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Goal: To understand the first and second principles. Starting point: Explanation of what a differential
form is, exact (like dU or dS), or non-exact (like 6@ and 6W).
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The notation g := f means “g is defined by g = f”.

1 The space of linear forms

1.1 Usual notations

The finite dimensional vector space E, dim E = n € N*, will be either the usual geometric space R? or the

space R™ of thermodynamic variables T, P, V,n, N, j1, ...; (€;)i=1,...n Méed(é}) will be an imposed Cartesian
U1

basis in F, and a vector 7 =Y., v;¢; € E will be represented by its matrix column [] =
Un

Recall: If X and ) are two sets then (F(X;)), +,.) =" F(X;)) is the real vector space of functions
from X to ) where the sum f + g of the functions f and g is defined by (f + g)(z) := f(z) + g(z), and
the exterior multiplication \.f ="°%? \f of a scalar A and a function f is defined by (\.f)(x) := A(f(z)).

1.2 The dual space E* = L(E;R) of linear forms

Definition 1.1 A linear form ¢ on E is function ¢ € F(E;R) which is linear, i.e. s.t. £(7 + M) =
0(0) + M(w) for all ¥,%w € E and A € R. And

05) "L 5, (1.1)

the (external) dot notation £.¢' being used because of the “distributivity type property characterizing
linearity”: £.(0 + A\W) = £.0 + M.10.
The space of linear forms on E is called £(E;R)="0t¢d f*.

E* is a vector space, sub-space of F(E;R), easy proof.
Interpretation: A linear form ¢ € E* is a measuring tool: It measures vectors ¢ € E (value £.7 € R).

Dimension calculus, with R the field used to build the vector space F(E;R) :

e The “dimension” (length, temperature, pressure, volume...) of a vector ¢ is denoted {¥}.

o If A € R then {A\} :=1, and X is dimensionless.

e If A € R and ¥ = A7, the “dimension calculus” gives {th} = {\} = {A\}{¥} = {7} = {7} (as
expected: U and ¢ have the same dimension). E.g., if €] is a basis vector modeling a wooden stick of
length 1 foot, and if ¢ = 3é}, then {0} = {€1} and the length of ¥ is A = 3 (dimensionless) relative to é;.

eIf /€ E* and ¥ € E then £.¥ € R, so 1 = {{.v} = 1, and “dimension calculus™ {¢.¢} = {¢}{0} where
{¢} is the dimension of ¢, so

{0} = {#} L (1.2)

E.g., dim E =1, €] is a basis vector modeling a wooden stick of length 1 foot, {1 € E* is the linear form
“the measuring tool” defined by ¢;.€; = 1: if ¥ = Aéj then {v} = {€1} (same dimension), {A\} =1 (no
dimension) with A = ¢;.7, the length of ¥ being A relative to (1), i.e. the length of ' is A in foot.



Remark: tells that the dimension of a linear form, called “a covariant vector”, is the inverse of
the dimension of a vector called “a contravariant vector”.

e The dimension of a bilinear form g : (¥, W) € Ex E — g(u,¥) = (4, ?)4 € Ris given by {g(@,7)} =1
(dimension of a real); And {g(@,v)} = {g}{u}{?} (no dimension), thus

1
{7}

{9} = = {0}%. (1.3)

(And g(-,-) is “twice covariant”.)

1.3 Dual basis

(€;) in E being a basis in E, let m; € E* be the projection on Vect{€;} parallel to the other directions,
i.e. m; € E* (linear form) is defined by m.(€};) = d;;, i.e. (linearity notation)

7i-€j = i, (1.4)

foralli,j=1,..,n. Le. m(€;) =1, and m;(€;) =0 if ¢ # j.
Interpretation: With ¢ = 377, v;€;, and m; being linear, m;(v) = m;(3_7_, v;€;) = >0, v mi(€)) =
Zn Vj 5ij> thus

j=1
7Ti.17: Vi, (15)

so m; is the (linear) tool that gives the i-th component of a vector, relative to (&;).

Example 1.2 If X = Té, + P&, € R?, where €; models 1 Kelvin degree and €, models 1 Pascal, then

— —

mp gives the temperature in Kelvin and 7y gives pressure in Pascal: 71(X) =T and m(X) = P. oa

Proposition 1.3 (and definition) (m;);=1,.._ , is a basis in E*, called the dual basis of (€;). If £ € E*
then
L= Z&- mi, written [(]=({y .. {y) (row matriz), where {; =/(.€;. (1.6)

Thus, for all v =", v;€;,

L0 = Z&vi = [0).[0] (matriz calculation rule), (1.7)

the last equality with the usual product rule: (matriz 1 xn) X (matrizx nx1) = (matriz 1 % 1).

Proof. 1- The =; are linearly independent: If a4, ...,a, € R and Z?Zl a;m =0 then Y1 a;m(€;) =0,
thus """ | a;6;; = 0, thus a; = 0, true for all j.

2- The m; span E*: Let ¢ € R"", let ¢; := ((€;), let g :== >, ¢;m;; Thus g is linear (E* is a vector
space) and g(é}) = Z;L:l&ﬂ'z(é’]) = E?:léiéij = Ej = g(é}), for all j, thus g = é, thus ¢ = Z;L:lgﬂfi.

Thus (m;)i=1,...,n is a basis in E*, and £ = Y"1, {;m; gives (&) = ;.

And 4.7 = (Zj €j7rj).(2i Ulgz) = Zij gj”Ui Wj(é;‘) = Zij Ejvi 5ij = Zj gj’l)j = w][’lﬂ un

1.4 Cartesian setting: Notations for the dual basis

e In the geometric space if the variables names are x,y, ... then

m ", w2y, .., and 0= 0 dz + lody + ... (1.8)
e In the thermodynamic space if the variables names are T, P, ... then

m "EAT, 1" ap, .., and £ =0, dT + lydP + ... (1.9)



2 Differential

2.1 Definition and partial derivatives

Definition 2.1 Let 2 be an open set in E, let Zy € E. A function ¢ € F(Q,R) is differentiable at Z iff
there exists a linear form ¢z, ="°'*d d¢ (%) € E*, called the differential of ¢ at Ty, s.t., near o,

() = ¢(To) + dp(Zo).(T—70) +o(||Z—To]|). (2.1)

az, (¥)=affine approx.

(2.1) is the first order Taylor development of ¢ near Zp, and the affine function az, : & — az,(¥) =
d(Zo) + do(Zo).(F—7Tp) is called the affine approximation of ¢ near Z; (the graph of az, is the tangent
plane of ¢ at #p). Le., a function ¢ is differentiable at 7y iff its graph admits a tangent plane at Zy.

Definition 2.2 If ¢ is differentiable at all points in €2, then ¢ is differentiable in £2; And the differential
Q - R™
of ¢ is the function d¢ : ¢ _ . . Moreover if d¢ is continuous at any ¥ € ) then ¢ is said
T — do(Z) = Uz
to be C! in Q. And C'(Q;R) is the space of C! functions in Q.
(2.1) gives, for all 7 € R™,
d(Zo+hv) = ¢(Zo) + hdp(Zo).T + o(h), (2.2)
e 8(20 + h7) — 6(2) o,
To + hv) — @(X0) noted - \ noted
Definition 2.3 d¢(%y).0 is the directional derivative of ¢ in the direction ¢ at Z.
In particular, with (€;) a basis in F and ¢ = €;, the i-th partial derivative of ¢ at & is

dp(Zy).v = ilzli% .

