Efficient reasoning in heterogeneous data integration systems

Maxime Buron

LIMOS
July 7, 2022

Part I

Introduction

Heterogeneous data integration

Integration system

Materialization- and mediation-based integration

Mediation with semantics a.k.a. Ontology-Based Data Access

Table of Contents

(1) RDF integration systems
(1) RDF graphs and RDFS ontologies
(2) RDF integration systems
(3) Query answering strategies on these systems
(2) Parallelisable existential rules
(1) characterization of parallelisability
(2) rule composition

Part II

RDF integration systems

thesis work supervised by François Goasdoué, Ioana Manolescu and Marie-Laure Mugnier

RDF integration systems

Preliminaries: querying in RDF graphs

RDF triple

An RDF triple contains three values among:

- IRIs
- blank nodes
- literals

RDF graph: data and RDFS ontology

Data triples of an RDF graph G :

RDF graph: data and RDFS ontology

The RDFS triples use the built-in properties:

- :subclass
- :subproperty
- :domain
- :range

Data entailment using $\mathcal{R}_{\text {data }}$

$$
\mathcal{R}_{\text {data }}=\left\{\quad\left(p_{1}, \text { :subproperty }, p_{2}\right),\left(\mathrm{s}, \mathrm{p}_{1}, o\right) \rightarrow\left(\mathrm{s}, \mathrm{p}_{2}, \mathrm{o}\right) \ldots\right\}
$$

Ontological entailment using $\mathcal{R}_{\text {onto }}$

$$
\mathcal{R}_{\text {onto }}=\left\{\quad\left(p, \text { :subproperty }, p_{1}\right),\left(p_{1}, \text { :range }, o\right) \rightarrow(p, \text { :range }, o) \quad \ldots\right\}
$$

Full saturation of the graph w.r.t. $\mathcal{R}_{\text {data }}$ and $\mathcal{R}_{\text {onto }}$

The full saturation of G is $G^{\mathcal{R}_{\text {onto }} \cup \mathcal{\mathcal { R } _ { \text { data } }} \text { : }}$

Basic Graph Pattern Queries

We consider conjunctive queries over the data and the ontology.
For instance: "Who is using what kind of object?"

$$
q(x, y) \leftarrow(x, \text { :uses }, z),(z,: \text { :type }, y),(y, \text { :subclass, :Object })
$$

The saturation-based query answering technique

- Efficient: no reasoning at query time

Cons:

- The saturation requires time to be computed and extra-space to be materialized
- The saturation needs to be recomputed on updates \rightarrow Saturation maintenance is needed

Saturation-Based Query Answering

$$
\begin{gathered}
q(x, y) \leftarrow(x,: \text { uses }, z),(z,: \text { type }, y),(y, \text { :Subclass, }: \text { Object }) \\
q\left(G^{\mathcal{R}_{\text {data }} \cup \mathcal{R}_{\text {onto }}}\right)=\begin{array}{l}
\{\langle,: \text { LightSaber }\rangle \\
\langle\Delta,: \text { Vehicle }\rangle \\
\langle\Delta,: \text { StarShip }\rangle\}
\end{array}
\end{gathered}
$$

The reformulation-based query answering technique

Pros:

- data is always up-to-date (no need to compute and store the saturation) Cons:
- Every incoming query needs to be reformulated (low overhead in practice)
- Reformulated queries may be complex, hence costly to evaluate, even by modern, highly optimized query engines \rightarrow Query optimization is needed

Query answering for RDF Integration Systems

Ontology-Based Data Access

Contributions

(1) More powerful integration setting:

- Global-Local-As-View mappings in an OBDA context
- Queries on the data and the ontology
(2) A novel query answering strategy: shifting a part of the reasoning from query time to offline
(3) Obi-Wan, a system implementing several query answering strategies

Global-Local-As-View mapping

GLAV mapping

Global-Local-As-View mapping example

RDFS ontology

RDFS reasoning in the integrated graph

RDF Integration System

Obi-Wan: a RDF Integration System implementation

Features

- supports GLAV mappings
- supports heterogeneous data sources: PostgreSQL, MongoDB, Jena TDB
- provides a RIS visualization

Demonstration

Query answering problem

All reasoning at query time (REW-CA)

Some reasoning at query time (REW-C): preprocessing

saturated graph \uparrow	
$\mathrm{R}_{\text {data }}$ data graph	
data sources	$\left.\right\|_{q_{1}(x)}$

Some reasoning at query time (REW-C): query time

Experiment settings

- Obi-Wan dependencies:
- OntoSQL (reformulation and materialization)
- Graal (rewriting using mappings)
- Tatooine (mediated query evaluation)
- RDF Integration System:
- Extension of Berlin SPARQL BenMark
- 3863 GLAV mappings
- RDFS ontology of 2011 triples
- Induced graph with 108 M triples (185M triples when saturated)
- Two data sources: One relational and one JSON

Sample comparison on an extension of BSBM

- Materialization (MAT) - kind of reference time
- Full reformulation + rewriting (REW-CA)
- Mapping saturation + partial reformulation + rewriting (REW-C)

Conclusion

(1) Global-Local-As-View mappings in OBDA context
(2) Queries on data and ontology
(3) A new scalable query answering strategy using partial reformulation and saturated mappings
(4) Obi-Wan: a query answering system supporting RDFS reasoning

Work with François Goasdoué, Ioana Manolescu, Marie-Laure Mugnier:

- Ontology-Based RDF Integration of Heterogeneous Data at EDBT 2020
- Obi-Wan demonstration at VLDB 2020: https://gitlab.inria.fr/cedar/obi-wan
- Tutorial at the summer school MDD 2022

Part III

Parallelisable existential rules: a story of pieces

joint work with Marie-Laure Mugnier and Michaël Thomazo

OBDA with existential rules

Motivation: how to answer a query in OBDA using only mappings ?

