

Disproving the normal graph conjecture

Lucas Pastor October 12, 2016

Joint-work with Ararat Harutyunyan and Stéphan Thomassé

The normal graph conjecture

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph of G.

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph of G.

Co-normal product

Let G_1 and G_2 be two graphs. The co-normal product $G_1 * G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$, where (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph of G.

Co-normal product

Let G_1 and G_2 be two graphs. The co-normal product $G_1 * G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$, where (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph of G.

Co-normal product

Let G_1 and G_2 be two graphs. The co-normal product $G_1 * G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$, where (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

Berge introduced perfect graphs, in part, to determine the zero-error capacity of a discrete memory channel. Which can be formulated as finding the following Shannon capacity C(G)

Berge introduced perfect graphs, in part, to determine the zero-error capacity of a discrete memory channel. Which can be formulated as finding the following Shannon capacity C(G)

$$C(G) = \lim_{n \to \infty} \frac{1}{n} \log \omega(G^n)$$

where G^n is the n^{th} co-normal power of G.

Berge introduced perfect graphs, in part, to determine the zero-error capacity of a discrete memory channel. Which can be formulated as finding the following Shannon capacity C(G)

$$C(G) = \lim_{n \to \infty} \frac{1}{n} \log \omega(G^n)$$

where G^n is the n^{th} co-normal power of G.

Strange behavior

Shannon noticed that $\omega(G^n) = (\omega(G))^n$ whenever $\omega(G) = \chi(G)$.

Berge introduced perfect graphs, in part, to determine the zero-error capacity of a discrete memory channel. Which can be formulated as finding the following Shannon capacity C(G)

$$C(G) = \lim_{n \to \infty} \frac{1}{n} \log \omega(G^n)$$

where G^n is the n^{th} co-normal power of G.

Strange behavior

Shannon noticed that $\omega(G^n) = (\omega(G))^n$ whenever $\omega(G) = \chi(G)$. Because of this property, one could expect that perfect graphs are closed under co-normal product.

Berge introduced perfect graphs, in part, to determine the zero-error capacity of a discrete memory channel. Which can be formulated as finding the following Shannon capacity C(G)

$$C(G) = \lim_{n \to \infty} \frac{1}{n} \log \omega(G^n)$$

where G^n is the n^{th} co-normal power of G.

Strange behavior

Shannon noticed that $\omega(G^n) = (\omega(G))^n$ whenever $\omega(G) = \chi(G)$. Because of this property, one could expect that perfect graphs are closed under co-normal product. Körner and Longo proved this to be false. This motivated Körner to study graphs which are closed under co-normal products.

Products of normal graphs

Körner showed that all co-normal products of normal graphs are normal and also that all perfect graphs are normal.

Products of normal graphs

Körner showed that all co-normal products of normal graphs are normal and also that all perfect graphs are normal.

Auto complementary class

By definition, it follows that a graph is normal if and only if its complement is normal.

Products of normal graphs

Körner showed that all co-normal products of normal graphs are normal and also that all perfect graphs are normal.

Auto complementary class

By definition, it follows that a graph is normal if and only if its complement is normal.

Minimal non normal graphs

The only known minimally graphs which are not normal are C_5 , C_7 , $\overline{C_7}$.

Entropy

The entropy H(G, P) of a graph G can be defined with respect to a probability distribution P on V(G).

Entropy

The entropy H(G, P) of a graph G can be defined with respect to a probability distribution P on V(G).

Sub-additivity

The graph entropy is sub-additive with respect to complementary graphs:

 $H(P) \leq H(G, P) + H(\overline{G}, P)$

Entropy of perfect graphs

Csiszár et. al showed that:

$$H(P) = H(G, P) + H(\overline{G}, P)$$

for all P if and only if G is perfect.

Entropy of perfect graphs

Csiszár et. al showed that:

$$H(P) = H(G, P) + H(\overline{G}, P)$$

for all P if and only if G is perfect.

