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The normal graph conjecture



Perfect graph
A graph G is perfect if χ(H) = ω(H) for every induced subgraph
of G .

Co-normal product
Let G1 and G2 be two graphs. The co-normal product G1 ∗ G2 is
the graph with vertex set V (G1)× V (G2), where (v1, v2) and
(u1, u2) are adjacent if u1 is adjacent to v1 or u2 is adjacent to v2.
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History
Berge introduced perfect graphs, in part, to determine the
zero-error capacity of a discrete memory channel. Which can be
formulated as finding the following Shannon capacity C(G)

C(G) = lim
n→∞

1
n logω(Gn)

where Gn is the nth co-normal power of G .

Strange behavior
Shannon noticed that ω(Gn) = (ω(G))n whenever ω(G) = χ(G).
Because of this property, one could expect that perfect graphs are
closed under co-normal product. Körner and Longo proved this to
be false. This motivated Körner to study graphs which are closed
under co-normal products.
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Definition
A graph G is normal if there exists two coverings, C and S of its
vertex set such that every member of C induces a clique in G ,
every member of S induces an independent set in G and C ∩ S 6= ∅
for every C ∈ C and S ∈ S.
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Products of normal graphs
Körner showed that all co-normal products of normal graphs are
normal and also that all perfect graphs are normal.

Auto complementary class
By definition, it follows that a graph is normal if and only if its
complement is normal.

Minimal non normal graphs
The only known minimally graphs which are not normal are C5, C7,
C7.
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Entropy
The entropy H(G ,P) of a graph G can be defined with respect to
a probability distribution P on V (G).

Sub-additivity
The graph entropy is sub-additive with respect to complementary
graphs:

H(P) ≤ H(G ,P) + H(G ,P)
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Entropy of perfect graphs
Csiszár et. al showed that:

H(P) = H(G ,P) + H(G ,P)

for all P if and only if G is perfect.

Entropy of normal graphs
Körner and Marton showed that:

H(P) = H(G ,P) + H(G ,P)

for at least one P if and only if G is normal.
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The Normal Graph Conjecture [C. De Simone, J. Körner 1999]

A graph with no C5, C7 and C7 as an induced subgraph is normal.

Theorem [A. Harutyunyan, L. P., S. Thomassé]

There exists a graph G of girth at least 8 that is not normal.

Tools
Random graphs!
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What is known?

• Line-graphs of cubic graphs are normal.
• Circulant graphs are normal.
• A few classes of sparse graphs have been show to be normal.
• All subcubic triangle-free graphs are normal.
• Almost all d-regular graphs are normal when d is fixed.
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Remark
The conjecture is not a if and only if. A graph G can contain a
C5,C7,C7 and be normal.
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Probabilistic tools



The philosophy behind probabilistic arguments
In order to show that there exist an object O with some properties
in a collection of objects O, one can show that there is a non-zero
probability to pick such an object if you choose at random in O.
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Union bound
For a countable set of events A1, . . . ,An, we have

P(
n⋃

i=1
Ai) ≤

n∑
i=1

P(Ai).

Markov’s inequality
If X is any non-negative discrete random variable and a > 0, then

P[X ≥ a] ≤ E[X ]
a .

Others inequalities
We also use other inequalities giving good concentration on 0/1
valued random variables.
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High girth, high chromatic number
We want to show that there exists a graph with high girth and
high chromatic number. How to do so?

1. We want to show that there exists a graph such that after
deleting strictly less than n

2 vertices, the girth would be at
least `.

2. We want to show that there exists a graph with α(G) = o(n).
3. We know that χ(G) ≥ |V (G)|

α(G) . Together with α(G) = o(n), we
could achieve high chromatic number.

4. We want to generate a random graph that combine all these
properties.
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Cycles of length at most g
Generate a random graph Gn,p on n vertices where each edge
appears independently with probability p. Let X be the number of
cycles of length at most `.

• One can show that with good probability

X <
n
2 .
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Independence number
Let’s focus now on the stable set of maximum cardinality.

• One can show that with good probability

α(G) = o(n).
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Final step
Now we can conclude.

• By the union bound, we have that the following probability is
non-zero

P[X <
n
2 and α(Gn,p) = o(n)] > 0.

