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A (proper) k-coloring of G is an assignement of colors {1, . . . , k}
to the vertices of G such that any two adjacent vertices receive a
different color.

The chromatic number, χ(G), is the smallest k such that G is
k-colorable.
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A (proper) k-edge-coloring of G is an assignment of colors
{1, . . . , k} to the edges of G such that any two adjacent edges
(sharing a vertex) receive a different color.

The chromatic index, χ′(G), is the smallest k such that G is
k-edge-colorable.
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Note that in an edge coloring, each color class is a matching.

But not necessarily an induced matching!
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A strong k-edge-coloring of G is a k-edge-coloring where each
color class is an induced matching.

The strong chromatic index, χ′
s(G), is the smallest k such that

G is strong k-edge-colorable.
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Questions
Given a graph G with maximum degree ∆(G).

lower bound ≤ χ′
s(G) ≤ upper bound
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Upper bound
Pick any edge e, and look at how large can be its neighborhood at
distance 2.

χ′
s(G) ≤ 2∆(∆− 1) + 1 = 2∆2 − 2∆ + 1.
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Lower bound
For any even integer ∆ ≥ 2, there exist a graph G of max degree
∆ such that:

χ′
s(G) = 5

4∆2.

In this graph, any pair of edges is at distance at most 2. There are
5
4∆2 edges in G .
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Conjecture [Erdős, Nešetřil 1988]
The previous example is the worst you can get. In other words:

For any graph G , χ′
s(G) ≤ 5

4∆(G)2.

We have an upper bound of 2∆(G)2. Can we do better?

Theorem [Molloy, Reed 1997]

χ′
s(G) ≤ (2− ε)∆(G)2

for some constant ε = 0.002.

The constant has been improved by Bruhn and Joos in 2015 to
ε = 0.07.
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Line-graph
Given a graph G , the line-graph of G , denoted by L(G), is the
graph whose vertices are the edges of G and whose edges are the
pairs of adjacent edges of G .
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Square graph
Given a graph G , the square of G , denoted by G2, is the graph
obtained from G by adding edges between every pair of vertices at
distance 2.
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Strong coloring
• Coloring the edges of G is equivalent to coloring the vertices

of L(G).

• The strong coloring of G is equivalent to color G2.
• Hence, the strong edge coloring of G is equivalent to color the

vertices of L(G)2.

Molloy and Reed’s theorem
Let G be the line-graph of any simple graph, then:

χ(G2) ≤ (2− ε)ω(G)2.
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Line-graphs
In a line-graph, the neighborhood of any vertex is the union of at
most 2 cliques.

The class of graphs having this property is the class of quasi-line
graphs.
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Theorem [de Joannis de Verclos, Kang, P.]
There is an absolute constant ε > 0 such that, for any claw-free
graph G :

χ(G2) ≤ (2− ε)ω(G)2

Roadmap
1. From claw-free to quasi-line graphs.
2. From quasi-line graphs to line-graphs of multigraphs.
3. Prove the theorem for line-graphs of multigraphs.
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Second neighborhood
The second neighborhood of v , denoted by N2

G(v), is the set of
vertices at distance exactly two from v , i.e.
N2

G(v) = NG2(v) \ NG(v).

The square degree of v , denoted by degG2(v), is equal to
degG(v) + |N2

G(v)|.
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Lemma
For G claw-free, either G is a quasi-line graph or there exist
v ∈ V (G) with degG2(v) ≤ ω(G)2 + (ω(G) + 1)/2 whose
neighborhood is a clique of (G \ v)2.

1. The proof is by induction on |V (G)|.
2. Note that (G \ v)2 6= G2 \ v .
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Lemma
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Claim
If NG(v) is not a clique of (G \ v)2 then NG(v) is the union of two
cliques.
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Conclusion
• Our constant can be improved by using Bruhn and Joos

method.

• The conjecture for bipartite graphs is χ′
s(G) ≤ ∆(A)∆(B).
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Thank you for your attention.
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