Notes de cours de l'ISIMA, deuxième année, http://www.isima.fr/~leborgne

Screw theory (torsor theory) Vector and pseudo-vector representations, twist, wrench

Gilles Leborgne

April 12, 2024

A screw (also called a torsor) is an affine antisymmetric vector field in a Euclidean setting. It is called a twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and called a wrench when it is the moment of a force field.

To avoid confusions and misunderstandings, the first three paragraphs are devoted to the definitions of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and their representations. The fourth fifth and sixth paragraphs define a screw, a twist and a wrench.

Contents

1

1	\mathbf{Din}	nension 3 vector spaces	2
	1.1	The different $\overline{\mathbb{R}^3}$ in mechanics	2
		1.1.1 Cartesian \mathbb{R}^3	2
		1.1.2 \mathcal{M}_{31} the space of real $3 * 1$ column matrices $\ldots \ldots \ldots$	2
		1.1.3 The many $V = \overline{\mathbb{R}^3}$ in mechanics	2
		1.1.4 Quantification in V	2
		1.1.5 Our usual affine space \mathbb{R}^3 and associated $\overline{\mathbb{R}^3}$	3
		1.1.6 Euclidean framework	3
	1.2	The vector product associated with a basis	3
2	Ant	tisymmetric endomorphism and its representation vectors	4
	2.1	Transpose of an endomorphism	4
	2.2	$\operatorname{Symmetric}$ and antisymmetric endomorphisms $\ldots \ldots \ldots$	5
	2.3	Antisymmetric endomorphism and its representation vectors	5
	2.4	Interpretation $(\pi/2 \text{ rotation and dilation})$	6
3	Antisymmetric matrix and its pseudo-vector representation		
	3.1	The pseudo-vector product	6
	3.2	Antisymmetric matrix and its pseudo-vector representation	6
	3.3	Pseudo-vectors representation of an antisymmetric endomorphism	6
4	\mathbf{Scr}	ew (torsor)	7
	4.0	Reminder	7
	4.1	Definition (Euclidean framework)	7
	4.2	Central axis	8
5	\mathbf{Twi}	${ m ist}={ m kinematic}\;{ m torsor}={ m distributor}$	9
	5.1	Definition	9
	5.2	Pitch	9
	5.3	Pure rotation	.0
6	Wr	ench = static torsor 1	1
	6.1	Definition	.1
	6.2	Couple of forces and resulting wrench 1	.1
	T 1		

The notation g := f means: f being given, g is defined by g = f. V is a dimension 3 vector space.

1 Dimension 3 vector spaces

1.1 The different $\overrightarrow{\mathbb{R}^3}$ in mechanics

1.1.1 Cartesian $\overrightarrow{\mathbb{R}^3}$

 $\mathbb{R} := (\mathbb{R}, +, \times)$ is the usual field, with 0 the + identity element and 1 the \times identity element; This 1 is theoretical: It is not linked to any "unit of measurement".

Then consider the Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = {}^{\text{noted}} \quad \overline{\mathbb{R}^3}$, and the usual operations $\vec{u} + \vec{v} = (u_1+v_1, u_2+v_2, u_3+v_3)$ and $\lambda.\vec{u} = (\lambda u_1, \lambda u_2, \lambda u_3) = {}^{\text{noted}} \lambda \vec{u}$ when $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ and $\lambda \in \mathbb{R}$. It is a real vector space, and $(\vec{E_1}:=(1,0,0), \vec{E_2}:=(0,1,0), \vec{E_3}:=(0,0,1))$ is a basis called "the canonical basis".

1.1.2 M_{31} the space of real 3 * 1 column matrices

 $\mathcal{M}_{31} = \{ [\vec{v}] = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} : v_1, v_2, v_3 \in \mathbb{R} \} \text{ is the usual set of real } 3 * 1 \text{ column matrices. It is a real vector}$

space with its usual rules, $(\vec{C}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{C}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{C}_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}) =^{\text{noted}} (\vec{C}_i)$ being its canonical basis

(the identity element 1 is theoretical: It is not linked to any "unit of measurement"). So $[\vec{v}] = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

means $\vec{v} = \sum_i v_i \vec{C_i}$. And \mathcal{M}_{31} is isomorphic to $\mathbb{R}^{\vec{s}}$ Cartesian. Similarly with transposed matrices and $\mathcal{M}_{13} = \{[\vec{v}]^T : [\vec{v}] \in \mathcal{M}_{31}\}$ the set of row matrices.

Definition 1.1 A column matrix $[\vec{v}] \in \mathcal{M}_{31}$ is also called a pseudo-vector.

1.1.3 The many $V = \overline{\mathbb{R}^3}$ in mechanics

For a sum to be defined, we need "compatible dimensions" : You don't add bi-point vectors velocities with accelerations or forces or moments... Thus we define distinct real vector spaces corresponding to different dimensions: V_{bpv} for bi-point vectors, V_{vel} for the velocities, V_{acc} for accelerations, ... However, to simplify the notations, all these spaces are noted $\overrightarrow{\mathbb{R}^3}$. So pay attention to the context.

And, e.g. in $V_{bpv} = {}^{\text{noted}} \overline{\mathbb{R}^3}$, there is no canonical basis: a basis $(\vec{a}_1, \vec{a}_2, \vec{a}_3) = (\vec{a}_i)_{i=1,2,3} = {}^{\text{noted}} (\vec{a}_i)$ is chosen by some observer, e.g. with \vec{a}_3 giving the direction of the vertical at some point on Earth and with its length being 1 is some unit of measurement (e.g. 1 foot in aviation).

1.1.4 Quantification in V

V being a dimension 3 real vector space, let $\vec{v} \in V$.

Quantification. An observer chooses a basis (\vec{a}_i) in V. Hence $\exists v_1, v_2, v_3 \in \mathbb{R}$ s.t. $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$, and

the column matrix
$$[\vec{v}]_{|\vec{a}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathcal{M}_{31}$$
 is the usual matrix representation of \vec{v} which quantifies \vec{v} in the basis (\vec{a}_i) . (And, $[\vec{v}]_{|\vec{a}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ means $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$.)

Let \mathcal{M}_{33} will be the space of 3 * 3 real matrices.

Let $z(\cdot, \cdot) : V \times V \to \mathbb{R}$ be a bilinear form (e.g. a scalar dot product). Quantification: Let $[z]_{\vec{a}} := [z(\vec{a}_i, \vec{a}_j)]_{\substack{i=1,2,3\\j=1,2,3}} =^{\text{noted}} [z(\vec{a}_i, \vec{a}_j)] \in \mathcal{M}_{33}$; This 3*3 matrix $[z]_{\vec{a}}$ is the usual matrix representation (quantification) of $z(\cdot, \cdot)$ relative to (\vec{a}_i) . So, for all $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$ and $\vec{w} = \sum_{i=1}^3 w_i \vec{a}_i$ in V, the bilinearity of $z(\cdot, \cdot)$ gives $z(\vec{v}, \vec{w}) = \sum_{i,j=1}^3 v_i w_j z(\vec{a}_i, \vec{a}_j) = [\vec{v}]_{\vec{a}}^T . [z]_{\vec{a}} . [\vec{w}]_{\vec{a}}$ where $[\vec{v}]_{\vec{a}}^T := ([\vec{v}]_{|\vec{a}})^T$ (transposed matrix).

Let $L: V \to V$ be an endomorphism (linear map from a vector space to itself). Quantification: Let L_{ij} be the components of $L.\vec{a}_j$, i.e. $L.\vec{a}_j = \sum_{i=1}^3 L_{ij}\vec{a}_i$, for all j; The 3 * 3 matrix $[L]_{\vec{a}} := [L_{ij}] \in \mathcal{M}_{33}$ is the usual representation of L relative to (\vec{a}_i) . So, with $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$, the linearity of L gives $L.\vec{v} = \sum_{i,j=1}^3 L_{ij}v_j\vec{a}_i$, i.e. $[L.\vec{v}]_{|\vec{a}} = [L]_{|\vec{a}}.[\vec{v}]_{|\vec{a}}$.

1.1.5 Our usual affine space \mathbb{R}^3 and associated $\overline{\mathbb{R}^3}$

Affine setting: \mathbb{R}^3 is the usual affine space of points representing positions of particles in our classical 3-D world.

Associated setting vector space: $\overrightarrow{\mathbb{R}^3}$ is its associated vector space made of the bi-point vectors $\overrightarrow{AB} = \operatorname{noted} B - A$ for all $A, B \in \mathbb{R}^3$, and we write $B = A + \overrightarrow{AB}$.

1.1.6 Euclidean framework

Choose a unit of measure of length u in our affine space \mathbb{R}^3 (foot, metre...), then make a Euclidean associated basis $(\vec{e}_i)_{i=1,2,3} = {}^{\text{noted}} (\vec{e}_i)$ in $\overline{\mathbb{R}^3}$: The length of each \vec{e}_i is 1 in the unit u, and the length of $3\vec{e}_i + 4\vec{e}_{i+1}$ is 5 (Pythagoras orthogonality) in the unit u, for all i = 1, 2, 3, where $\vec{e}_4 := \vec{e}_1$ and $\vec{e}_5 := \vec{e}_2$. The associated Euclidean dot product $g_e(\cdot, \cdot) = (\cdot, \cdot)_{ge} = {}^{\text{noted}} \cdot \cdot_{ge} \cdot : \overline{\mathbb{R}^3} \times \overline{\mathbb{R}^3} \to \mathbb{R}$ (symmetric definite positive bilinear form) is defined by $(\vec{e}_i, \vec{e}_j)_{ge} = \delta_{ij}$ for all i, j, i.e. $[g_e]_{|\vec{e}} = I$, so, for all $\vec{v} = \sum_{i=1}^3 v_i \vec{e}_i$ and

 $\vec{w} = \sum_{i=1}^{3} w_i \vec{e}_i,$

$$\vec{v} \bullet_{ge} \vec{w} := [\vec{v}]_{|\vec{e}|}^T . [\vec{w}]_{|\vec{e}|} = \sum_{i,j=1}^3 v_i w_i$$
 (Euclidean case). (1.1)

The associated Euclidean norm $||.||_{\mathscr{Q}} : \mathbb{R}^3 \to \mathbb{R}_+$ is given by $||\vec{v}||_{\mathscr{Q}} := \sqrt{\vec{v} \cdot_{\mathscr{Q}} \vec{v}} (= \sum_{i=1}^3 v_i^2).$

Two vectors $\vec{v}, \vec{w} \in \overline{\mathbb{R}^3}$ are $(\cdot, \cdot)_{g\!e}$ -orthogonal iff $\vec{v} \bullet_{g\!e} \vec{w} = 0$.

