List-coloring in claw-free perfect graphs

Lucas Pastor

Joint-work with Sylvain Gravier and Frédéric Maffray

G-SCOP

June 30 - July 2, 2015

List-coloring

- Let G be a graph. Every vertex v ∈ V(G) has a list L(v) of prescribed colors, we want to find a proper vertex-coloring c such that c(v) ∈ L(v).
- When such a coloring exists, G is L-colorable.

List-coloring

- Let G be a graph. Every vertex v ∈ V(G) has a list L(v) of prescribed colors, we want to find a proper vertex-coloring c such that c(v) ∈ L(v).
- When such a coloring exists, G is L-colorable.

Choice number

The smallest k such that for every list assignment L of size k, the graph G is L-colorable.

Vizing's conjecture

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Vizing's conjecture

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]

For every claw-free graph G, $\chi(G) = ch(G)$.

Vizing's conjecture

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]

For every claw-free graph G, $\chi(G) = ch(G)$.

Special case

We are interested in the case where G is perfect.

Perfect graph

A graph G is perfect if for every induced subgraph H of G, $\omega(H) = \chi(H)$.

Perfect graph

A graph G is perfect if for every induced subgraph H of G, $\omega(H) = \chi(H)$.

Claw-free graph

The claw is the graph $K_{1,3}$. A graph is said to be claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

Theorem [Chvátal and Sbihi, 1988]

Every claw-free perfect graph either has a clique-cutset, or is a peculiar graph, or is an elementary graph.

Peculiar graph

Theorem [Maffray and Reed, 1999]

A graph G is elementary if and only if it is an augmentation of the line-graph H (called the **skeleton** of G) of a bipartite multigraph B (called the **root** graph of G).

An egde is said to be flat is it not contained in a triangle.

An egde is said to be flat is it not contained in a triangle.

An egde is said to be flat is it not contained in a triangle.

Flat edge augmentation

• Let G be a graph.

An egde is said to be flat is it not contained in a triangle.

- Let G be a graph.
- Pick a flat edge xy.

An egde is said to be flat is it not contained in a triangle.

- Let G be a graph.
- Pick a flat edge xy.
- Pick a co-bipartite graph A = (X, Y) disjoint from G.

An egde is said to be flat is it not contained in a triangle.

- Let G be a graph.
- Pick a flat edge xy.
- Pick a co-bipartite graph A = (X, Y) disjoint from G.
- Let G' be a graph obtained from G after removing x and y.

An egde is said to be flat is it not contained in a triangle.

- Let G be a graph.
- Pick a flat edge xy.
- Pick a co-bipartite graph A = (X, Y) disjoint from G.
- Let G' be a graph obtained from G after removing x and y.
- Add all edges between X and $N_G(x) \setminus \{y\}$ in G'.

An egde is said to be flat is it not contained in a triangle.

- Let G be a graph.
- Pick a flat edge xy.
- Pick a co-bipartite graph A = (X, Y) disjoint from G.
- Let G' be a graph obtained from G after removing x and y.
- Add all edges between X and $N_G(x) \setminus \{y\}$ in G'.
- Add all edges between Y and $N_G(y) \setminus \{x\}$ in G'.

Theorem [Gravier, Maffray, P.]

Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\chi(G) = ch(G)$.

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Proof

• Let H be a peculiar proper subgraph of G that is maximal.

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

- Let H be a peculiar proper subgraph of G that is maximal.
- Since G is connected there is a vertex x of V(G) \ V(H) having a neighbour in H.

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

- Let *H* be a peculiar proper subgraph of *G* that is maximal.
- Since G is connected there is a vertex x of V(G) \ V(H) having a neighbour in H.
- In order to avoid claws, odd holes and odd anti holes, x has many neighbours in H from several sets of the peculiar partition. In fact, x is in one of those sets, hence H ∪ {x} is a peculiar graph.

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

Proof

• If some pairs of non-adjacent vertices share a color, we can color G.

