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Contributions

Our contributions in the context of guarded rules rewriting are:

• a theoretical framework to understand and show completness of rewriting algorithms

• several concrete rewriting algorithms

• an empirical evaluation of our algorithms using an extensive benchmark
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Guarded Rules

Definition
An existential rule is a FOL formula r = ∀x̄∀ȳB(x̄ , ȳ)→ ∃z̄H(x̄ , z̄)

The rule r is guarded if there exists an atom G ∈ B such that var(G ) = x̄ ∪ ȳ .

We say that G is a guard of r .

A Datalog rule is a existential rule where z̄ = ∅.

Query answering with guarded rules

• 2EXP-TIME-c combined complexity

• PTIME-c data complexity

• No practical algorithm
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Motivating Example

Facts: F = {P(a),R(a, b)}
Query: Q(x)← S(x)

Rules:

1. R(x , y)→ ∃z R(y , z)

2. P(x) ∧ R(x , y)→ P(y)

3. R(x , y) ∧ P(y)→ S(x)

Chase is infinite

chase0(F ,R) =
P

a b
R
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Motivating Example

Facts: F = {P(a),R(a, b)}
Query: Q(x)← S(x)

Rules:

1. R(x , y)→ ∃z R(y , z)
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Query rewriting is not finite
Q(x)← S(x)
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Motivating Example

Facts: F = {P(a),R(a, b)}
Query: Q(x)← S(x)
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Motivating Example

Facts: F = {P(a),R(a, b)}
Query: Q(x)← S(x)

Rules:

1. R(x , y)→ ∃z R(y , z)

2. P(x) ∧ R(x , y)→ P(y)

3. R(x , y) ∧ P(y)→ S(x)

Chase is infinite

chase(F ,R) =
P,S

a b n0

P,S

n1
R R R . . .R

Query rewriting is not finite
Q(x)← S(x)

Q1(x)← R(x , y) ∧ P(y)

Q2(x)← R(x , y) ∧ P(x1) ∧ R(x1, y)

Q3(x)← R(x , y) ∧ P(x2) ∧ R(x2, x1) ∧ R(x1, y)
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Datalog Rewriting of a Rule Set

Definition
Given R a set of guarded rules, PR is a Datalog rewriting of R iff:

1. PR is a finite set of Datalog rules,

2. for every F fact base and every A ground fact,

F ,R |= A iff F ,PR |= A.

Existential-free conjunctive query answering
We can answer any conjunctive query Q without existential variable by evaluating Q on
chase∞(F ,PR).
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Datalog Rewriting Example

Facts: F = {P(a),R(a, b)}
Query: Q(x)← S(x)

Rules:

1. R(x , y)→ ∃z R(y , z)

2. P(x) ∧ R(x , y)→ P(y)

3. R(x , y) ∧ P(y)→ S(x)

Infinite chase

chase∞(F ,R) =
P,S

a b n0

P,S

n1
R R

P,S

R . . .

P,S

R

A Datalog rewriting of R is the set PR containing the rule 2, 3 and :

R(x , y) ∧ P(y)→ S(y)

chase∞(F ,PR) =

P,S

a b

P,S

R
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Outline

Tree-like Chase

Existential-based Datalog Rewriting

Skolem Datalog Rewriting

Implementation and Experiments
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Tree-like Chase



Head Normal Form

Definition
A rule r is in Head Normal Form (HNF), if r is Datalog or every atom in the head of r
contains at least one existential variable.

We can always obtain from any rule a equivalent set of rules in HNF.

Example
The rule A(x)→ ∃y B(x , y) ∧ C (y) ∧ G (x) becomes the following rules in HNF:

• A(x)→ ∃y B(x , y) ∧ C (y)

• A(x)→ G (x)

Remark
A rule will be either :

• a Datalog rule

• a non-full rule
10



Tree-like Chase

Definition
We say that A an atom is guarded in an atom set S if there exists B ∈ S such that
terms(A) ⊆ terms(B).