The algebraic (signed) volume of the parallelepiped limited by three vectors $\vec{u}, \vec{v}, \vec{w}$ is $\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w})$ (and the volume is the absolute value $|\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{w})|$) where $\det_{\vec{e}} : (\vec{\mathbb{R}^3})^3 \to \mathbb{R}$ is the tri-linear alternated form defined by $\det_{\vec{e}}(\vec{e}_1, \vec{e}_2, \vec{e}_3) = 1$. That is, for all $\vec{u} = \sum_{i=1}^3 u_i \vec{e}_i$, $\vec{v} = \sum_{i=1}^3 v_i \vec{e}_i$, $\vec{w} = \sum_{i=1}^3 w_i \vec{e}_i$ in V,

$$\det_{\vec{e}}(\vec{u},\vec{v},\vec{w}) = u_1(v_2w_3 - v_3w_2) + u_2(v_3w_1 - v_1w_3) + u_3(v_1w_2 - v_2w_1),$$
(1.2)

i.e. $\det_{\vec{e}}(\vec{u},\vec{v},\vec{w}) = \det\left(\begin{bmatrix}\vec{u}\end{bmatrix}_{\mid \vec{e}} \quad \begin{bmatrix}\vec{w}\end{bmatrix}_{\mid \vec{e}} \right) = \text{the determinant of a } 3*3 \text{ matrix } \mathcal{M} = \left(\begin{bmatrix}\vec{u}\end{bmatrix}_{\mid \vec{e}} \quad \begin{bmatrix}\vec{v}\end{bmatrix}_{\mid \vec{e}} \quad \begin{bmatrix}\vec{w}\end{bmatrix}_{\mid \vec{e}} \right).$ A $(\cdot,\cdot)_{ge}$ -orthonormal basis is a basis (\vec{b}_i) s.t. $(\vec{b}_i,\vec{b}_j)_{ge} = \delta_{ij}$, i.e. $\vec{b}_i \cdot \mathbf{g}_{\vec{e}} \cdot \vec{b}_j = \delta_{ij}$ for all i, j, i.e. $[g_e]_{\mid \vec{b}} = I$.

A basis (\vec{b}_i) as the same orientation as (\vec{e}_i) iff $\det_{\vec{e}}(\vec{b}_1, \vec{b}_2, \vec{b}_3) > 0$. Otherwise it as the opposite orientation.

1.2The vector product associated with a basis

Framework: $\overrightarrow{\mathbb{R}^3}$ Euclidean with $(\vec{e_i})$ a chosen Euclidean basis, $(\cdot, \cdot)_{ge}$ the associated Euclidean dot product and $\det_{\vec{e}}$ the associated algebraic volume.

Definition 1.2 The vector product $\times_e(\cdot, \cdot) : \begin{cases} V \times V \to V \\ (\vec{u}, \vec{v}) \to \times_e(\vec{u}, \vec{v}) \stackrel{\text{noted}}{=} \vec{u} \times_e \vec{v} \end{cases}$ is the bilinear antisymmetric map defined by

 $(\vec{u} \times_e \vec{v}) \bullet_e \vec{w} = \det_{\vec{e}} (\vec{u}, \vec{v}, \vec{w}), \quad \forall \vec{w} \in \overline{\mathbb{R}^3}.$ (1.3)

So the components of $\vec{u} \times_e \vec{v}$ in the basis (\vec{e}_i) are the reals $(\vec{u} \times_e \vec{v}) \cdot_g \vec{e}_i = \det_{\vec{e}}(\vec{u}, \vec{v}, \vec{e}_i)$ for i = 1, 2, 3:

$$\begin{bmatrix} \vec{u} \times_e \vec{v} \end{bmatrix}_{|\vec{e}} := \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}, \quad \text{i.e.}$$

$$\vec{u} \times_e \vec{v} := (u_2 v_3 - u_3 v_2) \vec{e}_1 + (u_3 v_1 - u_1 v_3) \vec{e}_2 + (u_1 v_2 - u_2 v_1) \vec{e}_3 \stackrel{\text{noted}}{=} \det\begin{pmatrix} \vec{e}_1 & u_1 & v_1 \\ \vec{e}_2 & u_2 & v_2 \\ \vec{e}_3 & u_3 & v_3 \end{pmatrix}),$$

$$(1.4)$$

the formal determinant being expanded along the first column. So \times_e is indeed bilinear, easy check, and antisymmetric, i.e. $\vec{u} \times_e \vec{v} = -\vec{v} \times_e \vec{u}$, easy check.

In other words, \times_e is the bilinear antisymmetric map defined by

$$\forall i = 1, 2, 3, \quad \vec{e}_i \times_e \vec{e}_{i+1} = \vec{e}_{i+2}, \tag{1.5}$$

where $\vec{e}_4 := \vec{e}_1$ and $\vec{e}_5 := \vec{e}_2$.

Proposition 1.3 For all $\vec{u}, \vec{v} \in V$.

- 1- If $\vec{u} \times_e \vec{z} = \vec{v} \times_e \vec{z}$ for all \vec{z} , then $\vec{u} = \vec{v}$.
- 2- $\vec{u} \times_e \vec{v}$ is $(\cdot, \cdot)_{qe}$ -orthogonal to \vec{u} and to \vec{v} .
- 3- If \vec{u} is parallel to \vec{v} then $\vec{u} \times_e \vec{v} = 0$. 3'- If $\vec{u} \times_e \vec{v} \neq 0$ then \vec{u} is not parallel to \vec{v} .
- 4- If \vec{u} is not parallel to \vec{v} then $\vec{u} \times_e \vec{v} \neq 0$. 4'- If $\vec{u} \times_e \vec{v} = 0$ then \vec{u} is parallel to \vec{v} .
- 5- If \vec{u} is not parallel to \vec{v} then the basis $(\vec{u}, \vec{v}, \vec{u} \times_e \vec{v})$ has the same orientation than $(\vec{e_i})$.
- 6- $||\vec{u} \times_e \vec{v}||_{e}$ is the area or the parallelogram (\vec{u}, \vec{v}) (in the unit chosen for (\vec{e}_i)).

Proof. 1- (1.4) give
$$[\vec{u} \times_e \vec{e}_1]_{|\vec{e}|} = \begin{pmatrix} 0 \\ u_3 \\ -u_2 \end{pmatrix}$$
, similarly $[\vec{v} \times_e \vec{e}_1]_{|\vec{e}|} = \begin{pmatrix} 0 \\ v_3 \\ -v_2 \end{pmatrix}$, thus $u_3 = w_3$ and $u_2 = v_2$.
Similarly with \vec{e}_2 wich gives $u_4 = v_4$.

Similarly with \vec{e}_2 wich gives $u_1 = v_1$.

2- $(\vec{u} \times_e \vec{v}) \bullet_{ee} \vec{u} = \det_{\vec{e}}(\vec{u}, \vec{v}, \vec{u}) = 0$ since $\det_{\vec{e}}$ is alternated, similarly $(\vec{u} \times_e \vec{v}) \bullet_{ee} \vec{v} = 0$.

3- Trivial with (1.4). 3'- Contraposition.

4- If \vec{u} is not parallel to \vec{v} then let $\vec{z} \in V$ s.t. $(\vec{u}, \vec{v}, \vec{z})$ is a basis; Hence, $\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{z}) \neq 0$, thus $(\vec{u} \times_e \vec{v}) \bullet_{qe} \vec{z} \neq 0$, thus $\vec{u} \times_e \vec{v} \neq \vec{0}$. 4'- Contraposition.

5- $\det_{\vec{e}}(\vec{u}, \vec{v}, \vec{u} \times_e \vec{v}) = (\vec{u} \times_e \vec{v}) \bullet_{ge} (\vec{u} \times_e \vec{v}) = ||\vec{u} \times_e \vec{v}||^2 > 0$ since $\vec{u} \not\parallel \vec{v}$.

6- If \vec{u} is parallel to \vec{v} then it is trivial (zero area). Otherwise $\vec{u} \times_e \vec{v} \neq \vec{0}$ thus $0 \neq \det_{\vec{e}}(\vec{u}, \vec{v}, \frac{\vec{u} \times_e \vec{v}}{||\vec{u} \times_e \vec{v}||_e}) =$ $(\vec{u} \times_e \vec{v}) \bullet_{\mathscr{G}} \frac{\vec{u} \times_e \vec{v}}{||\vec{u} \times_e \vec{v}||_{\mathscr{G}}} = ||\vec{u} \times_e \vec{v}||_{\mathscr{G}} = \text{volume of the parallelepiped } (\vec{u}, \vec{v}, \frac{\vec{u} \times_e \vec{v}}{||\vec{u} \times_e \vec{v}||_{\mathscr{G}}}) \text{ (height 1).}$

Exercise 1.4 (\vec{a}_i) being a $(\cdot, \cdot)_{ae}$ -orthonormal basis, define the basis (\vec{b}_i) by $\vec{b}_1 = -\vec{a}_1, \vec{b}_2 = \vec{a}_2, \vec{b}_3 = \vec{a}_3$ (change of orientation). Prove:

$$\mathbf{x}_b = -\mathbf{x}_a \tag{1.6}$$

(the definition of a vector product is basis dependent), i.e. $\vec{v} \times_b \vec{w} = -\vec{v} \times_a \vec{w}$, for all $\vec{v}, \vec{w} \in V$.

Answer. $\vec{b}_2 \times_b \vec{b}_3 = \vec{b}_1 = -\vec{a}_1 = -\vec{a}_2 \times_a \vec{a}_3 = -\vec{b}_2 \times_a \vec{b}_3$, and $\vec{b}_3 \times_b \vec{b}_1 = \vec{b}_2 = \vec{a}_2 = \vec{a}_3 \times_a \vec{a}_1 = -\vec{b}_3 \times_a \vec{b}_1$, and $\vec{b}_1 \times_b \vec{b}_2 = \vec{b}_3 = \vec{a}_1 = \vec{a}_1 \times_a \vec{a}_2 = -\vec{b}_1 \times_a \vec{b}_2$; And \times_a and \times_b are bilinear antisymmetric, hence (1.6).

