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A screw (also called a torsor) is an a�ne antisymmetric vector �eld in a Euclidean setting. It is called
a twist (or a kinematic screw, or a distributor) when it is the velocity �eld of a rigid body motion, and
called a wrench when it is the moment of a force �eld.

To avoid confusions and misunderstandings, the �rst three paragraphs are devoted to the de�nitions
of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and
their representations. The fourth �fth and sixth paragraphs de�ne a screw, a twist and a wrench.
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The notation g := f means: f being given, g is de�ned by g = f .
V is a dimension 3 vector space.
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2 1. Dimension 3 vector spaces

1 Dimension 3 vector spaces

1.1 The di�erent
−→
R3 in mechanics

1.1.1 Cartesian
−→
R3

R := (R,+,×) is the usual �eld, with 0 the + identity element and 1 the × identity element; This 1 is
theoretical: It is not linked to any �unit of measurement�.

Then consider the Cartesian product R × R × R =noted −→
R3 , and the usual operations u⃗ + v⃗ =

(u1+v1, u2+v2, u3+v3) and λ.u⃗ = (λu1, λu2, λu3) =noted λu⃗ when u⃗ = (u1, u2, u3), v⃗ = (v1, v2, v3) and

λ ∈ R. It is a real vector space, and (E⃗1:=(1, 0, 0), E⃗2:=(0, 1, 0), E⃗3:=(0, 0, 1)) is a basis called �the
canonical basis�.

1.1.2 M31 the space of real 3 ∗ 1 column matrices

M31 = {[v⃗] =

 v1
v2
v3

 : v1, v2, v3 ∈ R} is the usual set of real 3 ∗ 1 column matrices. It is a real vector

space with its usual rules, (C⃗1:=

 1
0
0

 , C⃗2:=

 0
1
0

 , C⃗3:=

 0
0
1

) =noted (C⃗i) being its canonical basis

(the identity element 1 is theoretical: It is not linked to any �unit of measurement�). So [v⃗] =

 v1
v2
v3


means v⃗ =

∑
i viC⃗i. And M31 is isomorphic to

−→
R3 Cartesian.

Similarly with transposed matrices and M13 = {[v⃗]T : [v⃗] ∈ M31} the set of row matrices.

De�nition 1.1 A column matrix [v⃗] ∈ M31 is also called a pseudo-vector.

1.1.3 The many V =
−→
R3 in mechanics

For a sum to be de�ned, we need �compatible dimensions� : You don't add bi-point vectors velocities
with accelerations or forces or moments... Thus we de�ne distinct real vector spaces corresponding to
di�erent dimensions: Vbpv for bi-point vectors, Vvel for the velocities, Vacc for accelerations, ... However,

to simplify the notations, all these spaces are noted
−→
R3 . So pay attention to the context.

And, e.g. in Vbpv =noted −→
R3 , there is no canonical basis: a basis (⃗a1, a⃗2, a⃗3) = (⃗ai)i=1,2,3 =noted (⃗ai)

is chosen by some observer, e.g. with a⃗3 giving the direction of the vertical at some point on Earth and
with its length being 1 is some unit of measurement (e.g. 1 foot in aviation).

1.1.4 Quanti�cation in V

V being a dimension 3 real vector space, let v⃗ ∈ V .
Quanti�cation. An observer chooses a basis (⃗ai) in V . Hence ∃v1, v2, v3 ∈ R s.t. v⃗ =

∑3
i=1 via⃗i, and

the column matrix [v⃗]|⃗a=

 v1
v2
v3

∈M31 is the usual matrix representation of v⃗ which quanti�es v⃗ in the

basis (⃗ai). (And, [v⃗]|⃗a =

 v1
v2
v3

 means v⃗ =
∑3

i=1 via⃗i.)

Let M33 will be the space of 3 ∗ 3 real matrices.

Let z(·, ·) : V × V → R be a bilinear form (e.g. a scalar dot product). Quanti�cation: Let [z ]⃗a :=
[z(⃗ai, a⃗j)] i=1,2,3

j=1,2,3
=noted [z(⃗ai, a⃗j)] ∈ M33; This 3*3 matrix [z ]⃗a is the usual matrix representation (quan-

ti�cation) of z(·, ·) relative to (⃗ai). So, for all v⃗ =
∑3

i=1 via⃗i and w⃗ =
∑3

i=1 wia⃗i in V , the bilinearity of

z(·, ·) gives z(v⃗, w⃗) =
∑3

i,j=1 viwjz(⃗ai, a⃗j) = [v⃗]Ta⃗ .[z ]⃗a.[w⃗]⃗a where [v⃗]Ta⃗ := ([v⃗]|⃗a)
T (transposed matrix).

Let L : V → V be an endomorphism (linear map from a vector space to itself). Quanti�cation: Let

Lij be the components of L.⃗aj , i.e. L.⃗aj =
∑3

i=1 Lij a⃗i, for all j; The 3 ∗ 3 matrix [L]⃗a := [Lij ] ∈ M33

is the usual representation of L relative to (⃗ai). So, with v⃗ =
∑3

i=1 via⃗i, the linearity of L gives L.v⃗ =∑3
i,j=1 Lijvj a⃗i, i.e. [L.v⃗]|⃗a = [L]|⃗a.[v⃗]|⃗a.
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3 1. Dimension 3 vector spaces

1.1.5 Our usual a�ne space R3 and associated
−→
R3

A�ne setting: R3 is the usual a�ne space of points representing positions of particles in our classical
3-D world.

Associated setting vector space:
−→
R3 is its associated vector space made of the bi-point vectors−−→

AB =noted B−A for all A,B ∈ R3, and we write B = A+
−−→
AB.

1.1.6 Euclidean framework

Choose a unit of measure of length u in our a�ne space R3 (foot, metre...), then make a Euclidean

associated basis (e⃗i)i=1,2,3 =noted (e⃗i) in
−→
R3 : The length of each e⃗i is 1 in the unit u, and the length of

3e⃗i + 4e⃗i+1 is 5 (Pythagoras orthogonality) in the unit u, for all i = 1, 2, 3, where e⃗4 := e⃗1 and e⃗5 := e⃗2.

The associated Euclidean dot product ge(·, ·) = (·, ·)ge =noted . •ge . :
−→
R3 ×

−→
R3 → R (symmetric de�nite

positive bilinear form) is de�ned by (e⃗i, e⃗j)ge = δij for all i, j, i.e. [ge]|e⃗ = I, so, for all v⃗ =
∑3

i=1 vie⃗i and

w⃗ =
∑3

i=1 wie⃗i,

v⃗ •ge w⃗ := [v⃗]|e⃗
T .[w⃗]|e⃗ =

3∑
i,j=1

viwi (Euclidean case). (1.1)

The associated Euclidean norm ||.||ge :
−→
R3 → R+ is given by ||v⃗||ge :=

√
v⃗ •ge v⃗ (=

∑3
i,j=1 v

2
i ).

Two vectors v⃗, w⃗ ∈
−→
R3 are (·, ·)ge-orthogonal i� v⃗ •ge w⃗ = 0.