• We just have found our graph. Now remove one vertex from
each of the short cycles to get G ′ which have girth at least `,
then we can show that for some λ > 0

χ(G ′) ≥ nλ
6 ln n .
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Sketch of the proof



Graphs of girth at least 8
In order to provide a non-constructive counterexample to the
conjecture, it suffices to show that there exists a graph G of girth
at least 8 that does not admit a normal cover.

Note that in a graph of girth at least 8, there are no C5, C7 nor
C7, hence we satisfy the required properties of the conjecture.
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Properties
We generate a random graph Gn,p with p = n−0.9. With good
probability, we have the following properties:

• X7 ≤ 4n0.7 with X7 the number of cycles of length at most 7.
• α(G) < cn0.9 log n with c ≥ 10 a fixed constant.
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Star covering
• Every member of C induces a clique K2 or K1 in G , where no

K1 is included in some K2.

• The graph induced by the edges of C is a spanning
vertex-disjoint union of stars.

• Every member in S induces an independent set in G .
• C ∩ S 6= ∅ for every C ∈ C and S ∈ S.
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Star system
A star system (Q,S) is a spanning set of vertex disjoint stars where
S is the set of stars and Q is the set of centers of the stars of S.

Directed star system
To every star system (Q,S) we associate a directed graph Q∗ on
the vertex set Q and add a directed edge xi → xj whenever a leaf
of Si is adjacent to the center of Sj .
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Out-section
A subset X ⊆ Q is an out-section if there exists v in Q such that
for each x ∈ X , there exists a directed path in Q∗ from v to x .
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Claim 1
If G is a normal triangle-free graph, then G admits a star covering
(C,S) where E [C] contains at most α(G) stars.

Proof
Let x1, . . . , xk be the centers of the stars and let S ∈ S be some
independent set. Then, for each xi , either xi or a leaf of xi belongs
to S. Which gives

k ≤ |S| ≤ α(G).
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Key Lemma
Let G be a normal triangle-free graph with a star covering (C, S)
and denote by X the outsection of the associated star-system.
Then the set of leaves of the stars with centers in X form an
independent set of G .

Proof
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Private neighbors
Given a graph G and a subset Q of its vertices partitioned into
Q1, . . . ,Q10, we say that w ∈ V \ Q is a private neighbor of a
vertex vi ∈ Qi if w is adjacent to vi but not to any other vertex in
Q1, . . . ,Qi .
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Private neighbors
Private neighbors are of particular interests because inside an
out-section, we know they all belong to the same independent sets.

We can’t say the same thing for non private neighbors!
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Property JQ
We say that G satisfies property JQ if for every choice of pairwise
disjoint subsets of vertices J ,Q1, . . . ,Q10, with |J | and |Qi | of
good sizes, the private directed graph Q∗ defined on G \ J has an
out-section whose set of private neighbors have total size at least
n0.95.

Lemma
A random graph Gn,p with p = n−0.9 will almost surely have
property JQ.
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Small sketch of why Gn,p has property JQ

• We compute the probability of having property JQc .
• Let z be the number of ways to fix J ,Q1, . . . ,Q10. Then
P[JQc ] ≤ zP[M] with M the event that JQc holds for some
fixed set J ,Q1, . . . ,Q10.

• We first show that with good probability, every vertex in Qi

has many neighbors in Qi .
• Then, that almost every vertex of Qi has a good number of
private neighbors.

• Finally, we show that with such properties, the probability of
not having a big out-section is bounded by above by o(1).
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How to conclude?
By previous Lemmas and Claims and thanks to the union bound,
for n sufficiently large, there exists a n-vertex graph G satisfying
the followings:

• G has less than 4n0.7 cycles of length at most 7.
• α(G) < 10n0.9 log n.
• G has property JQ.
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Keeping the good stars and girth high
Let S be the set of vertices formed by picking one vertex from
each short cycles. Assume now for contradiction that G [V \ S] is a
normal graph (note that G [V \ S] has girth at least 8).

• Remove the set S ′ of small stars (size at most 1010 log n
vertices).

• Build blocks Q1, . . . ,Q10 of needed size.
• In such a way that for every v ∈ Qi , every private neighbor w
of v implies that wv is an edge of the star covering.

