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In surfaces in R™, or more generally in varieties:

1- The branch of mathematics which adds to a geometry the connections (derivations), parallel
transport, geodesics and curvature is called “affine geometry” (quantification of “variations”).

2- The branch of mathematics which adds a metric to a geometry is called “Riemannian geometry”.

3- The union of these two branches of mathematics gives “differential geometry”.

Part 1
Surfaces in R"

1 Surfaces and bases

1.1 Surface

Let n =1, 2 or 3, let R™ be the affine geometric space, and let R™ be the associated vector space. Let
(Ei)iz1,...n=""1""(E;) be a Euclidean basis in R":

(Ei, ..., E,) Euclidean basis. (1.1)



Let m € N*, m < n, and Rm =R x ... x R, (the Cartesian space of “parameters”, e.g. m = 2 and
R2 = {(r,0)} the space of polar coordinates, see example . Let (A;)iz1,.. m=""1""(A;) be the
canonical basis in R_;", that is,

A, =(1,0,...,0), ..., A, = (0,...,0,1). (1.2)
Let U be an open set in R™ (set of parameters).

Definition 1.1 A (parametric) regular surface in R” is a C'° map

R™ R"
@:{UC — 5 CR", 13)

7 —p=2(q),

which is surjective on S and of rank m for all € U (the surface S is m-dimensional). And @ is called
a coordinate system on S. The geometric surface S is the range (or image) of ®, that is,

S=oU)=Im®= | J{p=2(} (1.4)
qeu

Example 1.2 (Polar coordinates in the affine geometric space R?.) m=n=2. E.g. U = {(r,0) €
R x] — 7,7} C R2. Let (A}, A,) be the canonical basis in R2, and § = rA; + A, ="ritten(r ) ¢ U
(parameter). Let O be an origin in the affine geometric space R? (the center of the disk in the

following) and (51752) be a Euclidean basis in the geometric space R?. And consider the polar
coordinate system:

U —R?
. . . (1.5)
g=(r0) - p=(7) =0 +rcosbE, +rsinfFEy; = O + T,

so & = O_;z; and (column matrix representing ¥ relative to (Ey, Es))

175 = (07, = (0B 5 = (”““:’““SH). (16)

y=rsind
Interpretation or the parameters: r = ||Z|| is the length of Z in the unit given by (E;) and 6 is the
angle between Z and Ej. Here S = Im® is R? without the left axis {(z,y) : 2 <0, y = 0}. a

Example 1.3 (Cercle.) n=2 and m=1. Let R > 0 and U =] — 7, 7[. With (1.5)), consider

Dr(0) = P(R,H). (1.7)

So:
# = RcosOFE; + Rsin0E,, 7,5 = <};Z?§g) . (1.8)
0 is the parameter. The geometric surface S = Im®p is the circle C’((_)'7 R) with center 0 and radius R
without the point (—1,0). Here, in R?, the surface ® g is a curve. L
Example 1.4 See § [3| for other usual examples. s

Definition 1.5 A material coordinate system is a coordinate system which depends on time:

.{RXU - R” 19)

(t,(f) —p= (I)(t7®'

1.2 Coordinate lines, and the basis of a coordinate system

Consider a coordinate system &, cf. li Let qp = Z:ilqéffi e U, and po = ®(qp). Let j € [1, m]y.

. . . . = . () ] 76,5[ R™ dal?)
The j-th Cartesian line in R™ at qq is ag, : , L ¢rand —(u) =
u —q= ag{])(u) = o + ud;

/Tj is the tangent vector at gq.



Definition 1.6 The j-th coordinate line at py = ®(gp) is the curve

, , |]—¢ee[ — SCR”®
Cz(ijo) = ¢ Oagjo) : ) o e 1 -1 j+1
u —p=cy)(u) =0(Go+ud;) =2(q, @) @ FUG )

(1.10)
In particular c(])(()) = pp (and € has been chosen small enough for gy + u/_l'j to be in U).
Definition 1.7 The j-th coordinate basis vector at pg = ®(qo) is
. dejy) o G0 () — 53 (0)
€j(po) = du 0) (= %13}) #)a (1.11)

tangent vector of the j-th coordinate curve at pg = ®(¢5). So, with c](){)) = oagg), cf. 1} we have

named 0 (q ) (: lim (I)(QO + hAj) - ‘I’((Jo)

(p()) - d¢(® A 8q] h—0 h

). (1.12)

And, ® being regular, for all p € S, the é;(p) are independent (i = 1,...,m): They form a basis at pg
in Vect{€1(po), ..., €n(po)} called the tangent space at po.

Example 1.8 Continuation of the example 0_1; = 0%(q) = O¥(r,0) = rcos 9F, + rsin 052,
CI(,l) T cz()l)(r) = ®y(r) (radius), ¢ : 0 — ¢ (9) = ®,.(6) (circle), and (1.12) give

. - named 0P . cosf
m@z@ﬁ»”mawﬁ—mﬁ“ﬂwﬁ e = (G ). (119
e named od '

€2(p) = d®(p).Az rcos

89( r,0) = —rsin0E; + rcos s, [é’g(p)]‘ﬁ — (TSin0> .

Example 1.9 Continuation of the example m = 1 and the canonical vector basis in R is written
A; = 1. The coordinate line is § — p = ®(f) (circle), and the tangent vector to the coordinate line
at p is fl( ) = d(IDR(G) Ay = @r(9) = §7,(0) = —RsinE, + RcosfEy, cf. (1.12). Here, relatively

to (L.13), f1(p) = & (p) at p = B(R, ).

Exercise 1.10 Prove the mean value theorem in S surface in R” (affine): If T > 0, ifc: ¢t € [T, T] —
pt = c(t) € S is a regular curve in S and ¥(p;) = ¢/(t) is the tangent vector at p; = c(¢), then there
exists u €]t,t + h[ s.t. p, = c(u) satisifies

f(peen) = f(p) = hdf (pu)-(pu). (1.14)

Answer. Let g(t) = f(c(t)), thus ¢'(t) = df (c(t)).c'(t), thus Fu €]t,t + h[ s.t. g(t + h) — g(t) = hg'(u) (mean
value theorem in R), i.e. (L.14). un

1.3 The tangent space at p
Definition 1.11 With (1.12), the tangent space at po of S = ®(U) is

TpyS = Vect{€1(po), ..., &m(po)} C R™. (1.15)
(® being regular, (€1(po), ..., €m(po)) is a basis in T}, S, so dim T, S = m.)

(If m = 2 and n = 3 then T, is the tangent plane at p, and if m =1 and n = 2 or 3 then T,,S is
the tangent line at p.)

1.4 The fiber at p
Definition 1.12 Using (1.15)), the fiber at p € S is the couple

(p, T,S) € S x R, (1.16)

(A vector in R" is “drawn anywhere”. While an element (p, wp) of the fiber (p,T,,S) is “the vector w,
drawn at p”.)



1.5 The tangent bundle 7S
Definition 1.13 The tangent bundle TS is the set of fibers:

78 =J @ T,8) c SxR". (1.17)
peS

(Subset of the cross product “affine space R™ X “vector space ]R_'"”.)

Example 1.14 In R, let S be the circle C(0, R), cf. (1.8). Then the fiber at p € S can be drawn as

the tangent line at S at p. And the tangent bundle can be represented by the union of these fibers.
However, the cross-product R™ x R™ makes us represent a fiber as a “vertical line” at p (a line on

the cylinder), and the tangent bundle is then represented as the “vertical cylinder” through C' (6, R). au

A vector field is a map
S =»TS= )19
7 peS (1.18)

p = U(p) = (p, (p)),

supposed to be C°°. Then the range (image) Im(7) = Upes(p, ¥(p)) = graph(v) is the graph of o
(So, in mechanics ¥ is a Eulerian function.)
The set of vector fields is named I'(.S):

I'(S) = {the set of vector fields on S}. (1.19)

If there is no ambiguity, we simply write

7(p) = (p, 5(p)) """ 5(p). (1.20)

.o . . => [ rcosd . . . [ cosf
Example 1.15 in R?. Polar coordinates: Op = (rsin& ), basis at p given by €1(p) = (sin&) and

rcosf

¢, (p) = (p, €i(p)), cf. - un

1.6 Jacobian matrix of the coordinate system

és(p) = <—7‘ Sme): And & and & are vector fields in S. Full notation: vector fields ¢ given by

Let §€ U C R™, p= (7). Thus

n

= - i = . i o
0p=S W (@E: gives d(@)() = > (@ (@)()E, (121)
i=1 i=1
which means d®(q).dy = Y1, (d®*(q).i5)E; for all @z vector at ¢ € U. In particular

n

Ao () quﬂ(j)A Z Zq*)EZ, and  [d®(9)] 5 5 [‘9@1@] (1.22)

is the Jacobian matrix of @ relative to (4;) and (E;). Thus

(A (q)-i7) 5 = [A(@), 5 .10, (1.23)

1.7 Notation (d¢') for the dual basis (A%

Let (A%) be the dual basis of the canonical (4;) of the space of parameters, cf. : The dual basis
(A?) is made of the linear forms A* € R™* = £(R™,R) defined by, for all i, j = 1, ey M

At e R™*, Ai(Jj)za;i, and A7 "2 goi (1.24)

Thus d®(§) has the tensorial expression (explicit reference to the bases in use)

®(q) = ZZW (DE; ®A’—Zza] (B @ dg’. (1.25)

i=1j5=1 i=1j=1



And with the contraction rules we recover, with @ € R™ and @ = Z;n:luj ffj,

0P g,
@)=y qu(lf)uj E;.

2%

®(q)-i = Zaa (DE: @ dg’). = aﬁ
And [d®(q).d) 5 = [d2()), 1 gl 5 -

1.8 Notation (dq'(p)) for the dual basis (¢(p))

One of the difficulty is notations... The basis (€;(p)) in T},S, of the coordinate system has been defined
at - Its dual basis (e'(p))i=1,...m is made of the hnear forms e'(p) € L(T,S;R) defined by

Vi,j=1,...,m, €'(p).€j(p) = 5;», and ¢'(p) written dq'(p). (1.26)
Why? With and S = ®(U), consider
S =U
et - o (1.27)

N

p = q=2"'p)"="qp) = ()

i=1

7.

So d®~1(p) € L(R™; R™) and d®~1(p).w, = Z;’;l(dqi(p).u'ip)gi for all vector w, at p. In particular

m

Aj = do ™ (p)-&(p) = Y_(dd'(p)-€;(p)) A = dd'(p)-€;(p) = &3, Vi, j, (1.28)

i=1

hence dq'(p) = e'(p), hence the notation ([1.26))s.

So: In R™, the dual basis of (A ) is (dq") since here the variable name is ¢. And in 7,5 the dual
basis of (&;(p )) is (dg'(p)) with dq’ the exact differential form = the differential of ¢* : S — R. So
beware of the context (either in the space of parameters or in the geometric space).

1.9 Bidual basis (9;) = (azi)

Let p € S. Let (9;(p)) be the dual basis of (dg’(p)) (the bidual basis of (€;(p))): The 9;(p) €
(T,,S*)* =named 7 g** (dual of T,S* and bidual of T},S) satisfy, for all 4,j = 1, ..., m,

9;(p).dq'(p) = &% (thus also = dg'(p).€;(p))- (1.29)

With the natural canonical isomorphism (see Spivak [17])

E — E*
R . B o (1.30)
7 = J@) st. J@0)L=LT ViEE,
we write . S
J(@W) =71, so 9i(p) =J(@(p) = élp), (1.31)

and §; ="itten g Application:

1.10 The notation gif(p), and interpretation

Let fs : p €S — fs(p) € R be a C! function (defined on the geometric surface S), and consider the
function fy : §€ U — fu(q) € R defined (on the parametric open set U) by

fui=1fso®, e fu(@) =fs(p) when p=3d(Q. (1.32)

Remember the classical notation

dfu

o D= Ao (@A, (1.33)
So fu(q) = fs(®(d)), thus dfy(9).-A; = dfs(®(7)).d®(q).A; = dfs(p).€;(p), thus
Us0)60) = Zo@ when p= (@) (1.34)



Definition 1.16 (notation) Also fg is a function acting on p, not on ¢, we define

Ofs, . Ofv Ofs (fSO‘I’)

a0 (p) = g o0 () = dfu (). A;). (1.35)

(@), ~—(p) ==dfs(p)€;(p) (=

In other words, aJ;f (p) is the derivative of fg along the i-th coordinate line, cf. 1}

(%) (1)
. o C (¢] C O i — written 6
tim Y500 )0 s 0 O _ (50 o0y (0) = dps (o)) L 25 ), (1.36)
—0 h 0q
This is also the interpretation of 9;(p), cf. - At p, 9;(p) is the directional derivative along €;(p):
Fori=1,.
5 C'(S;R) =R,
9i(p) = 55 () : d . a0 (1.37)
dq fs = 0;(p)(fs) = ( 7 (p)(fs) := dfs(p).&i(p) "= aj;f (p)-
Thus and (1.26) give
0 , ) ,
dfs(p Z fs g'( Z fs e'( (1.38)
Indeed, with the contaction rules, for all 7 =1,...,m,
af, 4 af d(p)é [T26) Ofs , . (39) .
Z 5( Z 5( (p).€;(p)) = (,Tj(p) = dfs(p)-&;(p). (1.39)
%,_, %,—/ q
6ij

Example_ 1.17 Polar coordinates. With x = rcosf, y = rsinb, O_]; = (x,y). Let
fs(p) =" fg(a,y). Let fu(r,0) = fs(%y) ThUS *(x y) = S (r,0).

E.g. fs(p) = z9° gives fs(p) = fu(r,0) = r3cos@sin®f, thus 8ﬁ(m y) = 8(;;{] (r,0) =
3r2cosfsin®0 = 3\/% —witten 80 (2, y); And Y5 (w,y) = YE(r0) = r3(—sin’0 +
2cos? fsin ) = —y> + 2x2y =Written afs = (2,y).

Check: fs(p) = xy? gives dfs(x y) = y>dx + 2rydy (Cartesian coordinates); Thus, with
€1(p) = cosOFE; + sinfF,, we get %(p) = dff(p).é'l(f) = y? cos O + 2zysinh = r2sin®fcosf +
2r2 cossinfsin@; and, with e(p) = —rsinfE; + rcosfFE,, we get %(p) = dfs(p).@2(Z)
y?(—rsin @) + 22y(r cos ) = —r3sin® 6 4 213 cos O sin  cos 6.

Remark 1.18 Classic issue when fg € F(S;R) and fs = 0 outside S: The classic definition 8fs S(p) =
limy, ¢ M = dfs(p).E; is not defined in general, since p + th ¢ S give fs(p+ th) =

and then hmh_m —fs(p”‘E )=fs(p)

On the other hand, %i(p) = dfs(p).€;(p) = limp_

= +00 in general.

0e@)(h)— (feocd
(socy )(h)h(fs O 56 well defined (finite

value: The curve ¢V is in S). ua

Exercise 1.19 Matrix calculations: Let ®(q) = > 1", ®'(q)E; and [d®(D) x5 = [‘gi’; ((j)]]z;l;
Let fy = fs o ®. Prove:

[dfo (@], 7 = A5 (0)] 3[4, 1 5 = A5 ()] (1.40)

80(q) = dfu(@).4; for j = 1,...,m (usual Cartesian notation). And %15 (p) = dfs(p).E;

forj=1,..,n (usual Cartesmn notation). And ‘Zéf( ) = dfs(p).€j(p) for 5 =1,...,m, cf. 1) So:

dfu(q) = Zan (@) dq’, and dfs(p) = %(p)dwj: %f(p)dqj(p)- (1.41)
i=1 j=1

Consider the matrices [de@]m = [?T?(d')]jﬂ,m,m; [dfsiz = [55@)i=1...0, and [dfs(p)];
[gif (@D]j=1....om = [dfu(D)] 1 cF. ) (line matrices for linear forms) fu = fs o @ gives dfy(q).A

0fs(p).d(@). Ay, that is, 204(3) = dfs( S 20 ) — S, 25 ) dfs() B — S, 253 25 ),
for all j =1, ..., m, that is, [de((j')]‘g =[dfs(p )hE [d@((j')] iB= [dfs( )] e o

_lml




1.11  Notation 5% (p)

g
g

Y
m

Let wWs :p € S — fs(p) € R be a C! function (defined in S), and consider the function
U — fu(q) € R™ defined (in U) by

Wy :=wWgo®, ie dy(q) =ws(p) when p= Q). (1.42)

So Wy (q) = Ws(P(7)), thus divy (§).A; = dis(B(7)).d®(7).A;, that is,

dibs(p).€;(p) = dwy (). A; when p=&(q). (1.43)
Definition (notation):
31175' . 8wU 81175 L N - _ 8(’[173 o (I)) o -
o0 (p) := o0 (@), og (p) = dwis(p).€j(p) (= T(p) = diy(q)-45).  (1.44)
NB: wg is a function of p, not a function of ¢, thus the notation %’g_f would be meaningless without

the definition (notation) (1.35)).
Thus, with p = ®(7) and ¢/’ (h) = ®(7+ h4;),

ows . 0wy, .. (Wu(d+hA;) —wu(q)
V(DY — (e o o) '
— lim (’UJS ocCp )(h) (U)S oc )(0) _ dzﬁg(p) é'] (p) ('lUS OC( )) (0)
h—0 h
Let @y (p) = S0, wi; (§) A; and @s(p) = 327, wi(p) E;. Then
JiE Ol B el d ows _Owg; 1.46
ws(p) —2237]-(19) i@ (p), [dUs(P)] e = [aq] ] =1 o0 (@) (1.46)
1=17=
Indeed, diis(p) = Y1 \E; @ dwi(p) gives diis(p).€;(p) = (Xi,Ei @ dwi(p)).€;(p) =
S Ei(dwi(p).éi(p) = S, Ei%“;f (p), which is also the result of (Z?:lz;n:l%%(p)ﬂ ®

el (p))-€;(p).

Exercise 1.20 Polar coordinate 1) [(—)?)][E = [j;’][E = (ZZ?I?Z) and, cf. (1.13)),

&1(p) = cos OE; + sin O E, written &) (r,0), and &(p) = —rsinOE; + rcos 0F, vritten da(r,0). (1.47)

With ¢ = (r,0) and p = ®(q) = ®(r,0), prove:

: [%(p)hﬁ = (;;:199) [%(p)hé = (_Czlsnge> [%(p)hg = (iiﬁ?ig)
(1.48)

[%(P)][E =

=1

Deduce:
S _ s S [ —sinf —rcosf\ .
[del]‘ﬁjé'(p) = (0 cosf ) = [da1]|j7ﬁ7 [dezhf_j,é'(p) = < cos 0 _r sin9) = [da2]|,§7§ (149)

Answer. Let @;(q) := (€ o ®)(¢) = €i(p). Thus dal(") A; = dei(p p)-€j(p). .
da (r, 9) A = 8’11 2 (r,0) = 0 and da: (,6). Ay = ‘” (r, 9) —sinfFE, +cos 0E2, thus ddi(r,0) = —sinfE1®
A2 + cos 0E2 ® A2
diz(r,0).A; = 68’12 (r,0) = —sinOE; + cos0F, and dag(r 0).4; = 6&(7", 0) = —rcosOE; — rsin0E,, thus

T

dds(r,0) = —sin 0F, @ Ay 4+ cosOFs ® A] — rcosOb, @ As — rsinfFs @ As. an
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2 Christoffel symbols

2.1 Definition
2.1.1 A thickening S, of S

Let ® : U C R™ — R™ be a parametric surface, cf. 1} and let S = ®(U), cf. 1)
Hypothesis (makes the presentation easier): The surface S (dimension m) is considered as a part
of a thickened surface S, (dimension n), that is, ® is the restriction of a C?-diffeomorphism

{U+c1§n=R7ann1m — 5, eR™,
q)+2

st. @ _; g ey =0 , \ii U, )
7 = (4,%) %p—cI)(@_)} t +(q.0,...,0) (@), V7 € (2.1)

U being an open set in R® and U C U, ; So § = {<I>+(q7 0), q eU}={9(qQ), ¢ U}.
Let (Al)l 1....n be the canonical basis in RP — R/ x Rn— m: Thus the basis (€;(p))i=1,...» of the
system &, at p ©+(q+) is given by, cf. ( -,

. L
Vi€ [1,n]y, €(p) = do,(7).4; = 6(;

(74), (2.2)

and in particular for p € S and j € [1, m|y we have €;(p) € T,,S.

2.1.2 Christoffel symbols in S

Definition 2.1 In S;. Let ,j € [1,n]y. The Christoffel symbols (v} (p))k=1,...n at p € Sy are the

components of the vector dé;(p).€;(p) € R" relative to the (local) basis (€i(p))ien,n)y, that is, for
,j=1,...,n

Z% ie. ’yfj = eF.(de;.¢;), (2.3)
k=1

that is, for all j, k € [1,n]n, dék(p)-€;(p) = >_i—y v}(P)€(p), i-e. Vi = €'.(dek.¢;). So, for k € [1,n]y,

dey, = Z fY]lké‘i X ej’ and [dek] [’yjk] ;z}n . (24)
A n
Example 2.2 Polar coordinates: See (3.12))-(3.11). ua

2.1.3 Christoffel symbols in S surface in R"

Definition 2.3 In S. Let 4,j € [1,m]y. The Christoffel symbols (v};(p))k=1,...n at p € S are the
components of the vector dé;(p).€;(p) € R™ relative to the basis (€i(P))ief,n)y» that is,

Vi, j € [1,m]y, dé&j(p Z%J iLe. A =e".(dej.€), ke [1,n. (2.5)

NB: Although €&; and €} are in T,,S in (2.5), the vector dé€;(p).€;(p) is not in T,,S in general: See
e.g. (1.49) which gives dés(p).€2(p) = —Reé1(p) which is not tangent to the circle whereas €;(p) is. In
other words, only considering the tangent vectors at p in .S, we have

dé} = ZZ’}/Z&C ® ei, ie. de, = ZZ’Y;]C@ & el (26)

k=1i=1 i=1j=1

2.1.4 Usual Christoffel symbols in S on its own
Here we we cannot take height (we cannot gain altitude). Thus in (2.5) we can only see

Projy, s(d&;(p).€i(p)) = Projr, (O 7k (p)e(p)) = D 75 (p)ék (). (2.7)
k=1

k=1
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Definition 2.4 The “usual Riemannian connection V” is S is characterized by, for all p € S and
i,j € [1,m]n,

Ve,di(p) = Y _1ii(0)é(p) (= Projg, s(de;(p)-&i(p))), (2.8)
and the Christoffel symbols in S are the 'yf] for 4,4,k € [1,m]n. So, in S,
'yfj = ek.Vgié'j, (2.9)
Ve, €; being the covariant derivative of €; along € restricted to 7,5.

