Parallelisable Existential Rules: a Story of Pieces

Maxime Buron, Marie-Laure Mugnier, Michaël Thomazo

BDA 2022, 25/10/2022

Motivation: how to answer a query in OBDA using only mappings ?

2 Characterization of the parallelisable rule sets

Motivation: how to answer a query in OBDA using only mappings ?

Context Ontology-Based Data Access

Mappings as existential rules

Existential rules

 $\forall \vec{x} \; \forall \vec{y} \; (\; \mathsf{Body}[\vec{x}, \vec{y}] \to \exists \vec{z} \; \mathsf{Head}[\vec{x}, \vec{z}] \;)$

Mappings (aka source-to-target Tuple Generating Dependencies)

 $\forall \vec{x} \ (\ \exists \vec{y} \ \mathsf{Body}[\vec{x}, \vec{y}] \to \exists \vec{z} \ \mathsf{Head}[\vec{x}, \vec{z}] \)$

- Body is a conjunctive query on the data with answer variables \vec{x}
- Head is a conjunctive query on the vocabulary of the ontology with answer variables $ec{x}$

In the following:

• Rules and mappings have no constants

Chasing with existential rules Example

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \wedge t_3(x,z) \to t_4(y) \end{array}$$

• chase₀(D,
$$\mathcal{M} \cup \mathcal{R}$$
) = D = {s₁(a, b), s₂(a, c)}

Chasing with existential rules Example

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \land t_3(x,z) \to t_4(y) \end{array}$$

- chase₀(D, $\mathcal{M} \cup \mathcal{R}$) = D = { $s_1(a, b), s_2(a, c)$ }
- chase₁(D, $\mathcal{M} \cup \mathcal{R}$) = chase₀(D, $\mathcal{M} \cup \mathcal{R}$) \cup { $t_1(a, b), t_2(a)$ }

Chasing with existential rules Example

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \land t_3(x,z) \to t_4(y) \end{array}$$

- chase₀(D, $\mathcal{M} \cup \mathcal{R}$) = D = {s₁(a, b), s₂(a, c)}
- chase₁(D, $\mathcal{M} \cup \mathcal{R}$) = chase₀(D, $\mathcal{M} \cup \mathcal{R}$) \cup { $t_1(a, b), t_2(a)$ }
- chase₂(D, $\mathcal{M} \cup \mathcal{R}$) = chase₁(D, $\mathcal{M} \cup \mathcal{R}$) $\cup \{t_3(a, z_0)\}$

Chasing with existential rules Example

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \wedge t_3(x,z) \to t_4(y) \end{array}$$

- chase₀(D, $\mathcal{M} \cup \mathcal{R}$) = D = {s₁(a, b), s₂(a, c)}
- chase₁(D, $\mathcal{M} \cup \mathcal{R}$) = chase₀(D, $\mathcal{M} \cup \mathcal{R}$) \cup { $t_1(a, b), t_2(a)$ }
- chase₂(D, $\mathcal{M} \cup \mathcal{R}$) = chase₁(D, $\mathcal{M} \cup \mathcal{R}$) $\cup \{t_3(a, z_0)\}$
- chase₃(D, $\mathcal{M} \cup \mathcal{R}$) = chase₂(D, $\mathcal{M} \cup \mathcal{R}$) \cup { $t_4(b)$ }

Context

Ontology-Based Data Access with existential rules

Context OBDA classical mediation-based query answering method

 \mathcal{M}

 $I_{D,\mathcal{M}}$

Context OBDA classical mediation-based query answering method

Context

OBDA query answering by compiling the rules into the mappings

Parallelisable Existential Rules: a Story of Pieces

10/28

$\begin{array}{l} \mbox{Example} \\ \mbox{Composing } \mathcal{M} \mbox{ with } \mathcal{R} \end{array}$

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \land t_3(x,z) \to t_4(y) \end{array}$$

$$\mathcal{M}': \ M_1 = s_1(x, y) \to t_1(x, y)$$
$$M_2 = s_2(x, y) \to t_2(x)$$

$\begin{array}{l} \mbox{Example} \\ \mbox{Composing } \mathcal{M} \mbox{ with } \mathcal{R} \end{array}$

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} | \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \wedge t_3(x,z) \to t_4(y) \end{array}$$

$$\begin{aligned} \mathcal{M}': \ M_1 &= s_1(x,y) \to t_1(x,y) \\ M_2 &= s_2(x,y) \to t_2(x) \\ M_3 &= R_1 \circ M_2 = s_2(x,y) \to \exists z \ t_3(x,z) \end{aligned}$$