- noted noted a(rb a(b
do(#).2 "= (@) "E S (D) (= 52 (D). (2.4)
ted 99 Q =R . . . .
This defines 0;¢p =" = : ¢ _ L do(7).¢ called the i-th partial derivative of ¢.
i z Z).¢;

2.2 Components of a differential in the dual basis

(€;) is a Cartesian basis in R", (m;) is its dual basis (in R™"), ¢ is differentiable at Z € Q. With (1.6
and (2.4):

Corollary 2.4 The components of d¢(Z) € R™*, with respect to the dual basis (m;), are the (f)

 — 9¢ 99 : 2 (96 (z 96 (z
(@) = G @1+t g @, e @0@] = (22@) - @) @)
row matrix called the Jacobian matrix of ¢ at £. With m; ="°t? dx; 4 reads:
L 99
do(Z) = Dt (Z)dzy + ... + &Tn( Z) dxy,. (2.6)

And d¢(F).0 = 8—¢( ) R ( ) vy, = [do(Z)].[V] (matrix product) when 0 =31 v;€;.
And e.g. with & = (z,y,...) or Z= (T, P,...) and (1.8)) or , then

oo L) 8¢ 99

= — — T,P T,P)dl + —(T,P,...)dP. 2.

do(x,y) 835(337.1/)d$+ay(ﬂw, )dy, do(T,P) = =5(T, P)dT + z5( ~)d (2.7)
Example 2.5 Suppose that the pressure P depends on the temperature 7" and volume V: So P =
- - R? - R
P(T,V) where P: < ~ L~ . With (7, mg) ="°t4(dT, dV) (dual basis),

X=(T,V) = P=PX)=P(T,V)
dP(X)=E9 g—?()f) dT + 2—7‘;()?) dV (as soon as P is differentiable at X), i.e
5 oP oP . or or
dP(T,V) = a—T(T,V) drT + W(T’ V)dv, ie. [dP(T,V)]= (55T, V) (T,V)),
oP oP (2:8)
. ap oP

the last equation being the thermodynamical notations. .



3 Differential forms

3.1 Definition

Definition 3.1  being an open (non empty) set in F, a differential form in Q is function o € F(E; E*).
And Q1(9) is the set of C°° differential forms in Q.

So a(Z) € E* (is a linear form) and «(Z).¢ € R (measured value along 9), for all Z € Q and v € R™.

(
Components. (m;)="°"“4(dx;) being the dual basis of a Cartesian basis (€;) in E,

a(Z) = a1 (&) dxy + ... + an(Z) day, ie. [a(@)] = (a1(Z) ... an(¥)) (row matrix), (3.1)

where «;(Z) := a(Z).€; (the i-th component of a(Z)).

3.2 Exact differential form

Definition 3.2 Let « be a differential form in Q. If 3¢ € C'(Q;R) s.t. o = d¢ then « is said to be
exact in 2, and « is said to derive from the potential ¢, or « is conservative, and ¢ is a primitive of a.
Otherwise « is not exact.

So, with a Cartesian basis (€;), if a is exact then a = d¢ gives

9 )
a(f)za—i(f)m—i-a—i(f)ﬁz—k...a [a]z(%ﬁ %‘; ) (3.2)

Example 3.3 (Non exact differential form.) n = 2; Consider the differential form (“dissipative energy”)

a(r,y) = —ydr+ady, ie |a(z,y)=(-y z). (3.3)
This differential form is not exact: If o was exact then 3¢ € C! s.t. o = d¢, so %(f) = —y and
%(f) = 2. And %(a‘:’) = —y gives ¢(¥) = —yx + g(y) for some C! function g since ¢ € C*!, thus

g—;’j(f) = —x + ¢'(y); Together with %(f) = z, thus ¢'(y) = 2z for all Z = (z,y) € Q (not empty);

Absurd: #; = (21,y) and Ty = (x2,y) with z1 # x2 give ¢'(y) # ¢'(y). Thus « is not exact. (Remark: If
1)

20 20
you looked for a ¢ € C? then Schwartz’s theorem gives 68? () = aaaxy (&), thus —1 = +1: Absurd.) o

Remark 3.4 The first principle tells : A “material” has a internal energy U which is a potential, which
means: The density of internal energy is an exact differential form dU. Moreover dU = « + ( is the sum
of two differential forms o and 3, non exact in general, called the elementary heat o ="°**? 5@ and the
elementary work =" §W, so dU = 6Q + 6W.

(Definition of the differential form “the heat”: If 8 = W is the mechanical work, then o = dU — j is
called the heat). ua

3.3 Curves, paths, trajectories

Definition 3.5 Let ¢, € R, tg < t¢, and let {2 be an open subset in E.
A (parametric) curve or path in Q is a function 7 € C([to, t7]; Q).
It is a closed when 7(to) = 7(¢).
Its range, or image, is I' = Im7 := {# € E : 3t € [to, t;] s.t. ¥ = 7(t)} C E (drawing).
When ¢ is a time, a curve is also called a trajectory, and to and ¢; are the initial and final times.

Definition 3.6 The tangent vector along 7 at & = 7(t) is 9(%) = 7'(t) € E. Le. 9(F(t)) =
limy, s M is tangent at Im7 at 7(¢). If ¢ is a time and & a point in our usual geometric space R3,

then the tangent vector is called the velocity (and its norm is the speed).

Notations: A Cartesian basis (€;) being chosen in E, if & = 7(t) = Y. r;(t)€; then ¢(Z) = 7'(t) =
r1(t) r'(t) v1(Z)
Yimrd (e = Yinyvi@e, i [FOl = |0 [, [FOI= =] ¢ | =@
rn(t) () v (Z)

Example 3.7 R?, (¢;) Euclidean basis, 7 : [0, 27r] — R? given by [F(t)] = (x =ni(t)=a+ RCOSt) m7

y=ra(t) =b+ Rsint :

—Rsint .

= radius R circle centered at (a,b), and [U(Z)] = [F'(t)] = ( Rcost > = tangent vector at & = 7(t). «m



3.4 Integration of a differential form

Let 7 [to, t] — Q be a curve in  open set in R™.

Definition 3.8 If o : Q — E* is a C° differential form, then its integral along 7 is the real

/ . / a(F(1)).7 (t) dt "2 / o.dF (3.4)

_ o _ [ T = Rcost " [ —Rsint
Example 3.9 [a(z,y)] = (—y ) (example , [F(t)] = <yRSint>’ so [/ ()] = ( R cost >,

with ¢ € [0,27]. Thus (energy dissipation by friction)

27
/ a= / "(t)dt = / R*dt = 21 R? (3.5)
t t=0

—Rsint

since «(7(t)).7'(t) = [a(7(¢))].[F'(t)] = (—Rsint  Rcost). ( Rcost

) = R%sin?t+ R%2cos?t = R2.

