Notes de cours de l'ISIMA, deuxième année, http://www.isima.fr/∼leborgne

Screw theory (torsor theory) Vector and pseudo-vector representations, twist, wrench

Gilles LEBORGNE

April 12, 2024

A screw (also called a torsor) is an affine antisymmetric vector field in a Euclidean setting. It is called a twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and called a wrench when it is the moment of a force field.

To avoid confusions and misunderstandings, the first three paragraphs are devoted to the definitions of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and their representations. The fourth fifth and sixth paragraphs define a screw, a twist and a wrench.

Contents

The notation $g := f$ means: f being given, g is defined by $g = f$. V is a dimension 3 vector space.

1 Dimension 3 vector spaces

1.1 The different $\overrightarrow{\mathbb{R}^3}$ in mechanics

1.1.1 Cartesian $\overrightarrow{\mathbb{R}^3}$

 $\mathbb{R} := (\mathbb{R}, +, \times)$ is the usual field, with 0 the + identity element and 1 the \times identity element; This 1 is theoretical: It is not linked to any "unit of measurement".

Then consider the Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} =$ ^{noted} $\overrightarrow{\mathbb{R}^3}$, and the usual operations $\vec{u} + \vec{v} =$ $(u_1+v_1, u_2+v_2, u_3+v_3)$ and $\lambda \cdot \vec{u} = (\lambda u_1, \lambda u_2, \lambda u_3)$ = α ^{noted} $\lambda \vec{u}$ when $\vec{u} = (u_1, u_2, u_3), \vec{v} = (v_1, v_2, v_3)$ and $\lambda \in \mathbb{R}$. It is a real vector space, and $(\vec{E}_1 := (1, 0, 0), \vec{E}_2 := (0, 1, 0), \vec{E}_3 := (0, 0, 1))$ is a basis called "the canonical basis".

1.1.2 \mathcal{M}_{31} the space of real 3 $*$ 1 column matrices

 $\mathcal{M}_{31}=\{[\vec{v}]=% \vec{v}^{\prime }=\pi _{ij}\}$ $\sqrt{ }$ \mathcal{L} v_1 v_2 v_3 \setminus : $v_1, v_2, v_3 \in \mathbb{R}$ is the usual set of real $3 * 1$ column matrices. It is a real vector

space with its usual rules, $(\vec{C}_1$:= $\sqrt{ }$ \mathcal{L} 1 0 0 \setminus $\Big\}$, \vec{C}_2 := $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 $\boldsymbol{0}$ \setminus $\Big\}$, \vec{C}_3 := $\sqrt{ }$ $\overline{1}$ 0 0 1 \setminus) =^{noted} (\vec{C}_i) being its canonical basis $\sqrt{ }$ \setminus

(the identity element 1 is theoretical: It is not linked to any "unit of measurement"). So $[\vec{v}] =$ \mathcal{L} v_1 v_2 v_3 $\overline{1}$

means $\vec{v} = \sum_i v_i \vec{C}_i$. And \mathcal{M}_{31} is isomorphic to $\overrightarrow{\mathbb{R}^3}$ Cartesian. Similarly with transposed matrices and $\mathcal{M}_{13} = \{ [\vec{v}]^T : [\vec{v}] \in \mathcal{M}_{31} \}$ the set of row matrices.

Definition 1.1 A column matrix $[\vec{v}] \in \mathcal{M}_{31}$ is also called a pseudo-vector.

1.1.3 The many $V=\overrightarrow{\mathbb{R}^3}$ in mechanics

For a sum to be defined, we need "compatible dimensions" : You don't add bi-point vectors velocities with accelerations or forces or moments... Thus we define distinct real vector spaces corresponding to different dimensions: V_{bpv} for bi-point vectors, V_{vel} for the velocities, V_{acc} for accelerations, ... However, to simplify the notations, all these spaces are noted $\overline{\mathbb{R}}^3$. So pay attention to the context.

And, e.g. in $V_{bpv} =$ ^{noted} $\overline{\mathbb{R}^3}$, there is no canonical basis: a basis $(\vec{a}_1, \vec{a}_2, \vec{a}_3) = (\vec{a}_i)_{i=1,2,3} =$ ^{noted} (\vec{a}_i) is chosen by some observer, e.g. with \vec{a}_3 giving the direction of the vertical at some point on Earth and with its length being 1 is some unit of measurement (e.g. 1 foot in aviation).

1.1.4 Quantification in V

V being a dimension 3 real vector space, let $\vec{v} \in V$.

Quantification. An observer chooses a basis (\vec{a}_i) in V. Hence $\exists v_1, v_2, v_3 \in \mathbb{R}$ s.t. $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$, and $\langle v_1 \rangle$

the column matrix
$$
[\vec{v}]_{|\vec{a}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathcal{M}_{31}
$$
 is the usual matrix representation of \vec{v} which quantifies \vec{v} in the basis (\vec{a}_i) . (And, $[\vec{v}]_{|\vec{a}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ means $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$.)

Let \mathcal{M}_{33} will be the space of $3 * 3$ real matrices.

Let $z(\cdot, \cdot): V \times V \to \mathbb{R}$ be a bilinear form (e.g. a scalar dot product). Quantification: Let $[z]_{\vec{a}} :=$ $[z(\vec{a}_i, \vec{a}_j)]_{i=1,2,3} =$ ^{noted} $[z(\vec{a}_i, \vec{a}_j)] \in \mathcal{M}_{33}$; This 3*3 matrix $[z]_{\vec{a}}$ is the usual matrix representation (quantification) of $z(\cdot, \cdot)$ relative to $(\vec{a_i})$. So, for all $\vec{v} = \sum_{i=1}^3 v_i \vec{a_i}$ and $\vec{w} = \sum_{i=1}^3 w_i \vec{a_i}$ in V, the bilinearity of $z(\cdot, \cdot)$ gives $z(\vec{v}, \vec{w}) = \sum_{i,j=1}^{3} v_i w_j z(\vec{a}_i, \vec{a}_j) = [\vec{v}]_{\vec{a}}^T . [z]_{\vec{a}} . [\vec{w}]_{\vec{a}}$ where $[\vec{v}]_{\vec{a}}^T := ([\vec{v}]_{|\vec{a}})^T$ (transposed matrix).

Let $L: V \to V$ be an endomorphism (linear map from a vector space to itself). Quantification: Let L_{ij} be the components of $L.\vec{a}_j$, i.e. $L.\vec{a}_j = \sum_{i=1}^3 L_{ij}\vec{a}_i$, for all j; The 3 * 3 matrix $[L]_{\vec{a}} := [L_{ij}] \in \mathcal{M}_{33}$ is the usual representation of L relative to (\vec{a}_i) . So, with $\vec{v} = \sum_{i=1}^{3} v_i \vec{a}_i$, the linearity of L gives $L.\vec{v} =$ $\sum_{i,j=1}^{3} L_{ij} v_j \vec{a}_i$, i.e. $[L.\vec{v}]_{|\vec{a}} = [L]_{|\vec{a}} . [\vec{v}]_{|\vec{a}}$.

1.1.5 $\,$ Our usual affine space \mathbb{R}^3 and associated $\overline{\mathbb{R}^3}$

Affine setting: \mathbb{R}^3 is the usual affine space of points representing positions of particles in our classical 3-D world.

Associated setting vector space: $\overline{\mathbb{R}^3}$ is its associated vector space made of the bi-point vectors \overline{AB} =noted $B-A$ for all $A, B \in \mathbb{R}^3$, and we write $B = A + \overline{AB}$.

1.1.6 Euclidean framework

Choose a unit of measure of length u in our affine space \mathbb{R}^3 (foot, metre...), then make a Euclidean associated basis $(\vec{e}_i)_{i=1,2,3} = \text{noted}(\vec{e}_i)$ in $\overline{\mathbb{R}^3}$. The length of each \vec{e}_i is 1 in the unit u, and the length of $3\vec{e}_i + 4\vec{e}_{i+1}$ is 5 (Pythagoras orthogonality) in the unit u, for all $i = 1, 2, 3$, where $\vec{e}_4 := \vec{e}_1$ and $\vec{e}_5 := \vec{e}_2$.

The associated Euclidean dot product $g_e(\cdot, \cdot) = (\cdot, \cdot)_{ge} = \text{noted} \cdot \cdot \cdot_{ge} : \overline{\mathbb{R}^3} \times \overline{\mathbb{R}^3} \to \mathbb{R}$ (symmetric definite positive bilinear form) is defined by $(\vec{e}_i, \vec{e}_j)_{ge} = \delta_{ij}$ for all i, j , i.e. $[g_e]_{|\vec{e}} = I$, so, for all $\vec{v} = \sum_{i=1}^3 v_i \vec{e}_i$ and $\vec{w} = \sum_{i=1}^{3} w_i \vec{e}_i,$

$$
\vec{v} \cdot_{\mathcal{F}} \vec{w} := [\vec{v}]_{|\vec{e}}^T \cdot [\vec{w}]_{|\vec{e}} = \sum_{i,j=1}^3 v_i w_i \quad \text{(Euclidean case)}.
$$
\n(1.1)

The associated Euclidean norm $||.||_{\mathscr{C}} : \overline{\mathbb{R}^3} \to \mathbb{R}_+$ is given by $||\vec{v}||_{\mathscr{C}} := \sqrt{\vec{v} \cdot_{\mathscr{C}} \vec{v}} \ (= \sum_{i,j=1}^3 v_i^2)$.

Two vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$ are $(\cdot, \cdot)_{\mathcal{G}}$ -orthogonal iff $\vec{v} \cdot_{\mathcal{G}} \vec{w} = 0$.

