Lol RGN M.

LABORATOIRE
D'INFORMATIQUE, DE ROBOTIQUE ET DE MICROELECTRONIQUE
DE MONTPELLIER

UNITE MIXTE CNRS - UNIVERSITE MONTPELLIER I N° C 09928

RAPPORT DE RECHERCHE

Generating minimal
interval extensions

Michel MORVAN & Lhouari NOURINE

Juin 1992 R.R. LIRMM n° 92015
- i

860, rue de Saint Priest - 34000 Montpellier / Tél : 67.14.85.01 - Fax : 67.14.85.00

Lo RGN s

LABORATOIRE
D'INFORMATIQUE, DE ROBOTIQUE ET DE MICROELECTRONIQUE
DE MONTPELLIER

UNITE MIXTE CNRS - UNIVERSITE MONTPELLIER I N° C 09928

RAPPORT DE RECHERCHE

Generating minimal
interval extensions

Michel MORVAN & Lhouari NOURINE

L Juin 1992 RR LIRMM n° 92-015

860, rue de Saint Priest - 34000 Montpellier / Tél : 67.14.85.01 - Fax : 67.14.85.00

Generatirag Minimal Interval Extensions

M. Morvan, L. Nourine

Département Informatique Fondamentale
(L_IRMM. CNRS & Université Montpellier 1I).
860, rue de Saint-Priest
F 34090 Montpellier, France.
e.mail : {morvan, nourine }@crim.fr

Abstract: The aim of this paper is t« present an algorithm that generates the set of minimal interval extensions of an
order P in O(n?'wllmin(P)l), where n is the number of elements in P, and w is its width. The same algorithm can be modified
to construct the lattice of maximal anti<hains AM(P) in O(nwzlAM(P)l).

Keywords: Interval Orders, Minimal 1interval extension, Lattice of maximal antichains.

1 Introduction

Interval extensions and related problems are of interest to computer scientists because of their relation to
distributed sheduling problems. Ome can modelize the time concept in distributed executions in which many
processors comunicate by sending and receiving messages. For example, there is a natural order associated to a
distributed execution called the "causal order”. This order is in general not an interval order, but in any "real
execution”, it is possible to associate any event to its duration interval: that is the time interval corresponding to its
execution. The such obtained order ©n the intervals (verifying that an interval is smaller than another if it is on its
left) is an interval extension of the causal order. These interval extensions of the causal order that are minimal are
used to debug or analyze actual distributed programs, rather than the causal order itself (see Habib et al[8) and Diehl
et al[6]).

From a theoretical point of view, these minimal interval extensions of an order can be seen as natural
generalizations of linear extensions since the set of linear extensions of an order P is in bijection with the set of
maximal chains of the antichains lattice of P(see Bonnet et al[3]). Also the set of minimal interval extensions of P
is in bijection with the set of maximnal chains of the maximal antichains lattice of P(see Habib et al[7]). On the
other hand, linear extension of a partial ordered set P, extends P 10 a total order, when minimal interval extension,
extends P to an interval order,

In Section 2 we will give formal definitions and characterization theorems concerning interval orders and
related topics.

In Section 3 we will describe the strategy used to solve the problem,

In Section 4 we will present our algorithm and analyze its complexity.

2 Definitions

A poset (or partially ordered set) P is an irreflexive, asymmetric and transitive relation on a set X denoted
by P=(X,<p). When necessary, we should denote P by (X.E) where E SX2 and (x,y) € E iff X<py. All the orders
considered in this paper are finite. Two elements x and y are said to be comparable and incomparable respectively if
X<py respectively x{:py and y{:px, denoted by xllpy. We say that y covers x noted -<p iff x<py and there is no z
such that x<pz<,y; if y covers x, we say that x is an immediate predecessor of y. Consider Y a non-empty subset of
P, the restriction of X to Y is called a chain if the elements of any pair of Y are comparable in P. If X=Y, we call P
a linear order (also a total order). If T=x,,...,x, is a total ordering of the elements of P, < is called a linear
extension of P if X<py implies x<.y. If the elements of Y are pairwise incomparable, Y is called an antichain.
The maximal length of an antichain is denoted by w and called the width of P. We say that an antichain A is
maximal if another antichain B that containing A does not exist. Given the set of all maximal antichains A of an
order P, and two maximal antichains A and B, we say that A<yB iff ¥V x e A\B, 3 y e B such that X<py.
AM(P)=(A ,<7) is a lattice called the maximal antichains lattice. Note that A-<tBifand only if ¥ x € A\B, V
y € B\A X-<py (ie. A\B and B\A form a complete bipartite order in the transitive reduction of P).

