
Thermodynamics
� Understanding �

Gilles Leborgne
ISIMA, INP Université Clermont Auvergne (UCA)

https://perso.isima.fr/leborgne/

July 8, 2024

Goal: To understand the �rst and second principles. Starting point: Explanation of what a di�erential
form is, exact (like dU or dS), or non-exact (like δQ and δW ).
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The notation g := f means �g is de�ned by g = f �.

1 The space of linear forms

1.1 Usual notations

The �nite dimensional vector space E, dimE = n ∈ N∗, will be either the usual geometric space R3 or the

space Rn of thermodynamic variables T, P, V, n,N, µ, ...; (e⃗i)i=1,...,n
noted
= (e⃗i) will be an imposed Cartesian

basis in E, and a vector v⃗ =
∑n

i=1vie⃗i ∈ E will be represented by its matrix column [v⃗] =

 v1
...
vn

.

Recall: If X and Y are two sets then (F(X ;Y),+, .)=noted F(X ;Y) is the real vector space of functions
from X to Y where the sum f + g of the functions f and g is de�ned by (f + g)(x) := f(x) + g(x), and
the exterior multiplication λ.f =noted λf of a scalar λ and a function f is de�ned by (λ.f)(x) := λ(f(x)).

1.2 The dual space E∗ = L(E;R) of linear forms

De�nition 1.1 A linear form ℓ on E is function ℓ ∈ F(E;R) which is linear, i.e. s.t. ℓ(v⃗ + λw⃗) =
ℓ(v⃗) + λℓ(w⃗) for all v⃗, w⃗ ∈ E and λ ∈ R. And

ℓ(v⃗)
noted
= ℓ.v⃗, (1.1)

the (external) dot notation ℓ.v⃗ being used because of the �distributivity type property characterizing
linearity�: ℓ.(v⃗ + λw⃗) = ℓ.v⃗ + λℓ.w⃗.

The space of linear forms on E is called L(E;R)=notedE∗.

E∗ is a vector space, sub-space of F(E;R), easy proof.

Interpretation: A linear form ℓ ∈ E∗ is a measuring tool: It measures vectors v⃗ ∈ E (value ℓ.v⃗ ∈ R).

Dimension calculus, with R the �eld used to build the vector space F(E;R) :
• The �dimension� (length, temperature, pressure, volume...) of a vector v⃗ is denoted {v⃗}.
• If λ ∈ R then {λ} := 1, and λ is dimensionless.
• If λ ∈ R and v⃗2 = λv⃗, the �dimension calculus� gives {v⃗2} = {λv⃗} = {λ}{v⃗} = 1{v⃗} = {v⃗} (as

expected: v⃗2 and v⃗ have the same dimension). E.g., if e⃗1 is a basis vector modeling a wooden stick of
length 1 foot, and if v⃗ = 3e⃗1, then {v⃗} = {e⃗1} and the length of v⃗ is λ = 3 (dimensionless) relative to e⃗1.

• If ℓ ∈ E∗ and v⃗ ∈ E then ℓ.v⃗ ∈ R, so 1 = {ℓ.v⃗} = 1, and �dimension calculus�: {ℓ.v⃗} = {ℓ}{v⃗} where
{ℓ} is the dimension of ℓ, so

{ℓ} = {v⃗}−1. (1.2)

E.g., dimE = 1, e⃗1 is a basis vector modeling a wooden stick of length 1 foot, ℓ1 ∈ E∗ is the linear form
�the measuring tool� de�ned by ℓ1.e⃗1 = 1: if v⃗ = λe⃗1 then {v⃗} = {e⃗1} (same dimension), {λ} = 1 (no
dimension) with λ = ℓ1.v⃗, the length of v⃗ being λ relative to (e⃗1), i.e. the length of v⃗ is λ in foot.
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Remark: (1.2) tells that the dimension of a linear form, called �a covariant vector�, is the inverse of
the dimension of a vector called �a contravariant vector�.

• The dimension of a bilinear form g : (v⃗, w⃗) ∈ E×E → g(u⃗, v⃗) = (u⃗, v⃗)g ∈ R is given by {g(u⃗, v⃗)} = 1
(dimension of a real); And {g(u⃗, v⃗)} = {g}{u⃗}{v⃗} (no dimension), thus

{g} =
1

{v⃗}2
= {ℓ}2. (1.3)

(And g(·, ·) is �twice covariant�.)

1.3 Dual basis

(e⃗i) in E being a basis in E, let πi ∈ E∗ be the projection on Vect{e⃗i} parallel to the other directions,
i.e. πi ∈ E∗ (linear form) is de�ned by πe(e⃗j) = δij , i.e. (linearity notation)

πi.e⃗j = δij , (1.4)

for all i, j = 1, ..., n. I.e. πi(e⃗i) = 1, and πi(e⃗j) = 0 if i ̸= j.
Interpretation: With v⃗ =

∑n
j=1 vj e⃗j , and πi being linear, πi(v⃗) = πi(

∑n
j=1 vj e⃗j) =

∑n
j=1 vj πi(e⃗j) =∑n

j=1 vj δij , thus
πi.v⃗ = vi, (1.5)

so πi is the (linear) tool that gives the i-th component of a vector, relative to (e⃗i).

Example 1.2 If X⃗ = T e⃗1 + P e⃗2 ∈ R2, where e⃗1 models 1 Kelvin degree and e⃗2 models 1 Pascal, then
π1 gives the temperature in Kelvin and π2 gives pressure in Pascal: π1(X⃗) = T and π2(X⃗) = P .

Proposition 1.3 (and de�nition) (πi)i=1,...,n is a basis in E∗, called the dual basis of (e⃗i). If ℓ ∈ E∗

then
ℓ =

∑
i

ℓi πi, written [ℓ] = ( ℓ1 ... ℓn ) (row matrix), where ℓj = ℓ.e⃗j . (1.6)

Thus, for all v⃗ =
∑

i vie⃗i,

ℓ.v⃗ =
∑
i

ℓivi = [ℓ].[v⃗] (matrix calculation rule), (1.7)

the last equality with the usual product rule: (matrix 1 ∗ n) × (matrix n ∗ 1) = (matrix 1 ∗ 1).

Proof. 1- The πi are linearly independent: If a1, ..., an ∈ R and
∑n

i=1 ai πi = 0 then
∑n

i=1 ai πi(e⃗j) = 0,
thus

∑n
i=1 aiδij = 0, thus aj = 0, true for all j.

2- The πi span E
∗: Let ℓ ∈ Rn∗, let ℓi := ℓ(e⃗i), let g :=

∑n
i=1ℓiπi; Thus g is linear (E∗ is a vector

space) and g(e⃗j) =
∑n

i=1ℓiπi(e⃗j) =
∑n

i=1ℓiδij = ℓj = ℓ(e⃗j), for all j, thus g = ℓ, thus ℓ =
∑n

i=1ℓiπi.
Thus (πi)i=1,...,n is a basis in E∗, and ℓ =

∑n
i=1ℓiπi gives ℓ(e⃗j) = ℓj .

And ℓ.v⃗ = (
∑

j ℓjπj).(
∑

i vie⃗i) =
∑

ij ℓjvi πj(e⃗i) =
∑

ij ℓjvi δij =
∑

j ℓjvj = [ℓ].[v⃗].

1.4 Cartesian setting: Notations for the dual basis

• In the geometric space if the variables names are x, y, ... then

π1
noted
= dx, π2

noted
= dy, ..., and ℓ = ℓ1 dx+ ℓ2 dy + ... (1.8)

• In the thermodynamic space if the variables names are T, P, ... then

π1
noted
= dT, π2

noted
= dP, ..., and ℓ = ℓ1 dT + ℓ2 dP + ... (1.9)

3



2 Di�erential

2.1 De�nition and partial derivatives

De�nition 2.1 Let Ω be an open set in E, let x⃗0 ∈ E. A function ϕ ∈ F(Ω,R) is di�erentiable at x⃗0 i�
there exists a linear form ℓx⃗0

=noted dϕ(x⃗0) ∈ E∗, called the di�erential of ϕ at x⃗0, s.t., near x⃗0,

ϕ(x⃗) = ϕ(x⃗0) + dϕ(x⃗0).(x⃗−x⃗0)︸ ︷︷ ︸
ax⃗0

(x⃗)=affine approx.

+o(||x⃗−x⃗0||). (2.1)

(2.1) is the �rst order Taylor development of ϕ near x⃗0, and the a�ne function ax⃗0
: x⃗ → ax⃗0

(x⃗) =
ϕ(x⃗0) + dϕ(x⃗0).(x⃗−x⃗0) is called the a�ne approximation of ϕ near x⃗0 (the graph of ax⃗0

is the tangent
plane of ϕ at x⃗0). I.e., a function ϕ is di�erentiable at x⃗0 i� its graph admits a tangent plane at x⃗0.

De�nition 2.2 If ϕ is di�erentiable at all points in Ω, then ϕ is di�erentiable in Ω; And the di�erential

of ϕ is the function dϕ :

{
Ω → Rn∗

x⃗ → dϕ(x⃗) = ℓx⃗

}
. Moreover if dϕ is continuous at any x⃗ ∈ Ω then ϕ is said

to be C1 in Ω. And C1(Ω;R) is the space of C1 functions in Ω.

