
Efficient reasoning in heterogeneous data integration systems

Maxime Buron

LIMOS
July 7, 2022

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 1 / 59

Part I

Introduction

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 2 / 59

Heterogeneous data integration

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 3 / 59

Integration system

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 4 / 59

Materialization- and mediation-based integration

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 5 / 59

Mediation with semantics a.k.a. Ontology-Based Data Access

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 6 / 59

Table of Contents

1 RDF integration systems
1 RDF graphs and RDFS ontologies
2 RDF integration systems
3 Query answering strategies on these systems

2 Parallelisable existential rules
1 characterization of parallelisability
2 rule composition

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 7 / 59

Part II

RDF integration systems

thesis work supervised by François Goasdoué, Ioana Manolescu and Marie-Laure Mugnier

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 8 / 59

RDF integration systems

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 9 / 59

Preliminaries: querying in RDF graphs

Preliminaries: querying in RDF graphs

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 10 / 59

Preliminaries: querying in RDF graphs RDF graph

RDF triple

An RDF triple contains three values among:

IRIs

blank nodes

literals

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 11 / 59

Preliminaries: querying in RDF graphs RDF graph

RDF graph: data and RDFS ontology

Data triples of an RDF graph G:

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 59

Preliminaries: querying in RDF graphs RDF graph

RDF graph: data and RDFS ontology

The RDFS triples use the built-in properties:

:subclass
:subproperty
:domain
:range

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 59

Preliminaries: querying in RDF graphs RDFS reasoning

Data entailment using Rdata

Rdata = { (p1, :subproperty, p2), (s, p1, o)→ (s, p2, o) . . . }

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 14 / 59

Preliminaries: querying in RDF graphs RDFS reasoning

Ontological entailment using Ronto

Ronto = { (p, :subproperty, p1), (p1, :range, o)→ (p, :range, o) . . . }

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 15 / 59

Preliminaries: querying in RDF graphs RDFS reasoning

Full saturation of the graph w.r.t. Rdata and Ronto

The full saturation of G is GRonto∪Rdata :

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 16 / 59

Preliminaries: querying in RDF graphs Query answering

Basic Graph Pattern Queries

We consider conjunctive queries over the data and the ontology.

For instance: ”Who is using what kind of object?”

q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 17 / 59

Preliminaries: querying in RDF graphs Query answering

The saturation-based query answering technique

G

Ronto ∪Rdata

GRonto∪Rdata

q

Answer

Pros:

Efficient: no reasoning at query time

Cons:

The saturation requires time to be computed and extra-space to be materialized
The saturation needs to be recomputed on updates → Saturation maintenance is needed

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 18 / 59

Preliminaries: querying in RDF graphs Query answering

Saturation-Based Query Answering
q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)

q(GRdata∪Ronto) = {⟨ , :LightSaber⟩
⟨ , :Vehicle⟩
⟨ , :StarShip⟩}

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 19 / 59

Preliminaries: querying in RDF graphs Query answering

The reformulation-based query answering technique

Ronto ∪Rdata G

q qref

Answer

Pros:

data is always up-to-date (no need to compute and store the saturation)

Cons:

Every incoming query needs to be reformulated (low overhead in practice)

Reformulated queries may be complex, hence costly to evaluate, even by modern, highly
optimized query engines → Query optimization is needed

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 20 / 59

Query answering for RDF Integration Systems

Query answering for RDF Integration Systems

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 21 / 59

Query answering for RDF Integration Systems Problem statement

Ontology-Based Data Access

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 22 / 59

Query answering for RDF Integration Systems Problem statement

Contributions

1 More powerful integration setting:

Global-Local-As-View mappings in
an OBDA context
Queries on the data and the
ontology

2 A novel query answering strategy:
shifting a part of the reasoning from
query time to offline

3 Obi-Wan, a system implementing
several query answering strategies

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 23 / 59

Query answering for RDF Integration Systems Problem statement

Global-Local-As-View mapping

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 24 / 59

Query answering for RDF Integration Systems Problem statement

Global-Local-As-View mapping example

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 25 / 59

Query answering for RDF Integration Systems Problem statement

RDFS ontology

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 26 / 59

Query answering for RDF Integration Systems Problem statement

RDFS reasoning in the integrated graph

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 27 / 59

Query answering for RDF Integration Systems Problem statement

RDF Integration System

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 28 / 59

Query answering for RDF Integration Systems Problem statement

Obi-Wan: a RDF Integration System implementation

Features

supports GLAV mappings

supports heterogeneous data sources: PostgreSQL, MongoDB, Jena TDB

provides a RIS visualization

Demonstration

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 29 / 59

Query answering for RDF Integration Systems Problem statement

Query answering problem

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 30 / 59

Query answering for RDF Integration Systems Query answering strategies

All reasoning at query time (REW-CA)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 31 / 59