Context

Ontology-Based Data Access

knowledge base

Mappings as existential rules
Existential rules

$$
\forall \vec{x} \forall \vec{y}(\operatorname{Body}[\vec{x}, \vec{y}] \rightarrow \exists \vec{z} \operatorname{Head}[\vec{x}, \vec{z}])
$$

GLAV mappings (aka source-to-target Tuple Generating Dependencies)

$$
\forall \vec{x}(\exists \vec{y} \operatorname{Body}[\vec{x}, \vec{y}] \rightarrow \exists \vec{z} \operatorname{Head}[\vec{x}, \vec{z}])
$$

- Body is a conjunctive query on the data with answer variables \vec{x}
- Head is a conjunctive query on the vocabulary of the ontology with answer variables \vec{x}

In the following:

- Rules and mappings have no constants

Chasing with existential rules

Example

$$
\begin{array}{ll}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x)
\end{array} \quad \mathcal{R}: \quad R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z)=10 t_{4}(y)
$$

Chasing steps

- $\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R})=D=\left\{s_{1}(a, b), s_{2}(a, c)\right\}$

Chasing with existential rules

Example

$$
\begin{array}{ll|cl}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x) & \mathcal{R}: \quad R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z) \\
& R_{2}=t_{1}(x, y) \wedge t_{3}(x, z) \rightarrow t_{4}(y)
\end{array}
$$

Chasing steps

- $\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R})=D=\left\{s_{1}(a, b), s_{2}(a, c)\right\}$
- $\operatorname{chase}_{1}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{1}(a, b), t_{2}(a)\right\}$

Chasing with existential rules

Example

$$
\begin{array}{ll}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x)
\end{array} \quad \mathcal{R}: \quad R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z)=10 t_{4}(y)
$$

Chasing steps

- $\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R})=D=\left\{s_{1}(a, b), s_{2}(a, c)\right\}$
- $\operatorname{chase}_{1}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{1}(a, b), t_{2}(a)\right\}$
- $\operatorname{chase}_{2}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{1}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{3}\left(a, z_{0}\right)\right\}$

Chasing with existential rules

Example

$$
\begin{array}{ll|cl}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x) & \mathcal{R}: \quad & R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z) \\
& R_{2}=t_{1}(x, y) \wedge t_{3}(x, z) \rightarrow t_{4}(y)
\end{array}
$$

Chasing steps

- $\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R})=D=\left\{s_{1}(a, b), s_{2}(a, c)\right\}$
- $\operatorname{chase}_{1}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{0}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{1}(a, b), t_{2}(a)\right\}$
- $\operatorname{chase}_{2}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{1}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{3}\left(a, z_{0}\right)\right\}$
- $\operatorname{chase}_{3}(D, \mathcal{M} \cup \mathcal{R})=\operatorname{chase}_{2}(D, \mathcal{M} \cup \mathcal{R}) \cup\left\{t_{4}(b)\right\}$

Virtual instance
$I_{D, \mathcal{M}}=\operatorname{chase}_{1}(D, \mathcal{M})$

Context

knowledge base

D
$I_{D, \mathcal{M}}$
\mathcal{R}

Context

OBDA classical mediation-based query answering method

Context

OBDA classical mediation-based query answering method

D

Context

OBDA query answering by compiling the rules into the mappings
knowledge base

Example

Composing \mathcal{M} with \mathcal{R}

$$
\begin{array}{cl}
\mathcal{M}: \quad & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x) \\
\\
\mathcal{M}^{\prime}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x)
\end{array}
$$

$$
\begin{array}{ll}
\mathcal{R}: & R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z) \\
& R_{2}=t_{1}(x, y) \wedge t_{3}(x, z) \rightarrow t_{4}(y)
\end{array}
$$

Example

Composing \mathcal{M} with \mathcal{R}

$$
\begin{array}{ll}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x)
\end{array} \quad \mathcal{R}: \quad R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z)=10 t_{4}(y)
$$

$\mathcal{M}^{\prime}: M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y)$
$M_{2}=s_{2}(x, y) \rightarrow t_{2}(x)$
$M_{3}=R_{1} \circ M_{2}=s_{2}(x, y) \rightarrow \exists z t_{3}(x, z)$