The algebraic (signed) volume of the parallelepiped limited by three vectors u⃗, v⃗, w⃗ is det⃗e(u⃗, v⃗, w⃗)

(and the volume is the absolute value |det⃗e(u⃗, v⃗, w⃗)|) where det⃗e : (
−→
R3 )3 → R is the tri-linear alternated

form de�ned by det⃗e(e⃗1, e⃗2, e⃗3) = 1. That is, for all u⃗ =
∑3

i=1 uie⃗i, v⃗ =
∑3

i=1 vie⃗i, w⃗ =
∑3

i=1 wie⃗i in V ,

det⃗e(u⃗, v⃗, w⃗) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1), (1.2)

i.e. det⃗e(u⃗, v⃗, w⃗) = det ( [u⃗]|e⃗ [v⃗]|e⃗ [w⃗]|e⃗ ) = the determinant of a 3∗3 matrix M = ( [u⃗]|e⃗ [v⃗]|e⃗ [w⃗]|e⃗ ).

A (·, ·)ge-orthonormal basis is a basis (⃗bi) s.t. (⃗bi, b⃗j)ge = δij , i.e. b⃗i •ge b⃗j = δij for all i, j, i.e. [ge]|⃗b = I.

A basis (⃗bi) as the same orientation as (e⃗i) i� det⃗e(⃗b1, b⃗2, b⃗3) > 0. Otherwise it as the opposite
orientation.

1.2 The vector product associated with a basis

Framework:
−→
R3 Euclidean with (e⃗i) a chosen Euclidean basis, (·, ·)ge the associated Euclidean dot product

and det⃗e the associated algebraic volume.

De�nition 1.2 The vector product ×e(·, ·) :

{
V × V → V

(u⃗, v⃗) → ×e(u⃗, v⃗)
noted
= u⃗×e v⃗

}
is the bilinear antisym-

metric map de�ned by

(u⃗×e v⃗) •ge w⃗ = det⃗e(u⃗, v⃗, w⃗), ∀w⃗ ∈
−→
R3 . (1.3)

So the components of u⃗×e v⃗ in the basis (e⃗i) are the reals (u⃗×e v⃗) •ge e⃗i = det⃗e(u⃗, v⃗, e⃗i) for i = 1, 2, 3:

[u⃗×e v⃗]|e⃗ :=

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 , i.e.

u⃗×e v⃗ := (u2v3 − u3v2)e⃗1 + (u3v1 − u1v3)e⃗2 + (u1v2 − u2v1)e⃗3
noted
= det(

 e⃗1 u1 v1
e⃗2 u2 v2
e⃗3 u3 v3

),

(1.4)

the formal determinant being expanded along the �rst column. So ×e is indeed bilinear, easy check, and
antisymmetric, i.e. u⃗×e v⃗ = −v⃗ ×e u⃗, easy check.

In other words, ×e is the bilinear antisymmetric map de�ned by

∀i = 1, 2, 3, e⃗i ×e e⃗i+1 = e⃗i+2, (1.5)

where e⃗4 := e⃗1 and e⃗5 := e⃗2.
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4 2. Antisymmetric endomorphism and its representation vectors

Proposition 1.3 For all u⃗, v⃗ ∈ V .
1- If u⃗×e z⃗ = v⃗ ×e z⃗ for all z⃗, then u⃗ = v⃗.
2- u⃗×e v⃗ is (·, ·)ge-orthogonal to u⃗ and to v⃗.
3- If u⃗ is parallel to v⃗ then u⃗×e v⃗ = 0. 3'- If u⃗×e v⃗ ̸= 0 then u⃗ is not parallel to v⃗.
4- If u⃗ is not parallel to v⃗ then u⃗×e v⃗ ̸= 0. 4'- If u⃗×e v⃗ = 0 then u⃗ is parallel to v⃗.
5- If u⃗ is not parallel to v⃗ then the basis (u⃗, v⃗, u⃗×e v⃗) has the same orientation than (e⃗i).
6- ||u⃗×e v⃗||ge is the area or the parallelogram (u⃗, v⃗) (in the unit chosen for (e⃗i)).

Proof. 1- (1.4) give [u⃗ ×e e⃗1]|e⃗ =

 0
u3

−u2

, similarly [v⃗ ×e e⃗1]|e⃗ =

 0
v3
−v2

, thus u3 = w3 and u2 = v2.

Similarly with e⃗2 wich gives u1 = v1.
2- (u⃗×e v⃗) •ge u⃗ = det⃗e(u⃗, v⃗, u⃗) = 0 since det⃗e is alternated, similarly (u⃗×e v⃗) •ge v⃗ = 0.
3- Trivial with (1.4). 3'- Contraposition.
4- If u⃗ is not parallel to v⃗ then let z⃗ ∈ V s.t. (u⃗, v⃗, z⃗) is a basis; Hence, det⃗e(u⃗, v⃗, z⃗) ̸= 0, thus

(u⃗×e v⃗) •ge z⃗ ̸= 0, thus u⃗×e v⃗ ̸= 0⃗. 4'- Contraposition.
5- det⃗e(u⃗, v⃗, u⃗×e v⃗) = (u⃗×e v⃗) •ge (u⃗×e v⃗) = ||u⃗×e v⃗||2 > 0 since u⃗ ∦ v⃗.

6- If u⃗ is parallel to v⃗ then it is trivial (zero area). Otherwise u⃗×e v⃗ ̸= 0⃗ thus 0 ̸= det⃗e(u⃗, v⃗,
u⃗×ev⃗

||u⃗×ev⃗||ge ) =

(u⃗×e v⃗) •ge
u⃗×ev⃗

||u⃗×ev⃗||ge = ||u⃗×e v⃗||ge = volume of the parallelepiped (u⃗, v⃗, u⃗×ev⃗
||u⃗×ev⃗||ge ) (height 1).

Exercise 1.4 (⃗ai) being a (·, ·)ge-orthonormal basis, de�ne the basis (⃗bi) by b⃗1 = −a⃗1, b⃗2 = a⃗2, b⃗3 = a⃗3
(change of orientation). Prove:

×b = −×a (1.6)

(the de�nition of a vector product is basis dependent), i.e. v⃗ ×b w⃗ = −v⃗ ×a w⃗, for all v⃗, w⃗ ∈ V .

Answer. b⃗2 ×b b⃗3 = b⃗1 = −a⃗1 = −a⃗2 ×a a⃗3 = −b⃗2 ×a b⃗3, and b⃗3 ×b b⃗1 = b⃗2 = a⃗2 = a⃗3 ×a a⃗1 = −b⃗3 ×a b⃗1, and

b⃗1 ×b b⃗2 = b⃗3 = a⃗3 = a⃗1 ×a a⃗2 = −b⃗1 ×a b⃗2; And ×a and ×b are bilinear antisymmetric, hence (1.6).

Exercise 1.5 Check:
u⃗×e (v⃗ ×e w⃗) = (u⃗ •ge w⃗)v⃗ − (u⃗ •ge v⃗)w⃗. (1.7)

Answer. [u⃗×e (v⃗ ×e w⃗)]|e⃗ =

u2(v1w2 − v2w1)− u3(v3w1 − v1w3)
u3(v2w3 − v3w2)− u1(v1w2 − v2w1)
u1(v3w1 − v1w3)− u2(v2w3 − v3w2)

 =

 (
∑3

i=1 uiwi)v1 − (
∑3

i=1 uivi)w1

(
∑3

i=1 uiwi)v2 − (
∑3

i=1 uivi)w2

(
∑3

i=1 uiwi)v3 − (
∑3

i=1 uivi)w3

 .