Query answering for RDF Integration Systems Query answering strategies

Some reasoning at query time (REW-C): preprocessing

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 32 / 59

Query answering for RDF Integration Systems Query answering strategies

Some reasoning at query time (REW-C): query time

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 33 / 59

Query answering for RDF Integration Systems Comparison of query answering strategies

Experiment settings

Obi-Wan dependencies:

OntoSQL (reformulation and materialization)
Graal (rewriting using mappings)
Tatooine (mediated query evaluation)

RDF Integration System:

Extension of Berlin SPARQL BenMark
3863 GLAV mappings
RDFS ontology of 2011 triples
Induced graph with 108M triples (185M triples when saturated)
Two data sources: One relational and one JSON

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 34 / 59

Query answering for RDF Integration Systems Comparison of query answering strategies

Sample comparison on an extension of BSBM

Materialization (MAT) - kind of reference time
Full reformulation + rewriting (REW-CA)
Mapping saturation + partial reformulation + rewriting (REW-C)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 35 / 59

Query answering for RDF Integration Systems Conclusion

Conclusion

1 Global-Local-As-View mappings in OBDA context

2 Queries on data and ontology

3 A new scalable query answering strategy using partial reformulation and saturated
mappings

4 Obi-Wan: a query answering system supporting RDFS reasoning

Work with François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier:

Ontology-Based RDF Integration of Heterogeneous Data at EDBT 2020

Obi-Wan demonstration at VLDB 2020: https://gitlab.inria.fr/cedar/obi-wan

Tutorial at the summer school MDD 2022

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 36 / 59

https://gitlab.inria.fr/cedar/obi-wan

Part III

Parallelisable existential rules: a story of pieces

joint work with Marie-Laure Mugnier and Michaël Thomazo

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 37 / 59

OBDA with existential rules

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 38 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Motivation: how to answer a query in OBDA using only mappings ?

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 39 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
Ontology-Based Data Access

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 40 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Mappings as existential rules

Existential rules

∀x⃗ ∀y⃗ (Body[x⃗, y⃗]→ ∃z⃗ Head[x⃗, z⃗])

GLAV mappings (aka source-to-target Tuple Generating Dependencies)

∀x⃗ (∃y⃗ Body[x⃗, y⃗]→ ∃z⃗ Head[x⃗, z⃗])

Body is a conjunctive query on the data with answer variables x⃗

Head is a conjunctive query on the vocabulary of the ontology with answer variables x⃗

In the following:

Rules and mappings have no constants

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 41 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Chasing with existential rules
Example

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

Chasing steps

chase0(D,M∪R) = D = {s1(a, b), s2(a, c)}

chase1(D,M∪R) = chase0(D,M∪R) ∪ {t1(a, b), t2(a)}
chase2(D,M∪R) = chase1(D,M∪R) ∪ {t3(a, z0)}
chase3(D,M∪R) = chase2(D,M∪R) ∪ {t4(b)}

Virtual instance

ID,M = chase1(D,M)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 42 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Chasing with existential rules
Example

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

Chasing steps

chase0(D,M∪R) = D = {s1(a, b), s2(a, c)}
chase1(D,M∪R) = chase0(D,M∪R) ∪ {t1(a, b), t2(a)}

chase2(D,M∪R) = chase1(D,M∪R) ∪ {t3(a, z0)}
chase3(D,M∪R) = chase2(D,M∪R) ∪ {t4(b)}

Virtual instance

ID,M = chase1(D,M)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 42 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Chasing with existential rules
Example

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

Chasing steps

chase0(D,M∪R) = D = {s1(a, b), s2(a, c)}
chase1(D,M∪R) = chase0(D,M∪R) ∪ {t1(a, b), t2(a)}
chase2(D,M∪R) = chase1(D,M∪R) ∪ {t3(a, z0)}

chase3(D,M∪R) = chase2(D,M∪R) ∪ {t4(b)}

Virtual instance

ID,M = chase1(D,M)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 42 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Chasing with existential rules
Example