2.2 Symmetry: dej.¢; = dé;.€;

We consider ®, and S, ®, being C2, the results for ® and S being obtained by restriction.
gives &;(®(q)) = dP(q).A;, thus d&;(p).dd (). A; = (2D (§).4;).A; for all i, j, thus,

2 . .
D)D) = oot (D= ) = 5 (= am)= ) (210

since @ is supposed C? (Schwarz theorem). That is, Y., 7€, = Y Vi€ for all 4, j, thus,
Vivjak € []wn]Nv ’YZ :’ijza (211)
and the Christoffel symbols are said to be (covariant) symmetric (symmetry for the bottom indices).
Corollary 2.5 Let f € C?(S.;R) (thus d*f is symmetric). Then, ® being C?, for alli,j =1,...,n
d(df.€;).6; = d* (&, &) + > _ 7L df & (2.12)
k=1

(NB: a first order derivative is still alive.) NB: with f="amed o and f; defined by fs(p) = fu(q)
when p = ®(q), cf. (1.32), then (2.12) reads

% fu
0q*0q7

(@) = *F )@ (p). &) + Y7 (p) %<p>- (2.13)
k=1

Proof. fu(q) = f(®(q)) = f(p) gives

D = df @4 = dF@(@)-d2(@)A; = FOD) 5@ (= )30

Thus,

%fU 8@

o (@) = (d(df)(fb(fi)) @) o D+ A @@)-(F2@) (=l B)&0)p) _

= (®fm)am) &) +df<p>.<dej<p>.ei<p>>,
and f € C2, thus (df(p)-&(p))-&(p) = (@ (p)-(p)) Ei(p) = *f(:, 7).
2.3 Geometric interpretation of de;.¢; = dej.¢;
aan ¢>+

It is the geometric interpretation of the Schwarz theorem: (ﬁ = ((j) when @, is C?: Let

po = ®(go) € S, and consider the coordinate lines Efg? it qg= 55,0) (t) = (qo +tA;), cf. (i Then,

12



with §= g + tA; = & (t) and p = B(§) = & (t), we get
&) (t) = do(q).A; = &(p), (2.15)

cf. - Then, see ﬁguren 2.1) let 4,5 € [1,m]n, i # 7, let po=""1"" P c § let h,k > 0 (“small”), and
let

pP=2aVn), P=3a0 k). (2.16)
Then let ) .

Py =¢p)(k), Pji=7cp(h). (2.17)

Thus to get to P;;, start from P, follow the trajectory E(P) to the point P;, then follow the trajectory

"(j) to the point P;;. And to get to Pj;(p), start from P, follow the trajectory E(]) to the point P,
then follow the trajectory ¢ "( ) to the point Pj;(p). See example

Example 2.6 Polar coordinates: P = (:Z?ﬁg ), P = (((: i Z)) (s:?r?z ), Pio
(r+ h)cos(0 + k) [ rcos(0 + k) _((r+h)cos(@+Ek)\ i
( it h)sin@+ k) )02 Ursin@+ k) ) P2 = 4 n)sino 4+ k) ) ~ D1 o
P12=P3
P
Py

=]

Figure 2.1: With coordinate lines, the curve is closed: P;s = P51. On the left with polar coordinates,
exemple [2.6] on the right with spherical coordinates along parallels and meridians.

Proposition 2.7

And the interpretation of Schwarz theorem (for C? functions) is
foak) %P P;—-P,—P,+P P;—P,—P,+P
—(q0) = ——=—(q) = 1i o 1 : =1 2 z : . 2.19
9¢10g’ @) dq'dq7 (@) P hk 0= hik (219

—

Proof. P, = & (h) = ®(Go + hA;) and Pyj = ®((qo + hA:) + kA;).
And P; = &7 (k) = ®(Go + kA;) and Pj; = ®((Gy + kA;) + hA;). Thus P;; = Pj;, i.e. (2.18).
And £2(g) = limpo B(go-th A~ (d) , thus,

R
68@( o) = lim 2 oy (B + kAy) — 5 @)
oq’ k—0 k
iy 200 KA+ hAG) — B(G + kA;) — B(d + hAy) + ()
- h—0 hk
k—0
 Pj—P,—P+P
=l hk '
k—0
8<I>
P'i—Pi—P‘ P 8ﬂ_, o522 .
Similarly 8 () = lim — " it , therefore P;; = Pj; gives 524 (qo) = -4 (Go)- o
k—0
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2.4 Identity de'.¢; + e'.de; =0

We have seen that the dual basis (e?(p)) is nothing but (dq*(p)), cf. -— , where @(p) := ®~1(p).
And @ being supposed to be at least a C? dlffeomorphlsm de ‘(p) = d*(®~ 1)( ) is well defined.

Proposition 2.8 For all i,5 =1,...,m, we have
de'.€; +e'.de; =0, ie. (de'.v).€;+ e .(dé;.0) =0, VieTS. (2.20)
Thus de' = d(dq') = d?q' is symmetric, that is, (de'.@0).&0 = (de’.0).i for all @, € I'(S), and

de’ = d(dg') "= d2q'. (2.21)

Proof. €i(p). é’]( ) = &t gives (de’(p).,).€;(p) + ei( )(dé'j( )-#p) = 0 for all &, € T,,9, i.e. (2:20).
Thus (dei.ek) (dé’ &) =B1V ¢ (de, €)= €29 (gei e ;)-€x, thus de’ is symmetric, or apply
de' = d(dq') = d q' Wlth q' C? since ® is a C? dlffeomorphlsm o

2.5 Components of de! = d*¢’
(2-20) gives (de’.€;).éx + €'.(déy.€;) = 0, thus (de’.€;)., = —e'.(3y_; Vix€r) = —7}y, hence

de'.¢; = —ny;kek. (2.22)
k=1

(Einstein convention is satisfied.) So, the components of de’.¢; are yjzk

d?q' = de' = — Z vjkej ® e”. (2.23)
J k=1
Example 2.9 Cartesian basis: €; and e’ are uniform, then W;k and de/ = 0. ==

Exercise 2.10 Polar coordinates: compute d’r = de! and d?0 = de?.
Answer. 1) gives d?r = —’ylllel ®el — '721161 ®e? — 711262 ®el — '721262 ®e2=re? ®@e2.
And d?0 = —vhel @e! —Viel @ e —Ahe? Qe — e’ e = —%(e1 Re*+e2®el).
Thus 1
d’r=rdd®dd and d’0= ——(dr ®dj +df ® dr). (2.24)

2.6 Non holonomic basis

Consider m vector fields by, ..., by, in T'S, so, such that l_);-(p) eT,Sforallie[l,myand pe S.

Definition 2.11 Let py € S and gy = ®!(pg). It there exists an open set Vj,, in S, an open set Uy,

. . . . Ugy — Vio
in U, and a diffeomorphism W : . such that
7 —p=Y(q)
. - ov
Vi € [1,m]n, ¥p € Vp,, bi(p) = o0 (@) where V(q) =p, (2.25)

then the basis (b;(p)) is said to be holonomic in Vpo, associated to the local coordinate system U.
Otherwise, (b;) is not holonomic.

Example 2.12 In particular, the basis (€;(p)) of the coordinate system ® is holonomic: Take ¥ = .
E.g., the polar basis (3.3) is holonomic. ua
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Exercise 2.13 (Fundamental). Consider the (widely used) normalized polar basis (by, by) given by

- e1(p) - €2(p) . - _ (COSG) - _ (Sine

bi(p) = ma ba(p) = ma L.e. [bl(p)]\ﬁ sin 6 [52(23)]\5 cos 0 > , (2.26)

Prove that (51, 52) is nowhere holonomic: Give two proofs, 1- the first one by proving
- = - = 1 - - = - = —
dbg.bl — dbl.b2 = —;bg, SO dbg.bl — dbl.bg 75 0, (2.27)

(and use the Schwarz equality), 2- the second one supposing that (by, by) is holonomic.

Answer. 1) b;(p) = cos 0E, + sin0E5 and by (p) = —sin 0E, + cos 0E5 give, with (1.26)), db; (p) = —sin 0E; @
df + cos 0E> @ d and dba(p) = — cos 0E1 @ df — sin 0Ey @ df. Thus, df.¢; = 0 and df.é> = 1 give

dg1.52:d61.6£ :7lsin9E’1+1C080E_:2:7752, RN RN 1=
T T r r s and db2.by — dby.bo = ——bs. (2.28)
dba.by =040 =0, "

If (b1, by) is a basis of a coordinate system U, then, at p = ¥(q), b;(p) = g;ﬁ (¢), and the Schwarz equality

o2 o9Z% | - - - -
quz = 6;1 gives dbz.bl = dbl.bzi But we have de.bl 74— db1.b2.

2) Suppose 3V : § = (¢*,¢*) € Z — p = U(3) diffecomorphism, Z being a non empty open set, s.t.
bi(p) = o7 (@)- Let Op = UM Er + V2()Ea. Since bi(p) = & (p) and ba(p) = HZE;H with p = ®(r,0) and
® being a diffeomorphism, then eventually replacing ¥ with ¥ o ®, and consider ¥(g) = " (7E1 + 1/} (Q)E>
to be a function of ¢ = (r,0). So cos#E; + sinE; = by = %‘f (r,0) = ag, (r,0)E; + Br (r,0)E> and
—sin0E; + cos0E; = by = 3'1’ g (r,0) = (%1 (r,0)E; + aa—f(r 0)E,. Thus %(r 0) = cosf and aw (r,0) =
—sind. But 8(;/’9 (r,0) = fsmH gives ' (r,0) = cosf + g(r) ‘% (r,0) = ¢'(r) with aw (r, 9) = cos®,
hence cos @ = ¢'(r) for all (r,0) € Z: Absurd in any (non empty) open set Z. Thus ' does not exist, thus ¥
does not exist. wn

arcos 6 - -
b sin 0 ), 0 < a < b. Compute (&1(p), €2(p))

the basis of the system ®. Then fix r = R, let pr(0) = ¢(R,0), and give a local coordinate system
U(u,d) in R? (a thickening of S = Im(®g)) such that: U(R,0) = ®(R,0), %‘g (R,0) = €2(R,0) and
Ge (1,0) L é&x(R.0).

Exercise 2.14 Consider the ellipse p = ®(r,0) =

a(u)Rcos @
B(u)Rsin 0

Then 2%(u,0) = (%%gg’;g) We want 2¥(R,0) L &(R,0), ic., (a'(O)Rcose)(—aRsmo) +

Answer. Let ¥(u,0) = ( ) with «(0) = a and B(0) = b: We have U(R,0) = P(R,0).

(8'(0)Rsin ) (bR cos ) = 0, i.e. ae’(0) = b3'(0). Choose B(u) = $a(u)+c, and b = 3(0) = $a(0)+c = %- ® te
B a2 (au + a)Rcos 0
(u) = a(l+u), thus B(u) = % bu—l—bRsmH)

Check: 0(0,0) = <aRC.°SH), and 2%(0,0) = & ( bRCf’”) L (_C‘Rsma) = &(R, 0). The coordinate line

b
(1—|—u)+b27“ So U(u,0) (

. b2
gives ¢ = =

bR sin 6 aRsinf bR cos0
_ _ . _ [ aRcosth aR cosfg . . -
at p = ®g,(R) = W, (0) is Yy, (u) = ( bR sin o ) (%Rsin 0 ), straight line. s

3 Examples

3.1 Cartesian coordinate system
Here U = R™ and ® : U = R™ — S C R" is affine, that is, 3L € L(R™;R") s.t.L = d®(q) €
L(R™; R™) is independent of ¢ for all ¢, gy € R™,

®(q) = ®(q0) + L.(7— qo)- (3.1)

And S = ®(U) is a affine sub-space in R".

And with (4;) the canonical basis in R™, and with p = ®(7), we get d®(q).4; = &(p) =
L.A; =vritten & R" 1ndependent of p, and (&;) is the basis of the coordinate system. Then the
Christoffel, cf. vanish: fyl] = 0 for all 4, j, k, since dé;(p) = 0.
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And the coordinate lines through p are the straight line t — cL(t) = p+ té; pour i = 1,...,m.
E.g.,m =n =2, O origin and (E;, E5) Cartesian basis in R? (geometric), ® given by [dq’((f)hg 5=

(‘; Z) invertible, thus [¢1 (p)] 5 = (3) Ep)] 5 = (Z)

3.2 Polar coordinate system

R" = R™ = R2, And (4;) is the canonical basis in R2 (parameter space), and (E;) is a Euclidean
basis in R? (geometric space).

3.2.1 The coordinate system

See (1.5): With ¢= (r,0),

= = N x =rcost
Op =0%(q) =rcosfby +rsinfby =T, [f] 5= <y:rsin9>' (3.2)

The coordinate lines through p are the c,(;i) theR—=p= c;i)(h) € R? given by
(D (h) := (r+h,0), ie. OcV(h)= (r+h)cosE h)sin0E,, h
¢y’ (h) == ®(r+h,0), ie. Oc,’(h) = (r+h)cos0E; + (r+h)sinfky, > —r,
(2) . (2) ( = . =
¢y’ (h) :== ®(r,0+h), donc Oc;”’(h)=rcos(0+h)E; +rsin(0+h)Es, heR.
(Straight line and circle.) That is,
PSTEITIR (r+h) cosf PSCITIRS r cos(0+h)
O )] 5 = ((r+h> Sm9> . and (0@ (h),z = (rsin(0+h) .

The basis vectors at p = ®(q) are

S - 09 = . a3 o 0
&(p) = d®(q). A1 = ——(7) = cos0E; +sin0E>,  [61(p)])5 = <Z?§9> 7
0 in 0 (33)
S T R = . —rsin
62(])) = d(b(zj)Ag g %(q) = —rs1n0E1 + TCOSGEQ, [Bz(p)}lEﬂ = < rcos 0 ) .
So, with (A, A%) the dual basis of the canonical basis in R%, we have
cosf —rsind ~ ~
2@z (Gog oy ) = (G B, (3.4
that is (tensorial expression to see the basis in use),
d®(§) = cosE;, @ A' — rsin0E, @ A% +sin0E, @ A' + rcos0E, @ A2, (3.5)
Thus, cf. (1.48]) and (3.3)),
oo _oer, . =
(dey.er)(p) = 5 (p) =0, (3.6)
I _oé, . (—sinf) 1,
@) = St = (o) = e, (57)
oL 08¢, oo 1.,
(dez.€1)(p) = — = (p) = (dé1.€2)(p) = —e2(p), (3.8)
R _0ey, . [—rcosf\
@erap) = 52 = (e ) =) (39)
So (tensorial expression to see the basis in use),
1 1
dél = —€,® ez and déy = €5 ® el — rél ® 62, (310)
r r
that is,
. 0 0 . 0 —r
[dey (P)]jew), ) = (0 1> s ldex(p)iew).em) = <1 0 ) : (3.11)

ThLIS, cf. ()" ’7%1 =0, 7%1 =0, 7112 =0, ’7122 = %7 and ’7211 =0, ’ygl = %7 ’7212 =-r ’7%2 =0,
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and the non vanishing Christoffel symbols are
1

Vo=~ =71, and = (3.12)

And (3.10) gives
dé; = —sin GE_"l ® e? + cos Gﬁg ® 62,

N . B B (3.13)
déy(p) = —sinfE; ® e (p) — rcos E; ® e2(p) + cos OF, @ et (p) — rsinEI ® e2(p).
Thus,
- (0 —sinf " [ —sinf —rcosd
= (o ) s = (0 Ie). (3.14)
Exercise 3.1 Prove:
- 1 sin? 0 —cosfsind o (0 -1
[der(p)] g 5 = - (—cos@sinﬁ cos2 0 > ) [dex(p) g 5 = (1 0 ) . (3.15)

(And dés(p) is a rotation with angle 7.)

Answer. The transition matrix from (E;) to (&i(p)) is P = (Cosa - sm6’>’ cf. 1) Its inverse is

sinf  rcosf
pl_1 (rc059 rsin 6
e

Csinf  cosd ) Thus, with (dz,dy) the dual basis of (E1, F»),

el(p) = cos fdx + sin 6dy,

eQ(p) _ _8129d$ " cos(?dy.
Then (3.13) gives
o . a7 sin 6 cos 6 - sin 6 cos 6
déi(p) = —sinfF1 ® (— dx + Tdy) + cosOF> ® (— dx + Tdy),
~ s a7 . = sin 6 cos
dé>(p) = —sinfFE: ® (cos@dz + sin0dy) — r cosFE1 @ (— dr + ——dy)
+ cos OE5 @ (cos Odx + sin Ody) — rsin 0E¢ @ (—ﬂdac + ﬂdy)

Exercise 3.2 Ellipse coordinate system: let pour a,b >0, r > 0, § € R, and

4 _ [arcosé
p=®(r,0), [x]lE = ( brsin@) ) (3.16)
Find ¢€; and é5, and give dé} et dés.
Answer. Let §= (r,0) and p = ®(§) = ®(r,0).
_ [ acos?® _ __ [ —arsind . _ (acos® —arsinf
1))y = (bsin@) @@l = ( br cos 0 ) o 1@ 55 = (bsin@ br cos 0 ) ' (3.17)
Hence,
SN o 0€; 0 >
)] = 5 )] = ) =0
Je N _0é [ —asinf\ _ de . 1., 318
[dev(p)-e2p)] =[5 N = | ,o0sp ) = 1de2(p)-1(p)] = — [E2(p)], (3.18)
S 0é: - 56 "
des0) 0] = 5 ) = (o ong ) = 1 o)L
So,
de = Ged, dh= Ged-raod (3.19)

And the Christoffel symbols are those of the polar coordinate system. (NB: If a # b then €1(p) L éx(p),
and the dual basis (dr(p),df(p)) is not made of orthogonal projections. See next remark.) And the Jacobian
matrices are

delee=(y 1), WaElee=(1 ). (3.20)
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Remark 3.3 If m = n = 2, then (3.19) tells that the Christoffel symbols ~f;, with i,j,k € {1,2},
of the elliptic coordinate system (3.16 are those of the polar coordinate system , cf. (3.10)
and (3.19).

For the restriction to the circle and to the ellipse, that is with ®r(¢) = P(R,0), this will be
false for the association Riemannian connection: The Riemannian connection in R™ on a surface (the
usual connection) is the Euclidean orthogonal projection on the surface. Here €;(p) £ € (p) when
a # b, cf. (317). And, with E the ellipse curve ®z(R), cf. (3.16), and with T, = Vect{@(p)} the
tangent line to the ellipse at p, we have (Vg,é2)(p) = Proj, p(deéa(p).€2(p)) = Projp, p(—Ré1(p)). So.
(@1(p), & (p))r2 = 7(b% — a2) cosOsin b, and ||@(p)|| = r(a? sin® O + b2 cos? 0) 2, give

b2 — a?) cosfsind
(Vera)(p) = p)éalp)  with ~2y(p) = R (ai et Fe)

(And v3, = 0 when a = b.) s

3.2.2 Inverse diffeomorphism

Let the domain of ® be restricted to, e.g., U = R% x] — m,7[. Then & is a diffeomorphism, and
@~1: Q= Ry x] —m,«[ with Q =R? — (R_x{0}).
Notation: O_Z) = 2E, + yEy = Z. Then, if z > 0, i.e. if 6 €] — %, 5[, then

M%w=%w@0w@mm%mﬁ 21

O(x,y) = arctan =
x

(@7 (,)] 5 = (

General case, with 0 # 7,

r(z,y) = Va’+y?

-1 written
@05 = | (e, y) — 2arctan — L | "= (3.22)
T+ /22 +y?
that is 1 \/WAI + 2arctan o 214' __written —*(x y)
Yy

Exercise 3.4 Prove:

— — 1 I 1 e
d®~(p) = cos A, @ dx +sinA; ® dy — —sinfAy ® dx + ~ cos 0A; @ dy = di(p), (3.23)
r r
that is,
-1 _ cos 0 sinf '\ written; ;o
0 lga= (g Sy )" 00 e 5 (320
Answer. With (3.21) to simplify. ®~1(p) = G(p) = (r(p),0(p)) = r(p) A1 +0(p) A2, gives di(p) = Ay @ dr(p) +
1 3 T _ or _ . o6 _ _ _ sin 6
A2®d6(p). And (m y) = eTei cos0, g (z,y) = z;’+y2 =sin6, $%(z,y) = _“”%leé — 4 — _sing
o0 1 1 __ x __ cosf B . [ ]
3, (@ Y) = x@ = 5 = %=, which gives (3.24). nn

3.3 Cylindrical coordinate system
The cylindrical coordinate system is
R, xRxR — R?

P - R x(r,0,2) = ®(r,0,2) = 7“0989 (3.25)
qd=(r,0,z) — p=32(r,0,2), [Op]|E = | y(r,0,2) = ®*(r,0,2) = rsinf | .

2(r,0,2) = ®3(r,0 z

To get a diffeomorphism we can consider the restrition ® : U — 2 where, e.g.,

U=Rix]—mna[xR and Q=R?—(R_x{0}xR). (3.26)

Thus the coordinate curves are

(r+h)cosé rcos(f + h) rcosf
c]([,l)(h) = | (r+h)siné |, 0;2) (h)=| rsin(@0+h) |, 01(,3)(h) = | rsiné
z z z+h

1- cz(,l) is the radius at altitude z at angle 6 with Ei,
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2- c§,2) is the cercle at altitude z centered at (0,0, z) with radius r,
3- cg,j) is the vertical line through p.

3.4 Spherical coordinate system

Let O be an origin and (E;) be a Euclidean basis in R3. If p € R3, let & = O_f) =3, E;. Let
®:7cR. xR xR — pecR3 There are two usual spherical coordinate systems.

3.4.1 The GPS system

(GPS = Global Positioning System.) O is the center of the Earth, Ej5 gives the axis of rotation of the
Earth, and (F1, Es, E3) is a Euclidean basis. Then, with r the distance to O, 6 the longitude, and ¢
the latitude:

x = rcosfcosp o
GPS: O%(r,0,¢) =7z = [ y=rsinfcosp |, (r,0,¢) € Ry x [-m, 7] X [—5, 5] (3.27)
z=rsinp

E.g., with r¢ the radius of the Earth and ¢ a given latitude,
x T\ b cos cosf
y| = ( y/) 0 #0\ sing ), 0 € [—m, 7],
z 2z = 7o Sin g

is the parallel at latitude ¢g; In particular ¢y = 0 gives the equator.
And e.g., with 7o the radius of the Earth and 6y a given longitude,

x =1r9cosfycosy o
[f]IE: y=rgsinfocosp |, @€ [—5 5] (3.28)
z=rpsiney

gives the meridian at longitude 6.

Example 3.5 GPS Coordinates at ISIMA: § ~ 3°07'E and ¢ ~ 45°45’'N in degrees and minute.
With radian: 6 ~ 0,054 and ¢ ~ —0,80. And r ~ 6370 km gives the distance to the center of the
Earth, and the altitude is given relative to the (mean) level of the oceans (~ 400 meter at ISIMA). au

The basis at p = O 4+ & or the GPS system gives (€&;(p) = ((j') = cp ( )
cos  cos —7rsinf cos ¢ —7rcosfsing
[€1 (p)]ué = | sinfcosy |, [é’g(p)]@ =| rcosfcosy |, [é’g(p)]‘é = | —rsinfsing |. (3.29)
sin ¢ 0 T COS
Thus, omitting the writing of (p),
- = 861
[del.el]‘é [8r liz=0, (3.30)
—sin 6 cos

e, sin ® 1
[dé’l.é'g]‘E [ } = cosfcosp | =[- gg]lﬁ, (3.31)

00" 0 r

o oe —C?S@S?n(p 1.

[deéy.€5) 5 = [8 1} = | —sinfsing | =[-é] gz, (3.32)

® cos ¢ "

08, —7rcosf cos
[dé’g.é’z]‘E = [Whﬁ = | —rsinfcosp | —rcos? [é’l]lﬁ + cospsing [53]‘57 (3.33)
0
oz rsinfsin g
[dE,.E5) = [aJ]l 5= —reostsing | = [~tanpé)] 5, (3.34)
v 0
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o —r cos 6 cos
863 ¥

[dﬂg.gg]lE = [%]\E =\ —-r sichosnp =[-r 51]‘5. (3.35)
—rsin g
Thus,
'7%1 = 07 ’Yfl = 07 7{)1 = Oa (336)
1
Yo =0="71 7= - = Var Vo1 =0=13, (3.37)
1
Y1 =0="13 Y =0=170 == (3.38)
Vio = —1cos’p, 3y =0, 75y = cospsing, (3.39)
Via =0=133, 73 =—tanp =133, 73 =0=n13%, (3.40)
Vég = -, 7??3 =0, 7?3:3 =0. (3.41)

Therefore, the non vanishing Christoffel with the index 1 are

1
7%2 = ’731 = - = 713 ’7517 ’7212 = —rcos” Ps ’753 = (3.42)
and without the index 1, that is for Riemannian connection in the spherical surface with » = R fixed,

Yoy = COSPSINQ, Va3 =3 = —tanp. (3.43)

Exercise 3.6 Express the Euclidean dot product g(-, (+,-)rs in the GPS basis.