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

- If some pairs of non-adjacent vertices share a color, we can color G.
- If no such pair exists, we can find a coloring by Hall's theorem.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

Proof

• By induction on *h*, the number of augmented flat edges.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

- By induction on *h*, the number of augmented flat edges.
- If h = 0, G is the line-graph of some bipartite multigraph H. By Galvin we know it is chromatic-choosable. Assume that h > 0 and that the theorem holds for elementary graphs obtained by at most h 1 augmentations.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

- By induction on *h*, the number of augmented flat edges.
- If h = 0, G is the line-graph of some bipartite multigraph H. By Galvin we know it is chromatic-choosable. Assume that h > 0 and that the theorem holds for elementary graphs obtained by at most h 1 augmentations.
- Let (X, Y) be the augment in G that corresponds to the edge e_h of L(H) and suppose that G' = G \ {X, Y} is properly colored.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

- By induction on *h*, the number of augmented flat edges.
- If h = 0, G is the line-graph of some bipartite multigraph H. By Galvin we know it is chromatic-choosable. Assume that h > 0 and that the theorem holds for elementary graphs obtained by at most h 1 augmentations.
- Let (X, Y) be the augment in G that corresponds to the edge e_h of L(H) and suppose that G' = G \ {X, Y} is properly colored.
- If the coloring of G' can be extended to (X, Y) we are done.

Let G be an elementary graph with $\omega(G) \leq 4$, $\chi(G) = ch(G)$.

- By induction on *h*, the number of augmented flat edges.
- If h = 0, G is the line-graph of some bipartite multigraph H. By Galvin we know it is chromatic-choosable. Assume that h > 0 and that the theorem holds for elementary graphs obtained by at most h 1 augmentations.
- Let (X, Y) be the augment in G that corresponds to the edge e_h of L(H) and suppose that G' = G \ {X, Y} is properly colored.
- If the coloring of G' can be extended to (X, Y) we are done.
- If not, we can show thanks to a gadget that there exists a coloring of *G*['] that can be extended to *G*.

Let G be a claw-free perfect graph and C a clique cutset. The graph $G \setminus C$ has two components A_1 and A_2 . Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$. We may assume that G_1 is colored and we want to extend it to G_2 . Let us assume that G_2 is elementary. There are two cases:

14 / 16

Let G be a claw-free perfect graph and C a clique cutset. The graph $G \setminus C$ has two components A_1 and A_2 . Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$. We may assume that G_1 is colored and we want to extend it to G_2 . Let us assume that G_2 is elementary. There are two cases:

• G_2 is a co-bipartite graph

Let G be a claw-free perfect graph and C a clique cutset. The graph $G \setminus C$ has two components A_1 and A_2 . Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$. We may assume that G_1 is colored and we want to extend it to G_2 . Let us assume that G_2 is elementary. There are two cases:

- G_2 is a co-bipartite graph
- **2** G_2 is not a co-bipartite graph

Let G be a claw-free perfect graph and C a clique cutset. The graph $G \setminus C$ has two components A_1 and A_2 . Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$. We may assume that G_1 is colored and we want to extend it to G_2 . Let us assume that G_2 is elementary. There are two cases:

- G_2 is a co-bipartite graph
- **2** G_2 is not a co-bipartite graph

Proof of 1

We manually prove that the coloring of C can be extended to G_2 .

Let G be a claw-free perfect graph and C a clique cutset. The graph $G \setminus C$ has two components A_1 and A_2 . Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$. We may assume that G_1 is colored and we want to extend it to G_2 . Let us assume that G_2 is elementary. There are two cases:

- G_2 is a co-bipartite graph
- **2** G_2 is not a co-bipartite graph

Proof of 1

We manually prove that the coloring of C can be extended to G_2 .

Proof of 2

We use a Galvin argument to show that the graph G_2 is colorable with forced colors on the clique C.

Prove it for the general case!

Prove it for the general case!

A word on our method

Prove it for the general case!

A word on our method

• Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.

Prove it for the general case!

A word on our method

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It is still not clear whether the gadget trick is a good option for the generalization or not.

Thank you for listening. Do you have any questions?