Proposition 3.10 If the differential form « is exact, « = d¢ then fFoz only depends on the ends of the
curve 7

[a= [ ds=o(rte) - o671t 5.5)

In particular, if 7 is closed then degb =0.

Proof. (¢ o7)(t) = ¢(7(t)) = ¢(r1(t), ..., rn(t)) gives

(00 7(0) = doONT(1) (= 5 (FUONGHO) + o+ e (1) T2 1),
thus Y .
[0 & ["aso)r @i = [ (oo m 0@ = (0o MO = 6(711)) - o(itho)).
And 7 is closed iff #(t;) = 7(to). .

Remark 3.11 Continuation of remark dU = 6Q + W with & = 7(¢).
e dU(Z), 6Q(Z) and §W (Z) are meaningful: They are differential forms at a point.
e U(Z) is meaningful: It is the potential at & = 7(t): With 7 restricted to [to,t], U(Z) = U(Zo)+ [-dU.
e But Q(Z) et W (&) are meaningless: Only Q(7) := [.0Q = f‘::to dQ(F(1)).7' (1) dr and W (r) :=
J oW = f::to W (7(7)).7" (1) dr are meaningful (quantities which depend on a trajectory). E.g. W = «

in (3.5) gives §.0W # 0, so 6W is not an exact differential form, and W (Z) = W (#(t)) is a nonsense.
e Vocabulary: U is an energy (at points), @ and W are “quantities of energy” (depend on a path). «u

4 Issue: Impossible gradient vector

4.1 Linear form and scalar dot product: Riesz representation vector

(E7(-7-)g) is a Hilbert space (always true if dim E < o0), i.e. E is a vector space, (-,-)g and [|.||; =
V(¢ —"Oted U« W are a scalar dot product and its associated norm in F, and E is complete with respect
to || ||g (A scalar dot product is a bilinear form E x E — R which is symmetric definite positive.)

Theorem 4.1 (Riesz representation theorem) If ¢ € E* is continuous (always true if dim E < co0)
then ¢ can be represented by a (-,-)4-dependent vector {y € E:

Ve E*, W, € E s.t., Vi€ E, L.0=({,,7),. (4.1)



Proof. Ker/ = {7 € E : £.7 = 0} = ¢£71({0}) is a closed hyperplane since ¢ is continuous. Let
Ker/*s be the (-,-),-orthogonal space: Kerlts = {if € E : Viiy € Kerl, (i, ), = 0}; An orthogonal is
always closed, hence E = Ker/ @ Ker{*s. Suppose £ # 0 (if £ = 0 then 6_;, = 6), thus dim Ker/*s = 1 since
Im¢ = R. Choose a @ ¢ Kert, call wy its (-, -),-orthogonal projection on Ker/ (exists since Ker/ is closed).
Let i := (i, S0 71 € Ker/*s and is (-, ),-unitary. Thus if 7 € E then ¥ = 0y + Aii € Kerl & Ker/"s,
thus (U,7), = 0+ X and 4(0) = 0 + M(7), thus £(¥) = (U,n)gl.n = (U,(€.7)7)y. Thus E_;] = (L.i)i
satisfies (4.1). And uniqueness is trivial. Drawing: 579 is parallel to 7 (is (-, )4 orthogonal to Kerf).
Dependence on (-,-)g: E.g. if (-,-)n = 2(-,-)4 then (£y, ), = £(@) = (b, ) = 2(€p, D), for all T, thus
, = 205, # 0, (when £ # 0).

Dimension calculus: gives {(}{v} = {g}{€ }{17} =03 ) {0}2 {Eg}{U}, thus {£ = {é} as expected:
¢ € E* is “covariant”, and Eg € I is “contravariant”, cf. .

Remark 4.2 let o be a differential form. The Riesz representation theorem tells that «(Z) € E*
can be represented its (-, -),-Riesz representation vector @,(¥) ="°"? f(Z) called a “force vector” ((-,-)y-
dependent); Thus the work done by « along a path 7 is

W) = [a= / a7 ().7(£) dt = /:Of<v?<t>>-f’<t>dt”°éed [Fear w2

and W (f,) is called the work of f along 7 (fundamental in mechanics). oa

4.2 Definition of a gradient
Let E be finite dimensional, f € C*(E;R), and & € E, so df (¥) € E* (linear and continuous).

Definition 4. 3 The (-, -)4-Riesz-representation vector of df (%) is called the (-, -)-gradient vector of f at
Z and written V, f (Z) (depends on (+,-)g). So, cf. (4.1)),

Vi€ B, df(£).5 = (V,f (Z),7),. (4.3)

V7 (z)+7. (Recall :

If a (-,-), is imposed and (7, @), =1 « 1, then V,J ="otd V| thus df (Z).7
df (Z) is covariant while V_f> T) is contravarlant)

4.3 The R" space of thermodynamic variables and impossible gradient

E.g., thermodynamical variables T, P: The Cartesian space R? = RxR = {(T, P)} is made of the “totally
different spaces R”: The dimensions of a temperature 7" and of a pressure P are not comparable. Define
the Cartesian basis (€1 = (1,0),é3 = (0,1)), where e.g. “1” means: 1 Kelvin in €, and 1 Pascal in é5.

Issue: There is no physically meaningful scalar dot product (-, -), in this R?: E.g. ¢ = T'€; + P&, would
give ||]|? = T? + P?... which adds a (squared) temperature with a (squared) pressure: Absurd.

Consequence: E.g. for the internal energy function U : (T, P) € R?> — U(T, P) € R we cannot use the
gradient of U: We must be content with dU.

5 Thermodynamic: vocabulary

5.1 Thermodynamic variables and functions
Let [to, t] C R be a time interval, ty < tf, and O be a non empty open set in the geometric space R3.
[to, ] x O =R
(tv f) - XL(tv ZE)
And X = (X1, ..., Xp) : [to, tf] x O — R™ is the associated thermodynamic vector.

Definition 5.1 A thermodynamic function is a function X : {

E.g. X; =: temperature T, pressure P, volume V', number n of moles, chemical potential p, internal
energy U, entropy S, number N of particles, ... And X;(¢, %) is its value at ¢ at Z.
E.g. n=2 and X = (T, P) : [to, tf] x O — R?, where X (t,7) = (T(t, &), P(t, T)).



Definition 5.2 A thermodynamic function X; will also be called a “thermodynamic variable” when it is
“a variable of a function”; E.g. writing T'= T (P, V) means that T depends on (is a function of) P and V:
Here P and V are the “thermodynamic variables” of the “thermodynamic function” 7.

Definition 5.3 For a gaz, the amount of matter is given in moles: One mole is equal to the number of
atoms in 12 grams of carbon-12, so one mole = 6.02214076 10** atoms = Avogadro constant (~ 6.0 10%3).

5.2 System in equilibrium and quasi-static transformation

Definition 5.4 A system is in equilibrium iff the thermodynamic functions X; are uniform in space, i.e.,
for all ¢ € [to,t] and ¢ € [1,n]y,

noted

VZ, €0, X;(t,7) =X;(t,7), andthen X;(t,7)"Z'X;(t) and X(t,7)"Z*X(). (5.1)

(So, a quasi-static transformation is “slow enough” for the thermodynamic variables to be uniform.)
Moreover, if X is C! (in t) then the thermodynamic transformation (the trajectory) X : ¢ — X(t) is
called quasi-static, the X; are the state variables and X is the state vector.

