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This class of graphs forms a weaker variant of perfect graphs by
means of a specific graph product.
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Berge introduced perfect graphs in 1960. His motivation came in
part from the study of the zero-error capacity of a discrete
memoryless channel.

Shannon capacity

Shannon capacity C(G):

.1 n
C(G):nIL}ngOEIogw(G )-

Where G" is the nth co-normal power of G.
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Shannon noticed that w(G") = (w(G))" whenever w(G) = x(G).

One might expect that perfect graphs are closed under co-normal
products.

Koérner and Longo 1973

Perfect graphs are not closed under co-normal products.
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Let P be a probability distribution on V(G). We denote by
H(G, P) the entropy of G on P, and by H(P) the entropy of P.

The graph entropy is sub-additive with respect to complementary

graphs:
H(P) < H(G, P) + H(G, P).

Theorem [Csiszar et. al 1990]

H(P) = H(G, P) + H(G,P) for all P < G is perfect.

Theorem [Kérner and Marton 1988]

H(P) = H(G, P)+H(G, P) for at least one P < G is normal.
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The Normal Graph Conjecture [De Simone, Kérner 1999]

A graph with no G5, C7 and (7 as an induced subgraph is normal.

@ Line-graphs of cubic graphs are normal [Patakfalvi 2008)].

o Circulant graphs are normal [Wagler 2007].

@ A few classes of sparse graphs have been show to be normal
[Berry and Wagler 2013].

@ Almost all d-regular graphs are normal when d is fixed
[Hosseini, Mohar, Rezaei 2015].
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We generate a random graph G, , with p = n=%. With good
probability, we have the following properties:

@ The number of cycles of length at most 7 is small.
o aG) = o(n"%).
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stars with:

@ S is the set of stars.
@ Q is the set of centers of the stars of S.

Sl S2 SS

T T2 T3
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Property JQ
A graph G has the property JQ if for every choice of pairwise

disjoint subsets of vertices J, Q1, . .., Q1o with:
(1) ‘~/’ < ,70.91
Q 1000 <|@Ql<t 500 ® forall i € {1,...,10}

Then Q* over G\ J has an out-section whose set of private
neighbors have size at least n%9°.
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P[G has the property JQ] =1 — o(1).

—9/10.

Probabilistic arguments on G, , with p = n
@ Union bound.
@ Markov's bound.

@ Chernoff’s bound.
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Q@ a(G) = o(n"%).
© G has property JQ.
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Consider a feedback vertex set S of the short cycles.
Assume now for contradiction that G \ S is a normal graph.

Let S’ be the set of stars which have small size. Consider now
G\(SUS). Let J=5SU¥S".

G\(SUS)
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Let Cy,..., Cx be the strongly connected components of Q*
enumerated in a topological order.

Concatenate subsets of Cy, ..., C, into blocks Q1, @, ..., Qo
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Theorem [Harutyunyan, Pastor, Thomassé|

There exists a graph G of girth at least 8 that is not normal.

Counter-example to the Normal Graph Conjecture!

29/30



Conclusion
°

Conclusion

30/30



Conclusion
°

Conclusion

@ Our counter-example is probabilistic. It might be interesting
to look for a deterministic construction.

30/30



Conclusion
°

Conclusion

@ Our counter-example is probabilistic. It might be interesting
to look for a deterministic construction.

@ Other classes of graphes might verify the conjecture.

30/30



Conclusion
°

Conclusion

@ Our counter-example is probabilistic. It might be interesting
to look for a deterministic construction.

@ Other classes of graphes might verify the conjecture.

@ A good characterization of normal graphs in terms of graph
theory?

30/30



Conclusion
°

Conclusion

@ Our counter-example is probabilistic. It might be interesting
to look for a deterministic construction.

@ Other classes of graphes might verify the conjecture.

@ A good characterization of normal graphs in terms of graph
theory?
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