Let Pred(x)={y €X | y<pXI be the predecessor set of x. We define the equivalence relation = over X by x=y

iff Pred(x)=Pred(y). We denote by P/= the guotient of P related to =. When x € P/=. we denote by Pred(x) the
predecessor set in P of the elements of the equivalence class x. Let Pred*={Pred(x) | x € P/=}. The relation C (strict
inclusion) over Pred* is a partial order denoted by PRED(P). We define IMPRED(P) with the same definitions as

PRED(P). but also with the immediate predecessor sets. ‘ _)
An order P=(X,<p) is called an interval order if there exists a function mapping each x in X to an interval Iy

of the real line such that X<py if and only if 1 lies totally to the left of Iy.
In order to introduce the notion of minimal interval extension, we give the following well known
characterization theorem of interval orders.

Theorem 1: For an order P=(X,<p), the following statements are equivalent:

(1) P is an interval order.
(2) P does not contain any suborder isomorphic to "2+2" (see example 1(P)).

(3) PRED(P)=(Pred*,C) is a total order.
(4) The maximal antichains of P can be linearly ordered such that, for every element v, the maximal antichains

containing v occur consecutively.
(5) AM(P)=(A ,<7) is a total order.

Definition 1: Let P=(X.E) be an order. I=(X.Ey) is an interval extension of P if I is an interval order and ECEy.
Furthermore I is called minimal if for every I'=(X.Ep) with ECEpCEy, I' is not an interval order.

Example 1: Consider the poset P; of figure 1. The posets P2, P3 and P4 are interval extensions of Py, but P2 and
P3 are minimal whereas P4 is not.

c d c Nd ch c d
a b a b a b a[[b
) P3 P4

Py

The following theorem, due to Habib et al{7] gives a characterization of the set of minimal interval
extensions of an order.

Theorem 2: Let P=(X,<p) a poset. Then there is a one-to-one mapping between the maximal chains of AM(P) and
the minimal interval extensions of P.

3 Strategies

The purpose of this paper is to give an algorithm that generates all minimal interval extensions of a partial
order. Since it is based on the previous characterization theorem, our algorithm can be easily modified to construct
the maximal antichains lattice. _

The generation problem has reen already studied by Habib et al[9]. Their algorithm is based on another
characterization theorem coming from property (3) of theorem 1. Their strategy is to generate all linear extensions of
PRED(P) and test which of them corre=spond 10 a minimal interval extension. Since in the general case the pumber
of linear extensions of PRED(P) may e larger than Imin(P)! (see example 2), many unnecessary computations are
done. In the present paper, the use of Theorem 2, allows us to generate only good minimal interval extensions, by
simply generating maximal chains of ~AM(P). These maximal chains will be generated by working on a graph based
on IMPRED(P).

o

Example 2:

x't--x'nyz'

Xl--XnyZz
PRED(P)

The number of linear extension of PRED(P) is (n+1)!, but the number of maximal chains in AM(P) is 3n.

To compute maximal chains of AM(P), we must efficiently generate the set of all maximal antichains
covering any maximal antichain A in AM(P) denoted by Covers(A). Note that is the same idea used by Knuth et
al[11), for generating linear extensions. The linearity of the Knuth's algorithm comes from the fact that when an
element becomes minimal. it remains minimal until it is chosen; this however is not our case. It is more interesting
to work with the immediate predecessors because good complexity is obtained since the number of immediate
predecessors of a vertex is bounded by the width of the order.

