Rewriting the Infinite Chase

Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann, Boris Motik 12/05/2023 - IRIF

Context

Ontology Mediated Query Answering

Context: Ontology Mediated Query Answering with Guarded Rules

Problem Statement: Datalog Rewriting

Our contributions in the context of guarded rules rewriting are:

- a theoretical framework to understand and show completness of rewriting algorithms
- several concrete rewriting algorithms
- an empirical evaluation of our algorithms using an extensive benchmark

Definition

An existential rule is a FOL formula $r = \forall \bar{x} \forall \bar{y} B(\bar{x}, \bar{y}) \rightarrow \exists \bar{z} H(\bar{x}, \bar{z})$

The rule r is **guarded** if there exists an atom $G \in B$ such that $var(G) = \bar{x} \cup \bar{y}$.

```
We say that G is a guard of r.
```

A **Datalog rule** is a existential rule where $\bar{z} = \emptyset$.

Query answering with guarded rules

- 2EXP-TIME-c combined complexity
- PTIME-c data complexity
- No practical algorithm

Rules:

- 1. $R(x,y) \rightarrow \exists z \ R(y,z)$
- 2. $P(x) \wedge R(x, y) \rightarrow P(y)$
- 3. $R(x,y) \wedge P(y) \rightarrow S(x)$

Chase is infinite

$$\operatorname{chase}_{0}(F,\mathcal{R}) = a \xrightarrow{R} b$$

$$P$$

Rules:

- 1. $R(x,y) \rightarrow \exists z \ R(y,z)$
- 2. $P(x) \wedge R(x, y) \rightarrow P(y)$
- 3. $R(x,y) \wedge P(y) \rightarrow S(x)$

Chase is infinite

chase₁(F, \mathcal{R}) = $a \xrightarrow{R} b \xrightarrow{R} n_0$ $P \xrightarrow{P}$

Rules:

1. $R(x, y) \rightarrow \exists z \ R(y, z)$ 2. $P(x) \land R(x, y) \rightarrow P(y)$ 3. $R(x, y) \land P(y) \rightarrow S(x)$

Chase is infinite

chase₂(*F*,
$$\mathcal{R}$$
) = $a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1$
P, *S P P*

Rules:

1. $R(x, y) \rightarrow \exists z \ R(y, z)$ 2. $P(x) \land R(x, y) \rightarrow P(y)$ 3. $R(x, y) \land P(y) \rightarrow S(x)$

Chase is infinite

chase₃(*F*,
$$\mathcal{R}$$
) = $a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$
P, *S P*, *S P P*

Facts:
$$F = \{P(a), R(a, b)\}$$

Query: $Q(x) \leftarrow S(x)$

Rules:

1.
$$R(x, y) \rightarrow \exists z \ R(y, z)$$

2. $P(x) \land R(x, y) \rightarrow P(y)$
3. $R(x, y) \land P(y) \rightarrow S(x)$

Chase is infinite

$$chase_{\infty}(F, \mathcal{R}) = a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$$
$$P, S \xrightarrow{P}, S \xrightarrow{P}, S \xrightarrow{P}, S \xrightarrow{P}, S$$

Query rewriting is not finite $Q(x) \leftarrow S(x)$

Rules:

1. $R(x, y) \rightarrow \exists z \ R(y, z)$ 2. $P(x) \land R(x, y) \rightarrow P(y)$

3. $R(x,y) \wedge P(y) \rightarrow S(x)$

Chase is infinite

chase(
$$F, \mathcal{R}$$
) = $a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$
 $P, S \xrightarrow{P, S}$

Query rewriting is not finite

 $Q(x) \leftarrow S(x)$ $Q_1(x) \leftarrow R(x, y) \land P(y)$

Motivating Example

Rules:

Facts: $F = \{P(a), R(a, b)\}$ Query: $Q(x) \leftarrow S(x)$

1. $R(x, y) \rightarrow \exists z \ R(y, z)$ 2. $P(x) \land R(x, y) \rightarrow P(y)$

3.
$$R(x,y) \wedge P(y) \rightarrow S(x)$$

Chase is infinite

chase(
$$F, \mathcal{R}$$
) = $a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$
 $P, S \xrightarrow{P}, S$

Query rewriting is not finite

 $egin{aligned} Q(x) \leftarrow S(x) \ Q_1(x) \leftarrow R(x,y) \wedge P(y) \ Q_2(x) \leftarrow R(x,y) \wedge P(x_1) \wedge R(x_1,y) \end{aligned}$