Exercise 1.5 Check:

$$\vec{u} \times_e (\vec{v} \times_e \vec{w}) = (\vec{u} \bullet_{ge} \vec{w})\vec{v} - (\vec{u} \bullet_{ge} \vec{v})\vec{w}.$$
(1.7)

$$\mathbf{Answer.} \ [\vec{u} \times_e (\vec{v} \times_e \vec{w})]_{|\vec{e}|} = \begin{pmatrix} u_2(v_1w_2 - v_2w_1) - u_3(v_3w_1 - v_1w_3) \\ u_3(v_2w_3 - v_3w_2) - u_1(v_1w_2 - v_2w_1) \\ u_1(v_3w_1 - v_1w_3) - u_2(v_2w_3 - v_3w_2) \end{pmatrix} = \begin{pmatrix} (\sum_{i=1}^3 u_iw_i)v_1 - (\sum_{i=1}^3 u_iv_i)w_1 \\ (\sum_{i=1}^3 u_iw_i)v_2 - (\sum_{i=1}^3 u_iv_i)w_2 \\ (\sum_{i=1}^3 u_iw_i)v_3 - (\sum_{i=1}^3 u_iv_i)w_3 \end{pmatrix}.$$

Exercise 1.6 Let $\vec{v}, \vec{w} \in V$. Prove: $\vec{z} := \vec{v} \times_e \vec{w}$ is a "contravariant vector", i.e. satisfies the change of basis formula $[\vec{z}]_{|\vec{b}} = P^{-1}.[\vec{z}]_{|\vec{a}}$ where P is the transition matrix from a basis (\vec{a}_i) to a basis (\vec{b}_i) .

Answer. $g(\vec{u}, \vec{v} \times_e \vec{w})_{ge} = [\vec{u}]_{\vec{u}}^T \cdot [g]_{\vec{u}} \cdot [\vec{v} \times_e \vec{w}]_{\vec{u}}$ and $g(\vec{u}, \vec{v} \times_e \vec{w})_{ge} = [\vec{u}]_{\vec{b}}^T \cdot [g]_{\vec{b}} \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}}$ with (change of basis formulas) $[\vec{v}]_{\vec{b}} = P^{-1}.[\vec{v}]_{\vec{a}}$ and $[g]_{\vec{b}} = P^T.[g]_{\vec{a}}.P.$ So

$$g(\vec{u}, \vec{v} \times_e \vec{w})_{ge} = [\vec{u}]_{\vec{b}}^T \cdot [g]_{\vec{b}} \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}} = ([\vec{u}]_{\vec{a}}^T \cdot P^{-T}) \cdot (P^T \cdot [g]_{\vec{a}} \cdot P) \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}} = [\vec{u}]_{\vec{a}}^T \cdot [g]_{\vec{a}} \cdot P \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}},$$

for all $\vec{u}, \vec{v}, \vec{w}$, hence $[\vec{v} \times_e \vec{w}]_{\vec{a}} = P \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}}$, i.e. $[\vec{v} \times_e \vec{w}]_{\vec{b}} = P^{-1} \cdot [\vec{v} \times_e \vec{w}]_{\vec{a}}$.

Antisymmetric endomorphism and its representation vectors 2

2.1Transpose of an endomorphism

V is a dimension n real vector space and $\mathcal{L}(V; V)$ is the set of endomorphisms $V \to V$.

Usual notation for a linear map: $L(\vec{v}) = noted L.\vec{v}$, hence $L.(\vec{v} + \lambda \vec{w}) = L.\vec{v} + \lambda L.\vec{w}$ (distributivity notation = linearity notation).

Let $(\cdot, \cdot)_q : V \times V \to \mathbb{R}$ be a scalar dot product (required to define the transposed). (No basis required.)

Definition 2.1 The transposed of an endomorphism $L \in \mathcal{L}(V; V)$ relative to $(\cdot, \cdot)_g$ is the endomorphism $L_q^T \in \mathcal{L}(V; V)$ defined by, for all $\vec{v}, \vec{w} \in V$,

$$(L_q^T . \vec{w}, \vec{v})_g = (\vec{w}, L . \vec{v})_g.$$
(2.1)

Quantification. Choose a basis (\vec{e}_i) in V: (2.1) gives $[\vec{v}]_{|\vec{e}}^T \cdot [g]_{|\vec{e}} \cdot [L_g^T \cdot \vec{w}]_{|\vec{e}} = [L \cdot \vec{v}]_{|\vec{e}}^T \cdot [g]_{|\vec{e}} |\vec{w}|_{|\vec{e}}$, thus $[\vec{v}]_{|\vec{e}}^{T} \cdot [g]_{|\vec{e}} \cdot [L_{g}^{T}]_{|\vec{e}} \cdot [\vec{w}]_{|\vec{e}} = [\vec{v}]_{|\vec{e}}^{T} \cdot [L]_{|\vec{e}}^{T} \cdot [g]_{|\vec{e}}, \text{ for all } \vec{v}, \vec{w} \in \overline{\mathbb{R}^{3}}, \text{ thus } [L_{g}^{T}]_{|\vec{e}} = [g]_{|\vec{e}}^{-1} \cdot [L]_{|\vec{e}}^{T} \cdot [g]_{|\vec{e}}.$

-

Proposition 2.2 If $(\cdot, \cdot)_a$ and $(\cdot, \cdot)_b$ are two Euclidean dot products (e.g. $(\cdot, \cdot)_a$ built with a foot and $(\cdot, \cdot)_b$ with a metre) then

$$L_a^T = L_b^T \stackrel{noted}{=} L^T \quad (Euclidean \ setting):$$
(2.2)

The transposed of an endomorphism in $\overline{\mathbb{R}^3}$ Euclidean does not depend on the unit of measurement (foot, metre, ...) used to build Euclidean dot products.

Proof. $(\cdot, \cdot)_a$ and $(\cdot, \cdot)_b$ are both Euclidean thus $\exists \lambda > 0$ s.t. $(\cdot, \cdot)_a = \lambda^2(\cdot, \cdot)_b$, thus $(L_a^T \cdot \vec{w}, \vec{v})_a = (\vec{w}, L \cdot \vec{v})_a = \lambda^2(\vec{w}, L \cdot \vec{v})_b = \lambda^2(L_b^T \cdot \vec{w}, \vec{v})_b = (L_b^T \cdot \vec{w}, \vec{v})_a$ for all $\vec{v}, \vec{w} \in \mathbb{R}^3$, thus $L_a^T \cdot \vec{w} = L_b^T \cdot \vec{w}$ for all \vec{w} .

Quantification, Euclidean setting. $(\cdot, \cdot)_{ge}$ -Euclidean basis (\vec{e}_i) , thus $[g_e]_{|\vec{e}} = I$, thus with (2.2),

$$L_g^T \stackrel{\text{noted}}{=} L^T, \quad [L^T]_{|\vec{e}} = [L]_{|\vec{e}}^T, \quad \text{i.e.} \quad (L^T)_{ij} = L_{ji} \quad \forall i, j \quad (\text{Euclidean setting}).$$
(2.3)

2.2 Symmetric and antisymmetric endomorphisms

Let $L \in \mathcal{L}(V; V)$ and let $(\cdot, \cdot)_g$ be a scalar dot product in V.

Definition 2.3

- L is $(\cdot, \cdot)_g$ -symmetric iff $L_g^T = L$, i.e. $(L.\vec{w}, \vec{v})_g = (\vec{w}, L.\vec{v})_g, \forall \vec{v}, \vec{w},$ (2.4)
- L is $(\cdot, \cdot)_g$ -antisymmetric iff $L_q^T = -L$, i.e. $(L.\vec{w}, \vec{v})_g = -(\vec{w}, L.\vec{v})_g, \forall \vec{v}, \vec{w}$.

Proposition 2.4 The space of $(\cdot, \cdot)_{ge}$ -symmetric endomorphisms is a vector space. The space of $(\cdot, \cdot)_{ge}$ -antisymmetric endomorphisms is a vector space.

Proof. $(L+\lambda M)_g^T = L_g^T + \lambda M_g^T = (\pm L) + \lambda(\pm M) = \pm (L+\lambda M)$ with + iff L and M are $(\cdot, \cdot)_g$ -symmetric and - iff L and M are antisymmetric. Thus, vector sub-spaces of $\mathcal{L}(V; V)$.

Euclidean setting: Euclidean basis (\vec{e}_i) , associated Euclidean dot product $(\cdot, \cdot)_{ge}$. With (2.2):

- L is Euclidean-symmetric iff $[L^T]_{|\vec{e}} = [L]_{|\vec{e}},$ (2.5)
- L is Euclidean-antisymmetric iff $[L^T]_{|\vec{e}} = -[L]_{|\vec{e}}.$ (2.6)

2.3 Antisymmetric endomorphism and its representation vectors

Euclidean framework: (\vec{e}_i) is a Euclidean basis and $(\cdot, \cdot)_{ge}$ is the associated Euclidean dot product.

Let $L \in \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ be $(\cdot, \cdot)_{ge}$ -antisymmetric: (2.6) gives $L_{ii} = 0$ and $L_{ji} = -L_{ji}$ for all i, j, thus $\exists a, b, c \in \mathbb{R}$ s.t. $L.\vec{e_1} = c\vec{e_2} - b\vec{e_3}, L.\vec{e_2} = -c\vec{e_1} + a\vec{e_3}$ and $L.\vec{e_3} = b\vec{e_1} - a\vec{e_2}$. Then define the vector $\vec{\omega_e} \in \overline{\mathbb{R}^3}$ by $\vec{\omega_e} := a\vec{e_1} + b\vec{e_2} + c\vec{e_3}$: We immediately have, for all $\vec{v} \in V$,

$$L.\vec{v} = \vec{\omega}_e \times_e \vec{v}. \tag{2.7}$$

In other words,

$$[L]_{|\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \quad \text{and} \quad [\vec{\omega}_e]_{|\vec{e}} := \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad \text{give} \quad L.\vec{v} = \vec{\omega}_e \times_e \vec{v}, \quad \forall \vec{v} \in \overline{\mathbb{R}^3}.$$
(2.8)

Definition 2.5 The vector $\vec{\omega}_e$ is the \times_e -representation vector of the antisymmetric endomorphism L relative to the Euclidean basis (\vec{e}_i) .