Exercise 1.6 Let v⃗, w⃗ ∈ V . Prove: z⃗ := v⃗ ×e w⃗ is a �contravariant vector�, i.e. satis�es the change of basis
formula [z⃗]|⃗b = P−1.[z⃗]|⃗a where P is the transition matrix from a basis (⃗ai) to a basis (⃗bi).

Answer. g(u⃗, v⃗×e w⃗)ge = [u⃗]Ta⃗ .[g]a⃗.[v⃗×e w⃗]a⃗ and g(u⃗, v⃗×e w⃗)ge = [u⃗]T
b⃗
.[g]⃗b.[v⃗×e w⃗]⃗b with (change of basis formulas)

[v⃗]⃗b = P−1.[v⃗]a⃗ and [g]⃗b = PT .[g]a⃗.P . So

g(u⃗, v⃗ ×e w⃗)ge = [u⃗]T
b⃗
.[g]⃗b.[v⃗ ×e w⃗]⃗b = ([u⃗]Ta⃗ .P

−T ).(PT .[g]a⃗.P ).[v⃗ ×e w⃗]⃗b = [u⃗]Ta⃗ .[g]a⃗.P.[v⃗ ×e w⃗]⃗b,

for all u⃗, v⃗, w⃗, hence [v⃗ ×e w⃗]a⃗ = P.[v⃗ ×e w⃗]⃗b, i.e. [v⃗ ×e w⃗]⃗b = P−1.[v⃗ ×e w⃗]a⃗.

2 Antisymmetric endomorphism and its representation vectors

2.1 Transpose of an endomorphism

V is a dimension n real vector space and L(V ;V ) is the set of endomorphisms V → V .
Usual notation for a linear map: L(v⃗) =noted L.v⃗, hence L.(v⃗ + λw⃗) = L.v⃗ + λL.w⃗ (distributivity

notation = linearity notation).
Let (·, ·)g : V ×V → R be a scalar dot product (required to de�ne the transposed). (No basis required.)

De�nition 2.1 The transposed of an endomorphism L ∈ L(V ;V ) relative to (·, ·)g is the endomorphism
LT
g ∈ L(V ;V ) de�ned by, for all v⃗, w⃗ ∈ V ,

(LT
g .w⃗, v⃗)g = (w⃗, L.v⃗)g. (2.1)

Quanti�cation. Choose a basis (e⃗i) in V : (2.1) gives [v⃗]T|e⃗.[g]|e⃗.[L
T
g .w⃗]|e⃗ = [L.v⃗]T|e⃗.[g]|e⃗[w⃗]|e⃗, thus

[v⃗]T|e⃗.[g]|e⃗.[L
T
g ]|e⃗.[w⃗]|e⃗ = [v⃗]T|e⃗.[L]

T
|e⃗.[g]|e⃗.[w⃗]|e⃗, for all v⃗, w⃗ ∈

−→
R3 , thus [LT

g ]|e⃗ = [g]−1
|e⃗ .[L]T|e⃗.[g]|e⃗.

4 April 12, 2024



5 2. Antisymmetric endomorphism and its representation vectors

Proposition 2.2 If (·, ·)a and (·, ·)b are two Euclidean dot products (e.g. (·, ·)a built with a foot and
(·, ·)b with a metre) then

LT
a = LT

b
noted
= LT (Euclidean setting) : (2.2)

The transposed of an endomorphism in
−→
R3 Euclidean does not depend on the unit of measurement (foot,

metre, ...) used to build Euclidean dot products.

Proof. (·, ·)a and (·, ·)b are both Euclidean thus ∃λ > 0 s.t. (·, ·)a = λ2(·, ·)b, thus (LT
a .w⃗, v⃗)a =

(w⃗, L.v⃗)a = λ2(w⃗, L.v⃗)b = λ2(LT
b .w⃗, v⃗)b = (LT

b .w⃗, v⃗)a for all v⃗, w⃗ ∈
−→
R3 , thus LT

a .w⃗ = LT
b .w⃗ for all w⃗.

Quanti�cation, Euclidean setting. (·, ·)ge-Euclidean basis (e⃗i), thus [ge]|e⃗ = I, thus with (2.2),

LT
g

noted
= LT , [LT ]|e⃗ = [L]T|e⃗, i.e. (LT )ij = Lji ∀i, j (Euclidean setting). (2.3)

2.2 Symmetric and antisymmetric endomorphisms

Let L ∈ L(V ;V ) and let (·, ·)g be a scalar dot product in V .

De�nition 2.3

• L is (·, ·)g-symmetric i� LT
g = L, i.e. (L.w⃗, v⃗)g = (w⃗, L.v⃗)g, ∀v⃗, w⃗,

• L is (·, ·)g-antisymmetric i� LT
g = −L, i.e. (L.w⃗, v⃗)g = −(w⃗, L.v⃗)g, ∀v⃗, w⃗.

(2.4)

Proposition 2.4 The space of (·, ·)ge-symmetric endomorphisms is a vector space. The space of (·, ·)ge-
antisymmetric endomorphisms is a vector space.

Proof. (L+λM)Tg = LT
g +λMT

g = (±L)+λ(±M) = ±(L+λM) with + i� L and M are (·, ·)ge-symmetric
and − i� L and M are antisymmetric. Thus, vector sub-spaces of L(V ;V ).

Euclidean setting: Euclidean basis (e⃗i), associated Euclidean dot product (·, ·)ge. With (2.2):

• L is Euclidean-symmetric i� [LT ]|e⃗ = [L]|e⃗, (2.5)

• L is Euclidean-antisymmetric i� [LT ]|e⃗ = −[L]|e⃗. (2.6)

2.3 Antisymmetric endomorphism and its representation vectors

Euclidean framework: (e⃗i) is a Euclidean basis and (·, ·)ge is the associated Euclidean dot product.

Let L ∈ L(
−→
R3 ;

−→
R3 ) be (·, ·)ge-antisymmetric: (2.6) gives Lii = 0 and Lji = −Lji for all i, j, thus

∃a, b, c ∈ R s.t. L.e⃗1 = ce⃗2−be⃗3, L.e⃗2 = −ce⃗1+ae⃗3 and L.e⃗3 = be⃗1−ae⃗2. Then de�ne the vector ω⃗e ∈
−→
R3

by ω⃗e := ae⃗1 + be⃗2 + ce⃗3: We immediately have, for all v⃗ ∈ V ,

L.v⃗ = ω⃗e ×e v⃗. (2.7)

In other words,

[L]|e⃗ =

 0 −c b
c 0 −a
−b a 0

 and [ω⃗e]|e⃗ :=

 a
b
c

 give L.v⃗ = ω⃗e ×e v⃗, ∀v⃗ ∈
−→
R3 . (2.8)

De�nition 2.5 The vector ω⃗e is the ×e-representation vector of the antisymmetric endomorphism L
relative to the Euclidean basis (e⃗i).

Proposition 2.6 The representation vector ω⃗e (of L) is not intrinsic to L. In particular if (⃗bi) is another
(·, ·)ge-Euclidean basis which orientation is opposed to the orientation of (e⃗i) then

ω⃗b = −ω⃗e. (2.9)

Proof. L.v⃗ = ω⃗e ×e v⃗ and L.v⃗ = ω⃗b ×b v⃗ give ω⃗e ×e v⃗ = ω⃗b ×b v⃗, thus (ω⃗e ×e v⃗) •ge z⃗ = (ω⃗b ×b v⃗) •ge z⃗, thus
(1.3) gives det⃗e(ω⃗e, v⃗, z⃗) = det⃗b(ω⃗b, v⃗, z⃗) = −det⃗e(ω⃗b, v⃗, z⃗), for all v⃗, z⃗, thus ω⃗e = −ω⃗b.

