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List-coloring

List-coloring
Let G be a graph. Every vertex v ∈ V (G) has a list L(v) of
prescribed colors, we want to find a proper vertex-coloring c such that
c(v) ∈ L(v).
When such a coloring exists, G is L-colorable.

Choice number
The smallest k such that for every list assignment L of size k, the graph G
is L-colorable.
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List-coloring

Vizing’s conjecture
For every graph G , χ(L(G)) = ch(L(G)). In other words, χ′(G) = ch′(G)
with ch′(G) the list chromatic index of G .

Conjecture [Gravier and Maffray, 1997]
For every claw-free graph G , χ(G) = ch(G).

Special case
We are interested in the case where G is perfect.
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Claw-free perfect graph

Perfect graph
A graph G is perfect if for every induced subgraph H of G , ω(H) = χ(H).

Claw-free graph
The claw is the graph K1,3. A graph is said to be claw-free if it has no
induced subgraph isomorphic to K1,3.
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Claw-free perfect graph

Theorem [Chvátal and Sbihi, 1988]
Every claw-free perfect graph either has a clique-cutset, or is a peculiar
graph, or is an elementary graph.
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Peculiar graph
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clique

at least one non-edge

complete adjacency
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Elementary graph

Theorem [Maffray and Reed, 1999]
A graph G is elementary if and only if it is an augmentation of the
line-graph H (called the skeleton of G) of a bipartite multigraph B (called
the root graph of G).
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Elementary graph

Flat edge
An egde is said to be flat is it not contained in a triangle.

Flat edge augmentation
Let G be a graph.
Pick a flat edge xy .
Pick a co-bipartite graph A = (X ,Y ) disjoint from G .
Let G ′ be a graph obtained from G after removing x and y .
Add all edges between X and NG(x) \ {y} in G ′.
Add all edges between Y and NG(y) \ {x} in G ′.
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Elementary graph

NG(x) \ {y} NG(y) \ {x}

x y

X Y
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Theorem and sketch of the proof

Theorem [Gravier, Maffray, P.]
Let G be a claw-free perfect graph with ω(G) ≤ 4. Then χ(G) = ch(G).
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Theorem and sketch of the proof

Lemma [Maffray]
Let G be a connected claw-free perfect graph that contains a peculiar
subgraph. Then G is peculiar.

Proof
Let H be a peculiar proper subgraph of G that is maximal.
Since G is connected there is a vertex x of V (G) \ V (H) having a
neighbour in H.
In order to avoid claws, odd holes and odd anti holes, x has many
neighbours in H from several sets of the peculiar partition. In fact, x
is in one of those sets, hence H ∪ {x} is a peculiar graph.
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Theorem and sketch of the proof

Lemma
Let G be a peculiar graph with ω(G) ≤ 4 (unique in this case). Then G is
4-choosable.

Proof
If some pairs of non-adjacent vertices share a color, we can color G .
If no such pair exists, we can find a coloring by Hall’s theorem.
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Theorem and sketch of the proof

Lemma
Let G be an elementary graph with ω(G) ≤ 4, χ(G) = ch(G).

Proof
By induction on h, the number of augmented flat edges.
If h = 0, G is the line-graph of some bipartite multigraph H. By
Galvin we know it is chromatic-choosable. Assume that h > 0 and
that the theorem holds for elementary graphs obtained by at most
h − 1 augmentations.
Let (X ,Y ) be the augment in G that corresponds to the edge eh of
L(H) and suppose that G ′ = G \ {X ,Y } is properly colored.
If the coloring of G ′ can be extended to (X ,Y ) we are done.
If not, we can show thanks to a gadget that there exists a coloring of
G ′ that can be extended to G .
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Theorem and sketch of the proof

Proof of the main theorem
Let G be a claw-free perfect graph and C a clique cutset. The graph G \C
has two components A1 and A2. Let G1 = G [C ∪A1] and G2 = G [C ∪A2].
We may assume that G1 is colored and we want to extend it to G2. Let us
assume that G2 is elementary. There are two cases:

1 G2 is a co-bipartite graph
2 G2 is not a co-bipartite graph

Proof of 1
We manually prove that the coloring of C can be extended to G2.

Proof of 2
We use a Galvin argument to show that the graph G2 is colorable with
forced colors on the clique C .
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Conclusion and perspectives

Perspectives
Prove it for the general case!

A word on our method
Proving that elementary graphs are chromatic-choosable by induction
on the number of augmented flat edges gives us interesting tools for
the extension of a coloring to an elementary graph.
It is still not clear whether the gadget trick is a good option for the
generalization or not.
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Conclusion and perspectives

Thank you for listening.
Do you have any questions?
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