)=

Answer. We have to compute g;; = g(€i(p), €;(p)) = (€i(p), €;(p))r~. The spherical basis being orthogonal,

we get gi; = 0 if i # 7, and g1 (p) = [|€1(p)[|* =1, gaa(p) = [|€2(p)||* = r* cos” p, and gs3(p) = [|E3(p)[|* = r*.
1 0 0

Thus [g(p))je = [9:; ()] = [ 0 rcos®o 0 |. o
0 0 r?

_ x = arcosfcosp
Exercise 3.7 Let a,b,¢ > 0. Ellipsoid ¥ = Op = O®(r,0, p) with [i"]“; = | y=brsinfcosy |,
z =crsiny
(r,0,0) € R% x] —m,7[x] — 5, T[. Prove that the Christoffel symbols are still given by (3.42))-(3.43)).
Express the Euclidean dot product g(+,-) = (-,)rs in the corresponding basis, in particular if a = b.

acosf cos p —arsinf cos ¢ —arcosfsin
Answer. ¢i(p) = bsinfcosy |, é2(p) = brcosfcose |, es(p) = —brsinfsing |. (The

csin ¢ 0 Cr cos ¢
—asin @ cos ¢
basis (€;(p)) isn’t orthogonal in general). Then ‘?9% (p) = 0, ‘?9% (p) = bcos B cos ¢ = é%(m,
0
—acosfsing —asin 6 cos ¢ —arcosfcosp
%—il(p) = ( —bsinfsin ¢ ) = agfp), %2 (p) = ( bcos 6 cos ¢ ) = ﬂzfp), 2% (p) = ( —brsin&cos<p> =
ccos 0 0
arsin @sin ¢ —acosfsinp
—rcos® @ &1 (p) + cos psin g &(p), %(p) = ( —brcosfsinp | = — tan pés(p), % (p) = ( —bsinfsin ¢ ) =
0 ccos @
arsin @ sin ¢ —ar cos 6 cos ¢
€3T(p) 7 % (p) = | —brcosfsin 4,0) = —tan ez (p), 36;3@0 (p) = ( —brsin 6 cos ) = —réi(p). Therefore the
0 —crsinp

Christoffel symbols.

Then g11(p) = 1181 (0)[° = 1, g22(p) = [I2a(p)|* = 12 cos® &, et gaa(p) = [|Ea(p) | = 1.

912(9) = (1(p), Ea(p))ar = 1 cos® o fsinB(—a® + 1)

g13(p) = (€1(p), €5(p) )&~ rcosgosm o(c? — a® cos? § — b%sin? 6)

g23(p) = (&2(p), &(p))rn = r%(a® — b?) cos @ sin O cos @ sin .

1 0 rcos sinp(c® — a”)
In particular, a = b gives [g(p)]je = ( 0 r? cos? %) 0 ) . un
7 cos @ sin p(c? — a?) 0 2
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3.4.2 GPS system on the surface of the Earth
We have

UcR? — ScR3

. (1)1(9,90) = Rcosfcosp (3.44)
G=(6.9) — p="(6,9) = Pu(b,). [ = | #2(0,0) = Reinbeos |.
D3(0, ) = Rsingp

And the non vanishing Christoffel symbols are given in (3.42)-([3.43)):
7%2 = —Rcos® ©, 731,3 = —R, 732 = cos psin g, 7223 = 7%2 = —tan . (3.45)
NB:
dés(p).€3(p) = —RE1(p) = 733 €1(p) (3.46)

is not tangent to the surface, although é3(p) is.

3.4.3 The “classical mechanic” spherical system

Here, instead of the latitude (¢ above), we use the colatitude 7 — ¢ (so ¢ = 0 gives the North pole),
and the colatitude is named ¢, so, ¥ = Op and

T =rcosfsiny
Mechanic: [:?]lé = [@(r,@,cp)]lﬁ =| y=rsinfsing |, reRy, 6¢€[-mn], ¢el0,n]
Z=1rcosy
(3.47)
Thus
€1(p) = cosfsin wﬁl + sin 0 sin @EQ + cos @Eg7
€ (p) = —rsinfsin wﬁl + 7 cos 0 sin @Eg, (3.48)

3(p) = rcos 0 cos pE1 + rsinf cos oFy — rsin gFs,

cos fsin ¢ —rsinfsin g r cos 6 cos
[é’l(p)]‘b: = | sinfsing |, [é’g(p)]‘ﬁ = | rcosfsing |, [é’g(p)]lE = | rsinfcosp |. (3.49)
cos ¢ 0 —rsine
Then 8" 6" — aa —
S o €1 = N €1 €2 . €1 €3
dei.e; = — =0, dé1.éa=—=—, dej.é5=—=—,
T o YT 00 T T 9y
é:
dgg (?1 = *2, dgg.gg = —-T sin2 (péi — cosgpsingpé'g, d€2.€3 = COt(pgz, (350)
r
. . _ 6 Lo " Lo -
d63.€1 = —, d€3.€2 = COt(peg, d 3.€3 = —Trey,
r

and the non-vanishing christoffel symbols are

1 1 . .
Yo =~ =1 My = - = Va1, Vaa = —rsin® @, V3, = —cos psing, Y35 = cotp =3y, ;Y33 = —7
(3.51)

Part TI
Derivation operator on F(S)

4 Operator Vif = Lyf = df.0

Let ® : U C R™ — S C R™ be a coordinate system in .S, cf. (1.3, and (€;(p))i=1,...,m be the coordinate
basis at p € S, cf. (1.12).
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4.1 Derivation operator at a point

Definition 4.1 Let py € S. A R-linear form £,, € L(F(S);R) is a derivation in S at py iff for all
fr9 € F(S), N i .

Lpo(f9) = Lo (F) 9(po) + F(po) Lo (9)- (4.1)
(= Derivation formula (fg)' = f'g + fg’).
=1lifpesS

LetlsipGRn—)ls(p){:Oifp¢S

} (indicator function).

Proposition 4.2 If c € R, if f = clg="""""¢ and if L, is a derivation at py € S, then
[’Po (C) =0. (4'2)

Proof. (4.1) gives L£,,(1s) = Ly, (1sls) = Ly (1s)Ls + LsLp(Ls) = 2L, (Ls), thus Ly, (1s) = 0.
And the linearity of £, gives £,,(clg) = cLy,(1s) = 0. s

4.2 Characterization

Proposition 4.3 Let py € S. If #,, € T}, S, then the map L,, : F — R defined by

Lpof = df(po).-Tpo """ Vi (po) =" 3£ (o) (4.3)

is a derivation at py on F(S) (we say that the vector field U acts on f as a derivation operator).
Conversely:

A derivation L,, € L(F(S);R) is a directional derivative,

that is, there exists U, € T, S s.t. Ly, is given by (4.3).
Thus, considering the coodinate basis (€;(po)) in T),S, a derivation Cpo is a Iinear combination of

the elementary derivations 0;(po) = a%,;(po) (bidual basis of (€;(po))): Elv; 5V € Ros.t.
- "o mo . .
Lpof = vp, 6(;; (po) (= _vh,df (po)-€i(po) = df (po)-Tpy, = Dirf (po))- (4.4)
i=1 i=1

Proof. =: The a (po) are derivations: oq° (po) = d(fg)(po)-€i(po) = df(po)-€i(po)g(pro) +
Fpulda(on)00) = G Gulalon) + S0 o). Tous Ly, f = Lyl = dflpu)-lpn) =
sl ¥ I (po)vi(po) is a derivation (trivial).
«: Converse: Let f € F(S) and fy := fo® € F(U), that is fy(q) = f(p) when p = &(q).
Let B be an open ball in S, let pg,p € B, let gy = ® *(py) and § = ®~!(p). Consider o : t —
a(t) = fU(JO +H(q—q0)), hence o/ (t) = dfy (@ + H(G—Gb))-(G—Go)- With §—Go = Y1, (¢'—g}) A; and

dfy.A; = f’{ we get
. ! N Ofu
Fol@) = Julds) = a() = a(0) = [ a'(t)d = S0t [ G o+ -
Thus, with p = ®(7) (and §= ®~1(p) = ¢(p)),
F0) = o0) = (0 0) = a)outo). where au(p) = [ T+ lato)—)

i=1

Thus, L~p being R-linear, and with ( and ( D we get
Lyf—0= Zgz Lpg' = 0)+ (¢ (p) — 46) Lp9s;

hence, at p = pg,

L | Oy,
pof =S 01 (o) Lped’ +0, with gi(po) = 8f;?<qo>.
=1
Then vi = ZPoqi = [:Po( 71)1. and 6170 = Zz 1 poez(pO) give ipof = Zyil%o a(g;?) (‘TO)a ie.,
Ly f = ZZ Wb df (po)-d®(po).€; = -1 df (po) .U, i
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Example 4.4 Counter-example. A second order derivative does not define a derivation: (4.1)) is not
satisfied; Indeed, (fg)"” # f"g+ fg” (in general) since (f9)" = ((f9)") = f"g+2f'¢' + fg". un
4.3 Derivation operator in S

Definition 4.5 A linear map £ € L(F(S); F(S)) is a derivation iff, for all f,g € F(S),
L(fg) = L(N g+ [Lg) €F(S), (4.5)

that is, for all p € S, L(fg)(p) = L(f)(p) 9(p) + f(p) L(9)(p) € R.

Remark 4.6 With F(R), the first order derivation f — f’is a derivation : (fg)' = f'g+ fg’. But the
second order derivation f — f”isnot: (fg)” # f"g+fg"” (in general) since (fg)” = f"g+2fg+fg". an

Proposition 4.7 If L si a derivation on F(S), then, for all c € R, L(clg) = 0.

Proof. gives L(1g) = L(1glg) = L(1g)1 + 1L(1s) = 2L(1s), thus L(1g) = 0, thus L(clg)
cL(lg) = 0 (linearity).

4.4 Autonomous Lie derivative L0f = df.7 = Vyf

Definition 4.8 Let v € I'(S), f € F(S). The autonomous Lie derivative of f along ¢ is the map
LY%: F(S) — F(S) defined by, for all p € S,

LYf)(p) = df(p)-0(p), and L) ETVa(f) (= df-TETG(S)). (4.6)
(So LY%(f)(p) is the directional derivative of f at p along ¥(p).)

Proposition 4.9 £ is a derivation on F(S).
Conversely: If L : F(S) — F(S) is a derivation, then L is an autonomous Lie derivative, that is,
there exists U € T'(S) s.t.

L(f) =LY (=df.0=Vgzf=70(f)), (4.7)

Proof. £(f9)(p) = d(f9)(p)-5(p) = (df (p)-T(0))9(p) + [ (p)(dg(p)-T(p) = (LI(f)g + [L3(9))(P)-
Converse. Let £ be a derivation on S, and let p € S. Then LP : F(S) — R defined by
LP(f) = L(f)(p) is a derivation at p (trivial). Thus there exists ¥(p) s.t. £P = Y"1 | v'(p) a%i(p)’
cf. proposition This defines the map v : § — TS, and gives L(f)(p) = >i, v'(p) 3851' (p) =
S v (p)df(p)-€i(p) = LY%f)(p). And L(f) and & C™, gives 7 = Y, v'é; O=: ¥ € I'(S). ua

Part III
Usual Riemannian connection on vector fields

The usual connection V3 along ¢ in S, called the Riemannian connection, is given by Vzw :=
Projpg(dw.v) = the orthogonal projection of duwi. on T'S. This projection is the only component
of dij.” we have access to, when the “outside” of S is inaccessible.

A general connection is defined such that it “looks like” the usual Riemannian connection.

5 Connection V on F(S)

5.1 The classical definition is problematic in S

Let S be a sphere in R and f = 15 (uniform density in S, zero outside S). Let p € S and @, € T},S.
If we try the usual definition in R™, that is
hi) — 0—-1
df (p).¥ := lim o+ Z) f(p), we get  df(p).v = lim —— = Foo (5.1)
h#£0 h#0

absurd result (not expected) in the sense: If we walk on the Earth surface and f = 1g, then f does
not vary, so we expect df.7 = 0 for all horizontal ¥, not oco. Thus definition in (5.1)) is inadequate.
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5.2 Covariant derivative, or autonomous Lie derivative, on F(S)
Let

C:{[a,b] —~ S CR" 52)

s —c(s)
be a regular curve in S. NB: the variable s is interpreted as a spatial coordinate in the following (the

time variable ¢ will be introduced for the “unsteady” case). Let p = ¢(s) € Imc C S and let

#(p) := &'(s) = lim c(s+h) —cls)

€ R" (the tangent vector at Ime at p = c(s)). (5.3)
h—0 h

Definition 5.1 Let f : S — R. At p = ¢(s), the covariant derivative Vzf(p), also called the
autonomous Lie derivative £%f(p), is the scalar defined by (if it exists)

@af(]?) — Eogf(p) — d(-};: C) (S) _ ]}bg% f(C(S + h)})l B f(C(S)) (54)
(To compare with (5.1).) And
Vot o) = L% @) " 2L ) = ap o)1), (5.5)

ds

Remark: The exponent * in £%f corresponds to the steady case (time independent), while Ly f
refers to the general unsteady case, see previous manuscript.

Remark: If ¢ € T'(S), then we dispose of its integral curves ¢ : [a,b] — S in S, given by ¢(s) =
fi:o ¥(c(u)) du + ¢o (with ¢ a constant, and @ is independent of ¢y), thus Vi f(p) is well defined.

Thus we have defined the covariant derivative, or autonomous Lie derivative, along ¥-

) . F(S) — F(S),
V=L f H?gfzﬁ%f::@gf:%f:df.ﬁ. (5:6)
Proposition 5.2 If ¢ € F(S) and ¥,w € I'(S), then, for all g € F(S) (algebraic formulas)
Veitad =¢Veg+Vag, e Vesisg=¢Vag+ Vag, (5.7)
that is, dg(p¥ + W) = ¢ dg.U + dg.w (linearity). And, for all f,g € F(S) (derivation formula),
Vi(f9) = f Vg + (Vaf) g, (5.8)

that is, d(fg).v = (df.0) g + f (dg.v) (written d(fg) = (df)g + f(dg)).

Proof. Adapt the classical proof, cf. (5.1), of the proposition in R™ to the definition given in (5.4). au

5.3 Differential Vf in F(9)
Definition 5.3 If f € C*(S;R), then, with (5.4), the differential of f in S is the map, if it exists,

- L(S) — F(S5),
Vi ~ =, written (59)
T s V.0 = Vaf V8 gr 5,
And Vf="ritten ¢ (although S is not an open set in R” if m < n).
5.4 Connection V in S
enables to define the connection for scalar functions in S: It is the map
. I'(S) x F(S) — F(9),
g [TOxF® xS 510
(U, f) = V(@ f)=Vsf=Vfi (=L%f=df D),

NB: Usually V =written V, the context removing ambiguities. However, we will stick to V to avoid
confusions with the connection V on vectors fields.

Proposition 5.4 V is F(S)-linear in the first variable, and is derivation in the second variable.

Proof. It is (5.7) and (5.8)). un

24



5.5 Quantification of V;f and Vf

(A;) being the canonical basis in R™, the coordinate basis (€;(p)) at p = ®(q) is given by &(p) =
d®(q).A;, and (fz(p)) = (dq‘(p)) is its dual b'@sis, cf. 1} Thgn, if f e F(S), the g{i (p) are the
components of V f(p) relative to the basis (dg*(p)): If 7= > v'€; and p = ®(§) € S, then

~ m 9 _ ~ m 9 ‘
W) =) Vi0) =D S ), and Vof =D 00wt (511)
i= % - v
~ ocl® (@) — f(c®

tudeed, 97 (p).() = Lo ) = pug LD HED) — gpp)1) = 2,
Proposition 5.5 With a coordinate basis (€;), we have, for all f € F(S) and for all i, j,

_ e e _f

Ve (Ve f) = Ve, (Ve f) (= W)' (5.12)

Proof. Let p = ®(¢) and fy(q) = f(p), that is, fu := fo®. Then %(s) = de(Q).Ej =df (p).€;(p) =

ofu

= 057 = = . .

Ve, f(p) (=named j—fj(s)) And 24~ = V¢, (Vg, f)(p). And f and ® being regular (at least C?), fy is
’ of;  poty

regular (at least C?), we have i~ = —24, thus (5.12). o

6 Riemannian connection V in S

6.1 The classical definition is problematic in S

As in paragraph if @ € T'(S) and is zero outside of S, then limj_,o w = 400, and the

classical definition of the covariant derivative dw.v = limy,_.q is inappropriate. Thus, as

for (5.4), we consider a curve ¢, cf. (5.2), and v(c(s)) = ¢’(s), cf. (5.3), and we define
d(woc)

I (s).
But a new problem arises: Even if ¥, € T'S (tangent to S), the covariant derivative dw.7 ¢ T'S (not
tangent to S) in general; E.g., (3.9) gives dé>.¢5 = —ré; (the centrifugal force), which is not tangent

to the circle, whereas €5 is.
So one more step is required to get a derivation in S for vector fields in I'(S): To get read of the

orthogonal component of dw.7 on S. That is, if di(p).7(p) = @) (p) +dL(p) € TS @ TpSL =R", we
only consider ) (p) = Projq, s(dw(p).v(p))-

dii(p).v(p) := (6.1)

6.2 Projections Proj; ¢ and Proj,g

Let (-, -)rn be a dot product in R (often supposed to be Euclidean in classical mechanics). Let p € S.
The orthogonal projection in S at p is the map

, R* — T,S C R»
Projp ¢ : . . . (6.2)
r i — PI‘OJTPS(U),
where the projection ProijS(a') is the unique vector in 7,5 such that
(Projp, 5(@0), Up)rn = (4, Up)rn, VU, € T,,S. (6.3)

That is, (¢ — Projq, ¢(4), Up)rn = 0 for all v, € T),S, i.e. @ — Projg, (i) L T,,S.
This gives the definition of the projection operator (the linear map) on vector fields in S:

Projyg : {F(S) = I(S) (6.4)

—

i — Projpg(@) where Projpg(@)(p) := Projq g(i(p)), Vpe€S.

E.g., S being the circle, (3.9) gives des.ea = —ré} (only a centrifugal force), thus Projrg(é2) = 0
(there is no tangential force).
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D
dt

Let ¢ : [a,b] — S be regular curve in S C R, let p = ¢(s) and ¢(p) = ¢’(s), cf. (5.3)).

6.3 Riemannian covariant derivative V uw =

Definition 6.1 If @ € I'(S), cf.(2.1), then its Riemannian covariant derivative along ¢ at p is

d(Woc)

- . . — N written Dw
Viyw(p) = PrOJTpS(T(s)) = Proj, g(du(p).v(p)) =

g(p)v (6.5)
And the Riemannian covariant derivative operator in I'(S) along ¥ is the (linear) map
I'(5) = I(S),
YU @ s Vo = Projpg(d e DT (00
6.4 Riemannian differential V& on I'(5)

If 7 € T(S) then we consider its integral curves in S. And with (6.6):

Definition 6.2 Let @ € I'(S). Its Riemannian differential at p is the map

_ JTS) = T(S),
\VInE . o . ) o (6.7)
U = VW.v:=Vz0 (= Projpg(du.v)).
6.5 Riemannian connection V in §
Definition 6.3 With , the Riemannian connection V in S is the map
I'(S) xT'(S) — I'(9),
v . ( ) _’( _’) ( _’) . . ) . (68)
(U, W) — V(U,W) := Vs (= Projpg(dw.v)).
6.6 Properties
Proposition 6.4 If ¢ € F(S) and @, € T'(S) then, for all @ € T'(S), (algebraic formula)
VitsW = @ Vg + VW, (6.9)
and (derivation formula) R
Vi(pw) = ¢ V(@) + V() 0. (6.10)

Proof. Apply the linear operator Projy, g to du.(pti+7) = ¢ diw.i+dw.v and to d(pw).v = (di.0)d+
(2] (dzf)ﬁ) at p. mn

Corollary 6.5 The derivation operator Vi : I'(S) — I'(S) is not tensorial.

Proof. It would require Vz(pw) = ¢V, which is false if ¢ is not constant, cf. (6.10). =a
On the other hand
I S) —»I(S)

Proposition 6.6 If & € T'(S), the Vi : { . R
U — Vv

} is a tensor.

Proof. Corollary of Vi.(¢7) = ¢ V.7, cf. (6.9). ua

6.7 Notation Ddzf

With 82 = Vi € I'(S), cf. (6.13), then

D@ written DQU_; —
TZS =" =5 (= Va(Vaw)) (6.11)

gives the second order variations of  along an integral curve of ¢ (will give the Riemann tensor).
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6.8 Unsteady vector fields and 22

Let ¥ : [to,T] x S — 9(t,p) € T'S be an unsteady (Eulerian) velocity field in S (the velocity along
an unsteady “real motion”). And let o : [to,T] x S — @(t,p) € T'S be any unsteady vector field
in S (usually interpreted as a “tangential force field”). And at any given ¢, let 0:(p) := ¥(¢,p) and

wi(p) == W(t,p)-
Definition 6.7 The covariant derivative Vuw(t, p) is defined by Vzw(t, p) := Vg, W (p), that is,

written

Viii(t, p) := Projq, ¢(d(p).v(p)) == Projp, g(dui(t, p).u(t,p)) (space derivation at ¢t). (6.12)
The material derivative in S of W along ¥ is, at ¢t at p € S,

Dw
Dt

ow . 0w
(t.p) = G (tp) + Vailt.p) (= 57

o (t.p) + Projg, (dif(t,p).5(t,p)).  (6.13)

(If S is open in R™ then 2% (¢, p) = 2%(¢, p) + dui(t, p).(t, p) = the material derivative in R™.

6.9 Acceleration %

Let ¥ be an unsteady vector field and let ¢ be an integral curve of ¥ at p. So ¢’(t) = 9(¢, c(t)) = (¢, p),
when p = ¢(t), is the velocity along c¢. Remember that the acceleration along ¢ at p = ¢(t) is

F(e(t)) = e (D).

Definition 6.8 The acceleration in S is at t at p = ¢(t) is

Ys(p) := Projr, s(7(p)) (= Projg, 5(¢” (1)), (6.14)
that is, with (6.13),
e DT s (T 08 .
Ts(c(t)) = 55, (t,p) = Projg, s (5 + dv.0)(t,p)) = 5 (t,p) + Vi, p). (6.15)

7 Christoffel symbols

7.1 Definition

Definition 7.1 The Christoffel symbols (fyzkj(p))k:ln at p € S C R" relative to the connec-
tion V, cf. (6.8), are the components of the vector Ve, €;(p) = Proj, 5(d€;(p).€i(p)) € T},S relative to
(€i(P))ien1,m]» that is, for 4,5 = 1,...,m,

(Projpg(dé;.6i) =) V& =Y vhé, and ~f =eb.(de.&) Vh=1,..m, (7.1)
k=1
ie., for all p € S, (Projy, 5(d€;(p)-€i(p)) =) V&, &(p) = 23175 (p)én(p)-

Comparison with definition The sum is limited to k = 1,...,m. And remember, cf. (2.11):

Vi, g,k € [Lmln, vl =i (7.2)
Example 7.2 Polar coordinate system, cf. (3.10), dé>.e5 = —ré;. And restricted to the circle,

Ve, = Projpg(dés.é3) = Projpg(—ré1) = 0, thus 43, = 0 in the circle (the only symbol of Christoffel
vanishes).
For spherical coordinates restricted to the sphere, the ’yfj are given at 1) oh
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7.2 Components wfj of Vi

Let @ € I'(S) and @ = Y, ,w'é;, that is @(p) = Y.~ ,w'(p)é;(p) for all p € S; Then, for j =1,....,m

m

Ve, = Projy, ¢(di.é;) = ProijS(Z(dwi.gj)a +) w'dé; )

=1 i=1

(7.3)
= Projr, ¢ Z ez + ZZU} ’yﬂek
i=1lk=1
Thus,
o G ow' “ ik .
Ve = Z ;€ with w|j = o —|—kz:'yjkw , Vi=1,...,m. (7.4)
i=1 =1
So, the wlij = (Va)} are the components of the tensor Vi relative to (€;):
m . .