5 April 12, 2024



6 3. Antisymmetric matrix and its pseudo-vector representation

2.4 Interpretation (π/2 rotation and dilation)

Consider (2.7)-(2.8), and let ωe := ||ω⃗e||ge =
√
a2 + b2 + c2.

Proposition 2.7 Let [⃗b3]|e⃗ = 1
ωe

 a
b
c

, [⃗b1]|e⃗ = 1√
a2+b2

−b
a
0

, b⃗2 = b⃗3 ×e b⃗1 = 1√
a2+b2

1
ωe

 −ac
−bc

a2 + b2

.

Then (⃗b1, b⃗2, b⃗3) is a direct orthonormal basis, and

[L]⃗b = ωe

 0 −1 0
1 0 0
0 0 0

 = ωe

 cos(π2 ) − sin(π2 ) 0
sin(π2 ) cos(π2 ) 0

0 0 0

 , [ω⃗e ]⃗b = ωe

 0
0
1

 . (2.10)

So L.v⃗ rotates a vector v⃗ = v1⃗b1+v2⃗b2 ∈ Vect{⃗b1, b⃗2} through an angle π
2 radians in the plane Vect{⃗b1, b⃗2}

and dilates by a factor ωe : L.⃗b1 = ωe⃗b2 and L.⃗b2 = −ωe⃗b1; And it kills the third component : L.⃗b3 = 0⃗.

Proof. det⃗e(⃗b1, b⃗2, b⃗3) > 0: easy calculation. And P =
(
[⃗b1]|e⃗ [⃗b2]|e⃗ [⃗b3]|e⃗

)
(the transition matrix from

(e⃗i) to (⃗bi)) gives [L]|⃗b = P−1.[L]|e⃗.P (change of basis formula for endomorphisms). And here P−1 = PT

(change of orthonormal basis): We get (2.10).

3 Antisymmetric matrix and its pseudo-vector representation

3.1 The pseudo-vector product

Here we are in the matrix world. Only the canonical basis in M31 is considered.

De�nition 3.1 The pseudo-vector product is the map
⟲
× :

{M31 ×M31 → M31

([u⃗], [v⃗]) →
⟲
× ([u⃗], [v⃗]) = [u⃗]

⟲
× [v⃗]

}
de�ned by

[u⃗]
⟲
× [v⃗] =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 when [u⃗] =

u1

u2

u3

 and [v⃗] =

 v1
v2
v3

 , (3.1)

and the column matrix [u⃗]
⟲
× [v⃗] is called the pseudo-vector product of [u⃗] and [v⃗].

In other words [u⃗]
⟲
× [v⃗] := [u⃗]|C⃗ ×C [v⃗]|C⃗ where (C⃗i) is the canonical basis in M31.

3.2 Antisymmetric matrix and its pseudo-vector representation

Let M ∈ M33 be an antisymmetric matrix, i.e. there exists a, b, c ∈ R s.t.

M =

 0 −c b
c 0 −a
−b a 0

 . Thus [
⟲
ω] =

 a
b
c

 gives M.[v⃗] = [
⟲
ω]

⟲
× [v⃗] (3.2)

for all [v⃗] ∈ M31. The pseudo-vector (the column matrix) [
⟲
ω] ∈ M31 is called the pseudo-vector repre-

sentation (column matrix representation) of the matrix M .

3.3 Pseudo-vectors representation of an antisymmetric endomorphism

Euclidean framework: (e⃗i) is a Euclidean basis and (·, ·)ge is the associated Euclidean dot product.

Let L ∈ L(
−→
R3 ;

−→
R3 ) be (·, ·)ge-antisymmetric. Hence [ω⃗e ×e v⃗]|e⃗

(2.7)
= [L.v⃗]|e⃗ = [L]|e⃗.[v⃗]|e⃗ gives, with (3.2)

and M = [L]|e⃗,

[ω⃗e ×e v⃗]|e⃗ = [
⟲
ω]

⟲
× [v⃗]|e⃗ where [

⟲
ω] := [ω⃗e]|e⃗. (3.3)

De�nition 3.2 The matrix [
⟲
ω] := [ω⃗e]|e⃗ ∈ M31 is the pseudo-vector representation of L relative to (e⃗i).
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7 4. Screw (torsor)

4 Screw (torsor)

4.0 Reminder

Let Ω be an open set in R3.

• A vector �eld in R3 is a function ˜⃗u :

{
Ω → Ω×

−→
R3

A → ˜⃗u(A) := (A, u⃗(A))

}
, the couple ˜⃗u(A) := (A, u⃗(A))

being a �pointed vector at A�, or �a vector at A�. Drawing: u⃗(A) has to be drawn at A, nowhere else. To

compare with a vector v⃗ ∈
−→
R3 which can be drawn anywhere (also called a free vector).

The sum of two vector �elds ˜⃗u, ˜⃗w and the multiplication by a real λ are de�ned by, at any A ∈ Ω,

˜⃗u(A) + ˜⃗w(A) = (A, u⃗(A) + w⃗(A)), and λ˜⃗u(A) = (A, λu⃗(A)) (4.1)

(usual rules for �vectors at A�). To lighten the notations, ˜⃗u(A) =noted u⃗(A) (but don't forget it is a
pointed vector).

The di�erential of a C1 vector �eld ˜⃗u : Ω → Ω ×
−→
R3 at a point A is the ��eld of endomorphisms�

d˜⃗u : Ω → Ω × L(
−→
R3 ;

−→
R3 ) de�ned by d˜⃗u(A) = (A, du⃗(A)) (an endomorphism at A) where du⃗(A) is the

di�erential of u⃗ at A. So u⃗(B) = u⃗(A) + du⃗(A).
−−→
AB + o(||−−→AB||). And d˜⃗u =noted du⃗.

• An a�ne vector �eld ˜⃗u :

{
Ω → Ω×

−→
R3

A → ˜⃗u(A) := (A, u⃗(A))

}
is a vector �eld s.t. u⃗ : Ω →

−→
R3 is a�ne, i.e. s.t.

du⃗ is uniform, i.e. s.t., for all A,B, du⃗(A) = du⃗(B) =noted du⃗, so s.t., for all A,B ∈ R3,

u⃗(B) = u⃗(A) + du⃗.
−−→
AB. (4.2)

4.1 De�nition (Euclidean framework)

Euclidean framework required: (e⃗i) is a chosen Euclidean basis in
−→
R3 , (·, ·)ge is the associated Euclidean

dot product, ×e is the associated vector product, and the transposed of an endomorphism L is LT cf. (2.2).

De�nition 4.1 A screw (a torsor) is the name given to an a�ne Euclidean antisymmetric vector �eld.

So a screw is a function ˜⃗s :

{
Ω → Ω×

−→
R3

A → ˜⃗s(A) := (A, s⃗(A))

}
s.t. ds⃗ is uniform and, with ω⃗e the ×e-

representation vector of ds⃗ cf. (2.7), for all A,B ∈ Ω,

s⃗(B) = s⃗(A) + ω⃗e ×e
−−→
AB , so [s⃗(B)]|e⃗ = [s⃗(A)]|e⃗ + [

⟲
ω]

⟲
× [

−−→
AB]|e⃗, (4.3)

with [
⟲
ω] = [ω⃗e]|e⃗ :=

 a
b
c

 when [ds⃗]|e⃗ =

 0 −c b
c 0 −a
−b a 0

. Abusively written s⃗(B) = s⃗(A) +
⟲
ω

⟲
×−−→
AB.