Entropy of normal graphs

Körner and Marton showed that:

$$H(P) = H(G, P) + H(\overline{G}, P)$$

for at least one P if and only if G is normal.

The Normal Graph Conjecture [C. De Simone, J. Körner 1999] A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal. The Normal Graph Conjecture [C. De Simone, J. Körner 1999]

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [A. Harutyunyan, L. P., S. Thomassé]

There exists a graph G of girth at least 8 that is not normal.

The Normal Graph Conjecture [C. De Simone, J. Körner 1999]

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [A. Harutyunyan, L. P., S. Thomassé]

There exists a graph G of girth at least 8 that is not normal.

Tools

Random graphs!

• Line-graphs of cubic graphs are normal.

- Line-graphs of cubic graphs are normal.
- Circulant graphs are normal.

- Line-graphs of cubic graphs are normal.
- Circulant graphs are normal.
- A few classes of sparse graphs have been show to be normal.

- Line-graphs of cubic graphs are normal.
- Circulant graphs are normal.
- A few classes of sparse graphs have been show to be normal.
- All subcubic triangle-free graphs are normal.

- Line-graphs of cubic graphs are normal.
- Circulant graphs are normal.
- A few classes of sparse graphs have been show to be normal.
- All subcubic triangle-free graphs are normal.
- Almost all *d*-regular graphs are normal when *d* is fixed.

Remark

The conjecture is not a if and only if. A graph G can contain a $C_5, C_7, \overline{C_7}$ and be normal.

Remark

The conjecture is not a if and only if. A graph G can contain a $C_5, C_7, \overline{C_7}$ and be normal.

Remark

The conjecture is not a if and only if. A graph G can contain a $C_5, C_7, \overline{C_7}$ and be normal.

Remark

The conjecture is not a if and only if. A graph G can contain a $C_5, C_7, \overline{C_7}$ and be normal.

Probabilistic tools

The philosophy behind probabilistic arguments

In order to show that there exist an object O with some properties in a collection of objects \mathbb{O} , one can show that there is a **non-zero** probability to pick such an object if you choose at random in \mathbb{O} .

Union bound

For a countable set of events A_1, \ldots, A_n , we have

$$\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i).$$

Union bound

For a countable set of events A_1, \ldots, A_n , we have

$$\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i).$$

Markov's inequality

If X is any non-negative discrete random variable and a > 0, then

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Union bound

For a countable set of events A_1, \ldots, A_n , we have

$$\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i).$$

Markov's inequality

If X is any non-negative discrete random variable and a > 0, then

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}.$$

Others inequalities

We also use other inequalities giving good concentration on 0/1 valued random variables.

We want to show that there exists a graph with high girth and high chromatic number. How to do so?

1. We want to show that there exists a graph such that after deleting strictly less than $\frac{n}{2}$ vertices, the girth would be at least ℓ .

- 1. We want to show that there exists a graph such that after deleting strictly less than $\frac{n}{2}$ vertices, the girth would be at least ℓ .
- 2. We want to show that there exists a graph with $\alpha(G) = o(n)$.

- 1. We want to show that there exists a graph such that after deleting strictly less than $\frac{n}{2}$ vertices, the girth would be at least ℓ .
- 2. We want to show that there exists a graph with $\alpha(G) = o(n)$.
- 3. We know that $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$. Together with $\alpha(G) = o(n)$, we could achieve high chromatic number.

- 1. We want to show that there exists a graph such that after deleting strictly less than $\frac{n}{2}$ vertices, the girth would be at least ℓ .
- 2. We want to show that there exists a graph with $\alpha(G) = o(n)$.
- 3. We know that $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$. Together with $\alpha(G) = o(n)$, we could achieve high chromatic number.
- 4. We want to generate a random graph that combine all these properties.

Cycles of length at most g

Generate a random graph $G_{n,p}$ on *n* vertices where each edge appears independently with probability *p*. Let *X* be the number of cycles of length at most ℓ .