": Zw\ZJ é’i@e‘], and [VIZ,U]‘ ['LU‘]]L 1,....m . (75)

1,j=1

Hence, if 7 € [(S) and & = 377", v/ ¢}, then Vi = Y1 |07V 10 gives

. - ow' &
Vs = Zwljv e =vVu.o (= Z (a J ). (7.6)

1,7=1 7,7=1
Exercise 7.3 Prove:
. . T owt vt
Vs — Vgu = Z (v’ o0 —w’ od ) €;. (7.7)
i,j=1
(The Christoffel symbols “disappear”, and Lz := V0 — Vg0 € T'(5).) ua

7.3 Divergence in S : divd/ = ) wj; = Tr(V)
Definition 7.4 Let « € I'(S). Its divergence is the trace of its differential Vi, that is, with ([7.5)),

m

divat = Tr(Vw) Zw‘l Z

(7.8)
ik=1

NB: The divergence is independent of the coordinate basis, since Vi is a (}) tensor (or ap-

ply (8.13)).

Exercise 7.5 Prove:
div(fw) = f divdd + df 0. (7.9)

Answer. fui =), fw'e;, thus (fw)’ = fw’, thus div(f®)
d(fw) =W @ df + fdi (indeed, d(fw).v = (df.0)w + f (dw.

A (fu ) =X, fuw' + Y, w|lz Or, apply
) ...

S}H

8 Change of coordinate system in S

8.1 Change of coordinate basis and transition matrix
8.1.1 The coordinate systems

Consider two coordinate systems describing (locally) S:

UCRm — 8 VCRm — 8
o, : ~ - . and @y : . - R (8.1)
Go = p=Pu(qu @ —p=Ly()

E.g. in R?, ®, is a Cartesian system chosen by an observer A, and ®, is polar system chosen by an
observer B, both systems being used to describe the same surfaceS C R2.
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Consider p € S, p = ®,(qn) = Pp(d5) (the position p as described by the observers A and B), and
1 the change of parameter diffeomorphism (the translation from B to A)

{ VCcR™ - UCR™,
G — o= 0(@) = Pa (D4(@) =" ().
Thus ¢,(g) is the name given to J((j’b) = <I>a_1(p), when p = ®,(q,) = Pu(Gp)-

U=, od,: (8.2)

8.1.2 The coordinate bases

Let (A;) be the canonical basis in R™ (in the Cartesian space R™ = R x ... x R there is only one
Cartesian basis). Then the bases at p of the coordinate systems ®, and ®, are, with p = ®,(q,) =

q)b(q_’b)a cf. (’ N N
€ia(p) =d®q(qn).-A; and € 3(p) = dPy(qh).As. (8.3)

)

8.1.3 The change of coordinate basis
Consider the change of basis endomorphism P(p) : R™ — R defined by, for all j € [1, m]y,

€ib(p) = P(p)-€jalp) = Z P(p) €a(p), [P = [Pj(p)] (8.4)

Proposition 8.1 With J((ﬁ,) = Z?;W((Tb)/fi = Zﬁlqé(qb)/l’i, then, for all i,j € [1,m]y, at p =
Do (da) = Po(),

aq., G

i . . Lo - wrltten
Pj(p) = dq (@), [PO)e, = dda(@)] 5 5, (@) (8.5)
(The only difficulty is due to the understanding of the notations.)
Proof. p = ®4(q) = ®u(d ) o (P(3h)) gives dPy(Gh)-4; = dPu(P(@)).d0(@).4;. And (q) =
S A, e AT, = S ) ), = %% (@) A;. Thus
m . . . m 8
d®, (g Z i Gu(@)).A;, e = Za (8.6)
im1 i=1
So, with , we get Pi(p) = i(qb) for all 4,7, and ¢’ (G) = ¥*(G) gives () a
Example 8.2 In R? with a Euclidean basis (Ey, Ey):

. R2 — R? . .
Let @, Cartesian: . . . . ¢, and €4(p) = E;. And let @,
Go = (z,y) = p=2u(q.) =0 +zE1+yE>

R+ X] -, 7T] — RQ
polar: . . . -~ ¢,and €,(p) is given by (3.3).
@ =(r,0) > p=3y(q) =0 +rcosOFE; + rsinfFE;

— 1 = = =
And G, (@) = ¥(@) is given by [G(@)]e,., = (q“ z =rcosh =g, COS%) thus P = (28] =

@2 =y=rsinf = g sing}

oz oz .
5 86\ _ (cosf —rsinf\ . R . ... . .
(8y 8y> = (sin@ 1 cos 0 > = ([61,1,(]9)]‘}3 [62,1,(]9)]‘}5) = [Plie,: The transition matrix P is

or o6 .
the change of basis matrix from the Cartesian basis (€; ,) = (F;) to the polar basis (€;5) = €i(p)) as
expected, cf. (3.3). ua

8.2 Change of basis formula for vectors

Let Q(p) = P(p)~". So, cf. (8.5),
€j.a(p) = Qp)-€jp(p) = Z Q5(p) Ep(p),  [QW)e, = [Q%(0)] = Qp) = P(p)~, (8.7)

the last equality since &, = Y7 Q30" PFér, = Y0 (XL PFQ%)eka for all j, thus
(Z?;Pz'kQ;) = (5; for all j, k, i.e. P.Q = I. And, as for 1

Q(p) = [dai(a )1\A—[Q;<p>1“”ite“[§j(j< 3l (59
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Proposition 8.3 Let 1 € TS, 7=, v.€; o = >, vi€p. Then (contravariance formula)

m
e, = P~ [tle,, Qe vi=) QWi Vi=1,..,m, (8.9)
j=1
Proof. 1) gives Zvié},a =7 = Zvié'j’b = Zvi(z P}é}ya) = Z(Z Pjvi)em, thus v} =
i=1 j j=1 =1 i=1 j=1
STty Pjuy for all 4, ie., [0], = P.[t]p, thus un

8.3 Change of dual basis formula
Proposition 8.4 Let p € S. For all j =1,...,m, we have

eh=> Qe (8.10)
j=1
Proof. (> Q}cl).&p=(>_Qjeh) ZPkek “ Z QiPks;, = ZQkPk Q) = &%, for all
=1 =1 £k=1
i, =1,...,m. Thus 3,0, Qi e’ = e} (by deﬁnmon of the dual ba51s), ie. . un

8.4 Change of component formula for linear forms

Let p € S and ¢, € (T,5)* = L(T,S;R) a linear form at p. Let £ = > 1" £; e = > 7" £ peb, s0
ol = (14 - lme)and &)= (l1p ... Lmyp) (line matrices since £, is a linear form).

Proposition 8.5 (Covariance formula)

(0] = [la) P, de. L= LiaP), j=1,..,m. (8.11)

m m m m

Proof. (8.10) gives » (;q¢} = Ze beh = Zm ZQl el) =Y () tipQ:) €}, for all i,j, thus

j=1 i=1

Jj=1
gj,a = Zi:lfi,bQ;v SO [fa} = [Zb]Q Ly

8.5 Change of basis for the !

Consider the Riemannian connection Vyw = Proj,g(dw.v) for all ;4 € T'(S) (derivation along o
in S). The Christoffel symbols relative to the coordinate systems ®, and ®, are, at p = ,(q,) =

q)b((jb)a cf. 7

v,;i,aé'jya = Z’%kj,aé‘k,a and Véi,bgj,b = Z’ij,bé)hb' (812)
k=1
Proposition 8.6
o \~ 05 dap
’YUb - Z P PBQAFYaﬂa Z i ¥ =L (813)
a,B,A=1 a=1 8(1 qa

(Thus a connection is not a tensor because of the last term.)

Proof. () and give €,(p) = >, ?9?5 (@b) Ca,a(p), thus, with p = ®,(q,),
b

_ B i .
déjp(p)-d®s(qh).Ai = Z(d(az_j )(@).A Z @)dCo,a(p)-d®s(G) - Ai,
a=1 b a=1
ie. deju(p)@islp) = Yo, ;’qq; (3)Poa(p) + Xy 55 (@)d80.a(p)-Eip(p), thus d;(p).1(p) =

m 92 0, 17} — m 0
>am1 aq]q; (Gb)€a,a(P)+3 0 51 aza (@) qa (Qb)dea a(P)-€3,a(p). Hence €o,q(p) = 2252 133g (@) €xb(p)
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gives

D Aiwlib =Y~ (@)faa) + Y Y o (@) i (@)725.083.0(P);
k=1 b

=1 9a,q, a,B=1 =1

thus (with projection on T'S)

- - aq —~  0q% . 04 oqf .\
> Ak b Z b5 2 (@) Ep(p)+ > (@) 55 (Qb)vﬁﬁ,aﬁ(qb) €,b(D)-
k=1 o k=1 qbqb @' b q

8.6 Change of basis formula for Vi
Let @ € T'(S), W = Y0 \w}, €ia = D1 51 Wh €ip, and

m

Vw—Zw‘]ew@m —Zwb‘]ezb®eb (8.14)

7,7=1 3,j=1

m k k pi > J
Then 1) and give § i lwb|] elb®eb § 0= 1waw €k, a®e =5 kotij=1 Wale Qi P)e;, e,
] m
thus wg‘j =) k=1 Q walePe, ie.
[V

=

=P~ [V, . P, (8.15)

as expected for endomorphisms.

Part IV
Lie autonomous derivative and Lie bracket

For the mechanical interpretation, see manuscript “Objectivity”.

9 Lie autonomous derivative

9.1 Second order derivation, and issues

Consider @, cf. (2.1). Let f € F(S;+) and ¥,% € I'(S;). Then we have (derivation along & then
derivation along ¥)
d(df 18).7 = d* f (U, 10) + df .(dd.7). (9.1)

And the first order term f.(dw.7) remains on the right side (unless « is uniform).
Issue: If f € F(S5) is extended by f = 0 outside S, then df.(dw.7) is meaningless since dw.v ¢ T'(.S)
in general, even if g, w|g € I'(S):

Example 9.1 Polar coordinates (3.2), R > 0, the circle S = C(0,R) = {(Rcos#, Rsinf), 6 € R},
and its thickening Sy = {(rcos6,rsind), r € [-£ o[, € R}.
If i = U = &, then dés(p).ex(p) = —rei(p) for all p € S, cf. (3.9), and the right hand side of (9.1
gives
d*f(Ey, ) + df.dés.éy = d> f(E5,E) — rdf.€). (9.2)

Issue: If f € F(S) is extended by f=0 out51de S then df.¢] = +o0, cf. .

While the left-hand side d(df .é: 62 .5 of (9.1) is meamngful since €3 € F(S) gives df.€; = Bf e F(9),
cf. , and then d(df.@;).6> = W € .F(S) (meaning 2 892 Y (r,0) when fy = fo®, cf. (D .

So in a surface S, the right hand side of (9.1)) cannot be used to compute d(df.€).é. In fact,
d? f (&3, &) is not defined on the circle (would be equal to d(df.é>).¢> — df. (dé3.€2) = finite — £00)...,
that is the bilinear form d2f does not exists here (case f zero outside S = C(0, R)). =a
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9.2 Lie autonomous derivative L% on F(S)

Definition 9.2 Let @, € I'(S). The autonomous Lie derivative £L%:17 is the derivative operator

F(S) — F(9)
L% : { named (9.3)
F o Lo%0(f) = d(df.5).5 — d(df.0).5 "2V 5, Vsl ().
That is, cf. ,
Lo%5(f) = Va(Vaf) — Va(Vaf) 205, V(). (9.4)

Proposition 9.3 L% is a derivation on F(S), i.e., if f,g € F(S), then Lo%B(fg) = L%T(f)g +
fL%15(g). Hence, there exists a vector field Z € T'(S) such that, for all f € S,

Lo(f) = L(f) (= dfZ=Vzf), and Z"27 ) (9.5)
If (€;) is a holonomic basis (is the basis of a coordinate system), then, for all i, j,

£%e =r%e¢, ie e, e]=0. 9.6
-] j J

Proof. d(fg).«w = (df W)
Thus d(d(g).). =
And d(d(fg).v).@ = U
Thus £0~w( fg) = ( (df5).7 — d(df. *).w) g+ f(d(dg.w).v - d(dg.ﬁ).w) = gLo%G(f) + FLO(g).
And gives Z.

o L L 2 2 .
Then E jez(f) = d(df.€;).e; — d(df .€;).€; = % - a:?qui =0. ua

Exercise 9.4 Consider the normalized polar basis (b1 (p), ba(p)) given by by (p) = & (p) and by(p) =
&0 of . Compute dby.b; and dby.by and Ly, b

Answer. 8)) gives
1 1 0f

Y o 1- 1. o L
dbz,bl — dbl,bg = —;bg = —ﬁez, and Lglbz(f) = —ﬁdf.ez = —ﬁ%, (97)

first order derivative % i f = ag = df .é5. un

Proposition 9.5 For all ¥, € T'(S) and ¢ € F(S),

[,O fjﬂ_)' = QOACO{;’UJ £0u,<p£ 7 (: (P‘Coﬁu_; - (d(,pw)ﬁog), (9 8)
L%(pw) = ¢ L% + L%pL% (= ¢ Lo%T + (dp.¥)L%%), '
that is, for all f € F(95),
{ Lo (f) = o L2%0(f) — Lo30L%f (= @df.Z — (de.)(df 7)), 9.9)
Lo%(pw)(f) = o Lo%B(f) + L% L% f (= @ df-Z + (dip.) (df.5)), '
Proof. R R o
L% (f) = Vu(Vaf) =Va(Vef) = d(df 0).(¢0) —d(df (90)).0 = ¢ d(df &).T—d(p (df 0)) .0 =
@ d(df D).T — (dp.0) (df.0)) — @ d(df.0). 0 = ¢ Lo%(f) — LO%L% f
L%(p0)(f) = Va(Vea(f)) = Veu(Vaf) = d(df(pw)).0 — d(df.0).(pw) = d(p (df5)).7 —
@ d(df ¥). = (d.0)(df &) +  d(df )T — @ d(df V)0 = (dp.0)(df &) + o LoF(f)
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10 Lie bracket
10.1 Lie bracket [v, ]
L% : F(S) — F(S) being a derivation, cf. prop. the vector field Z' in is denoted
Z = [v,w] € ['(9) (10.1)
and [v,w] € T'(S) is called the Lie bracket of @, w € T'(S). So, for all f € F(S5),
CO5a(f) = df-[o,@) "5, @ (), (10.2)

action of the vector field [0,@] on f, where the last notation [v,](f) uses the natural canonical
isomorphism 7, cf. (1.30) (vectors «> directional derivation). See (4.7)).
E.g.,in S;, with V the usual connection (Vzw = d.v), (9.1) gives

[0, 4] = dib.§ — diiif = Vi — V0, (10.3)

E.g., (9.7) gives [b1,bo] = —2bo, and [by, bo](f) = df.[b1,bs] = —T%%

—

E.g., in S, with V the usual connection (Vw0 = Proj¢(dw.v)), (9.1) gives
[0, W] = Projpg(dw.v — dv.w) = Vywl — Vg0 (10.4)

Corollary 10.1 reads

(o0, @)(f) = [0, d](f) — (dp.)(df.0) (= pdf.[V, @] — (do.0)(df V), (10.5)
[0, pw](f) = @ [0, 3] (f) + (de.0)(df W) (= @df.[V, @] + (de.w)(df V). '
10.2 [v,w] is tangential
Theorem 10.2 If ¥,% € I'(Sy) are such that v|g,w|s € I'(S) (tangent to S), then
[U,4]|s € T'(S) (tangent to S). (10.6)
More precisely,
[0, ]|s = Projpg(di.v) — Projpg(dv.a) = Vg — Vg, (10.7)

with V the usual connection in S, cf. .
And [0, W] is antisymmetric.
Quantification: (€;);=1,...m being the coordinate basis of ®, if 7 = .~ | v'¢; and & = Z;”zleé}
in S, then
[V, W] g = (dw.¥ — dv.0)| g = Z (8w i Z w?)é; € T(S). (10.8)
’ Py an 8q.7

Proof. With the extended basis (€}, ..., €,) of S;, we have in S:

m m m m
A=Y " (dw'.5)&; + Y w'(de;) = > v (dw' &)+ Y wivide;. ¢
i=1 i=1 i,j=1 i,j=1
m (10.9)
- 3 G St ke

wzl i,5=1
And +F s1nce (€;) is a coordinate system, thus the fyzj terms vanish in dw.v'— dv.0, hence -
thus ([10.7] , and the antisymmetry (trivial). -
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10.3 Jacobi identity
Proposition 10.3 (Jacobi identity) The Lie bracket satisfies: For all @, 7,4 € T'(S),

[, [0, W] + [, [, 4]] + [, [@, ] = 0. (10.10)

[, [7,7]] = Vgo (VyoVg—VgoVy) — (VgoVg— Vo Vi) o Vg

- . - . (10.11)
ZVQOV77OVH7—V@OV@OV5—V OV*OVa-i-V oVzoVyz
Idem for the two other terms (circular permutation). Thus (10.10)). wn

Definition 10.4 A Lie algebra is a quadruplet (V,+,.,a) where (V,+,.) is a vector space and a :
V x V — V is an antisymmetric bilinear map which satisfies Jacobi identity, that is,

a(a(, ), @) + a(a(v, D), @) + a(a(@, @), 7) = 0. (10.12)
Example 10.5 {n * n matrices} with [A,B] = AB — BA is a Lie algebra. (R",+,.,].,.]) is a Lie
algebra. un

10.4 Derivation formula £%][v, ] = [L%, 0] + [v, L%0]

With £%% = [, 9] and with [@, 7] = —[7, 4], the Jacobi identity (10.10) gives the derivation rule
L%[0,@](f) = [L%7, @](f) + [T, L] (). (10.13)
10.5 Geometric interpretation of [7,w] # 0

Let ¥,w € I'(S), let p = ®(q) € S, and let ¢, and 3, be associated the integral curves at p, that is,

4By
dt

doy

ds (s) =v(ap(s)), p(0)=p, and

(t) = @(Bp(t),  Bp(0) =p, (10.14)

for s close to 0. And consider the associated family of curves a(s,p) = a,(s) and (¢, p) := B,(t), so

0 N 0 .
O (5.p) = Wla(s,p), and D (t,p) = w((t,p). (10.15)
Let p= Py = a(0, Py) = 3(0, Py) € S and, see figure
P1 = OZS(P()),
P2 = Bt(P0)7

Py =Bi(P1) = (Bro 048)(P0)"Vrié“’“@(s’t)7 (10.16)

Pa1 = as(Py) = (ag 0 Be)(Po) "= (2, 5).

Proposition 10.6 With ¢(s,t) = Bi(as(FPo)) and ¥ (t,s) = as(Bt(Po)), cf. (10.16), the second order
Taylor expansion are we have

©(s,t) = Py + (s T+ t W) (Py) + (s*d0.7 + st di.ai + t di.ab) (Po) + o(s*+t2), 1017)
Y(t,s) = Py + (t W + s0)(Py) + (tdi.b + st dib.¥ + 2 dv.0) (Po) + o(s*+12), '
thus,
(p(s,t) —1p(t,5) =) Pia — Py = st[0,d](p), +o(s”+t). (10.18)

Thus [v, W](Py) is a measure of P1oPs1 (the “aperture”, see figure M)
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12
21

Po

Figure 10.1:  Along curves which are not curves of a coordinate system, the path joining Ps to

Py is not closed, and P12 Pa1 = st[#, ] (p) + o(s®+t2), thus [v, W] gives a measure of measure of the
“aperture”.

Proof. (p(S,t) = ﬁ(t a(s PO))) s (s PU) ( (S PO)) and %(ta a(87 PO)) = Uj(ﬂ(t, a(sv PO))) give

g—f(s, t) =dp(t, a(s, Py)).v(a(s, Py)),

aﬁ(s,t) = w(B(t, als, Py))).

ot
Thus,
?;so - (d2 B(t, a(s, Py)).v(a(s, Po))) vla(s, Pg))+dﬂ(t,a(s,P@),(dq}'(a(s,po)).g(a(&PO))>’
g,;s( t) = d(gﬂ)(tva(svpo))ﬂ(a(s,Po)) = dw(B(t, a(s, Po)))-v(es, Po)),
%(snﬁ) = dd(B(t, a(s, Po)).w(B(t, a(s, o).

In particular,

p0.0)=Ry  220.0=7R), (0,0 =a(R),

0% 0 & & .
SL0.0)= @R(R), 5 (0,0) = [@BO)(B) = 52 (0,0),  ZE(0,0) = (d.a) (o)
Idem for . Thus the second order Taylor expansion are:

2 t2

@(s,) = Po 5 T(Po) + L T(F) + 5 (dT-0)(Py) + st (di5.0)(Po) + 5 (di.d) (Po) + o(s>+4),

Y(t,s) = Py + tw(Py) + sT(Py) + g (dit.a8) (Py) + st (dv.0)(Py) + t; (dT.T)(Py) + o(s*+12).

Thus ¢(s,t) — P(t,s) = st((di.7)(Py) — (dv.a8)(FPy)) + o(s2+t2) = st[7, W] (Py) + o(s2+t2). a
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Part V
Connections

11 General connection V on I'(S)

11.1 Definition
I(S) x F(S) — F(S)
(@, f) = V(@ f) = Vsf = df.0=LUAS)

ant derivation of scalar functions f along ¥, cf. (5.4]). For covariant derivation of vector fields:

If 7 € T'(S) then we have defined V : } the covari-

Definition 11.1 An (affine) connection V on I'(S) is a R-bilinear map
I(S) xT'(S) — I'(9),
Vv written written (111)
(U, W) = V(@0,W) = Vyid = V.o,
such that

1. For all @ € I'(S), the map V(., %) = V.(.) = Vyw : I'(S) — I'(S) is F(S)-linear, i.e., for all
f e F(9) and all @, v € T'(S) (algebraic formula),

Vfﬁ_._f;w = fVaW+ Vzw, (11.2)
ie. VW.(fu+v) = f VW4 + V.U, ie. V(fiu+ U, @) = fV (iU, W)+ V(¥,) (linearity in the first
variable), and

2. For all ¥ € T'(9), the map V(7,.) = Vg(.) : T'(S) — T'(S) satisfies, for all f € F(S) and all
w € I'(S) (derivation formula),
Vi f) = (Vsf)is + f Vi, (11.3)
ie. V(f@).7 = (df.T)& + f V@7, i.e. V(T, f@) = V(T, )@ + [ V(7,@), cf. (5.10)).

And Vi is called the covariant derivative of @ along 4.

Example 11.2 The Riemannian connection (6.6) satisfy (11.2) and (11.3), cf. (6.9)- - It is a
connection. However the Riemannian connection can only be defined if S is a surface in R"; It
cannot be “naturally” defined if S lives on its own (e.g. S is the Earth surface and a “vertical” is not
accessible, or e.g. S = our curved space-time set of general relativity). un

Remark 11.3 The notation Vz(w) = Vzw = V.0 seems to be universal, but the notation V (¥, &)
depends on authors; Here we use Abraham and Marsden [I] notation, that is, V (¥, W) = VW (moti-
vation: See §[11.8). (Misner—Thorne-Wheeler [I5] use the notation V (&, ) = Vzw...) ua
11.2 Covariant derivative V; on I'(S) and 2%

(11.1) and (11.3)) enable to define the covariant derivative along ¥:

I(s) = T(S),
Vi @ s V(@) = V(7,F) erttenvﬁ ~ written Dd:) (Writ:ten Vid.7). (11.4)
In R™, V3w := dw.v is the usual covariant derivative.
In S C R", V4w := Projpg(dw.v) is the usual (Riemannian) covariant derivative.
11.3 Differential V& on I'(5)
and enable to define the V-differential of w:
r T
Vi { (537 :V(S.)E:: Vol (= V(7,7)). (11.5)
Proposition 11.4 Let o € I'(S). Then Vw : T'(S) — ) is a ( ) tensor in S.
Proof. Thanks to the F(S)-linearity (11.2), i.e., Vii.(f@) = f V(). .
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11.4 Naive connection V°
Let ¢ € T'(S).