The algebraic (signed) volume of the parallelepiped limited by three vectors $\vec{u}, \vec{v}, \vec{w}$ is det $_{\vec{e}}(\vec{u}, \vec{v}, \vec{w})$ (and the volume is the absolute value $|\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w})|$) where $\det_{\vec{e}} : (\vec{R}^3)^3 \to \mathbb{R}$ is the tri-linear alternated form defined by $\det_{\vec{e}}(\vec{e}_1, \vec{e}_2, \vec{e}_3) = 1$. That is, for all $\vec{u} = \sum_{i=1}^3 u_i \vec{e}_i$, $\vec{v} = \sum_{i=1}^3 v_i \vec{e}_i$, $\vec{w} = \sum_{i=1}^3 w_i \vec{e}_i$ in V,

$$
\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w}) = u_1(v_2w_3 - v_3w_2) + u_2(v_3w_1 - v_1w_3) + u_3(v_1w_2 - v_2w_1),\tag{1.2}
$$

i.e. $\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w}) = \det\left(\begin{bmatrix} \vec{u} \end{bmatrix}_{|\vec{e}} \begin{bmatrix} \vec{v} \end{bmatrix}_{|\vec{e}} \begin{bmatrix} \vec{w} \end{bmatrix}_{|\vec{e}}\right) = \text{the determinant of a } 3*3 \text{ matrix } \mathcal{M} = (\begin{bmatrix} \vec{u} \end{bmatrix}_{|\vec{e}} \begin{bmatrix} \vec{v} \end{bmatrix}_{|\vec{e}} \begin{bmatrix} \vec{w} \end{bmatrix}_{|\vec{e}}).$

A $(\cdot, \cdot)_{g}$ -orthonormal basis is a basis (\vec{b}_i) s.t. $(\vec{b}_i, \vec{b}_j)_{g} = \delta_{ij}$, i.e. $\vec{b}_i \cdot_{g} \vec{b}_j = \delta_{ij}$ for all i, j , i.e. $[g_e]_{|\vec{b}} = I$.

A basis (\vec{b}_i) as the same orientation as (\vec{e}_i) iff $\det_{\vec{e}}(\vec{b}_1, \vec{b}_2, \vec{b}_3) > 0$. Otherwise it as the opposite orientation.

1.2 The vector product associated with a basis

Framework: $\overrightarrow{\R^3}$ Euclidean with $(\vec{e_i})$ a chosen Euclidean basis, $(\cdot,\cdot)_g$ the associated Euclidean dot product and det $_{\vec{e}}$ the associated algebraic volume.

Definition 1.2 The vector product $\times_e(\cdot, \cdot)$: $\begin{cases} V \times V & \rightarrow V \end{cases}$ $\begin{pmatrix} \n\overline{\n\langle u, \overline{v} \rangle} & \rightarrow V & \n\overline{\n\langle u, \overline{v} \rangle} & \downarrow^{\text{model}} & \n\overline{\n\langle u, \overline{v} \rangle} & \downarrow^{\text{model}} & \n\end{pmatrix}$ is the bilinear antisymmetric map defined by

 $(\vec{u} \times_e \vec{v}) \cdot_{\mathcal{F}} \vec{w} = \det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w}), \quad \forall \vec{w} \in \mathbb{R}^{\overline{3}}$ (1.3)

So the components of $\vec{u} \times_{e} \vec{v}$ in the basis (\vec{e}_i) are the reals $(\vec{u} \times_{e} \vec{v}) \cdot_{\mathcal{P}} \vec{e}_i = \det_{\vec{e}}(\vec{u}, \vec{v}, \vec{e}_i)$ for $i = 1, 2, 3$:

$$
\begin{aligned}\n[\vec{u} \times_e \vec{v}]_{|\vec{e}} &:= \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix}, \quad \text{i.e.} \\
\vec{u} \times_e \vec{v} &:= (u_2v_3 - u_3v_2)\vec{e}_1 + (u_3v_1 - u_1v_3)\vec{e}_2 + (u_1v_2 - u_2v_1)\vec{e}_3 \stackrel{\text{noted}}{=} \det \begin{pmatrix} \vec{e}_1 & u_1 & v_1 \\ \vec{e}_2 & u_2 & v_2 \\ \vec{e}_3 & u_3 & v_3 \end{pmatrix},\n\end{aligned} (1.4)
$$

the formal determinant being expanded along the first column. So \times_e is indeed bilinear, easy check, and antisymmetric, i.e. $\vec{u} \times_e \vec{v} = -\vec{v} \times_e \vec{u}$, easy check.

In other words, \times_e is the bilinear antisymmetric map defined by

$$
\forall i = 1, 2, 3, \quad \vec{e_i} \times_e \vec{e_{i+1}} = \vec{e_{i+2}}, \tag{1.5}
$$

where $\vec{e}_4 := \vec{e}_1$ and $\vec{e}_5 := \vec{e}_2$.

Proposition 1.3 For all $\vec{u}, \vec{v} \in V$.

- 1- If $\vec{u} \times_e \vec{z} = \vec{v} \times_e \vec{z}$ for all \vec{z} , then $\vec{u} = \vec{v}$.
- 2- $\vec{u} \times_e \vec{v}$ is $(\cdot, \cdot)_{\alpha}$ -orthogonal to \vec{u} and to \vec{v} .
- 3- If \vec{u} is parallel to \vec{v} then $\vec{u} \times_e \vec{v} = 0$. 3'- If $\vec{u} \times_e \vec{v} \neq 0$ then \vec{u} is not parallel to \vec{v} .
- 4- If \vec{u} is not parallel to \vec{v} then $\vec{u} \times_e \vec{v} \neq 0$. 4'- If $\vec{u} \times_e \vec{v} = 0$ then \vec{u} is parallel to \vec{v} .
- 5- If \vec{u} is not parallel to \vec{v} then the basis $(\vec{u}, \vec{v}, \vec{u} \times_e \vec{v})$ has the same orientation than (\vec{e}_i) .
- 6- $||\vec{u}\times_e \vec{v}||_{\infty}$ is the area or the parallelogram (\vec{u}, \vec{v}) (in the unit chosen for $(\vec{e_i})$).

Proof. 1- (1.4) give
$$
[\vec{u} \times_{e} \vec{e}_{1}]_{|\vec{e}} = \begin{pmatrix} 0 \\ u_3 \\ -u_2 \end{pmatrix}
$$
, similarly $[\vec{v} \times_{e} \vec{e}_{1}]_{|\vec{e}} = \begin{pmatrix} 0 \\ v_3 \\ -v_2 \end{pmatrix}$, thus $u_3 = w_3$ and $u_2 = v_2$.
Similarly with \vec{e}_2 with gives $u_1 = v_1$.

Similarly with \vec{e}_2 wich gives $u_1 = v_1$.

2- $(\vec{u} \times_e \vec{v}) \cdot_{\mathcal{P}} \vec{u} = \det_{\vec{e}}(\vec{u}, \vec{v}, \vec{u}) = 0$ since $\det_{\vec{e}}$ is alternated, similarly $(\vec{u} \times_e \vec{v}) \cdot_{\mathcal{P}} \vec{v} = 0$.

3- Trivial with [\(1.4\)](#page-2-3). 3'- Contraposition.

4- If \vec{u} is not parallel to \vec{v} then let $\vec{z} \in V$ s.t. $(\vec{u}, \vec{v}, \vec{z})$ is a basis; Hence, $\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{z}) \neq 0$, thus $(\vec{u} \times_e \vec{v}) \bullet_{\mathcal{Q} \in} \vec{z} \neq 0$, thus $\vec{u} \times_e \vec{v} \neq \vec{0}$. 4'- Contraposition.

5- det $_{\vec{e}}(\vec{u},\vec{v},\vec{u}\times_{e}\vec{v})=(\vec{u}\times_{e}\vec{v})\bullet_{\mathcal{P}}(\vec{u}\times_{e}\vec{v})=||\vec{u}\times_{e}\vec{v}||^{2}>0$ since $\vec{u}\nparallel \vec{v}$.

6- If \vec{u} is parallel to \vec{v} then it is trivial (zero area). Otherwise $\vec{u} \times_e \vec{v} \neq \vec{0}$ thus $0 \neq \det_{\vec{e}}(\vec{u}, \vec{v}, \frac{\vec{u} \times_e \vec{v}}{\|\vec{u} \times_e \vec{v}\|_{ge}})$ $(\vec{u} \times_e \vec{v}) \cdot_{\mathcal{S}} \frac{\vec{u} \times_e \vec{v}}{\|\vec{u} \times_e \vec{v}\|_{\mathcal{S}}}\n= ||\vec{u} \times_e \vec{v}||_{\mathcal{S}}\n=$ volume of the parallelepiped $(\vec{u}, \vec{v}, \frac{\vec{u} \times_e \vec{v}}{\|\vec{u} \times_e \vec{v}\|_{\mathcal{S}}})$ (height 1).

Exercise 1.4 (\vec{a}_i) being a $(\cdot, \cdot)_g$ -orthonormal basis, define the basis (\vec{b}_i) by $\vec{b}_1 = -\vec{a}_1$, $\vec{b}_2 = \vec{a}_2$, $\vec{b}_3 = \vec{a}_3$ (change of orientation). Prove:

$$
x_b = -x_a \tag{1.6}
$$

(the definition of a vector product is basis dependent), i.e. $\vec{v} \times_b \vec{w} = -\vec{v} \times_a \vec{w}$, for all $\vec{v}, \vec{w} \in V$.

Answer. $\vec{b}_2 \times_b \vec{b}_3 = \vec{b}_1 = -\vec{a}_1 = -\vec{a}_2 \times_a \vec{a}_3 = -\vec{b}_2 \times_a \vec{b}_3$, and $\vec{b}_3 \times_b \vec{b}_1 = \vec{b}_2 = \vec{a}_2 = \vec{a}_3 \times_a \vec{a}_1 = -\vec{b}_3 \times_a \vec{b}_1$, and $\vec{b}_1 \times_b \vec{b}_2 = \vec{b}_3 = \vec{a}_3 = \vec{a}_1 \times_a \vec{a}_2 = -\vec{b}_1 \times_a \vec{b}_2$; And \times_a and \times_b are bilinear antisymmetric, hence [\(1.6\)](#page-3-2).

Exercise 1.5 Check:

$$
\vec{u} \times_e (\vec{v} \times_e \vec{w}) = (\vec{u} \bullet_{ge} \vec{w})\vec{v} - (\vec{u} \bullet_{ge} \vec{v})\vec{w}.
$$
\n(1.7)

Answer.
$$
[\vec{u} \times_{e} (\vec{v} \times_{e} \vec{w})]_{|\vec{e}} = \begin{pmatrix} u_{2}(v_{1}w_{2} - v_{2}w_{1}) - u_{3}(v_{3}w_{1} - v_{1}w_{3}) \\ u_{3}(v_{2}w_{3} - v_{3}w_{2}) - u_{1}(v_{1}w_{2} - v_{2}w_{1}) \\ u_{1}(v_{3}w_{1} - v_{1}w_{3}) - u_{2}(v_{2}w_{3} - v_{3}w_{2}) \end{pmatrix} = \begin{pmatrix} \left(\sum_{i=1}^{3} u_{i}w_{i}\right)v_{1} - \left(\sum_{i=1}^{3} u_{i}v_{i}\right)w_{1} \\ \left(\sum_{i=1}^{3} u_{i}w_{i}\right)v_{2} - \left(\sum_{i=1}^{3} u_{i}v_{i}\right)w_{2} \\ \left(\sum_{i=1}^{3} u_{i}w_{i}\right)v_{3} - \left(\sum_{i=1}^{3} u_{i}v_{i}\right)w_{3} \end{pmatrix}.\n\blacksquare
$$

Exercise 1.6 Let $\vec{v}, \vec{w} \in V$. Prove: $\vec{z} := \vec{v} \times_e \vec{w}$ is a "contravariant vector", i.e. satisfies the change of basis δ formula $[\vec{z}]_{|\vec{b}} = P^{-1}.[\vec{z}]_{|\vec{a}}$ where P is the transition matrix from a basis (\vec{a}_i) to a basis (\vec{b}_i) .