Proposition 2.6 The representation vector $\vec{\omega}_e$ (of *L*) is **not** intrinsic to *L*. In particular if (\vec{b}_i) is another $(\cdot, \cdot)_{ge}$ -Euclidean basis which orientation is opposed to the orientation of (\vec{e}_i) then

$$\vec{\omega}_b = -\vec{\omega}_e. \tag{2.9}$$

Proof. $L.\vec{v} = \vec{\omega}_e \times_e \vec{v}$ and $L.\vec{v} = \vec{\omega}_b \times_b \vec{v}$ give $\vec{\omega}_e \times_e \vec{v} = \vec{\omega}_b \times_b \vec{v}$, thus $(\vec{\omega}_e \times_e \vec{v}) \bullet_{ge} \vec{z} = (\vec{\omega}_b \times_b \vec{v}) \bullet_{ge} \vec{z}$, thus (1.3) gives $\det_{\vec{e}}(\vec{\omega}_e, \vec{v}, \vec{z}) = \det_{\vec{b}}(\vec{\omega}_b, \vec{v}, \vec{z}) = -\det_{\vec{e}}(\vec{\omega}_b, \vec{v}, \vec{z})$, for all \vec{v}, \vec{z} , thus $\vec{\omega}_e = -\vec{\omega}_b$.

2.4 Interpretation ($\pi/2$ rotation and dilation)

Consider (2.7)-(2.8), and let $\omega_e := ||\vec{\omega}_e||_{ge} = \sqrt{a^2 + b^2 + c^2}$.

Proposition 2.7 Let
$$[\vec{b}_3]_{|\vec{e}} = \frac{1}{\omega_e} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, $[\vec{b}_1]_{|\vec{e}} = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}$, $\vec{b}_2 = \vec{b}_3 \times_e \vec{b}_1 = \frac{1}{\sqrt{a^2 + b^2}} \frac{1}{\omega_e} \begin{pmatrix} -ac \\ -bc \\ a^2 + b^2 \end{pmatrix}$. Then $(\vec{b}_1, \vec{b}_2, \vec{b}_3)$ is a direct orthonormal basis, and

$$[L]_{\vec{b}} = \omega_e \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \omega_e \begin{pmatrix} \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) & 0\\ \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad [\vec{\omega}_e]_{\vec{b}} = \omega_e \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}.$$
(2.10)

So $L.\vec{v}$ rotates a vector $\vec{v} = v_1\vec{b}_1 + v_2\vec{b}_2 \in \text{Vect}\{\vec{b}_1, \vec{b}_2\}$ through an angle $\frac{\pi}{2}$ radians in the plane $\text{Vect}\{\vec{b}_1, \vec{b}_2\}$ and dilates by a factor $\omega_e : L.\vec{b}_1 = \omega_e\vec{b}_2$ and $L.\vec{b}_2 = -\omega_e\vec{b}_1$; And it kills the third component : $L.\vec{b}_3 = \vec{0}$.

Proof. $\det_{\vec{e}}(\vec{b}_1, \vec{b}_2, \vec{b}_3) > 0$: easy calculation. And $P = ([\vec{b}_1]_{|\vec{e}} [\vec{b}_2]_{|\vec{e}} [\vec{b}_3]_{|\vec{e}})$ (the transition matrix from (\vec{e}_i) to (\vec{b}_i)) gives $[L]_{|\vec{b}} = P^{-1}.[L]_{|\vec{e}}.P$ (change of basis formula for endomorphisms). And here $P^{-1} = P^T$ (change of orthonormal basis): We get (2.10).

3 Antisymmetric matrix and its pseudo-vector representation

3.1 The pseudo-vector product

Here we are in the matrix world. Only the canonical basis in \mathcal{M}_{31} is considered.

Definition 3.1 The pseudo-vector product is the map $\overset{\bigcirc}{\times}$: $\begin{cases} \mathcal{M}_{31} \times \mathcal{M}_{31} \to \mathcal{M}_{31} \\ ([\vec{u}], [\vec{v}]) \to \overset{\bigcirc}{\times} ([\vec{u}], [\vec{v}]) \end{cases}$

$$\begin{bmatrix} \vec{u} \end{bmatrix}_{\times}^{\circ} [\vec{v}] = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \quad \text{when} \quad [\vec{u}] = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad [\vec{v}] = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \tag{3.1}$$

and the column matrix $[\vec{u}] \stackrel{\heartsuit}{\times} [\vec{v}]$ is called the pseudo-vector product of $[\vec{u}]$ and $[\vec{v}]$.

In other words $[\vec{u}] \stackrel{\circ}{\times} [\vec{v}] := [\vec{u}]_{|\vec{C}} \times_C [\vec{v}]_{|\vec{C}}$ where (\vec{C}_i) is the canonical basis in \mathcal{M}_{31} .

3.2 Antisymmetric matrix and its pseudo-vector representation

Let $M \in \mathcal{M}_{33}$ be an antisymmetric matrix, i.e. there exists $a, b, c \in \mathbb{R}$ s.t.

$$M = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}. \text{ Thus } \begin{bmatrix} \overset{\circlearrowright}{\omega} \end{bmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ gives } M.[\vec{v}] = \begin{bmatrix} \overset{\circlearrowright}{\omega} \end{bmatrix} \overset{\circlearrowright}{\times} [\vec{v}]$$
(3.2)

for all $[\vec{v}] \in \mathcal{M}_{31}$. The pseudo-vector (the column matrix) $[\overset{\bigcirc}{\omega}] \in \mathcal{M}_{31}$ is called the pseudo-vector representation (column matrix representation) of the matrix M.

3.3 Pseudo-vectors representation of an antisymmetric endomorphism

Euclidean framework: (\vec{e}_i) is a Euclidean basis and $(\cdot, \cdot)_{ge}$ is the associated Euclidean dot product.

Let $L \in \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ be $(\cdot, \cdot)_{ge}$ -antisymmetric. Hence $[\vec{\omega}_e \times_e \vec{v}]_{|\vec{e}|} \stackrel{(2.7)}{=} [L.\vec{v}]_{|\vec{e}|} = [L]_{|\vec{e}|} \cdot [\vec{v}]_{|\vec{e}|}$ gives, with (3.2) and $M = [L]_{|\vec{e}|}$,

$$[\vec{\omega}_e \times_e \vec{v}]_{|\vec{e}} = [\overset{\circlearrowright}{\omega}] \overset{\circlearrowright}{\times} [\vec{v}]_{|\vec{e}} \quad \text{where} \quad [\overset{\circlearrowright}{\omega}] := [\vec{\omega}_e]_{|\vec{e}}.$$
(3.3)

Definition 3.2 The matrix $\begin{bmatrix} \vec{\omega} \\ \omega \end{bmatrix} := \begin{bmatrix} \vec{\omega}_e \end{bmatrix}_{e} \in \mathcal{M}_{31}$ is the pseudo-vector representation of L relative to (\vec{e}_i) .

Screw (torsor) 4

Reminder 4.0

Let Ω be an open set in \mathbb{R}^3 .

• A vector field in \mathbb{R}^3 is a function $\tilde{\vec{u}}: \left\{ \begin{array}{l} \Omega \rightarrow \Omega \times \overline{\mathbb{R}^3} \\ A \rightarrow \tilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{array} \right\}$, the couple $\tilde{\vec{u}}(A) := (A, \vec{u}(A))$ being a "pointed vector at A", or "a vector at A". Drawing: $\vec{u}(A)$ has to be drawn at A, nowhere else. To

compare with a vector $\vec{v} \in \mathbb{R}^3$ which can be drawn anywhere (also called a free vector).

The sum of two vector fields $\tilde{\vec{u}}, \tilde{\vec{w}}$ and the multiplication by a real λ are defined by, at any $A \in \Omega$,

$$\widetilde{\vec{u}}(A) + \widetilde{\vec{w}}(A) = (A, \vec{u}(A) + \vec{w}(A)), \text{ and } \lambda \widetilde{\vec{u}}(A) = (A, \lambda \vec{u}(A))$$

$$(4.1)$$

(usual rules for "vectors at A"). To lighten the notations, $\tilde{\vec{u}}(A) = \overset{\text{noted}}{\vec{u}}(A)$ (but don't forget it is a pointed vector).

The differential of a C^1 vector field $\tilde{\vec{u}}: \Omega \to \Omega \times \mathbb{R}^3$ at a point A is the "field of endomorphisms" $d\widetilde{u}: \Omega \to \Omega \times \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$ defined by $d\widetilde{u}(A) = (A, d\vec{u}(A))$ (an endomorphism at A) where $d\vec{u}(A)$ is the differential of \vec{u} at A. So $\vec{u}(B) = \vec{u}(A) + d\vec{u}(A) \cdot \overrightarrow{AB} + o(||\overrightarrow{AB}||)$. And $d\tilde{\vec{u}} = ^{\text{noted}} d\vec{u}$.

• An affine vector field $\widetilde{\vec{u}}: \left\{ \begin{aligned} \Omega &\to \Omega \times \overline{\mathbb{R}^3} \\ A &\to \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{aligned} \right\}$ is a vector field s.t. $\vec{u}: \Omega \to \overline{\mathbb{R}^3}$ is affine, i.e. s.t. $d\vec{u}$ is uniform, i.e. s.t., for all $A, B, d\vec{u}(A) = d\vec{u}(B) = {}^{\text{noted}} d\vec{u}$, so s.t., for all $A, B \in \mathbb{R}^3$,

$$\vec{u}(B) = \vec{u}(A) + d\vec{u}.\overrightarrow{AB}.$$
(4.2)

Definition (Euclidean framework) 4.1

Euclidean framework required: (\vec{e}_i) is a chosen Euclidean basis in $\overline{\mathbb{R}^3}$, $(\cdot, \cdot)_{ge}$ is the associated Euclidean dot product, \times_e is the associated vector product, and the transposed of an endomorphism L is L^T cf. (2.2).

Definition 4.1 A screw (a torsor) is the name given to an affine Euclidean antisymmetric vector field.