(2.1) gives, for all v⃗ ∈ Rn,

ϕ(x⃗0+hv⃗) = ϕ(x⃗0) + h dϕ(x⃗0).v⃗ + o(h), (2.2)

thus

dϕ(x⃗0).v⃗ = lim
h→0

ϕ(x⃗0 + hv⃗)− ϕ(x⃗0)

h

noted
= ∂v⃗ϕ(x⃗0)

noted
=

∂ϕ

∂v⃗
(x⃗0). (2.3)

De�nition 2.3 dϕ(x⃗0).v⃗ is the directional derivative of ϕ in the direction v⃗ at x⃗.
In particular, with (e⃗i) a basis in E and v⃗ = e⃗i, the i-th partial derivative of ϕ at x⃗ is

dϕ(x⃗).e⃗i
noted
= ∂iϕ(x⃗)

noted
=

∂ϕ

∂xi
(x⃗) (=

∂ϕ

∂e⃗i
(x⃗)). (2.4)

This de�nes ∂iϕ=
noted ∂ϕ

∂xi
:

{
Ω → R
x⃗ → dϕ(x⃗).e⃗i

}
called the i-th partial derivative of ϕ.

2.2 Components of a di�erential in the dual basis

(e⃗i) is a Cartesian basis in Rn, (πi) is its dual basis (in Rn∗), ϕ is di�erentiable at x⃗ ∈ Ω. With (1.6)
and (2.4):

Corollary 2.4 The components of dϕ(x⃗) ∈ Rn∗, with respect to the dual basis (πi), are the ∂ϕ
∂xi

(x⃗):

dϕ(x⃗) =
∂ϕ

∂x1
(x⃗)π1 + ...+

∂ϕ

∂xn
(x⃗)πn, i.e. [dϕ(x⃗)] = ( ∂ϕ

∂x1
(x⃗) ... ∂ϕ

∂xn
(x⃗) ) (2.5)

row matrix called the Jacobian matrix of ϕ at x⃗. With πi =
noted dxi (2.5) reads:

dϕ(x⃗) =
∂ϕ

∂x1
(x⃗) dx1 + ...+

∂ϕ

∂xn
(x⃗) dxn. (2.6)

And dϕ(x⃗).v⃗ = ∂ϕ
∂x1

(x⃗) v1 + ...+ ∂ϕ
∂xn

(x⃗) vn = [dϕ(x⃗)].[v⃗] (matrix product) when v⃗ =
∑n

i=1vie⃗i.

And e.g. with x⃗ = (x, y, ...) or x⃗ = (T, P, ...) and (1.8) or (1.9), then

dϕ(x, y) =
∂ϕ

∂x
(x, y) dx+

∂ϕ

∂y
(x, y, ...) dy, dϕ(T, P ) =

∂ϕ

∂T
(T, P ) dT +

∂ϕ

∂P
(T, P, ...) dP. (2.7)

Example 2.5 Suppose that the pressure P depends on the temperature T and volume V : So P =

P̃(T, V ) where P̃ :

{
R2 → R

X⃗ = (T, V ) → P = P̃(X⃗) = P̃(T, V )

}
. With (π1, π2)=

noted(dT, dV ) (dual basis),

dP̃(X⃗) =(2.6) ∂P̃
∂T (X⃗) dT + ∂P̃

∂V (X⃗) dV (as soon as P̃ is di�erentiable at X⃗), i.e.

dP̃(T, V ) =
∂P̃
∂T

(T, V ) dT +
∂P̃
∂V

(T, V ) dV, i.e. [dP (T, V )] = ( ∂P
∂T (T, V ) ∂P

∂V (T, V ) ) ,

dP =
∂P

∂T |V
dT +

∂P

∂V |T
dV, i.e. [dP ] =

( ∂P
∂T |V

∂P
∂V |T

)
,

(2.8)

the last equation being the thermodynamical notations.

4



3 Di�erential forms

3.1 De�nition

De�nition 3.1 Ω being an open (non empty) set in E, a di�erential form in Ω is function α ∈ F(E;E∗).
And Ω1(Ω) is the set of C∞ di�erential forms in Ω.

So α(x⃗) ∈ E∗ (is a linear form) and α(x⃗).v⃗ ∈ R (measured value along v⃗), for all x⃗ ∈ Ω and v⃗ ∈ Rn.

Components. (πi)=
noted(dxi) being the dual basis of a Cartesian basis (e⃗i) in E,

α(x⃗) = α1(x⃗) dx1 + ...+ αn(x⃗) dxn, i.e. [α(x⃗)] = (α1(x⃗) ... αn(x⃗) ) (row matrix), (3.1)

where αi(x⃗) := α(x⃗).e⃗i (the i-th component of α(x⃗)).

3.2 Exact di�erential form

De�nition 3.2 Let α be a di�erential form in Ω. If ∃ϕ ∈ C1(Ω;R) s.t. α = dϕ then α is said to be
exact in Ω, and α is said to derive from the potential ϕ, or α is conservative, and ϕ is a primitive of α.
Otherwise α is not exact.

So, with a Cartesian basis (e⃗i), if α is exact then α = dϕ gives

α(x⃗) =
∂ϕ

∂x1
(x⃗)π1 +

∂ϕ

∂x2
(x⃗)π2 + ..., [α] = ( ∂ϕ

∂x1

∂ϕ
∂x2

... ) . (3.2)

Example 3.3 (Non exact di�erential form.) n = 2; Consider the di�erential form (�dissipative energy�)

α(x, y) = −y dx+ x dy, i.e. [α(x, y)] = (−y x ) . (3.3)

This di�erential form is not exact: If α was exact then ∃ϕ ∈ C1 s.t. α = dϕ, so ∂ϕ
∂x (x⃗) = −y and

∂ϕ
∂y (x⃗) = x. And ∂ϕ

∂x (x⃗) = −y gives ϕ(x⃗) = −yx + g(y) for some C1 function g since ϕ ∈ C1, thus
∂ϕ
∂y (x⃗) = −x + g′(y); Together with ∂ϕ

∂y (x⃗) = x, thus g′(y) = 2x for all x⃗ = (x, y) ∈ Ω (not empty);

Absurd: x⃗1 = (x1, y) and x⃗2 = (x2, y) with x1 ̸= x2 give g′(y) ̸= g′(y). Thus α is not exact. (Remark: If

you looked for a ϕ ∈ C2 then Schwartz's theorem gives
∂ ∂ϕ

∂x

∂y (x⃗) =
∂ ∂ϕ

∂y

∂x (x⃗), thus −1 = +1: Absurd.)

Remark 3.4 The �rst principle tells : A �material� has a internal energy U which is a potential, which
means: The density of internal energy is an exact di�erential form dU . Moreover dU = α+ β is the sum
of two di�erential forms α and β, non exact in general, called the elementary heat α=noted δQ and the
elementary work β=noted δW , so dU = δQ+ δW .

(De�nition of the di�erential form �the heat�: If β = δW is the mechanical work, then α = dU − β is
called the heat).

3.3 Curves, paths, trajectories

De�nition 3.5 Let t0, tf ∈ R, t0 < tf , and let Ω be an open subset in E.
A (parametric) curve or path in Ω is a function r⃗ ∈ C1([t0, tf ]; Ω).
It is a closed when r⃗(t0) = r⃗(tf ).
Its range, or image, is Γ = Imr⃗ := {x⃗ ∈ E : ∃t ∈ [t0, tf ] s.t. x⃗ = r⃗(t)} ⊂ E (drawing).
When t is a time, a curve is also called a trajectory, and t0 and tf are the initial and �nal times.

De�nition 3.6 The tangent vector along r⃗ at x⃗ = r⃗(t) is v⃗(x⃗) := r⃗ ′(t) ∈ E. I.e. v⃗(r⃗(t)) =

limh→0
r⃗(t+h)−r⃗(t)

h is tangent at Imr⃗ at r⃗(t). If t is a time and x⃗ a point in our usual geometric space R3,
then the tangent vector is called the velocity (and its norm is the speed).

Notations: A Cartesian basis (e⃗i) being chosen in E, if x⃗ = r⃗(t) =
∑n

i=1ri(t)e⃗i then v⃗(x⃗) = r⃗ ′(t) =

∑n
i=1ri

′(t)e⃗i =
∑n

i=1vi(x⃗)e⃗i, i.e. [r⃗(t)] =

 r1(t)
...

rn(t)

, [r⃗ ′(t)] =

 r1
′(t)
...

rn
′(t)

 =

 v1(x⃗)
...

vn(x⃗)

 = [v⃗(x⃗)].

Example 3.7 R2, (e⃗i) Euclidean basis, r⃗ : [0, 2π] → R2 given by [r⃗(t)] =

(
x = r1(t) = a+R cos t
y = r2(t) = b+R sin t

)
: Imr⃗

= radius R circle centered at (a, b), and [v⃗(x⃗)] = [r⃗ ′(t)] =

(
−R sin t
R cos t

)
= tangent vector at x⃗ = r⃗(t).
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3.4 Integration of a di�erential form

Let r⃗ : [t0, tf ] → Ω be a curve in Ω open set in Rn.