Definition
A chase tree T is a directed tree where:

• each vertex contains a set of facts

• one vertex is recently updated

Definition
A tree-like chase sequence for a set of guarded rules R and a set of facts F is a sequence
T0, . . . ,Tn of chase tree with:

• T0 has a single vertex containing F

• Ti+1 is obtained from Ti by a chase step using a rule in R or a propagation step
11



Example of Tree-like Chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ N(x1)

R(c , d)

T0
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Example of Tree-like Chase

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ N(x1)

R(c , d)

S(c , n1)

T1

Chase step with a non-full rule

1. the rule is triggered by the facts in a parent vertex

2. a fresh child vertex is introduced containing the deduced facts
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Chase step with a non-full rule

1. the rule is triggered by the facts in a parent vertex

2. a fresh child vertex is introduced containing the deduced facts
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Example of Tree-like Chase
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Propagation step
an atom A in a vertex v is copied in another vertex v ′, if A is guarded by the facts of v ′
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Example of Tree-like Chase
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Correction and Completeness of Tree-like Chase

Theorem
Given F a set of facts, R a guarded rule set, and Q a Boolean conjunctive query,
F ,R |= Q if and only if there exists T0, . . . ,Tn a tree-like chase sequence for R and F such
that the facts in Tn implies Q.
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The One-Pass Property

Definition
The tree-like chase sequence T0, . . . ,Tn is one-pass if:

• chase or propagate steps are applied to the recently-updated vertex,

• propagate steps only propagate a fact from a child to its parent,

• a chase step is applicable provided that no propagation step is applicable

Theorem
Given F a set of facts, R a guarded rule set, and Q a Boolean conjunctive query,
F ,R |= Q if and only if there exists T0, . . . ,Tn a one-pass tree-like chase sequence for R
and F such that the facts in Tn implies Q.
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One-Pass Tree-like Chase Example

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ N(x1)

R(c , d)

S(c , n1) R(c , d),T (c , d , n2),P(d)

R(c , d),U(c , d , n3),P(d)

T ′
4
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Loops and Datalog Rewriting

Definition
A loop at a vertex v is a subsequence Ti , . . . ,Tj in a one-pass tree-like chase sequence,
where:

• Ti+1 is obtained by a chase step with a non-full rule,

• Tj is obtained by a propagation step that copies the atom A

• v is the recently updated vertex of both Ti and Tj

We call A the output of the loop.

Theorem
A Datalog rule set P is a Datalog rewriting of R a set of guarded rules if

• P is a logical consequence of R,

• each Datalog rule of R is a logical consequence of P,

• for each fact base F , a loop for F and R with the output A, we have F ,P |= A.
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Example of Datalog Rewriting based on the Loops

R(x1, x2)→ ∃y S(x1, y)

R(x1, x2)→ ∃y T (x1, x2, y)

T (x1, x2, x3)→ ∃y U(x1, x2, y)

U(x1, x2, x3)→ P(x2)

T (x1, x2, x3) ∧ P(x2)→ M(x1)

S(x1, x2) ∧M(x1)→ N(x1)

————————————-
T (x1, x2, x3)→ P(x2)

R(c , d)

R(c , d),T (c , d , n2),P(d)

R(c , d),U(c , d , n3),P(d)

T ′
4
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Existential-based Datalog
Rewriting



From Loops to Datalog Rewriting

1. R(x1, x2)→ ∃y T (x1, x2, y)

2. T (x1, x2, x3)→ ∃y U(x1, x2, y)

3. U(x1, x2, x3)→ P(x2)

————————————-

4. T (x1, x2, x3)→ P(x2)

Final state of a loop of output P(d):

R(c , d),P(d)

R(c , d),T (c , d , n2),P(d)

R(c , d),U(c , d , n3),P(d)

L

18
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R(c , d),P(d)

R(c , d),T (c , d , n2),P(d)

R(c , d),U(c , d , n3),P(d)

L
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The Existential-Based Rewriting Algorithm (ExbDR)

Definition
The Existential-Based Datalog rewriting inference takes

• a non-full rule τ

• a Datalog rule τ ′

• a piece unifier u of the head of τ with the body of τ ′

and returns the composition of τ with τ ′ with respect to u in HNF.

Definition
Given R a set of guarded rule in HNF, the ExbDR algorithm

1. applies the inference rule on the rules in R until it reaches a fixed point,

2. returns all Datalog rules.

The output is a Datalog rewriting of R.