So a screw is a function $\tilde{\vec{s}}: \left\{ \begin{array}{l} \Omega \rightarrow \Omega \times \overrightarrow{\mathbb{R}^3} \\ A \rightarrow \widetilde{\vec{s}}(A) := (A, \vec{s}(A)) \end{array} \right\}$ s.t. $d\vec{s}$ is uniform and, with $\vec{\omega}_e$ the \times_e -representation vector of $d\vec{s}$ cf. (2.7), for all $A, B \in \Omega$,

$$\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}, \quad \text{so} \quad [\vec{s}(B)]_{|\vec{e}} = [\vec{s}(A)]_{|\vec{e}} + [\overset{\circlearrowright}{\omega}] \overset{\circlearrowright}{\times} [\overrightarrow{AB}]_{|\vec{e}}, \tag{4.3}$$

with
$$\begin{bmatrix} \vec{\omega} \\ \omega \end{bmatrix} = \begin{bmatrix} \vec{\omega}_e \end{bmatrix}_{|\vec{e}} := \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 when $\begin{bmatrix} d\vec{s} \end{bmatrix}_{|\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$. Abusively written $\vec{s}(B) = \vec{s}(A) + \stackrel{\circ}{\omega} \stackrel{\circ}{\times} \overrightarrow{AB}$.

Definition 4.2 • The vector $\vec{\omega}_e \in \vec{\mathbb{R}^3}$ is the "resultant vector" of the screw \vec{s} relative to (\vec{e}_i) .

- The matrix (the pseudo-vector) $\begin{bmatrix} \bigcirc \\ \omega \end{bmatrix} := \begin{bmatrix} \vec{\omega}_e \end{bmatrix}_{e}$ is the "resultant" of the screw \vec{s} relative to $(\vec{e_i})$.
- $\vec{s}(A)$ is the moment of the screw \vec{s} at $A \in \Omega$ (or moment of the torsor \vec{s} at A).
- If $\vec{s} = \vec{0}$ then \vec{s} is a degenerate screw (a degenerate torsor).
- A constant screw \vec{s} is non degenerate screw s.t. $\vec{s}(A) = \vec{s}(B)$ for all $A, B \in \Omega$ (i.e. s.t. $\vec{\omega}_e = \vec{0}$).

• The "reduction elements" at A are $[\overset{\bigcirc}{\omega}] := [\vec{\omega}_e]_{|\vec{e}}$ and $[\vec{s}(A)]_{|\vec{e}}$ (column matrices) relative to (\vec{e}_i) , written as the couple of matrices $([\overset{\circlearrowright}{\omega}], [\vec{s}(A)]_{|\vec{e}})$ abusively written $(\overset{\circlearrowright}{\omega}, \vec{s}(A))$.

Exercise 4.3 Let S be the set of the screws $\vec{s}: \Omega \to \overrightarrow{\mathbb{R}^3}$. Prove: S is a vector space.

Answer. If $\vec{s}_1, \vec{s}_2 \in \mathcal{S}$ and $\lambda \in \mathbb{R}$ then $\vec{s}_1 + \lambda \vec{s}_2$ is affine antisymmetric: Indeed, at B, $(\vec{s}_1 + \lambda \vec{s}_2)(B) = \vec{s}_1(B) + \lambda \vec{s}_2(B) = (\vec{s}_1(A) + d\vec{s}_1.\overrightarrow{AB}) + \lambda (\vec{s}_2(A) + d\vec{s}_2.\overrightarrow{AB}) = (\vec{s}_1 + \lambda \vec{s}_2)(A) + (d\vec{s}_1 + \lambda d\vec{s}_2).\overrightarrow{AB}$ with $d\vec{s}_1 + \lambda d\vec{s}_2$ antisymmetric since $d\vec{s}_1$ and $d\vec{s}_2$ are; Thus $\vec{s}_1 + \lambda \vec{s}_2 \in \mathcal{S}$ (affine with $L_{\vec{s}_1 + \lambda \vec{s}_2} = d\vec{s}_1 + \lambda d\vec{s}_2$ linear antisymmetric).

.

Exercise 4.4 Let \vec{s} be a screw and $\vec{\omega}_e$ its resultant vector. For all $\lambda \in \mathbb{R}$ and $A, B \in \mathbb{R}^3$, prove:

$$\vec{s}(A + \lambda \vec{\omega}_e) = \vec{s}(A), \text{ and } \vec{s}(B) \bullet_{ge} \vec{\omega}_e = \vec{s}(A) \bullet_{ge} \vec{\omega}_e \ (= \text{ constant}).$$
 (4.4)

(Hence the definition: $s_{inv} := \vec{s}(A) \bullet_{ge} \vec{\omega}_e$ is called the (scalar) invariant of the screw.) And prove:

$$\vec{s}(B) \bullet_{ge} \overrightarrow{AB} = \vec{s}(A) \bullet_{ge} \overrightarrow{AB}$$
, called the equi-projectivity property. (4.5)

Answer. Let $B = A + \lambda \vec{\omega}_e$, so $\overrightarrow{AB} = \lambda \vec{\omega}_e$, thus $\vec{s}(B) = {}^{(4.3)} \vec{s}(A) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{s}(A) + \vec{0}$, i.e. $(4.4)_1$. And $\vec{\omega}_e \times_e \overrightarrow{AB}$ orthogonal to both $\vec{\omega}_e$ and \overrightarrow{AB} , thus (4.3) gives $(4.4)_2$ and (4.5).

Exercise 4.5 Fix a point $A \in \mathbb{R}^3$. Define $f_A : \left\{ \begin{array}{c} \overrightarrow{\mathbb{R}^3} \times \overrightarrow{\mathbb{R}^3} \to \mathcal{S} \\ (\vec{z}, \vec{w}) \to \vec{s} = f_A(\vec{z}, \vec{w}) \end{array} \right\}$ by $\vec{s}(B) := \vec{z} + \vec{w} \times_e \overrightarrow{AB}$ for all $B \in \mathbb{R}^3$. Prove that f_A is linear and bijective (is one-to-one and onto).

Answer. Linearity: $f_A((\vec{z}_1, \vec{w}_1) + \lambda(\vec{z}_2, \vec{w}_2))(B) = f_A(\vec{z}_1 + \lambda \vec{z}_2, \vec{w}_1 + \lambda \vec{w}_2)(B) = \vec{z}_1 + \lambda \vec{z}_2 + (\vec{w}_1 + \lambda \vec{w}_2) \times_e \overrightarrow{AB} = \vec{z}_1 + \vec{w}_1 \times_e \overrightarrow{AB} + \lambda(\vec{z}_2 + \vec{w}_2 \times_e \overrightarrow{AB}) = (f_A(\vec{z}_1, \vec{w}_1) + \lambda f_A(\vec{z}_2, \vec{w}_2))(B).$ One-to-one: $f_A(\vec{z}, \vec{w}) = 0$ iff $\vec{z} + \vec{w} \times_e \overrightarrow{AB} = \vec{0}$ for all B, in particular B = A gives $\vec{z} = \vec{0}$ and then $\vec{w} = \vec{0}$.

One-to-one: $f_A(\vec{z}, \vec{w}) = 0$ iff $\vec{z} + \vec{w} \times_e A\vec{B} = 0$ for all B, in particular B = A gives $\vec{z} = 0$ and then $\vec{w} = 0$. Onto: Let $\vec{s} \in S$, $\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \vec{AB}$, and take $\vec{z} = \vec{s}(A)$ and $\vec{w} = \vec{\omega}_e$.

Exercise 4.6 Write $\times_e = \times$, $\bullet_{ge} = \bullet$, $\vec{\omega}_e = \vec{\omega}$. Let $\vec{s}_1, \vec{s}_2 \in S$, $\vec{s}_1(B) = \vec{s}_1(A) + \vec{\omega}_1 \times \overrightarrow{AB}$ and $\vec{s}_2(B) = \vec{s}_2(A) + \vec{\omega}_2 \times \overrightarrow{AB}$. Define the screw $\langle \vec{s}_1, \vec{s}_2 \rangle$ by $\langle \vec{s}_1, \vec{s}_2 \rangle(A) = \vec{\omega}_1 \cdot \vec{s}_2(A) + \vec{\omega}_2 \cdot \vec{s}_1(A)$. Prove $\langle \vec{s}_1, \vec{s}_2 \rangle$ is constant.

Answer. $\vec{\omega_1} \cdot \vec{s_2}(B) + \vec{\omega_2} \cdot \vec{s_1}(B) = \vec{\omega_1} \cdot (\vec{s_2}(A) + \vec{\omega_2} \times \overrightarrow{AB}) + \vec{\omega_2} \cdot (\vec{s_1}(A) + \vec{\omega_1} \times \overrightarrow{AB}) = \vec{\omega_1} \cdot \vec{s_2}(A) + \vec{\omega_2} \cdot \vec{s_1}(A) + \vec{\omega_1} \cdot (\vec{\omega_2} \times \overrightarrow{AB}) + \vec{\omega_2} \cdot (\vec{\omega_1} \times \overrightarrow{AB}) = \det_{\vec{e}}(\vec{\omega_1}, \vec{\omega_2}, \overrightarrow{AB}) + \det_{\vec{e}}(\vec{\omega_2}, \vec{\omega_1}, \overrightarrow{AB})$ hence = 0, thus $\vec{\omega_1} \cdot \vec{s_2}(B) + \vec{\omega_2} \cdot \vec{s_1}(B) = \vec{\omega_1} \cdot \vec{s_2}(A) + \vec{\omega_2} \cdot \vec{s_1}(A)$, for all A, B.

4.2 Central axis

Let $\vec{s}: \Omega \to \overline{\mathbb{R}^3}$ be a screw, $\vec{s}(B) = \vec{s}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}$, cf. (4.3).

Definition 4.7 The central axis (or instantaneous screw axis) of a non constant screw $(\vec{\omega}_e \neq \vec{0})$ is

$$\operatorname{Ax}(\vec{s}) = \{ C \in \mathbb{R}^3 : \vec{s}(C) \parallel \vec{\omega}_e \} = \{ C \in \mathbb{R}^3 : \exists \lambda \in \mathbb{R}, \ \vec{s}(C) = \lambda \vec{\omega}_e \}$$
(4.6)

called the set of central points. NB: Here \vec{s} is affine thus Ω is implicitly extended to the whole \mathbb{R}^3 , thus a point $C \in Ax(\vec{s})$ might be outside of Ω .