De�nition 3.8 If α : Ω → E∗ is a C0 di�erential form, then its integral along r⃗ is the real∫
r⃗

α :=

∫ tf

t=t0

α(r⃗(t)).r⃗ ′(t) dt
noted
=

∫
α.dr⃗. (3.4)

Example 3.9 [α(x, y)] = (−y x ) (example 3.3), [r⃗(t)] =

(
x = R cos t
y = R sin t

)
, so [r⃗ ′(t)] =

(
−R sin t
R cos t

)
,

with t ∈ [0, 2π]. Thus (energy dissipation by friction)∫
r⃗

α =

∫ 2π

t=0

α(r⃗(t)).r⃗ ′(t) dt =

∫ 2π

t=0

R2 dt = 2πR2 (3.5)

since α(r⃗(t)).r⃗ ′(t) = [α(r⃗(t))].[r⃗ ′(t)] = (−R sin t R cos t ) .

(
−R sin t
R cos t

)
= R2 sin2 t+R2 cos2 t = R2.

Proposition 3.10 If the di�erential form α is exact, α = dϕ then
∫
r⃗
α only depends on the ends of the

curve r⃗: ∫
r⃗

α =

∫
r⃗

dϕ = ϕ(r⃗(tf ))− ϕ(r⃗(t0)) (3.6)

In particular, if r⃗ is closed then
∮
r⃗
dϕ = 0.

Proof. (ϕ ◦ r⃗)(t) = ϕ(r⃗(t)) = ϕ(r1(t), ..., rn(t)) gives

(ϕ ◦ r⃗)′(t) = dϕ(r⃗(t)).r⃗ ′(t) (=
∂ϕ

∂x1
(r⃗(t))

dr1
dt

(t) + ...+
∂ϕ

∂xn
(r⃗(t))

drn
dt

(t)),

thus ∫
r⃗

dϕ
(3.4)
=

∫ tf

t0

dϕ(r⃗(t)).r⃗ ′(t) dt =

∫ tf

t0

(ϕ ◦ r⃗)′(t) dt = [(ϕ ◦ r⃗)(t)]tft0 = ϕ(r⃗(tf ))− ϕ(r⃗(t0)).

And r⃗ is closed i� r⃗(tf ) = r⃗(t0).

Remark 3.11 Continuation of remark 3.4: dU = δQ+ δW with x⃗ = r⃗(t).
• dU(x⃗), δQ(x⃗) and δW (x⃗) are meaningful: They are di�erential forms at a point.
• U(x⃗) is meaningful: It is the potential at x⃗ = r⃗(t): With r⃗ restricted to [t0, t], U(x⃗) = U(x⃗0)+

∫
r⃗
dU .

• But Q(x⃗) et W (x⃗) are meaningless: Only Q(r⃗) :=
∫
r⃗
δQ =

∫ t

τ=t0
δQ(r⃗(τ)).r⃗ ′(τ) dτ and W (r⃗) :=∫

r⃗
δW =

∫ t

τ=t0
δW (r⃗(τ)).r⃗ ′(τ) dτ are meaningful (quantities which depend on a trajectory). E.g. δW = α

in (3.5) gives
∮
r⃗
δW ̸= 0, so δW is not an exact di�erential form, and W (x⃗) =W (r⃗(t)) is a nonsense.

• Vocabulary: U is an energy (at points), Q and W are �quantities of energy� (depend on a path).

4 Issue: Impossible gradient vector

4.1 Linear form and scalar dot product: Riesz representation vector

(E, (·, ·)g) is a Hilbert space (always true if dimE < ∞), i.e. E is a vector space, (·, ·)g and ||.||g =√
(·, ·)g =noted v⃗ • w⃗ are a scalar dot product and its associated norm in E, and E is complete with respect

to ||.||g. (A scalar dot product is a bilinear form E × E → R which is symmetric de�nite positive.)

Theorem 4.1 (Riesz representation theorem) If ℓ ∈ E∗ is continuous (always true if dimE < ∞)

then ℓ can be represented by a (·, ·)g-dependent vector ℓ⃗g ∈ E:

∀ℓ ∈ E∗, ∃!ℓ⃗g ∈ E s.t., ∀v⃗ ∈ E, ℓ.v⃗ = (ℓ⃗g, v⃗)g. (4.1)
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Proof. Kerℓ = {v⃗ ∈ E : ℓ.v⃗ = 0} = ℓ−1({⃗0}) is a closed hyperplane since ℓ is continuous. Let
Kerℓ⊥g be the (·, ·)g-orthogonal space: Kerℓ⊥g = {w⃗ ∈ E : ∀v⃗0 ∈ Kerℓ, (w⃗, v⃗0)g = 0}; An orthogonal is

always closed, hence E = Kerℓ⊕Kerℓ⊥g . Suppose ℓ ̸= 0 (if ℓ = 0 then ℓ⃗g = 0⃗), thus dimKerℓ⊥g = 1 since
Imℓ = R. Choose a w⃗ /∈ Kerℓ, call w⃗0 its (·, ·)g-orthogonal projection on Kerℓ (exists since Kerℓ is closed).
Let n⃗ := w⃗−w⃗0

||w⃗−w⃗0||g , so n⃗ ∈ Kerℓ⊥g and is (·, ·)g-unitary. Thus if v⃗ ∈ E then v⃗ = v⃗0 + λn⃗ ∈ Kerℓ⊕Kerℓ⊥g ,

thus (v⃗, n⃗)g = 0 + λ and ℓ(v⃗) = 0 + λℓ(n⃗), thus ℓ(v⃗) = (v⃗, n⃗)gℓ.n⃗ = (v⃗, (ℓ.n⃗)n⃗)g. Thus ℓ⃗g = (ℓ.n⃗)n⃗

satis�es (4.1). And uniqueness is trivial. Drawing: ℓ⃗g is parallel to n⃗ (is (·, ·)g-orthogonal to Kerℓ).

Dependence on (·, ·)g: E.g. if (·, ·)h = 2(·, ·)g then (ℓ⃗g, v⃗)g = ℓ(v⃗) = (ℓ⃗h, v⃗)h = 2(ℓ⃗h, v⃗)h for all v⃗, thus

ℓ⃗g = 2ℓ⃗h ̸= ℓ⃗h (when ℓ ̸= 0).

Dimension calculus: (4.1) gives {ℓ}{v⃗} = {g}{ℓ⃗g}{v⃗}=(1.3) {ℓ}2{ℓ⃗g}{v⃗}, thus {ℓ⃗g} = 1
{ℓ} as expected:

ℓ ∈ E∗ is �covariant�, and ℓ⃗g ∈ E is �contravariant�, cf. (1.2).

Remark 4.2 let α be a di�erential form. The Riesz representation theorem tells that α(x⃗) ∈ E∗

can be represented its (·, ·)g-Riesz representation vector α⃗g(x⃗)=
noted f⃗(x⃗) called a �force vector� ((·, ·)g-

dependent); Thus the work done by α along a path r⃗ is

W ∗(α, r⃗) =

∫
r⃗

α =

∫ tf

t=t0

α(r⃗(t)).r⃗ ′(t) dt =

∫ tf

t=t0

f⃗(r⃗(t)) • r⃗ ′(t) dt
noted
=

∫
t

f⃗ • dr⃗
noted
= W (f⃗ , r⃗), (4.2)

and W (f⃗ , r⃗) is called the work of f⃗ along r⃗ (fundamental in mechanics).

4.2 De�nition of a gradient

Let E be �nite dimensional, f ∈ C1(E;R), and x⃗ ∈ E, so df(x⃗) ∈ E∗ (linear and continuous).

De�nition 4.3 The (·, ·)g-Riesz-representation vector of df(x⃗) is called the (·, ·)g-gradient vector of f at

x⃗ and written
−−→∇gf (x⃗) (depends on (·, ·)g). So, cf. (4.1),

∀v⃗ ∈ E, df(x⃗).v⃗ = (
−−→∇gf (x⃗), v⃗)g. (4.3)

If a (·, ·)g is imposed and (v⃗, w⃗)g =
noted v⃗ • w⃗, then

−−→∇gf =noted −−→∇f , thus df(x⃗).v⃗ =
−−→∇f (x⃗) • v⃗. (Recall :

df(x⃗) is covariant while
−−→∇f (x⃗) is contravariant).

4.3 The Rn space of thermodynamic variables and impossible gradient

E.g., thermodynamical variables T, P : The Cartesian space R2 = R×R = {(T, P )} is made of the �totally
di�erent spaces R�: The dimensions of a temperature T and of a pressure P are not comparable. De�ne
the Cartesian basis (e⃗1 = (1, 0), e⃗2 = (0, 1)), where e.g. �1� means: 1 Kelvin in e⃗1, and 1 Pascal in e⃗2.

Issue: There is no physically meaningful scalar dot product (·, ·)g in this R2: E.g. v⃗ = T e⃗1 + P e⃗2 would
give ||v⃗||2 = T 2 + P 2... which adds a (squared) temperature with a (squared) pressure: Absurd.

Consequence: E.g. for the internal energy function U : (T, P ) ∈ R2 → U(T, P ) ∈ R we cannot use the
gradient of U : We must be content with dU .

5 Thermodynamic: vocabulary

5.1 Thermodynamic variables and functions

Let [t0, tf ] ⊂ R be a time interval, t0 < tf , and O be a non empty open set in the geometric space R3.

De�nition 5.1 A thermodynamic function is a function Xi :

{
[t0, tf ]×O → R

(t, x⃗) → Xi(t, x⃗),

}
.

And X⃗ = (X1, ..., Xn) : [t0, tf ]×O → Rn is the associated thermodynamic vector.