Motivating Example

Facts: $F = \{P(a), R(a, b)\}$ Query: $Q(x) \leftarrow S(x)$

Rules:

1.
$$R(x, y) \rightarrow \exists z \ R(y, z)$$

2. $P(x) \land R(x, y) \rightarrow P(y)$

3. $R(x,y) \wedge P(y) \rightarrow S(x)$

Chase is infinite

chase
$$(F, \mathcal{R}) = a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$$

 $P, S \xrightarrow{P}, S$

Query rewriting is not finite

 $Q(x) \leftarrow S(x)$ $Q_1(x) \leftarrow R(x, y) \land P(y)$ $Q_2(x) \leftarrow R(x, y) \land P(x_1) \land R(x_1, y)$ $Q_3(x) \leftarrow R(x, y) \land P(x_2) \land R(x_2, x_1) \land R(x_1, y)$

Definition

Given \mathcal{R} a set of guarded rules, $P_{\mathcal{R}}$ is a **Datalog rewriting** of \mathcal{R} iff:

1. $P_{\mathcal{R}}$ is a finite set of Datalog rules,

2. for every F fact base and every A ground fact,

$$F, \mathcal{R} \models A$$
 iff $F, P_{\mathcal{R}} \models A$.

Existential-free conjunctive query answering

We can answer any conjunctive query Q without existential variable by evaluating Q on $chase_{\infty}(F, P_{\mathcal{R}})$.

Datalog Rewriting Example

Rules:

Facts: $F = \{P(a), R(a, b)\}$ Query: $Q(x) \leftarrow S(x)$

1. $R(x, y) \rightarrow \exists z \ R(y, z)$

2.
$$P(x) \wedge R(x, y) \rightarrow P(y)$$

3.
$$R(x,y) \wedge P(y) \rightarrow S(x)$$

Infinite chase

$$chase_{\infty}(F, \mathcal{R}) = a \xrightarrow{R} b \xrightarrow{R} n_0 \xrightarrow{R} n_1 \xrightarrow{R} \cdots$$
$$P, S \quad P, S \quad P, S \quad P, S$$

A Datalog rewriting of ${\cal R}$ is the set ${\it P}_{\cal R}$ containing the rule 2, 3 and :

$$R(x,y) \wedge P(y) \rightarrow S(y)$$

$$\operatorname{chase}_{\infty}(F, P_{\mathcal{R}}) = a \xrightarrow{R} b$$

 $P, S \quad P, S$

Tree-like Chase

Existential-based Datalog Rewriting

Skolem Datalog Rewriting

Implementation and Experiments

Tree-like Chase

Head Normal Form

Definition

A rule r is in **Head Normal Form (HNF)**, if r is Datalog or every atom in the head of r contains at least one existential variable.

We can always obtain from any rule a equivalent set of rules in HNF.

Example

The rule $A(x) \rightarrow \exists y \ B(x,y) \land C(y) \land G(x)$ becomes the following rules in HNF:

- $A(x) \rightarrow \exists y \ B(x,y) \land C(y)$
- $A(x) \rightarrow G(x)$

Remark

A rule will be either :

- a Datalog rule
- a non-full rule

Tree-like Chase

Definition

We say that A an atom is guarded in an atom set S if there exists $B \in S$ such that $\operatorname{terms}(A) \subseteq \operatorname{terms}(B)$.

Definition

A chase tree T is a directed tree where:

- each vertex contains a set of facts
- one vertex is recently updated

Definition

A **tree-like chase sequence** for a set of guarded rules \mathcal{R} and a set of facts F is a sequence T_0, \ldots, T_n of chase tree with:

- T_0 has a single vertex containing F
- T_{i+1} is obtained from T_i by a <u>chase</u> step using a rule in \mathcal{R} or a propagation step

$$R(x_{1}, x_{2}) \rightarrow \exists y \, S(x_{1}, y) R(x_{1}, x_{2}) \rightarrow \exists y \, T(x_{1}, x_{2}, y) T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \, U(x_{1}, x_{2}, y) U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2}) T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \rightarrow M(x_{1}) S(x_{1}, x_{2}) \wedge M(x_{1}) \rightarrow N(x_{1})$$

$$\frac{T_0}{R(c,d)}$$

 $\begin{aligned} & R(x_1, x_2) \to \exists y \ S(x_1, y) \\ & R(x_1, x_2) \to \exists y \ T(x_1, x_2, y) \\ & T(x_1, x_2, x_3) \to \exists y \ U(x_1, x_2, y) \\ & U(x_1, x_2, x_3) \to P(x_2) \\ & T(x_1, x_2, x_3) \land P(x_2) \to M(x_1) \\ & S(x_1, x_2) \land M(x_1) \to N(x_1) \end{aligned}$

