Stéphan is 50!

Lucas Pastor Old and new results on graph coloring Sylvain Gravier, T. Karthick, Frédéric Maffray

Definition

A graph G is k-choosable if it is L-colorable for every assignment L that satisfies |L(v)| = k.

Definition

A graph G is k-choosable if it is L-colorable for every assignment L that satisfies |L(v)| = k.

– Definition

The *list chromatic number*, $\chi_{\ell}(G)$, is the smallest k such that G is k-choosable.

Definition

A graph G is k-choosable if it is L-colorable for every assignment L that satisfies |L(v)| = k.

– Definition

The *list chromatic number*, $\chi_{\ell}(G)$, is the smallest k such that G is k-choosable.

Definition

A graph G is k-choosable if it is L-colorable for every assignment L that satisfies |L(v)| = k.

– Definition

The *list chromatic number*, $\chi_{\ell}(G)$, is the smallest k such that G is k-choosable.

- Conjecture Vizing, Gupta, Albertson, ... Every line-graph G satisfies $\chi_{\ell}(G) = \chi(G)$. - Conjecture Vizing, Gupta, Albertson, ... Every line-graph G satisfies $\chi_{\ell}(G) = \chi(G)$.

Generalized into:

- Conjecture *Gravier*, *Maffray* 1997 Every claw-free graph *G* satisfies $\chi_{\ell}(G) = \chi(G)$. - Conjecture Vizing, Gupta, Albertson, ... Every line-graph G satisfies $\chi_{\ell}(G) = \chi(G)$.

Generalized into:

- Conjecture Gravier, Maffray 1997 Every claw-free graph G satisfies $\chi_{\ell}(G) = \chi(G)$.

One of the most important result:

— Theorem *Galvin 1995*

Every line-graph G of a bipartite multigraph satisfies $\chi_{\ell}(G) = \chi(G)$.

Definition

A graph *G* is *perfect* if for every induced subgraph $H \subseteq G$, $\chi(H) = \omega(H)$.

Definition

A graph *G* is *perfect* if for every induced subgraph $H \subseteq G$, $\chi(H) = \omega(H)$.

Claw-free perfect graphs are natural good candidates for the list-coloring conjecture.

Definition

A graph *G* is *perfect* if for every induced subgraph $H \subseteq G$, $\chi(H) = \omega(H)$.

Claw-free perfect graphs are natural good candidates for the list-coloring conjecture.

- Theorem Gravier, Maffray, P. 2016 Every claw-free perfect graph G with $\omega(G) \leq 4$ satisfies $\chi_{\ell}(G) = \chi(G)$.

Techniques

– Theorem Chvátal and Sbihi 1988 -

Every claw-free perfect graph either has a clique cutset or is a peculiar graph or an elementary graph.

Techniques

– Theorem *Chvátal and Sbihi 1988*

Every claw-free perfect graph either has a clique cutset or is a peculiar graph or an elementary graph.

Lemma

Let G be a connected claw-free graph that contains a peculiar induced subgraph, and assume that G is also C_5 -free. Then G is peculiar.

Techniques

– Theorem *Chvátal and Sbihi 1988*

Every claw-free perfect graph either has a clique cutset or is a peculiar graph or an elementary graph.

Lemma

Let G be a connected claw-free graph that contains a peculiar induced subgraph, and assume that G is also C_5 -free. Then G is peculiar.

— Lemma

Let G be a peculiar graph with $\omega(G) \leq 4$. Then G is 4-choosable.

Color these graphs with any list assignment of size k and glue them back.

Color these graphs with any list assignment of size k and glue them back.

Each time, pick an *extremal* clique cutset.

B

B

Gadget which is a line-graph of a bipartite multigraph.

Gadget which is a line-graph of a bipartite multigraph.

• It seems to be a good method to solve this problem.

- It seems to be a good method to solve this problem.
- For any example, finding a gadget is not hard.

- It seems to be a good method to solve this problem.
- For any example, finding a gadget is not hard.
- But we have no control on the color changes.

- It seems to be a good method to solve this problem.
- For any example, finding a gadget is not hard.
- But we have no control on the color changes.

Structure theorem of Chudnovsky and Plumettaz might give another point of view and new ideas.

– Problem Golovach et al. 2017

Complete the classification of the complexity of the VERTEX COLORING problem for (H_1, H_2) -free graphs.

– Problem Golovach et al. 2017

Complete the classification of the complexity of the VERTEX COLORING problem for (H_1, H_2) -free graphs.

Still open for:

- 1. (fork, bull)-free graphs
- 2. (*P*₅, *H*)-free graphs where $H \in \{\overline{K_3 + O_2}, K_{2,3}, \text{dart}, \text{banner}, \text{bull}, \overline{2P_2 + P_1}\}$

– Problem Golovach et al. 2017

Complete the classification of the complexity of the VERTEX COLORING problem for (H_1, H_2) -free graphs.

Still open for:

- 1. (fork, bull)-free graphs
- 2. (*P*₅, *H*)-free graphs where $H \in \{\overline{K_3 + O_2}, K_{2,3}, \text{dart}, \text{banner}, \text{bull}, \overline{2P_2 + P_1}\}$

In total, this is 7 cases. We solve four of them by using a structural approach:

- 1. (P_5 , dart)-free graphs
- 2. (P_5 , banner)-free graphs
- 3. (P_5 , bull)-free graphs
- 4. (fork, bull)-free graphs.