E.g. Xi =: temperature T , pressure P , volume V , number n of moles, chemical potential µ, internal
energy U , entropy S, number N of particles, ... And Xi(t, x⃗) is its value at t at x⃗.

E.g. n=2 and X⃗ = (T, P ) : [t0, tf ]×O → R2, where X⃗(t, x⃗) = (T (t, x⃗), P (t, x⃗)).
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De�nition 5.2 A thermodynamic function Xi will also be called a �thermodynamic variable� when it is
�a variable of a function�; E.g. writing T = T̃ (P, V ) means that T depends on (is a function of) P and V :

Here P and V are the �thermodynamic variables� of the �thermodynamic function� T̃ .

De�nition 5.3 For a gaz, the amount of matter is given in moles: One mole is equal to the number of
atoms in 12 grams of carbon-12, so one mole = 6.02214076 1023 atoms = Avogadro constant (≃ 6.0 1023).

5.2 System in equilibrium and quasi-static transformation

De�nition 5.4 A system is in equilibrium i� the thermodynamic functions Xi are uniform in space, i.e.,
for all t ∈ [t0, tf ] and i ∈ [1, n]N,

∀x⃗, y⃗ ∈ O, Xi(t, x⃗) = Xi(t, y⃗), and then Xi(t, x⃗)
noted
= Xi(t) and X⃗(t, x⃗)

noted
= X⃗(t). (5.1)

(So, a quasi-static transformation is �slow enough� for the thermodynamic variables to be uniform.)

Moreover, if X⃗ is C1 (in t) then the thermodynamic transformation (the trajectory) X⃗ : t → X⃗(t) is

called quasi-static, the Xi are the state variables and X⃗ is the state vector.

In the following, all the transformations will be assumed to be quasi-static.

5.3 State function (�grandeur d'état�)

De�nition 5.5 A state function (�grandeur d'état� in French) is a function

ϕ :

{
Rn → R,

X⃗ → ϕ(X⃗),
(5.2)

where here Rn is the name for the space of the state variables.

E.g. the �internal energy� ϕ = U : (T, P ) → U = U(T, P ) (here n=2, X⃗ = (T, P ), and Φ is de�ned on
its de�nition domain ⊂ R2).

De�nition 5.6 A state function is also the name given to a functional (= a function of functions)

ϕ :

{
F([t0, tf ];Rn) → F([t0, tf ];R)

X⃗ → ϕ(X⃗) := ϕ ◦ X⃗, so with ϕ(X⃗)(t) := (ϕ ◦ X⃗)(t) = ϕ(X⃗(t)).
(5.3)

E.g. ϕ(X⃗) = U(T, P ) with ϕ(X⃗)(t) = U(T, P )(t) = U(T (t), P (t)) = the internal energy at t.

The state functions ϕ will be supposed C1, hence

dϕ(X⃗) =
∂ϕ

∂X1
(X⃗) dX1 + ...+

∂ϕ

∂Xn
(X⃗) dXn. (5.4)

E.g.,

dU(T, P ) = ∂U
∂T

(T, P ) dT +
∂U
∂P

(T, P ) dP, written dU =
∂U

∂T |P
dT +

∂U

∂P |T
dP (5.5)

(shorten thermo notation which in particular tells that the chosen variables are T and P ).
E.g., dU(T, P, V ) = ∂U

∂T (T, P, V ) dT + ∂U
∂P (T, P, V ) dP + ∂U

∂V (T, P, V ) dV , and shorten thermo notation:

dU =
∂U

∂T |P,V
dT +

∂U

∂P |T,V
dP +

∂U

∂V |T,P
dV (5.6)

which in particular tells that here the chosen variables are T, P, V .

5.4 State equation (state law)

De�nition 5.7 A state equation (or state law) is an implicit relation between the state variables:

Z(X⃗) = 0, i.e. Z(T, P, V, ...) = 0, (5.7)

where Z : X⃗ → Z(X⃗) ∈ R is some function (given by thermodynamic engineers).

Example 5.8 Perfect gas: Z(T, P, V, n) = PV −nRT gives the state equation (state law) PV −nRT = 0,

or PV = nRT , where X⃗ = (T, P, V, n) ∈ R4 and R ≃ 8, 31 J.K−1.mol−1 (perfect gas constant).
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5.5 Extensive and intensive quantities

Consider a body B; Call B the set of all subsets of B, and consider a function ψ :

{
B → R+

b → ψ(b)

}
.

De�nition 5.9 1. If ψ(b1) + ψ(b2) = ψ(b1 ∪ b2) for all b1, b2 ∈ B, then ψ is said to be extensive (e.g.,
volume, number of particles, energy, entropy).

2. If ψ(b) = ψ(B) for all b ∈ B, then ψ is said to be extensive (e.g., temperature, pressure).

Remark 5.10 Extensivity and intensivity are also de�ned by: If B is cut in any two equal parts b1
and b2 then 1'- ψ is extensive i� ψ(b1)+ψ(b2) = ψ(B), and 2'- ψ is intensive i� ψ(b1) = ψ(b2) = ψ(B).

6 First principle of thermodynamics

6.1 First principle

6.1.1 First part: Existence of an internal energy state function U

Postulate: �the energy cannot be created or destroyed from nothing�, written as

Postulate, �rst part of the �rst law:

Any �material object� has an �internal energy U � which is C1 for any quasi-static transformation.

So, for a given material, with X⃗ = (T, P, V, ...), and with QS the subset in C1([t0, tf ];Rn) of quasi-static

transformation X⃗ : t ∈ [t0, tf ] → X⃗(t) ∈ Rn, any material has an energy

U = U(X) := U ◦ X⃗, (6.1)

with U ∈ C1(QS;R) the internal energy function, and with U(X⃗)(t) := U(X⃗(t)) for all X⃗ ∈ QS.

6.1.2 Second part: ∆U = Q+W

Observation: The heat Q measured in calories and the work W measured in Joule are energies (with
1 calorie ≃ 4.184 Joule). E.g., a friction, due to some work, produces heat. E.g., heating a gas creates
an increase in pressure which can produce some work (steam machines).

Postulate, second part of the �rst law: 1- Along any thermodynamical transformation, the internal
energy U received by a body is the sum of the heat Q received and the work W received:

∆U = Q+W. (6.2)

So along any thermodynamical transformation r⃗ : t ∈ [t0, tf ] → r⃗(t) ∈ Rn, the heat received is de�ned to
be Q := ∆U −W , which means Q(r⃗) = U(r⃗(tf ))− U(r⃗(t0))−W (r⃗).

2- And the heat and work, received along a thermodynamical transformation, are integrals of di�er-
ential forms δQ and δW (non exact in general). So, for any quasi-static transformation r⃗ : [t0, tf ] → Rn,

dU = δQ+ δW, (6.3)

where

• ∆U := U(r⃗(tf ))− U(r⃗(t0)) (= ∆U(r⃗) =

∫
r⃗

dU =

∫ tf

t0

dU(r⃗(t)).r⃗ ′(t) dt),

• Q := Q(r⃗) =

∫
r⃗

δQ (=

∫ tf

t0

δQ(r⃗(t)).r⃗ ′(t) dt),

• W :=W (r⃗) =

∫
r⃗

δW (=

∫ tf

t0

δW (r⃗(t)).r⃗ ′(t) dt).

(6.4)

Remark 6.1 �Heat� and �work� are immaterial quantities (no �exchange of matter�); They are modeled

by di�erential forms δQ and δW where δQ(X⃗) and δW (X⃗) are de�ned only after a trajectory r⃗ has been

considered and for X⃗ = r⃗(t). In particular, heat and work don't exist if there is no transformation. So
heat and work are not a characteristic of a body: They only exists temporarily. And Q(r⃗) =

∫
r⃗
δQ =∫ tf

t0
δQ(r⃗(t)).r⃗ ′(t) dt and W (r⃗) =

∫
r⃗
δW =

∫ tf
t0
δW (r⃗(t)).r⃗ ′(t) dt.

(And heat can only be exchanged spontaneously from a hot body to a cold body, irreversibility which
is the object of the second law.)
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6.1.3 Third part : U is an extensive quantity

Postulate, third part of the �rst law of thermodynamics:

� The internal energy U is an extensive quantity. �

So the energy of two joined systems is the sum of the two energies.

6.2 Some applications

6.2.1 CV the thermal capacity at constant volume

Goal: Quantify the rate of heat δQ
δT when heating a closed system at constant volume.

Hypotheses:
• The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V ; So

X⃗ = (T, P, V ), dU(X⃗) = dU(T, P, V ), δQ(X⃗) = δQ(T, P, V ), δW (X⃗) = δW (T, P, V ).
• Isochoric transformation (e.g. bicycle pump, static piston, and we heat), i.e., at all time,

V = V0 (6.5)

and the remaining thermodynamical variables are T, P .
• (We heat and) P depends on T , i.e. ∃P̃V0

∈ C1(R;R) s.t.

P = P̃V0
(T ). (6.6)

Thus the isochoric transformation only depends on the temperature, i.e. is of the type

γ⃗V0
:

{
[T1, T2] → R3

T → X⃗ = γ⃗V0
(T ) = (T, P̃V0

(T ), V0)

}
, i.e. [γ⃗V0

(T )] =

 T
P̃V0

(T )
V0

 . (6.7)

• The only elementary work considered is δW = −P dV . So here δW = 0 (isochoric), thus

δQ = dU along γ⃗V0 , (6.8)

i.e. δQ(X⃗) = dU(X⃗) at any X⃗ = γ⃗V0
(t): The elementary heat δQ is exact in Im(γ⃗V0

).

