The coloring problem in graphs with structural restrictions

Lucas Pastor

Joint-work with Frédéric Maffray

G-SCOP

March 4, 2016

k-coloring

For any integer k, a **k-coloring** of a graph G is a mapping $c: V(G) \to \{1, \ldots, k\}$ such that any two adjacent vertices u, v in G satisfies $c(u) \neq c(v)$.

k-coloring

For any integer k, a **k-coloring** of a graph G is a mapping $c: V(G) \to \{1, \ldots, k\}$ such that any two adjacent vertices u, v in G satisfies $c(u) \neq c(v)$.

Chromatic number

The **chromatic number**, $\chi(G)$, of a graph G is the smallest integer k such that G is k-colorable.

Optimal coloring example

Optimal coloring example

Optimal coloring example

Complexity

• Determining the chromatic number of a graph *G* is *NP*-hard [*Karp 1972; Garey, Johnson 1979*].

Complexity

- Determining the chromatic number of a graph G is **NP-hard** [Karp 1972; Garey, Johnson 1979].
- Deciding whether a graph G is k-colorable is NP-complete for each fixed $k \ge 3$ [Stockmeyer 1973].

Forbidden induced subgraph

A graph G is H-free if no induced subgraph of G is isomorphic to H.

Forbidden induced subgraph

A graph G is H-free if no induced subgraph of G is isomorphic to H.

Without short cycles [Kamiński, Lozin 2007]

For any fixed $k, g \ge 3$, the k-coloring problem is NP-complete for the class of graphs with **girth at least** g.

girth: length of the shortest cycle.

Without claws [Holyer 1981; Leven, Galil 1983]

For any fixed $k \ge 3$, the k-coloring problem is NP-complete for the class of H-free graphs where H contains a claw.

Without claws [Holyer 1981; Leven, Galil 1983]

For any fixed $k \ge 3$, the k-coloring problem is NP-complete for the class of H-free graphs where H contains a claw.

Without cycles or claws

For any fixed $k \ge 3$ and H a forbidden induced subgraph that is **not a collection of paths**, deciding whether a graph is k-colorable is NP-complete

What is known?

k-coloring of P_{ℓ} -free graphs.

 P_{ℓ} : induced path on ℓ vertices.

What is known?

k-coloring of P_{ℓ} -free graphs.

P_{ℓ} : induced path on ℓ vertices.

$\ell \backslash k$	1; 2	3	4	5	6	7	8	• • •
<u>≤ 4</u>	Р	P	P	P	P	P	P	Р
5	Р	P	P	P	P	P	P	Р
6	Р	P	?	NPC	NPC	NPC	NPC	NPC
7	Р	P	NPC	NPC	NPC	NPC	NPC	NPC
8	Р	?	NPC	NPC	NPC	NPC	NPC	NPC
• • •	Р	?	NPC	NPC	NPC	NPC	NPC	NPC

• (P_6, C_5) -free graphs [Chudnovsky et al. 2014].

- (P_6, C_5) -free graphs [Chudnovsky et al. 2014].
- (P_6, bull, Z_1) -free and $(P_6, \text{bull}, \text{kite})$ -free graphs [Brause et al. 2015].

- (P_6, C_5) -free graphs [Chudnovsky et al. 2014].
- (P_6, bull, Z_1) -free and $(P_6, \text{bull}, \text{kite})$ -free graphs [Brause et al. 2015].
- (P₆, banner)-free graphs [Huang 2016].

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

Homogeneous set decomposition

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

A homogeneous set is a set $S \subseteq V(G)$ such that every vertex in $V(G) \setminus S$ is either complete to S or anticomplete to S.

Homogeneous set decomposition

Prime graph

A graph ${\it G}$ is prime if it does not contain any non-trivial homogeneous set.

Prime graph

A graph G is prime if it does not contain any non-trivial homogeneous set.

Prime graph

A graph G is prime if it does not contain any non-trivial homogeneous set.

Quasi-prime graph

A graph G is quasi-prime if every non-trivial homogeneous set of G is a clique.

Quasi-prime graph

A graph G is quasi-prime if every non-trivial homogeneous set of G is a clique.