Chase step with a non-full rule

- 1. the rule is triggered by the facts in a parent vertex
- 2. a fresh child vertex is introduced containing the deduced facts

 $R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y)$ $R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y)$ $T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y)$ $U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2})$ $T(x_{1}, x_{2}, x_{3}) \land P(x_{2}) \rightarrow M(x_{1})$ $S(x_{1}, x_{2}) \land M(x_{1}) \rightarrow N(x_{1})$

Chase step with a non-full rule

- 1. the rule is triggered by the facts in a parent vertex
- 2. a fresh child vertex is introduced containing the deduced facts
- 3. the child vertex inherits the parent facts that are guarded by the deduced facts

 $R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y)$ $R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y)$ $T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y)$ $U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2})$ $T(x_{1}, x_{2}, x_{3}) \land P(x_{2}) \rightarrow M(x_{1})$ $S(x_{1}, x_{2}) \land M(x_{1}) \rightarrow N(x_{1})$

Chase step with a non-full rule

- 1. the rule is triggered by the facts in a parent vertex
- 2. a fresh child vertex is introduced containing the deduced facts
- 3. the child vertex inherits the parent facts that are guarded by the deduced facts

 $R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y)$ $R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y)$ $T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y)$ $U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2})$ $T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \rightarrow M(x_{1})$ $S(x_{1}, x_{2}) \wedge M(x_{1}) \rightarrow N(x_{1})$

Chase step with a Datalog rule

- the rule is triggered by the facts in a vertex
- the deduced facts are added to the vertex

Propagation step

an atom A in a vertex v is copied in another vertex v', if A is guarded by the facts of v'

 $R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y)$ $R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y)$ $T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y)$ $U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2})$ $T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \rightarrow M(x_{1})$ $S(x_{1}, x_{2}) \wedge M(x_{1}) \rightarrow N(x_{1})$

Chase step with a Datalog rule

- the rule is triggered by the facts in a vertex
- the deduced facts are added to the vertex

Propagation step

an atom A in a vertex v is copied in another vertex v', if A is guarded by the facts of v'

 $R(x_{1}, x_{2}) \to \exists y \ S(x_{1}, y) \\ R(x_{1}, x_{2}) \to \exists y \ T(x_{1}, x_{2}, y) \\ T(x_{1}, x_{2}, x_{3}) \to \exists y \ U(x_{1}, x_{2}, y) \\ U(x_{1}, x_{2}, x_{3}) \to P(x_{2}) \\ T(x_{1}, x_{2}, x_{3}) \land P(x_{2}) \to M(x_{1}) \\ S(x_{1}, x_{2}) \land M(x_{1}) \to N(x_{1})$

Chase step with a Datalog rule

- the rule is triggered by the facts in a vertex
- the deduced facts are added to the vertex

Theorem

Given F a set of facts, \mathcal{R} a guarded rule set, and Q a Boolean conjunctive query, $F, \mathcal{R} \models Q$ if and only if there exists T_0, \ldots, T_n a tree-like chase sequence for \mathcal{R} and F such that the facts in T_n implies Q.

Definition

The tree-like chase sequence T_0, \ldots, T_n is **one-pass** if:

- chase or propagate steps are applied to the recently-updated vertex,
- propagate steps only propagate a fact from a child to its parent,
- a chase step is applicable provided that no propagation step is applicable

Definition

The tree-like chase sequence T_0, \ldots, T_n is **one-pass** if:

- chase or propagate steps are applied to the recently-updated vertex,
- propagate steps only propagate a fact from a child to its parent,
- a chase step is applicable provided that no propagation step is applicable