Definition

A class of graphs ${\cal G}$ is hereditary if it is closed under induced subgraphs.

Definition

A class of graphs \mathcal{G} is *hereditary* if it is closed under induced subgraphs.

– Theorem Malyshev et al. 2017

If the WVC problem can be solved in polynomial time in a hereditary class \mathcal{G} , then it so for the class of graphs whose every prime induced subgraph belongs to \mathcal{G} .

Let G be any prime (house, hammer)-free graph. Then G is either perfect or triangle-free.

Let G be any prime (house, hammer)-free graph. Then G is either perfect or triangle-free.

– Theorem Grötschel et al. 1984

The WVC problem can be solved in polynomial time in the class of perfect graphs.

Let G be any prime (house, hammer)-free graph. Then G is either perfect or triangle-free.

– Theorem Grötschel et al. 1984

The WVC problem can be solved in polynomial time in the class of perfect graphs.

– Theorem Malyshev et al. 2017

The WVC problem can be solved in polynomial time in the class of O_3 -free graphs.

Let G be any prime (house, hammer)-free graph. Then G is either perfect or triangle-free.

– Theorem Grötschel et al. 1984

The WVC problem can be solved in polynomial time in the class of perfect graphs.

– Theorem *Malyshev et al. 2017* ·

The WVC problem can be solved in polynomial time in the class of O_3 -free graphs.

- Corollary

The WVC problem can be solved in polynomial time in the class of (P_5 , banner)-free graphs.

1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole or an odd antihole.

- 1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole or an odd antihole.
- 2. Every antihole of length at least 6 contains a house. So G contains an odd hole of length $\ell \ge 5$.

- 1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole or an odd antihole.
- 2. Every antihole of length at least 6 contains a house. So G contains an odd hole of length $\ell \geq 5$.
- 3. There exist ℓ non-empty and pairwise disjoint subsets A_1, \ldots, A_ℓ such that, for each *i* modulo ℓ , the set A_i is complete to A_{i+1} , and there are not other edges between any two of these sets.

- 1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole or an odd antihole.
- 2. Every antihole of length at least 6 contains a house. So G contains an odd hole of length $\ell \geq 5$.
- 3. There exist ℓ non-empty and pairwise disjoint subsets A_1, \ldots, A_ℓ such that, for each *i* modulo ℓ , the set A_i is complete to A_{i+1} , and there are not other edges between any two of these sets.
- 4. Let $A = A_1 \cup \cdots \cup A_\ell$. Choose these sets so that A is inclusionwise maximal.

- 1. Suppose that G is not perfect, then, by the SPGT it contains an odd hole or an odd antihole.
- 2. Every antihole of length at least 6 contains a house. So G contains an odd hole of length $\ell \geq 5$.
- 3. There exist ℓ non-empty and pairwise disjoint subsets A_1, \ldots, A_ℓ such that, for each *i* modulo ℓ , the set A_i is complete to A_{i+1} , and there are not other edges between any two of these sets.
- 4. Let $A = A_1 \cup \cdots \cup A_\ell$. Choose these sets so that A is inclusionwise maximal.
- 5. Let B be the set of vertices of $V(G) \setminus A$ that are complete to A.

(1) Each A_i is stable set.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

(3) $B = \emptyset$.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

- By (1), G[A] is triangle-free.
- By (2), no triangle has two vertices in A.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let $P = p_1 - \cdots - p_k$, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$.

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A$, $p_2, \ldots, p_k \in V(G) \setminus A$, $p_k = u$, $k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

- (1) Each A_i is stable set.
- (2) For any vertex $v \in V(G) \setminus (A \cup B)$, $N_A(v)$ is a stable set.

By (1), G[A] is triangle-free.

By (2), no triangle has two vertices in A.

Let
$$P = p_1 - \cdots - p_k$$
, with $p_1 \in A, p_2, \ldots, p_k \in V(G) \setminus A, p_k = u, k \ge 1$

– Theorem *Karthick, Maffray, P.* –

Let G be any prime (house, bull)-free graph. Then G is either (P_5 , C_5)-free or triangle-free.

– Theorem Karthick, Maffray, P. -

Let G be any prime (house, bull)-free graph. Then G is either (P_5 , C_5)-free or triangle-free.

— Theorem *Chvátal et al. 1987*

The WVC problem can be solved in polynomial time in the class of (P_5 , house, C_5)-free graphs.

– Theorem Karthick, Maffray, P. -

Let G be any prime (house, bull)-free graph. Then G is either (P_5 , C_5)-free or triangle-free.

— Theorem *Chvátal et al. 1987*

The WVC problem can be solved in polynomial time in the class of (P_5 , house, C_5)-free graphs.

— Corollary

The WVC problem can be solved in polynomial time in the class of (P_5 , bull)-free graphs.

Still open:

- 1. $(P_5, \overline{2P_2 + P_1})$ -free
- 2. (P₅, K_{2,3})-free
- 3. $(P_5, \overline{K_3, O_2})$ -free

Still open:

- 1. $(P_5, \overline{2P_2 + P_1})$ -free
- 2. (P₅, K_{2,3})-free
- 3. $(P_5, \overline{K_3, O_2})$ -free

— Conjecture

The WVC problem is polynomial time solvable for the last open cases.

Thank you for your attention.