Cycles of length at most g

Generate a random graph $G_{n,p}$ on *n* vertices where each edge appears independently with probability *p*. Let *X* be the number of cycles of length at most ℓ .

• One can show that with good probability

$$X < \frac{n}{2}.$$

Independence number

Let's focus now on the stable set of maximum cardinality.

Independence number

Let's focus now on the stable set of maximum cardinality.

• One can show that with good probability

$$\alpha(G)=o(n).$$

Final step

Now we can conclude.

Final step

Now we can conclude.

• By the union bound, we have that the following probability is non-zero

$$\mathbb{P}[X < \frac{n}{2} \text{ and } \alpha(G_{n,p}) = o(n)] > 0.$$

Final step

Now we can conclude.

 By the union bound, we have that the following probability is non-zero

$$\mathbb{P}[X < \frac{n}{2} \text{ and } \alpha(G_{n,p}) = o(n)] > 0.$$

• We just have found our graph. Now remove one vertex from each of the short cycles to get G' which have girth at least ℓ , then we can show that for some $\lambda > 0$

$$\chi(G') \geq \frac{n^{\lambda}}{6\ln n}.$$

Sketch of the proof

Graphs of girth at least 8

In order to provide a non-constructive counterexample to the conjecture, it suffices to show that there exists a graph G of girth at least 8 that does not admit a normal cover.

Graphs of girth at least 8

In order to provide a non-constructive counterexample to the conjecture, it suffices to show that there exists a graph G of girth at least 8 that does not admit a normal cover.

Note that in a graph of girth at least 8, there are no C_5 , C_7 nor $\overline{C_7}$, hence we satisfy the required properties of the conjecture.

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

• $X_7 \leq 4n^{0.7}$ with X_7 the number of cycles of length at most 7.

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

- $X_7 \leq 4n^{0.7}$ with X_7 the number of cycles of length at most 7.
- $\alpha(G) < cn^{0.9} \log n$ with $c \ge 10$ a fixed constant.

Every member of C induces a clique K₂ or K₁ in G, where no K₁ is included in some K₂.

- Every member of C induces a clique K₂ or K₁ in G, where no K₁ is included in some K₂.
- The graph induced by the edges of \mathbb{C} is a spanning vertex-disjoint union of stars.

- Every member of C induces a clique K₂ or K₁ in G, where no K₁ is included in some K₂.
- The graph induced by the edges of \mathbb{C} is a spanning vertex-disjoint union of stars.
- Every member in \mathbb{S} induces an independent set in G.

- Every member of C induces a clique K₂ or K₁ in G, where no K₁ is included in some K₂.
- The graph induced by the edges of C is a spanning vertex-disjoint union of stars.
- Every member in \mathbb{S} induces an independent set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

Star system

A star system (Q, S) is a spanning set of vertex disjoint stars where S is the set of stars and Q is the set of centers of the stars of S.

Star system

A star system (Q, S) is a spanning set of vertex disjoint stars where S is the set of stars and Q is the set of centers of the stars of S.

Directed star system

To every star system (Q, S) we associate a directed graph Q^* on the vertex set Q and add a directed edge $x_i \rightarrow x_j$ whenever a leaf of S_i is adjacent to the center of S_j .
Star system

A star system (Q, S) is a spanning set of vertex disjoint stars where S is the set of stars and Q is the set of centers of the stars of S.

Directed star system

To every star system (Q, S) we associate a directed graph Q^* on the vertex set Q and add a directed edge $x_i \rightarrow x_j$ whenever a leaf of S_i is adjacent to the center of S_j .

Star system

A star system (Q, S) is a spanning set of vertex disjoint stars where S is the set of stars and Q is the set of centers of the stars of S.

Directed star system

To every star system (Q, S) we associate a directed graph Q^* on the vertex set Q and add a directed edge $x_i \rightarrow x_j$ whenever a leaf of S_i is adjacent to the center of S_j .

Star system

A star system (Q, S) is a spanning set of vertex disjoint stars where S is the set of stars and Q is the set of centers of the stars of S.