• By property JQ and the key Lemma, we have just found a set
of vertices inducing an independent set of size n0.95 in the star
covering!

• Contradiction to the fact that α(G) < 10n0.9 log n.
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In short

• We pick a random graph of high girth with α(G) bounded by
a function of n and property JQ.

• By analyzing the structure of what a star covering should look
like, we show how independent sets needs to behave.

• We show that we can find the good sets with respect to
property JQ.

• Furthermore, the set of private neighbors in the out-section of
our directed graph needs to belong to edges of the star
covering.

• Which implies a too big independent set.
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Conclusion
One could ask the following questions:

• Obviously, it is not a constructive proof. Maybe there is one?
• What about the other graph classes in which the conjecture
holds?

• Maybe there are precise classes for which it fails?
• What if the forbidden family is finite, what are the bad
graphs?
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Thank you for your attention.
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We need to generate the random graph Gn,p, where each edge
appears independently with probability p. Let λ ∈ (0, 1` ) and
p = nλ−1.

Let’s compute the number of cycles of length at most ` in Gn,p.
Let X be this number and Xj the number of cycles of length at
most j . If you see a cycle of length j as a word of length j on an
alphabet of size n, we have this large upper bound Xj ≤ nj . Each
of those cycles appears with probability pj (there are j edges in a
cycle of length j , and each appears with probability p). Hence we
have

E[X ] ≤
∑̀
j=3

njpj
(replace pj by its value)

=
∑̀
j=3

nλj



Recall that the sum of a geometric series starting at j = a and
ending at ` for r 6= 1 is

∑̀
j=a

r j = ra − r l+1

1− r

which gives us

E[X ] ≤
∑̀
j=3

nλj

= n3λ − nλ`+λ
1− nλ (multiply by −1 the denominator and the numerator)

= nλ`+λ − n3λ
nλ − 1 = nλ`+λ − n3λ

nλ(1− n−λ)

= nλ` − n2λ
1− n−λ ≤ nλ`

1− n−λ



In fact, nλ`
1−n−λ is smaller than n

c , for any c > 1 and n sufficiently
large. To see this, set the following inequation

nλ`
1− n−λ <

n
c

⇐⇒ nλ` < n
c −

n1−λ
c

⇐⇒ nλ` + n1−λ
c <

n
c

which holds for n sufficiently large because λ` < 1 and 1− λ < 1.
By setting c = 4 we have the following upper bound on the
expectation of X , E[X ] ≤ n

4 . Hence, by Markov’s inequality, we
have

P[X ≥ n
2 ] < n

4 ×
2
n = 1

2



Note that χ(G) ≥ n
α(G) . So to deal with the chromatic number,

we’ll look at the independence number. Let a =
⌈
3
p ln n

⌉
and

consider the event there is an independent set of size a. The
probability of this event is given by

P[α(G) ≥ a] ≤
(

n
a

)
(1− p)(

a
2) on all sets of size a, we want no edges

≤ nae
−p(a(a−1))

2 where
(n

a

)
≤ na and (1 + r)x ≤ erx

= nae−
3 ln n(a−1)

2

= nan−
3(a−1)

2

Note that a = 3(ln n)n1−λ with λ < 1, so this implies that
nan−

3(a−1)
2 tends to 0 as n growth large. Hence we have that for n

sufficiently large
P[α(G) ≥ a] ≤ 1

2



Now, the union bound gives the following

P[X ≥ n
2 or α(G) ≥ a] < 1

So for n large enough, there is a graph such that none of these
properties are satisfied. Which is equivalent to saying that

P[X <
n
2 and α(G) < a] > 0

so there exists such a graph!



Let G be this graph and delete one vertex from each of these short
cycles and let G ′ be this induced subgraph. Note that G ′ has girth
at least ` and has at least n

2 vertices (we deleted strictly less than
n
2 ). Now we can get the following lower bound on the chromatic
number

χ(G ′) ≥ |V (G ′)|
α(G ′) ≥

n
2 ×

p
3 ln n

= n
2 ×

nλ−1
3 ln n

= nλ
6 ln n

We just got a graph G ′ with high girth and high chromatic number.
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