De�nition 6.2 The thermal capacity per mole along γ⃗V0
(so at constant volume V0) is

CV0
:=

1

n
lim

∆T→0

∆Q

∆T
, so nCV0

:=
1

n
lim

∆T→0

∆U

∆T
. (6.9)

So:

nCV0
(γ⃗V0

(T )) = lim
h→0

U(γ⃗V0(T+h))− U(γ⃗V0(T ))

h
=
d(U ◦ γ⃗V0)

dT
(T ) = dU(γ⃗V0

(T )).γ⃗V0

′(T ). (6.10)

And U(γ⃗V0(T )).γ⃗V0
′(T ) = [dU(γ⃗V0(T ))].[γ⃗V0

′(T )], here with [dU ] = ( ∂U
∂T

∂U
∂P

∂U
∂V ) and [γ⃗V0

′(T )] =(6.7) 1
P̃V0

′(T )
0

, thus

nCV0
(γ⃗V0

(T )) =
∂U
∂T

(γ⃗V0
(T )) +

∂U
∂P

(X⃗)P̃V0

′(T ) + 0. (6.11)

Thermo notations:

nCV dT = dU, and nCV =
∂U

∂T |P,V
+
∂U

∂P |T,V

∂P

∂T |V
along γ⃗V . (6.12)

And δQ = dU = nCV dT along γ⃗V0 gives
∫
γ⃗V0

δQ =
∫
γ⃗V0

dU , thus Q(γ⃗V0) =
∫ T2

T1
nCV0(γ⃗V0(T )) dT.
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6.2.2 CP the thermal capacity at constant pressure

Goal: Quantify the rate of heat δQ
δT when heating a closed system at constant pressure.

Hypotheses
• The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V .
• Isobaric transformation (e.g., bicycle pump, free piston, and we heat), i.e., at all time,

P = P0, (6.13)

and the remaining thermodynamical variables are T, V .
• (We heat and) V depends on T , i.e. ∃V̂P0 ∈ C1(R;R) s.t.

V = V̂P0
(T ). (6.14)

Thus the only independent variable is T and the thermodynamic transformation is of the type

γ⃗P0
:

{
[T1, T2] → R3

T → X⃗ = γ⃗P0
(T ) = (T, P0, V̂P0

(T ))

}
, i.e. [γ⃗P0

(T )] =

 T
P0

V̂P0(T )

 . (6.15)

• The only elementary work considered is δW = −P dV . Thus dU = δQ− P dV , thus, along γ⃗P0
,

δQ(γ⃗P0(T )) = dU(γ⃗P0(T )) + P0 dV̂P0(T ), (6.16)

and the elementary heat δQ is exact in Im(γ⃗P0
).

De�nition 6.3 The thermal capacity per mole along γ⃗P0
(so at constant pressure P0) is

CP0
:=

1

n
lim

∆T→0

∆Q

∆T
, i.e. CP0 :=

1

n
lim

∆T→0

∆U + P0 ∆V

∆T
. (6.17)

So

nCP0
(γ⃗P0

(T )) = lim
h→0

U(γ⃗P0(T + h))− U(γ⃗P0(T )) + P0V̂P0(T + h)− P0V̂P0(T )

h

=
d(U ◦ γ⃗P0

)

dT
(T ) + P0 V̂P0

′(T ) = dU(γ⃗P0
(T )).γ⃗P0

′(T ) + P0 V̂P0

′(T ).

(6.18)

With [dU ] = ( ∂U
∂T

∂U
∂P

∂U
∂V ) and γ⃗P0

′(T ) =(6.15)

 1
0

V̂P0
′(T )

 we get, at X⃗ = γ⃗P0(t) (along γ⃗P0),

nCP0(X⃗) =
∂U
∂T

(X⃗) + 0 +
∂U
∂V

(X⃗)V̂P0

′(T ) + P0 V̂P0

′(T ). (6.19)

Thermodynamic notations: along γ⃗P ,

nCP dT = dU + P dV, and nCP =
∂U
∂T |P,V

+
∂U

∂V |T,P

∂V

∂T |P
+ P

∂V

∂T |P
. (6.20)

And δQ = dU + P dV = nCP dT along γ⃗P0 , thus Q(γ⃗P0) =
∫ T2

T1
nCP0(γ⃗P0(T )) dT .

6.2.3 Enthalpy, and constant pressure transformation: CP again

The number n of moles is constant (closed system), and the thermodynamical variables are T, P, V .

De�nition 6.4 The enthalpy is H := U + PV , meaning

H(T, P, V ) = U(T, P, V ) + PV at X⃗ = (T, P, V ). (6.21)

where H : R3 → R is the enthalpy function.

De�nition 6.5 Suppose that the independent thermodynamical variables are T and P : This de�nes

Ĥ(T, P ) := H(T, P, V (T, P )) (= H = U(T, P, V̂(T, P )) + P V̂(T, P )), (6.22)

where Ĥ : X̂ = (T, P ) ∈ R2 → Ĥ(X̂) ∈ R is also called an enthalpy function.
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Thus ∂Ĥ
∂T (T, P ) = ∂U

∂T (X⃗) + 0 + ∂U
∂V (X⃗) ∂V̂∂T (T, P ) + P ∂V̂

∂T (T, P ). Thermo notations:

∂H

∂T |P
=
∂U

∂T |P,V
+
∂U

∂V |T,P

∂V

∂T |P
+ P

∂V

∂T |P
. (6.23)

Then consider a transformation at constant pressure P0 and let ĤP0
(T ) := Ĥ(T, P0): The only variable

left is T . thus with V̂P0
′(T ) := V̂(T, P0) we get at X⃗ = γ⃗P0(T ) = (T, P0, V̂P0(T ))):

nCP0(X⃗)
(6.19)
=

dĤP0

dT
(T ), written nCP =

∂H

∂T |P
. (6.24)

So: By de�nition of the enthalpy, CP0
is the rate of variation of H along γ⃗P0

at X⃗ = γ⃗P0
(T ).

6.2.4 CV vs CP for a perfect gas, and the adiabatic index γ = CP

CV

Joule experiment: perfect gas approximated by �air at very low pressure� and X⃗ = (T, P, V ).

First result: U = U(X⃗) is independent of P and V , so ∂U
∂P = ∂U

∂V = 0, and U(X⃗)=noted U(T ). Thus

nCV (X⃗)
(6.11)
=

dU

dT
(T ), and nCP (X⃗)

(6.19)
=

dU

dT
(T ) + P

∂V̂
∂T

(T, P ), (6.25)

at X⃗ = (T, P, V ) in a trajectory �at constant volume� and in a trajectory �at constant pressure�. And

PV = nRT , thus V = V̂(T, P ) = nRT
P and ∂V̂

∂T (T, P ) =
nR
P , thus

nCP (X⃗) = nCV (X⃗) + nR. (6.26)

Second result: For a perfect gas CV et CP are uniform, i.e. independent of X⃗, thus, anywhere,

CP = CV +R. (6.27)

Hence CP > CV : For an increase ∆T of the temperature, the received heat at constant pressure is greater
than the received heat at constant volume.

De�nition 6.6 The adiabatic index (ratio of molar heat capacities) is

γ :=
CP

CV
, so γ = 1 +

R

CV
( > 1). (6.28)

(E.g., mono-atomic perfect gas : γ = 5
3 , di-atomic perfect gas : γ = 7

5 .)

6.2.5 Adiabatic transformation and perfect gas: PV γ = constant

De�nition 6.7 A (quasi-static) transformation is adiabatic i� δQ = 0 (no heat exchange, e.g. with
�perfectly� insulated walls).

So here δW is an exact di�erential form (= dU). And the case treated is δW = −P dV .

Observation: Along an adiabatic path neither P or V are constant, but they are linked. How?

Hypothesis: closed system, variables T, P, V , and T depends on P and V .

For perfect gases: T = T̃ (P, V ) = PV
nR gives dT̃ (P, V ) = 1

nRV dP + 1
nRP dV , thus (thermodynamic

notations)

dU
(6.25)
= nCV dT = nCV (

1

nR
V dP +

1

nR
P dV ) (prefect gas). (6.29)

Here with dU = δQ+δW = 0−P dV , thus CV

R (V dP +P dV ) = −P dV , hence (1+ R
CV

)P dV +V dP = 0.

Thus, with γ =(6.28) 1 + R
CV

,

γ
dV

V
+
dP

P
= 0, along an adiabatic path for a perfect gas. (6.30)

Hence
PV γ = c = constant, along an adiabatic path for a perfect gas. (6.31)
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Exercice 6.8 Give rigorous steps to get (6.31).