Example

Composing \mathcal{M} with \mathcal{R}

$$
\begin{array}{ll|cl}
\mathcal{M}: & M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x) & \mathcal{R}: \quad & R_{1}=t_{2}(x) \rightarrow \exists z t_{3}(x, z) \\
& R_{2}=t_{1}(x, y) \wedge t_{3}(x, z) \rightarrow t_{4}(y)
\end{array}
$$

$$
\begin{aligned}
& \mathcal{M}^{\prime}: M_{1}=s_{1}(x, y) \rightarrow t_{1}(x, y) \\
& M_{2}=s_{2}(x, y) \rightarrow t_{2}(x) \\
& M_{3}=R_{1} \circ M_{2}=s_{2}(x, y) \rightarrow \exists z t_{3}(x, z) \\
& M_{4}=\left(R_{2} \circ M_{1}\right) \circ M_{3}=s_{1}(x, y) \wedge s_{2}(x, z) \rightarrow t_{4}(y)
\end{aligned}
$$

Context

OBDA query answering by compiling the rules into the mappings
knowledge base

Characterization of the parallelisable rule sets

Research question and contributions

Research question: When can the chase be simulated in a single breadth-first step?
\mathcal{R} is parallelisable if there exists a finite rule set independent from any instance able to produce an equivalent chase of \mathcal{R} in a single step.
\Rightarrow How to characterize parallelisable sets of rules?

Contributions

- Parallelisable $=$ Bounded + Pieceful

- Links between parallelisability and rule composition

Parallelisability

\mathcal{R} is parallelisable if there exists a finite rule set \mathcal{R}^{\prime} such that for any instance I :
(1) there is an injective homomorphism from chase $_{\infty}(I, \mathcal{R})$ to $\operatorname{chase}_{1}\left(I, \mathcal{R}^{\prime}\right)$
(2) there is a homomorphism from $\operatorname{chase}_{1}\left(I, \mathcal{R}^{\prime}\right)$ to $\operatorname{chase}_{\infty}(I, \mathcal{R})$

Parallelisability ensures boundedness

\mathcal{R} is bounded if there is k s.t. for any instance $I, \operatorname{chase}_{k}(I, \mathcal{R})=\operatorname{chase}_{\infty}(I, \mathcal{R})$

If \mathcal{R} is parallelisable then it is bounded, but the converse does not hold

Key notion: Piece

Piece

Minimal set of atoms 'glued' by nulls in the chase or by existential variables in rule heads.

$$
\begin{aligned}
& p(a, b), \\
& p(b, c), \\
& q\left(a, z_{0}\right), q\left(z_{0}, z_{1}\right), q\left(b, z_{1}\right), \\
& q\left(c, z_{2}\right)
\end{aligned}
$$

In the following:
We consider that the rules are decomposed in rules having a single-piece head.

Boundedness does not ensure parallelisability

$$
\operatorname{chase}_{\infty}\left(I_{n}, \mathcal{R}\right)=
$$

Prime example (bounded)
$R_{1}: A(x) \rightarrow \exists z p(x, z)$
$R_{2}: p(x, z) \wedge B(y) \rightarrow r(z, y)$
$I_{n}=\left\{A(a), B\left(b_{1}\right), \ldots, B\left(b_{n}\right)\right\}$

For any n, chase $_{\infty}\left(I_{n}, \mathcal{R}\right)$ contains a piece of $n+1$ atoms, hence this rule set is not parallelisable.

A new class: Pieceful

The frontier variables of a rule are the shared variables between its body and head.
\mathcal{R} is pieceful if for any trigger (R, π) in any derivation with \mathcal{R},

- either $\pi($ frontier $(R))$ belongs to the terms of the initial instance
- or $\pi($ frontier $(R))$ belongs to the terms of atoms brought by a single previous rule application.

Prime example is not pieceful

$$
\begin{aligned}
& \text { Prime example (bounded) } \\
& R_{1}: A(x) \rightarrow \exists z p(x, z) \\
& R_{2}: p(x, z) \wedge B(y) \rightarrow r(z, y) \\
& I_{n}=\left\{A(a), B\left(b_{1}\right), \ldots, B\left(b_{n}\right)\right\}
\end{aligned}
$$

First trigger: $\left(R_{1},\{x \mapsto a\}\right.$; creates $p\left(a, z_{0}\right)$ Then: $\left(R_{2},\left\{x \mapsto a, \mathrm{z} \mapsto \mathrm{z}_{0}, \mathrm{y} \mapsto \mathrm{b}_{1}\right\}\right)$

$$
\operatorname{chase}_{\infty}\left(I_{n}, \mathcal{R}\right)=
$$

Parallelisability \Rightarrow Piecefulness

Why? If a rule set \mathcal{R} is not pieceful, one can create an instance I_{n} s.t. chase $\left(I_{n}, \mathcal{R}\right)$ has a null that occurs in at least n atoms.

New landscape

(with data complexity of conjunctive query entailment)

Parallelisability $=$ Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

Parallelisability $=$ Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

Boundedness + Piecefulness \Rightarrow Parallelisability

Parallelisability $=$ Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

Boundedness + Piecefulness \Rightarrow Parallelisability

Parallelisabillity is undecidable
Since the piecefull includes Datalog and the boundedness in Datalog is undecidable.

