Disproving the normal graph conjecture

Lucas Pastor

Joint-work with Ararat Harutyunyan and Stéphan Thomassé

February 08, 2018

Normal graphs

Normal graphs appeared in a natural way in the *information theory* context.

Normal graphs

Normal graphs appeared in a natural way in the *information theory* context.

They are also defined in terms of graph theoretical terms.

Normal graphs

Normal graphs appeared in a natural way in the *information theory* context.

They are also defined in terms of graph theoretical terms.

This class of graphs forms a *weaker variant* of perfect graphs by means of a specific graph product.

Perfect graph

A graph G is **perfect** if $\chi(H) = \omega(H)$ for every induced subgraph H of G.

Perfect graph

A graph G is **perfect** if $\chi(H) = \omega(H)$ for every induced subgraph H of G.

Co-normal product

The **co-normal product** $G_1 * G_2$ of two graphs G_1 and G_2 is the graph with vertex set $V(G_1) \times V(G_2)$, where vertices (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

Co-normal product

The **co-normal product** $G_1 * G_2$ of two graphs G_1 and G_2 is the graph with vertex set $V(G_1) \times V(G_2)$, where vertices (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

Co-normal product

The **co-normal product** $G_1 * G_2$ of two graphs G_1 and G_2 is the graph with vertex set $V(G_1) \times V(G_2)$, where vertices (v_1, v_2) and (u_1, u_2) are adjacent if u_1 is adjacent to v_1 or u_2 is adjacent to v_2 .

Berge introduced perfect graphs in 1960. His motivation came in part from the study of the zero-error capacity of a discrete memoryless channel.

Berge introduced perfect graphs in 1960. His motivation came in part from the study of the zero-error capacity of a discrete memoryless channel.

Shannon capacity

```
Shannon capacity C(G):
```

$$C(G) = \lim_{n \to \infty} \frac{1}{n} \log \omega(G^n).$$

Where G^n is the n^{th} co-normal power of G.

Shannon noticed that $\omega(G^n) = (\omega(G))^n$ whenever $\omega(G) = \chi(G)$.

Shannon noticed that $\omega(G^n) = (\omega(G))^n$ whenever $\omega(G) = \chi(G)$.

One might expect that perfect graphs are closed under co-normal products.

Shannon noticed that
$$\omega(G^n) = (\omega(G))^n$$
 whenever $\omega(G) = \chi(G)$.

One might expect that perfect graphs are closed under co-normal products.

Körner and Longo 1973

Perfect graphs are **not** closed under co-normal products.

Definition

Definition

Definition

Definition

Definition

Definition

The graph entropy is sub-additive with respect to complementary graphs:

 $H(P) \leq H(G, P) + H(\overline{G}, P).$

The graph entropy is sub-additive with respect to complementary graphs:

$$H(P) \leq H(G, P) + H(\overline{G}, P).$$

Theorem [Csiszár et. al 1990]

 $H(P) = H(G, P) + H(\overline{G}, P)$ for all $P \iff G$ is perfect.

The graph entropy is sub-additive with respect to complementary graphs:

$$H(P) \leq H(G, P) + H(\overline{G}, P).$$

Theorem [Csiszár et. al 1990]

$$H(P) = H(G, P) + H(\overline{G}, P)$$
 for all $P \iff G$ is perfect.

Theorem [*Körner and Marton 1988*]

$$H(P) = H(G, P) + H(\overline{G}, P)$$
 for at least one $P \iff G$ is normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

What is known?

• Line-graphs of cubic graphs are normal [Patakfalvi 2008].

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

- Line-graphs of cubic graphs are normal [Patakfalvi 2008].
- Circulant graphs are normal [*Wagler 2007*].

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

- Line-graphs of cubic graphs are normal [Patakfalvi 2008].
- Circulant graphs are normal [*Wagler 2007*].
- A few classes of sparse graphs have been show to be normal [*Berry and Wagler 2013*].

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

- Line-graphs of cubic graphs are normal [Patakfalvi 2008].
- Circulant graphs are normal [*Wagler 2007*].
- A few classes of sparse graphs have been show to be normal [*Berry and Wagler 2013*].
- Almost all *d*-regular graphs are normal when *d* is fixed [*Hosseini*, *Mohar*, *Rezaei* 2015].

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

A graph with no C_5 , C_7 and $\overline{C_7}$ as an induced subgraph is normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

• The number of cycles of length at most 7 is small.

Properties

We generate a random graph $G_{n,p}$ with $p = n^{-0.9}$. With good probability, we have the following properties:

• The number of cycles of length at most 7 is small.

•
$$\alpha(G) = o(n^{0.95}).$$

• Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

- Every member of \mathbb{C} induces a clique K_2 or K_1 in G, where no K_1 is included in some K_2 .
- The graph induced by the edges of \mathbb{C} is a spanning **vertex-disjoint** union of stars.
- Every member in \mathbb{S} induces a stable set in G.
- $C \cap S \neq \emptyset$ for every $C \in \mathbb{C}$ and $S \in \mathbb{S}$.