Answer. $g(\vec{u},\vec{v}\times_e\vec{w})_{\mathscr{F}}=[\vec{u}]_{\vec{a}}^T.[\vec{g}]_{\vec{a}}.[\vec{v}\times_e\vec{w}]_{\vec{a}}$ and $g(\vec{u},\vec{v}\times_e\vec{w})_{\mathscr{F}}=[\vec{u}]_{\vec{b}}^T.[g]_{\vec{b}}.[\vec{v}\times_e\vec{w}]_{\vec{b}}$ with (change of basis formulas) $[\vec{v}]_{\vec{b}} = P^{-1} . [\vec{v}]_{\vec{a}}$ and $[g]_{\vec{b}} = P^{T} . [g]_{\vec{a}} . P$. So

$$
g(\vec{u}, \vec{v} \times_e \vec{w})_{\mathcal{F}} = [\vec{u}]_{\vec{b}}^T . [g]_{\vec{b}} . [\vec{v} \times_e \vec{w}]_{\vec{b}} = ([\vec{u}]_{\vec{a}}^T . P^{-T}) . (P^T . [g]_{\vec{a}} . P) . [\vec{v} \times_e \vec{w}]_{\vec{b}} = [\vec{u}]_{\vec{a}}^T . [g]_{\vec{a}} . P . [\vec{v} \times_e \vec{w}]_{\vec{b}},
$$

for all $\vec{u}, \vec{v}, \vec{w}$, hence $[\vec{v} \times_e \vec{w}]_{\vec{a}} = P[\vec{v} \times_e \vec{w}]_{\vec{b}}$, i.e. $[\vec{v} \times_e \vec{w}]_{\vec{b}} = P^{-1} \cdot [\vec{v} \times_e \vec{w}]_{\vec{a}}$.

2 Antisymmetric endomorphism and its representation vectors

2.1 Transpose of an endomorphism

V is a dimension n real vector space and $\mathcal{L}(V; V)$ is the set of endomorphisms $V \to V$.

Usual notation for a linear map: $L(\vec{v}) =$ ^{noted} $L.\vec{v}$, hence $L(\vec{v} + \lambda \vec{w}) = L.\vec{v} + \lambda L.\vec{w}$ (distributivity $notation = linearity notation)$.

Let $(\cdot, \cdot)_q : V \times V \to \mathbb{R}$ be a scalar dot product (required to define the transposed). (No basis required.)

Definition 2.1 The transposed of an endomorphism $L \in \mathcal{L}(V; V)$ relative to $(\cdot, \cdot)_g$ is the endomorphism $L_g^T \in \mathcal{L}(V; V)$ defined by, for all $\vec{v}, \vec{w} \in V$,

$$
(L_g^T \cdot \vec{w}, \vec{v})_g = (\vec{w}, L \cdot \vec{v})_g. \tag{2.1}
$$

Quantification. Choose a basis (\vec{e}_i) in V: [\(2.1\)](#page-3-3) gives $[\vec{v}]_{\vec{e}}^T [g]_{\vec{e}} [L_g^T \cdot \vec{w}]_{\vec{e}} = [L \cdot \vec{v}]_{\vec{e}}^T [g]_{\vec{e}} [\vec{w}]_{\vec{e}}$, thus $[\vec{v}]_{[\vec{e}]}^T [g_{|\vec{e}]}_{[\vec{e}]} = [\vec{v}]_{[\vec{e}]}^T [E_{|\vec{e}]}_{[\vec{e$

A

Proposition 2.2 If $(\cdot, \cdot)_a$ and $(\cdot, \cdot)_b$ are two Euclidean dot products (e.g. $(\cdot, \cdot)_a$ built with a foot and $(\cdot, \cdot)_b$ with a metre) then

$$
L_a^T = L_b^T \stackrel{\text{noted}}{=} L^T \quad \text{(Euclidean setting)}: \tag{2.2}
$$

The transposed of an endomorphism in $\overline{\mathbb{R}^3}$ Euclidean does not depend on the unit of measurement (foot, metre, ...) used to build Euclidean dot products.

Proof. $(\cdot, \cdot)_a$ and $(\cdot, \cdot)_b$ are both Euclidean thus $\exists \lambda > 0$ s.t. $(\cdot, \cdot)_a = \lambda^2(\cdot, \cdot)_b$, thus $(L_a^T \cdot \vec{w}, \vec{v})_a =$ $(\vec{w}, L\vec{v})_a = \lambda^2(\vec{w}, L\vec{v})_b = \lambda^2(L_b^T \cdot \vec{w}, \vec{v})_b = (L_b^T \cdot \vec{w}, \vec{v})_a$ for all $\vec{v}, \vec{w} \in \mathbb{R}^3$, thus $L_a^T \cdot \vec{w} = L_b^T \cdot \vec{w}$ for all \vec{w} .

Quantification, Euclidean setting. $(\cdot, \cdot)_{\mathcal{L}}$ -Euclidean basis (\vec{e}_i) , thus $[g_e]_{\vec{e}} = I$, thus with [\(2.2\)](#page-4-2),

$$
L_g^T \stackrel{\text{noted}}{=} L^T, \quad [L^T]_{|\vec{e}} = [L]_{|\vec{e}}^T, \quad \text{i.e.} \quad (L^T)_{ij} = L_{ji} \ \forall i, j \quad \text{(Euclidean setting)}.
$$
 (2.3)

2.2 Symmetric and antisymmetric endomorphisms

Let $L \in \mathcal{L}(V; V)$ and let $(\cdot, \cdot)_q$ be a scalar dot product in V.

Definition 2.3

- L is $(\cdot, \cdot)_g$ -symmetric iff $L_g^T = L$, i.e. $(L.\vec{w}, \vec{v})_g = (\vec{w}, L.\vec{v})_g$, $\forall \vec{v}, \vec{w}$, (2.4)
- L is $(\cdot, \cdot)_g$ -antisymmetric iff $L_g^T = -L$, i.e. $(L.\vec{w}, \vec{v})_g = -(\vec{w}, L.\vec{v})_g$, $\forall \vec{v}, \vec{w}$.

Proposition 2.4 The space of $(\cdot, \cdot)_{\alpha}$ -symmetric endomorphisms is a vector space. The space of $(\cdot, \cdot)_{\alpha}$ antisymmetric endomorphisms is a vector space.

Proof. $(L + \lambda M)_g^T = L_g^T + \lambda M_g^T = (\pm L) + \lambda (\pm M) = \pm (L + \lambda M)$ with $+$ iff L and M are $(\cdot, \cdot)_g$ -symmetric and – iff L and M are antisymmetric. Thus, vector sub-spaces of $\mathcal{L}(V;V)$.

Euclidean setting: Euclidean basis (\vec{e}_i) , associated Euclidean dot product $(\cdot, \cdot)_{ge}$. With [\(2.2\)](#page-4-2):

- • L is Euclidean-symmetric iff $[L^T]_{|\vec{e}} = [L]_{|\vec{e}},$ (2.5)
- L is Euclidean-antisymmetric iff $[L^T]_{\vert \vec{e}} = -[L]_{\vert \vec{e}}.$ (2.6)

2.3 Antisymmetric endomorphism and its representation vectors

Euclidean framework: (\vec{e}_i) is a Euclidean basis and $(\cdot, \cdot)_{ge}$ is the associated Euclidean dot product.

Let $L \in \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ be $(\cdot, \cdot)_{\mathcal{G}^c}$ antisymmetric: [\(2.6\)](#page-4-3) gives $L_{ii} = 0$ and $L_{ji} = -L_{ji}$ for all i, j , thus $\exists a, b, c \in \mathbb{R} \text{ s.t. } L. \vec{e_1} = c\vec{e_2} - b\vec{e_3}, L. \vec{e_2} = -c\vec{e_1} + a\vec{e_3} \text{ and } L. \vec{e_3} = b\vec{e_1} - a\vec{e_2}.$ Then define the vector $\vec{\omega_e} \in \mathbb{R}^3$ by $\vec{\omega}_e := a\vec{e}_1 + b\vec{e}_2 + c\vec{e}_3$: We immediately have, for all $\vec{v} \in V$,

$$
L.\vec{v} = \vec{\omega}_e \times_e \vec{v}.\tag{2.7}
$$

In other words,

$$
[L]_{|\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \text{ and } [\vec{\omega}_e]_{|\vec{e}} := \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ give } L.\vec{v} = \vec{\omega}_e \times_e \vec{v}, \quad \forall \vec{v} \in \overline{\mathbb{R}^3}.
$$
 (2.8)

Definition 2.5 The vector $\vec{\omega}_e$ is the \times_e -representation vector of the antisymmetric endomorphism L relative to the Euclidean basis (\vec{e}_i) .

Proposition 2.6 The representation vector $\vec{\omega}_e$ (of L) is **not** intrinsic to L. In particular if (\vec{b}_i) is another $(\cdot, \cdot)_{\mathcal{C}}$ -Euclidean basis which orientation is opposed to the orientation of (\vec{e}_i) then

$$
\vec{\omega}_b = -\vec{\omega}_e. \tag{2.9}
$$

Proof. $L.\vec{v} = \vec{\omega}_e \times_e \vec{v}$ and $L.\vec{v} = \vec{\omega}_b \times_b \vec{v}$ give $\vec{\omega}_e \times_e \vec{v} = \vec{\omega}_b \times_b \vec{v}$, thus $(\vec{\omega}_e \times_e \vec{v}) \cdot_{\alpha} \vec{z} = (\vec{\omega}_b \times_b \vec{v}) \cdot_{\alpha} \vec{z}$, thus [\(1.3\)](#page-2-4) gives $\det_{\vec{e}}(\vec{\omega}_e, \vec{v}, \vec{z}) = \det_{\vec{b}}(\vec{\omega}_b, \vec{v}, \vec{z}) = -\det_{\vec{e}}(\vec{\omega}_b, \vec{v}, \vec{z})$, for all \vec{v}, \vec{z} , thus $\vec{\omega}_e = -\vec{\omega}_b$. A

2.4 Interpretation $(\pi/2 \text{ rotation and dilation})$

Consider [\(2.7\)](#page-4-4)-[\(2.8\)](#page-4-5), and let $\omega_e := ||\vec{\omega}_e||_{ge} =$ √ $a^2 + b^2 + c^2$.