Conclusion and perspectives

To conclude

- Parallelisable $=$ Bounded + Pieceful
- Links between parallelisability and rule composition

Open issues

- Better understand rule composition to compute parallelisation in practice
- Better understand the properties of the pieceful class
- More succint rule composition based on rule skolemization? It would lead beyond (skolemized) existential rules when rules are not pieceful

RDF Entailment rules for data management

	Rule name	Entailment rule
\mathcal{R}	rdfs5	$\left(\mathrm{p}_{1}\right.$, :subproperty, $\left.\mathrm{p}_{2}\right),\left(\mathrm{p}_{2}\right.$, :subproperty, $\left.\mathrm{p}_{3}\right) \rightarrow\left(\mathrm{p}_{1}\right.$, :subproperty, $\left.\mathrm{p}_{3}\right)$
	rdfs11	$\left(\mathrm{s}\right.$, :subclass, o), (o, :subclass, $\left.\mathrm{o}_{1}\right) \rightarrow\left(\mathrm{s}\right.$, :subclass, o_{1})
	ext1	$\left(\mathrm{p}\right.$, :domain, o), (o, :subclass, $\left.\circ_{1}\right) \rightarrow\left(\mathrm{p}\right.$, :domain, $\left.\circ_{1}\right)$
	ext2	$(\mathrm{p}$, :range, o $),\left(\mathrm{o}\right.$, :subclass, $\left.\mathrm{o}_{1}\right) \rightarrow\left(\mathrm{p}\right.$, :range, $\left.\mathrm{o}_{1}\right)$
	ext3	(p, :subproperty, $\left.\mathrm{p}_{1}\right),\left(\mathrm{p}_{1}\right.$, :domain, o $) \rightarrow$ (p, :domain, o)
	ext4	$\left(\mathrm{p}\right.$, :subproperty, $\left.\mathrm{p}_{1}\right),\left(\mathrm{p}_{1}\right.$, :range, o $) \rightarrow$ (p, :range, o)
	rdfs2	$\left(\mathrm{p}\right.$, :domain, o) , $\left.\mathrm{s}_{1}, \mathrm{p}, \mathrm{o}_{1}\right) \rightarrow\left(\mathrm{s}_{1},:\right.$ type, o)
	rdfs3	$\left(\mathrm{p}\right.$, :range, o), ($\left.\mathrm{s}_{1}, \mathrm{p}, \mathrm{o}_{1}\right) \rightarrow\left(\mathrm{o}_{1},:\right.$ type, o $)$
	rdfs7	$\left(\mathrm{p}_{1}\right.$, :subproperty, $\left.\mathrm{p}_{2}\right),\left(\mathrm{s}, \mathrm{p}_{1}, \mathrm{o}\right) \rightarrow\left(\mathrm{s}, \mathrm{p}_{2}, \mathrm{o}\right)$
	rdfs9	$\left(\mathrm{s}\right.$, :subclass, o), (s_{1}, :type, s$) \rightarrow\left(\mathrm{s}_{1}\right.$, :type, o)

View-based rewriting details

Global-Local-As-View Mapping Example (2)

Breaking Global-Local-As-View Mappings into Views

We decompose the GLAV mappings into GAV and LAV views.
(1) $m_{\text {pilot }}=q_{S Q L}($ name $) \rightarrow$ (name, :pilotOf, $\left.y\right),(y$, :type, :Starship $)$

GAV $V_{\text {pilot }}($ name $) \leftarrow q_{S Q L}($ name $)$
LAV $V_{\text {pilot }}($ name $) \leftarrow($ name, :pilotOf, $y),(y$, :type, :Starship $)$

Breaking Global-Local-As-View Mappings into Views

We decompose the GLAV mappings into GAV and LAV views.
(1) $m_{\text {pilot }}=q_{S Q L}($ name $) \rightarrow$ (name, :pilotOf, $\left.y\right),(y$, :type, :Starship $)$

GAV $V_{\text {pilot }}($ name $) \leftarrow q_{S Q L}$ (name)
LAV $V_{\text {pilot }}($ name $) \leftarrow($ name, :pilotOf, $y),(y$, :type, :Starship $)$
(2) $m_{\text {jedi }}=q_{M O N G O}($ name, saber $) \rightarrow$
(name, :usesWeapon, saber), (saber, :type, :LightSaber)
GAV $V_{\text {jedi }}($ name, saber $) \leftarrow q_{M O N G O}($ name, saber $)$
LAV $V_{\text {jedi }}($ name, saber $) \leftarrow$ (name, :usesWeapon, saber), (saber, :type, :LightSaber)

LAV views will be used to perform a query rewriting.

All Reasoning at Query Time (REW-CA)

