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The chromatic index, x/(G), is the smallest k such that G is
k-edge-colorable.
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But not necessarily an induced matching!
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The strong chromatic index, x%(G), is the smallest k such that
G is strong k-edge-colorable.
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Conjecture [Erdos, Nesetfil 1988]

The previous example is the worst you can get. In other words:

For any graph G, x4(G) < 2A(G)>.

We have an upper bound of 2A(G)?. Can we do better?

Theorem [Molloy, Reed 1997]

X+(G) < (2 - )A(G)?

for some constant € = 0.002.

The constant has been improved by Bruhn and Joos in 2015 to

e = 0.07.



Line-graph
Given a graph G, the line-graph of G, denoted by £(G), is the
graph whose vertices are the edges of G and whose edges are the
pairs of adjacent edges of G.
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Square graph
Given a graph G, the square of G, denoted by G?, is the graph

obtained from G by adding edges between every pair of vertices at
distance 2.
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Strong coloring

= Coloring the edges of G is equivalent to coloring the vertices
of L(G).
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Strong coloring
= Coloring the edges of G is equivalent to coloring the vertices
of L(G).
= The strong coloring of G is equivalent to color G2.

= Hence, the strong edge coloring of G is equivalent to color the
vertices of £(G)?.

Molloy and Reed’s theorem
Let G be the line-graph of any simple graph, then:

X(6%) < (2 - )w(6)*.
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In a line-graph, the neighborhood of any vertex is the union of at
most 2 cliques.
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Theorem [de Joannis de Verclos, Kang, P.]
There is an absolute constant € > 0 such that, for any claw-free
graph G:
X(G%) < (2 - €w(G)?

16



Theorem [de Joannis de Verclos, Kang, P.]
There is an absolute constant € > 0 such that, for any claw-free
graph G:
X(G%) < (2 - €w(G)?

Roadmap
1. From claw-free to quasi-line graphs.

16



Theorem [de Joannis de Verclos, Kang, P.]
There is an absolute constant € > 0 such that, for any claw-free
graph G:
X(G%) < (2 - €w(G)?

Roadmap
1. From claw-free to quasi-line graphs.

2. From quasi-line graphs to line-graphs of multigraphs.

16



Theorem [de Joannis de Verclos, Kang, P.]
There is an absolute constant ¢ > 0 such that, for any claw-free
graph G:
X(G?) < (2 - e)w(G)?

Roadmap

1. From claw-free to quasi-line graphs.
2. From quasi-line graphs to line-graphs of multigraphs.

3. Prove the theorem for line-graphs of multigraphs.
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Second neighborhood

The second neighborhood of v, denoted by N%(v), is the set of
vertices at distance exactly two from v, i.e.

Ng(v) = Ng2(v) \ Ng(v).
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Second neighborhood

The second neighborhood of v, denoted by N%(v), is the set of
vertices at distance exactly two from v, i.e.

Ng(v) = Ng2(v) \ Ng(v).

The square degree of v, denoted by deg¢2(v), is equal to
degg(v) + [NE(v).
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Lemma
For G claw-free, either G is a quasi-line graph or there exist
v € V(G) with degga(v) < w(G)? + (w(G) + 1)/2 whose
neighborhood is a clique of (G \ v)°.
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Lemma
For G claw-free, either G is a quasi-line graph or there exist
v € V(G) with degga(v) < w(G)? + (w(G) + 1)/2 whose
neighborhood is a clique of (G \ v)°.

1. The proof is by induction on |V/(G)|.
2. Note that (G \ v)? # G2\ v.
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clique in G? — v
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maybe not in (G \ v)?
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Conclusion
= Qur constant can be improved by using Bruhn and Joos
method.
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Conclusion
= Qur constant can be improved by using Bruhn and Joos
method.

= The conjecture for bipartite graphs is x.(G) < A(A)A(B).
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Thank you for your attention.
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