Proposition 2.7 Let
$$
[\vec{b}_3]_{|\vec{e}} = \frac{1}{\omega_e} \begin{pmatrix} a \\ b \\ c \end{pmatrix}
$$
, $[\vec{b}_1]_{|\vec{e}} = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}$, $\vec{b}_2 = \vec{b}_3 \times_e \vec{b}_1 = \frac{1}{\sqrt{a^2 + b^2}} \frac{1}{\omega_e} \begin{pmatrix} -ac \\ -bc \\ a^2 + b^2 \end{pmatrix}$.
Then $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ is a direct orthonormal basis, and

$$
[L]_{\vec{b}} = \omega_e \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \omega_e \begin{pmatrix} \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) & 0 \\ \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad [\vec{\omega}_e]_{\vec{b}} = \omega_e \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$
 (2.10)

So L. \vec{v} rotates a vector $\vec{v} = v_1 \vec{b}_1 + v_2 \vec{b}_2 \in \text{Vect}\{\vec{b}_1, \vec{b}_2\}$ through an angle $\frac{\pi}{2}$ radians in the plane $\text{Vect}\{\vec{b}_1, \vec{b}_2\}$ and dilates by a factor ω_e : $L.\vec{b}_1 = \omega_e \vec{b}_2$ and $L.\vec{b}_2 = -\omega_e \vec{b}_1$; And it kills the third component : $L.\vec{b}_3 = \vec{0}$.

Proof. $\det_{\vec{e}}(\vec{b}_1, \vec{b}_2, \vec{b}_3) > 0$: easy calculation. And $P = \begin{pmatrix} \vec{b}_1 \end{pmatrix}_{|\vec{e}} \quad [\vec{b}_2]_{|\vec{e}} \quad [\vec{b}_3]_{|\vec{e}} \end{pmatrix}$ (the transition matrix from (\vec{e}_i) to (\vec{b}_i)) gives $[L]_{|\vec{b}} = P^{-1} [L]_{|\vec{e}} P$ (change of basis formula for endomorphisms). And here $P^{-1} = P^T$ (change of orthonormal basis): We get [\(2.10\)](#page-5-5). A

3 Antisymmetric matrix and its pseudo-vector representation

3.1 The pseudo-vector product

Here we are in the matrix world. Only the canonical basis in \mathcal{M}_{31} is considered.

Definition 3.1 The pseudo-vector \circ

product is the map
$$
\times
$$
 : $\left\{\n\begin{array}{l}\n\mathcal{M}_{31} \times \mathcal{M}_{31} \to \mathcal{M}_{31} \\
(\lbrack \vec{u} \rbrack, \lbrack \vec{v} \rbrack) \to \times (\lbrack \vec{u} \rbrack, \lbrack \vec{v} \rbrack) = \lbrack \vec{u} \rbrack \times \lbrack \vec{v} \rbrack\n\end{array}\n\right\}$

defined by

$$
\begin{bmatrix} \vec{u} \end{bmatrix} \times \begin{bmatrix} \vec{v} \end{bmatrix} = \begin{pmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{pmatrix} \quad \text{when} \quad \begin{bmatrix} \vec{u} \end{bmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad \begin{bmatrix} \vec{v} \end{bmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \tag{3.1}
$$

and the column matrix $[\vec{u}] \overset{\circ}{\times} [\vec{v}]$ is called the pseudo-vector product of $[\vec{u}]$ and $[\vec{v}]$.

In other words $[\vec{u}] \times [\vec{v}] := [\vec{u}]_{|\vec{C}} \times [\vec{v}]_{|\vec{C}}$ where (\vec{C}_i) is the canonical basis in \mathcal{M}_{31} .

3.2 Antisymmetric matrix and its pseudo-vector representation

Let $M \in \mathcal{M}_{33}$ be an antisymmetric matrix, i.e. there exists $a, b, c \in \mathbb{R}$ s.t.

$$
M = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}.
$$
 Thus $[\overset{\circ}{\omega}] = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ gives $M.[\vec{v}] = [\overset{\circ}{\omega}] \overset{\circ}{\times} [\vec{v}]$ (3.2)

for all $[\vec{v}] \in \mathcal{M}_{31}$. The pseudo-vector (the column matrix) $[\overset{\circ}{\omega}] \in \mathcal{M}_{31}$ is called the pseudo-vector representation (column matrix representation) of the matrix M.

3.3 Pseudo-vectors representation of an antisymmetric endomorphism

Euclidean framework: (\vec{e}_i) is a Euclidean basis and $(\cdot, \cdot)_{ge}$ is the associated Euclidean dot product.

Let $L \in \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ be $(\cdot, \cdot)_{\mathcal{G}^c}$ -antisymmetric. Hence $[\vec{\omega}_e \times_e \vec{v}]_{\vec{e}} \in [L \cdot \vec{v}]_{\vec{e}} = [L]_{\vec{e}} \cdot [\vec{v}]_{\vec{e}}$ $[\vec{\omega}_e \times_e \vec{v}]_{\vec{e}} \in [L \cdot \vec{v}]_{\vec{e}} = [L]_{\vec{e}} \cdot [\vec{v}]_{\vec{e}}$ $[\vec{\omega}_e \times_e \vec{v}]_{\vec{e}} \in [L \cdot \vec{v}]_{\vec{e}} = [L]_{\vec{e}} \cdot [\vec{v}]_{\vec{e}}$ gives, with (3.2) and $M = [L]_{\vert \vec{e} \vert}$

$$
[\vec{\omega}_e \times_e \vec{v}]_{|\vec{e}} = [\vec{\omega}] \times [\vec{v}]_{|\vec{e}} \quad \text{where} \quad [\vec{\omega}] := [\vec{\omega}_e]_{|\vec{e}}.
$$
 (3.3)

Definition 3.2 The matrix $[\vec{\omega}] := [\vec{\omega}_e]_{|\vec{e}} \in \mathcal{M}_{31}$ is the pseudo-vector representation of L relative to (\vec{e}_i) .

4 Screw (torsor)

4.0 Reminder

Let Ω be an open set in \mathbb{R}^3 .

• A vector field in \mathbb{R}^3 is a function $\tilde{\vec{u}}$: $\left\{ \begin{aligned} &\Omega ~\rightarrow \Omega \times \overline{\mathbb{R}^3} \\ &A ~\rightarrow \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{aligned} \right\}$, the couple $\vec{u}(A) := (A, \vec{u}(A))$

being a "pointed vector at A", or "a vector at A". Drawing: $\vec{u}(A)$ has to be drawn at A, nowhere else. To compare with a vector $\vec{v} \in \mathbb{R}^3$ which can be drawn anywhere (also called a free vector).

The sum of two vector fields \tilde{u}, \tilde{w} and the multiplication by a real λ are defined by, at any $A \in \Omega$,

$$
\widetilde{\vec{u}}(A) + \widetilde{\vec{w}}(A) = (A, \vec{u}(A) + \vec{w}(A)), \text{ and } \lambda \widetilde{\vec{u}}(A) = (A, \lambda \vec{u}(A))
$$
\n(4.1)

(usual rules for "vectors at A"). To lighten the notations, $\tilde{\vec{u}}(A) =$ ^{noted} $\vec{u}(A)$ (but don't forget it is a pointed vector).

The differential of αC^1 vector field $\tilde{\vec{u}} : \Omega \to \Omega \times \overrightarrow{\mathbb{R}^3}$ at a point A is the "field of endomorphisms" $d\vec{u} : \Omega \to \Omega \times \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ defined by $d\vec{u}(A) = (A, d\vec{u}(A))$ (an endomorphism at A) where $d\vec{u}(A)$ is the differential of \vec{u} at A. So $\vec{u}(B) = \vec{u}(A) + d\vec{u}(A) \cdot \vec{AB} + o(||\vec{AB}||)$. And $d\vec{u} =^{\text{noted}} d\vec{u}$.

• An affine vector field \vec{u} : $\left\{ \begin{aligned} &\Omega ~\rightarrow \Omega \times \overline{\mathbb{R}^3} \\ &A ~\rightarrow \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{aligned} \right\}$ is a vector field s.t. $\vec{u} : \Omega \to \overline{\mathbb{R}^3}$ is affine, i.e. s.t. $d\vec{u}$ is uniform, i.e. s.t., for all $A, B, d\vec{u}(A) = d\vec{u}(B) =^{\text{noted}} d\vec{u}$, so s.t., for all $A, B \in \mathbb{R}^3$,

$$
\vec{u}(B) = \vec{u}(A) + d\vec{u}.\overrightarrow{AB}.
$$
\n(4.2)

4.1 Definition (Euclidean framework)

Euclidean framework required: $(\vec{e_i})$ is a chosen Euclidean basis in $\overrightarrow{\mathbb{R}^3},\,(\cdot,\cdot)_g$ is the associated Euclidean ${\rm dot\ product},\times_e {\rm is\ the\ associated\ vector\ product,}$ and the transposed of an endomorphism L is L^T cf. [\(2.2\)](#page-4-2).

Definition 4.1 A screw (a torsor) is the name given to an affine Euclidean antisymmetric vector field.

So a screw is a function \vec{s} : $\left\{ \begin{aligned} &\Omega ~\rightarrow \Omega \times \overline{\mathbb{R}^3} \\ &A ~\rightarrow \widetilde{\vec{s}}(A) := (A, \vec{s}(A)) \end{aligned} \right\}$ s.t. $d\vec{s}$ is uniform and, with $\vec{\omega}_e$ the \times_e representation vector of $d\vec{s}$ cf. [\(2.7\)](#page-4-4), for all $A, B \in \Omega$,

$$
\boxed{\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}}, \quad \text{so} \quad [\vec{s}(B)]_{|\vec{e}} = [\vec{s}(A)]_{|\vec{e}} + [\overset{\circlearrowleft}{\omega}] \overset{\circlearrowleft}{\times} [\overrightarrow{AB}]_{|\vec{e}}, \tag{4.3}
$$

with
$$
[\vec{\omega}] = [\vec{\omega}_e]_{|\vec{e}} := \begin{pmatrix} a \\ b \\ c \end{pmatrix}
$$
 when $[d\vec{s}]_{|\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$. Obviously written $\vec{s}(B) = \vec{s}(A) + \vec{\omega} \times \vec{AB}$.