Definition 11.5 Let (&@;)i=1,...m be a basis in T'S (not necessary holonomous), let @ € I'(S). The
naive connection VY relative to the basis (a@;) is defined by

W= Em:wjaj — V.= f:(%wj) a (= i(dwﬂ’.ma’j =V%%.7 = VO#,w).  (11.6)
Jj=1 Jj=1 j=1
In particular, for all ¥ € T'(S) and all 4, € [1, m]n,
VY a; =0=vV"a,a;) = Va,.d. (11.7)
Proposition 11.6 The naive connection is a connection.
Proof. 1. V4, w0 = 31" (dw'.(fi + 0))d; = Y12, fldw' @)d; + 3377 (dw'.0)d@; = fVHT + Vi,
lle l.lé-(fw’) =>.(d(fw").D)a; = Y, (df D)yw'a; + >, f (dw'.0)d; = (df .0)b + f VT, i.e. . un

Proposition 11.7 A naive connection is not a tensor.

Proof. VY(fw) = (df.0)@ + f V20 # fVL(wW) in general. a

11.5 Torsion of a connection
The Lie bracket [, @] € T'(S) of @, @ € T'(S) has been defined on F(S) by, cf. (10.2),

Lo(f) = df.[8, 0] = [0,7](f) = [Va, Vil (f) (118)
= d(df 10).T — d(df.7) .0 = Ve(Vaf) — Va(Vaf).

(Remember that ¥ is identified with Vg, cf. (1.30).)

Definition 11.8 Let V be a connection, cf. (11.1)-(11.2)-(11.3), and let ¥,@ € I'(S). The torsion
T (v,W) € T'(S) due to ¢ and 0 is the vector field (identified with the directional derivation operator)
defined by, for all f € F(S),

T(@,4)(f) = (Vaw — Vg — [0, 3])(f)

= df.(Vy®) — df (V 50) — d(df )5 + d(df .0).0 (11.9)
And the torsion T of V is the map
[ D(8) xT(8) = T(S)

Example 11.9 With V = VY the naive connection relative to the the normalized polar basis (51, 52),
we have [b1,bs] = —2 by # 0, cf. 1; and we have V7 by — V) by = 0, cf. 1; Thus T'(b1,bs) =

%52 £ (0: The torsion of the naive connection does not vanish. ==

11.6 Torsion-free connection
Definition 11.10 A connection V is torsion free iff T = 0, that is, iff V and V satisfy, for all
7,0 € I(8S),

Vg — Vg0 = [0,5] (= VgoVg— VgoVy), (11.11)
that is, for all ¥, € I'(S) and all f € F(9),
(Vo — Vgv)(f) = [0, @](f). (11.12)

(Also called a symmetric connection with reference to the Christoffel symbols: With the basis of a
coordinate system, 'yfj = v;?» for all 4, 7, k, see (|11.20).)

(2
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Example 11.11 (Fundamental.) The Riemannian connection in a surface S in R" is torsion-free:

Indeed, if ¥, @ € T'(S) then [v, W] = dw.v¥ — dv.w € T'(S), cf. - - and, with ( . ) and ( -
VW=V g0 = Projpg(dw.0) —Proj g (dv.d) = ProjTS(dw U—dv.W) = [0, W], thus, T = [V, W]—[v,d] =
O- ...

Exercise 11.12 We will only use torsion free connection in the following. However, prove that, in
all cases, the torsion 7' is an antisymmetric (}) tensor, i.e. T, @) = —T'(w, ¥) for all ¥, € I'(S).

Answer. Antisymmetry is trivial since [,,.] is. And T is a tensor iff the associated map T:QYS) x T(S) x
I'(S) — R defined by T'(«, ¥, W) = o.T'(0, W) is F(S)-multilinear. For the first component « it is trivial. And

T(v, fuf) = (Vs(fW) — Vywt) — ([0, f])
= (fVmDJr(df.ﬁ)Hﬁf ) — (f [U,wH(df.ﬁ)%)
).

And T is antisymmetric, thus T'(f¥, @) = —T(W, fv) = — fT (W, ) = fT(v,w). Thus T is a tensor. un

AT
= f(VsW — Vgt) — f[v,4] = fT(7,

<L
g

11.7 Tensor 7 ...
Proposition 11.13 IfV and N are two connections then

v=V — N is a tensor. (11.13)
Proof. Consider the associated map 7 : 2(S) x I'(S) x I'(S) — R given by F(«, @, @) := a.y(7, 7).
The affirmation “y = V — N is a tensor” means that “3 is a (}) tensor”, that is, 7 is 7 (S)-multilinear.
For the first component « it is trivial. And *y( , fW) = Va(fw) — Np(fw) = fVad + (df.0).0 —

(f Nz + (df D)W) = f(Vg — Npw) = fy(U,wW): 7 is F(S)-multilinear in its third component . And
Y(fV, W) = —y(W, f0) = — fy(, V) = fy(¥,d): ’y is F(S)-multilinear in its second component #. u

Corollary 11.14 IfV is a connection and V # 0, then V is not a tensor.

Proof. V and V° (naive) being connections, v = V — VY is a tensor, cf. (11.13). Thus, if V was a
tensor, then V? = V — ~ would be a tensor (difference of two tensors). But V' is not a tensor. wn

Exercise 11.15 Let V be a connection, V # 0. Prove that A = 2V is not a connection.
Answer. If A was, then A —V =V is a tensor, cf. (11.13): But V is not. cf.corollary [11.14 un

11.8 ... and its components 7}, (Christoffel symbols)

Let V be a connection, let (a@;) be a basis, let VY be the naive connection relative to (a@;), and

consider the tensor v = V — VY cf. prop. [11.13] and the associated tensor ¥ € T4(S) given by
(e, U, W) = a.y(¥, W) (cf. proof of prop. [11.13]). Let C’;k be the components of 4 relative to the
basis (d;), that is,

m
=Y Cpa;@a @d*, ie A(d',d;ax) =Cl (=a'~y(d;,dx)), (11.14)
i,5,k=1

i.e., for all j, k,

,Yajak =7 aj7ak Z ka:h (1115)

or, for all ¢, j, vg,d; = kazlcfjak. Then 1} and v =V — VO give, for all i, j,

Va,ij = Va,d; —0=> Chix (=~(d,d;)). (11.16)
k=1
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Definition 11.16 If (d;) = (&;) is an holonomic basis (= the basis of a coordinate system), then
Cf, =vritten k. are called the Christoffel symbols of the connection V relative to (¢;). And (11.16)
reads,

Vel =Y ek, (11.17)
k=1

Then @ = Y w/&; and (L1.3) give Ve, i = Y7, (Va,w))&; + i w! (V&) = Y7L, 5406 +
S wiyke, so
T v moo ) Owd moo
Ved = Y whé; with wl, = o +) vt (11.18)
k=1

Then 7 = 77" 1 0°¢; and (11.2) give Vg = Vym g = Y70 0" Ve, 50

1=

. m - m ow’ ) mo .
Vs = Z wfiv € = Z ( o v+ Z’yﬁkwkv )€E;. (11.19)

Proposition 11.17 If'V is torsion-free, and if (€;) is holonomic (is the basis of a coordinate system),
then
m 4 ,
ow’ ,  Ov’
Lo E ok o o .
Vi, g, k=1,...,m, =1}, and Vzw—Vgi= E ( o7 vt 7

,j=1

w')e; (11.20)

(the Christoffel symbols disappear in [U, W] := V0 — Vg0).

Proof. Vzw — Vi = [0, ], cf. 1’ gives (Vg €, — Vg é)(f) = (@gi o @gi — ﬁé} o @gl)(f) =

a2L  92L
e — 5 = 0 (Schwarz for fy = fo®~', cf. (1.35)). Hence >5,° 75k — X3 7€k = 0. o
12 Connection V on Q!(9)
12.1 Directional derivative @ga = %
In R”, if o € Q'(R") and @ € ['(R") then a1 € F(R"), and
d(a.w).¥ = (da.V). W + . (dw.¥) € F(S). (12.1)
In S, with Vyf = df.7 and a connection V on I'(S), we define %{; on Q!(S) such that
@g(a.u_}) = %{;O&.U_j + a. V3w (12.2)
(derivation of product):
Definition 12.1 The covariant derivation on Q'(S) along ¥ is
= [QNS) = QN(9),
Vi . - ~ (12.3)
a = Vaa, st. Vzad := Vi(ad) — a.Vad, YaeT(9).
E.g., for the Riemannian connection V,
%ga.ﬂi = d(a.W).7 — a.Projpg(dw.v), (12.4)
Notation: ~ D D }
Vga Hen 22 oy 22 0 = Vaud, (12.5)
ds s
and D D D
Da z_ Dlad) | Do (12.6)




%W;Jrga W= <p%ﬁa W+ %5a w, and Vz(pa)w = (Vzp)a.d + 90%1704 w (12.8)
Proof. 1' gives Voa pi0W = Vya(a.b) — aVegd = ¢Va(aab) — a.(pVaw) = ¢Va(a.b)
pa. Vg = w@ga and Vy ( o). = Vi(pa.ad) — ooVl = (@gnp)(oz.u‘i) + eVz(a.w) — pa.Vzw =
(Vo) (a.8) + p(Vaadd + a.Vad) — pa.Vad = (V) (@.d) + oVsad M

12.2 Connection on Q!(S)
Definition 12.3 The associated connection on T'(S) x Q1(9) is

= [(S) x Q4(S) — Q(9),
v - . (12.9)
(U,a) = V(U,a) := Vza.
12.3 Differential Va on Q'(S)
Definition 12.4 The associated differential is
. L(S) —Q'(9),
Va . i~ ~ 1210
TR v, Vaa ertten DOC' ( )
dt
Proposition 12.5 If o € Q(9), then Va is a tensor in T9(S).
Proof. Vo.(fi+7) = f Vo + Va.7, for all f € F(S) and 4,7 € T(S), cf. (11.9).
Example 12.6 In S, and V the Riemannian connection, we get (the usual result)
(Vo) = d(ad).7 — a.(dd.7) = (de.).d + a.(dd.7) — a.(did.7)
(12.11)
= (da.¥).W (= da(v,W)),
In particular with f € F(S) and « = df, we get (the usual result,cf. (9.1)))
(Vdf) T = d(df.7) 5 = d2f (i, 7) + df.(d7.1). (12.12)

13 Christoffel symbols for differential forms: Vg e' = -3, 7/.¢"

Let V be a connection in S. Let (&;) be a holonomic basis and fyfj be the associated Christoffel
symbols, that is, Ve € = > 31", 77,€. Then

Proposition 13.1

m
E Jke = Vel €, de. v =—(Vee').ek,

" . (13.1)
ie. Vel = Z(@gjei) ®el =— Z vie" ® €.
j=1 k=1
Proof. ¢'.¢;, =}, gives d(e".€;).€; =0 = (%gj ).€x + e".(Vgz €), thus (%e] e').ek = —Vix un
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Example 13.2 Polar system and Riemannian connection: (3.6) gives

d?r.&) = de'.&) = Vg et = =it — ylpe? =0,
d27’.€2 = del_€2 = ngel = *’}/21161 — 721262 = 1"62 = Td@,
- " 1 1
d*0.e) = de*.&) = Vg e? = —yfe! —yle? = —;62 = e,
1 1
d?0.6y = de*.&y = Vg,e? = —3 et —73pe? = —;el = —;dr,

so d*r = de! :%ef =re?®e? =rdi ®db,
and d?0 = de®> = Ve’ = —1e? @el — lel®@e? = —1df @ dr — Ldr @ db.

Example 13.3 Spherical GPS system and Riemannian connection: ([3.30) and following give

d’r.e) = de' €, = V& = —'yue — 7ia€® — yige® =0,
d*r.éy = det.éy = —d el — Alye? —ylie® = +rcos? pe? = rcos® pdb,
721 722 Y23 ¥ 2
d*r.é3 = del.@5 = —7316 ’73}262 - 75363 =+4red =rdp,
1 1
d?0.6, = de®.& = =77 ' —ae” — i€’ = r e = ——db,
1 1
d%0.6, = de®.&, = —2e! — 2% — 23 = —— el —tangpe® = —= dr — tan p do,
21 22 23 r 14 r pap
d%0.65 = de*.€3 = —2,e! — 72,2 —72.e3 = +tanpe? = tan d,
31 32 33 14 4
1 1
d2g0.51 =de’.¢; = —’yne — ’)/1262 — ’yf363 =_—Ze=-= dy,
r r
d%p.8y = de3.@ = —3, el — ~2,e% — 72.e® = — cos psinpe? = — cos sin @ db,
¥ ’Y21 ’Yzz Y23 psmey psmy
1
d*p.@3 = de.é3 = —y3 et — yape® — y3ie? = - el = - dr,
Let o € QY(S) and a = Y, ;e € QY(S). And let
3
Va = Z a;je' @el,
ij=1

that is, [Va] = [ay);] =1
>;v'€ € T(S). Then,

m
Vsa=Va.t = E a7 €',
i,j=1
In particular,

= R = i = R
Va.€; = Vg a = E o€, and oy = (Vg a).6

Corollary 13.4

da i
— i E k
“ili 7&qjik e
=1

(In particular we find the previous result @gj ek =-3%, 'yjkiei, cf. 4 .)

Proof. a; = a.¢; gives do;.€; = Vg o = @gj(a.é’i) = (@gja).é} + a.(Veg,€;), thus

m m
= . . . o & 8a
a;; = (Vg).€; = da;.€; — a.Vg e = a—q; —( ozgeé).( E Wj ! E akwﬂ
=1 k=1
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(13.3)

(13.4)

coom 18 the Jacobian matrix of a relative to (€;). Let ¥ € T'(S) and ¢ =
1

(13.5)

(13.6)

(13.7)

(13.8)



Example 13.5 If o = df =, 2

= 3;2, and we get

i o
Ve, (df) = i(g;i)u dg' et =2 g;;. Jdg’ ® d, (13.9)
with N
(g;i)lj = 3q75’q kzlaf i (= (Vedf)i = (Ve,df).&). (13.10)
And 7=}, v/é; gives
Vi(df) = Z(%)uvj dg'. (13.11)

i,7=1

14 Lie autonomous derivative of a differential form

14.1 Definition
Let ¥, € T'(S) and o € Q1(S). Thus f = . € F(S), and (12.2)) gives

UO().IT)' + OK(V{;QD) = (V{;OJ)’LU + a(v’ifﬁ"_ [’Ol_fu_j) (14 1)

as soon as:

Definition 14.1 The autonomous Lie derivative of a differential form a € Q!(9) along ¥ € I'(S) is
the differential form L%a € Q1(S) defined by, for all w € I'(.9),

(L030).48 = (V)@ + a.(Vd)

= (Va.?)3 + a.(VE.3) "8 (£%0a) 3, (142
the last notation (without tilde) if there is no ambiguity.
Doing so, we have defined
. Q'S) — Q'(S)
L a — L% = %a.ﬁ—!— a. Vi = % + a. V7. (143)

14.2 Components of L%a = Vya + oV
Let ¥ € T'(S) and ?: St Let Vo =31 1v|]el ® e/, where U|J aqj . S ohs v, cf. ,
and [V(p)]je = [v};(p)] is the Jacobian matrix of ¥’ at p.

Let a € Ql(:g) and o = Y7 oue’. Let Va = Y7 ay5¢f @ €7, 50 ay); =
cf. 1} and [@a(p)hg = [ (p)] is the Jacobian matrix of a at p.

Corollary 14.2

an Zk 1 O‘k’yjz’

0 = o' ;0o\

= , i j

L% Z (o g +v g )el. (14.4)
1,7=1

Proof. Va.t = Zzljzla“jvjei = Zzljzlaj‘iviej and a.V3 = Zzljzlaivfjej, thus L%a =

Y (agv’ + g )el; So Lo%a = Y, (L%a) ¢ gives

%), Z%\z“ +o U|] Zaag i_ Z ak%]v] +Zala -+ Z az'y]kv (14.5)

i,k=1 i,k=1

And vfj = %’% (coordinate system), hence ((14.4)). o
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In particular

MR NI ; o' : o' o'
0, i _ 7 : 0 iy, _ 27 0, i1 _
£ € = ; ane 5 1.e. (£ 7€ )] - aqjy 1. [AC 7€ ] - (aql 8qm ) (146)
and
" day ooy ooy Oy
0, o i j . 0. o i . 0. _ i i
L0 = 2 od e, e (L%a); = o ie. [L%a]l= ( ot " ogm ) ) (14.7)
and, for all 4, j, ‘
L% el = 0. (14.8)
14.3 “Universal” derivation property
Hence,
ﬁog(b.c) = (ﬁO{;b).C + b.(ﬁogc), (14.9)

whenever b.c is meaningful, that is, whenever
1- b,c € F(S) (and b.c = bc € F(S5)),
2-be F(5) and c € I'(S) (and b.c = be € T'(9)),
3-be F(S) and c € Q'(S) (and b.c = bc € Q}(S)),
4-be QY(S) and c € I'(S) (and b.c € F(S5)).

15 Connection V on T7(S5)

15.1 Covariant derivative V;T'
Let V be a connection in S. If v € I'(S), if f € F(5), & € I'(S) and a € 01(S), then the following

covariant derivative along © have been defined: Vyf ="'t V. f Vi, Vya =""14e1 Y oq,

Definition 15.1 Let ¥ € T'(S). Let Ty € T}(S) and Ty € T(2(S). The covariant derivative of
T =T, ® T, along v is defined by
written DT

VT =Vz(Th @Ts) := (V1) T + Th @ (Vi) = e (15.1)

This defines Vi : T7 (S) — T7(S) the covariant derivative along ¢ for tensors.
Example 15.2 Coordinate system ®, and with (€;(p)) the coordinate basis at p € S; If T(p) =

e'(p) ® €’ (p), then o _
Ve (e ®el) = (Vae')@e +e' @ (Vae)

, L 15.2
= _Z’Y;M@z@@y_z:’%gel@@é- (15.2)
=1 =1
So, if 7 =", v¥é), then
V(e @ e’) Z ik et @ el — Z*yuvk e @ el (15.3)

k(=1

15.2 Differential VT

Definition 15.3 If 7' € T7(S) then its differential is the tensor VI' € T7,,(S) defined by, for all
v e (9),
VT.0=V;iT, (15.4)

That is, for all a; € Q'(S) and all w; € T'(S),

(VT.ﬁ)(Ckl, ceey Oy 1171, 1175) = V,;T(ah ceey Oy 'U_J'l, 1173) (155)
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Remark: we have implicitly used the expression “VT is a tensor T7,,(S)” to mean that the
associated multilinear form Z : (Q1(9))" x (I'(S))**! — R defined by

Z(Qy ooy Qpy W, ... Ws, U) := V5T (a1, ..., @, W1, .. Ws) = VT'(1, ..., Qp, W1, ... Ws) . T. (15.6)
See next §: the components of V5T are indeed the components of Z.

Example 15.4 Continuing examplem (115.3) gives

Vel ®el) Z vief ®el ® e Z ’Yie oo eT(S). (15.7)
%,5,k=1 i,5,k=1

15.3 Components T 1 ‘k of VT
Let T € T7(S) and

T = Z T 6, .08 0 ©..0d. (15.8)

i17"'7i7‘7j17---7j5_1

Let T21 J |k be the components of VT, that is,

m
VT = > T 6, ®..08 0 ® .06 ®d. (15.9)
P11 g k=1
So .
Ve T =VT.&, = > Tiir 6, ® .8, @ ® . el (15.10)
i17...,i7~7j1,..47j571
and .
Vol = VT.7 = > T poh &, © .6, @ @ .. @ e (15.11)
7:1)**'77;7‘7j17"'aj87k 1
And (15.8) gives
m
VT.€ = Z (dT“’ 6k) &, ®..Q el
F T (Ve &) ® 6, ® .. @6l + . + T e @ .. @l @ (Ve

Thus, with Vg, € =5, ’ykieg and ngé” =—-> yjze we get

Tll aTJZII ]s _|_ TE’Lz g T’Llfzg A 12 4
|k_ oqk J1.eds VM Jregs ke T

11
_Zlez Js— 16%1’C Z J14J3 Js— 1€7J2’C

(15.12)

16 Riemannian metric

Definition 16.1 A Riemannian metric g in S is a (regular) tensor g € 7% (S) such that, for all p € S,
gp = g(p) is a dot product in T,S.

E.g., in R" (affine space), a unit of measurement being chosen, an associated Euclidean basis (E;)
being chosen and the associated Euclidean dot product being named (-,-)gn, the associated usual
Riemannian metric is the (uniform) metric defined at any p by

9(p) = (-, Jrn = Z da’ @ da’, (16.1)

where (dz') = (E') is the dual basis of (E;) (same dot product g, = g(p) at all p). And if S is a
surface in R™, the usual Riemannian metric is the restriction to S of a Euclidean dot product in R™,
cf. (6.6): for all 7,4 € I'(S) and all p € S, g,(Tp, W) = (T, Wp)rn.
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Quantification: Let ® : U C R™ — S be a coordinate system for S, let (€;(p))i=1,....m be the basis
of the system, cf. (1.12)), and let (e(p))i=1.....m be the dual basis at p € S. Let g € T9(S) be a metric
and let g;; be its components relative to (€;), that is,

m
g=> g ®e, ie g =g(@,¢), and [g]jz= [gis]. (16.2)
ij=1
So, if 7,W € T'(S), =" \v'é€, W =) ;" w'é;, then
9(@,0) = giv'w’ = [T]1g]j-[d])e- (16.3)
inj=1

Example 16.2 R?, polar system, usual Riemannian metric:

1 0
(,)rn =gp =dr@dr+ r2df ® db, [9plpot = (0 7"2) , (16.4)

since (€1(p), €2(p))rr = 0= g12 = g1, [|€1(p)[[&~ = 1 = g11 and [|&(p)[[fn =1? = g2o.
Other calculation: [g,]por = PT.[(+,")rn]r~.P (change of basis formula for bilinear forms), thus

o7 o7 . _ (cosf® —rsind . . =3 . .
[9plpot = P*.I.P = P' P, with P = <sin9 - cos 0 ) the transition matrix from (F;) to (€;(p)). o=

Example 16.3 R2, polar system, S = C(0, R), usual Riemannian metric:

gp=R*d0@db, [g,]=(R?),

since (€>(p), €2(p))rn = R2. o
T = 1 cosf cosp
Example 16.4 R3 GPS system ®(r,0,p) = | y =rsinfcos¢ |, usual Riemannian metric:
z=rsinp
1 0 0
gp=dr@dr+ricos® pdd @d0+r*dp@dp, [gij(p)]=10 ricos?¢ 0 |. (16.5)

0 0 72

Example 16.5 R?, GPS spherical system, S = S(G, R), usual Riemannian metric:

2 2
gp = R2cos® 0df @ df + R*dp @ do,  [gi;(p)] = (R Cgs v 122). (16.6)

Exercise 16.6 Check Vg = 0 for polar coordinate, directly from g, = dr ® dr +r? df @ df, cf. (16.4).