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

Chasing steps

chase0(D,M∪R) = D = {s1(a, b), s2(a, c)}
chase1(D,M∪R) = chase0(D,M∪R) ∪ {t1(a, b), t2(a)}
chase2(D,M∪R) = chase1(D,M∪R) ∪ {t3(a, z0)}
chase3(D,M∪R) = chase2(D,M∪R) ∪ {t4(b)}

Virtual instance

ID,M = chase1(D,M)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 42 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
Ontology-Based Data Access with existential rules

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 43 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
OBDA classical mediation-based query answering method

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 44 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
OBDA classical mediation-based query answering method

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 45 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
OBDA query answering by compiling the rules into the mappings

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 46 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Example
Composing M with R

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

M′: M1 = s1(x, y)→ t1(x, y)
M2 = s2(x, y)→ t2(x)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 47 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Example
Composing M with R

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

M′: M1 = s1(x, y)→ t1(x, y)
M2 = s2(x, y)→ t2(x)
M3 = R1 ◦M2 = s2(x, y)→ ∃z t3(x, z)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 47 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Example
Composing M with R

M: M1 = s1(x, y)→ t1(x, y) R: R1 = t2(x)→ ∃z t3(x, z)
M2 = s2(x, y)→ t2(x) R2 = t1(x, y) ∧ t3(x, z)→ t4(y)

M′: M1 = s1(x, y)→ t1(x, y)
M2 = s2(x, y)→ t2(x)
M3 = R1 ◦M2 = s2(x, y)→ ∃z t3(x, z)
M4 = (R2 ◦M1) ◦M3 = s1(x, y) ∧ s2(x, z)→ t4(y)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 47 / 59

Motivation: how to answer a query in OBDA using only mappings ?

Context
OBDA query answering by compiling the rules into the mappings

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 48 / 59

Characterization of the parallelisable rule sets

Characterization of the parallelisable rule sets

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 49 / 59

Characterization of the parallelisable rule sets

Research question and contributions

Research question: When can the chase be
simulated in a single breadth-first step?

R is parallelisable if there exists a finite rule set
independent from any instance able to produce
an equivalent chase of R in a single step.

⇒ How to characterize parallelisable sets of
rules?

Contributions

Parallelisable = Bounded + Pieceful

Links between parallelisability and rule
composition

...

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 50 / 59

Characterization of the parallelisable rule sets

Parallelisability

R is parallelisable if there exists a finite rule set R′ such that for any instance I:

1 there is an injective homomorphism from chase∞(I,R) to chase1(I,R′)

2 there is a homomorphism from chase1(I,R′) to chase∞(I,R)

...

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 51 / 59

Characterization of the parallelisable rule sets

Parallelisability ensures boundedness

R is bounded if there is k s.t. for any instance I, chasek(I,R) = chase∞(I,R)

...

If R is parallelisable then it is bounded, but the converse does not hold

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 52 / 59

Characterization of the parallelisable rule sets

Key notion: Piece

Piece

Minimal set of atoms ‘glued’ by nulls in the chase or by existential variables in rule heads.

p(a, b),
p(b, c),
q(a, z0), q(z0, z1), q(b, z1),
q(c, z2)

a p p

q

q

z0

b c

q

z1 z2

q

In the following:

We consider that the rules are decomposed in rules having a single-piece head.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 53 / 59

Characterization of the parallelisable rule sets

Boundedness does not ensure parallelisability

Prime example (bounded)

R1 : A(x)→ ∃z p(x, z)
R2 : p(x, z) ∧B(y)→ r(z, y)

In = {A(a), B(b1), . . . , B(bn)}

chase∞(In,R) =

B

a

A B

p r r

b2

z0

b1 b2

B

......

r

bn

For any n, chase∞(In,R) contains a piece of n+ 1 atoms, hence this rule set is not
parallelisable.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 54 / 59

Characterization of the parallelisable rule sets

A new class: Pieceful

The frontier variables of a rule are the shared variables between its body and head.