Definition 4.2 • The vector $\vec{\omega}_e \in \mathbb{R}^3$ is the "resultant vector" of the screw \vec{s} relative to (\vec{e}_i) .

- The matrix (the pseudo-vector) $[\tilde{\omega}] := [\vec{\omega}_e]_{|\vec{e}|}$ is the "resultant" of the screw \vec{s} relative to (\vec{e}_i) .
- $\vec{s}(A)$ is the moment of the screw \vec{s} at $A \in \Omega$ (or moment of the torsor \vec{s} at A).
- If $\vec{s} = \vec{0}$ then \vec{s} is a degenerate screw (a degenerate torsor).
- A constant screw \vec{s} is non degenerate screw s.t. $\vec{s}(A) = \vec{s}(B)$ for all $A, B \in \Omega$ (i.e. s.t. $\vec{\omega}_e = \vec{0}$)

• The "reduction elements" at A are $[\vec{\omega}] := [\vec{\omega}_e]_{\vec{e}}$ and $[\vec{s}(A)]_{\vec{e}}$ (column matrices) relative to (\vec{e}_i) , written as the couple of matrices $([\overset{\circ}{\omega}], [\vec{s}(A)]_{|\vec{e}})$ abusively written $(\overset{\circ}{\omega}, \vec{s}(A))$.

Exercise 4.3 Let S be the set of the screws $\vec{s} : \Omega \to \overline{\mathbb{R}^3}$. Prove: S is a vector space.

Answer. If $\vec{s}_1, \vec{s}_2 \in \mathcal{S}$ and $\lambda \in \mathbb{R}$ then $\vec{s}_1 + \lambda \vec{s}_2$ is affine antisymmetric: Indeed, at B , $(\vec{s}_1 + \lambda \vec{s}_2)(B) = \vec{s}_1(B) +$ $\lambda \vec{s}_2(B) = (\vec{s}_1(A) + d\vec{s}_1 \cdot \vec{AB}) + \lambda(\vec{s}_2(A) + d\vec{s}_2 \cdot \vec{AB}) = (\vec{s}_1 + \lambda \vec{s}_2)(A) + (d\vec{s}_1 + \lambda d\vec{s}_2) \cdot \vec{AB}$ with $d\vec{s}_1 + \lambda d\vec{s}_2$ antisymmetric since $d\vec{s}_1$ and $d\vec{s}_2$ are; Thus $\vec{s}_1 + \lambda \vec{s}_2 \in \mathcal{S}$ (affine with $L_{\vec{s}_1 + \lambda \vec{s}_2} = d\vec{s}_1 + \lambda d\vec{s}_2$ linear antisymmetric).

Exercise 4.4 Let \vec{s} be a screw and $\vec{\omega}_e$ its resultant vector. For all $\lambda \in \mathbb{R}$ and $A, B \in \mathbb{R}^3$, prove:

$$
\vec{s}(A + \lambda \vec{\omega}_e) = \vec{s}(A), \quad \text{and} \quad \vec{s}(B) \bullet_{\mathcal{F}} \vec{\omega}_e = \vec{s}(A) \bullet_{\mathcal{F}} \vec{\omega}_e \ (= \text{constant}). \tag{4.4}
$$

(Hence the definition: $s_{inv} := \vec{s}(A) \cdot_{\mathscr{C}} \vec{\omega}_e$ is called the (scalar) invariant of the screw.) And prove:

$$
\vec{s}(B) \bullet_{\mathcal{F}} \overrightarrow{AB} = \vec{s}(A) \bullet_{\mathcal{F}} \overrightarrow{AB}, \text{ called the equi-projectivity property.}
$$
\n(4.5)

Answer. Let $B = A + \lambda \vec{\omega}_e$, so $\overrightarrow{AB} = \lambda \vec{\omega}_e$, thus $\vec{s}(B) = (4.3) \vec{s}(A) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{s}(A) + \vec{0}$ $\vec{s}(B) = (4.3) \vec{s}(A) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{s}(A) + \vec{0}$ $\vec{s}(B) = (4.3) \vec{s}(A) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{s}(A) + \vec{0}$, i.e. $(4.4)_1$ $(4.4)_1$. And $\vec{\omega}_e \times_{\epsilon} \overrightarrow{AB}$ orthogonal to both $\vec{\omega}_e$ and \vec{AB} , thus [\(4.3\)](#page-6-3) gives [\(4.4\)](#page-7-1)₂ and [\(4.5\)](#page-7-2). å

Exercise 4.5 Fix a point $A \in \mathbb{R}^3$. Define f_A : $\int \overrightarrow{\mathbb{R}^3} \times \overrightarrow{\mathbb{R}^3} \rightarrow S$ $(\vec{z}, \vec{w}) \rightarrow \vec{s} = f_A(\vec{z}, \vec{w})$ λ by $\vec{s}(B) := \vec{z} + \vec{w} \times_e \overrightarrow{AB}$ for all $B \in \mathbb{R}^3$. Prove that f_A is linear and bijective (is one-to-one and onto).

Answer. Linearity: $f_A((\vec{z}_1, \vec{w}_1) + \lambda(\vec{z}_2, \vec{w}_2))(B) = f_A(\vec{z}_1 + \lambda \vec{z}_2, \vec{w}_1 + \lambda \vec{w}_2)(B) = \vec{z}_1 + \lambda \vec{z}_2 + (\vec{w}_1 + \lambda \vec{w}_2) \times_e \overrightarrow{AB} =$ $\vec{z}_1+\vec{w}_1 \times_{\epsilon} \vec{AB} + \lambda(\vec{z}_2+\vec{w}_2 \times_{\epsilon} \vec{AB}) = (f_A(\vec{z}_1, \vec{w}_1) + \lambda f_A(\vec{z}_2, \vec{w}_2))(B).$

One-to-one: $f_A(\vec{z}, \vec{w}) = 0$ iff $\vec{z} + \vec{w} \times_e \overrightarrow{AB} = \vec{0}$ for all B, in particular $B = A$ gives $\vec{z} = \vec{0}$ and then $\vec{w} = \vec{0}$. Onto: Let $\vec{s} \in S$, $\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}$, and take $\vec{z} = \vec{s}(A)$ and $\vec{w} = \vec{\omega}_e$.

Exercise 4.6 Write $\times_e = \times$, $\bullet_{ge} = \bullet$, $\vec{\omega}_e = \vec{\omega}$. Let $\vec{s}_1, \vec{s}_2 \in \mathcal{S}$, $\vec{s}_1(B) = \vec{s}_1(A) + \vec{\omega}_1 \times \overrightarrow{AB}$ and $\vec{s}_2(B) = \vec{s}_2(A) + \vec{\omega}_2 \times \vec{s}_1(B)$ \overrightarrow{AB} . Define the screw $\langle \vec{s}_1, \vec{s}_2 \rangle$ by $\langle \vec{s}_1, \vec{s}_2 \rangle(A) = \vec{\omega}_1 \cdot \vec{s}_2(A) + \vec{\omega}_2 \cdot \vec{s}_1(A)$. Prove $\langle \vec{s}_1, \vec{s}_2 \rangle$ is constant.

 $\textbf{Answer.} \ \vec{\omega}_1 \cdot \vec{s}_2(B) + \vec{\omega}_2 \cdot \vec{s}_1(B) = \vec{\omega}_1 \cdot (\vec{s}_2(A) + \vec{\omega}_2 \times \overrightarrow{AB}) + \vec{\omega}_2 \cdot (\vec{s}_1(A) + \vec{\omega}_1 \times \overrightarrow{AB}) = \vec{\omega}_1 \cdot \vec{s}_2(A) + \vec{\omega}_2 \cdot \vec{s}_1(A) + \vec{\omega}_2 \cdot \vec{s}_2(B)$ $\vec{\omega}_1 \cdot (\vec{\omega}_2 \times \vec{AB}) + \vec{\omega}_2 \cdot (\vec{\omega}_1 \times \vec{AB})$, with $\vec{\omega}_1 \cdot (\vec{\omega}_2 \times \vec{AB}) + \vec{\omega}_2 \cdot (\vec{\omega}_1 \times \vec{AB}) = \det_{\vec{e}}(\vec{\omega}_1, \vec{\omega}_2, \vec{AB}) + \det_{\vec{e}}(\vec{\omega}_2, \vec{\omega}_1, \vec{AB})$ hence $= 0$, thus $\vec{\omega}_1 \cdot \vec{s}_2(B) + \vec{\omega}_2 \cdot \vec{s}_1(B) = \vec{\omega}_1 \cdot \vec{s}_2(A) + \vec{\omega}_2 \cdot \vec{s}_1(A)$, for all A, B .

4.2 Central axis

Let $\vec{s} : \Omega \to \overline{\mathbb{R}^3}$ be a screw, $\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}$, cf. [\(4.3\)](#page-6-3).

Definition 4.7 The central axis (or instantaneous screw axis) of a non constant screw $(\vec{\omega}_e \neq \vec{0})$ is

$$
\text{Ax}(\vec{s}) = \{ C \in \mathbb{R}^3 : \vec{s}(C) \parallel \vec{\omega}_e \} = \{ C \in \mathbb{R}^3 : \exists \lambda \in \mathbb{R}, \ \vec{s}(C) = \lambda \vec{\omega}_e \} \tag{4.6}
$$

called the set of central points. NB: Here \vec{s} is affine thus Ω is implicitly extended to the whole \mathbb{R}^3 , thus a point $C \in \text{Ax}(\vec{s})$ might be outside of Ω .

