

Coloring squares of claw-free graphs

Lucas Pastor

November 15 2017

Joint-work with Rémi de Joannis de Verclos and Ross J. Kang

The **chromatic number**, $\chi(G)$, is the smallest k such that G is k-colorable.

A **(proper)** k-edge-coloring of G is an assignment of colors $\{1,\ldots,k\}$ to the edges of G such that any two adjacent edges (sharing a vertex) receive a different color.

A **(proper)** k-edge-coloring of G is an assignment of colors $\{1,\ldots,k\}$ to the edges of G such that any two adjacent edges (sharing a vertex) receive a different color.

A **(proper)** k-edge-coloring of G is an assignment of colors $\{1,\ldots,k\}$ to the edges of G such that any two adjacent edges (sharing a vertex) receive a different color.

A **(proper)** k-edge-coloring of G is an assignment of colors $\{1, \ldots, k\}$ to the edges of G such that any two adjacent edges (sharing a vertex) receive a different color.

The **chromatic index**, $\chi'(G)$, is the smallest k such that G is k-edge-colorable.

But not necessarily an induced matching!

The **strong chromatic index**, $\chi'_s(G)$, is the smallest k such that G is strong k-edge-colorable.

Given a graph G with maximum degree $\Delta(G)$.

Given a graph G with maximum degree $\Delta(G)$.

$$\chi_s'(G)$$

Given a graph G with maximum degree $\Delta(G)$.

$$\chi'_s(G) \leq \text{upper bound}$$

Given a graph G with maximum degree $\Delta(G)$.

lower bound $\leq \chi'_s(G) \leq$ upper bound

$$\chi'_{s}(G) \leq 2\Delta(\Delta - 1) + 1 = 2\Delta^{2} - 2\Delta + 1.$$

For any even integer $\Delta \geq$ 2, there exist a graph ${\it G}$ of max degree

$$\boldsymbol{\Delta}$$
 such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

In this graph, any pair of edges is at distance at most 2. There are $\frac{5}{4}\Delta^2$ edges in G.

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

In this graph, any pair of edges is at distance at most 2. There are $\frac{5}{4}\Delta^2$ edges in G.

For any even integer $\Delta \geq 2$, there exist a graph G of max degree Δ such that:

$$\chi_s'(G) = \frac{5}{4}\Delta^2.$$

In this graph, any pair of edges is at distance at most 2. There are $\frac{5}{4}\Delta^2$ edges in G.

The previous example is the worst you can get. In other words:

For any graph
$$G$$
, $\chi'_{s}(G) \leq \frac{5}{4}\Delta(G)^{2}$.

The previous example is the worst you can get. In other words:

For any graph
$$G$$
, $\chi'_{s}(G) \leq \frac{5}{4}\Delta(G)^{2}$.

We have an upper bound of $2\Delta(G)^2$. Can we do better?

The previous example is the worst you can get. In other words:

For any graph
$$G$$
, $\chi'_s(G) \leq \frac{5}{4}\Delta(G)^2$.

We have an upper bound of $2\Delta(G)^2$. Can we do better?

Theorem [Molloy, Reed 1997]

$$\chi_s'(G) \le (2 - \epsilon)\Delta(G)^2$$

The previous example is the worst you can get. In other words:

For any graph
$$G$$
, $\chi'_s(G) \leq \frac{5}{4}\Delta(G)^2$.

We have an upper bound of $2\Delta(G)^2$. Can we do better?

Theorem [Molloy, Reed 1997]

$$\chi_s'(G) \leq (2 - \epsilon)\Delta(G)^2$$

for some constant $\epsilon = 0.002$.

The previous example is the worst you can get. In other words:

For any graph
$$G$$
, $\chi'_s(G) \leq \frac{5}{4}\Delta(G)^2$.

We have an upper bound of $2\Delta(G)^2$. Can we do better?

Theorem [Molloy, Reed 1997]

$$\chi_s'(G) \leq (2 - \epsilon)\Delta(G)^2$$

for some constant $\epsilon = 0.002$.

The constant has been improved by Bruhn and Joos in 2015 to $\epsilon=0.07.$

Given a graph G, the **line-graph** of G, denoted by $\mathcal{L}(G)$, is the graph whose vertices are the edges of G and whose edges are the pairs of adjacent edges of G.