In the following, all the transformations will be assumed to be quasi-static.

5.3 State function (“grandeur d’état”)
Definition 5.5 A state function (“grandeur d’état” in French) is a function

{R” - R,

(5.2)

X = o(X),
where here R” is the name for the space of the state variables.

E.g. the “internal energy” ¢ = U : (T, P) — U = U(T, P) (here n=2, X = (T, P), and & is defined on
its definition domain C R?).

Definition 5.6 A state function is also the name given to a functional (= a function of functions)

5 {f([tmtf];R") — F([to, t]; R) (5.3)
' X 2 ¢(X):=¢oX, sowith ¢X)(t):=(poX)(t) = d(X(t)). '
E.g. ¢(X) = U(T, P) with ¢(X)(t) = U(T, P)(t) = U(T(t), P(t)) = the internal energy at t.
The state functions ¢ will be supposed C!, hence
dp(X) = @()?) X, 4ot 20 (X)dx (5.4)
aXl 1 aXn n- .
E.g.,
ou ou . oU oU
QU(T, P) = =7(T, P)dT + (T, P)dP, written dU = 7T p dT + 9P r dp (5.5)

(shorten thermo notation which in particular tells that the chosen variables are T and pP).
Eg., dU(T,P,V)=24(T,P,V)dT + 24 (T, P,V)dP+ Z%(T, P,V)dV, and shorten thermo notation:

w9 ou ou

dl' + — dP + — av 5.6
oT |pyv OP|r,v oV |r.p (5.6)

which in particular tells that here the chosen variables are T, P, V.

5.4 State equation (state law)

Definition 5.7 A state equation (or state law) is an implicit relation between the state variables:

—

Z(X)=0, ie Z(T,P,V,.)=0, (5.7)
where Z : X — Z(X) € R is some function (given by thermodynamic engineers).

Example 5.8 Perfect gas: Z(T, P,V,n) = PV —nRT gives the state equation (state law) PV —nRT = 0,
or PV = nRT, where X = (T, P,V,n) € R* and R ~ 8,31 J. K !'.mol~! (perfect gas constant). oa



5.5 Extensive and intensive quantities

B —-R
Consider a body B; Call B the set of all subsets of B, and consider a function ) : { * }

b —¥(b)
Definition 5.9 1. If ¢ (by) + ¢ (b2) = ¥ (b1 U by) for all by, bs € B, then v is said to be extensive (e.g.,

volume, number of particles, energy, entropy).
2. If ¥(b) = ¢(B) for all b € B, then v is said to be extensive (e.g., temperature, pressure).

Remark 5.10 Extensivity and intensivity are also defined by: If B is cut in any two equal parts b;
and be then 1’- 4 is extensive iff ¥(by) +1(be) = ¥(B), and 2’- ¢ is intensive iff ¥(b1) = 1(b2) = ¥(B). va

6 First principle of thermodynamics

6.1 First principle
6.1.1 First part: Existence of an internal energy state function U

Postulate: “the energy cannot be created or destroyed from nothing”, written as

Postulate, first part of the first law:
Any “material object” has an “internal energy U” which is C' for any quasi-static transformation.

So, for a given material, with X = (T, P,V,...), and with QS the subset in C([to, #;]; R") of quasi-static
transformation X : t € [to, tr] — X (t) € R", any material has an energy

U=U(X):=UoX, (6.1)
with U € C1(QS;R) the internal energy function, and with U(X)(t) := U(X (t)) for all X € QS.

6.1.2 Second part: AU=Q+ W

Observation: The heat @ measured in calories and the work W measured in Joule are energies (with
1 calorie ~ 4.184 Joule). E.g., a friction, due to some work, produces heat. E.g., heating a gas creates
an increase in pressure which can produce some work (steam machines).

Postulate, second part of the first law: 1- Along any thermodynamical transformation, the internal
energy U received by a body is the sum of the heat @ received and the work W received:

AU =Q+W. (6.2)

So along any thermodynamical transformation 7: ¢ € [to, t;] — 7(t) € R"™, the heat received is defined to
be @ := AU — W, which means Q(7) = U(7(t;)) — U(#(t0)) — W (7).

2- And the heat and work, received along a thermodynamical transformation, are integrals of differ-
ential forms §¢) and 6T (non exact in general). So, for any quasi-static transformation : [to, ] — R™,

dU = 5Q + 6W, (6.3)

where

o AU == UT(ty)) —U(F(ty)) (= AU(F):LdU:/tde(F(t)).F’(t) dt),
«Q:= Qi) = / 5Q (= / T 5QURE). 7 (t) db), (6.4)

tf
o W :=W(7) :/(WV (:/ SW(F(t)).7 (t) dt).
T to
Remark 6.1 “Heat” and “work” are immaterial quantities (no “exchange of matter”); They are modeled
by differential forms 6@ and §W where §Q(X) and 6W (X) are defined only after a trajectory 7 has been
considered and for X = #(¢). In particular, heat and work don’t exist if there is no transformation. So
heat and work are not a characteristic of a body: They only exists temporarily. And Q(7) = f? 0Q =

S 0Q(F(t)).7 (t) dt and W (F) = [.6W = [T W (F(t)).7"(¢) dt.

(And heat can only be exchanged spontaneously from a hot body to a cold body, irreversibility which
is the object of the second law.) un



6.1.3 Third part : U is an extensive quantity
Postulate, third part of the first law of thermodynamics:

« The internal energy U is an extensive quantity. »

So the energy of two joined systems is the sum of the two energies.

6.2 Some applications
6.2.1 (' the thermal capacity at constant volume
Goal: Quantify the rate of heat g—% when heating a closed system at constant volume.

Hypotheses:
e The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V'; So

X =(T,P,V), dU(X) = dU(T,P,V), 6Q(X) = 6Q(T, P,V), W (X) = dW(T, P, V).
e Isochoric transformation (e.g. bicycle pump, static piston, and we heat), i.e., at all time,

V=" (6.5)

and the remaining thermodynamical variables are T', P.
o (We heat and) P depends on T, i.e. 3Py, € C*(R;R) s.t.

P =Ry, (T). (6.6)

Thus the isochoric transformation only depends on the temperature, i.e. is of the type

. ~{[T1’T2] N } e [ (T)] = ﬁvT<T> (6.7)
o T o X =5, (1) = (TP, ) - TR '

e The only elementary work considered is W = —P dV. So here W = 0 (isochoric), thus
0Q = dU along Ay, (6.8)
ie. 6Q(X) = dU(X) at any X = 7y, (t): The elementary heat Q) is exact in Im (7).