R is pieceful if for any trigger (R, π) in any derivation with R,
either π(frontier(R)) belongs to the terms of the initial instance

or π(frontier(R)) belongs to the terms of atoms brought by a single previous rule
application.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 55 / 59

Characterization of the parallelisable rule sets

Prime example is not pieceful

Prime example (bounded)

R1 : A(x)→ ∃z p(x, z)
R2 : p(x, z) ∧B(y)→ r(z, y)

In = {A(a), B(b1), . . . , B(bn)}

First trigger: (R1, {x 7→ a}; creates p(a, z0)
Then: (R2, {x 7→ a, z 7→ z0,y 7→ b1})

chase∞(In,R) =

B

a

A B

p r r

b2

z0

b1 b2

B

......

r

bn

Parallelisability ⇒ Piecefulness

Why? If a rule set R is not pieceful, one can create an instance In s.t. chase(In,R) has a
null that occurs in at least n atoms.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 56 / 59

Characterization of the parallelisable rule sets

New landscape

(with data complexity of conjunctive query entailment)
Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 57 / 59

Characterization of the parallelisable rule sets

Parallelisability = Boundedness + Piecefulness

What we have so far:

Parallelisability ⇒ Boundedness (but the converse is false: see prime example)

Parallelisability ⇒ Piecefulness (but the converse is false: see transitivity)

Boundedness + Piecefulness ⇒ Parallelisability

Parallelisabillity is undecidable

Since the piecefull includes Datalog and the boundedness in Datalog is undecidable.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 58 / 59

Characterization of the parallelisable rule sets

Parallelisability = Boundedness + Piecefulness

What we have so far:

Parallelisability ⇒ Boundedness (but the converse is false: see prime example)

Parallelisability ⇒ Piecefulness (but the converse is false: see transitivity)

Boundedness + Piecefulness ⇒ Parallelisability

Parallelisabillity is undecidable

Since the piecefull includes Datalog and the boundedness in Datalog is undecidable.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 58 / 59

Characterization of the parallelisable rule sets

Parallelisability = Boundedness + Piecefulness

What we have so far:

Parallelisability ⇒ Boundedness (but the converse is false: see prime example)

Parallelisability ⇒ Piecefulness (but the converse is false: see transitivity)

Boundedness + Piecefulness ⇒ Parallelisability

Parallelisabillity is undecidable

Since the piecefull includes Datalog and the boundedness in Datalog is undecidable.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 58 / 59

Characterization of the parallelisable rule sets

Conclusion and perspectives

To conclude

Parallelisable = Bounded + Pieceful

Links between parallelisability and rule composition

Open issues

Better understand rule composition to compute parallelisation in practice

Better understand the properties of the pieceful class

More succint rule composition based on rule skolemization?
It would lead beyond (skolemized) existential rules when rules are not pieceful

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 59 / 59

RDF Entailment rules for data management

Rule name Entailment rule

R

rdfs5 (p1, :subproperty, p2), (p2, :subproperty, p3)→ (p1, :subproperty, p3)

Ronto

rdfs11 (s, :subclass, o), (o, :subclass, o1)→ (s, :subclass, o1)
ext1 (p, :domain, o), (o, :subclass, o1)→ (p, :domain, o1)
ext2 (p, :range, o), (o, :subclass, o1)→ (p, :range, o1)
ext3 (p, :subproperty, p1), (p1, :domain, o)→ (p, :domain, o)
ext4 (p, :subproperty, p1), (p1, :range, o)→ (p, :range, o)
rdfs2 (p, :domain, o), (s1, p, o1)→ (s1, :type, o)

Rdata
rdfs3 (p, :range, o), (s1, p, o1)→ (o1, :type, o)
rdfs7 (p1, :subproperty, p2), (s, p1, o)→ (s, p2, o)
rdfs9 (s, :subclass, o), (s1, :type, s)→ (s1, :type, o)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 1 / 17

View-based rewriting details

View-based rewriting details

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 2 / 17

View-based rewriting details

Global-Local-As-View Mapping Example (2)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 3 / 17

View-based rewriting details

Breaking Global-Local-As-View Mappings into Views

We decompose the GLAV mappings into GAV and LAV views.
1 mpilot = qSQL(name)→ (name, :pilotOf, y), (y, :type, :Starship)

GAV Vpilot(name)← qSQL(name)
LAV Vpilot(name)← (name, :pilotOf, y), (y, :type, :Starship)

2 mjedi = qMONGO(name, saber)→
(name, :usesWeapon, saber), (saber, :type, :LightSaber)

GAV Vjedi(name, saber)← qMONGO(name, saber)
LAV Vjedi(name, saber)← (name, :usesWeapon, saber), (saber, :type, :LightSaber)