Proposition 4.8 Let \vec{s} be a non constant screw. Let $O \in \mathbb{R}^3$. Define the point $C_0 \in \mathbb{R}^3$ by

$$
\overrightarrow{OC_0} = \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{s}(O), \quad \text{i.e.} \quad C_0 := O + \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{s}(O). \tag{4.7}
$$

Then

1- $C_0 \in Ax(\vec{s})$, and

 $Ax(\vec{s}) = C_0 + \text{Vect}\{\vec{\omega}_e\}$ (affine straight line). (4.8)

2- \vec{s} is constant along Ax(\vec{s}): For all $C \in Ax(\vec{s}), \ \vec{s}(C) = \vec{s}(C_0)$. 3- $C \in \text{Ax}(\vec{s})$ iff $C = \arg \min_{A \in \mathbb{R}^3} ||\vec{s}(A)||_e$ (i.e. iff $||\vec{s}(C)||_e = \min_{A \in \mathbb{R}^3} ||\vec{s}(A)||_e$) $3'$ - $||\vec{s}(B)||_e > ||\vec{s}(C)||_e$ for all $C \in Ax(\vec{s})$ and all $B \notin Ax(\vec{s})$. 4- For all $B \in \Omega$ and $C \in Ax(\vec{s}),$

$$
\vec{s}(B) = \vec{s}(C) + \vec{\omega}_e \times_e \overrightarrow{CB} \in \text{Vect}\{\vec{\omega}_e\} \oplus^{\perp} \text{Vect}\{\vec{\omega}_e\}^{\perp} \quad (\text{orthogonal sum}), \tag{4.9}
$$

 \sup of the translation $\vec{s}(C)$ along the axis and of the rotation-dilation $\vec{\omega_e}\times_{e}\overrightarrow{CB}$ in $\text{Vect}\{\vec{\omega_e}\}^{\perp}$.

 $\textbf{Proof. } 1\cdot \vec{s}(C_0) = \vec{s}(O) + \vec{\omega}_e \times_e \overrightarrow{OC_0} = \vec{s}(O) + \vec{\omega}_e \times_e (\frac{1}{||\vec{\omega}_e||^2}\vec{\omega}_e \times_e \vec{s}(O)) = \vec{s}(O) + \frac{1}{||\vec{\omega}_e||^2}(\vec{\omega}_e \bullet_g \vec{s}(O)) \vec{\omega}_e - \vec{s}(O)$ $\frac{1}{||\vec{\omega}_e||^2} ||\vec{\omega}_e||^2 \vec{s}(O) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \cdot_{\mathcal{F}} \vec{s}(O)) \vec{\omega}_e$ is parallel to $\vec{\omega}_e$, thus $C_0 \in Ax(\vec{s})$.

Then $\vec{s}(C_0 + \lambda \vec{\omega}_e) = \vec{s}(C_0) + \vec{0}$ for all λ (because $\vec{\omega}_e \times_e \vec{\omega}_e = \vec{0}$), thus $\text{Ax}(\vec{s}) \supset C_0 + \text{Vect} \{\vec{\omega}_e\}$.

If $B \notin C_0$ + Vect $\{\vec{\omega}_e\}$, then $\overline{C_0B} \nparallel \vec{\omega}_e$, i.e. $\vec{\omega}_e \times_e \overline{C_0B} \neq \vec{0}$, thus $\vec{s}(B) = \vec{s}(C_0) + \vec{\omega}_e \times_e \overline{C_0B} \in \text{Vect}\{\vec{\omega}_e\}\oplus \perp$ $\text{Vect}\{\vec{\omega}_e\}^{\perp}$ with $\vec{0} \neq \vec{\omega}_e \times_e \overline{C_0}\vec{B}$, thus $\vec{s}(B) \nparallel \vec{\omega}_e$, hence $B \notin \text{Ax}(\vec{s})$. Thus $\text{Ax}(\vec{s}) = C_0 + \text{Vect}\{\vec{\omega}_e\}$.

 $2-\vec{s}(C_0+\lambda\vec{\omega}_e)=\vec{s}(C_0)+\vec{\omega}_e\times_{e}(\lambda\vec{\omega}_e)=\vec{s}(C_0)+\vec{0}$, thus $\vec{s}(C)=\vec{s}(C_0)$ for all $C\in C_0+\text{Vect}\{\vec{\omega}_e\}$.

3- If $B \notin C_0 + \text{Vect}(\bar{\omega}_e)$ then $||\vec{s}(B)||_e^2 = ||\vec{s}(C_0) + \vec{\omega}_e \times_e \overline{C_0B}||_e^2 > ||\vec{s}(C_0)||_e^2$ (Pythagoras since $\vec{s}(C_0) \parallel \vec{\omega}_e$ is orthogonal to $\vec{\omega}_e \times_{e} \overline{C_0 B}$.

4-
$$
\vec{s}(B) = (4.3) \vec{s}(C_0) + \vec{\omega}_e \times_e \vec{C_0 B}
$$
 with $\vec{s}(C_0)$ || $\vec{\omega}_e$ and $\vec{\omega}_e \times_e \vec{C_0 B} \perp \vec{\omega}_e$.

A

Exercise 4.9 How was the point C_0 in [\(4.7\)](#page-7-3) found?

Answer. If $\vec{s}(O) \parallel \vec{\omega}_e$ then take $C_0 = O$. Else a drawing encourages to look for a $C_0 = O + \alpha \vec{\omega}_e \times_e \vec{s}(O)$ for some $\alpha \in \mathbb{R}$ because $\overrightarrow{OC_0}$ is then orthogonal to Vect $\{\vec{\omega}_e\}$. Which gives $\vec{s}(C_0) = \vec{s}($ $\vec{s}(O) + \vec{\omega}_e \times_e (\alpha \vec{\omega}_e \times_e \vec{s}(O)) = \vec{s}(O) + \alpha(\vec{\omega}_e \cdot_{ge} \vec{s}(O))\vec{\omega}_e - \alpha ||\vec{\omega}_e||^2 \vec{s}(O)$. Hence we choose $\alpha = \frac{1}{||\vec{\omega}_e||^2}$: We get $\vec{s}(C_0) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \bullet_{ge} \vec{s}(O)) \vec{\omega}_e$ parallel to $\vec{\omega}_e$, thus C_0 is in $Ax(\vec{s})$: We have obtained [\(4.7\)](#page-7-3).

Exercise 4.10 Let \vec{s}_1 and \vec{s}_2 be two non constant screws s.t. $\vec{\omega}_{e1} + \vec{\omega}_{e2} \neq 0$. Find the axis of $\vec{s} := \vec{s}_1 + \vec{s}_2$.

Answer. $\vec{s}_1(B) = \vec{s}_1(O) + \vec{\omega}_{e1} \times_e \vec{OB}$ and $\vec{s}_2(B) = \vec{s}_2(O) + \vec{\omega}_{e2} \times_e \vec{OB}$ give $(\vec{s}_1 + \vec{s}_2)(B) = (\vec{s}_1(O) + \vec{s}_2(O)) +$ $(\vec{\omega_1}+\vec{\omega_2})\times_e\overrightarrow{OB}$. Thus $\text{Ax}(\vec{s_1}+\vec{s_2})=C+\text{Vect}\{\vec{\omega_1}+\vec{\omega_2}\}\$ where $C: \frac{(4.7)}{4}\times\frac{1}{11.7}$ $C: \frac{(4.7)}{4}\times\frac{1}{11.7}$ $C: \frac{(4.7)}{4}\times\frac{1}{11.7}$ $\frac{1}{\left| |\vec{\omega}_1+\vec{\omega}_2|\right|^2}(\vec{\omega}_1+\vec{\omega}_2)\times_e \vec{s}(O).$

Exercise 4.11 Let \vec{s} be a screw and $\vec{\omega}_e$ its resultant vector. Definition:

$$
\vec{s}_{inv} := (\vec{s}(B) \cdot_{\mathcal{F}} \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}) \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}
$$
 is called the vector invariant of the screw, (4.10)

i.e. $\vec{s}_{inv} := \frac{(\vec{s}(B) \bullet_{ge} \vec{\omega}_e)}{\omega_e^2}$ where $\omega_e = ||\vec{\omega}_e||$. Prove: $\vec{s}(B)$ is independent of B and

if
$$
C \in \text{Ax}(\vec{s})
$$
 then $\vec{s}(C) = \vec{s}_{inv}$, thus $\vec{s}(B) = \vec{s}_{inv} + \vec{\omega}_e \times_e \overrightarrow{CB}$, $\forall B \in \mathbb{R}^3$. (4.11)

Answer. $\vec{s}(B) \bullet_{ge} \vec{\omega}_e = s_{inv}$, scalar invariant of the screw cf [\(4.4\)](#page-7-1) independent of B). And $\vec{s}(B) = \vec{s}(C) + \vec{\omega}_e \times_e \vec{CB}$ with $\vec{s}(C) \parallel \vec{\omega}_e$ and $\vec{\omega}_e \times_{\epsilon} \vec{CB} \perp \vec{\omega}_e$, thus $\vec{s}_{inv} := (\vec{s}(C) \cdot_{ge} \vec{\omega}_e) \frac{\vec{\omega}_e}{\parallel \vec{\omega}_e \parallel_e} = \vec{s}(C)$.

5 Twist $=$ kinematic torsor $=$ distributor

5.1 Definition

Let (\vec{e}_i) be a Euclidean basis and \times_e =noted \times .

Definition 5.[1](#page-8-3) A twist¹ (or kinematic screw or distributor) is the name of the screw which is "the Eulerian velocity field of a rigid body".

So, let Obj be a rigid body, P_{Obj} its particles, Φ : $\left([t_0, T] \times Obj \rightarrow \mathbb{R}^3\right)$ $(t, P_{Obj}) \rightarrow p(t) = \Phi(t, P_{Obj})$ λ its motion

(where $t_0, T \in \mathbb{R}$ and $t_0 < T$), and $\Omega_t := \widetilde{\Phi}(t, Ob) \subset \mathbb{R}^3$ its position in \mathbb{R}^3 at t.

Its Eulerian velocity field \vec{v} is defined by $\vec{v}(t, p(t)) := \frac{\partial \Phi}{\partial t}(t, P_{Obj})$ when $p(t) = \tilde{\Phi}(t, P_{Obj})$. Fix t and let $\vec{v}(t, p(t)) =$ ^{noted} $\vec{v}(p)$.

The body being rigid, \vec{v} is affine and antisymmetric (is a screw called a twist): so, cf. [\(4.3\)](#page-6-3) with $\vec{\omega} := \vec{\omega}_e$, for all $p, q \in \Omega_t$,

$$
\vec{v}(q) = \vec{v}(p) + \vec{\omega} \times \vec{pq}.\tag{5.1}
$$

Definition 5.2 $\vec{\omega}$ is the vector angular velocity, and $\omega := ||\vec{\omega}||$ is the angular velocity.