Quasi-prime

Quasi-prime graph

A graph G is quasi-prime if every non-trivial homogeneous set of G is a clique.

Quasi-prime

It is sufficient to produce a 4-coloring for any $(P_6, \text{ bull})$ -free graph G that satisfies the following properties:

It is sufficient to produce a 4-coloring for any $(P_6, \text{ bull})$ -free graph G that satisfies the following properties:

 \bullet G and \overline{G} are connected.

It is sufficient to produce a 4-coloring for any $(P_6, \text{ bull})$ -free graph G that satisfies the following properties:

- \bullet G and \overline{G} are connected.
- **②** *G* is quasi-prime.

It is sufficient to produce a 4-coloring for any $(P_6, \text{ bull})$ -free graph G that satisfies the following properties:

- \bullet G and \overline{G} are connected.
- G is quasi-prime.
- \odot G is K_5 -free and double-wheel-free.

Lemma

It is sufficient to produce a 4-coloring for any $(P_6, \text{ bull})$ -free graph G that satisfies the following properties:

- \bullet G and \overline{G} are connected.
- G is quasi-prime.
- \odot *G* is K_5 -free and double-wheel-free.

Warning

We do not claim that K_5 and the double-wheel are the only 5-vertex-critical graphs!

• If *G* is not connected we can examine each component of *G* separately.

- If G is not connected we can examine each component of G separately.
- If \overline{G} is not connected, V(G) can be partitioned into two non-empty sets V_1 and V_2 complete to each other. We have $\chi(G) = \chi(G[V_1]) + \chi(G[V_2])$.

- If G is not connected we can examine each component of G separately.
- If \overline{G} is not connected, V(G) can be partitioned into two non-empty sets V_1 and V_2 complete to each other. We have $\chi(G) = \chi(G[V_1]) + \chi(G[V_2])$.
 - We need $G[V_1]$ and $G[V_2]$ to be 3-colorable. We use the known algorithms for that.

- If *G* is not connected we can examine each component of *G* separately.
- If \overline{G} is not connected, V(G) can be partitioned into two non-empty sets V_1 and V_2 complete to each other. We have $\chi(G) = \chi(G[V_1]) + \chi(G[V_2])$.
 - We need $G[V_1]$ and $G[V_2]$ to be 3-colorable. We use the known algorithms for that.
 - If they are 3-colorable, we can precisely determine their chromatic number by testing if they are bipartite or edgeless.

Assume that G is not quasi-prime. So it has a homogeneous set X that is not a clique.

• A necessary condition for G to be 4-colorable is that $\chi(G[X]) \leq 3$.

- A necessary condition for G to be 4-colorable is that $\chi(G[X]) \leq 3$.
- If it is 3-colorable, we determine $\chi(G[X])$ by testing if it is bipartite or edgeless.

- A necessary condition for G to be 4-colorable is that $\chi(G[X]) \leq 3$.
- If it is 3-colorable, we determine $\chi(G[X])$ by testing if it is bipartite or edgeless.
- Contract X into a clique of size $\chi(G[X])$.

- A necessary condition for G to be 4-colorable is that $\chi(G[X]) \leq 3$.
- If it is 3-colorable, we determine $\chi(G[X])$ by testing if it is bipartite or edgeless.
- Contract X into a clique of size $\chi(G[X])$.
- Repeat this until we obtain a quasi-prime graph G'.

- A necessary condition for G to be 4-colorable is that $\chi(G[X]) \leq 3$.
- If it is 3-colorable, we determine $\chi(G[X])$ by testing if it is bipartite or edgeless.
- Contract X into a clique of size $\chi(G[X])$.
- Repeat this until we obtain a quasi-prime graph G'.
- We can show that G is 4-colorable if and only if G' is 4-colorable.

Quasi-prime

Quasi-prime

It is easy to check that K_5 and the double-wheel are not 4-colorable. Hence, if G contains a K_5 or the double-wheel it is not 4-colorable.

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

• G contains a magnet.

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

- G contains a magnet.
- G contains a gem and a special graph.

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

- G contains a magnet.
- G contains a gem and a special graph.
- *G* is gem-free.