De�nition 4.2 • The vector ω⃗e ∈
−→
R3 is the �resultant vector� of the screw s⃗ relative to (e⃗i).

• The matrix (the pseudo-vector) [
⟲
ω] := [ω⃗e]|e⃗ is the �resultant� of the screw s⃗ relative to (e⃗i).

• s⃗(A) is the moment of the screw s⃗ at A ∈ Ω (or moment of the torsor s⃗ at A).

• If s⃗ = 0⃗ then ˜⃗s is a degenerate screw (a degenerate torsor).
• A constant screw s⃗ is non degenerate screw s.t. s⃗(A) = s⃗(B) for all A,B ∈ Ω (i.e. s.t. ω⃗e = 0⃗).

• The �reduction elements� at A are [
⟲
ω] := [ω⃗e]|e⃗ and [s⃗(A)]|e⃗ (column matrices) relative to (e⃗i),

written as the couple of matrices ([
⟲
ω], [s⃗(A)]|e⃗) abusively written (

⟲
ω, s⃗(A)).

Exercise 4.3 Let S be the set of the screws s⃗ : Ω →
−→
R3 . Prove: S is a vector space.

Answer. If s⃗1, s⃗2 ∈ S and λ ∈ R then s⃗1+λs⃗2 is a�ne antisymmetric: Indeed, at B, (s⃗1+λs⃗2)(B) = s⃗1(B) +
λs⃗2(B) = (s⃗1(A) + ds⃗1.

−→
AB) + λ(s⃗2(A) + ds⃗2.

−→
AB) = (s⃗1+λs⃗2)(A) + (ds⃗1+λds⃗2).

−→
AB with ds⃗1+λds⃗2 antisymmetric

since ds⃗1 and ds⃗2 are; Thus s⃗1+λs⃗2 ∈ S (a�ne with Ls⃗1+λs⃗2 = ds⃗1+λds⃗2 linear antisymmetric).
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Exercise 4.4 Let s⃗ be a screw and ω⃗e its resultant vector. For all λ ∈ R and A,B ∈ R3, prove:

s⃗(A+ λω⃗e) = s⃗(A), and s⃗(B) •ge ω⃗e = s⃗(A) •ge ω⃗e ( = constant). (4.4)

(Hence the de�nition: sinv := s⃗(A) •ge ω⃗e is called the (scalar) invariant of the screw.) And prove:

s⃗(B) •ge
−→
AB = s⃗(A) •ge

−→
AB, called the equi-projectivity property. (4.5)

Answer. Let B = A+ λω⃗e, so
−→
AB = λω⃗e, thus s⃗(B) =(4.3) s⃗(A) + ω⃗e ×e (λω⃗e) = s⃗(A) + 0⃗, i.e. (4.4)1.

And ω⃗e ×e
−→
AB orthogonal to both ω⃗e and

−→
AB, thus (4.3) gives (4.4)2 and (4.5).

Exercise 4.5 Fix a point A ∈ R3. De�ne fA :

{−→
R3 ×

−→
R3 → S

(z⃗, w⃗) → s⃗ = fA(z⃗, w⃗)

}
by s⃗(B) := z⃗ + w⃗ ×e

−→
AB for all

B ∈ R3. Prove that fA is linear and bijective (is one-to-one and onto).

Answer. Linearity: fA((z⃗1, w⃗1) + λ(z⃗2, w⃗2))(B) = fA(z⃗1+λz⃗2, w⃗1+λw⃗2)(B) = z⃗1+λz⃗2 + (w⃗1+λw⃗2) ×e
−→
AB =

z⃗1+w⃗1 ×e
−→
AB + λ(z⃗2+w⃗2 ×e

−→
AB) = (fA(z⃗1, w⃗1) + λfA(z⃗2, w⃗2))(B).

One-to-one: fA(z⃗, w⃗) = 0 i� z⃗ + w⃗ ×e
−→
AB = 0⃗ for all B, in particular B = A gives z⃗ = 0⃗ and then w⃗ = 0⃗.

Onto: Let s⃗ ∈ S, s⃗(B) = s⃗(A) + ω⃗e ×e
−→
AB, and take z⃗ = s⃗(A) and w⃗ = ω⃗e.

Exercise 4.6 Write ×e=×, •ge= • , ω⃗e=ω⃗. Let s⃗1, s⃗2 ∈ S, s⃗1(B) = s⃗1(A)+ ω⃗1 ×
−→
AB and s⃗2(B) = s⃗2(A)+ ω⃗2 ×−→

AB. De�ne the screw ⟨s⃗1, s⃗2⟩ by ⟨s⃗1, s⃗2⟩(A) = ω⃗1 • s⃗2(A) + ω⃗2 • s⃗1(A). Prove ⟨s⃗1, s⃗2⟩ is constant.

Answer. ω⃗1 • s⃗2(B) + ω⃗2 • s⃗1(B) = ω⃗1 • (s⃗2(A) + ω⃗2 ×
−→
AB) + ω⃗2 • (s⃗1(A) + ω⃗1 ×

−→
AB) = ω⃗1 • s⃗2(A) + ω⃗2 • s⃗1(A) +

ω⃗1 • (ω⃗2 × −→
AB) + ω⃗2 • (ω⃗1 × −→

AB), with ω⃗1 • (ω⃗2 × −→
AB) + ω⃗2 • (ω⃗1 × −→

AB) = det⃗e(ω⃗1, ω⃗2,
−→
AB) + det⃗e(ω⃗2, ω⃗1,

−→
AB)

hence = 0, thus ω⃗1 • s⃗2(B) + ω⃗2 • s⃗1(B) = ω⃗1 • s⃗2(A) + ω⃗2 • s⃗1(A), for all A,B.

4.2 Central axis

Let s⃗ : Ω →
−→
R3 be a screw, s⃗(B) = s⃗(A) + ω⃗e ×e

−−→
AB, cf. (4.3).

De�nition 4.7 The central axis (or instantaneous screw axis) of a non constant screw (ω⃗e ̸= 0⃗) is

Ax(s⃗) = {C ∈ R3 : s⃗(C) ∥ ω⃗e} = {C ∈ R3 : ∃λ ∈ R, s⃗(C) = λω⃗e} (4.6)

called the set of central points. NB: Here s⃗ is a�ne thus Ω is implicitly extended to the whole R3, thus
a point C ∈ Ax(s⃗) might be outside of Ω.

Proposition 4.8 Let s⃗ be a non constant screw. Let O ∈ R3. De�ne the point C0 ∈ R3 by

−−→
OC0 =

1

||ω⃗e||2
ω⃗e ×e s⃗(O), i.e. C0 := O +

1

||ω⃗e||2
ω⃗e ×e s⃗(O). (4.7)

Then
1- C0 ∈ Ax(s⃗), and

Ax(s⃗) = C0 +Vect{ω⃗e} (a�ne straight line). (4.8)

2- s⃗ is constant along Ax(s⃗): For all C ∈ Ax(s⃗), s⃗(C) = s⃗(C0).
3- C ∈ Ax(s⃗) i� C = argminA∈R3 ||s⃗(A)||e (i.e. i� ||s⃗(C)||e = minA∈R3 ||s⃗(A)||e).
3'- ||s⃗(B)||e > ||s⃗(C)||e for all C ∈ Ax(s⃗) and all B /∈ Ax(s⃗).
4- For all B ∈ Ω and C ∈ Ax(s⃗),

s⃗(B) = s⃗(C) + ω⃗e ×e
−−→
CB ∈ Vect{ω⃗e} ⊕⊥ Vect{ω⃗e}⊥ (orthogonal sum), (4.9)

sum of the translation s⃗(C) along the axis and of the rotation-dilation ω⃗e ×e
−−→
CB in Vect{ω⃗e}⊥.