Definition 6.2 The thermal capacity per mole along ¥y, (so at constant volume V) is

1 .. AQ 1 .. AU
ﬁAlzlrrgoﬁ’ so nCy, :=— lim — (6.9)

Cvo = n AT—0 AT’

So:

U, (T+h)) = U (T)) _ dU ©Fv,)

nCy, (Fv, (1)) = lim (T) = dU(Fv, (T)) A, (T).  (6.10)

h—0 h dT
And M(VVO (T>)’7V0/(T> = [du(ﬁ;vo (T))][,?VU/(T)]? here with [dZ/I] = (g% g% g%) and [’VVOI(T)] =67
1
R, (T) |, thus
0
. ou , ou 5. ~
nCVo (,YVU (T)> = 87T(’7V0 (T)) + 87P(X),PV0I(T) +0. (611)
Thermo notations:
oUu oU

nCy dl =dU, and nCy = along vy . (6.12)

0
T \pv 0P imw 0T v

And §Q = dU = nC'y dT along 7y, gives f:% Q= f"?vo dU, thus Q(Yv,) = f:,:qz nCy, (Fv, (T)) dT.
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6.2.2 (p the thermal capacity at constant pressure
Goal: Quantify the rate of heat g—g when heating a closed system at constant pressure.

Hypotheses
e The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V.
e Isobaric transformation (e.g., bicycle pump, free piston, and we heat), i.e., at all time,

P =D, (6.13)

and the remaining thermodynamical variables are T', V.
o (We heat and) V depends on T, i.e. 3Vp, € C1(R;R) s.t.

V = Vg, (T). (6.14)

Thus the only independent variable is 7" and the thermodynamic transformation is of the type

. {[TuTﬂ - R’ } ie. [r(T)] 1:5 (6.15)
: N N , e o = . :
i, T = X = 5(T) = (T, Py, Do (T) " Do (T)

e The only elementary work considered is W = —P dV. Thus dif = Q) — P dV, thus, along ¥p,,

0Qp, (1)) = dU(3r, (T)) + Po dVi, (T), (6.16)
and the elementary heat §@Q is exact in Im(%p,).

Definition 6.3 The thermal capacity per mole along ¥p, (so at constant pressure FPp) is

1 AQ 1 . AU+ RAV
Or=0 Jm xp be Oro=o lim AT ' (6.17)
So N N
- . UAFAR(T+h)) —UFP,(T)) + PoVp, (T + h) — PyVp, (T
nCPO(’YPO(T)) — lim (/VP( )) (/VP( ))h 0 P( ) 0 P( )
Z(Z) ) (6.18)
[0} ~ ~
= AT (1) 1 By Dy (1) = U3, (1)) 32 (D) + Py i) (7).
1 —
With [d] = (2% 94 9U) and 95, (T) =ELD [ 0 we get, at X = Jp,(t) (along 7p,),
7' (T)
= O0U, > ou , = o -
nCp,(X) = 6—T(X) +0+ W(X)Vpo’(T) + Py Ve, (T). (6.19)
Thermodynamic notations: along vp,
ou ou ov ov
dl'=d Pd d = — — = P— . 2
nCp U+Pdv, and nCp oT |\p,v * oV T,p 0T |p * oT |p (6:20)

And §Q = dU + PdV = nCp dT along vp,, thus Q(7p,) = f:,:qz nCp,(Yp,(T)) dT.

6.2.3 Enthalpy, and constant pressure transformation: Cp again
The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V.
Definition 6.4 The enthalpy is H := U + PV, meaning
H(T,P,V)=U(T,P,V)+ PV at X = (T,P,V). (6.21)
where H : R? — R is the enthalpy function.
Definition 6.5 Suppose that the independent thermodynamical variables are 7" and P: This defines
#H(T, P) := H(T, P,V(T,P)) (=H =U(T,P,V(T,P))+ PV(T,P)), (6.22)

where 7 : X = (T,P) e R? — 7:[\()/(\') € R is also called an enthalpy function.

11



Thus %(ﬂ P)= g—%(f) +0+ g—g(f)g—g(ﬂ P)+ P%(T, P). Thermo notations:

oH ou ou oV ov

—_— = — — — P— . 6.23
aT |p 8T|P,V+8V|T,P6T\P+ oT |p ( )

Then consider a transformation at constant pressure Py and let 7—A£p0 (T) := ’}-AL(T, Py): The only variable
left is T. thus with Vp,'(T') := V(T, Py) we get at X = Yp,(T) = (T, Py, Vp, (T))):

dHp, oOH

nCp,(X) o7 (T), written nCp = 9T | (6.24)

So: By definition of the enthalpy, Cp, is the rate of variation of H along ¥p, at X = 7p, (T).

6.2.4 (Cy vs Cp for a perfect gas, and the adiabatic index v = g—"j

Joule experiment: perfect gas approximated by “air at very low pressure”’ and X = (T,P,V).
First result: U = U(X) is independent of P and V, so 24 = 94 — 0, and ¢(X) ="' U(T). Thus

ov
. @) d . @) d %
ch(X)%(T), and nOp(X)%(T)nLPg—;(T,P), (6.25)

at X = (T, P,V) in a trajectory “at constant volume” and in a trajectory “at constant pressure”’. And
PV =nRT, thus V = V(T, P) = 2B and (T, P) = 24, thus

nCp(X) =nCy(X) + nR. (6.26)
Second result: For a perfect gas Cy et Cp are uniform, i.e. independent of X , thus, anywhere,
Cp=Cyv + R. (627)

Hence Cp > Cy: For an increase AT of the temperature, the received heat at constant pressure is greater
than the received heat at constant volume.

Definition 6.6 The adiabatic index (ratio of molar heat capacities) is

S0 7:1+£ (>1). (6.28)

=y Cv

(E.g., mono-atomic perfect gas : v = g, di-atomic perfect gas : v = %)

6.2.5 Adiabatic transformation and perfect gas: PV = constant

Definition 6.7 A (quasi-static) transformation is adiabatic iff 6Q = 0 (no heat exchange, e.g. with
“perfectly” insulated walls).

So here 6W is an exact differential form (= dU). And the case treated is 0W = —PdV.
Observation: Along an adiabatic path neither P or V are constant, but they are linked. How?

Hypothesis: closed system, variables T, P,V , and T depends on P and V.

For perfect gases: T = T(P,V) = Y gives dT (P, V) = LV dP + = PdV, thus (thermodynamic
notations)

[6-25] 1 1
au nCy dT = nC’V(—RV dP + —RP dV) (prefect gas). (6.29)
n n

Here with dU = 6Q+6W = 0—PdV, thus S¥(V dP+PdV) = —PdV, hence (1+ £L)PdV +V dP = 0.
Thus, with v =280 1 4 %7
dv  dP

e + - = 0, along an adiabatic path for a perfect gas. (6.30)

Hence
PV7” = ¢ = constant, along an adiabatic path for a perfect gas. (6.31)

12



Exercice 6.8 Give rigorous steps to get (6.31).