Theorem

Given F a set of facts, \mathcal{R} a guarded rule set, and Q a Boolean conjunctive query, $F, \mathcal{R} \models Q$ if and only if there exists T_0, \ldots, T_n a **one-pass** tree-like chase sequence for \mathcal{R} and F such that the facts in T_n implies Q. $\begin{aligned} & R(x_1, x_2) \to \exists y \ S(x_1, y) \\ & R(x_1, x_2) \to \exists y \ T(x_1, x_2, y) \\ & T(x_1, x_2, x_3) \to \exists y \ U(x_1, x_2, y) \\ & U(x_1, x_2, x_3) \to P(x_2) \\ & T(x_1, x_2, x_3) \land P(x_2) \to M(x_1) \\ & S(x_1, x_2) \land M(x_1) \to N(x_1) \end{aligned}$


```
\begin{array}{l} R(x_{1}, x_{2}) \to \exists y \ S(x_{1}, y) \\ R(x_{1}, x_{2}) \to \exists y \ T(x_{1}, x_{2}, y) \\ T(x_{1}, x_{2}, x_{3}) \to \exists y \ U(x_{1}, x_{2}, y) \\ U(x_{1}, x_{2}, x_{3}) \to P(x_{2}) \\ T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \to M(x_{1}) \\ S(x_{1}, x_{2}) \wedge M(x_{1}) \to N(x_{1}) \end{array}
```


 $R(x_1, x_2) \rightarrow \exists y \ S(x_1, y)$ $R(x_1, x_2) \rightarrow \exists y \ T(x_1, x_2, y)$ $T(x_1, x_2, x_3) \rightarrow \exists y \ U(x_1, x_2, y)$ $U(x_1, x_2, x_3) \rightarrow P(x_2)$ $T(x_1, x_2, x_3) \land P(x_2) \rightarrow M(x_1)$ $S(x_1, x_2) \land M(x_1) \rightarrow N(x_1)$


```
\begin{array}{l} R(x_{1}, x_{2}) \to \exists y \ S(x_{1}, y) \\ R(x_{1}, x_{2}) \to \exists y \ T(x_{1}, x_{2}, y) \\ T(x_{1}, x_{2}, x_{3}) \to \exists y \ U(x_{1}, x_{2}, y) \\ U(x_{1}, x_{2}, x_{3}) \to P(x_{2}) \\ T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \to M(x_{1}) \\ S(x_{1}, x_{2}) \wedge M(x_{1}) \to N(x_{1}) \end{array}
```


 $R(x_1, x_2) \rightarrow \exists y \ S(x_1, y)$ $R(x_1, x_2) \rightarrow \exists y \ T(x_1, x_2, y)$ $T(x_1, x_2, x_3) \rightarrow \exists y \ U(x_1, x_2, y)$ $U(x_1, x_2, x_3) \rightarrow P(x_2)$ $T(x_1, x_2, x_3) \land P(x_2) \rightarrow M(x_1)$ $S(x_1, x_2) \land M(x_1) \rightarrow N(x_1)$

Loops and Datalog Rewriting

Definition

A **loop** at a vertex v is a subsequence T_i, \ldots, T_j in a one-pass tree-like chase sequence, where:

- T_{i+1} is obtained by a chase step with a non-full rule,
- T_j is obtained by a propagation step that copies the atom A
- v is the recently updated vertex of both T_i and T_j

We call A the **output** of the loop.

Loops and Datalog Rewriting

Definition

A **loop** at a vertex v is a subsequence T_i, \ldots, T_j in a one-pass tree-like chase sequence, where:

- T_{i+1} is obtained by a chase step with a non-full rule,
- T_j is obtained by a propagation step that copies the atom A
- v is the recently updated vertex of both T_i and T_j

We call A the **output** of the loop.

Theorem

A Datalog rule set P is a Datalog rewriting of $\mathcal R$ a set of guarded rules if

- P is a logical consequence of \mathcal{R} ,
- each Datalog rule of \mathcal{R} is a logical consequence of P,
- for each fact base F, a loop for F and \mathcal{R} with the output A, we have $F, P \models A$.

 $R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y)$ $R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y)$ $T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y)$ $U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2})$ $T(x_{1}, x_{2}, x_{3}) \land P(x_{2}) \rightarrow M(x_{1})$ $S(x_{1}, x_{2}) \land M(x_{1}) \rightarrow N(x_{1})$

 $\begin{array}{c|c}
T_4' & R(c,d) \\
\hline R(c,d), T(c,d,n_2), P(d) \\
\hline R(c,d), U(c,d,n_3), P(d)
\end{array}$

 $T(x_1,x_2,x_3) \to P(x_2)$

$$R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y) R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y) T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y) U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2}) T(x_{1}, x_{2}, x_{3}) \land P(x_{2}) \rightarrow M(x_{1}) S(x_{1}, x_{2}) \land M(x_{1}) \rightarrow N(x_{1})$$