Thus if $c \in \text{Ax}(\vec{v})$ (so $\vec{v}(c)$ is the velocity along $\text{Ax}(\vec{v})$) then (orthogonal decomposition of $\vec{v}(q)$)

$$
\forall q \in \Omega_t, \quad \vec{v}(q) = \vec{v}(c) + \vec{\omega} \times \vec{c} \vec{q} \in \text{Vect}\{\vec{\omega}\} \oplus^{\perp} \text{Vect}\{\vec{\omega}\}^{\perp}.
$$
 (5.2)

5.2 Pitch

Definition 5.3 For a non constant twist $(\omega \neq 0)$, the pitch is, for $c \in Ax(\vec{v})$

$$
p := 2\pi \frac{||\vec{v}(c)||}{\omega} \stackrel{\text{noted}}{=} 2\pi \frac{\text{linear speed}}{\text{angular speed}}.
$$
 (5.3)

In other words, $\vec{v}(c) \parallel \vec{\omega}$ gives $\vec{v}(c) = h\vec{\omega}$ and $p = 2\pi h$.

It is the "thread pitch" or a nut (or of a screw), i.e. the distance from the crest of one thread to the next, or from one groove to the next. (The pitch vanishes for a pure rotation defined by $\vec{v}(c) = 0$.)

¹Definition of a twist by R.S. Ball [\[1\]](#page-11-0): "A body is said to receive a twist about a screw when it is rotated about the screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can be reduced is a twist about a screw.

Exercise 5.4 Recall the definition of the angular speed (ω here), and explain the pitch.

Answer. 1- Plane motion immersed in \mathbb{R}^3 : $\vec{r}(t)$ = $\sqrt{ }$ $\overline{1}$ $R\cos(\omega_0 t)$ $R\sin(\omega_0 t)$ 0 \setminus where $\omega \in \mathbb{R}^*$ (with prop. [2.7\)](#page-5-7); Eulerian

velocity $\vec{v}(t, \vec{r}(t)) = \vec{r}'(t) = R\omega_0$ $\sqrt{ }$ $\overline{1}$ $-\sin(\omega_0 t)$ $\cos(\omega_0 t)$ $\boldsymbol{0}$ $\Bigg) = R \omega_0 \vec{u}(t)$ where $\vec{u}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$ (unit tangent vector). Definitions: ω_0 is the angular speed and $\vec{\omega}_0 =$ $\sqrt{ }$ $\overline{1}$ $\boldsymbol{0}$ $\boldsymbol{0}$ ω_0 \setminus the angular velocity, so $\vec{v}(t, \vec{r}(t)) = \vec{\omega}_0 \times \vec{r}(t)$; It gives [\(5.2\)](#page-8-4) when

$$
\vec{v}(c) = \vec{0} \text{ and } \vec{cq} = \vec{r}(t).
$$
\n
$$
2 \text{- The pitch is given by the helix } \vec{r}(t) = \begin{pmatrix} x(t) = R\cos(\omega_0 t) \\ y(t) = R\sin(\omega_0 t) \\ z(t) = at \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ at \end{pmatrix} + \begin{pmatrix} R\cos(\omega_0 t) \\ R\sin(\omega_0 t) \\ 0 \end{pmatrix}, \text{ sum of a translation}
$$

along the vertical axis and of a plane rotation in the horizontal plane. Its projection on the horizontal plane (cf. 1-) is periodic with period $\frac{2\pi}{\omega_0}$ (because $\omega_0(t+\frac{2\pi}{\omega_0})=\omega_0t+2\pi$), and the pitch is $p=z(t+\frac{2\pi}{\omega_0})-z(t)=a\frac{2\pi}{\omega_0}$ = the

 $\sqrt{2}$ \setminus θ , so $||\vec{v}(c)|| = a =$ linear distance "between two grooves of a screw". This corresponds in [\(5.2\)](#page-8-4) to $\vec{v}(c)$ = 0 $\overline{1}$ a A

speed (speed along the axis), so $p = 2\pi \frac{a}{\omega_0} = 2\pi \frac{||\vec{v}(c)||}{\omega_0} = 2\pi \frac{\text{linear speed}}{\text{angular speed}}.$

Exercise 5.5 [\(5.1\)](#page-8-5) gives the "equiprojectivity property": $\vec{v}(p).{\vec{p}}{\vec{q}}=\vec{v}(q).{\vec{p}}{\vec{q}}.$ Prove it starting from $||\overrightarrow{p(t)q(t)}||_e=$ constant (rigid body) for all particles P_{Obj} , $Q_{Obj} \in Obj$ where $p(t) = \tilde{\Phi}(t, P_{Obj})$ and $q(t) = \tilde{\Phi}(t, Q_{Obj})$.

Answer. Choose a $O \in \mathbb{R}^3$. let $p(t) = \widetilde{\Phi}(t, P_{Obj})$ and $q(t) = \widetilde{\Phi}(t, Q_{Obj})$. Thus $\frac{d}{dt}$ $\overrightarrow{p(t)q(t)} = \frac{d}{dt}\overrightarrow{Oq(t)} - \frac{d}{dt}\overrightarrow{Op(t)} =$ $\vec{v}(t, q(t)) - \vec{v}(t, p(t))$. And $||\vec{p}(t)q(t)||_e^2 = (\vec{p}(t)q(t), \vec{p}(t)q(t))_g = \text{constant}$, thus $\frac{d}{dt}(\vec{p}(t)q(t), \vec{p}(t)q(t))_g = 0 =$ $2(\frac{d}{dt}\overline{p(t)q(t)},\overline{p(t)q(t)})_g,$ thus $0=(\vec{v}(t,q(t))-\vec{v}(t,p(t))),\overline{p(t)q(t)})_g$ (equiprojectivity property).

5.3 Pure rotation

Definition 5.6 A pure rotation is a non constant twist \vec{v} s.t. $\exists c_0 \in \mathbb{R}^3$, $\vec{v}(c_0) = \vec{0}$.

Hence such a c_0 is \in Ax (\vec{v}) , cf prop. [4.8-](#page-7-4)3, so, for all $q \in \mathbb{R}^3$,

$$
\vec{v}(q) = \vec{\omega}_e \times_e \overline{c_0} \dot{q} \quad \text{with} \quad \vec{\omega}_e \neq \vec{0}.\tag{5.4}
$$

(So here $\vec{v}(q) \perp \vec{\omega}_e$ for all $q \in \mathbb{R}^3$ and $\text{Ax}(\vec{v}) = c_0 + \text{Vect}\{\vec{\omega}_e\}$).

Exercise 5.7 Prove: A twist \vec{v} is the sum of a pure rotation and a translation.

Answer. With $\vec{v}(p) = \vec{v}(O) + \vec{\omega}_e \times_e \overrightarrow{Op}$. Call \vec{v}_r the pure rotation defined by $\vec{v}_r(p) = \vec{\omega}_e \times_e \overrightarrow{Op}$ and call \vec{v}_t the translation defined by $\vec{v}_t(p) = \vec{v}(0)$. We have $(\vec{v}_t + \vec{v}_r)(p) = \vec{v}(p)$, for all p, hence $\vec{v} = \vec{v}_r + \vec{v}_t$. ÷

Exercise 5.8 Fix (\vec{e}_i) , write $\times_e = \times$ and $\vec{\omega}_e = \vec{\omega}$, let $\vec{v}_1(q) = \vec{\omega}_1 \times \vec{c_1q}$ and $\vec{v}_2(q) = \vec{\omega}_2 \times \vec{c_2q}$.

1- Suppose $Ax(\vec{v}_1) \parallel Ax(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 \neq \vec{0}$. Find $Ax(\vec{v}_1 + \vec{v}_2)$ and prove that $\vec{v}_1 + \vec{v}_2$ is a pure rotation.

1'- Suppose $\text{Ax}(\vec{v}_1) \parallel \text{Ax}(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 = \vec{0}$. Prove that $\vec{v}_1 + \vec{v}_2$ is a translation.

2- Suppose $\text{Ax}(\vec{v}_1) \nparallel \text{Ax}(\vec{v}_2)$ and the axes intersect at only one point O. Find $\text{Ax}(\vec{v}_1+\vec{v}_2)$, and prove that $\vec{v}_1+\vec{v}_2$ is a pure rotation.

3- Suppose $\text{Ax}(\vec{v}_1) \nparallel \text{Ax}(\vec{v}_2)$ and the axes don't intersect. Find $\text{Ax}(\vec{v}_1+\vec{v}_2)$, and prove that $\vec{v}_1+\vec{v}_2$ is not a pure rotation. Give a "simple" particular $c_0 \in Ax(\vec{v}_1+\vec{v}_2)$.

Answer. The notations tells: $c_1 \in Ax(\vec{v}_1), c_2 \in Ax(\vec{v}_2), (\vec{v}_1+\vec{v}_2)(q) = \vec{\omega}_1 \times \vec{c_1q} + \vec{\omega}_2 \times \vec{c_2q}$ for all q.

1- Here $\vec{\omega}_2 = \lambda \vec{\omega}_1$ with $\lambda \neq -1$, thus $(\vec{v}_1 + \vec{v}_2)(q) = \vec{\omega}_1 \times (\vec{c_1q} + \lambda \vec{c_2q}) = (\lambda + 1)\vec{\omega}_1 \times (\frac{1}{\lambda + 1}\vec{c_1q} + \frac{\lambda}{\lambda + 1}\vec{c_2q})$. Hence choose $c_0 \in \mathbb{R}^3$ s.t. $\frac{1}{\lambda+1} \overline{c_1 c_0} + \frac{\lambda}{\lambda+1} \overline{c_2 c_0} = \vec{0}$ (barycentric point on the straight line containing c_1 and c_2): We get $\vec{v}(c_0) = \vec{0}$ and $\text{Ax}(\vec{v}_1 + \vec{v}_2) = c_0 + \text{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}$. Remark (on barycentric points): We have $\overline{c_1c_0} = \frac{1}{\lambda+1}\overline{c_1c_2}$, thus c_0 in between c_1 and c_2 iff $0 < \frac{1}{\lambda+1} < 1$, i.e. iff $\lambda > 0$, i.e. iff $\vec{\omega}_1$ and $\vec{\omega}_2$ have the same orientation.

1'- $(\vec{v_1}+\vec{v_2})(q) = (\vec{v_1}+\vec{v_2})(p) + (\vec{\omega_1}+\vec{\omega_2}) \times \vec{pq} = (\vec{v_1}+\vec{v_2})(p) + \vec{0}$ for all p, q , so $\vec{v_1}+\vec{v_2}$ is constant; Suppose $\exists q \in \mathbb{R}^3 \text{ s.t. } (\vec{v_1} + \vec{v_2})(q) = \vec{0}$. Hence $\vec{\omega}_1 \times \vec{c_1 q} + (-\vec{\omega}_1) \times \vec{c_2 q} = \vec{0}$, thus $\vec{\omega}_1 \times \vec{c_1 c_2} = \vec{0}$, thus $\vec{\omega}_1 \parallel \vec{c_1 c_2}$, absurd because the axes are parallel and disjoint. Thus $\vec{v}_1 + \vec{v}_2 \neq \vec{0}$.