LAV views will be used to perform a query rewriting.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 4 / 17

View-based rewriting details

Breaking Global-Local-As-View Mappings into Views

We decompose the GLAV mappings into GAV and LAV views.
1 mpilot = qSQL(name)→ (name, :pilotOf, y), (y, :type, :Starship)

GAV Vpilot(name)← qSQL(name)
LAV Vpilot(name)← (name, :pilotOf, y), (y, :type, :Starship)

2 mjedi = qMONGO(name, saber)→
(name, :usesWeapon, saber), (saber, :type, :LightSaber)

GAV Vjedi(name, saber)← qMONGO(name, saber)
LAV Vjedi(name, saber)← (name, :usesWeapon, saber), (saber, :type, :LightSaber)

LAV views will be used to perform a query rewriting.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 4 / 17

View-based rewriting details

All Reasoning at Query Time (REW-CA)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 5 / 17

View-based rewriting details

All Reasoning at Query Time (REW-CA): Example

The query reformulation of q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)
Qo,d = qo,1(x, :LightSaber)← (x, :uses, z), (z, :type, :LightSaber)

∪ qd,1(x, :LightSaber)← (x, :usesWeapon, z), (z, :type, :LightSaber)
∪ qo,2(x, :Vehicle)← (x, :uses, z), (z, :type, :Vehicle)
∪ qd,6(x, :Vehicle)← (x, :pilotOf, z), (z, :type, :StarShip)
∪ qo,3(x, :StarShip)← (x, :uses, z), (z, :type, :StarShip)
∪ qd,8(x, :StarShip)← (x, :pilotOf, z), (z, :type, :StarShip)
∪ . . .

must be evaluated on the non-saturated virtual graph

using view-based query rewriting
Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 6 / 17

View-based rewriting details

All Reasoning at Query Time (REW-CA): Example

The query reformulation of q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)
Qo,d = qo,1(x, :LightSaber)← (x, :uses, z), (z, :type, :LightSaber)

∪ qd,1(x, :LightSaber)← (x, :usesWeapon, z), (z, :type, :LightSaber)
∪ qo,2(x, :Vehicle)← (x, :uses, z), (z, :type, :Vehicle)
∪ qd,6(x, :Vehicle)← (x, :pilotOf, z), (z, :type, :StarShip)
∪ qo,3(x, :StarShip)← (x, :uses, z), (z, :type, :StarShip)
∪ qd,8(x, :StarShip)← (x, :pilotOf, z), (z, :type, :StarShip)
∪ . . .

We use LAV views
Vpilot(name) ← (name, :pilotOf, y), (y, :type, :Starship)
Vjedi(name, saber) ← (name, :usesWeapon, saber), (saber, :type, :LightSaber)

to rewrite the reformulations into
rew = rew1(x, :LightSaber)← Vjedi(x, saber)

∪ rew2(x, :Vehicle)← Vpilot(x)
∪ rew3(x, :StarShip)← Vpilot(x)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 6 / 17

View-based rewriting details

Some Reasoning at Query Time (REW-C): Preprocessing

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 7 / 17

View-based rewriting details

Some Reasoning at Query Time (REW-C): Mapping Saturation Example

We saturate the LAV view definitions using Rdata and the ontology.

Vpilot(name) ← (name, :pilotOf, y), (y, :type, :Starship),
(name, :uses, y), (y, :type, :Vehicle), (y, :type, :Object)

Vjedi(name, saber) ← (name, :usesWeapon, saber), (saber, :type, :LightSaber)
(name, :uses, saber), (saber, :type, :Object)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 8 / 17

View-based rewriting details

Some Reasoning at Query Time (REW-C): Query Time

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 9 / 17

View-based rewriting details

Some Reasoning at Query Time (REW-C): Example

The query reformulation of q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)
Qo = qo,1(x, :LightSaber)← (x, :uses, z), (z, :type, :LightSaber)

∪ qo,2(x, :Vehicle)← (x, :uses, z), (z, :type, :Vehicle)
∪ qo,3(x, :StarShip)← (x, :uses, z), (z, :type, :StarShip)

must be evaluated on the saturated virtual graph

using view-based query rewriting
Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 10 / 17

View-based rewriting details

Some Reasoning at Query Time (REW-C): Example

The query reformulation of q(x, y)← (x, :uses, z), (z, :type, y), (y, :subclass, :Object)
Qo = qo,1(x, :LightSaber)← (x, :uses, z), (z, :type, :LightSaber)