To understand the following note that :
¥x,y €P Predp(x)=Predp(y) iff Impredp(x)=Impredp(y)
If Impredp(x)C Impredp(y) then Predp(x) CPredp(y)
So Pred*=Impred* and IMPRED(P) is a subgraph of PRED(P).

In order to obtain a good complexity a graph must be maintened to give a similar property, such as the one
Knuth uses. This graph is associated to each maximal antichain A of AM(P) and allows us to produce efficiently
Covers(A). Furthermore, the graph associated with to antichain of Covers(A) can be obtained by few
transformations on the graph associated to A.

This graph denoted by GA=(U,V,£) is labeled and defined as follows:
For an order P=(X.E), given a maximal antichain A, we define the restriction of P to the set of elements greater or
equal to an element of A by Pa (P4 is sometimes called the filter associated to A).
U=(Pa/=NA}.
Let x,y €U, (xy) eV iff 3 xjex,y1ey
(i) Impredp(x1)NImpredp(y1)#2 or
(i) x1-<yy or y1-<xj.
(two mutually exclusive cases).
If Impredp(x)NImpredp(y)#0 A(x.y)=Impredpa(x) — Impredp (y).
A(x,y)=0 if 3 xjexyjey Ix1-<yj
A(x.y)=* if 3 xjex.yrey lyr-<xj.
We define Min(Ga)=({xeU| ¥ yeU, (yx)eV=4(yx)#0}.

Remark: If we consider the subgraph G'a of G4 induced by V'={(x.y) eV | £(x,y)=0} then G' A=PRED(PAMA].
Notice that Min(G'a)={xeU | 3 ye U, (y.x)eV =£(y,x)=0).

Example 3:
The following example shows the construction of the graph G(abc) for the order P. The labels of edges are
represented by "{}" . For example the label £(f.d)={c} and £(e.d)={}. The minimal elements of G'4 are indicated by
a dotted circle.

e g8
G'(abc)=PRED(P(apc)\abc))

G(abc)

Theorem 3: There is a one-to-one mapping between Covers(A) and Min(G'4).
Proof:
We are going to associate to each B in Covers(A) the unique element C in Min(G'4) defined by C=B\A.
= Let Be Covers(A), then B is a maximal antichain and by definition we have
VY xe AB, V yeBWA x-<py. We prove that C=B\A eMin(G'4).
So we must show that C is an element of G and that C is minimal.
The definition of B and P 4 shows immediately that :
V x.y € C Impredpa (x)=Impredp,(y) so 3 C'| CSC'e (Pa/=), and since CNA=@ then Ce Ga_
Now suppose that C is not minimal then 3 Ye Gp | £(Y,C)=@. Thus 3 yeY, xeC such that
Impredp, (y)< Impredp, (x) implies A -<(A\Impredp A(y))U Y) <B. Thist is contradictory to B covers A.
< Let CeMin(G'p), we prove that B=(A\Impredp A(C))U C) € Covers(A). To do this we will first show that B is a
maximal antichain. It is evident that B is an antichain,
Suppose that B is not maximal then 3 B'e AM(P) such that BCB'. So, there is an xeC'eMin(G’'s)\B such that x is
incomparable to B, then x is incomparable to B\C. But A is maximal, so 3 ye Impredp, (C) such that y-<x. Then
ImpredpA(C')Q Impredp, (C) this is contradictory to x¢ C and Ce Min(Gy).
Now let us prove that B € Covers(A). Suppose that there is B’ such that A-<B'<B.
Let xe BA\B, then Impredp, (x)N(ANImpredp A(X))=Q) , and Impredp, (x)CImpredp, (C), which is contradictory to Ce
Min(G »). 0

Now we are going to show how to obtain the graph associated to each element of Covers(A) by a
transformation of the graph G4. To build a graph corresponding to Be Covers(A), we will start with the minimal
element C of G4 associated to B. The idea is to delete all the vertices of Impredp A(CONA from every edge where
they appear as labels and to join vertices of G that have now the same immediate predecessors sets in Pg. This can
be expressed formally as follows.