All Reasoning at Query Time (REW-CA): Example

The query reformulation of $q(x, y) \leftarrow(x$, :uses, $z),(z$, :type, $y),(y$, :subclass, :Object $)$
$\mathcal{Q}_{o, d}=q_{o, 1}(x,:$ LightSaber $) \leftarrow(x$, :uses,$z),(z$, :type, :LightSaber $)$
$\cup q_{d, 1}(x$, :LightSaber $) \leftarrow(x$, :usesWeapon, $z),(z$, :type, :LightSaber $)$
$\cup \quad q_{o, 2}(x,:$ Vehicle $) \leftarrow(x$, :uses, $z),(z,:$ type, $:$ Vehicle $)$
$\cup \quad q_{d, 6}(x,:$ Vehicle $) \leftarrow(x$, :pilotOf, $z),(z$, :type, :StarShip $)$
$\cup \quad q_{o, 3}(x,:$ StarShip $) \leftarrow(x$, :uses,$z),(z,:$ type, :StarShip $)$
$\cup \quad q_{d, 8}(x,:$ StarShip $) \leftarrow(x,:$ pilotOf, $z),(z,:$ type, $:$ StarShip $)$
\cup...
must be evaluated on the non-saturated virtual graph

using view-based query rewriting

All Reasoning at Query Time (REW-CA): Example

The query reformulation of $q(x, y) \leftarrow(x$, :uses, $z),(z$, :type, $y),(y$, :subclass, :Object $)$ $\mathcal{Q}_{o, d}=q_{o, 1}(x,:$ LightSaber $) \leftarrow(x$, :uses,$z),(z$, :type, $:$ LightSaber $)$
$\cup \quad q_{d, 1}(x$, LightSaber $) \leftarrow(x$, :usesWeapon, $z),(z$, :type, :LightSaber $)$
$\cup \quad q_{o, 2}(x$, :Vehicle $) \leftarrow(x$, :uses,$z),(z,:$ type, :Vehicle $)$
$\cup \quad q_{d, 6}(x$, :Vehicle $) \leftarrow(x$, :pilotOf, $z),(z$, :type, :StarShip $)$
$\cup \quad q_{o, 3}(x,:$ StarShip $) \leftarrow(x$, :uses, $z),(z,:$ type, :StarShip $)$
$\cup \quad q_{d, 8}(x,:$ StarShip $) \leftarrow(x$, pilotOf, $z),(z,:$ type, $:$ StarShip $)$
\cup

We use LAV views

$V_{\text {pilot }}$ (name) \leftarrow (name, :pilotOf, $\left.y\right),(y$, :type, :Starship)
$V_{\text {jedi }}($ name, saber $) \leftarrow$ (name, :usesWeapon, saber), (saber, :type, :LightSaber)
to rewrite the reformulations into
rew $=\operatorname{rew} 1(x,:$ LightSaber $) \leftarrow V_{\text {jedi }}(x$, saber $)$
$\cup \quad$ rew $2(x,:$ Vehicle $) \leftarrow V_{\text {pilot }}(x)$
$\cup \quad$ rew3 $(x,:$ StarShip $) \leftarrow V_{\text {pilot }}(x)$

Some Reasoning at Query Time (REW-C): Preprocessing

Some Reasoning at Query Time (REW-C): Mapping Saturation Example

We saturate the LAV view definitions using $\mathcal{R}_{\text {data }}$ and the ontology.

$$
\begin{aligned}
& \left.V_{\text {pilot }}(\text { name }) \leftarrow \text { (name, :pilotOf, } y\right),(y, \text { :type, :Starship }), \\
& \text { (name, :uses, } y \text {), (} y \text {, :type, :Vehicle), (} y \text {,:type, :Object) } \\
& V_{\text {jedi }}(\text { name, saber }) \leftarrow \text { (name, :usesWeapon, saber), (saber, :type, :LightSaber) } \\
& \text { (name, :uses, saber), (saber, :type, :Object) }
\end{aligned}
$$

Some Reasoning at Query Time (REW-C): Query Time

Some Reasoning at Query Time (REW-C): Example

The query reformulation of $q(x, y) \leftarrow(x$, :uses, $z),(z$,:type, $y),(y$, :subclass, :Object $)$
$\mathcal{Q}_{o}=q_{o, 1}(x,:$ LightSaber $) \leftarrow(x$, :uses, $z),(z,:$ type, :LightSaber $)$
$\cup \quad q_{o, 2}(x,:$ Vehicle $) \leftarrow(x$, :uses, $z),(z,:$ type,$:$ Vehicle $)$
$\cup \quad q_{o, 3}(x,:$ StarShip $) \leftarrow(x$, :uses, $z),(z,:$ type, :StarShip $)$
must be evaluated on the saturated virtual graph

using view-based query rewriting

Some Reasoning at Query Time (REW-C): Example

The query reformulation of $q(x, y) \leftarrow(x$, :uses, $z),(z$, :type, $y),(y$, :subclass, :Object $)$

$$
\begin{aligned}
\mathcal{Q}_{o} & =q_{o, 1}(x,: \text { LightSaber }) \leftarrow(x,: \text { uses, }, z),(z, \text { :type, :LightSaber }) \\
& \cup q_{o, 2}(x,: \text { Vehicle }) \leftarrow(x, \text { :uses, } z),(z,: \text { type, :Vehicle }) \\
& \cup q_{o, 3}(x,: \text { StarShip }) \leftarrow(x,: \text { uses }, z),(z, \text { :type, :StarShip })
\end{aligned}
$$

We use the saturated LAV views

$$
\begin{aligned}
V_{\text {pilot }}(\text { name }) & (\text { name }: \text { :pilotOf, } y),(y,: \text { type, :Starship }), \\
& (\text { name },: \text { uses }, y),(y,: \text { type },: \text { Vehicle }),(y,: \text { type },: \text { Object })
\end{aligned}
$$

$$
V_{\text {jedi }}(\text { name, saber }) \leftarrow \text { (name, :usesWeapon, saber), (saber, :type, :LightSaber) }
$$