∪ qo,2(x, :Vehicle)← (x, :uses, z), (z, :type, :Vehicle)
∪ qo,3(x, :StarShip)← (x, :uses, z), (z, :type, :StarShip)

We use the saturated LAV views
Vpilot(name) ← (name, :pilotOf, y), (y, :type, :Starship),

(name, :uses, y), (y, :type, :Vehicle), (y, :type, :Object)

Vjedi(name, saber) ← (name, :usesWeapon, saber), (saber, :type, :LightSaber)
(name, :uses, saber), (saber, :type, :Object)

to rewrite the reformulation into
rew = rew1(x, :LightSaber)← Vjedi(x, saber)

∪ rew2(x, :Vehicle)← Vpilot(x)
∪ rew3(x, :StarShip)← Vpilot(x)

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 10 / 17

Rule composition

Rule composition

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 11 / 17

Rule composition

Rule composition
Datalog unfolding

For datalog rules: parallelisability = boundedness

A parallelisation of R can be computed by ‘unfolding’ the rules from R.
R⋆: starting from R, we repeatedly unfold a rule from R⋆ with a rule from R.

R = {R1, R2, R3} R1 : A(x)→ B(x)
R2 : C(x)→ D(x)
R3 : B(x) ∧D(x)→ G(x)

Denoting Ri ◦Rj the unfolding of Ri by Rj ,
we obtain:
R3 ◦R1 : A(x) ∧D(x)→ G(x)

R3 ◦R2 : B(x) ∧ C(x)→ G(x)
(R3 ◦R1) ◦R2 : A(x) ∧ C(x)→ G(x)
(R3 ◦R2) ◦R1 = (R3 ◦R1) ◦R2.
R⋆ = R∪ {R3 ◦R1, R3 ◦R2, (R3 ◦R1) ◦R2}

Remark: R⋆ = {rewriting(body(R))→ head(R) | R ∈ R}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 17

Rule composition

Rule composition
Datalog unfolding

For datalog rules: parallelisability = boundedness

A parallelisation of R can be computed by ‘unfolding’ the rules from R.
R⋆: starting from R, we repeatedly unfold a rule from R⋆ with a rule from R.

R = {R1, R2, R3} R1 : A(x)→ B(x)
R2 : C(x)→ D(x)
R3 : B(x) ∧D(x)→ G(x)

Denoting Ri ◦Rj the unfolding of Ri by Rj ,
we obtain:
R3 ◦R1 : A(x) ∧D(x)→ G(x)
R3 ◦R2 : B(x) ∧ C(x)→ G(x)

(R3 ◦R1) ◦R2 : A(x) ∧ C(x)→ G(x)
(R3 ◦R2) ◦R1 = (R3 ◦R1) ◦R2.
R⋆ = R∪ {R3 ◦R1, R3 ◦R2, (R3 ◦R1) ◦R2}

Remark: R⋆ = {rewriting(body(R))→ head(R) | R ∈ R}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 17

Rule composition

Rule composition
Datalog unfolding

For datalog rules: parallelisability = boundedness

A parallelisation of R can be computed by ‘unfolding’ the rules from R.
R⋆: starting from R, we repeatedly unfold a rule from R⋆ with a rule from R.

R = {R1, R2, R3} R1 : A(x)→ B(x)
R2 : C(x)→ D(x)
R3 : B(x) ∧D(x)→ G(x)

Denoting Ri ◦Rj the unfolding of Ri by Rj ,
we obtain:
R3 ◦R1 : A(x) ∧D(x)→ G(x)
R3 ◦R2 : B(x) ∧ C(x)→ G(x)
(R3 ◦R1) ◦R2 : A(x) ∧ C(x)→ G(x)
(R3 ◦R2) ◦R1 = (R3 ◦R1) ◦R2.
R⋆ = R∪ {R3 ◦R1, R3 ◦R2, (R3 ◦R1) ◦R2}

Remark: R⋆ = {rewriting(body(R))→ head(R) | R ∈ R}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 17

Rule composition

Rule composition
Datalog unfolding

For datalog rules: parallelisability = boundedness

A parallelisation of R can be computed by ‘unfolding’ the rules from R.
R⋆: starting from R, we repeatedly unfold a rule from R⋆ with a rule from R.