T(t)
Answer. Consider a trajectory 7 : t €— [F(t)] = (P(t)) € R? s.t. 6Q(7(t)) = 0 for all ¢ (adiabatic). With

Vit
T az (VOP @) + POV (1)
Tpe;::ZCt % we have [F(t)] = ( P(t) ), thus [7/(t)] = ( P'(t) ) . With a perfect gas
V(t) V(1)
we have g%(?(t)) =nCv, g—%(?(t)) = %(F(t)) =0, thus dif = ( % g—g U ) gives
dU(F(t)).7'(t) = nCv% (V(t)P’(t) + P(t)v’(t)) +0+0. (6.32)

And, SW(T,P,V) = —PdV, ie. [fW(T,P,V)] = (0 0 —P) (row matrix), thus §W(7(¢)).7'(t) = 0+ 0 —
P(t)V'(t), thus dU = §W (adiabatic) gives dU (7(t)).7’(t) = SW (7(t)).7' (), hence

V)

R
thus ’y“/,((tt)) + 1133((;)) =0, thus vlog(V (¢)) + log(P

Cv ( P'(t) + V'(t)) = —P@)V'(t) along 7, (6.33)

—~

t)) = constant, thus log(P(t)V(t)”) = constant, along 7. .

7 Second principle of thermodynamics

7.1 Introduction: Findings, and Clausius and Kelvin postulates

- Heat is transmitted spontaneously from a hot body to a cold body, never the other way around.
- The heat transfer increases with the temperature difference.
- Heat cannot be transformed entirely into work.

Example 7.1 e A body at the end of a spring in a heat-insulated container: Heat is created (air friction
and internal friction in the spring...), but it doesn’t spontaneously set the mass in motion.

e Hot water and cold water mix spontaneously to make moderately warm water; But moderately hot
water does not spontaneously give hot water on one side and cold water on the other.

e A gas doesn’t compress spontaneously (work must be done). .

Clausius postulate: “A cold body receives heat from a hot one”, or “Heat cannot flow spontaneously
from a cold body to a warm body”, or

A thermodynamic transformation whose only result is to transfer heat from a body at a given
temperature to a body at a higher temperature is impossible.

More precisely: Consider a closed isolated system Z made of two sub-systems Z; and Z, call Ty and
Tho their (uniform) initial temperatures, consider a (quasi-static) trajectory 7 : t € [to, to+h] — X = 7(t)
where i > 0, and suppose 0W = 0. Postulate: If T1g < Thg then the heat Q1 and Q- received by Z; and
Zo satisfy

Q1(7) >0 and Q2(F) <O0. (7.1)

Lord Kelvin (William Thomson) postulate:

In a constant temperature cyclic transformation, no work can be created. (7.2)

7.2 Second principle

Second principle (Clausius): X = (T,P,V,n,...) € R™ being the thermodynamic vector and the
transformations being quasi-static, there exists a function S € C*(R™;R), called entropy, which is

e a state function,

e extensive,

e for a closed isolated system, S is maximum, and

e with 7" in Kelvin degree

0Q
> — .
s > T (7.3)
ie. dS(X) > 75Q:(FX)_ So, along any path 7: t € [to, ;] = X = 7(t) € R,
Q i 5Q(7(t)).7 (t)
> —_— = _— .
a8z /r T /to T(t) ) 7

where AS = S(F(t;)) — S(F(to)).
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Corollary: For a closed trajectory 7,
0Q
— <0 .
f; T~ (7.5

since AS = 0 (because S is a state function). In particular, for a closed path at constant temperature, a
closed isolated system looses heat (in fact it is the reason for the postulate (7.4)-(7.3)).

Remark 7.2 Any strictly decreasing function f : T — f(T') enables to define an entropy = f(T)6Q

(not only f(T) = 7). But the simple function f(T') = =% chosen by Clausius enables a simple dimensional

analysis, the entropy dimension being Joule.Kelvin~!. .

7.3 Reversible transformation

Definition 7.3 A transformation along a path  is reversible iff

ds = % along 7, (7.6)

in which case AS = ff%
NB: A reversible transformation does not exist in real experiments: It can only be approximated.

Example 7.4 6W = —PdV gives 6QQ = dU + P dV. Consider a perfect gas: dU = Cy dT. And consider
a reversible transformation. Hence

_0Q Oy P B dr dv B Ty Vy
when Tp, Vo and T, V; are the initial and final temperatures and volumes. .

7.4 Some applications

Since U and S are now defined, they can be chosen as thermodynamic variables.

7.4.1 U function of S and V
Consider a C! reversible transformation, so 6QQ = T'dS, and suppose §W = —P dV. Thus
dU =TdS — PdV. (7.8)

Thus it is “natural” to choose S and V' as the “independent thermodynamic variables” for U: Thus

ou ou

Sy T WVis - (79)
Full notations: Define I/ : R> — R by (up to a constant)
_ _ — ou — ou =
dU(S,V)=T(S,V)dS —P(S,V)dV, so %(S, V)=T(S,V), W(S’ V)=-P(S,V). (7.10)

7.4.2 S as a function of U and V
Consider a C'! reversible transformation, so §QQ = T dS, and suppose 6W = —P dV. Thus (7.8)) gives

1 P
ds = TdU + ?dV (thermodynamical notation). (7.11)
Thus it is “natural” to choose U and V as the “independent thermodynamic variables” for S: Thus
oS 1 a8 P
= - = d — ==, 7.12
ouwv T an oViw T ( )

Full notations: Define S : R? — R by (up to a constant)

1 P(U,V) oS 1 oS PU,V)
d, = d d — — = . 1
Remark. Fix V = Vj and write S = Sy, (U) := S(U, Vp) and U = Uy, (S) :=U(S, Vo). So Sy, = Uy, "
(reversible case): This is a change of variables U <+ S at constant volume.

14



7.5 Irreversible transformation and created entropy

Definition 7.5 An irreversible transformation is a transformation along a path 7 s.t.

0Q

T (7.14)

(82 - S :) AS>/
T
Then the elementary created entropy is dScreated = dS — %, and the created entropy along 7 is

/5Screated =AS — / % (715)

8 Enthalpy, free energy, free enthalpy

8.1 Enthalpy H = U + PV with variables S and P

Choose the independent thermodynamical variables to be S and P; Thus the internal energy U and the
enthalpy function H = U + PV are characterized by

U=U(S,P) and H =%H(S,P)=US,P)+ PV(S,P). (8.1)

Proposition 8.1 With 6W = —PdV and for a reversible transformation:

OH OH
H=T P = = == = 2
d dS+VdP, and 55r-0 3P v, (8.2)
Full notations: W (S, P) = —P dV(S, P) and
23 N = . aﬁ 8’}—[ =
dH(S, P) = 7(S, P)dS + V(S, P)dP, ie. 25(S,P)=T(S,P), 2L(5,P)=V(S,P). (83)

0S8 or

Proof. Starting point: . So here U = U S,P) =US,V) = U(S,V(S,P)), with T = T(S,V) =
(S, V) and P =P(S,V) = —(S,V), cf. (7.9). Thus

oul ot ot oy oy
TS8P = 52(S, VS, P)) + 8V(S V(s P)SE(S,P) =T~ PEL(S.P),

08
ou ou oy oy
p S5 P) = 55 (5, V(S P))5p(8:P) = —Po5(S,P).

Thus H =B 7(S, P) = U(S, P) + PV(S, P) gives

8’H 61/1 av
aS(S P)= 65(5 P)+P85

o ou oV
ST(S,P) = S5(5,P)+ V(S P) + PH (S, P) = V(S, P).