Answer. Consider a trajectory r⃗ : t ∈→ [r⃗(t)] =

 T (t)
P (t)
V (t)

 ∈ R3 s.t. δQ(r⃗(t)) = 0 for all t (adiabatic). With

T
perfect
=
gas

PV

nR
we have [r⃗(t)] =

 P (t)V (t)
nR

P (t)
V (t)

, thus [r⃗ ′(t)] =

 1
nR

(
V (t)P ′(t) + P (t)V ′(t)

)
P ′(t)
V ′(t)

. With a perfect gas

we have ∂U
∂T

(r⃗(t)) = nCV ,
∂U
∂P

(r⃗(t)) = ∂U
∂V

(r⃗(t)) = 0, thus dU = ( ∂U
∂T

∂U
∂P

∂U
∂V

) gives

dU(r⃗(t)).r⃗ ′(t) = nCV
1

nR

(
V (t)P ′(t) + P (t)V ′(t)

)
+ 0 + 0. (6.32)

And, δW (T, P, V ) = −P dV , i.e. [δW (T, P, V )] = ( 0 0 −P ) (row matrix), thus δW (r⃗(t)).r⃗ ′(t) = 0 + 0 −
P (t)V ′(t), thus dU = δW (adiabatic) gives dU(r⃗(t)).r⃗ ′(t) = δW (r⃗(t)).r⃗ ′(t), hence

CV (
V (t)

R
P ′(t) +

P (t)

R
V ′(t)) = −P (t)V ′(t) along r⃗, (6.33)

thus γ V ′(t)
V (t)

+ P ′(t)
P (t)

= 0, thus γ log(V (t)) + log(P (t)) = constant, thus log(P (t)V (t)γ) = constant, along r⃗.

7 Second principle of thermodynamics

7.1 Introduction: Findings, and Clausius and Kelvin postulates

- Heat is transmitted spontaneously from a hot body to a cold body, never the other way around.
- The heat transfer increases with the temperature di�erence.
- Heat cannot be transformed entirely into work.

Example 7.1 • A body at the end of a spring in a heat-insulated container: Heat is created (air friction
and internal friction in the spring...), but it doesn't spontaneously set the mass in motion.

• Hot water and cold water mix spontaneously to make moderately warm water; But moderately hot
water does not spontaneously give hot water on one side and cold water on the other.

• A gas doesn't compress spontaneously (work must be done).

Clausius postulate: �A cold body receives heat from a hot one�, or �Heat cannot �ow spontaneously
from a cold body to a warm body�, or

A thermodynamic transformation whose only result is to transfer heat from a body at a given
temperature to a body at a higher temperature is impossible.

More precisely: Consider a closed isolated system Z made of two sub-systems Z1 and Z2, call T10 and
T20 their (uniform) initial temperatures, consider a (quasi-static) trajectory r⃗ : t ∈ [t0, t0+h] → X⃗ = r⃗(t)
where h > 0, and suppose δW = 0. Postulate: If T10 < T20 then the heat Q1 and Q2 received by Z1 and
Z2 satisfy

Q1(r⃗) > 0 and Q2(r⃗) < 0. (7.1)

Lord Kelvin (William Thomson) postulate:

In a constant temperature cyclic transformation, no work can be created. (7.2)

7.2 Second principle

Second principle (Clausius): X⃗ = (T, P, V, n, ...) ∈ Rn being the thermodynamic vector and the
transformations being quasi-static, there exists a function S ∈ C1(Rn;R), called entropy, which is

• a state function,
• extensive,
• for a closed isolated system, S is maximum, and
• with T in Kelvin degree

dS ≥ δQ

T
, (7.3)

i.e. dS(X⃗) ≥ δQ(X⃗)
T . So, along any path r⃗ : t ∈ [t0, tf ] → X⃗ = r⃗(t) ∈ Rn,

∆S ≥
∫
r⃗

δQ

T
(=

∫ tf

t0

δQ(r⃗(t)).r⃗ ′(t)

T (t)
dt)) (7.4)

where ∆S = S(r⃗(tf ))− S(r⃗(t0)).
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Corollary: For a closed trajectory r⃗, ∮
r⃗

δQ

T
≤ 0, (7.5)

since ∆S = 0 (because S is a state function). In particular, for a closed path at constant temperature, a
closed isolated system looses heat (in fact it is the reason for the postulate (7.4)-(7.3)).

Remark 7.2 Any strictly decreasing function f : T → f(T ) enables to de�ne an entropy = f(T ) δQ
(not only f(T ) = 1

T ). But the simple function f(T ) = 1
T chosen by Clausius enables a simple dimensional

analysis, the entropy dimension being Joule.Kelvin−1.

7.3 Reversible transformation

De�nition 7.3 A transformation along a path r⃗ is reversible i�

dS =
δQ

T
along r⃗, (7.6)

in which case ∆S =
∫
r⃗

δQ
T .

NB: A reversible transformation does not exist in real experiments: It can only be approximated.

Example 7.4 δW = −P dV gives δQ = dU +P dV . Consider a perfect gas: dU = CV dT . And consider
a reversible transformation. Hence

dS =
δQ

T
=
CV

T
dT +

P

T
dV = CV

dT

T
+ nR

dV

V
, thus ∆S = CV log

Tf
T0

+ nR log
Vf
V0

(7.7)

when T0, V0 and Tf , Vf are the initial and �nal temperatures and volumes.

7.4 Some applications

Since U and S are now de�ned, they can be chosen as thermodynamic variables.

7.4.1 U function of S and V

Consider a C1 reversible transformation, so δQ = T dS, and suppose δW = −P dV . Thus

dU = T dS − P dV. (7.8)

Thus it is �natural� to choose S and V as the �independent thermodynamic variables� for U : Thus

∂U

∂S |V
= T,

∂U

∂V |S
= −P. (7.9)

Full notations: De�ne U : R2 → R by (up to a constant)

dU(S, V ) = T (S, V ) dS − P(S, V ) dV, so
∂U
∂S

(S, V ) = T (S, V ),
∂U
∂V

(S, V ) = −P(S, V ). (7.10)

7.4.2 S as a function of U and V

Consider a C1 reversible transformation, so δQ = T dS, and suppose δW = −P dV . Thus (7.8) gives

dS =
1

T
dU +

P

T
dV (thermodynamical notation). (7.11)

Thus it is �natural� to choose U and V as the �independent thermodynamic variables� for S: Thus

∂S

∂U |V
=

1

T
and

∂S

∂V |U
=
P

T
. (7.12)

Full notations: De�ne S : R2 → R by (up to a constant)

dS(U, V ) =
1

T (U, V )
dU +

P(U, V )

T (U, V )
dV, so

∂S
∂U

(U, V ) =
1

T (U, V )
,

∂S
∂V

(U, V ) =
P(U, V )

T (U, V )
. (7.13)

Remark. Fix V = V0 and write S = SV0
(U) := S(U, V0) and U = UV0(S) := U(S, V0). So SV0

= UV0
−1

(reversible case): This is a change of variables U ↔ S at constant volume.
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7.5 Irreversible transformation and created entropy

De�nition 7.5 An irreversible transformation is a transformation along a path r⃗ s.t.

(S2 − S1 =) ∆S >

∫
r⃗

δQ

T
. (7.14)

Then the elementary created entropy is δScreated = dS − δQ
T , and the created entropy along r⃗ is∫

r⃗

δScreated := ∆S −
∫
r⃗

δQ

T
. (7.15)

8 Enthalpy, free energy, free enthalpy

8.1 Enthalpy H = U + PV with variables S and P

Choose the independent thermodynamical variables to be S and P ; Thus the internal energy U and the
enthalpy function H = U + PV are characterized by

U =
̂̂U(S, P ) and H =

̂̂H(S, P ) =
̂̂U(S, P ) + P

̂̂V(S, P ). (8.1)

Proposition 8.1 With δW = −P dV and for a reversible transformation:

dH = T dS + V dP, and
∂H

∂S |P
= T,

∂H

∂P |S
= V, (8.2)

Full notations: δW (S, P ) = −P d̂̂V(S, P ) and
d
̂̂H(S, P ) =

̂̂T (S, P ) dS +
̂̂V(S, P ) dP, i.e.

∂
̂̂H
∂S

(S, P ) =
̂̂T (S, P ),

∂
̂̂H

∂P
(S, P ) =

̂̂V(S, P ). (8.3)

Proof. Starting point: (7.9). So here U =
̂̂U(S, P ) = U(S, V ) = U(S, ̂̂V(S, P )), with T = T (S, V ) =

∂U
∂S (S, V ) and P = P(S, V ) = − ∂U

∂V (S, V ), cf. (7.9). Thus
∂
̂̂U
∂S

(S, P ) =
∂U
∂S

(S,
̂̂V(S, P )) + ∂U

∂V
(S,

̂̂V(S, P ))∂ ̂̂V
∂S

(S, P ) = T − P
∂
̂̂V
∂S

(S, P ),

∂
̂̂U

∂P
(S, P ) =

∂U
∂V

(S,
̂̂V(S, P )) ∂ ̂̂V

∂P
(S, P ) = −P ∂

̂̂V
∂P

(S, P ).

(8.4)

Thus H =(8.1) ̂̂H(S, P ) =
̂̂U(S, P ) + P

̂̂V(S, P ) gives
∂
̂̂H
∂S

(S, P ) =
∂
̂̂U
∂S

(S, P ) + P
∂
̂̂V
∂S

(S, P ) = T =
̂̂T (S, P ),

∂
̂̂H

∂P
(S, P ) =

∂
̂̂U

∂P
(S, P ) +

̂̂V(S, P ) + P
∂
̂̂V

∂P
(S, P ) =

̂̂V(S, P ).
(8.5)

Exercice 8.2 Prove that the change of variable V ↔ P implicitly used to obtain
̂̂U(S, P ) from Û(S, V )

is in fact a Legendre transform.