$\begin{array}{l} \mbox{Example} \\ \mbox{Composing } \mathcal{M} \mbox{ with } \mathcal{R} \end{array}$

$$\begin{array}{c|c} \mathcal{M}: & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \end{array} \end{array} \qquad \begin{array}{c|c} \mathcal{R}: & R_1 = t_2(x) \to \exists z \ t_3(x,z) \\ & R_2 = t_1(x,y) \wedge t_3(x,z) \to t_4(y) \end{array}$$

$$\begin{aligned} \mathcal{M}' \colon & M_1 = s_1(x,y) \to t_1(x,y) \\ & M_2 = s_2(x,y) \to t_2(x) \\ & M_3 = R_1 \circ M_2 = s_2(x,y) \to \exists z \ t_3(x,z) \\ & M_4 = (R_2 \circ M_1) \circ M_3 = s_1(x,y) \land s_2(x,z) \to t_4(y) \end{aligned}$$

Context

OBDA query answering by compiling the rules into the mappings

Maxime Buron, Marie-Laure Mugnier, Michaël Thomazo

Parallelisable Existential Rules: a Story of Pieces

12/28

Characterization of the parallelisable rule sets

Research question and contributions

- Research question: When can the chase be simulated in a single breadth-first step?
- \mathcal{R} is parallelisable if there exists a *finite* rule set *independent from any instance* able to produce an equivalent chase of \mathcal{R} in a single step.

 \Rightarrow How to characterize parallelisable sets of rules?

Contributions

- Parallelisable = Bounded + Pieceful
- Links between parallelisability and rule composition

Parallelisability

 \mathcal{R} is parallelisable if there exists a **finite** rule set \mathcal{R}' such that for any instance I:

- **(**) there is an **injective homomorphism** from $chase_{\infty}(I, \mathcal{R})$ to $chase_1(I, \mathcal{R}')$
- **2** there is a homomorphism from $chase_1(I, \mathcal{R}')$ to $chase_{\infty}(I, \mathcal{R})$

Parallelisability ensures boundedness

 \mathcal{R} is bounded if there is k s.t. for any instance I, $chase_k(I, \mathcal{R}) = chase_{\infty}(I, \mathcal{R})$

If \mathcal{R} is *parallelisable* then it is bounded, but the converse does not hold

Key notion: Piece

Piece

Minimal set of atoms 'glued' by nulls in the chase or by existential variables in rule heads.

In the following:

We consider that the rules are decomposed in rules having a single-piece head.

Boundedness does not ensure parallelisability

Prime example (bounded) $R_1 : A(x) \rightarrow \exists z \ p(x, z)$ $R_2 : p(x, z) \land B(y) \rightarrow r(z, y)$

$$I_n = \{A(a), B(b_1), \dots, B(b_n)\}$$

For any n, $chase_{\infty}(I_n, \mathcal{R})$ contains a piece of n+1 atoms, hence this rule set is not parallelisable.

A new class: Pieceful

The frontier variables of a rule are the shared variables between its body and head.

- \mathcal{R} is pieceful if for any trigger (R,π) in any derivation with \mathcal{R} ,
 - either $\pi(frontier(R))$ belongs to the terms of the initial instance
 - or $\pi(frontier(R))$ belongs to the terms of atoms brought by a *single* previous rule application.

Prime example is not pieceful

Prime example (bounded)

 $R_1 : A(x) \to \exists z \ p(x, z)$ $R_2 : p(x, z) \land B(y) \to r(z, y)$

 $I_n = \{A(a), B(b_1), \dots, B(b_n)\}$

First trigger: $(R_1, \{x \mapsto a\}; \text{ creates } p(a, z_0)$ Then: $(R_2, \{x \mapsto a, \mathbf{z} \mapsto \mathbf{z_0}, \mathbf{y} \mapsto \mathbf{b_1}\})$

$chase_{\infty}(I_n, \mathcal{R}) =$ $A \qquad B \qquad B \qquad B$ $a \qquad b_1 \qquad b_2 \qquad \dots \qquad b_n$ $p \qquad r \qquad r \qquad r \qquad r$

$\mathsf{Parallelisability} \Rightarrow \mathsf{Piecefulness}$

Why? If a rule set \mathcal{R} is not pieceful, one can create an instance I_n s.t. $chase(I_n, \mathcal{R})$ has a null that occurs in at least n atoms.