Proposition 4.8 Let \vec{s} be a non constant screw. Let $O \in \mathbb{R}^3$. Define the point $C_0 \in \mathbb{R}^3$ by

$$\overrightarrow{OC_0} = \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{s}(O), \quad i.e. \quad C_0 := O + \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{s}(O).$$
(4.7)

Then

1- $C_0 \in \operatorname{Ax}(\vec{s})$, and

 $Ax(\vec{s}) = C_0 + Vect\{\vec{\omega}_e\} \quad (affine \ straight \ line). \tag{4.8}$

2- \vec{s} is constant along $\operatorname{Ax}(\vec{s})$: For all $C \in \operatorname{Ax}(\vec{s})$, $\vec{s}(C) = \vec{s}(C_0)$. 3- $C \in \operatorname{Ax}(\vec{s})$ iff $C = \arg\min_{A \in \mathbb{R}^3} ||\vec{s}(A)||_e$ (i.e. iff $||\vec{s}(C)||_e = \min_{A \in \mathbb{R}^3} ||\vec{s}(A)||_e$). 3'- $||\vec{s}(B)||_e > ||\vec{s}(C)||_e$ for all $C \in \operatorname{Ax}(\vec{s})$ and all $B \notin \operatorname{Ax}(\vec{s})$. 4- For all $B \in \Omega$ and $C \in \operatorname{Ax}(\vec{s})$,

$$\vec{s}(B) = \vec{s}(C) + \vec{\omega}_e \times_e \vec{CB} \in \operatorname{Vect}\{\vec{\omega}_e\} \oplus^{\perp} \operatorname{Vect}\{\vec{\omega}_e\}^{\perp} \quad (orthogonal \ sum), \tag{4.9}$$

sum of the translation $\vec{s}(C)$ along the axis and of the rotation-dilation $\vec{\omega}_e \times_e \vec{CB}$ in $\operatorname{Vect}\{\vec{\omega}_e\}^{\perp}$.

Proof. 1- $\vec{s}(C_0) = \vec{s}(O) + \vec{\omega}_e \times_e \overrightarrow{OC_0} = \vec{s}(O) + \vec{\omega}_e \times_e (\frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{s}(O)) = \vec{s}(O) + \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \bullet_{ge} \vec{s}(O)) \vec{\omega}_e - \frac{1}{||\vec{\omega}_e||^2} \vec{s}(O) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \bullet_{ge} \vec{s}(O)) \vec{\omega}_e$ is parallel to $\vec{\omega}_e$, thus $C_0 \in \operatorname{Ax}(\vec{s})$.

Then $\vec{s}(C_0 + \lambda \vec{\omega}_e) = \vec{s}(C_0) + \vec{0}$ for all λ (because $\vec{\omega}_e \times_e \vec{\omega}_e = \vec{0}$), thus $\operatorname{Ax}(\vec{s}) \supset C_0 + \operatorname{Vect}\{\vec{\omega}_e\}$.

If $B \notin C_0 + \operatorname{Vect}\{\vec{\omega}_e\}$, then $\overline{C_0B} \not\parallel \vec{\omega}_e$, i.e. $\vec{\omega}_e \times_e \overline{C_0B} \neq \vec{0}$, thus $\vec{s}(B) = \vec{s}(C_0) + \vec{\omega}_e \times_e \overline{C_0B} \in \operatorname{Vect}\{\vec{\omega}_e\} \oplus^{\perp}$ $\operatorname{Vect}\{\vec{\omega}_e\}^{\perp}$ with $\vec{0} \neq \vec{\omega}_e \times_e \overline{C_0B}$, thus $\vec{s}(B) \not\parallel \vec{\omega}_e$, hence $B \notin \operatorname{Ax}(\vec{s})$. Thus $\operatorname{Ax}(\vec{s}) = C_0 + \operatorname{Vect}\{\vec{\omega}_e\}$.

 $2 - \vec{s}(C_0 + \lambda \vec{\omega}_e) = \vec{s}(C_0) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{s}(C_0) + \vec{0}, \text{ thus } \vec{s}(C) = \vec{s}(C_0) \text{ for all } C \in C_0 + \text{Vect}\{\vec{\omega}_e\}.$

3- If $B \notin C_0 + \operatorname{Vect}\{\vec{\omega}_e\}$ then $||\vec{s}(B)||_e^2 = ||\vec{s}(C_0) + \vec{\omega}_e \times_e \overline{C_0B}||_e^2 > ||\vec{s}(C_0)||_e^2$ (Pythagoras since $\vec{s}(C_0) \parallel \vec{\omega}_e$ is orthogonal to $\vec{\omega}_e \times_e \overline{C_0B}$).

 $4 - \vec{s}(B) = {}^{(4.3)} \vec{s}(C_0) + \vec{\omega}_e \times_e \overrightarrow{C_0 B} \text{ with } \vec{s}(C_0) \parallel \vec{\omega}_e \text{ and } \vec{\omega}_e \times_e \overrightarrow{C_0 B} \perp \vec{\omega}_e.$

Exercise 4.9 How was the point C_0 in (4.7) found?

Answer. If $\vec{s}(O) \parallel \vec{\omega}_e$ then take $C_0 = O$. Else a drawing encourages to look for a $C_0 = O + \alpha \vec{\omega}_e \times_e \vec{s}(O)$ for some $\alpha \in \mathbb{R}$ because $\overrightarrow{OC_0}$ is then orthogonal to $\operatorname{Vect}\{\vec{\omega}_e\}$. Which gives $\vec{s}(C_0) = \vec{s}(O) + \vec{\omega}_e \times_e \overrightarrow{OC_0} = \vec{s}(O) + \vec{\omega}_e \times_e \vec{s}(O) = \vec{s}(O) + \vec{\omega}_e \times_e \vec{s}(O) = \vec{s}(O) + \alpha(\vec{\omega}_e \bullet_{ge} \vec{s}(O))\vec{\omega}_e - \alpha ||\vec{\omega}_e||^2 \vec{s}(O)$. Hence we choose $\alpha = \frac{1}{||\vec{\omega}_e||^2}$: We get $\vec{s}(C_0) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \bullet_{ge} \vec{s}(O))\vec{\omega}_e$ parallel to $\vec{\omega}_e$, thus C_0 is in Ax(\vec{s}): We have obtained (4.7).

Exercise 4.10 Let $\vec{s_1}$ and $\vec{s_2}$ be two non constant screws s.t. $\vec{\omega}_{e1} + \vec{\omega}_{e2} \neq 0$. Find the axis of $\vec{s} := \vec{s_1} + \vec{s_2}$.

Answer.
$$\vec{s}_1(B) = \vec{s}_1(O) + \vec{\omega}_{e_1} \times_e \overrightarrow{OB}$$
 and $\vec{s}_2(B) = \vec{s}_2(O) + \vec{\omega}_{e_2} \times_e \overrightarrow{OB}$ give $(\vec{s}_1 + \vec{s}_2)(B) = (\vec{s}_1(O) + \vec{s}_2(O)) + (\vec{\omega}_1 + \vec{\omega}_2) \times_e \overrightarrow{OB}$. Thus $\operatorname{Ax}(\vec{s}_1 + \vec{s}_2) = C + \operatorname{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}$ where $C : \stackrel{(4.7)}{=} O + \frac{1}{||\vec{\omega}_1 + \vec{\omega}_2||^2}(\vec{\omega}_1 + \vec{\omega}_2) \times_e \vec{s}(O)$.

Exercise 4.11 Let \vec{s} be a screw and $\vec{\omega}_e$ its resultant vector. Definition:

$$\vec{s}_{inv} := (\vec{s}(B) \bullet_{ge} \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}) \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e} \text{ is called the vector invariant of the screw},$$
(4.10)

i.e. $\vec{s}_{inv} := \frac{(\vec{s}(B) \bullet_{ge} \vec{\omega}_e)\vec{\omega}_e}{\omega_e^2}$ where $\omega_e = ||\vec{\omega}_e||$. Prove: $\vec{s}(B)$ is independent of B and

if
$$C \in \operatorname{Ax}(\vec{s})$$
 then $\vec{s}(C) = \vec{s}_{inv}$, thus $\vec{s}(B) = \vec{s}_{inv} + \vec{\omega}_e \times_e \overrightarrow{CB}$, $\forall B \in \mathbb{R}^3$. (4.11)

Answer. $\vec{s}(B) \bullet_{ge} \vec{\omega}_e = s_{inv}$, scalar invariant of the screw of (4.4) independent of B). And $\vec{s}(B) = \vec{s}(C) + \vec{\omega}_e \times_e \overrightarrow{CB}$ with $\vec{s}(C) \parallel \vec{\omega}_e$ and $\vec{\omega}_e \times_e \overrightarrow{CB} \perp \vec{\omega}_e$, thus $\vec{s}_{inv} := (\vec{s}(C) \bullet_{ge} \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}) \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e} = \vec{s}(C)$.

5 Twist = kinematic torsor = distributor

5.1 Definition

Let (\vec{e}_i) be a Euclidean basis and $\times_e =^{\text{noted}} \times$.

Definition 5.1 A twist¹ (or kinematic screw or distributor) is the name of the screw which is "the Eulerian velocity field of a rigid body".

So, let *Obj* be a rigid body, P_{Obj} its particles, $\widetilde{\Phi} : \begin{cases} [t_0, T] \times Obj \rightarrow \mathbb{R}^3 \\ (t, P_{Obj}) \rightarrow p(t) = \widetilde{\Phi}(t, P_{Obj}) \end{cases}$ its motion

(where $t_0, T \in \mathbb{R}$ and $t_0 < T$), and $\Omega_t := \widetilde{\Phi}(t, Obj) \subset \mathbb{R}^3$ its position in \mathbb{R}^3 at t

Its Eulerian velocity field \vec{v} is defined by $\vec{v}(t, p(t)) := \frac{\partial \tilde{\Phi}}{\partial t}(t, P_{Obj})$ when $p(t) = \tilde{\Phi}(t, P_{Obj})$. Fix t and let $\vec{v}(t, p(t)) = {}^{\text{noted}} \vec{v}(p)$.