 $\xrightarrow{\rightarrow} N(x_1)$ R(c, d)

 $T(x_1, x_2, x_3) \rightarrow P(x_2)$ $R(x_1, x_2) \rightarrow P(x_2)$

$$R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y) R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y) T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y) U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2}) T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \rightarrow M(x_{1}) S(x_{1}, x_{2}) \wedge M(x_{1}) \rightarrow N(x_{1})$$

 $egin{aligned} &T(x_1, x_2, x_3)
ightarrow P(x_2) \ &R(x_1, x_2)
ightarrow P(x_2) \ &R(x_1, x_2) \wedge P(x_2)
ightarrow M(x_1) \end{aligned}$


```
R(x_{1}, x_{2}) \rightarrow \exists y \ S(x_{1}, y) 
R(x_{1}, x_{2}) \rightarrow \exists y \ T(x_{1}, x_{2}, y) 
T(x_{1}, x_{2}, x_{3}) \rightarrow \exists y \ U(x_{1}, x_{2}, y) 
U(x_{1}, x_{2}, x_{3}) \rightarrow P(x_{2}) 
T(x_{1}, x_{2}, x_{3}) \wedge P(x_{2}) \rightarrow M(x_{1}) 
S(x_{1}, x_{2}) \wedge M(x_{1}) \rightarrow N(x_{1})
```

```
T(x_1, x_2, x_3) \rightarrow P(x_2)
R(x_1, x_2) \rightarrow P(x_2)
R(x_1, x_2) \land P(x_2) \rightarrow M(x_1)
R(x_1, x_2) \land M(x_1) \rightarrow N(x_1)
```


Existential-based Datalog Rewriting Final state of a loop of output P(d):

- 1. $R(x_1, x_2) \to \exists y \ T(x_1, x_2, y)$
- 2. $T(x_1, x_2, x_3) \rightarrow \exists y \ U(x_1, x_2, y)$
- 3. $U(x_1, x_2, x_3) \rightarrow P(x_2)$
- 4. $T(x_1, x_2, x_3) \rightarrow P(x_2)$

Final state of a loop of output P(d):

- 1. $R(x_1, x_2) \to \exists y \ T(x_1, x_2, y)$ 2. $T(x_1, x_2, x_3) \to \exists y \ U(x_1, x_2, y)$
- 3. $U(x_1, x_2, x_3) \rightarrow P(x_2)$
- 4. $T(x_1, x_2, x_3) \rightarrow P(x_2)$
- 5. $R(x_1, x_2) \rightarrow P(x_2)$

The Existential-Based Rewriting Algorithm (ExbDR)

Definition

The Existential-Based Datalog rewriting inference takes

- a <u>non-full</u> rule τ
- a Datalog rule τ'
- a piece unifier u of the head of τ with the body of τ'

and returns the composition of τ with τ' with respect to u in HNF.

Definition

Given ${\mathcal R}$ a set of guarded rule in HNF, the ${\ensuremath{\text{ExbDR}}}$ algorithm

- 1. applies the inference rule on the rules in $\ensuremath{\mathcal{R}}$ until it reaches a fixed point,
- 2. returns all Datalog rules.

The output is a Datalog rewriting of \mathcal{R} .

$$R(u,v) \rightarrow \exists w \ R(v,w)$$
 (1)

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \to \exists w \ R(v,w) \tag{1}$$

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v) \rightarrow \exists w \ R(v,w) \wedge A(w)$$
 (4)

Inferred rules:

$$R(u,v) \to \exists w \ R(v,w)$$
 (1)

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

 $R(x,y) \wedge A(y) \rightarrow C(x)$ (3)

 $R(u,v) \wedge A(v) \rightarrow \exists w \ R(v,w) \wedge A(w) \quad (4)$

$$R(u,v) \wedge A(v) \rightarrow C(v)$$
 (5)

Inferred rules:

$$R(u,v) \rightarrow \exists w \ R(v,w)$$
 (1)

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v)
ightarrow \exists w \; R(v,w) \wedge A(w)$$

$$R(u,v) \wedge A(v) \rightarrow C(v)$$
 (5)

The outputted Datalog rewriting is (2), (3) and (5).

(4)

Terminaison

- The rules inferred by ExbDR are guarded,
- The number of variable in the body (resp. head) of the rules inferred by ExbDR is bounded by the maximum number of variable in the body (resp. head) of the input rules.

Complexity

The complexity of ExbDR is 2-EXPTIME and EXPTIME, if the arity is bounded.