Proof. 1- s⃗(C0) = s⃗(O) + ω⃗e ×e
−−→
OC0 = s⃗(O) + ω⃗e ×e (

1
||ω⃗e||2 ω⃗e ×e s⃗(O)) = s⃗(O) + 1

||ω⃗e||2 (ω⃗e •ge s⃗(O))ω⃗e −
1

||ω⃗e||2 ||ω⃗e||2s⃗(O) = 1
||ω⃗e||2 (ω⃗e •ge s⃗(O))ω⃗e is parallel to ω⃗e, thus C0 ∈ Ax(s⃗).

Then s⃗(C0 + λω⃗e) = s⃗(C0) + 0⃗ for all λ (because ω⃗e ×e ω⃗e = 0⃗), thus Ax(s⃗) ⊃ C0 +Vect{ω⃗e}.
If B /∈ C0+Vect{ω⃗e}, then

−−→
C0B ∦ ω⃗e, i.e. ω⃗e×e

−−→
C0B ̸= 0⃗, thus s⃗(B) = s⃗(C0)+ω⃗e×e

−−→
C0B ∈ Vect{ω⃗e}⊕⊥

Vect{ω⃗e}⊥ with 0⃗ ̸= ω⃗e ×e
−−→
C0B, thus s⃗(B) ∦ ω⃗e, hence B /∈ Ax(s⃗). Thus Ax(s⃗) = C0 +Vect{ω⃗e}.

2- s⃗(C0 + λω⃗e) = s⃗(C0) + ω⃗e ×e (λω⃗e) = s⃗(C0) + 0⃗, thus s⃗(C) = s⃗(C0) for all C ∈ C0 +Vect{ω⃗e}.
3- If B /∈ C0 + Vect{ω⃗e} then ||s⃗(B)||2e = ||s⃗(C0) + ω⃗e ×e

−−→
C0B||2e > ||s⃗(C0)||2e (Pythagoras since

s⃗(C0) ∥ ω⃗e is orthogonal to ω⃗e ×e
−−→
C0B).

4- s⃗(B) =(4.3) s⃗(C0) + ω⃗e ×e
−−→
C0B with s⃗(C0) ∥ ω⃗e and ω⃗e ×e

−−→
C0B ⊥ ω⃗e.
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Exercise 4.9 How was the point C0 in (4.7) found?

Answer. If s⃗(O) ∥ ω⃗e then take C0 = O. Else a drawing encourages to look for a C0 = O + αω⃗e ×e s⃗(O)
for some α ∈ R because

−−→
OC0 is then orthogonal to Vect{ω⃗e}. Which gives s⃗(C0) = s⃗(O) + ω⃗e ×e

−−→
OC0 =

s⃗(O) + ω⃗e ×e (αω⃗e ×e s⃗(O)) = s⃗(O) + α(ω⃗e •ge s⃗(O))ω⃗e − α||ω⃗e||2s⃗(O). Hence we choose α = 1
||ω⃗e||2

: We get

s⃗(C0) =
1

||ω⃗e||2
(ω⃗e •ge s⃗(O))ω⃗e parallel to ω⃗e, thus C0 is in Ax(s⃗): We have obtained (4.7).

Exercise 4.10 Let s⃗1 and s⃗2 be two non constant screws s.t. ω⃗e1 + ω⃗e2 ̸= 0. Find the axis of s⃗ := s⃗1+s⃗2.

Answer. s⃗1(B) = s⃗1(O) + ω⃗e1 ×e
−−→
OB and s⃗2(B) = s⃗2(O) + ω⃗e2 ×e

−−→
OB give (s⃗1+s⃗2)(B) = (s⃗1(O) + s⃗2(O)) +

(ω⃗1+ω⃗2)×e
−−→
OB. Thus Ax(s⃗1+s⃗2) = C +Vect{ω⃗1+ω⃗2} where C :

(4.7)
= O +

1

||ω⃗1+ω⃗2||2
(ω⃗1+ω⃗2)×e s⃗(O).

Exercise 4.11 Let s⃗ be a screw and ω⃗e its resultant vector. De�nition:

s⃗inv := (s⃗(B) •ge
ω⃗e

||ω⃗e||e
)

ω⃗e

||ω⃗e||e
is called the vector invariant of the screw, (4.10)

i.e. s⃗inv :=
(s⃗(B) •ge ω⃗e)ω⃗e

ω2
e

where ωe = ||ω⃗e||. Prove: s⃗(B) is independent of B and

if C ∈ Ax(s⃗) then s⃗(C) = s⃗inv, thus s⃗(B) = s⃗inv + ω⃗e ×e
−−→
CB, ∀B ∈ R3. (4.11)

Answer. s⃗(B) •ge ω⃗e = sinv, scalar invariant of the screw cf (4.4) independent of B). And s⃗(B) = s⃗(C)+ω⃗e×e
−−→
CB

with s⃗(C) ∥ ω⃗e and ω⃗e ×e
−−→
CB ⊥ ω⃗e, thus s⃗inv := (s⃗(C) •ge

ω⃗e
||ω⃗e||e )

ω⃗e
||ω⃗e||e = s⃗(C).

5 Twist = kinematic torsor = distributor

5.1 De�nition

Let (e⃗i) be a Euclidean basis and ×e =noted ×.

De�nition 5.1 A twist1 (or kinematic screw or distributor) is the name of the screw which is �the
Eulerian velocity �eld of a rigid body�.

So, let Obj be a rigid body, PObj its particles, Φ̃ :

{
[t0, T ]×Obj → R3

(t, PObj ) → p(t) = Φ̃(t, PObj )

}
its motion

(where t0, T ∈ R and t0 < T ), and Ωt := Φ̃(t,Obj ) ⊂ R3 its position in R3 at t.

Its Eulerian velocity �eld v⃗ is de�ned by v⃗(t, p(t)) := ∂Φ̃
∂t (t, PObj ) when p(t) = Φ̃(t, PObj ).

Fix t and let v⃗(t, p(t)) =noted v⃗(p).
The body being rigid, v⃗ is a�ne and antisymmetric (is a screw called a twist): so, cf. (4.3) with

ω⃗ := ω⃗e, for all p, q ∈ Ωt,
v⃗(q) = v⃗(p) + ω⃗ ×−→pq. (5.1)

De�nition 5.2 ω⃗ is the vector angular velocity, and ω := ||ω⃗|| is the angular velocity.