Let Ae AM(P) and Ce Min(Gp) defined by C=B\A.
We define ¢c(Ga)=(Uc, Ve, Lc} by
a)xeUc iff x=U xjsuchthat (1) { x;e UNC} ¥V i and
¥ ij A(xix)\ Impredp, (C)=03
and x is maximal for this property,}
b) Let x,y €Uc then (x,y) €V¢ iff 3 xjex, yjey such that (x3,y1)eV.
c) Notice that if (x,y)e V¢ then £(x; ;yj)\ Impredp, (C) is equal for every x;ex, yjey, we define £c(x,y)=£(xj,yj\
Impredp, (C) for x; €x, yjey.

Example 4:
This example shows how to compute ®{(Gp). The computing of ®5(Gapc) shows the case of gathered elements. We
will see later that it is not necessary to gather them.

hg f d

®e(Gabe)=G(aec) G'(aec)=PRED(P(aec)\acc)) @ 5(Gabe)=G(bg) G'(bg)=PRED(P(pg)\(bg))

We denote by @(Ga) the set {@c(Ga) | Ce Min(Gp)}. We are now going to prove that ©(G 4) is the set of graphs
associated to the elements of Covers(A).

Theorem 4: Gropers(A)={Gp /| Be Covers(A)} = #(Gy).
Proof:

a)Let Ge®(Ga). There is Ce Min(Gp) such that G=c(G). We are going to prove that G=Gp where
BeCovers(A)
Let B={A-Impredp, (C)}U{C}. Let Gg=(UB.VB.£B).
Up={ x| x=U xj,xje Uand V¥ ij (i#) Impredp,(xj)\Impredp,(x;)SA\B and

x is maximal for this property.}

So we have Up=Uc by definition. We also have the following equivalences:
(x.y) Ve & 3 xjexyjey | (xjyj)eV
< 3 xjex,yjey | (Impredp, (xi) N Impredp, (vj))#D or (xi-<yj or yj-<xi)
& (Impredp, (x) N Impredp, (y)}# or (3 xjex.yjey Xi-<yj or yj-<xj)
< (x,y)eVE.
So Vg=V(. and we conclude that G=Gg.
b)Let G € Geovers(A)- There is Be Covers(A)such that G=Gg.We are going to prove that there is Ce Min(Gp)
such that G=% (G). The proof ends the same as it begins, however, C=B\A is considered. 0

4 The algorithm

In this section we will present the recursive algorithm which generates all minimal interval extensions of a
poset Pin On2w Imin(P).

Firstly we give an overview of the algorithm to give a general understanding. The algorithm maintains an array I
that contains the current minimal interval extension represented by a sequence of maximal antichains, and the graph
G corresponding to the last antichain in I.

The main procedure used by the algorithm, called Gen_Max_Chain, is recursive and follows a maximal
chain in AM(P) (maintained by the array I). When the last element of I is the set of maximal elements of P, then 1 is
a minimal interval extension of P. The depth of recursive calls used to obtain this minimal interval extension is
equal to the number of maximal antichains in I. Every level of the recursion has an associated graph Ga
corresponding to the last antichain A of 1. Moreover, at every level we compute ®(Gp) to apply Gen_Max_Chain
to each element of Covers(A).

Algorithm 1: Generation of all minimal interval extensions Ipin(P);

Inputs: The transitive reduction of an order P.

Begin
Preprocessing; {the preprocessing computes A=Min(P) and the graph Ga}
Gen_Max_Chain(A);

End.

Procedure Gen_Max_Chain (A: Antichain);

Begin
If A=Max(P) Then Process (1)
Else
While Min_Gp #0 Do

Begin
Choose x from Min_Gp;
Class:={x};
Compute @.(Ga);
B:=(A\Impred(x)) W Class;
I:=1 W (B):
Gen_Max_Chain(B) ;
Retrieve G, and I;

End;

End; {Gen_Max_Chain}

Note : The minimal interval extension is output as a set of maximal antichains; one can transform this in the
representation canonique in linear time.
The following result comes immediately from Theorem 3 and Theorem 4.