New landscape

(with data complexity of conjunctive query entailment)

Maxime Buron, Marie-Laure Mugnier, Michaël Thomazo

Parallelisable Existential Rules: a Story of Pieces

Parallelisability = Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

Parallelisability = Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

$\mathsf{Boundedness} + \mathsf{Piecefulness} \Rightarrow \mathsf{Parallelisability}$

- If \mathcal{R} is pieceful, the size of a piece in $chase_k(I, \mathcal{R})$ is bounded independently from I
- If \mathcal{R} is pieceful *and bounded*, the size of a piece in the chase is bounded independently from *I*. Hence, there is a finite number of 'non-isomorphic' pieces associated with \mathcal{R}
- If \mathcal{R} is bounded, each piece (seen as a query) has a finite set of rewritings (reformulations) with \mathcal{R} \Rightarrow roughly, \mathcal{R}' is the set of all rules of the form $rewriting(P) \rightarrow P$

Parallelisability = Boundedness + Piecefulness

What we have so far:

- Parallelisability \Rightarrow Boundedness (but the converse is false: see prime example)
- Parallelisability \Rightarrow Piecefulness (but the converse is false: see transitivity)

$\mathsf{Boundedness} + \mathsf{Piecefulness} \Rightarrow \mathsf{Parallelisability}$

- If \mathcal{R} is pieceful, the size of a piece in $chase_k(I, \mathcal{R})$ is bounded independently from I
- If \mathcal{R} is pieceful *and bounded*, the size of a piece in the chase is bounded independently from *I*. Hence, there is a finite number of 'non-isomorphic' pieces associated with \mathcal{R}
- If \mathcal{R} is bounded, each piece (seen as a query) has a finite set of rewritings (reformulations) with \mathcal{R} \Rightarrow roughly, \mathcal{R}' is the set of all rules of the form $rewriting(P) \rightarrow P$

Parallelisabillity is undecidable

Since Pieceful includes Datalog and the boundedness in Datalog is undecidable.

Rule composition

Existential rule composition

An extension of Datalog unfolding

Composition definition

- Keeps rules with single-piece head
- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)

Definition of \mathcal{R}^{\star} the composed rules from \mathcal{R} :

Starting from \mathcal{R} , we repeatedly compose the rules in \mathcal{R}^{\star} pairwise

Existential rule composition

An extension of Datalog unfolding

Composition definition

- Keeps rules with single-piece head
- Based on piece-unifiers instead of classical unifiers
- Generates rules inducing every pieces of the chase (growing heads)

Definition of \mathcal{R}^{\star} the composed rules from \mathcal{R} :

Starting from \mathcal{R} , we repeatedly compose the rules in \mathcal{R}^{\star} pairwise

Soundness and completeness of \mathcal{R}^{\star} : $I, \mathcal{R} \models q$ iff $chase_1(I, \mathcal{R}^{\star}) \models q$

Rule composition on the prime example

 $R_1 : A(x) \to \exists z \ p(x, z)$ $R_2 : p(x, z) \land B(y) \to r(z, y)$

Let us build \mathcal{R}^* : $R_2 \circ R_1 : A(x) \land B(y) \to \exists z \ p(x,z) \land r(z,y)$

Rule composition on the prime example

 $R_1 : A(x) \to \exists z \ p(x, z) \\ R_2 : p(x, z) \land B(y) \to r(z, y)$

Let us build \mathcal{R}^{\star} : $R_2 \circ R_1 : A(x) \land B(y) \rightarrow \exists z \ p(x, z) \land r(z, y)$ $R_2 \circ (R_2 \circ R_1) : A(x) \land B(y) \land B(y_1) \rightarrow \exists z \ p(x, z) \land r(z, y) \land r(z, y_1)$

Rule composition on the prime example

 $R_1 : A(x) \to \exists z \ p(x, z)$ $R_2 : p(x, z) \land B(y) \to r(z, y)$

Let us build \mathcal{R}^* : $R_2 \circ R_1 : A(x) \land B(y) \to \exists z \ p(x, z) \land r(z, y)$ $R_2 \circ (R_2 \circ R_1) : A(x) \land B(y) \land B(y_1) \to \exists z \ p(x, z) \land r(z, y) \land r(z, y_1)$ *etc.* At each step, a new rule $R_2 \circ R^*$, where R^* is the rule created at the preceding step: $A(x) \land B(y) \land B(y_1) \dots B(y_i) \to \exists z \ p(x, z) \land r(z, y) \land r(z, y_1) \dots \land r(z, y_i)$

What this example shows:

- Completeness requires composition of the form $R \circ R^*$ (and not only $R^* \circ R$ as in datalog)
- \mathcal{R}^{\star} may be infinite even if \mathcal{R} is bounded, with no finite subset of \mathcal{R}^{\star} being complete.

Parallelisation by rule composition

Completeness of \mathcal{R}^{\star}

If \mathcal{R} is pieceful, then for any instance I, each piece of $chase_{\infty}(I,\mathcal{R})$ can be obtained by applying a rule from \mathcal{R}^{\star} to I

Conjecture

This is true even if \mathcal{R} is not pieceful

Corollary

If $\mathcal R$ is parallelisable (ie pieceful and bounded) then it is parallelisable by a finite subset of $\mathcal R^\star$

Open issues

Many perspectives

- Better understand rule composition to compute parallelisation in practice
- Better understand the properties of the *pieceful* class
- More succint rule composition based on rule skolemization? It would lead beyond (skolemized) existential rules when rules are not pieceful