Directed star system

To every star system (Q, S) we associate a directed graph Q^* on the vertex set Q and add a directed edge $x_i \rightarrow x_j$ whenever a leaf of S_i is adjacent to the center of S_j .

Out-section

A subset $X \subseteq Q$ is an out-section if there exists v in Q such that for each $x \in X$, there exists a directed path in Q^* from v to x.

Out-section

A subset $X \subseteq Q$ is an out-section if there exists v in Q such that for each $x \in X$, there exists a directed path in Q^* from v to x.

Out-section

A subset $X \subseteq Q$ is an out-section if there exists v in Q such that for each $x \in X$, there exists a directed path in Q^* from v to x.

Claim 1

If G is a normal triangle-free graph, then G admits a star covering (\mathbb{C}, \mathbb{S}) where $E[\mathbb{C}]$ contains at most $\alpha(G)$ stars.

Claim 1

If G is a normal triangle-free graph, then G admits a star covering (\mathbb{C}, \mathbb{S}) where $E[\mathbb{C}]$ contains at most $\alpha(G)$ stars.

Proof

Let x_1, \ldots, x_k be the centers of the stars and let $S \in S$ be some independent set. Then, for each x_i , either x_i or a leaf of x_i belongs to S. Which gives

 $k \leq |S| \leq \alpha(G).$

Given a graph G and a subset Q of its vertices partitioned into Q_1, \ldots, Q_{10} , we say that $w \in V \setminus Q$ is a private neighbor of a vertex $v_i \in Q_i$ if w is adjacent to v_i but not to any other vertex in Q_1, \ldots, Q_i .

Given a graph G and a subset Q of its vertices partitioned into Q_1, \ldots, Q_{10} , we say that $w \in V \setminus Q$ is a private neighbor of a vertex $v_i \in Q_i$ if w is adjacent to v_i but not to any other vertex in Q_1, \ldots, Q_i .

Private neighbors are of particular interests because inside an out-section, we know they all belong to the same independent sets.

Property JQ

We say that *G* satisfies property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} , with |J| and $|Q_i|$ of *good* sizes, the private directed graph Q^* defined on $G \setminus J$ has an out-section whose set of private neighbors have total size at least $n^{0.95}$.

Property JQ

We say that *G* satisfies property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} , with |J| and $|Q_i|$ of *good* sizes, the private directed graph Q^* defined on $G \setminus J$ has an out-section whose set of private neighbors have total size at least $n^{0.95}$.

Lemma

A random graph $G_{n,p}$ with $p = n^{-0.9}$ will almost surely have property JQ.

• We compute the probability of having property JQ^c .

- We compute the probability of having property JQ^c .
- Let z be the number of ways to fix J, Q_1, \ldots, Q_{10} . Then $\mathbb{P}[JQ^c] \leq z\mathbb{P}[M]$ with M the event that JQ^c holds for some fixed set J, Q_1, \ldots, Q_{10} .

- We compute the probability of having property JQ^c .
- Let z be the number of ways to fix J, Q_1, \ldots, Q_{10} . Then $\mathbb{P}[JQ^c] \leq z\mathbb{P}[M]$ with M the event that JQ^c holds for some fixed set J, Q_1, \ldots, Q_{10} .
- We first show that with good probability, every vertex in Q_i has many neighbors in Q_i .

- We compute the probability of having property JQ^c .
- Let z be the number of ways to fix J, Q_1, \ldots, Q_{10} . Then $\mathbb{P}[JQ^c] \leq z\mathbb{P}[M]$ with M the event that JQ^c holds for some fixed set J, Q_1, \ldots, Q_{10} .
- We first show that with good probability, every vertex in Q_i has many neighbors in Q_i .
- Then, that almost every vertex of Q_i has a good number of private neighbors.

