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Choosability in claw-free graphs

A graph G is k-choosable if it is L-colorable for every assignment L that
satisfies |L(v)| = k.

Definition

The list chromatic number, χ`(G), is the smallest k such that G is k-
choosable.

Definition
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Every line-graph G satisfies χ`(G) = χ(G).
Conjecture Vizing, Gupta, Albertson, . . .

Generalized into:

Every claw-free graph G satisfies χ`(G) = χ(G).
Conjecture Gravier, Maffray 1997

One of the most important result:

Every line-graph G of a bipartite multigraph satisfies χ`(G) = χ(G).
Theorem Galvin 1995
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A graph G is perfect if for every induced subgraph H ⊆ G , χ(H) = ω(H).
Definition

Claw-free perfect graphs are natural good candidates for the list-coloring
conjecture.

Every claw-free perfect graph G with ω(G) ≤ 4 satisfies χ`(G) = χ(G).
Theorem Gravier, Maffray, P. 2016
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Techniques

Every claw-free perfect graph either has a clique cutset or is a peculiar graph
or an elementary graph.

Theorem Chvátal and Sbihi 1988

Let G be a connected claw-free graph that contains a peculiar induced
subgraph, and assume that G is also C5-free. Then G is peculiar.

Lemma

Let G be a peculiar graph with ω(G) ≤ 4. Then G is 4-choosable.
Lemma
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G

Color these graphs with any list assign-
ment of size k and glue them back.
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Each time, pick an extremal clique cutset.
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How elementary graphs are built?

B
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Gadget which is a line-graph of a
bipartite multigraph.
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Gadget which is a line-graph of a
bipartite multigraph.
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About this method:

• It seems to be a good method to solve this problem.
• For any example, finding a gadget is not hard.
• But we have no control on the color changes.

Structure theorem of Chudnovsky and Plumettaz might give another point of
view and new ideas.
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Vertex coloring problem

In general, computing the chromatic number of a given graph is NP-hard. Even
when restricted to triangle-free graphs, P6-free graphs, . . . .

Complete the classification of the complexity of the VERTEX COLORING
problem for (H1,H2)-free graphs.

Problem Golovach et al. 2017

Still open for:
1. (fork, bull)-free graphs
2. (P5,H)-free graphs where H ∈ {K3 + O2,K2,3, dart, banner, bull, 2P2 + P1}

In total, this is 7 cases. We solve four of them by using a structural approach:

1. (P5, dart)-free graphs
2. (P5, banner)-free graphs
3. (P5, bull)-free graphs
4. (fork, bull)-free graphs.
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P5 dart co-dart banner

bullfork hammer house
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A class of graphs G is hereditary if it is closed under induced subgraphs.
Definition

If the WVC problem can be solved in polynomial time in a hereditary class
G, then it so for the class of graphs whose every prime induced subgraph
belongs to G.

Theorem Malyshev et al. 2017
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Let G be any prime (house, hammer)-free graph. Then G is either perfect or
triangle-free.

Theorem Karthick, Maffray, P.

The WVC problem can be solved in polynomial time in the class of perfect
graphs.

Theorem Grötschel et al. 1984

The WVC problem can be solved in polynomial time in the class of O3-free
graphs.

Theorem Malyshev et al. 2017

The WVC problem can be solved in polynomial time in the class of (P5,
banner)-free graphs.

Corollary
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Ideas of the proof:

1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole
or an odd antihole.

2. Every antihole of length at least 6 contains a house. So G contains an odd
hole of length ` ≥ 5.

3. There exist ` non-empty and pairwise disjoint subsets A1, . . . ,A` such that,
for each i modulo `, the set Ai is complete to Ai+1, and there are not other
edges between any two of these sets.

4. Let A = A1 ∪ · · · ∪A`. Choose these sets so that A is inclusionwise maximal.
5. Let B be the set of vertices of V (G) \ A that are complete to A.
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Let G be any prime (house, bull)-free graph. Then G is either (P5, C5)-free
or triangle-free.

Theorem Karthick, Maffray, P.

The WVC problem can be solved in polynomial time in the class of (P5,
house, C5)-free graphs.

Theorem Chvátal et al. 1987

The WVC problem can be solved in polynomial time in the class of (P5,
bull)-free graphs.

Corollary
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Still open:

1. (P5, 2P2 + P1)-free
2. (P5,K2,3)-free
3. (P5,K3,O2)-free

The WVC problem is polynomial time solvable for the last open cases.
Conjecture
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Thank you for your attention.
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