(name, :uses, saber), (saber, :type, :Object)
to rewrite the reformulation into
rew $=\operatorname{rew} 1(x,:$ LightSaber $) \leftarrow V_{\text {jedi }}(x$, saber $)$
\cup rew2 $(x$, :Vehicle $) \leftarrow V_{\text {pilot }}(x)$
$\cup \quad \operatorname{rew} 3(x,:$ StarShip $) \leftarrow V_{\text {pilot }}(x)$

Rule composition

Rule composition

Datalog unfolding

For datalog rules: parallelisability $=$ boundedness
A parallelisation of \mathcal{R} can be computed by 'unfolding' the rules from \mathcal{R}. \mathcal{R}^{\star} : starting from \mathcal{R}, we repeatedly unfold a rule from \mathcal{R}^{\star} with a rule from \mathcal{R}.

Denoting $R_{i} \circ R_{j}$ the unfolding of R_{i} by R_{j}, we obtain:

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} R_{1}: A(x) \rightarrow B(x) \\
& R_{2}: C(x) \rightarrow D(x) \\
& R_{3}: B(x) \wedge D(x) \rightarrow G(x)
\end{aligned}
$$

Rule composition

Datalog unfolding

For datalog rules: parallelisability $=$ boundedness
A parallelisation of \mathcal{R} can be computed by 'unfolding' the rules from \mathcal{R}. \mathcal{R}^{\star} : starting from \mathcal{R}, we repeatedly unfold a rule from \mathcal{R}^{\star} with a rule from \mathcal{R}.

Denoting $R_{i} \circ R_{j}$ the unfolding of R_{i} by R_{j}, we obtain:

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} R_{1}: A(x) \rightarrow B(x) \\
& R_{2}: C(x) \rightarrow D(x) \\
& R_{3}: B(x) \wedge D(x) \rightarrow G(x)
\end{aligned}
$$

Rule composition

Datalog unfolding

For datalog rules: parallelisability $=$ boundedness
A parallelisation of \mathcal{R} can be computed by 'unfolding' the rules from \mathcal{R}. \mathcal{R}^{\star} : starting from \mathcal{R}, we repeatedly unfold a rule from \mathcal{R}^{\star} with a rule from \mathcal{R}.

Denoting $R_{i} \circ R_{j}$ the unfolding of R_{i} by R_{j}, we obtain:

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} R_{1}: A(x) \rightarrow B(x) \\
& R_{2}: C(x) \rightarrow D(x) \\
& R_{3}: B(x) \wedge D(x) \rightarrow G(x)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{1}: A(x) \wedge D(x) \rightarrow G(x) \\
& R_{3} \circ R_{2}: B(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{1}\right) \circ R_{2}: A(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{2}\right) \circ R_{1}=\left(R_{3} \circ R_{1}\right) \circ R_{2} \\
& \mathcal{R}^{\star}=\mathcal{R} \cup\left\{R_{3} \circ R_{1}, R_{3} \circ R_{2},\left(R_{3} \circ R_{1}\right) \circ R_{2}\right\}
\end{aligned}
$$

Rule composition

Datalog unfolding

For datalog rules: parallelisability $=$ boundedness
A parallelisation of \mathcal{R} can be computed by 'unfolding' the rules from \mathcal{R}. \mathcal{R}^{\star} : starting from \mathcal{R}, we repeatedly unfold a rule from \mathcal{R}^{\star} with a rule from \mathcal{R}.

Denoting $R_{i} \circ R_{j}$ the unfolding of R_{i} by R_{j}, we obtain:

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} R_{1}: A(x) \rightarrow B(x) \\
& R_{2}: C(x) \rightarrow D(x) \\
& R_{3}: B(x) \wedge D(x) \rightarrow G(x)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{1}: A(x) \wedge D(x) \rightarrow G(x) \\
& R_{3} \circ R_{2}: B(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{1}\right) \circ R_{2}: A(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{2}\right) \circ R_{1}=\left(R_{3} \circ R_{1}\right) \circ R_{2} \\
& \mathcal{R}^{\star}=\mathcal{R} \cup\left\{R_{3} \circ R_{1}, R_{3} \circ R_{2},\left(R_{3} \circ R_{1}\right) \circ R_{2}\right\}
\end{aligned}
$$

Remark: $\mathcal{R}^{\star}=\{\operatorname{rewriting}(\operatorname{body}(R)) \rightarrow \operatorname{head}(R) \mid R \in \mathcal{R}\}$

Rule composition

Datalog unfolding

For datalog rules: parallelisability $=$ boundedness
A parallelisation of \mathcal{R} can be computed by 'unfolding' the rules from \mathcal{R}. \mathcal{R}^{\star} : starting from \mathcal{R}, we repeatedly unfold a rule from \mathcal{R}^{\star} with a rule from \mathcal{R}.

