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Introduction

Linear rank-width not enough studied
Thread graphs = linear rank-width 1 (Ganian, 2010)
Obstructions for linear rank-width 1 (Adler et al., 2011)
Several other characterizations of linear rank-width 1
(Oum-Kwon, 2011 ; Kanté et al., 2012)

A lot to do : structural as well as in algorithmic graph theory
Characterization of bounded linear rank-width via
vertex-minor/pivot-minor
(Number of) Obstructions for linear rank-width k
Tractable problems ? How compared to
path-width/rank-width ?



Results

1 linear rank-width and path-width coincide in forests
=⇒ linear time algorithm for the computation
=⇒ quasi-linear time for witnessing an optimal layout

2 characterization of linear rank-width of distance-hereditary
graphs via split decomposition
=⇒ Polynomial time algorithm for witnessing an optimal layout



Linear Rank-Width

take any linear ordering x1, . . . , xn of the vertices

width = max
1≤i≤n−1

{rk(AG [{x1, . . . , xi},−]}

linear rank-width of G , lrwd(G ) = minimum over all linear
orderings

3, 2, 4, · 1, 8, 7, 9, 5, 6

rk


1 8 7 9 5 6

3 1 0 0 0 0 0
2 0 0 0 0 0 0
4 0 0 0 0 0 0







lrwd(G ) ≤ pwd(G )

3, 2, 4, 1, 5, 6, 7, 8, 9



pwd(T ) ≤ lrwd(T )

Take a linear layout v1, v2, . . . , vn of width k := lrwd(T ).

Clear vertices in this ordering with at most k + 1 cops.

Initialisation : Put i cops in vertices v1, . . . , vi such that
Xi := {v1, . . . , vi} is a basis for Mi := AT [Xi ,Yi := VT \ Xi ].

Inductive step : if X` is cleared, clear X`+1 while maintaining the
following invariants

? each vertex b of a basis Bi of Mi is either occupied or its
neighbours in Y`+1 are occupied,

? cops occupy exactly |B`+1| vertices



Clearing Step(1)

Either v`+1 is linearly independent of B` in M`+1 or not.

Either v`+1 is occupied by a cop or not after step `.

To verify invariants, we need :
? Clear v`+1 and put a cop either on it or on its neighbours in

Y`+1 if it is linearly independent of B` in M`+1.

? Free cops in B` that are not in the “chosen” basis of M`+1.

To do so, construct B-basic trees



B-basic tree

For (X ,Y ) a cut, B a basis of AT [X ,Y ] and x ∈ X

Take B ′ ⊆ B spanning x .

Let T ′ := T [B ′ ∪ x ∪ (N(B ′ ∪ x) ∩ Y )].

Properties

T ′ is connected and leaves are
from X .
Vertices in N(B ′ ∪ x) ∩ Y have
degree 2.
|N(B ′ ∪ x) ∩ Y | = |B ′|.



A strategy
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A consequence : acyclic obstructions



Sommaire



Distance-Hereditary Graphs

Distances are preserved when taking connected induced
subgraphs
Trees, cographs are distance-hereditary graphs
Distance-hereditary graphs = graphs of rank-width 1
Several other characterizations :

(House,Hole,Domino,Gem)-free graphs
perfect elimination ordering : removal of pendant vertices
and/or false/true twins
completely decomposable by split decomposition



Split Decomposition

|X |, |Y | ≥ 2

Y1

X Y

X1

prime graph = graph without split
A strong split is a split that does not overlap any other split
split decomposition = iteratively splitting wrt strong splits

each block is either prime or a clique or a star
no splitting of cliques and stars

distance-hereditary = each block is a clique or a star



Split Decomposition
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Split Decompositions and Local Complementations

Local complementation at x in G is the graph G ∗ x where
zt ∈ E (G ∗ x) iff{

z or t /∈ N(x) and zt ∈ E (G )

z , t ∈ N(x) and zt /∈ E (G ).

Local complementations do not change (linear) rank-width
Local complementations do not change the shape of the split
decomposition

prime blocks remain prime
some cliques become stars and some stars cliques

Pivot at xy ∈ E (G ) = G ∧ xy := G ∗ x ∗ y ∗ x = G ∗ y ∗ x ∗ y



Split Decompositions and Local Complementations

x

friend vertex

K -> S

S -> K

accessible by an aternating 
path



Limbs in Split Decompositions

Let D be the split decomposition of a distance-hereditary
graph G
Given a bag B , a connected component T of D \ V (B) and a
vertex y ∈ V (G ) ∩ V (T ),

let v be the vertex of T neighbor of a vertex in B
let w in B be the neighbor of v

The limb L[D,B, y ] is the decomposition
T ∗ v \ v if B is a clique
T \ v if B is a star and w is a leaf
T ∧ vy \ v if B is a star and w is the centre

The graph associated with L[D,B, y ] is denoted by L̂[D,B, y ]



Properties of Limbs

Graphs associated with limbs are connected
L̂[D,B, y ] and L̂[D,B, x ] are locally equivalent
L̂[D,B, y ] and L̂[D ∗ x ,T ∗ x , y ′] locally equivalent for every
x ∈ V (G )

=⇒

Choice of D not important (we can replace D by D ∗ x)
Choice of y not important

f (D,B,T ) = linear rank-width of some L̂[D,B, y ]



Characterizing Linear Rank-Width k

Theorem
Let k be a positive integer and let D be the split decomposition of
a distance-hereditary graph G. Then lrwd(G ) ≤ k if and only if for
each bag B of D, D has at most two components T of D \ V (B)
such that f (D,B,T ) = k, and for all the other components T ′ of
D \ V (B), f (D,B,T ′) ≤ k − 1.

Similar to the characterization of path-width of trees
Gives a polynomial time algorithm for constructing an optimal
layout in the same spirit as the one for path-width of trees



Conclusion

Can we extend the idea for distance-hereditary graphs to
graphs of bounded rank-width ?

Probably YES when prime blocks are « simple »
What should play the role of split decomposition for bounded
rank-width in general ?

We can also characterize the linear clique-width of forests
If a path of length at least 3 exists, then
lcwd(T ) = pwd(T ) + 2
Otherwise, lcwd(T ) ∈ {pwd(T ) + 1, pwd(T ) + 2} depending
on whether T is connected

Can we have a similar characterization for the linear
clique-width of cographs ?

cographs are completely decomposable wrt modular
decomposition



THANK YOU



Path-width(1)

Path-Width of G

wd(P,B) := max{|Bt | | t ∈ V (P)} − 1
pwd(G ) := min{wd(P,B) | (P,B) path decomposition of G}.



Path-width(2)

Disjoint union of caterpillars = path-width 1

pwd(Th) = dh/2e

pwd(G ) ≤ twd(G ) · log(n)

Computation of the path-width of TWD(≤ k) in polynomial
time, even linear for trees

Trees are obstructions to bounded path-width

A characterisation by cops and robber game
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Path-width(3) : invisible robber game

k cops and 1 invisible robber

cops move by helicopter

robber moves through paths not containing cops (she can
identify cops positions)

cops win if they have a strategy to catch the robber (land a
helicoper on the robber position)

minimum number of cops



Linear Clique-Width of Trees

Lemma
If T1,T2,T3 have linear clique-width at
least k , then T has linear clique-width
≥ k + 1.

=⇒

Proposition
If T is a disjoint union of stars, then
lcw(T ) = pw(T ) + 2, otherwise
lcw(T ) = pw(T ) + 1.