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

 $\textcircled{O} \ \mathcal{S} \text{ is the set of stars.}$

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

- $\textcircled{O} \ \mathcal{S} \text{ is the set of stars.}$
- **2** Q is the set of **centers** of the stars of S.

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

- $\textcircled{O} \ \mathcal{S} \text{ is the set of stars.}$
- **2** Q is the set of **centers** of the stars of S.

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

- $\bullet \ \mathcal{S} \text{ is the set of stars.}$
- **2** Q is the set of **centers** of the stars of S.

 $S_i \in \mathcal{S}$

A star system (Q, S) of G is a spanning set of vertex disjoint stars with:

- $\bullet \ \mathcal{S} \text{ is the set of stars.}$
- **2** Q is the set of **centers** of the stars of S.

Given a star system (Q, S), we associate a directed graph Q^* on vertex set Q and by letting $x_i \to x_i$ if a leaf of S_i is adjacent to x_i .

Given a star system (Q, S), we associate a directed graph Q^* on vertex set Q and by letting $x_i \to x_j$ if a leaf of S_i is adjacent to x_j .

Given a star system (Q, S), we associate a directed graph Q^* on vertex set Q and by letting $x_i \to x_i$ if a leaf of S_i is adjacent to x_i .

Given a star system (Q, S), we associate a directed graph Q^* on vertex set Q and by letting $x_i \to x_j$ if a leaf of S_i is adjacent to x_j .

v

X

Out-section

Private neighbor

Given a graph G and $Q \subseteq V(G)$ partitioned into Q_1, \ldots, Q_{10} , we say that $w \in V(G) \setminus Q$ is a **private neighbor** of a vertex $v_i \in Q_i$ if w is adjacent to v_i but not to any vertex of Q_1, \ldots, Q_i .

Private neighbor

Given a graph G and $Q \subseteq V(G)$ partitioned into Q_1, \ldots, Q_{10} , we say that $w \in V(G) \setminus Q$ is a **private neighbor** of a vertex $v_i \in Q_i$ if w is adjacent to v_i but not to any vertex of Q_1, \ldots, Q_i .

Private neighbor

Given a graph G and $Q \subseteq V(G)$ partitioned into Q_1, \ldots, Q_{10} , we say that $w \in V(G) \setminus Q$ is a **private neighbor** of a vertex $v_i \in Q_i$ if w is adjacent to v_i but not to any vertex of Q_1, \ldots, Q_i .

A graph G has the property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} with:

A graph G has the property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} with:

1 $|J| \le n^{0.91}$

A graph G has the property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} with:

$$\begin{array}{l} \bullet \quad |J| \leq n^{0.91} \\ \bullet \quad \frac{n^{0.9}}{1000} \leq |Q_i| \leq \frac{n^{0.9}}{500} \text{ for all } i \in \{1, \dots, 10\} \end{array}$$

A graph G has the property JQ if for every choice of pairwise disjoint subsets of vertices J, Q_1, \ldots, Q_{10} with:

Image:
$$|J| \le n^{0.91}$$
Image: $|Q_i| \le \frac{n^{0.9}}{500}$ for all $i \in \{1, \dots, 10\}$

Then Q^* over $G \setminus J$ has an out-section whose set of private neighbors have size **at least** $n^{0.95}$.

Lemma JQ

$$\mathbb{P}[G \text{ has the property } JQ] = 1 - o(1).$$

Lemma JQ

$$\mathbb{P}[G \text{ has the property } JQ] = 1 - o(1).$$

Proof

Probabilistic arguments on $G_{n,p}$ with $p = n^{-9/10}$:

- Union bound.
- Markov's bound.
- Chernoff's bound.

Consider a random graph $G = G_{n,p}$ with $p = n^{-9/10}$.

Consider a random graph $G = G_{n,p}$ with $p = n^{-9/10}$. For *n* sufficiently large, by the union bound and classical probabilistic arguments, there exists an *n*-vertex graph such that:

Consider a random graph $G = G_{n,p}$ with $p = n^{-9/10}$. For *n* sufficiently large, by the union bound and classical probabilistic arguments, there exists an *n*-vertex graph such that:

• G has not too many small cycles.

Consider a random graph $G = G_{n,p}$ with $p = n^{-9/10}$. For *n* sufficiently large, by the union bound and classical probabilistic arguments, there exists an *n*-vertex graph such that:

• G has not too many small cycles.

2
$$\alpha(G) = o(n^{0.95}).$$

Consider a random graph $G = G_{n,p}$ with $p = n^{-9/10}$. For *n* sufficiently large, by the union bound and classical probabilistic arguments, there exists an *n*-vertex graph such that:

• G has not too many small cycles.

2
$$\alpha(G) = o(n^{0.95}).$$

③ G has property JQ.

Consider a feedback vertex set S of the short cycles.

Let S' be the set of stars which have *small size*.

Let S' be the set of stars which have *small size*. Consider now $G \setminus (S \cup S')$.

Let S' be the set of stars which have *small size*. Consider now $G \setminus (S \cup S')$.

Let S' be the set of stars which have *small size*. Consider now $G \setminus (S \cup S')$.