Answer.
dgp.T = (d*r.0) @ dr + dr @ (d*r.0) + (d(r*).7)d0 @ df + r*(d°6.7) @ df + r*df @ (d°6.7).
And d(r®) = 2r dr with d*r = rdf ® df and d°0 = —1(dr ® df + df ® dr), cf. (2.24), thus,
dgpd1 = 0+ 0+2rdd @ do + r2(—%)d9 © do + r2(—%)d0 ©do =0,
gy = 1d0 @ dr + 1 dr @ do + 0 — r2%dr®d9 - r2%d9®dr —0.
Thus dg,.0 = 0 for all 7. un

Exercise 16.7 R3, GPS system, usual Riemannian metric: calculate dg with (16.5]).
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Answer. g € T3 (R%), thus dg € T9(R®), dg = 3, hijre’ ® € © €, and dg.v € T3 (R®) is given by

dg.t = (d*r.0) @ dr + dr ® (d°r.7)

+ [2r cos® ¢ (dr.T) — r* sin @ cos ¢ (dp.7)]d0 @ dO + 1* cos® ¢ ((d*0.7) @ db + dO @ (d*0.7))

+ 2r(dr.0)de @ do + 2 ((d*¢.7) ® dp + de @ (d*¢.7)).
Thus with the Christoffel symbols, cf. (3.42)-(3.43),

dg.e&y =040+ [2r 0032@+0]d0®d9+r200524p(—%d0®d9—%d@@d&)
1 1
+2rd<p®d<p+r2(—;dgo®dgo—;dtp@dtp):o

Similarly dg.€2 = dg.€; = 0. Thus dg = 0. (Trivial with g = >°°_ d2’ ® dz*.)

17 Metric related to a connection

17.1 Vg and g

Consider a metric g € T3(S), a holonomic basis (¢;), and g;; = g(€,€;), so g = X[, gije' @ €.

Then (|15.12)) (or direct calculation) gives
_ - i j ith _ 9gij 0 V4
Ve 9= Z gijlke @€’ Wwith g, = E deﬂki - Zgié')/kjv
i,j=1 q ¢ [
and

k i jwrltten-Dg
g;i kU € Qe
Z il ds
i,5,k=1

(The last equality refers to the derivation along an integral curve of ¥, as in ([5.4).)
Proposition 17.1 Let g € T39(S). For all @,v,w € T'(S):
Vilg(@, @) = (Vg)(@, @) + g(Viid, @) + 9(a, VD),
written, o B B
DD _ (D9) i) + (07 ) + g, O,
(Derivation formula (fgh)’ = f'gh + fg'h + fgh'.)

Proof. ¢(d, @) = 3,; giju'w’ € F(S) gives

Ve (9(@, @) = > (Ve giu'v’ + gii(Veu')w’ + Zgzjui(@pkw )

ij ij
0Gi; ; out Qwd
= 2 g L s+ e
ij ij

Thus and (| give
V (g(u w)) = Z(gwlk + Zg(j’)/k‘l +gz€7k])u wj

+Zgw (u\k Z’Ykeu )wj ‘*‘Zgw ( |Jk —Zvilwe)
¢

= (Vacg)(ua W) + g(Vemw W) +g(d, Vekw)

+ Y (g8 + gk ) =D gigrvheuw’ = gy utw’

ijt ije ije
= (Va.9) (U, W) + g(Ve, i, W) + g(t, Ve, 0)

+ ) (9o Vhi + GieVhg — 9eiVhs — Gie Ve Ju'w?,
il

and the last sum vanishes. With @g = v’“@gk we get 1}
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Exercise 17.2 Let g(-,-) be a metric in R". Let o € TP(R"). Let @, € I'(R") be the (-,-),-Riesz
representation vector of «, that is, for all @ € R™ :

oW = g(dy,w). (17.6)
Let 7 € Tg (R™). Prove (with (12.3)):
Vs = g(Vidy, @) + Vag(d,, ). (17.7)

In particular in R™ with a uniform metric (-,-)4 (a dot product), Va1 = g(Vgdy, 0).

Answer. Vya.@ = V() —a. Vi = Vi(g(dy, ©))—g(dy, Veld) = Vig(@y, B)+9(Vady, @) +g(dg, V) —
9(@y, V) = Vig(dy, W) + g(Vady, @), thus (17.7). And if g(-,-) is a uniform metric in R™ then Vzg = 0 for
all ¥ (indeed choose a Cartesian basis so that the g;; are constants and use (17.1))). un

Proposition 17.3 Let S be a surface in R", g(-,-) = (-, ), be the usual Riemannian metric in S and
V be the associated Riemannian connection (VW = Projpg(dw.v)). Then

Vg =0. (17.8)

Proof. Vg = 0 (take a Cartesian basis), thus 0 = Y1 g;;ke’ ® €/ @ €F in R", thus (Vg) s =
Z?ilgij‘kei ® e‘j ® ek = 0 l.l

17.2 Killing vectors and metrics (relative to a connection)

Definition 17.4 Let V be a connection in S and g € T9(S) be a metric in S. A Killing vector field
v € T'(9), relative to g(-,-) and V, is a vector field such that

Dy
Vag=0 (=—_7).

(The last equality refers to the derivation along an integral curve of )

(17.9)

Definition 17.5 Let V be a connection in S. A metric of Killing g € T9(S) relative to V is a metric
such that
Vg =0, (17.10)
that is, such that Vzg = 0 for all ¥ € T'(S).
(The German mathematician Wilhlem Killing, early 20th century, was a student of Weierstrass.)

Example 17.6 A Riemannian metric on a surface S C R" is a metric of Killing relative to the usual
Riemannian connection, cf. (17.8). ua

In other words, a metric of Killing is uniform in S (equation Vg = 0). And with (17.3)) we have,
for all 4, v,w € T'(S),

= - . S . D, . Du ., Duw
V{,‘(%’w)g = (vﬁu’w)g + (u’ Vﬁw)g? 1.e. %((u’w)g) = (Efw)g + (uv E)g (17-11)

Remark 17.7 If (-, -), is a metric of Killing, then Vzg = 0 for all 7, that is, the first order derivatives
vanish. But the second order derivatives don’t vanish: They will give the curvature. wn

17.3 Levi-Civita theorem 1
Theorem 17.8 (Levi-Civita.) If g(-,-) is a metric of Killing relative to a connection V, then, for all

i?j’ k’
(Vag9)ii =) gk =0, (17.12)
ie.,
9ij &
ﬁiﬁ = (gie 5 + 9507i)- (17.13)
=1
And:
e dgi;  Ogix  O0gik
2 o, = =22 Gl 17.14
;W%k dg* + dgi aq' ( )
that iS, with [g”] = [gij]_l,
;1 00905 | Ogus  Ogjk

L
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Proof. Vg = 0 gives ((17.12)), thus (17.13)), cf. (17.1). Thus (17.14)) (circular permutation and sum).

And, for all j, k, (17.14) reads 2[g].[a] = [b], thus [a] = 1197 1.[b], thus (17.15). a

Corollary 17.9 Let S be a surface of dimension n—1 in R™ and (€}, ...,€,_1) be the coordinate
basis. Let €, € I'(R") be a vector field in R" such that ||€,(p)||; = 1 and g(€n(p), €;(p)) = dn; for all
j=1,...,n—1and p € S. Then let g, = Z” 1 gije' ® €7, hence gnj = 6,; for all j € [1,n]n, and

g - Gin—1 0
[9+]1e = : : 1. (17.16)
In—1,1 - Gn-1m-1 0O
0 .. 0 1
In particular,
Ogn; n 9gi
(’)qkj =0, and 29} = - q;, (17.17)

0
Example 17.10 Sphere S(0,R) € R? and & : (r,0,¢) — ®(r,0,¢) the GPS coordinate system,
. {20, Let 00.51) = W) then Fi) = W) = G10) = #al) = ) aoo
parallel), fa(p) = ¥ 2(p) = g—g(p) = ® 5(p) = €3(p) (along a meridian, and f3( )=V s(p) = %—E’(p) =
®1(p) =éi(p) (radlal) Then

r2cos?p 0 0 )
Ge={ o0 o) e, (17.18)
0 0 1
cf. exercise (here 1 <+ 0, 2 <> ¢, 3 <> 1)). ua

18 Application 2: Endomorphisms

Corollary 18.1 Let T € T}(S) and

T = Z Tié; @ el Z irE®el ®eP (18.1)
i,j=1 i,7,k=1
Then ]

i 8T; i B i o iz >

i ST+ Y eIy (= VT(e' €5, 6)). (18.2)
B a

Proof. Apply (15.2) or (15.11). o
T}

Example 18.2 In R”, with a FEuclidean basis and the usual Euclidean metric we get T;‘k = 5.
And for all (o, @) € Q1(S) x T'(S),

V(T (a, %)) = (VsT) (e, @) + T(Vge, @) + T(cr, V). (18.3)
And D DT D D@
= (T(a 1)) = —— (0, @) + T(——, @) + T(ii, ——). (18.4)
Part VI

Geodesics and parallel transport

19 Parallel transport in R”

Let ¢: s € [a,b] = p = ¢(s) € R™ be a regular curve in R" and #(p) = &'(s) when p = ¢(s) € Imec.
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19.1 Parallel transport of a scalar function

Definition 19.1 f:R" — R is parallel transported along c iff f is uniform on Ime, that is,

foc isconstant, ie. f(p)=f(p), Vp,p € Im(c). (19.1)

(So c is a level curve of f).

So f € F(R™) is parallel transported along c iff f(c(s)) = 0 for all s, that is, iff

Vp € Ime, df(p).9(p) =0, ie. Vaf =0===. (19.2)

(See notation (5.4).) In the basis (€;) of a coordinate system, with @ = Y I v'€;, we get, with
g;i. = df.&, cf. (1.35)

19.
Z 3 (19.3)
=1
Example 19.2 If f is uniform in R” then f is parallel transported along any curve. =
Example 19.3 Let f : R? — R be defined by f(p) = /22 +y?> = ||Z|[2. when & = O_]; Let
_ {x(s) =Rcoss oy —y(s) VN
c(s) = <y(s) _ Rsins> for s € [0,27]. So ¢'(s) = ( 2(s) )’ and ¥(p) = - along ¢. Thus
f o ¢ is uniform along ¢ (since f(c(s)) = R), so Vg f(p) = %Sf(p) = 0 when p € Ime, and f is parallel
transported along c.
. . - c)(s - -
00 p = cls) gves ()" = (320 300 (50)) =G - (V) = ~

19.2 Parallel transport of a vector field
Definition 19.4 A vector field @ € T'(R"™) is parallel transported along ¢ iff & is uniform on Imec,
that is,

—

woc isconstant, ie. W(p)=wW(p), Vp,p € Im(c). (19.4)
So, in R_‘”, w keeps its direction and its norm along c.
Hence o € F(R™) is parallel transported along ¢ iff @w(c(s)) = 0 for all s, that is, iff

D&
Vp € Ime, dw(p).¥(p) =0, ie. Vzd=0= d—:} (19.5)

In the basis (€;) of a coordinate system, with 7 =Y. v'€; and @ = Y . w'é;, we get

n . ) n 8wi n ) .
Zw‘kvk =0, Iie. Z(a—qk + Z’yjkuﬂ)vk =0. (19.6)
k=1 k=1 j=1

Example 19.5 If «/ is uniform in R™ then  is parallel transported along any curve. un

Example 19.6 R2; p = ¢(0) = Rcos0E) + Rsin0E, = ®(R,0) with 6 € [0,2n] (circle). Let

@(p) = w(c(0)) = a(r,0)Er + B(r,0)E>. Then (Woc)(0) = 2%(r,0)Er + 2L (r,0)E,, and ZZ = 0

iff 2%(r,0) = 8ﬁ(r 0) = 0, ie. iff a(r,0) = a(r) et f(r,0) = 6(7;), i.e. iff & is independent

of #, which means that Wg(0) := @(®(q)) is independent of 0, i.e., W is uniform in Im(c). (And
(p

(
0 = 27 (q) = dis(B(R, 0)).22 (R, ) = dii(p).5(p) = 0, cf. (19.5).)
Exercise 19.7 Polar system and @(p) = a(p)é1(p) + 8(p)éz(p): Prove that

Jda Q 86
.y = (— — 19.
diw.é, (80 5)1+( 89) (19.7)
And that %‘7 = 0 along the circle C(0, R) iff « is uniform along C(0, R).
Answer. dIBgQ (da 62)61 —+ a(dé’ ) + (d/B 62)62 + ﬁ(dez 62) Wlth da €2 = 837 dﬁgz 807 d61 62 = %_‘2

and dé>.¢2 = —réy. Thus (19.7).
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And 2% =0 along the circle C(0, R) iff d.é2 = 0. So 92 — RB=0and & + 22 =0 at any p € C(0, R).

Thus ‘Z,ZT‘; +a =0 when r = R. Thus, with &r(f) = a(p) when p = ®(R, 0), we get &r() = ar cosf+brsinb,

with ag,br € RR. Thus, with Sr(0) = B(p) when p = ®(R,0), we get Sr(0) = %(—arsind+bg cosd). Thus,
with the Euclidean basis, at p = ®(R, 0) we get

W(p) = (ar cosB + brsinb) <6953> + (—arsinf + bgr cos ) (7811196) = (ZR> ,
ST/ B 8T S (E) R J\(E)
s0 0 is uniform along C(0, R). nn

19.3 Geodesic in R™": A straight line

Definition 19.8 In R", a geodesic is a curve c: s € [a,b] — ¢(s) € R™ such that:
1- ¢ is regular and s is an intrinsic paramater, that is, such that ||¢’(s)|| =1 for all s € [a, b], and
2- U(p) = ¢'(s) at p = ¢(s) is parallel transported along ¢, that is,

(@(s) =) (Toc)(s) = (Voc)(a), Vsé€la,b], (19.8)

i.e., for all p € Imc,

Dy
di(p).v(p) =0= —
v(p)-v(p) 7S

And Ime is also called a geodesic.

(when ||7]] = 1). (19.9)

It is trivial that the straight lines are geodesic, since then c(s) = ¢(sg) + s Up. Converse:
Proposition 19.9 If ¢ is a geodesic, then
g’ =0, (19.10)

and Imc is a straight line.

Proof. ¢’(s) = ¢’(a) gives ¢” = 0. Thus ¢(s) = ¢(a) + s¢’(a), which is the equation of a straight
line. mn

Exercise 19.10 Let ), € R” — {0}. Let a(t) = (t—a)?¥) + a,. Prove that Ima is a geodesic, and
give the associated geodesic ¢ : s € [a,b] — ¢(s) € R™.

Answer. A trivial answer is c(s) = sug—gu + a-

Generic calculation: We look for an intrinsic parametrization of a.. Let s : ¢ — s(t) be a diffeomorphism.
Let c(s(t)) = a(t). Thus &'(s(t))s'(t) = o’(t), and we want ||c’|| = 1, thus s'(t) = ||@’(t)|| = 2|t—al ||To]].
Thus, s(t) = (t—a)?||%o|| (up to a constant), hence c(s) = s% + ag, and &”(s) = 0. un

20 Geodesic in a surface

20.1 Geodesic = a “short line” in a surface

Definition 20.1 Let S be a surface in R™. A geodesic in S is a regular curve c¢: s € [a,b] — ¢(s) € S
such that:

1- s is an intrinsic paramater, i.e. such that ||¢’(s)|| = 1 for all s € [a, b] (constant speed), and

2- The acceleration in S vanishes, that is,

Projr, ¢(¢"(s)) =0, Vs € [a,b], (20.1)
i.e., with p = ¢(s) and ¥(p) = &’(s), along Imc,

Di
Vat=0 (= d—: = Projy, ¢(dv.v) = geodesic equation), (20.2)

ie., (Vs)(p) = 0 (= Proj, 5(dii(p).i(p))) at all p € Imc.
A geometric curve is a geodesic iff, parametrized with an intrinsic parameter, Proj;, ¢(¢"(s)) = 0.
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Interpretation: On a geodesic, there is no “lateral acceleration” and no “longitudinal acceleration”.
So, the acceleration can only be orthogonal to S. In other words, a geodesic is obtained by “applying
a straight line” on the surface.

Example 20.2 Thus on Earth, driving at constant speed, we are on a geodesic iff we don’t feel any
lateral forces or longitudinal forces (eventually we may feel vertical forces).

E.g., on the bridge over the Pontchartrain lake in Louisiana, we are on an Earth geodesic: In a
car at constant speed, the bridge seems to be a straight line, but it is not, since the Earth is not flat.

(And the length of the bridge makes it possible to see the roundness of the Earth.) =
Remark 20.3 In the definition we may replace ||¢’|| = 1 by ||¢’|| = vo (constant speed) for any
vo > 0: It does not depend on the unit of measurement used to define ||.|| ua

20.2 Change of parameter

a,b] — S
Let o : @, 5] be a regular curve in S. To know if Ima is a geodesic, consider the
t —p=alt)
a,b] — [a,b
increasing change of parameter s : { @ 1 la, 4] 0 } (diffeomorphism with s’(t) > 0 for all t) such
—>s=s

that the curve

[a,b] — S ) .,
c: { s s p—cs)=alt) when s=s(t) } satisfies |[|¢’(s)||rn = 1. (20.3)
Thus co s = o, and
c'(s(t)s'(t)y=a’(t), thus s'(t)=[a’(t)||gn- (20.4)
And then
at)=2c"(s(t)(s'(t)* + e (s(t))s" (t). (20.5)

And since (¢'(s),c’(s))gr» = 1, we have 2(¢"(s),c’(s))g» = 0, thus
(@"(1), " (t) o

¢’ (s) Lc'(s), and s"(t)=(a”(t),é (s(t)))rn = THOI (20.6)
Hence, with (20.1), Ime is a geodesic (the parameter ¢ is not necesseraly intrinsic) iff
(), d’(t))gn
Projy, s(a” () = W a't) (=c'(s)s"(1). (20.7)
(In particular, the acceleration in S is “purely longitudinal”.)
In other words, with p = «(t) and U, (p) = @'(t) = 0.(@'(t)), we have
a"(t) = dia(p).Ua(p), (20.8)
thus with the usual Riemannian connection we have Proj,, (o (t)) = Vg, U, = Ddi‘* and we get: Ima
is a geodesic iff
» (Vs (P)-Va (P), Ua(p)mn (@”(t),a’'(t)en _,
(Vi Ua)(p) = = Ua(p) (= —Zmm — @ (@) (20.9)
|19 (P)II? @’ ()12

Exercise 20.4 Definition: A great circle on a sphere S C R3 is the intersection of S with a plane
containing the center of S. And a parallel is the intersection of S with a plane parallel to the equator.
Prove that a parallel is a geodesic iff it is the equator.

Answer. Choose the origin O of R™ to be the center of S (we are interested in the derivatives, and
the center won’t be used, but to simplify the writings). So S = S(0,R). Choose a Euclidean ba-
sis and choose the GPS parametrization of S, so that parallel at latitude ¢o is given by p = c(f) =

R cos 6 cos ¢o —Rsinf cos po
Rsinfcospo |. Thus d(p) = &'(9) = R cos 0 cos o and ||U(p)|| = Rcosyo is constant, and
Rsin ¢q 0
—Rcos 0 cos o
c"o) = —Rsin 6 cos ¢ = déy(p).éa(p) = —rcos? woei(p) + cosposinoes(p), cf. (3.33). Thus
0

V(p) = Projprg(¢”(t)) = cos po sin o €5(p). Therefore c is a geodesic iff cos g sinpy = 0, i.e., iff o =0
or 5; But at 5 the curve is reduced to a point (the North Pole): Not a regular curve. Thus only the equator

is a geodesic. un
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Exercise 20.5 1- Give the equation of a great circle.
2- Give the equation of a great circle which makes an angle a €]0, 7| with a meridian.

Answer. Choose the origin at the center of S, so S = S(0, R).
1- A great circle is the intersection of S with a plane containing S, so is the set of p = (z,v, 2) s.t.

2 2 2 2
1P b = R,
{ vy (20.10)

ax + by +cz=0.

x = Rcosfcosp
(The unknowns are a, b, c.) Choose the GPS coordinates p = c(0,¢) = | y = Rsinfcos¢p |, thus z>+4*+b* =

z= Rsingp
R? is satisfied, and the great circles satisfy
acosfcosp+bsinfcosp+csing =0, 6€0,2n], p€ [—g, g . (20.11)
In particular, if ¢ = 0 and 6 = 0y then acos 8y cos ¢ + bsin by cos p = 0, and we can choose, e.g., a = —sinfy

and b = cosfp, so a meridian is a great circle.
Suppose ¢ # 0; And eventually dividing (20.10)2 by ¢, suppose ¢ = —1. Thus

acos 4 bsinf =tang, ie. ¢ =tan '(acosf + bsinh) = o(h), (20.12)
and a great circle other than a meridian is a curve p(0) = c(6, ¢(09)).

2- Let po = ¢(6o, ¢0) be a point in S. Consider the meridian which passes through po, that is, the curve

cos g
@ — ¢(0o, ) which is normal to €>(po) || im = | sinfp |. A plane through po other than the meridian,
0
a
equation az + by — z = 0, is normal to 7, = b |. Thus
-1
cosa = ( T_L,m , ﬁp Jrs = —asinfo + beosbo (20.13)
[7im|| " [[72]| Va2 + b2 +1
So, (20.12)) and (20.13|) give: a and b satisfy
acos bty 4 bsin Oy = tan o,
(20.14)
—asinfy +bcosby = /a2 +b2+1 cosa.
Thus,
a? cos? 6o + b2 sin? 6o + 2abcos 0y sinfy = tan? ©0,
a®sin® Oy + b* cos 03 — 2ab cos By sin by = (a® + b°) cos® a + cos av.
so (summation),
(a® 4+ b*)(1 — cos® @) = tan® @o + cos”
a = pcos~,
Let { p . 7 }: Thus,
b= psin~,
2 2
2 tan” pg + cos®
= - = 20.15
1 —cos? ( )
and (20.14)) gives
p(cosycos By + sinysinfy) = tan g = pcos(y — 6o),
(20.16)
p(—cosysinfy + sinycosbp) = \/p? + 1 cosa = psin(y — o).
If p is not on the equator (o # Z) then p° +1 = ?ﬁ% and

cosa [tan? g + 1
t — b)) = — 20.1
an(y — 6o) tango V 1 — cos? « (20.17)
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Exercise 20.6 With (20.12) prove that the great circles are geodesics.

Answer. A meridian c¢(fo, ) is a geodesic (easy). Otherwise, ¢ = —1 gives
cos 0 cos(p(0))
© = (0) =tan '(acosf + bsin@), ¢(f) = R [ sin6cos(p(8))
sin((0))
—sin @ cos(p(0)) —cos@sin(p(0))
Thus ¢'(0) = R | cos@cos(p(0)) | + Ry'(0) | —sin@sin(e(8)) |, i.e., with p = ¢(6),
0 cos(p(0))

&'(0) = &(p) + ¢ (9)&(p).
Thus, with lighten notations,

=/
C

= d€2.8/ + (p//é:v, + (pld€3.8l
= dés.es + @/dgz.ég + 90//€3 + (pldgg.gz + @/2d€3.€3,
= —Rcos” @& + sin ¢ cos pés — 2¢ tan @@ + "3 — ¢’ > Ré).
Thus,
Projrg(C"(0)) = —2¢" tan pés 4 (" + sin p cos ¢)&s.

We will use (20.7). &1, & and & are orthogonal, ||e2]|* = R? cos? ¢, ||&3]|> = R?, thus, ||&’||* = R*(cos® ¢ +
(¢')?) and

(€”,8rn _ —2¢ tanpcos® o + ¢ (¢ +sinpcosp)  —¢'sinpcosp + @'

ez cos? ¢ + (¢')? cos? ¢ + (¢')?

