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Conjecture Vizing, Gupta, Albertson, ...
’7Every line-graph G satisfies x¢(G) = x(G).
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Conjecture Vizing, Gupta, Albertson, ...
’7Every line-graph G satisfies x¢(G) = x(G).

Generalized into:

Conjecture Gravier, Maffray 1997
’7Every claw-free graph G satisfies x¢(G) = x(G).

One of the most important result:

Theorem Galvin 1995
’7Every line-graph G of a bipartite multigraph satisfies x¢(G) = x(G).

2/17



Definition
’7A graph G is perfect if for every induced subgraph H C G, x(H) = w(H).
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Definition
’7A graph G is perfect if for every induced subgraph H C G, x(H) = w(H).

Claw-free perfect graphs are natural good candidates for the list-coloring
conjecture.

Theorem Gravier, Maffray, P. 2016
’7Every claw-free perfect graph G with w(G) < 4 satisfies x¢(G) = x(G).
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Theorem Chvatal and Sbihi 1988

Every claw-free perfect graph either has a clique cutset or is a peculiar graph
or an elementary graph.
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Theorem Chvatal and Sbihi 1988

Every claw-free perfect graph either has a clique cutset or is a peculiar graph
or an elementary graph.

Lemma

Let G be a connected claw-free graph that contains a peculiar induced
subgraph, and assume that G is also Cs-free. Then G is peculiar.

Lemma
’7Let G be a peculiar graph with w(G) < 4. Then G is 4-choosable.
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Color these graphs with any list assign-
ment of size k and glue them back.
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Each time, pick an extremal clique cutset.
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Gadget which is a line-graph of a
bipartite multigraph.
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About this method:
® |t seems to be a good method to solve this problem.
® For any example, finding a gadget is not hard.

® But we have no control on the color changes.

Structure theorem of Chudnovsky and Plumettaz might give another point of
view and new ideas.
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In general, computing the chromatic number of a given graph is NP-hard. Even
when restricted to triangle-free graphs, Pes-free graphs, .. ..

Problem Golovach et al. 2017
Complete the classification of the complexity of the VERTEX COLORING
problem for (Hi, H>)-free graphs.

Still open for:
1. (fork, bull)-free graphs
2. (Ps, H)-free graphs where H € {Ks + O, Kz 3, dart, banner, bull, 2P, 4+ P; }

In total, this is 7 cases. We solve four of them by using a structural approach:
1. (Ps,dart)-free graphs
2. (Ps, banner)-free graphs
3. (Ps, bull)-free graphs
4. (fork, bull)-free graphs.
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Definition
’7A class of graphs G is hereditary if it is closed under induced subgraphs.
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Definition
’7A class of graphs G is hereditary if it is closed under induced subgraphs.

Theorem Malyshev et al. 2017

If the WVC problem can be solved in polynomial time in a hereditary class
G, then it so for the class of graphs whose every prime induced subgraph
belongs to G.
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Theorem Karthick, Maffray, P.

Let G be any prime (house, hammer)-free graph. Then G is either perfect or
triangle-free.
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— Theorem Karthick, Maffray, P.

Let G be any prime (house, hammer)-free graph. Then G is either perfect or
triangle-free.

— Theorem Grotschel et al. 1984

The WVC problem can be solved in polynomial time in the class of perfect
graphs.

— Theorem Malyshev et al. 2017
The WVC problem can be solved in polynomial time in the class of Os-free
graphs.

— Corollary

The WVC problem can be solved in polynomial time in the class of (Ps,
banner)-free graphs.
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Ideas of the proof:

1.

Suppose that G is not perfect, then, by the SPGT it contains an odd hole
or an odd antihole.

. Every antihole of length at least 6 contains a house. So G contains an odd

hole of length ¢ > 5.

There exist ¢ non-empty and pairwise disjoint subsets Ay, ..., A¢ such that,
for each i modulo ¢, the set A; is complete to Aj+1, and there are not other
edges between any two of these sets.

4. Let A= A;U---UA;. Choose these sets so that A is inclusionwise maximal.

Let B be the set of vertices of V(G) \ A that are complete to A.
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Theorem Karthick, Maffray, P.

Let G be any prime (house, bull)-free graph. Then G is either (Ps, Gs)-free
or triangle-free.

Theorem Chvatal et al. 1987

The WVC problem can be solved in polynomial time in the class of (Ps,
house, Cs)-free graphs.

Corollary

The WVC problem can be solved in polynomial time in the class of (Ps,
bull)-free graphs.
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Still open:
1. (Ps,2P, + Py)-free
2. (Ps, Kz,3)-free
3. (Ps, K3, Oy)-free
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Still open:
1. (Ps,2P; + P;)-free
2. (Ps, Kz,3)-free
3. (Ps, K3, 0,)-free

Conjecture
’7The WVC problem is polynomial time solvable for the last open cases.
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Thank you for your attention.
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