Theorem 5: Algorithm 1 computes all the minimal interval extensions of a given order P.

Let us now describe the details of our implementation in order to evaluate the complexity.

1) Data structures :

For each vertex x in Gz, we have the list Impred(x) of immediate predecessors. This list is the input of the
Algorithm. §

G4 is implemented in the following way:

- To each edge (x,y) of G is associated the integer Label_Count(x,y) representing the number of elements of labels
in the edge (x.y).

- To each vertex x of Gp is associated the list Label_List(x) containing the edges having x in their label, and a
counter Count(x) that maintains the number of edges (y.x) incident to x with Label_Count equal 0 and such that y
and x are not in the same class. We also associate to x the list Comp(x) that contains the vertices y such that
Label_Count(x,y)=0.

- A double linked list Min_G 4 is used to maintain the set Min(Ga).

2) Informal description of the operations used :

The preprocessing consists in the computation of Ga, where A represents the minimal elements of P, and
initializes I with A.
We compute the transformation ®x(G4) as follows:

For each element y in (Impred(x)NA), we delete y from the label of edges it belongs to, by simply decreasing the
corresponding Label_Count by 1. If any Label_Count(z,t) becomes 0 then we add t to the end of the list Comp(z),
and we have two cases:

a) Label_Count(t,z)=0 then z and t will be in the same class (having the same predecessors in the new minimal
interval extension). Here we decrease Count(z) by 1 and we do not increase Count(t). If Count(z) becomes 0, then we
add z to Min{Ga}.

b)Label_Count(t,z)=0 then we have a new comparability. If t was in Min_G we delete it. We increase Count(t) by 1.

Elements y of Comp(x) such that x eComp(y) (ie. Label_Count(y,x)=0) are in the same class as x;
although in our implementation they are not gathered, they must be treated in the same way as x. So for each
element z in Comp(y) and Label_Count(z,y)#0 we decrease Count(z). We also delete y from Min_Ga4.

The operations retrieve G and I of the procedure Gen_Max_Chain consists only in restoring the modified
values of Count, Label_Count, Comp, Min_G p and I. This can be done with the same complexity as below with
our data structures.

Remark : The algorithm does not compute the equivalent classes.

3) Detailed algorithm :

We present a recursive Pseudo-Pascal implementation of Algorithm 1. The input consists of the transitive reduction
of an order P, where n is the number of elements in P.

Variables:

Label_Count : arrayl[l..n,l..n] of integer;

Count : array(l..n] of integer;

Comp : array[l..n] of list of integer; { Each list works as a stack}
Label_List : array[l..n] of list of edges;

I : a list of antichains

Preprocessing:

Min_Gp =90;
A:=0;
For i:=l to n Do
Begin
Label_lList[i]:=nil;
Count[i] :=0;
Comp[i] :=nil;
End;
For i:=1 to n-1 Do
If Impred[i]=0 Then A:=A+{i};
For j:=i+l1 to n Do

Begin
If i € Impred(j) Then
Begin
Label_Count([i, j]:=0;
Label_Count[j,i] :=e; {This value tell us that we will never
have 1 and j in the same class}
Count [j] :=Count[jl+1;
Add {j} to Compl[i];
End
Else
If j € Impred(i) Then
Begin
Label_Count([j,1i]:=0;
Label_Count({i, j] :=00;
Count[i]:=Count[i]+1;
Add (i) to Compl(j]:;
End
Else
If Impred[i]lnImpred[j]#® Then

Begin
X:=Impred[i] -Impred[]j]:
Y:=Impred[j]-Impred[i];

Label_Count[i,j) := |X|
Label Count[j,i] := lYl
{ If iYi:D and |X|=0 then i and j are in the same class}
1f |X/=0 Then
Begin
1f |v|#0 Then Count{j]:=Count([jl+1;
Add {j} to Comp(il:
End
Elge For z € X Do Add the edge (i,3J) to Label_List([z];
1f |Y|=0 Then
Begin
Tf |%X|#0 Then Count[i]:=Count[i]+1;
add (i} to Comp(il:
End
Else For z € Y do add the edge (j,1) to Label_List[z];
End;
End;
End;
I:=(a};
End of Preprocessing.