Magnet

A subgraph F of G is a magnet if every vertex of $G \setminus F$ has two neighbors $u, v \in V(F)$ such that $uv \in E(F)$.

Magnet

A subgraph F of G is a magnet if every vertex of $G \setminus F$ has two neighbors $u, v \in V(F)$ such that $uv \in E(F)$.

How to use it?

We can fix a coloring on F and use the 2-list-coloring algorithms to try extend it to the rest of the graph in polynomial time.

List-coloring problem

Every vertex v of the graph G has a list L(v) of admissible colors. We want to find a proper coloring such that $c(v) \in L(v)$, for every vertex $v \in V(G)$.

List-coloring problem

Every vertex v of the graph G has a list L(v) of admissible colors. We want to find a proper coloring such that $c(v) \in L(v)$, for every vertex $v \in V(G)$.

2-list coloring

List-coloring problem where all lists are of size 2. The 2-list coloring problem can be solved in polynomial time.

Magnet coloring

Magnet coloring

Magnet coloring

Magnet coloring

Magnet coloring

Theorem [Maffray, P.]

For any fixed k, there is a polynomial algorithm that determines if a $(P_6$, bull, gem)-free graph is k-colorable and if it is, produces a k-coloring.

Theorem [Maffray, P.]

For any fixed k, there is a polynomial algorithm that determines if a $(P_6$, bull, gem)-free graph is k-colorable and if it is, produces a k-coloring.

Perfect graph

A graph G is *perfect* if every induced subgraph H of G satisfies $\chi(H) = \omega(H)$.

Perfect graph

A graph G is *perfect* if every induced subgraph H of G satisfies $\chi(H) = \omega(H)$.

Strong Perfect Graph Theorem [Chudnovsky, Robertson, Seymour and Thomas 2006]

A graph is perfect if and only if it contains no C_ℓ and no $\overline{C_\ell}$ for any odd $\ell \geq 5$.

Coloring (P_6 , bull, gem)-free graphs

Since G is P_6 -free, it contains no C_ℓ with $\ell \geq 7$, and since it is gem-free, it contains no $\overline{C_\ell}$ with $\ell > 7$.

Coloring (P_6 , bull, gem)-free graphs

Since G is P_6 -free, it contains no C_ℓ with $\ell \geq 7$, and since it is gem-free, it contains no $\overline{C_\ell}$ with $\ell \geq 7$.

• If G contains no C_5 , then it is bull-free perfect.

Coloring (P_6 , bull, gem)-free graphs

Since G is P_6 -free, it contains no C_ℓ with $\ell \geq 7$, and since it is gem-free, it contains no $\overline{C_\ell}$ with $\ell \geq 7$.

- If G contains no C_5 , then it is bull-free perfect.
- If G contains a C_5 , we prove that it is triangle-free.

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$ U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$ U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$ Each of U_1, \ldots, U_5 is a stable set

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$ U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$ Each of U_1, \dots, U_5 is a stable set There is no blue triangle

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$ U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$ Each of U_1, \dots, U_5 is a stable set There is no blue triangle

 U_1 U_2 U_3

There is no red triangle

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$

 U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$

Each of U_1, \ldots, U_5 is a stable set

There is no blue triangle

There is no red triangle

There is no green triangle

 U_i is anticomplete to $U_{i-2} \cup U_{i+2}$ U_i contains a vertex that is complete to $U_{i-1} \cup U_{i+1}$ Each of U_1, \ldots, U_5 is a stable set

There is no blue triangle

There is no red triangle

There is no green triangle

Hence, there is no triangle

Theorem [Brandstädt et al. 2006]

For any fixed k, k-coloring a (P_6, K_3) -free graph is polynomial solvable.

Theorem [Brandstädt et al. 2006]

For any fixed k, k-coloring a (P_6, K_3) -free graph is polynomial solvable.

Lemma

Let G be a prime (P_6 , bull, gem)-free graph that contains a 5-hole. Then G is triangle-free.

[Maffray, P.]

There is a polynomial time algorithm that determines whether a $(P_6, \text{ bull})$ -free graphs is 4-colorable, and if it is, produces a 4-coloring.

[Maffray, P.]