Answer. U = U(S, V ) =
̂̂U(S, P ) gives US(V ) =

̂̂US(P ) at any given S, so P is necessarily a function of V . In

fact, P =(7.9) − ∂U
∂V

(S, V ) = P(S, V ) = PS(V ), thus

P = −US
′(V ) = the slope of US (up to the sign) (8.6)

which is what the Legendre transform does (when US is strictly convex).
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8.2 Free energy F = U − TS (variables T and V )

The free energy F is (at a given thermodynamical state)

F = U − TS, so, formally, dF = dU − T dS − S dT. (8.7)

With dU = T dS − P dV for a reversible transformation with δW = −P dV , thus

dF = −S dT − P dV. (8.8)

Hence the �natural� variables are T and V , and then

∂F

∂T |V
= −S, ∂F

∂V |T
= −P. (8.9)

Full notations: De�ne the free energy function F̃ : (T, V ) ∈ R2 → R by (up to a constant)

dF̃ (T, V ) = −S̃(T, V ) dT − P̃(T, V ) dV, so
∂F̃

∂T
(T, V ) = −S̃(T, V ),

∂F̃

∂V
(T, V ) = −P̃(T, V ). (8.10)

Interpretation: For a reversible transformation at constant temperature:

dF = 0− P dV = δW, (8.11)

so F is the energy available as work at constant temperature (for a reversible transformation).

Exercice 8.3 With δW = −P dV and a reversible transformation, express F with the Legendre trans-

form S → T = U ′
V (S) (slope of UV at S). And get (8.10).

Answer. Starting point: variables S and V , so dU(S, V ) = T (S, V ) dS − P(S, V ) dV. and F = F (S, V ) =

U(S, V ) − T (S, V )S, with F = F̃ (T, V ) = F (S, V ), thus F̃V (T ) = FV (S) at any V : This is a change of variable
T ↔ S, given by

T
(7.9)
=

∂U
∂S

(S, V ) = UV
′(S) = slope of UV at S: Legendre transform. (8.12)

Then U = ŨV (T ) = UV (S) gives ŨV (T ) = UV (S̃V (T )). Thus FV = F (S) = F̃V (T ) when T = TV (S) = UV
′(S),

thus FV (S) = F̃V (T ) is a Legendre transform, at any �xed V .

Then F̃ (T, V ) = Ũ(T, V )− T S̃(T, V ) = U(S(T, V ), V )− T S̃(T, V ) gives
∂F̃

∂T
(T, V ) =

∂U
∂S

(S̃(T, V ), V )
∂S̃
∂T

(T, V )− S̃(T, V )− T
∂S̃
∂T

(T, V )
(8.12)
= −S̃(T, V ),

∂F̃

∂V
(T, V ) =

∂U
∂S

(S̃(T, V ), V )
∂S̃
∂V

(T, V ) +
∂U
∂V

(S̃(T, V ), V )− T
∂S̃
∂V

(T, V )
(8.12)
=

∂U
∂V

(S̃(T, V ), V ).

(8.13)

And P =(7.9) − ∂U
∂V

(S, V ) = P(S, V ) = P(S̃(T, V ), V ) = P̃(T, V ), thus (8.10).

8.3 Free enthalpy G = H − TS (Gibbs energy, variables T and P )

The free enthalpy G is
G := H − TS (= U + PV − TS). (8.14)

With a reversible transformation and δW = −P dV , we have dU = T dS − P dV , thus

dG = (T dS − P dV ) + (V dP + P dV )− (S dT + T dS)

= V dP − S dT.
(8.15)

Thus the �natural� variables are T and P and

dG = V dP − S dT,
∂G

∂T |P
= −S, ∂G

∂P |T
= V. (8.16)

Full notations:

G = Ĝ(T, P ) (8.14)
= Ĥ(T, P )− T Ŝ(T, P ), so

∂Ĝ
∂T

(T, P ) = −Ŝ(T, P ), ∂Ĝ
∂P

(T, P ) = V̂(T, P ). (8.17)

Interpretation. � The free enthalpy is a criterion of spontaneity of a chemical reaction : dG < 0 for a
spontaneous reaction , dG = 0 at equilibrium. �

(See http://forums.futura-sciences.com/chimie/19331-enthalpie-libre.html.)
(See http://biologie.univ-mrs.fr/upload/p290/Cours_thermo.pdf.)
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Exercice 8.4 Prove:
∂G

T

∂T
= − H

T 2
.

Answer. Let z(T, P ) := G(T,P )
T

, i.e. z(T, P ) = H(S(T,P ),P )
T

− S(T, P ). Hence

∂G
T

∂T
(T, P ) :=

∂z

∂T
(T, P ) = −H(S(T, P ), P )

T 2
+

1

T

∂H

∂S
(S(T, P ), P )

∂S

∂T
(T, P )− ∂S

∂T
(T, P ), (8.18)

with ∂H
∂S

(S(T, P ), P ) = T , cf. (8.3).

9 Gibbs�Duhem equations

Here S and V are the chosen variables. The internal energy being extensive, U(λX⃗) = λU(X⃗), i.e.
U(λS, λV ) = λU(S, V ), i.e. U is homogeneous of degree 1. Thus the Euler relation gives, cf. (B.3),

U(S, V ) = S
∂U
∂S

(S, V ) + V
∂U
∂V

(S, V ). (9.1)

Thus a reversible transformation, and δW = −P dV , together with ∂U
∂S (S, V ) = T (S, V ) and ∂U

∂V (S, V ) =

−P(S, V ) cf. (7.9), give

U(S, V ) = S T (S, V )− V P(S, V ), written U = ST − V P. (9.2)

Thus dU = T dS + S dT − P dV − V dP , with dU = T dS − P dV , thus

S dT − V dP = 0. (9.3)

Thus S
(
∂T
∂S |V dS + ∂T

∂V |S dV
)
−V

(
∂P
∂S |V dS + ∂P

∂V |S dV
)
= 0, hence

S
∂T

∂S |V
− V

∂P

∂S |V
= 0 and S

∂T

∂V |S
− V

∂P

∂V |S
= 0 (Gibbs�Duhem equations). (9.4)

Full notation: U(S, V ) = S T (S, V )−V P(S, V ) gives ∂U
∂S = T +S ∂T

∂S −V ∂P
∂S and ∂U

∂V = S ∂T
∂V −P−V ∂P

∂V ,

together with ∂U
∂S = T and ∂U

∂V = −P, thus S ∂T
∂S − V ∂P

∂S = 0 and S ∂T
∂V − V ∂P

∂V = 0, at any X⃗ = (S, V ).

Appendix

A Composite functions

Proposition A.1 If X⃗ ∈ C1(Rn;Rm), f ∈ C1(Rm;R) and g = f ◦X⃗ (∈ C1(Rn;R)), i.e. g(x⃗) = f(X⃗(x⃗)),
then

dg(x⃗) = df(X⃗(x⃗)).dX⃗(x⃗), (A.1)

i.e., with Cartesian bases, for all i = 1, ..., n, X⃗ = (X1, ..., Xm) and x⃗ = (x1, ..., xn),

∂g

∂xi
(x⃗) =

m∑
j=1

∂f

∂Xj
(X⃗(x⃗))

∂Xj

∂xi
(x⃗), (A.2)

or ∂ig(x⃗) =
∑m

j=1∂jf(X⃗(x⃗))∂iXj(x⃗) (with unambiguous notation independent of the variable names).

Proof. m = n = 2 for readability, so g(x1, x2) = f(X1(x1, x2), X2(x1, x2)). And

g(x1+h, x2) = f(X⃗(x1+h, x2)) = f(X1(x1+h, x2), X2(x1+h, x2))

= f
(
X1(x1, x2) + h

∂X1

∂x1
(x1, x2)+o(h), X2(x1, x2) + h

∂X2

∂x1
(x1, x2)+o(h)

)
(2.2)
= f(X⃗(x⃗))+h df(X⃗(x⃗)).

(∂X1

∂x1
(x⃗)+o(1),

∂X2

∂x1
(x⃗)+o(1)

)
+ o(h)

(2.3)
= g(x⃗) + h

∂f

∂X1
(X⃗(x⃗))

(∂X1

∂x1
(x⃗)+o(1)

)
+ h

∂f

∂X2
(X⃗(x⃗))

(∂X2

∂x1
(x⃗)+o(1)

)
+ o(h),

thus g(x1+h,x2)−g(x1,x2)
h −→h→0

∂f
∂X1

(X⃗(x⃗))∂X1

∂x1
(x⃗) + ∂f

∂X2
(X⃗(x⃗))∂X2

∂x1
(x⃗).

17



Exercice A.2 Let f ∈ C1(R2;R). Let g(x, y) := f(λx, λy). Compute ∂g
∂x in terms of ∂f

∂x and ∂f
∂y .

Answer. 1- X(x, y) = λx and Y (x, y) = λy give ∂X
∂x

(x, y) = λ = ∂1X(x, y), ∂Y
∂x

(x, y) = 0 = ∂1Y (x, y), ..., thus
∂g

∂x
(x, y) =

∂f

∂X
(λx, λy)λ+ 0

noted
=

∂f

∂(λx)
(λx, λy)λ, and

∂g

∂y
(x, y) = 0 +

∂f

∂Y
(λx, λy)λ

noted
=

∂f

∂(λx)
(λx, λy)λ.