Thus, with (20.7) we have to check that

— 2¢' tan p(cos” p + (¢)?) = —¢' sinpcos p + @',
{ (" + singpcos ) (cos” o + (¢)*) = @' (—¢' sinpcos o + ¢'¢")
that is,
—singcosp — 2(¢")* tanp = ¢’
{ ©"" cos® o + sin g cos® @ + 2(¢)* sin p cos p = 0

We have (0) = tan™"(acosd + bsind) and tan™'’(z) = ﬁ
Thus ¢’ = %;5’2;‘)’59 = cos® p(—asinf + bcos H).

Thus ¢ = —2sin ¢ cos g’ (—asin O + b cos 8) — cos® p(a cos  +bsin @) = —2¢' tan  — cos psin @ (the first

equation).
| |

Thus " + sinpcosp = —2(¢')? tan ¢ (the second equation). un

20.3 Curve in S and coordinate systems
With ®: g€ U C R™ — p=®(7) € S C R™ a parametrization of S, consider a regular curve

a: Ja,bl = 5 (20.18)
' t = p=a(t)=2(q1)), '

la,bf — U
t —q(t)
With ¢(t) = 327, ¢'(t) A; we have

where §=® 1oa: { } is a curve in U C R™ (space of parameters).

Wiy =S4, writien 7'(0) = Y (4" (A,

@
_
.
Il
_

Thus, at p = a(t),

(a")' €, (20.19)
1

v(p) =a'(t) = Z(qi)/(t) é(p), written ¥ =

m m
=1 =
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is the velocity along « at p = a(t). And the acceleration is

3(0) = (@) (Oe(am)+_ (@) (1) d; (a)-a' (1) = > (@) (D& m+ D (@) (0)(a") (1) dé (p).&p),
i=1 J=1 i=1 J,k=1
that is, with and dé;(p).€x(p) = >2;_17ix€ and Vg, &(p) = Y12 75,6,
&(1) = Votp) = 20 ) = SO (@) + X 1)@ () 1)) &), (20.20)
i=1 j.k=1

20.4 Geodesic in a coordinate system

Corollary 20.7 The following proposisitions are equivalent:
(i) Imc is a geodesic,
(ii) ¢ being travelled at constant speed and, for all i = 1,...,m,

@)+ > v (@) () =0, (20.21)

jk=1

meaning (q*)"(s) + Z;rfk:l Vie(0) (¢7)'(5) (%) (s) =0 for all s and all i = 1,...,m, with p = c(s).

Proof. (i)=-(ii). If Projr¢(c”(s)) = 0, then (20.20)) gives (20.21]).
(il)=(i). If (20.21)), then (20.20) implies Projrg(c”(s)) = 0, so, the speed being constant, ¢ is a

geodesic. un

Exercise 20.8 Converse of exercisem Prove with (20.21) that the geodesics on S = S(0, R) C R?
are great circles.

Answer. 1- ODE satisfied by a great circle: Consider a regular curve t €] — e,e[— ¢(0(t), p(t)) € S, let
¢(0) = po, and choose a basis such that in (20.11) we can take c= — 1. Thus
acosO(t) + bsin0(t) = tan o(t).
Thus
0'(—asin@ + bcos0) = ¢ (1 4 tan® ),

ie., 0" (—asinf + bcosh) 4+ 0'2(—acosf — bsin ) = " (1 + tan® ) + 2¢'? tan (1 + tan? @),
ie., 0" (—asinf 4 bcosh) — 0 tan p = " (1 4 tan® @) + 20’0’ tan p(—asin @ + bcos 6),
i.e.f and ¢ satisfy the ODE

1
0s?
2- And cousider a geodesic t €] — &,e[— c(0(t), p(t)) € S with ||¢’(t)|| =cste. Then (20.21) gives

0" — 20’ tan o = 0,
0" +6%sinpcosp = 0.

(0" —2¢'0" tan ) (—asin§ + bcosh) = c (0" + 6" cos psin p). (20.22)

And these equations trivially satisfy ((20.22)). oa

20.5 Geodesic: The shortest curve

Consider R™ with a Euclidean dot product that defines the usual metric (-, -),, and ||7]| = \/g(¥, 7).
Let ¢ : [a,b] — S be a regular curve in S. Its length is

b . ~
L(c) = / & (1)]] dt " F (Tme), (20.23)

the length being independent of the parametrization.

Proposition 20.9 Let A and B be two close points in S, and let C be the set of regular curves in S
from A to B. The curve c realizing the min.cc(L(c)) is a geodesic.
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Proof. Consider a family of curves a, : ¢t € [a,b] = @, (t) € S for u € [-1,1] in C s.t. a,(a) = A and

oy, (b) = B for all u € [0, 1]. Let a(u,t) := a(t) (defined on [—1,1] X [a,b]). The length of «,, is
() = L(aw) / ld (8)]] dt = / ||8“ (u, )| dt. (20.24)
The curves being regular and [a, b] being compact, we get ¢'(u) = f: %(H—a(u t)||) dt. And
9 . da 9 da dar (2o (u,t), 22 (u, t))gn

a1 D = g5 (G ), T s ) 2) = 20

o, b@u w, where W au,(t)
Co= [ )@t where i) = 20

Oa

5 5 (20.25)
= - / (G (0 8), 8 () + (G (1, ), (b)) — (G (.0), B (@) e

And a(u,a) = B constant for all u, thus g—g(u,a) =0, idem g—g(u, b) = 0. Thus a curve ay, realizing
the minimum satisfies

b
y 0 S
ug) = 0 = / (763(%,15),%0 () dt = 0.

And this is true for all f; with [@,b] C [a,b]. Thus 99 (g, t) L by, (t) for all t. Considering all the
family of curves we get @y, (t) L T,,S with p = ¢,,(t), that is Proj;, guy,’(t) = 0 for all ¢.

With @, (t) = z(t)ay’(t) where z(t) = llaw (D)7 = (au’(t),au’(t));%, thus 2/(t) =
(=3)2(0n " (1), 0w ())g (v (1), 00" (8))g * = —llovu " ()| 7 (0" (1), 00 (1)) Thus @' = 2'ovy,"+200,
gives

@' =~ |73 " ay)gon + o7 e )

Thus ProjpgWy,’ = 0 = Projpg(||aw, '|[*Wa,") gives Projrg (|, '[|2uy ") = (Quy s ug ') gty s that

is (20.7): ay, is a geodesic. ua

20.6 Geodesic: The minimum energy curve

Consider the (kinematic) energy along c:

b
= %/ ||’ (t)||* dt. (20.26)

NB: The energy E depends on the parametrization of Ime. Indeed, if ¢ : u € [¢,d] — t(u) € [a,b] is a
diffeormophism, if a(u) = ¢(t(u)), then &' (u) = &’ (t(u)) t'(u), and

- . 1 .
[ Newpa= [ j@@P sl [ @@l 2020
tefa,b] u€le.d] t'(u) u€le,d]

unless [t'(u)| = 1.

Proposition 20.10 Let A and B be two close points in S. Let C be the set of regular curves c
connecting A and B such that ||¢(t)|| = 1 (intrinsic parametrization). If a curve realizes min.cc E(c)
then this curve is a geodesic.

Proof. Consider a family of curves (¢, : [a,b] — S)ue[ 1,1 in C (so cy(a) = A and ¢, (b) = B for all
u € 1[0,1] and ||&,/(¢)|| = 1 for all ¢). Let c(u,t) := c,(t) (deﬁned on [—1,1] x [a,b]). Thus

= / || = (u,t)||? dt. (20.28)
And 2 (1198 (u, 1)]2) = 2 (% (u, 1), B¢ (u, 1))zn = 2(225 (u, 1), 3¢ (u, 1))gn gives
d%c

L = [0, Sy

= [ s a4 (00, S el

And ¢(u, a) = B constant for all u, thus %(u,a) =0, idem %(u, 0) = 0. And this is true for all fcd
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with [c,d] C [a,b]. Thus 2 (ug,t) L gﬁ (ug,t), for all ¢ € [a,b]. Considering all the family of curves

we get ProjTS%(uo, t) = 0 for all ¢: ¢, is a geodesic. ua

Remark 20.11

L%(c) < E(c). 20.29
(©) < 35— (2029)
Indeed, Cauchy—Schwarz theorem gives
/ e @Il dt = (Lapp, [1€71D L2 qapp < N z2qasplIE’ L2 (abp,
Wlth”].HLz(]ab)—f 12dt =b—aand ||¢"||72,.4p f ||¢’(t)])? dt = 2E. o

20.7 Geodesic and normal curvatures in R3

Let & : U ¢ R2 — S C R3 be a coordinate system of a dimension 2 regular surface S, let (/L, /Yg) be
the canonical basis in R2, let (€i(p)) = (d®(q).A;) he the coordinate system basis at p = ®(q).

Consider R? with a Euclidean dot product. Let 7i(p) be the unit normal vector at 7,S such that
(€1(p), éa(p), 7(p)) is a direct basis, that is,

i(p) LTS, Iyl =1, det(€i(p), é2(p),7(p)) > 0. (20.30)

0,L] — S

with s an intrinsic parameter: At any p = ¢(s),
s = p=c(s)

Consider a curve c : {

— N written Y, -
i(p) =¢'(s) " ="t(p), and [[tp)|l=7(p)l| =1, (20.31)
t(p) being the tangent unit vector at p along c.

Definition 20.12 For ¢, the normal geodesic vector at p = ¢(s) is the vector 7,(p) € T,S (tangent
to S) defined by

-

fig(p) = 7i(p) Nt(p) € T,,S. (20.32)

-

) is a direct orthogonal basis ins R? (Serret Frénet basis (t(p), 7ig(p), ri(p))).

Thus (7i(p), {(p), 7ig(p)
=1 gives (¢'(s),¢"(s))rn = 0, the acceleration ¢”(s) satisfies

Since ||¢’(s)||3x

¢"(s) L tp), (20.33)
thus
2"(5) = Kn(P)(p) + g (P)7Ay(p) € Vect{i(p)} &+ Vect{iy(p)} (20.34)
where
kn(p) = (€”(s),7(p))rs, L
. . and  k4(p)iig(p) = Projp ¢(¢"(s)). (20.35)
{ kig(p) = (€"(s), 7ig(P) I3, e Tvs
Definition 20.13
The normal curvature at p is k,(p) (normal acceleration when ||7(p)|| = 1),
The geodesic curvature at p is k4(p) (tangential acceleration in S when ||7(p)|| = 1).
(If ¢ is a geodesic, then k, = 0.)
(if ¢ is not a geodesic then |rq(p)| = ||€”(s) A7i(p)|| gives a measure of the “rotation about 7(p)”).

Example 20.14 Sphere S = 5(67 R), and GPS coordinates. A parallel in intrinsic curvilinear coor-
dinate is a curve

Rcos(Rcow) CoS ¥

c(s) = Rsln(me) oS
Rsing
- Sin( Rch Lp)
(Intrinsic since |[|¢’(s)|| = | cos(oney) | = 1) The acceleration is ¢”(s) =
0

PR - S
C.OS R cos ¢
sin =2

Feesp | - The unit normal vector s.t. (€1(p), €2(p), i) is direct (here €1(p) is along
0

" Rcosp
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COS R cos ¢ COS @

a parallel and é5(p) is along a meridian) is 7(p) = | sin 7}% =—cosy | . Thus
sin
=1/ — -1
(€"(s),7i(p))rs = ' - K (). (20.36)
And
, 1 1 cos Rciw sin ¢ 1
" (s) + 5ii(p) = 5 tany | sinpooosing | = — tanp 7. (20.37)
R R cos 5 R
Thus 1
Rg = 3 tan ¢. (20.38)

In particular on the equator, ¢ = 0 and k, = 0 (the equator is a geodesic). And k, increases with ¢. da

21 Parallel transport in S C R”

21.1 Definition

In the 2-sphere S = 5(6, R) in R3, a vector field in S cannot be uniform: The sphere is not flat, so
the direction of a vector in TS changes when moving along a curve, from the point of view of R3.

Definition 21.1 Let S be a m differential manifold. Let V be a connection in S. A vector field
w € I'(S) is parallel transported in S (relative to V) along a curve ¢ : t € [a,b] — ¢(t) € S iff, for all
p=c(t) € C([a’b])v

D
E(P)

E.g., with S a surface in R™ and V is the Riemannian usual connection, that is given by Vs =
=/

Projpg(dw.v), then along a curve ¢, and with @(c(t)) = &'(¢), a vector field @ € TS is parallel
transported along c iff

(V@) (p) =0, ie. ~0. (21.1)

Example 21.2 Sphere, see figure A = the north pole, B = the south pole. Consider two
meridians ¢; : [0, 7] — S connecting A and B, i = 1,2, the meridians making an angle of 90 degrees
in the plane tangent at the north pole. Let #;(c(t)) = ¢;'(¢) be the velocities. The parallel transport
of ¥1(A) along ¢ (geodesic) gives U1 (B) (tangent vector to & at B). Whereas the parallel transport
of 71(A) (orthogonal to #5(A)) along & (geodesic) gives wa(B) (orthogonal to ¥a(B)): And h(A) =
—wy(B); Thus the result of a parallel transportation depends on the curve chosen to go from A to B. da

Remark 21.3 Beware of vocabulary: a parallel on Earth is “parallel to the equator”, but along such
a parallel a vector is not “parallel tranported” since a parallel is not a geodesic. See proposition [22.15

and example on

Proposition 21.4 Letc: [a,b] — S be a curve in S surface in R", and consider the usual Riemannian
connection. Then the parallel transport along c in S does not depend on the parametrization of c.

Proof. Let o : s € [a,0] — p = a(s) € S be another parametrization of Ime, and let ¢ : s € [, 5]
t(s) € [a,b] be the change of parameter (diffeomorphism); So o = ¢ o t, that is a(s) = c(t(s)) =
And @(p) = (Wo a)(s) = (Woc)(t(s)) gives

(@0 )(s) = (@ 0 0 (t(s)) t'(s):

Thus Projg, o(@ o a)'(s) = Projs, (i o ¢) (¢(5)) #/(s), that is, 2 (p) = B (p) /(s); Thus 22 (p) = 0
iff %(p) =0. LS

With the basis of a coordinate system, 1} gives Dd—f’ = Vsl = Zm _
Y ohewhy)v7 €. Thus o is parallel transported along a curve ¢ in S iff, for all 4,

f:w‘ijvj =0, ie. i(gwj
i=1 =

m




Figure 21.1: Parallel transport in the sphere along two meridians (at 0 and 90 degrees on the figure):
The parallel transport along the two meridians of a vector at the north pole gives two different vectors
at the south pole.

Remark 21.5 We cannot confuse

e The parallel transport equation Vzw = %‘7 = 0 which is independent of a parametrization of
the curve, cf. proposition 21.4] with

e The geodesic equation V37 = 0 which requires ||7]] = 1 (intrinsic parametrization): Cf. if
the parameter is not intrinsic. un

Remark 21.6 The Levi-Civita theorem [22.23] will states that: If the connection parallel transports
the metric, then proposition will be valid (case of a usual Riemannian metric and connection
in Rn) oa

22 The parallel transport operator
22.1 The shifter J;° in R"

Let a < b, let ¢ : t € [a,b] = ¢(t) € R™ be a regular curve in R", let to,t €la,b[, py, = c(to) and
pe = c(t).
Definition 22.1 The shifter between ty and ¢ along c¢ is the translation

x Ty, R" — x T, R"™
i, {{pt‘)} o e Ty (22.1)

—

- t - - -
(ptm wpto) - Jc?t (wpto) = (pt? wpt)’ where Wp, = Wp,»
that is, Jiot translates the vector oy, ~at p, at to toward the vector uy,, = wp, at p: at ¢.

Thus, if A =py, = c(to) = ¢(to) and B = p, = ¢(t) = &(¢) are two points connected by two curves
c and ¢, then J(f?t(w'pto) = Jgf’t(i;’pto): The result is independent of the curves that connect A and B:

Jlo, vrigen gho (22.2)

la, b — F(T'S:,, TR™)

to— Jo(t) = JP°
If there is no ambiguity, then (shorten notation)

Hence, with (22.1), we define J' : {

} s and Jto (t) (’lﬁpt()) _written Jto (t, U_jpto )

" itten _,
e (W, ) " =", (22.3)
Example 22.2 In B2, with ¢+ £ — O+ ( 2% it 1y = 0 and @, = B = O+ By, th
xample 22.2 In R*, withc: ¢t — O+ Rsint 1t 1o = 0 and Wy, = By at py, = O + Lo, then
at t = 3 we have p; = O + Ey and J° (Wy,,) = E, (parallel transport in R2); And, relative to the
tangent vector ¥(p;) = €'(t), the vector W, “turns to the right as t increases”. ua
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22.2 Parallel transport Jtt in §

Setting (obvious but has to be given): Let S be a surface in R”, let t5, T € R s.t. tg < T, let S,
be an open set in S, let ®% : [to,T] X Sy, — S be a regular map (a motion). Let t € [to,T], let
o (t,py, ) ="1tten dlo(p,), let S; = ®°(S;,), and ®° : S, — S; is supposed to be a diffeomorphism.
Let ¢ : [to,T] — S be a regular curve in S such that ¢(t) € S; for all . And let V be the usual
Riemannian connection V in S.

Proposition 22.3 Let py, = c(to), Wy,, € Ty, S, and p; = c(t). There exists a unique vector field w,.
defined at all points p; (W, € I'(Imc)) such that

—

D,

(Voie(p) =) (o) =0 and dilpi,) =y, (22.4
(E.g., see figure|22.1})
Proof. (22.4) is an ODE with initial condition: Apply Cauchy—Lipschitz theorem. un

Definition 22.4 @, being the solution of (22.4)), the vector w.(p:) at p: = c(t) at ¢, is called the

parallel transported vector from 4, ~at pr, = c(to) at to in S along c. And we(p;) = —written J25 (@, )-
This defines the shifter (the “parallel transport operator”) Jtot along c from Ty, Sy, to T, Si:
Jto . {Pro} X TpiySte = APt} X Ty, S (22.5)
et - - — - :
(ptovato) - Jz?t(wl)r,o) = (ptvwl)r,)v where i, = w,
and the shifter (the “parallel transport operator”) Ji° along c.
la, b[x{pto} x Tp, S — TS
Jzo : - t - - wrltten t (226)
(t7pto’wpt0) - Jc0 (t7wpto) = (pt7w0(pt)) J N ( ;Dto)
Shorten notation:
Jz?t(wpto) = J§° (t7wpt0) = “_jpt = We. (22.7)

z = Rcost

2 i ) _ _
Example 22.5 In R*, with ¢ : ¢ - p, = c(t) = O + <y:Rsint

); We have [ﬁ(pt)]‘ﬁ =

—Rsint = —y . = . =
( Reost — = ), and T},,S = Vect{v(p;) }; Let to = 0, py, = c¢(0) = O + Ey, and W, = Ey € Tp, S5
We look for . € T'S, so we(pr) = w(pe)V(pe), s-t. Projy, g(dd(pe).v(pi)) = 0 and @, (py,) = Eo.

We have dui(p:).U(pt) = (dw(pe).U(p:))0(pe) + w(pe)dv(pe).0(pe), with dv = Z” 8TJE ® B
—E1 ® E? + E; ® E', thus di.0 = —zEy — yE> L ¥, thus Projq, s(dw(p:).0(ps)) = dw(pt).0 (pt)v(pt)

vanishes iff dw(p;).v(p;) = 0 = 8—7;’( y) + %Z (x), ie y2u + x%’ = 0: A solution is w = k for any
k € R. Thus @, = kv, and wpt = F, gives k = ﬁ, thus W, = %77: The parallel transported vector is
always tangent to c (1t is in TS’) and keeps its length, that is, @, “turns with the circle”. ua
Example 22.6 See §

22.3 The shifter is R-linear
Proposition 22.7 Jt0 is R-linear. Thus d.J" 4 (Wp,, ) = Jct?t for all Wy, € Tp, S.

Proof. Let w, , %, € 1,5 and h € R. The ODE (22.4) being linear (the right hand side is linear

since it vanishes), we get Jﬁf’t(u_fpto + hzp,,) = J(ff’t(w'ptg) + hdi iy (Zp,, ) oa

to : : to (7 __written 7to 72
J.% being linear, J.5 (w, ) = Jo Wy, -
Quantification with a coordinate basis:

to

m

T = (TR Eilpy) ® € (pry), (22.8)
i,j=1

S0, with u_}pto = Z] 1wpt0 '(pto)a u_jc(pt) = Jct?t'wpto = 21 J= 1(J£Ot> jto (pto) gi(pt)a ie

[@e(Pe)]j2: ) = [T 101y ). (pe) [ Tpey 12 (0 ) - (22.9)
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22.4 Composition of shifters S
Let Je(t, to) = JJS.

Proposition 22.8 ¢ being a regular curve in S, we have, for all t,t; €]a,b],

Jby o =J, de Je(ti,t) o Jo(t,te) = Jo(t, ). (22.10)
(Linearity notation: J!, .J%% = J% , or Jo(t1,t).Je(t,t0) = Je(t1,t).) In particular, (J2%4) =" = J¢,, .
Proof. The existence and uniqueness (Cauchy—Lipschitz theorem) gives (22.10)). un

22.5 Interpretation
Reminder: In R", with p; = ¢(¢) and ¢(p;) = &’(¢), cf. (6.1),

AWo) 4y ~ tim

w(c(t)) —we(to)) . w(pe) — W(py,)
dt - t—to = R (22.11)

dw(pto)'g(pto) -

But the rate %ﬁf(w is meaningless with the mathematical definition of a vector field, cf. 1'
since the difference w(p;) — w(py,) is a nonsense: Not only T, S # T),,S in general, but with the full

notation of a vector field, cf. (1.18)), (22.11)) reads

D (pt, w(pt)) — (pto’ w(pto))

(pt()? 7(pt0)) = lim

22.12
dt tto t— 1t ( )

3

and the difference in the limit is meaningless since the base points p; and p;, are different. In R",

(22.12)) is made meaningful thanks to the shifter J/°, cf. (22.2):

- to— 1, > . -
(pto’ Dizﬂ(pto)) _ thm (ptov Jt (w(pt)) (ptoa w(pto))
o t=to (22.13)
i PP = (1 T (1))
t—to t—to

simply written as (22.11]).
Proposition 22.9 In a regular surface S C R", we have

—

-1
, Di . - (peos S (pe) = (Pro WP )
(Pto: Va(pe,)) = (Pto W(pto)) = Proj; g(lim —2 et ! Lo Lo

Ptg” “t—to t—to

. . (P, W(pe)) — (pr, Jz?t-“_j(pto))
= Projp ¢(lim
P15 5t t—to

)
(22.14)

).

(The last equality is not used in a surface since w(p;) — J.%.1(py,) € Tp,S and T,,,S varies as t — to.)
Simply written:

oom DT T ) — ) 9915
70 (Peo) = - (Pro) = Projg, s(lim r— )- (22.15)

Proof. Vzw(py,) = ProijtUS(du_i(pto).U(pto)) = PrOijtOS(hmt%to M) Let W.(py) =

t—to
We ((t)) —w(c(to))

J0,((pry)). Then PEL=T(clto)) _ TEAD)=0e(El0) | Telel)=0(clto)

y with hmt_m)

i—to t—to t—to ﬁ i—to
0, cf. (22.4). Thus Vai(ps,) = 2Z(pr,) = PTOijtOS(limtﬁto %ﬁ(l)“’)) And JY% = I gives
. w —We . J:O —1 g t)— J;OV 71.’@6 + -
hmt—nﬁo (Pti77t0 (pf’)) = hmt_ﬂgo ( 't) (p i7£0 ’t) (p )) [ 1}
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22.6 Examples
22.6.1 Parallel transport in a curve in R?

Let S be a one dimensional regular manifold in R? parametrized as a regular curve c : t €]a, b[— c(t),
Ime=S.