Main Program:

Preprocessing;
Min_Gp :=0;
Reached:=0@;
For j € A Do
For i € Comp[j] Do
Begin
Count [i] :=Count[i]-1;
If Count[i]=0 Then add (i} to Min_Ga;
End;
Reached:={A};
Gen_Max_Chain (&) ;
End of Main Program.

The recursive procedure

Procedure Gen_Max_Chain (A: Antichain) ;

Begin
If A-Max(P) Then Process(I)
Else
while Min_Gp #0@ Do

Begin
Choose x from Min_Gap:
Class:={x};
Compute @x(Gp);
B:=(A\Impred(x)) w Class;
:=I U (B};:
Reached:=Reached+{Class};
Gen_Max_Chain(B);
Retrieve Gp and I;

End;

End; {Gen_Max_Chain}

Computing @4(Ga)

Delete x from Min_Ga;
S:={Impred(x) N A)
For z € S Do
(Delete z from all edge's labels}
For (e=(a,b) € Label_Liste[z]) and (b not reached) Do
Begin
Label_Count[a,b]:=Label_Count{a,b]-1;
If Label Count(a,b)=0 Then
Begin
If Label_Count(b,a)=0 Then
Begin {a and b are now in the same class}
Count[a]:=Countfal-1;
If Count[a]l=0 Then Add a to Min_Ga;
End
Else
Begin { new comparability 1is created]}
If Count(b]=0 Then Delete b from Min_G,;
Count [b] :=Count [b]+1;

End;
Add b to Complal;
End;
End;

{Computing the c¢lass and the new minimal elements }
For y € Comp([x] Do
Bagin
If Label_Count(y,x]=0 Then
Begin
Delete y from Min_Gp;
Class:=Class+{y}:
For (z € Comply]) and (Label_Count[z,y]#0) Do
Begin
Count[z] :=Count[z]-1;
If Count[z]=0 Then Add z to Min_Gp;
End
End
Else
Begin
Count[y] :=Count[y]-1;
If Count[y]=0 Then Add y to Min_G;
End;
End;

End of computing @x(Ga)
Retrieving Ga and I:
Reached:=Reached\ {(Class};

For y € Comp[x] Do
Begin

If Label_Count|y,x]=0 Then
Begin
Add v to Min_Gp;
For (z € Comply]) and (Label Count(z,y]#0) Do

Begin
Count[z] :=Count([z}+1;
If Count[z]=1 Then Delete z from Min_Gg;
End
End
Else
Begin

Count [y] :=Count [y]+1;
If Count([y]=1 Then Delete y from Min_G,;
End;
End;

S:=the reverse of S;
For x € S5 Do
{Delete x from all edge's labels}
For (e={a,b) € Label_Liste[x]) and (b not reached) Do
Begin
Label Count[a,b]:=Label_Countia,bl+1;
If Label_Count(a,b)=1 Then
Begin
If Label_Count(b,a})=0 Then
Begin{a and b were in the same class}
Count [a] :=Count[a]+1;
If Count[al=1 Then Delete a from Min_Ga;
End
Else
Begin {new comparability was created)
If Count[b]=1 Then Add b to Min_Gp;
Count [b] : =Count [b] -1;

End;
Delete b from Compla]:
End;
End;

Delete the last element of I.
Add x to Min_Gj;

End of Retrieving G and I:

Theorem 5: Algorithm I compute Imin(P) in O(nzwllm,',,(P)l).
Proof:

The preprocessing takes no more than O(n3).
For the construction of minimal interval extension, each vertex is deleted at the most one time from the label of
edges it belongs to. Since a vertex can belong to at most nw labels of edges, the cost of these deletion operations is
in O(n2w) for the construction of one minimal interval extension. The cost of the reverse operations is the same.
Since these operations are the most costly of the algorithm, the result follows. 0

The same algorithm can be easily modified to obtain the lattice AM(P). We just have to do the recursive
call only if the antichain B has not been obtained before. This verification can be done in O(w2LogN) where N is the
number of elements of AM(P), by using a binary search tree (see Aho et al[1]), and computing one maximal
antichain costs O(nw). So we have the following corollary.