Thus if c ∈ Ax(v⃗) (so v⃗(c) is the velocity along Ax(v⃗)) then (orthogonal decomposition of v⃗(q))

∀q ∈ Ωt, v⃗(q) = v⃗(c) + ω⃗ ×−→cq ∈ Vect{ω⃗} ⊕⊥ Vect{ω⃗}⊥. (5.2)

5.2 Pitch

De�nition 5.3 For a non constant twist (ω ̸= 0), the pitch is, for c ∈ Ax(v⃗),

p := 2π
||v⃗(c)||

ω

noted
= 2π

linear speed

angular speed
. (5.3)

In other words, v⃗(c) ∥ ω⃗ gives v⃗(c) = hω⃗ and p = 2πh.
It is the �thread pitch� or a nut (or of a screw), i.e. the distance from the crest of one thread to the

next, or from one groove to the next. (The pitch vanishes for a pure rotation de�ned by v⃗(c) = 0.)

1De�nition of a twist by R.S. Ball [1]: �A body is said to receive a twist about a screw when it is rotated about the
screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch
and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can

be reduced is a twist about a screw.�
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10 5. Twist = kinematic torsor = distributor

Exercise 5.4 Recall the de�nition of the angular speed (ω here), and explain the pitch.

Answer. 1- Plane motion immersed in R3: r⃗(t) =

R cos(ω0t)
R sin(ω0t)

0

 where ω ∈ R∗ (with prop. 2.7); Eulerian

velocity v⃗(t, r⃗(t)) = r⃗ ′(t) = Rω0

− sin(ω0t)
cos(ω0t)

0

 = Rω0u⃗(t) where u⃗(t) = r⃗ ′(t)
||r⃗ ′(t)|| (unit tangent vector). De�ni-

tions: ω0 is the angular speed and ω⃗0 =

 0
0
ω0

 the angular velocity, so v⃗(t, r⃗(t)) = ω⃗0 × r⃗(t); It gives (5.2) when

v⃗(c) = 0⃗ and −→cq = r⃗(t).

2- The pitch is given by the helix r⃗(t) =

x(t) = R cos(ω0t)
y(t) = R sin(ω0t)

z(t) = at

 =

 0
0
at

+

R cos(ω0t)
R sin(ω0t)

0

, sum of a translation

along the vertical axis and of a plane rotation in the horizontal plane. Its projection on the horizontal plane (cf. 1-)
is periodic with period 2π

ω0
(because ω0(t +

2π
ω0

) = ω0t + 2π), and the pitch is p = z(t + 2π
ω0

) − z(t) = a 2π
ω0

= the

distance �between two grooves of a screw�. This corresponds in (5.2) to v⃗(c) =

 0
0
a

, so ||v⃗(c)|| = a = linear

speed (speed along the axis), so p = 2π a
ω0

= 2π ||v⃗(c)||
ω0

= 2π
linear speed
angular speed

.

Exercise 5.5 (5.1) gives the �equiprojectivity property�: v⃗(p).−→pq = v⃗(q).−→pq. Prove it starting from ||−−−−−→p(t)q(t)||e =

constant (rigid body) for all particles PObj , QObj ∈ Obj where p(t) = Φ̃(t, PObj ) and q(t) = Φ̃(t, QObj ).

Answer. Choose a O ∈ R3. let p(t) = Φ̃(t, PObj ) and q(t) = Φ̃(t, QObj ). Thus d
dt

−−−−−→
p(t)q(t) = d

dt

−−−→
Oq(t) − d

dt

−−−→
Op(t) =

v⃗(t, q(t)) − v⃗(t, p(t)). And ||−−−−−→p(t)q(t)||2e = (
−−−−−→
p(t)q(t),

−−−−−→
p(t)q(t))g = constant, thus d

dt
(
−−−−−→
p(t)q(t),

−−−−−→
p(t)q(t))g = 0 =

2( d
dt

−−−−−→
p(t)q(t),

−−−−−→
p(t)q(t))g, thus 0 = (v⃗(t, q(t))− v⃗(t, p(t))),

−−−−−→
p(t)q(t))g (equiprojectivity property).

5.3 Pure rotation

De�nition 5.6 A pure rotation is a non constant twist v⃗ s.t. ∃c0 ∈ R3, v⃗(c0) = 0⃗.

Hence such a c0 is ∈ Ax(v⃗), cf prop. 4.8-3, so, for all q ∈ R3,

v⃗(q) = ω⃗e ×e
−→c0q with ω⃗e ̸= 0⃗. (5.4)

(So here v⃗(q) ⊥ ω⃗e for all q ∈ R3 and Ax(v⃗) = c0 +Vect{ω⃗e}).

Exercise 5.7 Prove: A twist v⃗ is the sum of a pure rotation and a translation.

Answer. With v⃗(p) = v⃗(O) + ω⃗e ×e
−→
Op: Call v⃗r the pure rotation de�ned by v⃗r(p) = ω⃗e ×e

−→
Op and call v⃗t the

translation de�ned by v⃗t(p) = v⃗(O). We have (v⃗t + v⃗r)(p) = v⃗(p), for all p, hence v⃗ = v⃗r + v⃗t.

Exercise 5.8 Fix (e⃗i), write ×e = × and ω⃗e = ω⃗, let v⃗1(q) = ω⃗1 ×−→c1q and v⃗2(q) = ω⃗2 ×−→c2q.
1- Suppose Ax(v⃗1) ∥ Ax(v⃗2), axes disjoint, and ω⃗1+ω⃗2 ̸= 0⃗. Find Ax(v⃗1+v⃗2) and prove that v⃗1+v⃗2 is a pure

rotation.
1'- Suppose Ax(v⃗1) ∥ Ax(v⃗2), axes disjoint, and ω⃗1+ω⃗2 = 0⃗. Prove that v⃗1+v⃗2 is a translation.
2- Suppose Ax(v⃗1) ∦ Ax(v⃗2) and the axes intersect at only one point O. Find Ax(v⃗1+v⃗2), and prove that v⃗1+v⃗2

is a pure rotation.
3- Suppose Ax(v⃗1) ∦ Ax(v⃗2) and the axes don't intersect. Find Ax(v⃗1+v⃗2), and prove that v⃗1+v⃗2 is not a pure

rotation. Give a �simple� particular c0 ∈ Ax(v⃗1+v⃗2).

Answer. The notations tells: c1 ∈ Ax(v⃗1), c2 ∈ Ax(v⃗2), (v⃗1+v⃗2)(q) = ω⃗1 ×−→c1q + ω⃗2 ×−→c2q for all q.
1- Here ω⃗2 = λω⃗1 with λ ̸= −1, thus (v⃗1+v⃗2)(q) = ω⃗1 × (−→c1q + λ−→c2q) = (λ+1)ω⃗1 × ( 1

λ+1
−→c1q + λ

λ+1
−→c2q). Hence

choose c0 ∈ R3 s.t. 1
λ+1

−−→c1c0 +
λ

λ+1
−−→c2c0 = 0⃗ (barycentric point on the straight line containing c1 and c2): We get

v⃗(c0) = 0⃗ and Ax(v⃗1+v⃗2) = c0 + Vect{ω⃗1+ω⃗2}. Remark (on barycentric points): We have −−→c1c0 = 1
λ+1

−−→c1c2, thus

c0 in between c1 and c2 i� 0 < 1
λ+1

< 1, i.e. i� λ > 0, i.e. i� ω⃗1 and ω⃗2 have the same orientation.