The body being rigid, \vec{v} is affine and antisymmetric (is a screw called a twist): so, cf. (4.3) with $\vec{\omega} := \vec{\omega}_e$, for all $p, q \in \Omega_t$,

$$\vec{v}(q) = \vec{v}(p) + \vec{\omega} \times \vec{pq}.$$
(5.1)

Definition 5.2 $\vec{\omega}$ is the vector angular velocity, and $\omega := ||\vec{\omega}||$ is the angular velocity.

Thus if $c \in Ax(\vec{v})$ (so $\vec{v}(c)$ is the velocity along $Ax(\vec{v})$) then (orthogonal decomposition of $\vec{v}(q)$)

$$\forall q \in \Omega_t, \quad \vec{v}(q) = \vec{v}(c) + \vec{\omega} \times \vec{cq} \in \operatorname{Vect}\{\vec{\omega}\} \oplus^{\perp} \operatorname{Vect}\{\vec{\omega}\}^{\perp}.$$
(5.2)

5.2 Pitch

Definition 5.3 For a non constant twist $(\omega \neq 0)$, the pitch is, for $c \in Ax(\vec{v})$,

$$p := 2\pi \frac{||\vec{v}(c)||}{\omega} \stackrel{\text{noted}}{=} 2\pi \frac{\text{linear speed}}{\text{angular speed}}.$$
(5.3)

In other words, $\vec{v}(c) \parallel \vec{\omega}$ gives $\vec{v}(c) = h\vec{\omega}$ and $p = 2\pi h$.

It is the "thread pitch" or a nut (or of a screw), i.e. the distance from the crest of one thread to the next, or from one groove to the next. (The pitch vanishes for a pure rotation defined by $\vec{v}(c) = 0$.)

¹Definition of a twist by R.S. Ball [1]: "A body is said to receive a twist about a screw when it is rotated about the screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can be reduced is a twist about a screw."

Exercise 5.4 Recall the definition of the angular speed (ω here), and explain the pitch.

Answer. 1- Plane motion immersed in \mathbb{R}^3 : $\vec{r}(t) = \begin{pmatrix} R\cos(\omega_0 t) \\ R\sin(\omega_0 t) \\ 0 \end{pmatrix}$ where $\omega \in \mathbb{R}^*$ (with prop. 2.7); Eulerian velocity $\vec{v}(t, \vec{r}(t)) = \vec{r}'(t) = R\omega_0 \begin{pmatrix} -\sin(\omega_0 t) \\ \cos(\omega_0 t) \\ 0 \end{pmatrix} = R\omega_0 \vec{u}(t)$ where $\vec{u}(t) = \frac{\vec{r}'(t)}{||\vec{r}'(t)||}$ (unit tangent vector). Definitions: ω_0 is the angular speed and $\vec{\omega}_0 = \begin{pmatrix} 0 \\ 0 \\ \omega_0 \end{pmatrix}$ the angular velocity, so $\vec{v}(t, \vec{r}(t)) = \vec{\omega}_0 \times \vec{r}(t)$; It gives (5.2) when

$$\vec{v}(c) = \vec{0} \text{ and } \vec{cq} = \vec{r}(t).$$
2- The pitch is given by the helix $\vec{r}(t) = \begin{pmatrix} x(t) = R\cos(\omega_0 t) \\ y(t) = R\sin(\omega_0 t) \\ z(t) = at \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ at \end{pmatrix} + \begin{pmatrix} R\cos(\omega_0 t) \\ R\sin(\omega_0 t) \\ 0 \end{pmatrix}, \text{ sum of a translation}$

along the vertical axis and of a plane rotation in the horizontal plane. Its projection on the horizontal plane (cf. 1-) is periodic with period $\frac{2\pi}{\omega_0}$ (because $\omega_0(t+\frac{2\pi}{\omega_0}) = \omega_0 t + 2\pi$), and the pitch is $p = z(t+\frac{2\pi}{\omega_0}) - z(t) = a\frac{2\pi}{\omega_0} = the$

distance "between two grooves of a screw". This corresponds in (5.2) to $\vec{v}(c) = \begin{pmatrix} 0\\0\\a \end{pmatrix}$, so $||\vec{v}(c)|| = a = \text{linear}$

speed (speed along the axis), so $p = 2\pi \frac{a}{\omega_0} = 2\pi \frac{||\vec{v}(c)||}{\omega_0} = 2\pi \frac{\text{linear speed}}{\text{angular speed}}$

Exercise 5.5 (5.1) gives the "equiprojectivity property": $\vec{v}(p).\vec{pq} = \vec{v}(q).\vec{pq}$. Prove it starting from $||\vec{p(t)q(t)}||_e =$ constant (rigid body) for all particles $P_{Obj}, Q_{Obj} \in Obj$ where $p(t) = \widetilde{\Phi}(t, P_{Obj})$ and $q(t) = \widetilde{\Phi}(t, Q_{Obj})$.

Answer. Choose a $O \in \mathbb{R}^3$. let $p(t) = \widetilde{\Phi}(t, P_{Obj})$ and $q(t) = \widetilde{\Phi}(t, Q_{Obj})$. Thus $\frac{d}{dt} \overrightarrow{p(t)q(t)} = \frac{d}{dt} \overrightarrow{Oq(t)} - \frac{d}{dt} \overrightarrow{Op(t)} = \overrightarrow{v(t,q(t))} = \overrightarrow{v(t,p(t))}$. And $||\overrightarrow{p(t)q(t)}||_e^2 = (\overrightarrow{p(t)q(t)}, \overrightarrow{p(t)q(t)})_g = \text{constant}$, thus $\frac{d}{dt} (\overrightarrow{p(t)q(t)}, \overrightarrow{p(t)q(t)})_g = 0 = \overrightarrow{v(t,q(t))} = \overrightarrow{v(t,p(t))}$. $2(\frac{d}{dt}\overline{p(t)q(t)},\overline{p(t)q(t)})_g, \text{ thus } 0 = (\vec{v}(t,q(t)) - \vec{v}(t,p(t))), \overline{p(t)q(t)})_g \text{ (equiprojectivity property)}.$

5.3 Pure rotation

Definition 5.6 A pure rotation is a non constant twist \vec{v} s.t. $\exists c_0 \in \mathbb{R}^3$, $\vec{v}(c_0) = \vec{0}$.

Hence such a c_0 is $\in Ax(\vec{v})$, cf prop. 4.8-3, so, for all $q \in \mathbb{R}^3$,

$$\vec{v}(q) = \vec{\omega}_e \times_e \vec{c_0 q} \quad \text{with} \quad \vec{\omega}_e \neq \vec{0}.$$
 (5.4)

(So here $\vec{v}(q) \perp \vec{\omega}_e$ for all $q \in \mathbb{R}^3$ and $\operatorname{Ax}(\vec{v}) = c_0 + \operatorname{Vect}\{\vec{\omega}_e\}$).

Exercise 5.7 Prove: A twist \vec{v} is the sum of a pure rotation and a translation.

Answer. With $\vec{v}(p) = \vec{v}(O) + \vec{\omega}_e \times_e \overrightarrow{Op}$: Call \vec{v}_r the pure rotation defined by $\vec{v}_r(p) = \vec{\omega}_e \times_e \overrightarrow{Op}$ and call \vec{v}_t the translation defined by $\vec{v}_t(p) = \vec{v}(O)$. We have $(\vec{v}_t + \vec{v}_r)(p) = \vec{v}(p)$, for all p, hence $\vec{v} = \vec{v}_r + \vec{v}_t$.

Exercise 5.8 Fix $(\vec{e_i})$, write $\times_e = \times$ and $\vec{\omega}_e = \vec{\omega}$, let $\vec{v_1}(q) = \vec{\omega_1} \times \vec{c_1 q}$ and $\vec{v_2}(q) = \vec{\omega_2} \times \vec{c_2 q}$.

1- Suppose $Ax(\vec{v}_1) \parallel Ax(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 \neq \vec{0}$. Find $Ax(\vec{v}_1 + \vec{v}_2)$ and prove that $\vec{v}_1 + \vec{v}_2$ is a pure rotation.

1'- Suppose $\operatorname{Ax}(\vec{v}_1) \parallel \operatorname{Ax}(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 = \vec{0}$. Prove that $\vec{v}_1 + \vec{v}_2$ is a translation.

2- Suppose $Ax(\vec{v}_1) \not\parallel Ax(\vec{v}_2)$ and the axes intersect at only one point O. Find $Ax(\vec{v}_1+\vec{v}_2)$, and prove that $\vec{v}_1+\vec{v}_2$ is a pure rotation.

3- Suppose $Ax(\vec{v}_1) \not\models Ax(\vec{v}_2)$ and the axes don't intersect. Find $Ax(\vec{v}_1+\vec{v}_2)$, and prove that $\vec{v}_1+\vec{v}_2$ is not a pure rotation. Give a "simple" particular $c_0 \in \operatorname{Ax}(\vec{v}_1 + \vec{v}_2)$.

Answer. The notations tells: $c_1 \in Ax(\vec{v}_1), c_2 \in Ax(\vec{v}_2), (\vec{v}_1 + \vec{v}_2)(q) = \vec{\omega}_1 \times \vec{c_1q} + \vec{\omega}_2 \times \vec{c_2q}$ for all q.

1- Here $\vec{\omega}_2 = \lambda \vec{\omega}_1$ with $\lambda \neq -1$, thus $(\vec{v}_1 + \vec{v}_2)(q) = \vec{\omega}_1 \times (\overline{c_1 q} + \lambda \overline{c_2} q) = (\lambda + 1)\vec{\omega}_1 \times (\frac{1}{\lambda + 1} \overline{c_1} q + \frac{\lambda}{\lambda + 1} \overline{c_2} q)$. Hence choose $c_0 \in \mathbb{R}^3$ s.t. $\frac{1}{\lambda+1}\overline{c_1c_0} + \frac{\lambda}{\lambda+1}\overline{c_2c_0} = \vec{0}$ (barycentric point on the straight line containing c_1 and c_2): We get $\vec{v}(c_0) = \vec{0}$ and $Ax(\vec{v}_1 + \vec{v}_2) = c_0 + Vect\{\vec{\omega}_1 + \vec{\omega}_2\}$. Remark (on barycentric points): We have $\vec{c_1c_0} = \frac{1}{\lambda + 1}\vec{c_1c_2}$, thus c_0 in between c_1 and c_2 iff $0 < \frac{1}{\lambda+1} < 1$, i.e. iff $\lambda > 0$, i.e. iff $\vec{\omega}_1$ and $\vec{\omega}_2$ have the same orientation.