- We compute the probability of having property JQ^c .
- Let z be the number of ways to fix J, Q_1, \ldots, Q_{10} . Then $\mathbb{P}[JQ^c] \leq z\mathbb{P}[M]$ with M the event that JQ^c holds for some fixed set J, Q_1, \ldots, Q_{10} .
- We first show that with good probability, every vertex in Q_i has many neighbors in Q_i .
- Then, that almost every vertex of Q_i has a good number of private neighbors.
- Finally, we show that with such properties, the probability of not having a big out-section is bounded by above by o(1).

By previous Lemmas and Claims and thanks to the union bound, for n sufficiently large, there exists a n-vertex graph G satisfying the followings:

By previous Lemmas and Claims and thanks to the union bound, for n sufficiently large, there exists a n-vertex graph G satisfying the followings:

• G has less than $4n^{0.7}$ cycles of length at most 7.

By previous Lemmas and Claims and thanks to the union bound, for n sufficiently large, there exists a n-vertex graph G satisfying the followings:

- G has less than $4n^{0.7}$ cycles of length at most 7.
- $\alpha(G) < 10n^{0.9} \log n$.

By previous Lemmas and Claims and thanks to the union bound, for n sufficiently large, there exists a n-vertex graph G satisfying the followings:

- G has less than $4n^{0.7}$ cycles of length at most 7.
- $\alpha(G) < 10n^{0.9} \log n$.
- G has property JQ.

Keeping the good stars and girth high

Let S be the set of vertices formed by picking one vertex from each short cycles. Assume now for contradiction that $G[V \setminus S]$ is a normal graph (note that $G[V \setminus S]$ has girth at least 8).

Keeping the good stars and girth high

Let S be the set of vertices formed by picking one vertex from each short cycles. Assume now for contradiction that $G[V \setminus S]$ is a normal graph (note that $G[V \setminus S]$ has girth at least 8).

• Remove the set S' of small stars (size at most 10¹⁰ log n vertices).
- Remove the set S' of small stars (size at most $10^{10} \log n$ vertices).
- Build blocks Q_1, \ldots, Q_{10} of needed size.

- Remove the set S' of small stars (size at most 10¹⁰ log n vertices).
- Build blocks Q_1, \ldots, Q_{10} of needed size.
- In such a way that for every v ∈ Q_i, every private neighbor w of v implies that wv is an edge of the star covering.

- Remove the set S' of small stars (size at most 10¹⁰ log n vertices).
- Build blocks Q_1, \ldots, Q_{10} of needed size.
- In such a way that for every v ∈ Q_i, every private neighbor w of v implies that wv is an edge of the star covering.
- By property JQ and the key Lemma, we have just found a set of vertices inducing an independent set of size n^{0.95} in the star covering!

- Remove the set S' of small stars (size at most 10¹⁰ log n vertices).
- Build blocks Q_1, \ldots, Q_{10} of needed size.
- In such a way that for every v ∈ Q_i, every private neighbor w of v implies that wv is an edge of the star covering.
- By property JQ and the key Lemma, we have just found a set of vertices inducing an independent set of size n^{0.95} in the star covering!
- Contradiction to the fact that $\alpha(G) < 10n^{0.9} \log n$.

 We pick a random graph of high girth with α(G) bounded by a function of n and property JQ.

- We pick a random graph of high girth with $\alpha(G)$ bounded by a function of *n* and property JQ.
- By analyzing the structure of what a star covering should look like, we show how independent sets needs to behave.

- We pick a random graph of high girth with $\alpha(G)$ bounded by a function of *n* and property JQ.
- By analyzing the structure of what a star covering should look like, we show how independent sets needs to behave.
- We show that we can find the good sets with respect to property JQ.

- We pick a random graph of high girth with α(G) bounded by a function of n and property JQ.
- By analyzing the structure of what a star covering should look like, we show how independent sets needs to behave.
- We show that we can find the good sets with respect to property *JQ*.
- Furthermore, the set of private neighbors in the out-section of our directed graph needs to belong to edges of the star covering.