10

Corollary 1: It is possible 1o construct the lattice AM(P) in O(anLog N), where N is the number of maximal
antichains in P.

5 Conclusion

We conclude by remarking that an algorithm that generates AM(P) can be used to generate the Galois lattice
of binary relation. Indeed any binary relation R can be seen as a bipartite order B(R) and it is shown in Behrendt[2]
that Gal(R) =AM(B(R")) where R’ is the complementary of R. So since w(B(R")) is in the same range as the number
of elements in R, our algorithm computes Ga/(R) in Oo(n3 |Gal(R)i). This result has been shown first by Bordat[4,5]
in a differert way; it can be shown that Bordat's algorithm can be used to compute AM(P) for an order P in
Om3|am(P))).

A natural question is still open: is it possible to generate all minimal interval extensions of an order P in
O(|Imin(P)|), as it is possible to generate all linear extensions of P in O(IJ’S(P)|) amortized time.
The best known algorithm generating all linear extensions of an order are based on the exchange of elements in one
linear extension to obtain the next. This method is very efficient (see Pruesse et al[12,13]), but it could be difficult
to transpose this result in the case of minimal interval extensions since it seems to strongly use the distributivity of
the antichains lattice of P, and that the maximal antichains lattice of P can be not distributive. This difference comes
from the fact that, when selecting a minimal vertex in PRED(P) to construct a linear extension, new
comparabilities may appear. So, to list only good linear extensions, we must take into acount these new
comparabilities.

Acknowledgments: We would to thank Genevieve Simonet for helpful remarks.

References:

[1] A.V. Aho, J.E. Hopcroft and 1.D. Ullman, "Data Structures and Algorithms", Addison-Welsey , 1983.

(2] G. Behrendt,"Maximal antichains in partially ordered sets”, Ars Combin., 25 C, 1988, P. 149-157.

[3] R. Bonnet et M. Pouzet,,"Extensions et stratifications d'ensembles dispersés”, C. R. Acad. Sci. Paris,268 serie A,

1969, P. 1512-1515.
(4] J. P. Bordat,"Calcul pratique du treillis de Galois d'une correspondance”, Math. Sci. Hum. 96 (1986) P. 31-47.
[5] J. P. Bordat, "Sur I'Algorithmique Combinatoire d'ordres fini", These de Doctorat d'état (1992) USTL Montpellier .

(6] C. Diehl and C. Jard, "Interval approximations and message causality in distributed systems", Technical report,
IRISA, Rennes, France, Sept 1991.

[7] M. Habib, M. Morvan, M. Pouzet. and J.X. Rampon, "Extensions intervallaires minimales”, C. R. Acad. Sci. Paris,
t. 313, Série I, P. 893-898, 1991.

(8] M. Habib, M. Morvan and J.X. Rampon, "Remarks on some concurrency measures”, Lectures notes in Computer
Science n° 484 (R.H. Mohring Ed.), Springer Verlag, 1991, pp. 221-238.

[9] M. Habib, M. Morvan and J.X. Rampon, "About minimal interval extensions", R.R. N°84 juin 1990. CRIM,

Submitted to Order.

[10] A.D. Kalvin and Y.L. Varol."On the generation of all topological sortings",J. Algorithms, 4, pp 150-162 1983.

[11] D.E. Knuth and J.L. Szwarcfiter, "A structured program to generate all topological sorting arrangements”,
Information Processing Letters, 2 (1974), pp 153-157.

[12] G. Pruesse and F. Ruskey, "Generating Linear Extensions Fast", Dep. of Comp. Sc¢ Univ of Victoria Canada.

[13] G. Pruesse and F. Ruskey, "Generating the Linear Extensions of certain posets by transpositions”, SIAM J.Discrete
Math., August 1991.

11