R = {R1, R2, R3} R1 : A(x)→ B(x)
R2 : C(x)→ D(x)
R3 : B(x) ∧D(x)→ G(x)

Denoting Ri ◦Rj the unfolding of Ri by Rj ,
we obtain:
R3 ◦R1 : A(x) ∧D(x)→ G(x)
R3 ◦R2 : B(x) ∧ C(x)→ G(x)
(R3 ◦R1) ◦R2 : A(x) ∧ C(x)→ G(x)
(R3 ◦R2) ◦R1 = (R3 ◦R1) ◦R2.
R⋆ = R∪ {R3 ◦R1, R3 ◦R2, (R3 ◦R1) ◦R2}

Remark: R⋆ = {rewriting(body(R))→ head(R) | R ∈ R}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 17

Rule composition

Rule composition
Datalog unfolding

For datalog rules: parallelisability = boundedness

A parallelisation of R can be computed by ‘unfolding’ the rules from R.
R⋆: starting from R, we repeatedly unfold a rule from R⋆ with a rule from R.

R = {R1, R2, R3} R1 : A(x)→ B(x)
R2 : C(x)→ D(x)
R3 : B(x) ∧D(x)→ G(x)

Denoting Ri ◦Rj the unfolding of Ri by Rj ,
we obtain:
R3 ◦R1 : A(x) ∧D(x)→ G(x)
R3 ◦R2 : B(x) ∧ C(x)→ G(x)
(R3 ◦R1) ◦R2 : A(x) ∧ C(x)→ G(x)
(R3 ◦R2) ◦R1 = (R3 ◦R1) ◦R2.
R⋆ = R∪ {R3 ◦R1, R3 ◦R2, (R3 ◦R1) ◦R2}

Remark: R⋆ = {rewriting(body(R))→ head(R) | R ∈ R}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q
Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 12 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier
R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)
R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)
R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier

R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)
R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)
R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier
R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)

R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)
R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier
R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)
R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)

R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier
R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)
R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)
R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Rule composition
Existential rules

Unfolding extended to (single-piece) existential rules

Based on piece-unifiers instead of classical unifiers

Generates rules inducing every pieces of the chase (growing heads)

Keeps single-piece rules

R = {R1, R2, R3}
R1 : A(x)→ ∃y p(x, y)
R2 : p(x, y)→ ∃z s(y, z)
R3 : p(x, y) ∧ s(y, z)→ B(z)

R3 ◦R1 impossible because of the piece-unifier
R2 ◦R1 : A(x)→ ∃y, z p(x, y) ∧ s(y, z)
R3 ◦ (R2 ◦R1) : A(x)→ ∃y, z p(x, y) ∧ s(y, z), B(z)
R3 ◦R2 : p(x, y)→ ∃z s(y, z), B(z)
(R3 ◦R2) ◦R1 = R3 ◦ (R2 ◦R1)
R⋆ = R∪ {R2 ◦R1, R3 ◦R2, (R3 ◦R2) ◦R1}

Soundness and completeness of R⋆: I,R |= q iff chase1(I,R⋆) |= q
Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 13 / 17

Rule composition

Details on existential rule composition R2 ◦R1

Given R1 : B1 → H1 and R2 : B2 → H2

and µ = (B′
2, H

′
1, u) a piece-unifier of B2 with R1:

1 If u(frontier(R2)) ∩ exist(R1) = ∅:

R2 ◦µ R1 = u(B1) ∪ u(B2 \B′
2)→ u(H2)

2 Otherwise:
R2 ◦µ R1 = u(B1) ∪ u(B2 \B′

2)→ u(H1) ∪ u(H2)

In short: if no frontier variable of R2 is unified with an existential variable of R1, the head of
R1 can be safely ignored, which allows to keep single-piece rules

Definition of R⋆ the composed rules from R:
starting from R, we repeatedly compose the rules in R⋆ pairwise.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 14 / 17

Rule composition

Details on existential rule composition R2 ◦R1

Given R1 : B1 → H1 and R2 : B2 → H2

and µ = (B′
2, H

′
1, u) a piece-unifier of B2 with R1:

1 If u(frontier(R2)) ∩ exist(R1) = ∅:

R2 ◦µ R1 = u(B1) ∪ u(B2 \B′
2)→ u(H2)

2 Otherwise:
R2 ◦µ R1 = u(B1) ∪ u(B2 \B′

2)→ u(H1) ∪ u(H2)