- We pick a random graph of high girth with α(G) bounded by a function of n and property JQ.
- By analyzing the structure of what a star covering should look like, we show how independent sets needs to behave.
- We show that we can find the good sets with respect to property *JQ*.
- Furthermore, the set of private neighbors in the out-section of our directed graph needs to belong to edges of the star covering.
- Which implies a too big independent set.

One could ask the following questions:

• Obviously, it is not a constructive proof. Maybe there is one?

- Obviously, it is not a constructive proof. Maybe there is one?
- What about the other graph classes in which the conjecture holds?

- Obviously, it is not a constructive proof. Maybe there is one?
- What about the other graph classes in which the conjecture holds?
- Maybe there are precise classes for which it fails?

- Obviously, it is not a constructive proof. Maybe there is one?
- What about the other graph classes in which the conjecture holds?
- Maybe there are precise classes for which it fails?
- What if the forbidden family is finite, what are the bad graphs?

Thank you for your attention.

We need to generate the random graph $G_{n,p}$, where each edge appears independently with probability p. Let $\lambda \in (0, \frac{1}{\ell})$ and $p = n^{\lambda-1}$.

Let's compute the number of cycles of length at most ℓ in $G_{n,p}$. Let X be this number and X_j the number of cycles of length at most j. If you see a cycle of length j as a word of length j on an alphabet of size n, we have this large upper bound $X_j \leq n^j$. Each of those cycles appears with probability p^j (there are j edges in a cycle of length j, and each appears with probability p). Hence we have

$$\mathbb{E}[X] ~\leq~ \sum_{j=3}^{\ell} n^j p^j \;_{ ext{(replace } p^j ext{ by its value)}} \ =~ \sum_{i=3}^{\ell} n^{\lambda j}$$

Recall that the sum of a geometric series starting at j = a and ending at ℓ for $r \neq 1$ is

$$\sum_{j=a}^{\ell} r^{j} = \frac{r^{a} - r^{l+1}}{1 - r}$$

which gives us

$$\begin{split} \mathbb{E}[X] &\leq \sum_{j=3}^{\ell} n^{\lambda j} \\ &= \frac{n^{3\lambda} - n^{\lambda \ell + \lambda}}{1 - n^{\lambda}} \text{ (multiply by -1 the denominator and the numerator)} \\ &= \frac{n^{\lambda \ell + \lambda} - n^{3\lambda}}{n^{\lambda} - 1} = \frac{n^{\lambda \ell + \lambda} - n^{3\lambda}}{n^{\lambda} (1 - n^{-\lambda})} \\ &= \frac{n^{\lambda \ell} - n^{2\lambda}}{1 - n^{-\lambda}} \leq \frac{n^{\lambda \ell}}{1 - n^{-\lambda}} \end{split}$$

In fact, $\frac{n^{\lambda\ell}}{1-n^{-\lambda}}$ is smaller than $\frac{n}{c}$, for any c > 1 and n sufficiently large. To see this, set the following inequation

which holds for *n* sufficiently large because $\lambda \ell < 1$ and $1 - \lambda < 1$. By setting c = 4 we have the following upper bound on the expectation of *X*, $\mathbb{E}[X] \leq \frac{n}{4}$. Hence, by Markov's inequality, we have

$$P[X \ge \frac{n}{2}] < \frac{n}{4} \times \frac{2}{n} = \frac{1}{2}$$

Note that $\chi(G) \ge \frac{n}{\alpha(G)}$. So to deal with the chromatic number, we'll look at the independence number. Let $a = \left\lceil \frac{3}{p} \ln n \right\rceil$ and consider the event *there is an independent set of size a*. The probability of this event is given by

$$\mathbb{P}[\alpha(G) \ge a] \le {\binom{n}{a}} (1-p)^{\binom{a}{2}} \text{ on all sets of size } a, \text{ we want no edges}$$
$$\le n^a e^{\frac{-p(a(a-1))}{2}} \text{ where } {\binom{n}{a}} \le n^a \text{ and } (1+r)^x \le e^{rx}$$
$$= n^a e^{-\frac{3\ln n(a-1)}{2}}$$
$$= n^a n^{-\frac{3(a-1)}{2}}$$