Denoting $R_{i} \circ R_{j}$ the unfolding of R_{i} by R_{j}, we obtain:

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} R_{1}: A(x) \rightarrow B(x) \\
& R_{2}: C(x) \rightarrow D(x) \\
& R_{3}: B(x) \wedge D(x) \rightarrow G(x)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{1}: A(x) \wedge D(x) \rightarrow G(x) \\
& R_{3} \circ R_{2}: B(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{1}\right) \circ R_{2}: A(x) \wedge C(x) \rightarrow G(x) \\
& \left(R_{3} \circ R_{2}\right) \circ R_{1}=\left(R_{3} \circ R_{1}\right) \circ R_{2} \\
& \mathcal{R}^{\star}=\mathcal{R} \cup\left\{R_{3} \circ R_{1}, R_{3} \circ R_{2},\left(R_{3} \circ R_{1}\right) \circ R_{2}\right\}
\end{aligned}
$$

Remark: $\mathcal{R}^{\star}=\{\operatorname{rewriting}(\operatorname{body}(R)) \rightarrow \operatorname{head}(R) \mid R \in \mathcal{R}\}$

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}: A(x) \rightarrow \exists y p(x, y) \\
& R_{2}: p(x, y) \rightarrow \exists z s(y, z) \\
& R_{3}: p(x, y) \wedge s(y, z) \rightarrow B(z)
\end{aligned}
$$

$R_{3}-R_{+}$impossible because of the piece-unifier

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}: A(x) \rightarrow \exists y p(x, y) \\
& R_{2}: p(x, y) \rightarrow \exists z s(y, z) \\
& R_{3}: p(x, y) \wedge s(y, z) \rightarrow B(z)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{4} \text { impossible because of the piece-unifier } \\
& R_{2} \circ R_{1}: A(x) \rightarrow \exists y, z p(x, y) \wedge s(y, z)
\end{aligned}
$$

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}: A(x) \rightarrow \exists y p(x, y) \\
& R_{2}: p(x, y) \rightarrow \exists z s(y, z) \\
& R_{3}: p(x, y) \wedge s(y, z) \rightarrow B(z)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{1} \text { impossible because of the piece-unifier } \\
& R_{2} \circ R_{1}: A(x) \rightarrow \exists y, z p(x, y) \wedge s(y, z) \\
& R_{3} \circ\left(R_{2} \circ R_{1}\right): A(x) \rightarrow \exists y, z p(x, y) \wedge s(y, z), B(z)
\end{aligned}
$$

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}: A(x) \rightarrow \exists y p(x, y) \\
& R_{2}: p(x, y) \rightarrow \exists z s(y, z) \\
& R_{3}: p(x, y) \wedge s(y, z) \rightarrow B(z)
\end{aligned}
$$

Rule composition

Existential rules

Unfolding extended to (single-piece) existential rules

- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)
- Keeps single-piece rules

$$
\begin{aligned}
& \mathcal{R}=\left\{R_{1}, R_{2}, R_{3}\right\} \\
& R_{1}: A(x) \rightarrow \exists y p(x, y) \\
& R_{2}: p(x, y) \rightarrow \exists z s(y, z) \\
& R_{3}: p(x, y) \wedge s(y, z) \rightarrow B(z)
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \circ R_{4} \text { impossible because of the piece-unifier } \\
& R_{2} \circ R_{1}: A(x) \rightarrow \exists y, z p(x, y) \wedge s(y, z) \\
& R_{3} \circ\left(R_{2} \circ R_{1}\right): A(x) \rightarrow \exists y, z p(x, y) \wedge s(y, z), B(z) \\
& R_{3} \circ R_{2}: p(x, y) \rightarrow \exists z s(y, z), B(z) \\
& \left(R_{3} \circ R_{2}\right) \circ R_{1}=R_{3} \circ\left(R_{2} \circ R_{1}\right) \\
& \mathcal{R}^{\star}=\mathcal{R} \cup\left\{R_{2} \circ R_{1}, R_{3} \circ R_{2},\left(R_{3} \circ R_{2}\right) \circ R_{1}\right\}
\end{aligned}
$$

Soundness and completeness of $\mathcal{R}^{\star}: I, \mathcal{R} \models q$ iff $\operatorname{chase}_{1}\left(I, \mathcal{R}^{\star}\right) \models q$

Details on existential rule composition $R_{2} \circ R_{1}$

Given $R_{1}: B_{1} \rightarrow H_{1}$ and $R_{2}: B_{2} \rightarrow H_{2}$ and $\mu=\left(B_{2}^{\prime}, H_{1}^{\prime}, u\right)$ a piece-unifier of B_{2} with R_{1} :
(1) If $u\left(\right.$ frontier $\left.\left(R_{2}\right)\right) \cap \operatorname{exist}\left(R_{1}\right)=\emptyset$:

$$
R_{2} \circ_{\mu} R_{1}=u\left(B_{1}\right) \cup u\left(B_{2} \backslash B_{2}^{\prime}\right) \rightarrow u\left(H_{2}\right)
$$

(2) Otherwise:

$$
R_{2} \circ_{\mu} R_{1}=u\left(B_{1}\right) \cup u\left(B_{2} \backslash B_{2}^{\prime}\right) \rightarrow u\left(H_{1}\right) \cup u\left(H_{2}\right)
$$

In short: if no frontier variable of R_{2} is unified with an existential variable of R_{1}, the head of R_{1} can be safely ignored, which allows to keep single-piece rules