¥
[
=

(S,P)=T =

Exercice 8.2 Prove that the change of variable V «» P implicitly used to obtain (S, P) from (S, V')
is in fact a Legendre transform.

Answer. U = H&S, V) = U(S, P) gives Us(V) = Us(P) at any given S, so P is necessarily a function of V. In
fact, P=E3 % (g5 vy =P(5,V) =Ps(V), thus

P = —Us'(V) = the slope of Us (up to the sign) (8.6)

which is what the Legendre transform does (when U is strictly convex). .
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8.2 Free energy I'=U — TS (variables T and V')
The free energy F' is (at a given thermodynamical state)

F=U-TS, so,formallyy, dF =dU —T dS — SdT. (8.7)
With dU =T dS — P dV for a reversible transformation with 6W = —P dV, thus

dF =-58dT — PdV. (8.8)
Hence the “natural” variables are 7" and V', and then
OF OF
orT \v OV (89)

Full notations: Define the free energy function F' : (T,V) € R — R by (up to a constant)

_ - - OF ~ oF
dF(T,V) = =S(T,V)dT = P(T,V)dV, so o (T.V)=-8(T\V), =

Interpretation: For a reversible transformation at constant temperature:

(T,V) = —P(T,V). (8.10)

dF =0— PdV =W, (8.11)
so F is the energy available as work at constant temperature (for a reversible transformation).

Exercice 8.3 With §W = —PdV and a reversible transformation, express F' with the Legendre trans-
= =z

form S — T = Uy, (S) (slope of Uy at S). And get 1}

Answer. Starting point: variables S and V, so dU(S,V) = T(S,V)dS — P(S,V)dV. and F = F(S,V) =

UGS, V)= T(S,V)S, with F = F(T,V) = F(S,V), thus Fy(T) = Fv(S) at any V: This is a change of variable

T < S, given by

@ gl; (S,V) =Uy'(S) = slope of Uy at S: Legendre transform. (8.12)

Then U = Uy (T) = Uy (S) gives Uy (T) = HV(§V( T)). Thus Fy = F(S) = Fy(T) when T = Ty (S) = Uy’ (S),
thus F'y (5) = Fv(T) is a Legendre transform, at any fixed V.
Then F(T,V) =U(T,V) = TS(T,V) =U(S(T,V),V) — TS(T, V) gives

OF o, oS .08 ED s
or (T V) = g5 STV GR () = SE.v) - o) B2 -S(.v), o1
OF o, aS U = €2 au
And P=C3 _%U (5 v)=P(S,V)=P(S(T,V),V) = P(T, V), thus (8.10).
8.3 Free enthalpy G = H — T'S (Gibbs energy, variables 7" and P)
The free enthalpy G is
G:=H-TS (=U+PV -T5). (8.14)
With a reversible transformation and §W = —P dV, we have dU = T dS — PdV, thus
dG = (TdS—PdV)+ (VAP + PdV) — (SdT + T dS) (8.15)
=VdP - SdT. ’
Thus the “natural” variables are 7" and P and
oG oG
dG =V dP — SdT, 87\P__S’ P (8.16)
Full notations:
¢=61.pP) B qr Py - T8(T,P), so gi (T, P) = —&(T, P), S—IQD(T, P)=V(T,P). (817)

Interpretation. « The free enthalpy is a criterion of spontaneity of a chemical reaction : dG < 0 for a
spontaneous reaction , dG = 0 at equilibrium. »

(See http://forums.futura-sciences.com/chimie/19331-enthalpie-1libre.html.)

(See http://biologie.univ-mrs.fr/upload/p290/Cours_thermo.pdf.)
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E ice 8.4 P 0 A
xercice 8.4 Prove: o = ——.

Answer. Let z(T, P) := @, ie. z(T,P) = w — S(T, P). Hence

H\Q

o< 0z H(S(T,P),P) 10H as a8
BT(T P) = 8T(T P) = - 7 T%(S(T,P),P)aT(T P) - 8T(T P), (8.18)
with 22 (S(T, P), P) =T, cf. (8.3). v

9 Gibbs—Duhem equations

Here S and V are the chosen variables. The internal energy being extensive, UNX ) = XU X), ie
UNS,\V) = NU(S,V), i.e. U is homogeneous of degree 1. Thus the Euler relation gives, cf. (B.3),

— ou 8
U(S’V)_Sé'S(S V) + 5‘V
Thus a reversible transformation, and 6W = —P dV, together with %(5, V)=T(S,V) and %(5, V)=

—P(S,V) cf. (7.9), give

K8, V). (9.1)

US,V)=ST(S, V)=V P(S,V), written U=ST—-VP. (9.2)
Thus dU =T'dS + SdT — PdV — V dP, with dU = T'dS — P dV, thus
SdT —VdP =0. (9.3)
Thus S(35 ., dS + 57 s V)=V (§s5 )y dS + 575 dV)= 0, hence
%W - g—gl =0 and S %\S Vv g—ils =0 (Gibbs-Duhem equations). (9.4)
Full notation: 177(5, V)=ST(S,V)-VP(S, V) gives 24 = T+S V 87) and au Sg P-V 27‘;,
together with g—lg =T and g‘z//t = —P, thus S -V 87) =0 and S V 877 = 0 at any X = (S, V).

Appendix

A Composite functions

Proposition A.1 If X € CLY(R™;R™), f € CY(R™R) and g = foX (€ C*(R™;R)), i.e. 9(Z) = f(X(Z)),
then

dg(%) = df (X (7)).dX (), (A.1)
i.e., with Cartesian bases, for alli =1,...,n, X = (X1,..,Xm) and & = (21, ..., zp),
99 , o = 0f o 0X;,
20 = Y, KN .20 (A2)

or 0;9(%) = ng;lajf( X (2))0; X, (&) (with unambiguous notation independent of the variable names).
Proof. m = n = 2 for readability, so g(x1,x2) = f(X1(z1,z2), Xo(21,22)). And
gl@rth,xz) = (X (@1+h, 22)) = F(X(21+h, 22), Xo(21+h, 22))

0X 0X5
X1 (@1, 22) + hoet (21, 22) +0(h), Xo (21, 22) + hn

= f( Do o5 (xl,m)—l—o(h))
D @)+ (R @) (P @ +o(1), SE@ (1) +olh)
D 4@+ g (X@) (5, H@+o(1) + b L (@) (52 @)+0() + o)
thus g(r1+h,12’1—g(z1,z2) o %(f(@)%}; (7) + a?)é (X(j‘))%ff ().



Exercice A.2 Let f € C'(R%R). Let g(z,y) := f(\z, \y). Compute 22 in terms of 9L and %.

Answer. 1- X(z,y) = Az and Y (z,y) = Ay give Q—X(:c y) == hX(z,y), %(m y)=0=dY(x,y), .., thus

89 af noted af ag _ af noted f n
%(Jc,y) 5X Az, Ay)A+0 90 )()\x ,AY)A, and By (z,y) =0+ 87()\% AY)A 0w (Az, Ay)A. .