2- Take $c_1 = c_2 = 0$, thus $(\vec{v_1} + \vec{v_2})(q) = (\vec{\omega}_1 + \vec{\omega}_2) \times \vec{Oq}$, thus $(\vec{v_1} + \vec{v_2})(O) = \vec{0}$ and $Ax(\vec{v_1} + \vec{v_2}) = O + \text{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}$.

3- Here $\vec{\omega} := \vec{\omega}_1 + \vec{\omega}_2 \neq \vec{0}$ and [\(4.7\)](#page-7-3) tells that c_0 defined by $\overrightarrow{c_1c_0} = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times (\vec{v}_1 + \vec{v}_2)(c_1) = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times \vec{v}_2(c_1)$ $\frac{1}{\|\vec{\omega}\|^2} \vec{\omega} \times (\vec{\omega}_2 \times \overrightarrow{c_2c_1}),$ i.e.

$$
\overrightarrow{c_1c_0} = \frac{1}{||\vec{\omega}||^2} \left((\vec{\omega} \bullet_{ge} \overrightarrow{c_2c_1}) \vec{\omega}_2 - (\vec{\omega} \bullet_{ge} \vec{\omega}_2) \overrightarrow{c_2c_1} \right)
$$
(5.5)

is in $\text{Ax}(\vec{v}_1+\vec{v}_2)$, so $\text{Ax}(\vec{v}_1+\vec{v}_2) = c_0 + \text{Vect}\{\vec{\omega}_1+\vec{\omega}_2\}.$

In particular, choose c_1 and c_2 s.t. $\overline{c_1c_2} \perp \vec{\omega}_1$ and $\perp \vec{\omega}_2$, i.e. the segment $[c_1, c_2]$ is the shortest segment joining $\text{Ax}(\vec{v_1})$ and $\text{Ax}(\vec{v_2})$. Thus $\overrightarrow{c_1c_2} \in \text{Vect}\{\vec{\omega}_1, \vec{\omega}_2\}^{\perp}$ and $\overrightarrow{c_1c_2} \perp \vec{\omega}_1 + \vec{\omega}_2$. Thus

$$
\overline{c_1c_0} = -\frac{\vec{\omega} \cdot_{\mathscr{F}} \vec{\omega}_2}{||\vec{\omega}||^2} \overline{c_2c_1}, \quad \text{and} \quad \overline{c_2c_0} = \overline{c_2c_1} + \overline{c_1c_0} = \left(1 - \frac{\vec{\omega} \cdot_{\mathscr{F}} \vec{\omega}_2}{||\vec{\omega}||^2}\right) \overline{c_2c_1}.
$$
\n
$$
(5.6)
$$

In particular c_0 is in the straight line containing c_1, c_2 . Thus $\vec{v}_1(c_0) = \vec{\omega}_1 \times \vec{c_1c_0} = -\frac{\vec{\omega} \cdot \vec{\omega} \cdot \vec{\omega}}{||\vec{\omega}||^2} \vec{\omega}_1 \times \vec{c_2c_1}$, and $\vec{v}_2(c_0) = \vec{\omega}_2 \times \vec{c_2 c_0} = (1 - \frac{\vec{\omega} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \vec{\omega}_2 \times \vec{c_2 c_1}.$ Thus $(\vec{v}_1 + \vec{v}_2)(c_0) = (-\frac{\vec{\omega} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_2) \times \vec{c_2 c_1}.$ And $\vec{\omega}_1$ $\text{and } \vec{\omega}_2 \text{ are independent, thus } \vec{\omega} \text{ and } \vec{\omega}_2 \text{ are independent, thus } \vec{\omega} \bullet_{ge} \vec{\omega}_2 \neq 0 \text{ and } (-\frac{\vec{\omega} \bullet_{ge} \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1-\frac{\vec{\omega} \bullet_{ge} \vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2) \neq \vec{0},$ $\text{together with }(-\frac{\vec{\omega}\bullet_{\mathscr{G}^c}\vec{\omega}_2}{||\vec{\omega}||^2}\vec{\omega}_1+(1-\frac{\vec{\omega}\bullet_{\mathscr{G}^c}\vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2)\perp \vec{c_2c_1}\neq\vec{0};\text{ Thus }(\vec{v}_1+\vec{v}_2)(c_0)\neq\vec{0}, \text{ thus }\vec{v}_1+\vec{v}_2\text{ isn't a pure rotation.}$

 6 Wrench $=$ static torsor

6.1 Definition

Let (\vec{e}_i) be a Euclidean basis and \times_e =noted \times .

Definition 6.1 Let $P_0 \in \mathbb{R}^3$ (e.g. the position of a bolt). Let $P_f \in \mathbb{R}^3$ and let $\vec{f}(P_f)$ be a vector at P_f interpreted as a force at $P_{\vec{f}}$. The moment $\vec{M}_{\vec{f}}(P_0)$ called the torque at P_0 applied by the force $\vec{f}(P_{\vec{f}})$ is

$$
\vec{M}_{\vec{f}}(P_0) := \vec{f}(P_{\vec{f}}) \times \overrightarrow{P_{\vec{f}}P_0} \quad (\in \text{Vect}\{\vec{f}(P_{\vec{f}}), \overrightarrow{P_{\vec{f}}P_0}\}^{\perp}). \tag{6.1}
$$

The "moment arm" at P_0 is the distance between the straight line $P_{\vec{f}} + \text{Vect}\{\vec{f}(P_{\vec{f}})\}\$ and P_0 , i.e. the distance between P_0 and its orthogonal projection on $P_{\vec{f}}$ + Vect $\{\vec{f}(P_{\vec{f}})\}$.

Definition 6.2 If Ω is a set in \mathbb{R}^3 then the wrench due to $\vec{f}(P_{\vec{f}})$ is the screw $\vec{M}_{\vec{f}}:\Omega\to\overline{\mathbb{R}^3}$ defined by: For all $P \in \Omega$,

$$
\vec{M}_{\vec{f}}(P) = \vec{f}(P_{\vec{f}}) \times \overrightarrow{P_{\vec{f}}P} \quad (= \overrightarrow{PP_{\vec{f}}} \times \vec{f}(P_{\vec{f}})). \tag{6.2}
$$

 $\vec{f}(P_{\vec{f}})$ is the resultant vector of the wrench, and $\vec{M}_{\vec{f}}(P)$ is the moment at P. (So $\vec{M}_{\vec{f}}(P_{\vec{f}}) = \vec{0}$ and $\text{Ax}(\vec{M}_{\vec{f}}) = P_{\vec{f}} + \text{Vect}\{\vec{f}(P_{\vec{f}})\}\).$

Remark 6.3 So: A torque $\vec{M}_{\vec{f}}(P_0)$ is used to screw a nut which is at P_0 . A wrench $\vec{M}_{\vec{f}}$ gives the torque $\vec{M}_{\vec{f}}(P)$ on any point P in \mathbb{R}^3 due to $\vec{f}(P_{\vec{f}})$ at $P_{\vec{f}}$. å.

6.2 Couple of forces and resulting wrench

Consider two vectors (forces) $\vec{f}_1(P_{f_1})$ and $\vec{f}_2(P_{f_2})$ at two distinct points P_{f_1} and P_{f_2} .

Let $P_0 = P_{f_1} + \frac{1}{2} \overline{P_{f_1} P_{f_2}}$ (the midpoint, e.g. P_0 is the position of a nut holding a car wheel and P_{f_1} and P_{f_2} are the ends of a lug wrench used to unscrew the nut, drawing)). So $\overrightarrow{P_{f_2}P_0} = -\overrightarrow{P_{f_1}P_0}$. And suppose that $\vec{f}_2(P_{f_2}) = -\vec{f}_1(P_{f_1})$ and $\vec{f}_1(P_{f_1}) \perp \overline{P_{f_1}P_0}$ (drawing). We get: The sum of the torques at P_0 is

$$
\vec{M}(P_0) := \vec{M}_{\vec{f}_1}(P_0) + \vec{M}_{\vec{f}_2}(P_0) = \vec{f}_1(P_{f_1}) \times \overrightarrow{P_{f_1}P_0} + \vec{f}_2(P_{f_2}) \times \overrightarrow{P_0P_{f_2}} = 2\,\vec{f}_1(P_{f_1}) \times \overrightarrow{P_{f_1}P_0}
$$
\n
$$
(6.3)
$$

(expected result).

More generally, let Ω be the segment $[P_{f_1}, P_{f_2}]$ and $P \in [P_{f_1}, P_{f_2}]$ (so $P = P_{f_1} + \lambda \overrightarrow{P_{f_1} P_{f_2}}$). We get the wrenches $\vec{M}_{\vec{f}_1}$ and $\vec{M}_{\vec{f}_2}$ defined in $[P_{f_1}, P_{f_2}]$ and their sum:

$$
\vec{M}(P) := (\vec{M}_{\vec{f}_1} + \vec{M}_{\vec{f}_2})(P) = \vec{f}_1(P_{f_1}) \times \overrightarrow{P_{f_1}P} + \vec{f}_2(P_{f_2}) \times \overrightarrow{PP_{f_2}} = \vec{f}_1(P_{f_1}) \times \overrightarrow{P_{f_1}P_{f_2}} = \text{constant} \tag{6.4}
$$

(independent of P); In fact, the "moment arms" $d(P, P_{f_1})$ and $d(P, P_{f_2})$ ("one short and one long") give [\(6.4\)](#page-10-3). This wrench \vec{M} is a constant screw along $[P_{f_1}, P_{f_2}]$.

More generally Ω is extended to \mathbb{R}^3 : we also get [\(6.4\)](#page-10-3): The wrench \vec{M} is a constant screw in \mathbb{R}^3 .

References

- [1] Ball, R. S.: The Theory of Screws: A study in the dynamics of a rigid body. Dublin: Hodges, Foster & Co. (1876)
- [2] Carricato M. : [https://parrigidwrkshp.sciencesconf.org/data/pages/IFAC2017_parrigid_0](https://parrigidwrkshp.sciencesconf.org/data/pages/IFAC2017_parrigid_05_Carricato.pdf) [5_Carricato.pdf](https://parrigidwrkshp.sciencesconf.org/data/pages/IFAC2017_parrigid_05_Carricato.pdf)
- [3] Minguzzi M.: A geometrical introduction to screw theory. <https://arxiv.org/abs/1201.4497v2>