Note that $a = 3(\ln n)n^{1-\lambda}$ with $\lambda < 1$, so this implies that $n^a n^{-\frac{3(a-1)}{2}}$ tends to 0 as *n* growth large. Hence we have that for *n* sufficiently large

$$\mathbb{P}[lpha(\mathsf{G})\geq\mathsf{a}]\leqrac{1}{2}$$

Now, the union bound gives the following

$$\mathbb{P}[X \ge \frac{n}{2} \text{ or } \alpha(G) \ge a] < 1$$

So for n large enough, there is a graph such that none of these properties are satisfied. Which is equivalent to saying that

$$\mathbb{P}[X < \frac{n}{2} \text{ and } \alpha(G) < a] > 0$$

so there exists such a graph!

Let *G* be this graph and delete **one** vertex from each of these short cycles and let *G'* be this **induced** subgraph. Note that *G'* has girth at least ℓ and has at least $\frac{n}{2}$ vertices (we deleted strictly less than $\frac{n}{2}$). Now we can get the following lower bound on the chromatic number

$$\chi(G') \ge \frac{|V(G')|}{\alpha(G')} \ge \frac{n}{2} \times \frac{p}{3 \ln n}$$
$$= \frac{n}{2} \times \frac{n^{\lambda - 1}}{3 \ln n}$$
$$= \frac{n^{\lambda}}{6 \ln n}$$

We just got a graph G' with high girth and high chromatic number.

- A. Berry and A. Wagler, The normal graph conjecture for classes of sparse graphs, *Lecture Notes in Computer Science*, 8165:64–75, 2013

I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi, Entropy splitting for antiblockings corners and perfect graphs, *Combinatorica*, 10:27–40, 1990.

C. De Simone and J. Körner, On the odd cycles of normal graphs, *Discrete Appl. Math.*, 94(1–3):161–169, 1999.

A. Frieze, On the independence number of random graphs, Discrete Mathematics, 81 (1990), 171-175.

- G. Simonyi, Perfect graphs and graph entropy. An updated survey, In: Perfect graphs, Ramirez Alfonsin, J. L., Reed, B. (Eds) Wiley, 293–328, 2001.
- S. Gerke and C. McDiarmid, Graph imperfection, Journal of Combinatorial Theory (B), 83:58-78, 2001.
- S. Gerke and C. McDiarmid, Graph imperfection II, Journal of Combinatorial Theory (B), 83:79-101, 2001.
- S.A. Hosseini, B. Mohar, S.S.C. Rezaei, Cubic Normal Graphs, manuscript.

- S.A. Hosseini, B. Mohar, S.S.C. Rezaei, Almost all regular graphs are normal, manuscript.
- J. Körner, An extension of the class of perfect graphs, Studia Sci. Math. Hungar., 8:405-409, 1973.

- J. Körner, Coding of an information source having ambigous alphabet and the entropy of graphs, in: Transactions of the 6th Prague conference on Information Theory, 411–425, 1973.
- J. Körner and G. Longo, Two-step encoding of finite memoryless sources, *IEEE Transactions on Information Theory*, 19:778–782, 1973.
| | _ | |
|--|---|--|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

J. Körner and K. Marton, Graphs that split entropies, SIAM Journal on Discrete Mathematics, 1:71–79, 1988.

C. McDiarmid, Graph imperfection and channel assignment, In: Perfect graphs, Ramirez Alfonsin, J. L., Reed, B. (Eds) Wiley, 215–232, 2001.

M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, New York, NY, USA, 2005

Z. Patakfalvi, Line-graphs of cubic graphs are normal, Discrete Math., 308(12):2351-2365, 2008.

A. Wagler, The normal graph conjecture is true for circulants, Trends in Mathematics, 365-374, 2007.