1'- (v⃗1+v⃗2)(q) = (v⃗1+v⃗2)(p) + (ω⃗1+ω⃗2) × −→pq = (v⃗1+v⃗2)(p) + 0⃗ for all p, q, so v⃗1+v⃗2 is constant; Suppose
∃q ∈ R3 s.t. (v⃗1+v⃗2)(q) = 0⃗: Hence ω⃗1×−→c1q+(−ω⃗1)×−→c2q = 0⃗, thus ω⃗1×−−→c1c2 = 0⃗, thus ω⃗1 ∥ −−→c1c2, absurd because
the axes are parallel and disjoint. Thus v⃗1+v⃗2 ̸= 0⃗.

2- Take c1=c2=0, thus (v⃗1+v⃗2)(q) = (ω⃗1+ω⃗2)×
−→
Oq, thus (v⃗1+v⃗2)(O) = 0⃗ and Ax(v⃗1+v⃗2) = O+Vect{ω⃗1+ω⃗2}.
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3- Here ω⃗ := ω⃗1+ω⃗2 ̸= 0⃗ and (4.7) tells that c0 de�ned by −−→c1c0 = 1
||ω⃗||2 ω⃗ × (v⃗1+v⃗2)(c1) =

1
||ω⃗||2 ω⃗ × v⃗2(c1) =

1
||ω⃗||2 ω⃗ × (ω⃗2 ×−−→c2c1), i.e.

−−→c1c0 =
1

||ω⃗||2
(
(ω⃗ •ge

−−→c2c1)ω⃗2 − (ω⃗ •ge ω⃗2)−−→c2c1
)

(5.5)

is in Ax(v⃗1+v⃗2), so Ax(v⃗1+v⃗2) = c0 +Vect{ω⃗1+ω⃗2}.
In particular, choose c1 and c2 s.t. −−→c1c2 ⊥ ω⃗1 and ⊥ ω⃗2, i.e. the segment [c1, c2] is the shortest segment joining

Ax(v⃗1) and Ax(v⃗2). Thus −−→c1c2 ∈ Vect{ω⃗1, ω⃗2}⊥ and −−→c1c2 ⊥ ω⃗1+ω⃗2. Thus

−−→c1c0 = − ω⃗ •ge ω⃗2

||ω⃗||2
−−→c2c1, and −−→c2c0 = −−→c2c1 +−−→c1c0 = (1− ω⃗ •ge ω⃗2

||ω⃗||2 )−−→c2c1. (5.6)

In particular c0 is in the straight line containing c1, c2. Thus v⃗1(c0) = ω⃗1 × −−→c1c0 = − ω⃗ •ge ω⃗2

||ω⃗||2 ω⃗1 × −−→c2c1, and

v⃗2(c0) = ω⃗2 ×−−→c2c0 = (1− ω⃗ •ge ω⃗2

||ω⃗||2 )ω⃗2 ×−−→c2c1. Thus (v⃗1+v⃗2)(c0) = (− ω⃗ •ge ω⃗2

||ω⃗||2 ω⃗1 + (1− ω⃗ •ge ω⃗2

||ω⃗||2 )ω⃗2)×−−→c2c1. And ω⃗1

and ω⃗2 are independent, thus ω⃗ and ω⃗2 are independent, thus ω⃗ •ge ω⃗2 ̸= 0 and (− ω⃗ •ge ω⃗2

||ω⃗||2 ω⃗1+(1− ω⃗ •ge ω⃗2

||ω⃗||2 )ω⃗2) ̸= 0⃗,

together with (− ω⃗ •ge ω⃗2

||ω⃗||2 ω⃗1+(1− ω⃗ •ge ω⃗2

||ω⃗||2 )ω⃗2) ⊥ −−→c2c1 ̸= 0⃗; Thus (v⃗1+v⃗2)(c0) ̸= 0⃗, thus v⃗1+v⃗2 isn't a pure rotation.

6 Wrench = static torsor

6.1 De�nition

Let (e⃗i) be a Euclidean basis and ×e =noted ×.

De�nition 6.1 Let P0 ∈ R3 (e.g. the position of a bolt). Let Pf⃗ ∈ R3 and let f⃗(Pf⃗ ) be a vector at Pf⃗
interpreted as a force at Pf⃗ . The moment M⃗f⃗ (P0) called the torque at P0 applied by the force f⃗(Pf⃗ ) is

M⃗f⃗ (P0) := f⃗(Pf⃗ )×
−−−→
Pf⃗P0 (∈ Vect{f⃗(Pf⃗ ),

−−−→
Pf⃗P0}⊥). (6.1)

The �moment arm� at P0 is the distance between the straight line Pf⃗ + Vect{f⃗(Pf⃗ )} and P0, i.e. the

distance between P0 and its orthogonal projection on Pf⃗ +Vect{f⃗(Pf⃗ )}.

De�nition 6.2 If Ω is a set in R3 then the wrench due to f⃗(Pf⃗ ) is the screw M⃗f⃗ : Ω →
−→
R3 de�ned by:

For all P ∈ Ω,
M⃗f⃗ (P ) = f⃗(Pf⃗ )×

−−→
Pf⃗P (=

−−→
PPf⃗ × f⃗(Pf⃗ )). (6.2)

f⃗(Pf⃗ ) is the resultant vector of the wrench, and M⃗f⃗ (P ) is the moment at P . (So M⃗f⃗ (Pf⃗ ) = 0⃗ and

Ax(M⃗f⃗ ) = Pf⃗ +Vect{f⃗(Pf⃗ )}).

Remark 6.3 So: A torque M⃗f⃗ (P0) is used to screw a nut which is at P0. A wrench M⃗f⃗ gives the torque

M⃗f⃗ (P ) on any point P in R3 due to f⃗(Pf⃗ ) at Pf⃗ .

6.2 Couple of forces and resulting wrench

Consider two vectors (forces) f⃗1(Pf1) and f⃗2(Pf2) at two distinct points Pf1 and Pf2 .

Let P0 = Pf1 +
1
2

−−−−→
Pf1Pf2 (the midpoint, e.g. P0 is the position of a nut holding a car wheel and Pf1 and

Pf2 are the ends of a lug wrench used to unscrew the nut, drawing)). So
−−−→
Pf2P0 = −−−−→

Pf1P0. And suppose

that f⃗2(Pf2) = −f⃗1(Pf1) and f⃗1(Pf1) ⊥
−−−→
Pf1P0 (drawing). We get: The sum of the torques at P0 is

M⃗(P0) := M⃗f⃗1
(P0) + M⃗f⃗2

(P0) = f⃗1(Pf1)×
−−−→
Pf1P0 + f⃗2(Pf2)×

−−−→
P0Pf2 = 2 f⃗1(Pf1)×

−−−→
Pf1P0 (6.3)

(expected result).

More generally, let Ω be the segment [Pf1 , Pf2 ] and P ∈ [Pf1 , Pf2 ] (so P = Pf1 + λ
−−−−→
Pf1Pf2). We get the

wrenches M⃗f⃗1
and M⃗f⃗2

de�ned in [Pf1 , Pf2 ] and their sum:

M⃗(P ) := (M⃗f⃗1
+M⃗f⃗2

)(P ) = f⃗1(Pf1)×
−−−→
Pf1P + f⃗2(Pf2)×

−−−→
PPf2 = f⃗1(Pf1)×

−−−−→
Pf1Pf2 = ⃗constant (6.4)

(independent of P ); In fact, the �moment arms� d(P, Pf1) and d(P, Pf2) (�one short and one long�)

give (6.4). This wrench M⃗ is a constant screw along [Pf1 , Pf2 ].

More generally Ω is extended to R3: we also get (6.4): The wrench M⃗ is a constant screw in R3.
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