Details on existential rule composition $R_{2} \circ R_{1}$

Given $R_{1}: B_{1} \rightarrow H_{1}$ and $R_{2}: B_{2} \rightarrow H_{2}$ and $\mu=\left(B_{2}^{\prime}, H_{1}^{\prime}, u\right)$ a piece-unifier of B_{2} with R_{1} :
(1) If $u\left(\right.$ frontier $\left.\left(R_{2}\right)\right) \cap \operatorname{exist}\left(R_{1}\right)=\emptyset$:

$$
R_{2} \circ_{\mu} R_{1}=u\left(B_{1}\right) \cup u\left(B_{2} \backslash B_{2}^{\prime}\right) \rightarrow u\left(H_{2}\right)
$$

(2) Otherwise:

$$
R_{2} \circ_{\mu} R_{1}=u\left(B_{1}\right) \cup u\left(B_{2} \backslash B_{2}^{\prime}\right) \rightarrow u\left(H_{1}\right) \cup u\left(H_{2}\right)
$$

In short: if no frontier variable of R_{2} is unified with an existential variable of R_{1}, the head of R_{1} can be safely ignored, which allows to keep single-piece rules

Definition of \mathcal{R}^{\star} the composed rules from \mathcal{R} :
starting from \mathcal{R}, we repeatedly compose the rules in \mathcal{R}^{\star} pairwise.

Rule composition on the prime example

$$
\begin{aligned}
& R_{1}: A(x) \rightarrow \exists z p(x, z) \\
& R_{2}: p(x, z) \wedge B(y) \rightarrow r(z, y)
\end{aligned}
$$

Let us build \mathcal{R}^{\star} :
$R_{2} \circ R_{1}: A(x) \wedge B(y) \rightarrow \exists z p(x, z) \wedge r(z, y)$

Rule composition on the prime example

$$
\begin{aligned}
& R_{1}: A(x) \rightarrow \exists z p(x, z) \\
& R_{2}: p(x, z) \wedge B(y) \rightarrow r(z, y)
\end{aligned}
$$

Let us build \mathcal{R}^{\star} :
$R_{2} \circ R_{1}: A(x) \wedge B(y) \rightarrow \exists z p(x, z) \wedge r(z, y)$
$R_{2} \circ\left(R_{2} \circ R_{1}\right): A(x) \wedge B(y) \wedge B\left(y_{1}\right) \rightarrow \exists z p(x, z) \wedge r(z, y) \wedge r\left(z, y_{1}\right)$

Rule composition on the prime example

$R_{1}: A(x) \rightarrow \exists z p(x, z)$
$R_{2}: p(x, z) \wedge B(y) \rightarrow r(z, y)$

Let us build \mathcal{R}^{\star} :
$R_{2} \circ R_{1}: A(x) \wedge B(y) \rightarrow \exists z p(x, z) \wedge r(z, y)$
$R_{2} \circ\left(R_{2} \circ R_{1}\right): A(x) \wedge B(y) \wedge B\left(y_{1}\right) \rightarrow \exists z p(x, z) \wedge r(z, y) \wedge r\left(z, y_{1}\right)$
etc.
At each step, a new rule $R_{2} \circ R^{*}$, where R^{*} is the rule created at the preceding step: $A(x) \wedge B(y) \wedge B\left(y_{1}\right) \ldots B\left(y_{i}\right) \rightarrow \exists z p(x, z) \wedge r(z, y) \wedge r\left(z, y_{1}\right) \ldots \wedge r\left(z, y_{i}\right)$

What this example shows:

- Completeness requires composition of the form $R \circ R^{*}$ (and not only $R^{*} \circ R$ as in datalog)
- \mathcal{R}^{\star} may be infinite even if \mathcal{R} is bounded, with no finite subset of \mathcal{R}^{\star} being complete.

Parallelisation by rule composition

Completeness of \mathcal{R}^{\star}
If \mathcal{R} is pieceful, then for any instance I, each piece of $\operatorname{chase}_{\infty}(I, \mathcal{R})$ can be obtained by applying a rule from \mathcal{R}^{\star} to I.

Conjecture: this is true even if \mathcal{R} is not pieceful

Corollary
If \mathcal{R} is parallelisable (ie pieceful and bounded) then it is parallelisable by a (finite) subset of \mathcal{R}^{\star}

Another characterization of piecefulness

(Existential) stability

- For a piece-unifier of $\operatorname{body}\left(R_{2}\right)$ with R_{1} : if a frontier variable of R_{2} is unified with an existential variable of R_{1}, then the whole frontier of R_{2} is unified
- For \mathcal{R} : all piece-unifiers with rules of \mathcal{R} have the stability property

Existential stability may be lost when a composed rule is added
We say that \mathcal{R} has the existential stability 'at the infinite' if \mathcal{R}^{\star} has the existential stability
Piecefulness $=$ Stability at the infinite

- If \mathcal{R} is pieceful then it has the existential stability
- If \mathcal{R} is pieceful then \mathcal{R}^{\star} is pieceful (hence, \mathcal{R}^{\star} has the existential stability)
- If \mathcal{R} is stable at the infinite then it is pieceful