There is a polynomial time algorithm that determines whether a $(P_6, \text{ bull})$ -free graphs is 4-colorable, and if it is, produces a 4-coloring.

Structural Lemma

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

- G contains a magnet.
- G contains a gem and a special graph.
- *G* is gem-free.

[Maffray, P.]

There is a polynomial time algorithm that determines whether a $(P_6, \text{ bull})$ -free graphs is 4-colorable, and if it is, produces a 4-coloring.

Structural Lemma

Let G be a quasi-prime bull-free graph that contains no K_5 and no double-wheel. Then at least one of the following holds:

- G contains a magnet.
- G contains a gem and a special graph.
- G is gem-free.

Structure

By the structural Lemma and further examining the structure we can partition the graph into sets as in the next drawing.

How to use this structure?

We will see that we can use this structure to color all the graph. In fact we color a fixed number of vertices and try to extend it.

The main idea is to precolor a set P of vertices of bounded size (at most 8), more precisely:

The main idea is to precolor a set P of vertices of bounded size (at most 8), more precisely:

• We try every 4-coloring f of P and check if we can extend it to $G \setminus P$.

The main idea is to precolor a set P of vertices of bounded size (at most 8), more precisely:

- We try every 4-coloring f of P and check if we can extend it to $G \setminus P$.
- After precoloring P, every vertex v in $V(G) \setminus P$ has a list of available colors L(v) which consist of the set $\{1,2,3,4\}$ minus the colors given by f to the neighbors of v in P.

The main idea is to precolor a set P of vertices of bounded size (at most 8), more precisely:

- We try every 4-coloring f of P and check if we can extend it to $G \setminus P$.
- After precoloring P, every vertex v in $V(G) \setminus P$ has a list of available colors L(v) which consist of the set $\{1,2,3,4\}$ minus the colors given by f to the neighbors of v in P.
- We solve the associated *L*-coloring problem on $G \setminus P$ or determine that is has no solution.

Why this works?

Why this works?

• Since we choose a set *P* of fixed size we can try all the possible 4-colorings of it.

Why this works?

- Since we choose a set *P* of fixed size we can try all the possible 4-colorings of it.
- Thanks to the structure, we can use polynomial time algorithms to color the rest of the graph.

X is not empty

X is not empty V_5 is complete to $V_1 \cup \ldots \cup V_4$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

If
$$|X| \ge 2$$
, let $P = \{v_1, v_2, v_3, v_4, v_5\} \cup X$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

If
$$|X| \ge 2$$
, let $P = \{v_1, v_2, v_3, v_4, v_5\} \cup X$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

If
$$|X| \ge 2$$
, let $P = \{v_1, v_2, v_3, v_4, v_5\} \cup X$

 V_5 is complete to $V_1 \cup \ldots \cup V_4$

W is complete to X and anticomplete to $V_1 \cup \ldots \cup V_4$

 Z_1 is complete to X

Any 4-coloring of $G \setminus Z_0$ extend to a 4-coloring of G

X is a homogeneous set in $G \setminus Z_0$

Because G is quasi-prime, assume that X is a clique and $|X| \leq 3$

If $|X| \ge 2$, let $P = \{v_1, v_2, v_3, v_4, v_5\} \cup X$

Every vertex v in $V(G) \setminus P$ satisfies $|L(v)| \leq 2$

Explore all the cases

There a few more cases to treat, but the idea is the same. In the most complicated ones you need to further examine the structure of some sets and use the 3-coloring algorithm on a subgraph of G.

Explore all the cases

There a few more cases to treat, but the idea is the same. In the most complicated ones you need to further examine the structure of some sets and use the 3-coloring algorithm on a subgraph of G.

Output a 4-coloring

The algorithm gives a 4-coloring in polynomial time or stops if no such coloring exists.

An interesting question

• Is there a finite family of 5-vertex-critical (P_6 , bull)-free graphs?

An interesting question

• Is there a finite family of 5-vertex-critical (P_6 , bull)-free graphs?

Conjecture

The 4-coloring problem can be solved in polynomial time for P_6 -free graphs [*Huang 2013*].

Gem case

Thank you for listening.