19



Existential-Based Rewriting Example

Input rules:

R(u, v)→ ∃w R(v ,w) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:
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R(u, v) ∧ A(v)→ ∃w R(v ,w) ∧ A(w) (4)

R(u, v) ∧ A(v)→ C (v) (5)

The outputted Datalog rewriting is (2), (3) and (5).
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Terminaison and Complexity of ExbDR

Terminaison

• The rules inferred by ExbDR are guarded,

• The number of variable in the body (resp. head) of the rules inferred by ExbDR is
bounded by the maximum number of variable in the body (resp. head) of the input rules.

Complexity
The complexity of ExbDR is 2-EXPTIME and EXPTIME, if the arity is bounded.
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Skolem Datalog Rewriting



Rule Skolemization

Definition
We skolemize a rule by

1. replacing every existential variable by a Skolem term built from a fresh function symbol
and the body variables,

2. splitting the resulting rule into single-headed rules.

Example
The non-full rule A(x)→ ∃y B(x , y),C (y),G (x) becomes the following Skolemized rules:

• A(x)→ B(x , f (x)),

• A(x)→ C (f (x)),

• A(x)→ G (x).
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The Skolem Datalog Rewriting Algorithm (SkDR)

Definition
The Skolem rewriting inference takes

• a rule τ which has Skolem-free body and contains Skolem terms in the head

• a rule τ ′ which either is Skolem-free or has Skolem-free head

• a mgu u of the head of τ with a guard of τ ′ or an atom containing Skolem terms

and returns the composition of τ with τ ′ with respect to u in HNF.

Definition
Given R a set of Skolemized guarded rule, the algorithm SkDR

1. applies the inference on the rules in R until it reaches a fixed point,

2. returns every Skolem-free rules.

The output is a Datalog rewriting of R.
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Skolem Datalog Rewriting Example

Input rules:

R(u, v)→ R(v , f (u, v)) (1)

A(x) ∧ R(x , y)→ A(y) (2)

R(x , y) ∧ A(y)→ C (x) (3)

Inferred rules:
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Comparison of SkDR and ExbDR

Proposition
There is a family of guarded rule set (Rn)n∈N, where the number of inferred rules in ExbDR is
exponentially larger than in SkDR.

Proposition
There is a family of guarded rule set (Rn)n∈N, where the number of inferred rules in SkDR is
exponentially larger than in ExbDR.
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Implementation and
Experiments



Implementation Details

For each algorithm we introduce :

• pairwise redundant rules deletion based on an approximation of rule subsumption

• a subsumption index to find candidate rules subsuming or subsumed by a given rule

• a unification index to find candidate rules on which the rewriting inference can be
applied with a given rule
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Experiments Setting

Datasets

1. Description Logics ontologies from the Oxford ontology library: 428 guarded rule sets.

2. Blown up version of these ontologies with arity up to 10 instead of 2 and “satellite atoms”.

Inputs #Non-full rules #Datalog rules
Min Max Avg Med Min Max Avg Med

428 1 172K 11K 789 2 157K 5K 283

Competitor
KAON2 for Description Logics only.
There is no competitor for general guarded rules.
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Results for Rules Derived from Ontologies

time(Y)/time(X)>10 X and Y both fail

X
Y

Exb Sk Hyper KAON2 Exb Sk Hyper KAON2

Exb 19 0 19 61
Sk 37 0 26 33 51
Hyper 37 12 31 35 43 46
KAON2 35 15 0 37 47 46 66

http://www.cs.ox.ac.uk/people/maxime.buron/blog/gsat-exp/
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Results for Rules with Higher-Arity Relations

time(Y)/time(X)>10 X and Y both fail

X
Y

Exb Sk Hyper Exb Sk Hyper

Exb 61 87 154
Sk 11 21 128 190
Hyper 6 4 148 184 229 29



Conclusions

1. We studied a sufficient condition for a Datalog rule set to be a rewriting of a guarded rule
set through the notion of loop in tree-like chase.

2. We proposed three Datalog rewriting algorithms and shows their differences

3. We implemented them with some optimizations and we conducted large experiments on
them.

http://www.cs.ox.ac.uk/people/maxime.buron/blog/gsat-exp/
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