Skolem Datalog Rewriting

Rule Skolemization

Definition

We skolemize a rule by

- 1. replacing every existential variable by a Skolem term built from a fresh function symbol and the body variables,
- 2. splitting the resulting rule into single-headed rules.

Example

The non-full rule $A(x) \rightarrow \exists y \ B(x, y), C(y), G(x)$ becomes the following Skolemized rules:

- $A(x) \rightarrow B(x, f(x))$,
- $A(x) \rightarrow C(f(x))$,
- $A(x) \rightarrow G(x)$.

The Skolem Datalog Rewriting Algorithm (SkDR)

Definition

The Skolem rewriting inference takes

- a rule τ which has Skolem-free body and contains Skolem terms in the head
- a rule τ' which either is <u>Skolem-free</u> or has <u>Skolem-free head</u>
- a mgu u of the head of τ with a guard of τ' or an atom containing Skolem terms

and returns the composition of τ with τ' with respect to u in HNF.

Definition

Given ${\mathcal R}$ a set of Skolemized guarded rule, the algorithm SkDR

- 1. applies the inference on the rules in $\ensuremath{\mathcal{R}}$ until it reaches a fixed point,
- 2. returns every Skolem-free rules.

The output is a Datalog rewriting of \mathcal{R} .

$$R(u,v) \rightarrow R(v,f(u,v))$$
 (1)

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \to R(v,f(u,v)) \tag{1}$$

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v) \to A(f(u,v))$$
(4)

$$R(u,v) \to R(v,f(u,v)) \tag{1}$$

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v) \rightarrow A(f(u,v))$$
 (4)

$$R(u,v) \wedge A(f(u,v)) \rightarrow C(v)$$
 (5)

$$R(u,v) \to R(v,f(u,v)) \tag{1}$$

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v) \rightarrow A(f(u,v))$$
(4)

$$R(u,v) \wedge A(f(u,v)) \rightarrow C(v)$$
 (5)

$$R(u,v) \wedge A(v) \rightarrow C(v)$$
 (6)

Inferred rules:

$$R(u,v) \to R(v,f(u,v)) \tag{1}$$

$$A(x) \wedge R(x, y) \rightarrow A(y)$$
 (2)

$$R(x,y) \wedge A(y) \rightarrow C(x)$$
 (3)

$$R(u,v) \wedge A(v) \rightarrow A(f(u,v))$$
 (4)

$$R(u,v) \wedge A(f(u,v)) \rightarrow C(v)$$
 (5)

$$R(u,v) \wedge A(v) \rightarrow C(v)$$
 (6)

The outputted Datalog rewriting is (2), (3) and (6).

Proposition

There is a family of guarded rule set $(\mathcal{R}_n)_{n \in \mathbb{N}}$, where the number of inferred rules in ExbDR is exponentially larger than in SkDR.

Proposition

There is a family of guarded rule set $(\mathcal{R}_n)_{n \in \mathbb{N}}$, where the number of inferred rules in ExbDR is exponentially larger than in SkDR.

Proposition

There is a family of guarded rule set $(\mathcal{R}_n)_{n \in \mathbb{N}}$, where the number of inferred rules in SkDR is exponentially larger than in ExbDR.

Implementation and Experiments

For each algorithm we introduce :

- pairwise redundant rules deletion based on an approximation of rule subsumption
- a subsumption index to find candidate rules subsuming or subsumed by a given rule
- a **unification index** to find candidate rules on which the rewriting inference can be applied with a given rule

Datasets

- 1. Description Logics ontologies from the Oxford ontology library: 428 guarded rule sets.
- 2. Blown up version of these ontologies with arity up to 10 instead of 2 and "satellite atoms".

Inputs	#Non-full rules				#Datalog rules			
	Min	Max	Avg	Med	Min	Max	Avg	Med
428	1	172K	11K	789	2	157K	5K	283

Competitor

KAON2 for Description Logics only.

There is no competitor for general guarded rules.

Results for Rules Derived from Ontologies

28

Results for Rules with Higher-Arity Relations

29

- 1. We studied a sufficient condition for a Datalog rule set to be a rewriting of a guarded rule set through the notion of loop in tree-like chase.
- 2. We proposed three Datalog rewriting algorithms and shows their differences
- 3. We implemented them with some optimizations and we conducted large experiments on them.

http://www.cs.ox.ac.uk/people/maxime.buron/blog/gsat-exp/