Exercice A.3 Let f € C'(R%;R) and g(z) = [, f(x,t) dt (integral which depends on z). Compute ¢'.

—

Answer. Here g(x) = F(X(z)) where F(X,Y) ft _o f(X,t)dt; And 2E(X)Y) = tio%(X,t) dt and

2L(X,Y) = f(X,Y), hence ¢'(z) = [, 9L (,1) dt+f(:c z).
B Homogeneous function of degree k, Euler theorem
Let RY = {# = (z1,...,xn) ER" :2; >0, Vi =1,...,n}.
Definition B.1 f : R? — R is homogeneous of degree (or of order) & € R* iff, for all A > 0 and all
7 e Ry,
FOZ) =X f (@), ie. fOAz1, . zn) = Nof(ar, . zn). (B.1)

Le., for all 7, the function ¢z : A € R} — ¢z(\) = f(AT) satisfies ¢z(\) = A\*¢z(1) (degree k monomial).
Example B.2 n = 2. p,q € R, f(z,y) = 2Py? and z,y > 0: Thus f(Az, \y) = \PTIf(z,y), so f is
homogeneous of degree p+q. E.g., f(z,y) = \/zy and f(x y) = xy are homogeneous of degree 1 and 2.

g.h:R—=Rand f: (z,y) € R*xR* = f(z,y) = azFg(¥ )—|—bykh( ): f is homogeneous of degree k. o

Theorem B.3 Euler. If f € C*(R'};R) is homogeneous of degree k € R"*, then

k—1 noted o of .
EXN=2f (2 E x; i f (AE) = ;:1 i g pv (A\D). (B.2)
In particular A = 1 gives
N Of
@ =3 w2l @), (B.3)

i=1

And 0, f =noted al{f_ is homogeneous of degree k—1: Forall A > 0,7 € R} andi=1,...,n

Dif \T) = N\=19, (&),  written / ~(\T) = Ak‘lg(f). (B.4)

Proof. Fix Z, and let ¢()\) := f(AZ) = f(Az1, ..., Az,). So 6(A) = F(X(N) = f(X1(N), ..., X, () where
Xi(A) = Az;. Thus

af of

(A M) X (A AT) ;.
=3 18X<x> 0 = HaX(x)x
And ¢(A) = M¢(1), thus ¢'(A) = kA*"1e(1) = kNP1 (), thus 1 | @, 88;; (AT) = kAF—Lf().
(Recall: 91 f(X) = limy_o {50 Xeu) I X0) _moted 0L (3, X,), So &1f(\D) =
limy, 0 f(MlJrh’)‘wQ"”});f()‘ml’)‘””2"") —noted (/\z )()\xl, Aza,...), idem for all Xi.)
Then fix z, ..., 2,. Let h(z) = f(Ax, A\xa, ..., Azy,), s0 = A f(x, 22, ..., ,,), thus
0 g
(W'(z)=) A a)‘(f Az, A\12, .o ATp) = )\ka)ﬁl (@, T2y ey Ty,
Then simplify by A and take x = z;. Idem with x5, x3, .... .
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C Cyeclic equalities

C.1 With two linked variables: g—;% =

(This is nothing more that (f~!o f)(z) = 2 which gives (f~1)'(f(z)).f/(z) = 1, written 42 9% — 1 when

dy dox —
f:x—y= f(z) is a diffeomorphism.)
Hypothesis: 2 variables x,y are linked, i.e. we have an implicit equation

Z(z,y) = 0. (C.1)

Proposition C.1 If Z € C'(RY;R) with 8 ~(z,y) # 0 and 8 “(x,y) # 0, then 3f1, f2 € CH(R;R), with
z = fi(y) and y = fa(x), s.t

dfi, | dfs dx dy

fiofo=1, fi(f2(2)).fo(x) =1 ie. a ——(y )dm (x) =1, written dyde 1. (C.2)

And %(Sﬂ)%(y) =1, written & zJL =1.

Proof. Apply the implicit function theorem (since Z is C? with aZ “(z,y) # 0 and ‘g—g(x,y) = 0 for all
x,y): The C! functions f; and f3 s.t. fi o fo = I exist, thus x = (f1 0f2)( ), thus 1 = f{(fo(x))f5(z). du

Example C.2 Perfect gas with n = ng and V = Vj fixed : Z(T,P) = PVy — ngRT = 0. Thus

T = f1(P) = V" =P, and P = fo(T) = %T. And (fl(fg( ) = n‘goR(”{}fT) = T as wished. And

02 (1 P) = noR # 0 and 2 (T, P) = Vi £ 0. And f{(P) = Y and fy(T) = 52 satisfy f{(P)[}(T) =
when P = fo(T), written %(P) 4P(T) =1, or 4. 40 — 1, ua

Generalization. n > 2 and n variables z,y, z3, ..., 2, with

noted
Z(.’E, Y,23,..., % ) =0 t Z23 ..... Zn (xyy)a (C3)

where here z3, ..., z, are considered to be parameters: We get y = fo(x, 23, ..., 2n) =" fo .. . (),
T = fl(y,ZESa 7Zn) :noted fl,z;;,...,zn (y) and " giVQS

of of2 _, 9f ofh _
dy (Y, 23, vey 2n) o (X, 23y oy 2n) = 1, o (z, 23,y 2n) By (y, 23, -0y 2n) = 1. (C.4)

Thermodynamic notation:

Ox Oy _1 oy Ox _ 1L (C.5)

8y |23, .20 or |23, 320 ox |23, ,2n 8y |23, s2m

Example C.3 Perfect gas: Z(T,P,V,n) = PV —nRT. Thus P = fo(T,V,n) = 22T and T =

nRTV -
f1(P,V,n) = % P. We check: (f2(f1(T,V,n),V,n) = == =T and gglmgf;w” 1. -

C.2 With three linked variables: 9222 — —1

Three variables z,y, z are linked, i.e. we have an implicit equation
Z(x,y,2) = 0. (C.6)

Proposition C.4 Let x; =x ory or z. If Z is C*, and (:v y,2z) # 0 for all z,y,z and i € [1,3]y and
zi € {.T,y,Z}, then Elflvf27f3 € Cl(R27 )

Oh, L 0f O ey 9 .
a9y (y, 2) o (2, ) o (z,y) = —1, written 8y‘Z8Z|z8x\y_ 1 (thermo notations). (C.7)

(Circular permutation for the variables.)
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0zon 07 _
Z(f1(y, 2),y,2) =0, ox 9y Oy

Proof. { Z(z, fa(z,z),2) =0, » gives gﬁ% + ZZ =0, ¢ where the notations have been abusively
y 0z z
Z(xay7f3(x>y)):07 a7 azafg
Oz ' 0z 0w

lightened for readability. Multiply the first equation by % and subtract the second equation:

07 0f1 0fs 07

or oy 9z 0z
oz n 0Z 0fs
oxr 0z 0xr
Multiply the first equation by % and add the second equation: g—f%%% + ?Tf = 0, thus lb .
Generalization, n variables x,y, z, t4, ..., t,; Thermodynamic notation:

or y 0z

ay |z, 04, Up 0z |z,ua,.. Un Ox |y, uq,...un

=—1. (C.8)
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