In short: if no frontier variable of R2 is unified with an existential variable of R1, the head of
R1 can be safely ignored, which allows to keep single-piece rules

Definition of R⋆ the composed rules from R:
starting from R, we repeatedly compose the rules in R⋆ pairwise.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 14 / 17

Rule composition

Rule composition on the prime example

R1 : A(x)→ ∃z p(x, z)
R2 : p(x, z) ∧B(y)→ r(z, y)

Let us build R⋆:
R2 ◦R1 : A(x) ∧B(y)→ ∃z p(x, z) ∧ r(z, y)

R2 ◦ (R2 ◦R1) : A(x) ∧B(y) ∧B(y1)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1)
etc.
At each step, a new rule R2 ◦R∗, where R∗ is the rule created at the preceding step:
A(x) ∧B(y) ∧B(y1) . . . B(yi)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1) . . . ∧ r(z, yi)

What this example shows:

Completeness requires composition of the form R ◦R∗ (and not only R∗ ◦R as in datalog)

R⋆ may be infinite even if R is bounded, with no finite subset of R⋆ being complete.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 15 / 17

Rule composition

Rule composition on the prime example

R1 : A(x)→ ∃z p(x, z)
R2 : p(x, z) ∧B(y)→ r(z, y)

Let us build R⋆:
R2 ◦R1 : A(x) ∧B(y)→ ∃z p(x, z) ∧ r(z, y)
R2 ◦ (R2 ◦R1) : A(x) ∧B(y) ∧B(y1)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1)

etc.
At each step, a new rule R2 ◦R∗, where R∗ is the rule created at the preceding step:
A(x) ∧B(y) ∧B(y1) . . . B(yi)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1) . . . ∧ r(z, yi)

What this example shows:

Completeness requires composition of the form R ◦R∗ (and not only R∗ ◦R as in datalog)

R⋆ may be infinite even if R is bounded, with no finite subset of R⋆ being complete.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 15 / 17

Rule composition

Rule composition on the prime example

R1 : A(x)→ ∃z p(x, z)
R2 : p(x, z) ∧B(y)→ r(z, y)

Let us build R⋆:
R2 ◦R1 : A(x) ∧B(y)→ ∃z p(x, z) ∧ r(z, y)
R2 ◦ (R2 ◦R1) : A(x) ∧B(y) ∧B(y1)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1)
etc.
At each step, a new rule R2 ◦R∗, where R∗ is the rule created at the preceding step:
A(x) ∧B(y) ∧B(y1) . . . B(yi)→ ∃z p(x, z) ∧ r(z, y) ∧ r(z, y1) . . . ∧ r(z, yi)

What this example shows:

Completeness requires composition of the form R ◦R∗ (and not only R∗ ◦R as in datalog)

R⋆ may be infinite even if R is bounded, with no finite subset of R⋆ being complete.

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 15 / 17

Rule composition

Parallelisation by rule composition

Completeness of R⋆

If R is pieceful, then for any instance I, each piece of chase∞(I,R) can be obtained by
applying a rule from R⋆ to I.

Conjecture: this is true even if R is not pieceful

Corollary

If R is parallelisable (ie pieceful and bounded)
then it is parallelisable by a (finite) subset of R⋆

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 16 / 17

Rule composition

Another characterization of piecefulness

(Existential) stability

For a piece-unifier of body(R2) with R1: if a frontier variable of R2 is unified with an
existential variable of R1, then the whole frontier of R2 is unified

For R: all piece-unifiers with rules of R have the stability property

Existential stability may be lost when a composed rule is added

We say that R has the existential stability ‘at the infinite’ if R⋆ has the existential stability

Piecefulness = Stability at the infinite

If R is pieceful then it has the existential stability

If R is pieceful then R⋆ is pieceful (hence, R⋆ has the existential stability)

If R is stable at the infinite then it is pieceful

Maxime Buron Efficient reasoning in het. data integration systems LIMOS July 7, 2022 17 / 17

	Introduction
	RDF integration systems
	Preliminaries: querying in RDF graphs
	RDF graph
	RDFS reasoning
	Query answering

	Query answering for RDF Integration Systems
	Problem statement
	Query answering strategies
	Comparison of query answering strategies
	Conclusion

	Parallelisable existential rules: a story of pieces
	Motivation: how to answer a query in OBDA using only mappings ?
	Characterization of the parallelisable rule sets

	Appendix
	View-based rewriting details
	Rule composition