Exercice A.3 Let f ∈ C1(R2;R) and g(x) =
∫ x

t=0
f(x, t) dt (integral which depends on x). Compute g′.

Answer. Here g(x) = F (X⃗(x)) where F (X,Y ) =
∫ Y

t=0
f(X, t) dt; And ∂F

∂X
(X,Y ) =

∫ Y

t=0
∂f
∂X

(X, t) dt and
∂F
∂Y

(X,Y ) = f(X,Y ), hence g′(x) =
∫ x

t=0
∂f
∂x

(x, t) dt+ f(x, x).

B Homogeneous function of degree k, Euler theorem

Let Rn
+ = {x⃗ = (x1, ..., xn) ∈ Rn : xi ≥ 0, ∀i = 1, ..., n}.

De�nition B.1 f : Rn
+ → R is homogeneous of degree (or of order) k ∈ R∗ i�, for all λ > 0 and all

x⃗ ∈ Rn
+,

f(λx⃗) = λkf(x⃗), i.e. f(λx1, ..., λxn) = λkf(x1, ..., xn). (B.1)

I.e., for all x⃗, the function ϕx⃗ : λ ∈ R∗
+ → ϕx⃗(λ) = f(λx⃗) satis�es ϕx⃗(λ) = λkϕx⃗(1) (degree k monomial).

Example B.2 n = 2. p, q ∈ R, f(x, y) = xpyq and x, y > 0: Thus f(λx, λy) = λp+qf(x, y), so f is
homogeneous of degree p+q. E.g., f(x, y) =

√
xy and f(x, y) = xy are homogeneous of degree 1 and 2.

g, h : R → R and f : (x, y) ∈ R∗×R∗ → f(x, y) = axkg( yx )+by
kh(xy ): f is homogeneous of degree k.

Theorem B.3 Euler. If f ∈ C1(Rn
+;R) is homogeneous of degree k ∈ Rn∗, then

kλk−1f(x⃗) =

n∑
i=1

xi ∂if(λx⃗)
noted
=

n∑
i=1

xi
∂f

∂(λxi)
(λx⃗). (B.2)

In particular λ = 1 gives

kf(x⃗) =

n∑
i=1

xi
∂f

∂xi
(x⃗). (B.3)

And ∂if =
noted ∂f

∂xi
is homogeneous of degree k−1: For all λ > 0, x⃗ ∈ Rn

+ and i = 1, ..., n,

∂if(λx⃗) = λk−1∂if(x⃗), written
∂f

∂(λxi)
(λx⃗) = λk−1 ∂f

∂xi
(x⃗). (B.4)

Proof. Fix x⃗, and let ϕ(λ) := f(λx⃗) = f(λx1, ..., λxn). So ϕ(λ) = f(X⃗(λ)) = f(X1(λ), ..., Xn(λ)) where
Xi(λ) = λxi. Thus

ϕ′(λ) =

n∑
i=1

∂f

∂Xi
(λx⃗)X ′

i(λ) =

n∑
i=1

∂f

∂Xi
(λx⃗)xi.

And ϕ(λ) = λkϕ(1), thus ϕ′(λ) = kλk−1ϕ(1) = kλk−1f(x⃗), thus
∑n

i=1 xi
∂f
∂Xi

(λx⃗) = kλk−1f(x⃗).

(Recall: ∂1f(X⃗) := limh→0
f(X1+h,X2,...)−f(X1,X2,...)

h =noted ∂f
∂X1

(X1, .., Xn), So ∂1f(λx⃗) =

limh→0
f(λx1+h,λx2,...)−f(λx1,λx2,...)

h =noted ∂f
∂(λx1)

(λx1, λx2, ...), idem for all Xi.)

Then �x x2, ..., xn. Let h(x) = f(λx, λx2, ..., λxn), so = λkf(x, x2, ..., xn), thus

(h′(x) =) λ
∂f

∂X1
(λx, λx2, ..., λxn) = λk

∂f

∂X1
(x, x2, ..., xn),

Then simplify by λ and take x = x1. Idem with x2, x3, ....
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C Cyclic equalities

C.1 With two linked variables: ∂x
∂y

∂y
∂x

= 1

(This is nothing more that (f−1 ◦ f)(x) = x which gives (f−1)′(f(x)).f ′(x) = 1, written dx
dy

dy
dx = 1, when

f : x→ y = f(x) is a di�eomorphism.)
Hypothesis: 2 variables x, y are linked, i.e. we have an implicit equation

Z(x, y) = 0. (C.1)

Proposition C.1 If Z ∈ C1(R1;R) with ∂Z
∂x (x, y) ̸= 0 and ∂Z

∂y (x, y) ̸= 0, then ∃f1, f2 ∈ C1(R;R), with
x = f1(y) and y = f2(x), s.t.

f1 ◦ f2 = I, f ′1(f2(x)).f
′
2(x) = 1 i.e.

df1
dy

(y)
df2
dx

(x) = 1, written
dx

dy

dy

dx
= 1. (C.2)

And df2
dx (x)

df1
dy (y) = 1, written dy

dx
dx
dy = 1.

Proof. Apply the implicit function theorem (since Z is C2 with ∂Z
∂x (x, y) ̸= 0 and ∂Z

∂y (x, y) ̸= 0 for all

x, y): The C1 functions f1 and f2 s.t. f1 ◦ f2 = I exist, thus x = (f1 ◦ f2)(x), thus 1 = f ′1(f2(x))f
′
2(x).

Example C.2 Perfect gas with n = n0 and V = V0 �xed : Z(T, P ) = PV0 − n0RT = 0. Thus
T = f1(P ) = V0

n0R
P , and P = f2(T ) = n0R

V0
T . And (f1(f2(T )) = V0

n0R
(n0R

V0
T ) = T as wished. And

∂Z
∂T (T, P ) = n0R ̸= 0 and ∂Z

∂P (T, P ) = V0 ̸= 0. And f ′1(P ) =
V
nR and f ′2(T ) =

nR
V satisfy f ′1(P )f

′
2(T ) = 1

when P = f2(T ), written
dT
dP (P ).dPdT (T ) = 1, or dT

dP .
dP
dT = 1.

Generalization. n ≥ 2 and n variables x, y, z3, ..., zn with

Z(x, y, z3, ..., zn) = 0
noted
= Zz3,...,zn(x, y), (C.3)

where here z3, ..., zn are considered to be parameters: We get y = f2(x, z3, ..., zn)=
noted f2,z3,...,zn(x),

x = f1(y, x3, ..., zn)=
noted f1,z3,...,zn(y) and (C.2) gives

∂f1
∂y

(y, z3, ..., zn)
∂f2
∂x

(x, z3, ..., zn) = 1,
∂f2
∂x

(x, z3, ..., zn)
∂f1
∂y

(y, z3, ..., zn) = 1. (C.4)

Thermodynamic notation:

∂x

∂y |z3,...,zn

∂y

∂x |z3,...,zn
= 1,

∂y

∂x |z3,...,zn

∂x

∂y |z3,...,zn
= 1. (C.5)

Example C.3 Perfect gas: Z(T, P, V, n) = PV − nRT . Thus P = f2(T, V, n) = nR
V T and T =

f1(P, V, n) =
V
nRP . We check: (f2(f1(T, V, n), V, n) =

nRT
V V

nR = T and ∂T
∂P |V,n

∂P
∂T |V,n = 1.

C.2 With three linked variables: ∂x
∂y

∂y
∂z

∂z
∂x

= −1

Three variables x, y, z are linked, i.e. we have an implicit equation

Z(x, y, z) = 0. (C.6)

Proposition C.4 Let xi = x or y or z. If Z is C1, and ∂Z
∂xi

(x, y, z) ̸= 0 for all x, y, z and i ∈ [1, 3]N and

xi ∈ {x, y, z}, then ∃f1, f2, f3 ∈ C1(R2;R) s.t.

∂f1
∂y

(y, z)
∂f2
∂z

(z, x)
∂f3
∂x

(x, y) = −1, written
∂x

∂y |z

∂y

∂z |x

∂z

∂x |y
= −1 (thermo notations). (C.7)

(Circular permutation for the variables.)
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Proof.


Z(f1(y, z), y, z) = 0,

Z(x, f2(z, x), z) = 0,

Z(x, y, f3(x, y)) = 0,

 gives



∂Z

∂x

∂f1
∂y

+
∂Z

∂y
= 0,

∂Z

∂y

∂f2
∂z

+
∂Z

∂z
= 0,

∂Z

∂x
+
∂Z

∂z

∂f3
∂x

= 0,


where the notations have been abusively

lightened for readability. Multiply the �rst equation by ∂f2
∂z and subtract the second equation:

∂Z

∂x

∂f1
∂y

∂f2
∂z

− ∂Z

∂z
= 0,

∂Z

∂x
+
∂Z

∂z

∂f3
∂x

= 0.

Multiply the �rst equation by ∂f3
∂x and add the second equation: ∂Z

∂x
∂f1
∂y

∂f2
∂z

∂f3
∂x + ∂Z

∂x = 0, thus (C.7).

Generalization, n variables x, y, z, t4, ..., tn; Thermodynamic notation:

∂x

∂y |z,u4,...un

∂y

∂z |x,u4,...un

∂z

∂x |y,u4,...un

= −1. (C.8)
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