Let S' be the set of stars which have *small size*. Consider now $G \setminus (S \cup S')$. Let $J = S \cup S'$.

Consider now Q^* on Q based on the star covering of $G \setminus J$.

Consider now Q^* on Q based on the star covering of $G \setminus J$.

Consider now Q^* on Q based on the star covering of $G \setminus J$.

Consider now Q^* on Q based on the star covering of $G \setminus J$.

Consider now Q^* on Q based on the star covering of $G \setminus J$.

The Normal Graph Conjecture

Sketch of the proof

Conclusion O

One can show that:

Sketch of the proof

- **1** $|Q| > n^{0.9}/3.$
- Solution Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

- **1** $|Q| > n^{0.9}/3.$
- Solution Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

Let C_1, \ldots, C_k be the strongly connected components of Q^* enumerated in a **topological order**.

- **1** $|Q| > n^{0.9}/3.$
- Solution 2 Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

Let C_1, \ldots, C_k be the strongly connected components of Q^* enumerated in a **topological order**.

Concatenate subsets of C_1, \ldots, C_k into blocks Q_1, Q_2, \ldots, Q_{10} such that $n^{0.9}/1000 \le |Q_i| \le n^{0.9}/500$.

- **1** $|Q| > n^{0.9}/3.$
- Solution 2 Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

Let C_1, \ldots, C_k be the strongly connected components of Q^* enumerated in a **topological order**.

Concatenate subsets of C_1, \ldots, C_k into blocks Q_1, Q_2, \ldots, Q_{10} such that $n^{0.9}/1000 \le |Q_i| \le n^{0.9}/500$.

It is possible because of (1) and (2).

- **1** $|Q| > n^{0.9}/3.$
- Solution 2 Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

Let C_1, \ldots, C_k be the strongly connected components of Q^* enumerated in a **topological order**.

Concatenate subsets of C_1, \ldots, C_k into blocks Q_1, Q_2, \ldots, Q_{10} such that $n^{0.9}/1000 \le |Q_i| \le n^{0.9}/500$.

It is possible because of (1) and (2).

- **1** $|Q| > n^{0.9}/3.$
- Solution 2 Every strongly connected component of Q^* has size at most $n^{0.9}/1000$.

Let C_1, \ldots, C_k be the strongly connected components of Q^* enumerated in a **topological order**.

Concatenate subsets of C_1, \ldots, C_k into blocks Q_1, Q_2, \ldots, Q_{10} such that $n^{0.9}/1000 \le |Q_i| \le n^{0.9}/500$.

It is possible because of (1) and (2).

By property JQ, we know that the private directed graph on stars formed by the private neighbors has an out-section O of size at least $n^{0.95}$.

By property JQ, we know that the private directed graph on stars formed by the private neighbors has an out-section O of size at least $n^{0.95}$.

Because the stars formed by private neighbors are in the clique covering, we can apply the stable set propagation lemma. Hence, we obtain an independent set of size at least $n^{0.95}$.

By property JQ, we know that the private directed graph on stars formed by the private neighbors has an out-section O of size at least $n^{0.95}$.

Because the stars formed by private neighbors are in the clique covering, we can apply the stable set propagation lemma. Hence, we obtain an independent set of size at least $n^{0.95}$.

Contradiction to $\alpha(G) = o(n^{0.95})$.

There exists an n-vertex graph G satisfying the following:

There exists an n-vertex graph G satisfying the following:

• G has a **small** number of short cycles.

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.

•
$$\alpha(G) = o(n^{0.95}).$$

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.
- $\alpha(G) = o(n^{0.95}).$

Let us remove short cycles.

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.
- $\alpha(G) = o(n^{0.95}).$

Let us remove short cycles.

• We have a graph of girth at least 8.

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.
- $\alpha(G) = o(n^{0.95}).$

Let us remove short cycles.

- We have a graph of girth at least 8.
- The large number of connected stars induces a stable set of size $n^{0.95}$ in the star covering!

There exists an n-vertex graph G satisfying the following:

- G has a **small** number of short cycles.
- *G* has a large number of **connected** stars.
- $\alpha(G) = o(n^{0.95}).$

Let us remove short cycles.

- We have a graph of girth at least 8.
- The large number of connected stars induces a stable set of size $n^{0.95}$ in the star covering!
- **Contradiction** to the fact that $\alpha(G) = o(n^{0.95})$.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

Theorem [Harutyunyan, Pastor, Thomassé]

There exists a graph G of girth at least 8 that is not normal.

Counter-example to the Normal Graph Conjecture!

Conclusion

Conclusion

• Our counter-example is probabilistic. It might be interesting to look for a deterministic construction.

Conclusion

- Our counter-example is probabilistic. It might be interesting to look for a deterministic construction.
- Other classes of graphes might verify the conjecture.
Conclusion

- Our counter-example is probabilistic. It might be interesting to look for a deterministic construction.
- Other classes of graphes might verify the conjecture.
- A good characterization of normal graphs in terms of graph theory?

Conclusion

- Our counter-example is probabilistic. It might be interesting to look for a deterministic construction.
- Other classes of graphes might verify the conjecture.
- A good characterization of normal graphs in terms of graph theory?

Thank you!