Given a graph G, the **line-graph** of G, denoted by $\mathcal{L}(G)$, is the graph whose vertices are the edges of G and whose edges are the pairs of adjacent edges of G.

• Coloring the edges of G is equivalent to coloring the vertices of $\mathcal{L}(G)$.

- Coloring the edges of G is equivalent to coloring the vertices of $\mathcal{L}(G)$.
- The strong coloring of G is equivalent to color G^2 .

- Coloring the edges of G is equivalent to coloring the vertices of $\mathcal{L}(G)$.
- The strong coloring of G is equivalent to color G².
- Hence, the strong edge coloring of G is equivalent to color the vertices of $\mathcal{L}(G)^2$.

- Coloring the edges of G is equivalent to coloring the vertices of $\mathcal{L}(G)$.
- The strong coloring of G is equivalent to color G².
- Hence, the strong edge coloring of G is equivalent to color the vertices of $\mathcal{L}(G)^2$.

Molloy and Reed's theorem

Let G be the line-graph of any simple graph, then:

$$\chi(G^2) \le (2 - \epsilon)\omega(G)^2.$$

In a line-graph, the neighborhood of any vertex is the union of at most 2 cliques.

The class of graphs having this property is the class of **quasi-line** graphs.

Quasi-line graphs

In a quasi-line graph, the neighborhood of any vertex cannot have 3 pairwise non-adjacent vertices.

Quasi-line graphs

In a quasi-line graph, the neighborhood of any vertex cannot have 3 pairwise non-adjacent vertices.

Quasi-line graphs

In a quasi-line graph, the neighborhood of any vertex cannot have 3 pairwise non-adjacent vertices.

The class of graphs having this property is the class of **claw-free** graphs.

line-graph

There is an absolute constant $\epsilon>0$ such that, for any claw-free graph G:

$$\chi(G^2) \le (2 - \epsilon)\omega(G)^2$$

There is an absolute constant $\epsilon > 0$ such that, for any claw-free graph G:

$$\chi(G^2) \le (2 - \epsilon)\omega(G)^2$$

Roadmap

1. From claw-free to quasi-line graphs.

There is an absolute constant $\epsilon > 0$ such that, for any claw-free graph G:

$$\chi(G^2) \le (2 - \epsilon)\omega(G)^2$$

Roadmap

- 1. From claw-free to quasi-line graphs.
- 2. From quasi-line graphs to line-graphs of multigraphs.

There is an absolute constant $\epsilon > 0$ such that, for any claw-free graph G:

$$\chi(G^2) \le (2 - \epsilon)\omega(G)^2$$

Roadmap

- 1. From claw-free to quasi-line graphs.
- 2. From quasi-line graphs to line-graphs of multigraphs.
- 3. Prove the theorem for line-graphs of multigraphs.

Second neighborhood

The **second neighborhood** of v, denoted by $N_G^2(v)$, is the set of vertices at distance exactly two from v, i.e.

$$N_G^2(v) = N_{G^2}(v) \setminus N_G(v).$$

Second neighborhood

The **second neighborhood** of v, denoted by $N_G^2(v)$, is the set of vertices at distance exactly two from v, i.e.

$$N_G^2(v) = N_{G^2}(v) \setminus N_G(v).$$

The **square degree** of v, denoted by $\deg_{G^2}(v)$, is equal to $\deg_G(v) + |N_G^2(v)|$.

Lemma

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Lemma

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

1. The proof is by induction on |V(G)|.

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

- 1. The proof is by induction on |V(G)|.
- 2. Note that $(G \setminus v)^2 \neq G^2 \setminus v$.

•

v

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

For G claw-free, either G is a quasi-line graph or there exist $v \in V(G)$ with $\deg_{G^2}(v) \leq \omega(G)^2 + (\omega(G) + 1)/2$ whose neighborhood is a clique of $(G \setminus v)^2$.

Claim

Conclusion

 Our constant can be improved by using Bruhn and Joos method.

Conclusion

- Our constant can be improved by using Bruhn and Joos method.
- The conjecture for bipartite graphs is $\chi'_s(G) \leq \Delta(A)\Delta(B)$.

Thank you for your attention.