1'- $(\vec{v}_1+\vec{v}_2)(q) = (\vec{v}_1+\vec{v}_2)(p) + (\vec{\omega}_1+\vec{\omega}_2) \times \vec{pq} = (\vec{v}_1+\vec{v}_2)(p) + \vec{0}$ for all p,q, so $\vec{v}_1+\vec{v}_2$ is constant; Suppose $\exists q \in \mathbb{R}^3$ s.t. $(\vec{v}_1+\vec{v}_2)(q) = \vec{0}$: Hence $\vec{\omega}_1 \times \vec{c_1q} + (-\vec{\omega}_1) \times \vec{c_2q} = \vec{0}$, thus $\vec{\omega}_1 \times \vec{c_1c_2} = \vec{0}$, thus $\vec{\omega}_1 \parallel \vec{c_1c_2}$, absurd because the axes are parallel and disjoint. Thus $\vec{v}_1 + \vec{v}_2 \neq \vec{0}$.

2- Take $c_1 = c_2 = 0$, thus $(\vec{v}_1 + \vec{v}_2)(q) = (\vec{\omega}_1 + \vec{\omega}_2) \times \overrightarrow{Oq}$, thus $(\vec{v}_1 + \vec{v}_2)(O) = \vec{0}$ and $\operatorname{Ax}(\vec{v}_1 + \vec{v}_2) = O + \operatorname{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}$.

3- Here $\vec{\omega} := \vec{\omega}_1 + \vec{\omega}_2 \neq \vec{0}$ and (4.7) tells that c_0 defined by $\vec{c_1c_0} = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times (\vec{v}_1 + \vec{v}_2)(c_1) = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times \vec{v}_2(c_1) = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times (\vec{\omega}_2 \times \vec{c_2c_1})$, i.e.

$$\overline{c_1c_0} = \frac{1}{||\vec{\omega}||^2} \Big((\vec{\omega} \bullet_{ge} \overline{c_2c_1}) \vec{\omega}_2 - (\vec{\omega} \bullet_{ge} \vec{\omega}_2) \overline{c_2c_1} \Big)$$
(5.5)

is in $\operatorname{Ax}(\vec{v}_1 + \vec{v}_2)$, so $\operatorname{Ax}(\vec{v}_1 + \vec{v}_2) = c_0 + \operatorname{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}.$

In particular, choose c_1 and c_2 s.t. $\overline{c_1c_2} \perp \vec{\omega}_1$ and $\perp \vec{\omega}_2$, i.e. the segment $[c_1, c_2]$ is the shortest segment joining $\operatorname{Ax}(\vec{v}_1)$ and $\operatorname{Ax}(\vec{v}_2)$. Thus $\overline{c_1c_2} \in \operatorname{Vect}\{\vec{\omega}_1, \vec{\omega}_2\}^{\perp}$ and $\overline{c_1c_2} \perp \vec{\omega}_1 + \vec{\omega}_2$. Thus

$$\overline{c_1 c_0} = -\frac{\vec{\omega} \cdot \mathbf{e}_{\vec{w}} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \overline{c_2 c_1}, \quad \text{and} \quad \overline{c_2 c_0} = \overline{c_2 c_1} + \overline{c_1 c_0} = (1 - \frac{\vec{\omega} \cdot \mathbf{e}_{\vec{w}} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \overline{c_2 c_1}.$$
(5.6)

In particular c_0 is in the straight line containing c_1, c_2 . Thus $\vec{v}_1(c_0) = \vec{\omega}_1 \times \vec{c_1c_0} = -\frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 \times \vec{c_2c_1}$, and $\vec{v}_2(c_0) = \vec{\omega}_2 \times \vec{c_2c_0} = (1 - \frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2 \times \vec{c_2c_1}$. Thus $(\vec{v}_1 + \vec{v}_2)(c_0) = (-\frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2) \times \vec{c_2c_1}$. And $\vec{\omega}_1$ and $\vec{\omega}_2$ are independent, thus $\vec{\omega}$ and $\vec{\omega}_2$ are independent, thus $\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2 \neq 0$ and $(-\frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2) \neq \vec{0}$, together with $(-\frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \underline{o_x} \cdot \vec{\omega}_2}{||\vec{\omega}||^2})\vec{\omega}_2) \perp \vec{c_2c_1} \neq \vec{0}$; Thus $(\vec{v}_1 + \vec{v}_2)(c_0) \neq \vec{0}$, thus $\vec{v}_1 + \vec{v}_2$ isn't a pure rotation.

$6 \quad \text{Wrench} = \text{static torsor}$

6.1 Definition

Let (\vec{e}_i) be a Euclidean basis and $\times_e =^{\text{noted}} \times$.

Definition 6.1 Let $P_0 \in \mathbb{R}^3$ (e.g. the position of a bolt). Let $P_{\vec{f}} \in \mathbb{R}^3$ and let $\vec{f}(P_{\vec{f}})$ be a vector at $P_{\vec{f}}$ interpreted as a force at $P_{\vec{f}}$. The moment $\vec{M}_{\vec{f}}(P_0)$ called the torque at P_0 applied by the force $\vec{f}(P_{\vec{f}})$ is

$$\vec{M}_{\vec{f}}(P_0) := \vec{f}(P_{\vec{f}}) \times \overrightarrow{P_{\vec{f}}P_0} \quad (\in \operatorname{Vect}\{\vec{f}(P_{\vec{f}}), \overrightarrow{P_{\vec{f}}P_0}\}^{\perp}).$$
(6.1)

The "moment arm" at P_0 is the distance between the straight line $P_{\vec{f}} + \text{Vect}\{\vec{f}(P_{\vec{f}})\}$ and P_0 , i.e. the distance between P_0 and its orthogonal projection on $P_{\vec{f}} + \text{Vect}\{\vec{f}(P_{\vec{f}})\}$.

Definition 6.2 If Ω is a set in \mathbb{R}^3 then the wrench due to $\vec{f}(P_{\vec{f}})$ is the screw $\vec{M}_{\vec{f}}: \Omega \to \overline{\mathbb{R}^3}$ defined by: For all $P \in \Omega$,

$$\vec{M}_{\vec{f}}(P) = \vec{f}(P_{\vec{f}}) \times \overrightarrow{P_{\vec{f}}P} \quad (= \overrightarrow{PP_{\vec{f}}} \times \vec{f}(P_{\vec{f}})).$$
(6.2)

 $\vec{f}(P_{\vec{f}})$ is the resultant vector of the wrench, and $\vec{M}_{\vec{f}}(P)$ is the moment at P. (So $\vec{M}_{\vec{f}}(P_{\vec{f}}) = \vec{0}$ and $Ax(\vec{M}_{\vec{f}}) = P_{\vec{f}} + Vect\{\vec{f}(P_{\vec{f}})\}$).

Remark 6.3 So: A torque $\vec{M}_{\vec{f}}(P_0)$ is used to screw a nut which is at P_0 . A wrench $\vec{M}_{\vec{f}}$ gives the torque $\vec{M}_{\vec{f}}(P)$ on any point P in \mathbb{R}^3 due to $\vec{f}(P_{\vec{f}})$ at $P_{\vec{f}}$.

6.2 Couple of forces and resulting wrench

Consider two vectors (forces) $\vec{f_1}(P_{f_1})$ and $\vec{f_2}(P_{f_2})$ at two distinct points P_{f_1} and P_{f_2} .

Let $P_0 = P_{f_1} + \frac{1}{2} \overrightarrow{P_{f_1} P_{f_2}}$ (the midpoint, e.g. P_0 is the position of a nut holding a car wheel and P_{f_1} and P_{f_2} are the ends of a lug wrench used to unscrew the nut, drawing)). So $\overrightarrow{P_{f_2} P_0} = -\overrightarrow{P_{f_1} P_0}$. And suppose that $\overrightarrow{f_2}(P_{f_2}) = -\overrightarrow{f_1}(P_{f_1})$ and $\overrightarrow{f_1}(P_{f_1}) \perp \overrightarrow{P_{f_1} P_0}$ (drawing). We get: The sum of the torques at P_0 is

$$\vec{M}(P_0) := \vec{M}_{\vec{f_1}}(P_0) + \vec{M}_{\vec{f_2}}(P_0) = \vec{f_1}(P_{f_1}) \times \overrightarrow{P_{f_1}P_0} + \vec{f_2}(P_{f_2}) \times \overrightarrow{P_0P_{f_2}} = 2\vec{f_1}(P_{f_1}) \times \overrightarrow{P_{f_1}P_0}$$
(6.3)

(expected result).

More generally, let Ω be the segment $[P_{f_1}, P_{f_2}]$ and $P \in [P_{f_1}, P_{f_2}]$ (so $P = P_{f_1} + \lambda \overrightarrow{P_{f_1}P_{f_2}}$). We get the wrenches $\vec{M}_{\vec{f_1}}$ and $\vec{M}_{\vec{f_2}}$ defined in $[P_{f_1}, P_{f_2}]$ and their sum:

$$\vec{M}(P) := (\vec{M}_{\vec{f_1}} + \vec{M}_{\vec{f_2}})(P) = \vec{f_1}(P_{f_1}) \times \overrightarrow{P_{f_1}P} + \vec{f_2}(P_{f_2}) \times \overrightarrow{PP_{f_2}} = \vec{f_1}(P_{f_1}) \times \overrightarrow{P_{f_1}P_{f_2}} = \text{constant}$$
(6.4)

(independent of P); In fact, the "moment arms" $d(P, P_{f_1})$ and $d(P, P_{f_2})$ ("one short and one long") give (6.4). This wrench \vec{M} is a constant screw along $[P_{f_1}, P_{f_2}]$.

More generally Ω is extended to \mathbb{R}^3 : we also get (6.4): The wrench \vec{M} is a constant screw in \mathbb{R}^3 .

References

- Ball, R. S.: The Theory of Screws: A study in the dynamics of a rigid body. Dublin: Hodges, Foster & Co. (1876)
- [2] Carricato M.: https://parrigidwrkshp.sciencesconf.org/data/pages/IFAC2017_parrigid_0 5_Carricato.pdf
- [3] Minguzzi M.: A geometrical introduction to screw theory. https://arxiv.org/abs/1201.4497v2