 spanning x.

• Let $T' := T[B' \cup x \cup (N(B' \cup x) \cap Y)].$

Properties

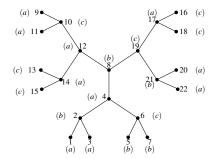
- T' is connected and leaves are from X.
- Vertices in N(B' ∪ x) ∩ Y have degree 2.
- $|N(B'\cup x)\cap Y|=|B'|.$



- 2

◆□▶ ◆□▶ ◆□▶ ◆□▶

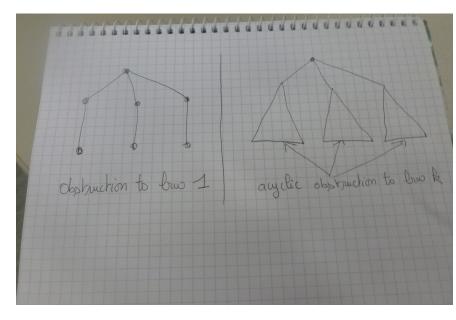
A strategy



◆□>
◆□>

æ

A consequence : acyclic obstructions



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Sommaire

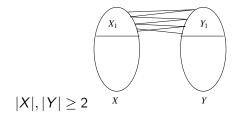
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Distances are preserved when taking connected induced subgraphs
- Trees, cographs are distance-hereditary graphs
- Distance-hereditary graphs = graphs of rank-width 1
- Several other characterizations :
 - (House, Hole, Domino, Gem)-free graphs
 - perfect elimination ordering : removal of pendant vertices and/or false/true twins

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• completely decomposable by split decomposition

Split Decomposition



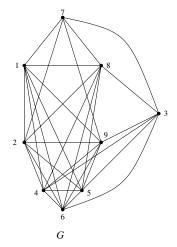
- prime graph = graph without split
- A strong split is a split that does not overlap any other split

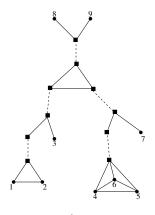
《曰》 《圖》 《圖》 《圖》

æ

- split decomposition = iteratively splitting wrt strong splits
 - each block is either prime or a clique or a star
 - no splitting of cliques and stars
- distance-hereditary = each block is a clique or a star

Split Decomposition





 S_G

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Split Decompositions and Local Complementations

• Local complementation at x in G is the graph G * x where $zt \in E(G * x)$ iff

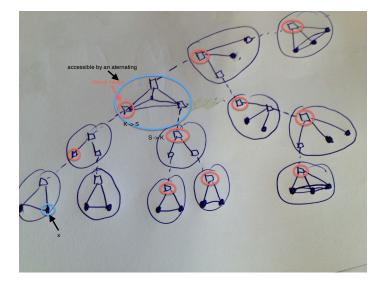
$$\begin{cases} z \text{ or } t \notin N(x) \text{ and } zt \in E(G) \\ z, t \in N(x) \text{ and } zt \notin E(G). \end{cases}$$

- Local complementations do not change (linear) rank-width
- Local complementations do not change the shape of the split decomposition
 - prime blocks remain prime
 - some cliques become stars and some stars cliques

Pivot at xy ∈ E(G) = G ∧ xy := G * x * y * x = G * y * x * y

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Split Decompositions and Local Complementations



Limbs in Split Decompositions

- Let *D* be the split decomposition of a distance-hereditary graph *G*
- Given a bag *B*, a connected component *T* of $D \setminus V(B)$ and a vertex $y \in V(G) \cap V(T)$,
 - let v be the vertex of T neighbor of a vertex in B
 - let w in B be the neighbor of v
- The limb $\mathcal{L}[D, B, y]$ is the decomposition
 - $T * v \setminus v$ if B is a clique
 - $T \setminus v$ if B is a star and w is a leaf
 - $T \wedge vy \setminus v$ if B is a star and w is the centre
- The graph associated with $\mathcal{L}[D, B, y]$ is denoted by $\widehat{\mathcal{L}}[D, B, y]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Properties of Limbs

- Graphs associated with limbs are connected
- $\hat{\mathcal{L}}[D, B, y]$ and $\hat{\mathcal{L}}[D, B, x]$ are locally equivalent
- $\hat{\mathcal{L}}[D, B, y]$ and $\hat{\mathcal{L}}[D * x, T * x, y']$ locally equivalent for every $x \in V(G)$
- Choice of D not important (we can replace D by D * x)
- Choice of y not important

 $f(D, B, T) = \text{linear rank-width of some } \hat{\mathcal{L}}[D, B, y]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let k be a positive integer and let D be the split decomposition of a distance-hereditary graph G. Then $Irwd(G) \le k$ if and only if for each bag B of D, D has at most two components T of $D \setminus V(B)$ such that f(D, B, T) = k, and for all the other components T' of $D \setminus V(B)$, $f(D, B, T') \le k - 1$.

- Similar to the characterization of path-width of trees
- Gives a polynomial time algorithm for constructing an optimal layout in the same spirit as the one for path-width of trees

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Conclusion

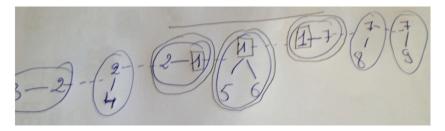
- Can we extend the idea for distance-hereditary graphs to graphs of bounded rank-width ?
 - Probably YES when prime blocks are « simple »
 - What should play the role of split decomposition for bounded rank-width in general ?
- We can also characterize the linear clique-width of forests
 - If a path of length at least 3 exists, then lcwd(T) = pwd(T) + 2
 - Otherwise, lcwd(T) ∈ {pwd(T) + 1, pwd(T) + 2} depending on whether T is connected

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Can we have a similar characterization for the linear clique-width of cographs?
 - cographs are completely decomposable wrt modular decomposition

THANK YOU

| ◆ □ ▶ → □ ▶ → 三 ▶ → 三 → ○ ○ ○



Path-Width of G

 $wd(P,B) := \max\{|B_t| \mid t \in V(P)\} - 1$ $pwd(G) := \min\{wd(P,B) \mid (P,B) \text{ path decomposition of } G\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Disjoint union of caterpillars = path-width 1
- $pwd(T_h) = \lceil h/2 \rceil$
- $pwd(G) \leq twd(G) \cdot \log(n)$
- Computation of the path-width of *TWD*(≤ k) in polynomial time, even linear for trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Trees are obstructions to bounded path-width

- Disjoint union of caterpillars = path-width 1
- $pwd(T_h) = \lceil h/2 \rceil$
- $pwd(G) \leq twd(G) \cdot \log(n)$
- Computation of the path-width of *TWD*(≤ k) in polynomial time, even linear for trees

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Trees are obstructions to bounded path-width
- A characterisation by cops and robber game

- k cops and 1 invisible robber
- cops move by helicopter
- robber moves through paths not containing cops (she can identify cops positions)
- cops win if they have a strategy to catch the robber (land a helicoper on the robber position)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• minimum number of cops

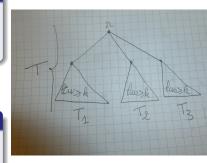
Lemma

If T_1 , T_2 , T_3 have linear clique-width at least k, then T has linear clique-width $\geq k + 1$.

\implies

Proposition

If T is a disjoint union of stars, then lcw(T) = pw(T) + 2, otherwise lcw(T) = pw(T) + 1.



< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回