Proposition 22.10 Let & be a vector field in S, that is, W(p) = «(t)¢’(t) at p = c(t) with « €
F(a,b;R). If ||¢’(t)|| = 1 for all t, then W is parallel transported along Im(c) iff « is constant. (In
particular, the velocity field ¥(c(t)) := ¢’(t) is parallel transported along c, and a geodesic in a curve
is a part of this curve).

Proof. ||’(t)[|2: = 1 gives & (&"(t),é'(t))re = 0 = 2(¢"(t

),@(¢)), thus &”(t) L &@(¢) for all . And
(Woc)(t) =a/(t ) "(t) +a(t)e”(t) gives D& (t) = Projg, ((@o

¢)'(t)) = o (£)&'(¢). Since &'(t) # 0 (its

norm equals 1), Z% () =0iff o/ = 0. s
. . = . Rcos#
Example 22.11 (Calculations.) Polar coordinates, S = C(0, R) = Imc with p = ¢(0) = Rsind |-
So ||9(p)|| = ||’ (¢)|| = R = ||é2(p)|| = constant. Let @ € T'(S) given by, with p = ¢(6),
W(p) = B(p)éa(p), so duw=dpeés+ [deés.
Thus Y
.8z = (dF.€2)€ + B(de2.82) = Z €2 + B(12:€1 + 73,62).-
Thus
. : - op
Ve, W = Projpg(dw.ey) = (89 + B735)éx (22.16)
With 72, = 0, cf. (3.9), thus DB — 0 iff ‘% =0, i.e., iff 8 = fBy is constant. In particular, ¥ = &5 is
parallel transported along itself. un
22.6.2 Parallel transport in a cylinder in R3
. . . Rcosd
Surface ®(0,z) = RcosOFE; + RsinE, + zE3 =" | Rgingd |, and S = Im® (cylinder). Ba-
z
—Rsinf . 0
sis at p = ®(0,2) in T,5: &(p) = %5(0,2) = | Rcos® | and &(p) = Ez=""itten [ 0 . Let
0 1
Rcost —Rsint
a # 0 and consider c(t) = ®(t,at) = | Rsint | € S (spiral). At p = ¢(t), €1(p) = | Rcost
at 0
O -
and é(p) = (0 Consider the vector fields é; and & in S; 22 (p) = Projr, g (d(illtoc]( t) =
1
—Rcost .
Projp, ¢(| —Rsint |) =0 et D2 (p) = Projp, (0) = 0. Thus any vector field w = aei(p) + Be2(p)

0
with a and 8 constants is parallel transported along Imc.
And a vector field in S reads @(p) = a(t)e1(p) + B(t)é(p), thus 2L (1) = o/ (t)&1(p) + B'(t)éx(p),

dt
[iiil (t) = [3;;;2 (t) = 0. Thus o is parallel transported along Imc iff & and § are constant.

since

Exercise 22.12 Compute Vze; and Vzes from dé; and dés.

Answer. With (3.14) and the shift of index 2 — 1 and 3 — 2 we get dé; (p) = — R cos 0E; @df — Rsin 0 E2 @d6),
and dé>(p) = 0.

And #(p) = & (t) = —RsintE) 4+ RcostEy + aFs = &1 (p) + aéx(p) € TpS.
Thus déy (p). (p) (—RcostE, @d6 — RsmtE2®dc9) (€1(p)+aéx(p)) = a(—RcostE) — RsintEs) L & (p)
and L é>(p), tl (p) = Projg, s(deéi(p).v(p)) = 0. And P2 (p) = Proijs(ﬁ) =0. wn
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22.6.3 Parallel transport in a sphere in R3

Rcos 8y cosp

Example 22.13 ¢ is a meridian ¢ — ¢(¢) = | Rsinfycose |. Consider the vector field @(p) =
Rsinp
B —sinf
nggzgu = | cosf |, soif p = c(p) then wW(p) is a unit vector orthogonal to the meridian. And
0
d(s’;;c)(ap) =0, thus ProjTS(%:C(gp)) = 0, thus 7 is parallel transported along the meridian.

And any vector field @ = aes(p) + 4 % with a and 8 constant is parallel transported along the

meridian. Here ||[W]|| = v/ R%a2 + 2 =) constant, and “turns with the meridian (parallel transport).
E.g.: If a plane flies along a meridian, then its wings are parallel transported along this meridian.
Consider @(p) = €2(p): parallel to a meridian, but its length ||€2(p)|| = R cos ¢ varies with ¢. So

—sin 6y cos ¢ B sin g sin @
wW(p) = (Woec)(p) =R| cosbpcosp |, and d(gi;’c)(ga) =R | —cosbpsing | = —rEes(p) (every
0 0
where but on the equator), thus ProjTS(dzf:C(ap)) =—heep) # 0 (every where but on the equator
and at the poles). Thus €5 is not parallel transported along the meridian. un
22.6.4 Parallel transport along a parallel
Rcosfcosp
Continuing proposition [20.4] and remark 21.3l ®(0,¢) = | Rsinfcosy |, éx(p) = %—?(9,(,0) =
Rsingp
—Rsinfcos ¢ —Rcosfsing
Rcosfcose | and es3(p) = g—i(e,gp) = | —Rsinfsiny |, cf. (3.29). And parallel c,,(0) =
0 Rcosyp
R cos 0 cos pg
Rsinflcospg |. Let pr, = cp,(0o), and let iy, € T, S be given, iy, # 0. Consider p = ¢y, (0)
Rsin g
and the parallel transported vector
te(p) = (Jeb-r, ) (p) = a(0)e2(p) + B(0)E3(p), (22.17)

where a(0) = a,,(0) and B() = B, (0) depends on ¢q (the curve=parallel).

Remark 22.14 1- If 4.(p) = a(0)é2(p) (tangent to the parallel), then, cf. (3.33) :
Dii,
do

So Ddgc (p) = 0 along c,, iff &/ = 0 and () cospgsingy = 0, i.e., iff o is constant and ¢y = 0:
A parallel transport is only possible along the equator. In particular, € (p) is not parallel transported
along a parallel which is not the equator.

2- If @.(p) = B(0)@5(p) (tangent to a meridian), then, cf. (3.34) :

(p) = &/ (0)é2(p) + (0) Ve, &2(p) = o (0)€2(p) + a(6) cos o sin o €3(p)-

D1, . . . S

2 (p) = B/ (0)7(0) + BO)V2,a(p) = 5'(0)ea(p) — B(6) tan 0o ()
Thus l?igc (p) = 0 along ¢y, iff 5/ = 0 and §(6) tan o = 0, i.e., iff 5 is constant and ¢y = 0: A parallel
transport is only possible along the equator. In particular, €5(p) is not parallel transported along a

parallel which is not the equator. un

Proposition 22.15 Let sg = |sinpg|. The parallel transported vector u.(p), cf. (22.17), is of the
type

a(0) = c1 cos(soh) + casin(sph), (22.18)
B(0) = (—cq sin(spf) + c2 cos(sph)) cos vo, '
where ¢ and co are constants depending on ﬁptg = U?&, + U3é; given by
U3
1 = cos(s060)U? — sin(sobp) ,
€oS (g
; (22.19)
Cy = SiH(SOQO)UQ + COS(Soeo) .
€oS g
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Proof. Let p = ¢, (0). (22.17) gives, with (3.43),
Di,
df

(p) = (&/(0) — B(0) tan o) €2(p) + (B'(0) + a(B) cos @y sin o) €5(p).- (22.20)

Thus Ddg“ (p) = 0 gives

(22.21)

a'(0) — B(9) tan g = 0,
B’ () + a(8) cos pq sin gy = 0.

(e = 8 =0 is not possible since iy # 0, and we get the results in remark (22.14)).)
Thus o” = 3’ tan ¢y and 8" = —a/ cos ¢ sin g, thus

o’ + artan g cos pg sin g = o + asin® gy = 0,
B + Btan @g cos pg sin g = B + Bsin® py = 0.

With s = |sing| we get: there exists ¢1, ¢a,¢c3,c¢4 € R s.t.

a(f) = ¢ cos(spf) + co sin(sh),
B(0) = c5 cos(sgf) + cqsin(sph).

() = —c350 cos(sol) + ca50 cos(seh).
independent),

o/ (0) = —cy50sin(sp) + casp cos(sgh),
Thus { ﬁ'( ; 180 5in(s06) + €250 cos(sof) } Thus, with (22.21) (the sin and cos functions are

—c180 = catanpg, and casg = c3tan g,
that is, —c1 cos pg = ¢4 and ¢y cos g = c3, thus (22.18]). Thus
B(0) = co cos pp cos(sgl) — 1 cos pg sin(sgh).

Thus:
Ue(p) = (c1 cos(sob) + c2sin(sph))E2(p) + (c2 cos(spl) — ¢ sin(soh))(cos pofs(p)).

With [|&(p)|| = Rcos po, ||@(p)|| = R and &(p) L &(p), we have ||T.|| = (¢? + ¢2)2 = constant (the
parallel transport keeps the metric). And the initial condition . (p;,) = U = U2y + U3€3 gives

a(bo)\ [ cos(sofo)  sin(sobp) a1\ Uf
C[i)(sezz o —SiH(Soeo) COS(S()G()) ' Co o coggao ’

. —1 .
With ( cos Sm) = <C9S Sm), we get (22.19).
— Sln  CoS Sin COS

Example 22.16 On the equator: ¢g = 0, sop = 0, thus ¢; = U?, o = U3, so a(f) = U? and
B(0) = U3, thus ii.(p) = U%&(p) + U3e3(p), and the equator is a geodesic: Already known. o

Example 22.17 See figure 22.1} Parallel oo = 7 (radian, that is 45 degrees) north. So so =

4
R cos ¢g
| singg| = g Choose 6y = 0, py, = ¢4, (0) = 0 (on the Greenwich meridian), and travel
Rsin g

along the 45-th parallel.

1- Initial vector U = &(py,) (parallel to the paralllel toward East). See figure Thus (22.19)
and (22.18) give

— 772 —
a=U"=1 a(6) = cos(soh),
U3 and .
cy = =0, B(0) = —sin(soh) cos o,
oS @o
and
U (0) = cos(sgh)ea(p) — sin(seh) cos ppes(p). (22.22)
Since ||e2(p)|| = || cos po€3(p)|| = R cos o, t.(0) keeps its length and“turns”, see figure
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Figure 22.1: Parallel transport along the 45-th parallel, with, at § = 0, W oriented to the East: The
parallel transported vector turned south at 6 ~ 127 degrés, see example (Parallel transport
along the 30-th parallel, with, at § = 0, @ oriented to the East: The parallel transported vector turned
south at § ~ 180 degrés. On the equator (geodesic) W stays parallel to the equator.)

e If fiss.t. sof = 7, 1e 0 = 51— = 7 (toward East and %@ ~ 127 degrees longitude), then

U.(0) is now oriented South. The orientation toward the South was expected: Indeed, the geodesic
(great circle) through p;, which is parallel to €5(p,) “goes toward the equator” (a geodesic looks like

a straight line in .S); Thus .(9) goes toward the South.

o If Ois st. sof = m, ie. 0 = - = f (toward East and 2“ 180 ~ 154 degrees longitude), then
ﬁc(e) = 762(]9)-
o If 0 is s.t. sof = 2m, i.e.ld = w = \/5 (toward East and \2/’1 180 ~ 308 degrees longitude) then

@) =),
2- Initial vector U = €3(py,) (parallel to the meridian toward North). Then

=U%*=0, c=U%=1, a(f) = sin(sgh), B8(0) = g cos(spb),

and
Uc(0) = sin(sph)é2(p) + cos(soh)(cos po€s(p)), (22.23

and () turns, see figure with intial vector —e3(p).

~—

22.7 The shifter preserves the Riemannian metric

Proposition 22.18 With a usual Euclidean metric (-,-), = (-, )r» and the associated Riemannian
connection (given by VW = Projpg(dw.v) € I'(S)), the shifter Jﬁft in S along a curve c satisfies

(T2, i, T2, A, Jrr = (i, » W, Jr- (22.24)

(The shifter is an isometry: keeps lengths and angles). Le.,

d | -
= (Jtt Ay Ty w,,to))Rn = 0. (22.25)

Proof. Let J:ff’t(zf)'pto) = We(c(t)), cf. l) so D“’L (pt) = 0, idem with 4, . Thus

d 5 8Jt° . 8Jt0
T 0t ), 2 (8 T, D = (5= (b Ty, ), JE0 (1 iy, e + (S0 (1T, ), —5

(t, Wp,, )
to to

0J; - o . 0J, -
(PrOJT ST o; ot (t upto ) Jto (ta wpto ))R" + (‘]20 (t? umo )7 PrOJTPSTE(t wpt,o ))]R” )
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since JO(t, @y, ), JE(t, @y, ) € TpS. That is,

0, ), 10 (0, e = (0 (), e+ (), o (61 = 040 =0,
since 2Ue = () = D9 =

dt dt *

Proposition 22.19 Let 0; be the derivation relative to the i-th variable. For all to,t,t1 €]a,b[, we
have

0o, (tl, ) Je. (t,to) + Jc(tl, ) o1 J, (t to) 0, (2226)
written .
d']c it to + d cot
. = 22.2
o S+ Je o 0, (22.27)
or, %.Jc(t,to) + Jc(tl,t).% = 0. In particular,
dJt, dJk,
0o J.(to, to) + O1Jc(to, t 0, ie —2 = —— , 22.28
2 Je(to, to) + O Je(to, to) = e & i ( )
A  ddesg
or, d; = [t=to — d;fo [t=to"
Proof. (22.10) gives J(t1,1).J(t,t0).Wp,, = J(t1,t0).wWp,, , thus
0o (t1,1).J (t,t0) W, + J(t1,).01T (t,t0).Wp,, =0, (22.29)

for all wy, € T, S, ie. (22.26). In particular, 02J(to, to).J (to, to) - Wp,, +J(to,t0).01J (o, to).wyp,, = 0,
thus 82J(t0, to) + 81J(t0, to) = 6, since Jc(to, to) =1. u

Qorollary 22.20 Let py = c(t), ¢'(t) = U(pt) = Ezl:lvk(pt)é’k(pt), and Jct:’t = E:"JZI(Jé"t); €i(pr) ®
el (py, ), cf. (22.8), Then, for all i, j,
d(J.5)! G
b i Z (JE)50 vk, thus
k,f=1

(Jﬁ%

Z’ykj . (22.30)

[t= to

Proof. Let wj, = é'](pto) and We(p) = Je(t,t0).

i(pe) = Doty Je(t,to)i€i(e(t)), cf. (22.8). Thus

e
0,

&

Vi, = 28 =0, cf. , that is Projg, g (w OC) gives
m d(JCto) m .
> — ) + Y (i) Proin, s (déi(py)-Upi) = 0.

i=1 =1

With Projg(de;.0) = Vgéi = Y1 1 v"Ve, & = 32" ) vF L., thus

(I i "
S My 3 ik =
=1 i,k,0=1
And Zl k,f= 1(Jt°) Uk%gié'f = ZTk,eﬂ(Jz?t)g”k%iea gives (22.30). -

22.8 Theorem 2 of Levi-Civita

Manifold S with a connection V.

Definition 22.21 A metric g(-,-) in S is parallel transported in S relative to the connection V iff
(22.25)) is satisfied for all curve ¢ in S, all p, € S and all u,, Wy, € T}, S, that is,

(1) (Pe), (J2% 020 ) (P2)) g, = (Tity (Pto ), Tt (Pt6))gp,, » (22.31)
when pi, = c(to), p+ = c(t), that is,
(’L_[C(pt)a u_jc(pt))gpt = (ﬁto (pto)v ﬁto (pto))gptu : (22'32)
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That is, iff
(T80, 1), (2%, ) ) =0, (22.33)

ien, 4 ((Te(e(), Tale(t) g ) = O-

Proposition 22.22 If g(-,) is parallel transported relative to V, then g(-,-) is a metric of Killing
relative to V.

Proof. % = 0 = Vg along any curve tells that ¥ is a vector of Killing for all ¢ € I'(S), thus g(-,-)
is a metric of Killing. un

Theorem 22.23 (Levi-Civita, and definition.) Let (S, g(-,-)) be a Riemannian manifold. Then
there exists a unique connection V in S such that:

1- V is torsion free, cf. (11.11]), and

2- 'V parallel transport g(-,-), cf. (22.31)).
This connection is called the “metric connection” or the “Levi—Civita connection”.

(In other words: there exists a unique torsion free connection V in S such that the shifter preserves
the Riemannian metric in S.)

Using a coordinate system, the connection is given by, for all i, j, k,

;1 0,090 Ogij | Ogek

LI—— v — ) 22.34
where [g"] := [g;5] 7"
Proof. Apply the previous proposition and theorem [17.8 ==

(If S is a surface in R™, and g¢(-,-) a usual Euclidean metric, then the Levi-Civita connection is
the usual Riemannian connection.)

Part VII
Normal and second fundamental form

23 Metric and volume in R"

Let (E;) be a Euclidean basis in R", (dz?) the dual basis, and g(-,-) the associated Euclidean dot
product, that is,

() = dei @ da' "B Y, de [g( )] g =1 (23.1)

And the Euclidean algebraic volume element and the Euclidean volume element (non negative) are

dz' A Adz", and dQ=|dz' A .. Ada"| VT dat e (23.2)
So the algebraic volume of the parallelepiped limited by n vectors s, ..., W, is
Cllgc(u_fl7 oy Wy) = det[wj] when ;= ;w;Ei, (23.3)
the volume being |det, z(d1, ..., wy)| = | det[w?]].
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23.1 Expression in a coordinate system basis in R”

Let S be an open set in R”, and ®, : § € U C R* — p = ®&(7) € S € R" be a coordinate
system in S, cf. 1' Let (&(p)) = (d®(q).Ai)i=1,....n be the basis of the system at p = ®,(g), and
(¢'(p) = d¢'(p))i=1,...n be the dual basis, and let g;;(p) := g(€(p), €;(p)) = (€i(p), €j(p))rn, so the
Euclidean metric g(-,-) = (-, - )rn, cf. (23.1)), also reads, at any p € S,

Z 9ij(p) dg' (p) @ dg’ (p),  [9()]je = [945(0)]- (23.4)

3,j=1

Proposition 23.1 Let p = &, () and J(§) = detlE(€1 (p), ..., €n(p)) = the algebraic volume of the
parallelepiped limited by €1(p), ..., €,(p). Then

J(q) = +y/det([g(p)]}2), (23.5)

with a + sign if the basis (€;(p)) Is direct, that is if J(§) > 0, and with a — sign if not. And the
algebraic Euclidean volume element, cf. (23.2), also reads, at any p,

+/det(lg(p)]|2) dq' (p) A .. Adq" (p), (23.6)

and the Euclidean volume element is dQ)(p Vdet([g(p)]j2) dqt(p (p)-
So, the algebraic volume of the paral]e]ep1ped 11m1ted by n Vectors wl(p) wey Wy (p), cf. (23.3), is

Cll%t(wl(p)v---ﬁn(p)) = \/det([g(p)]je) det[w;(p)] when w;(p)= Zw§(p)€i(p)- (23.7)
Proof. Let P be the transition matrix from ( %) to (€;). Then J(q)2 = det z(€; 1(p), ..y En(p))? =
det([1(p)] g - [En(P)]|5)® = det(P)? = det(P) d (P) = det(P") det(P) = det(PT.P)
det(|[E 518 0N g)) = det(((E(p), & p)rn)) = det(lgig(p)]) = det(lg(p)]a)  Thus (23.5
and . un
Example 23.2 Polar coordinates, r = r(p) = /a2 +y2' deté(p)(é’l(p),é'g(p)) = /det[gy|je = 7
And [g(p)]je = <(1) TQ) Jo(q) = /detlg(p)]je = r, det z(p) = 7 dr(p) A df(p) (algebraic volume at p
in the polar system), and the volume element at p is \detﬁ(p)| = dQ(p) = =""itenp qdrdd (positive
volume at p). ua

23.2 Volume in a surface

Let ®:q € Rm — p=®(q) € S CR™ a coordinate system in S, cf. 1b (€;(p))i=1,....m the system
(1.26)

basis at p, cf. (1.12)), and (dq’(p))i=1.....m the dual basis at p, cf. (1.26). Consider a metric g(-,-) in S
written as, at p € S,

Zgu p)®dg(p), so gij =9(¢,¢), and [g(p)]je = lgi;(P)] =y (23.8)

1,j=1

Definition 23.3 The algebraic volume in S (the algebraic area element) at p is
det(p) := \/det((lg(P)]je) dg’ (p) A - A da" (p). (23.9)

And the algebraic volume in 7T},S limited by m vectors wh (p), ... W, (p) € TpS is

m

det(p) (@1 (p), -, Win (p)) = 4/ det([g(p)]e) det([wi(p)]), when ;= wi(p)éi(p),  (23.10)

i=1

and the non negative volume is | det z(p) (@1 (p), ..., W (p))| = \/det([g(p)]1e) | det([w?(p)])
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23.3 Unit normal form

—

Let m = n—1, so S is a regular hyper-surface in R™. Let 7i(p) ="*"**1 &, (p) be one (of the two) unit
normal vector at .S at p, so

Vi=1,...n=1, (€(p),7i(p))rr =0, and [[ii(p)|[rn = 1. (23.11)

Thus (€;(p))i=1,....n is a basis at p in R™.
Let, (ei(p))izly___m be the dual basis, and let

e (p) "En (p). (23.12)
Definition 23.4 The linear form n°(p) is called the unit normal form at S at p.
With @(p) = @) (p) + W1 (p) € TS ®+ Vect{ii(p)}, we get, for all @ € I'(S),
n’ .46 = (7, @),, (23.13)

that is, 7 is the (-, -),-Riesz representation vector of n”. And n”(p).w, is the normal component at S
at p of .

Example 23.5 Polar coordinate:

Rcosf . .
ep=>>p(0) = (Rzi?e ) then 7i(p) = +&(p) and 1’ (p) = +dr(p).

o p ="y (r) = <TC.OSZO >, then 7i(p) = jzgz—iz’) and n’(p) = +rdf(p). s
7 sin Oy
Rcosfcosp =
Example 23.6 Spherical coordinates, p = ®r(0,p) = | Rsinfcosg |, tangent vectors fi(p) =
Rsing

954(0,¢) = @(p) and fa(p) = 520, ¢) = &(p), thus

i) = - LD () —aep) and w0 (p) = £dr(p). (23.14)
[f1 A fo]

And the endomorphism 7, @ n? : R3 — R3 is the projection on TpS: With ¥ = 0| + 0, = 0} +v,7), €
T,S &+ Vect{ii,} we get

(7l ®n)).0 =T, (23.15)
since (7, @ n)).0 = i, (n),.0) = voii, = ¥ un

23.4 * Notation x/ de Hodge
23.4.1 Definition

The Hodge operator could be defined on vectors: E.g. in Rﬁ”, it would be the operator x : R"~! — R"»
defined by, for all orthonormal direct basis (1, ..., ¥y),

—

*(’Ul, ...,’l_)'n,1) = Un

But it is defined on linear forms, in particular for Maxwell equations to exchange the roles of E and B.

So let QF be the set of k-alternate multilinear forms in R”, 1 < k < n—1. Since dimQ* =
dim Q"% = (}) there is an isomorphism between Q% and Q" 7. Let (E;) be the canonical basis in R”
and (-, -)g» be the associated canonical dot product.

Q- o
Definition 23.7 The Hodge operator * : { ’ ’ } is defined by, for all orthonormal direct
— %
basis (€1, ..., ),
(*6)(€l7~~~7€n7k) :Z(é’nfk;Jrl,..wé’n). (2316)

E.g., * : Q! — Q"1 is defined by, for all linear form ¢ by, for all orthonormal direct basis (€1, ..., €,),

(%0)(81, orry Bnr) = L(Er). (23.17)
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23.4.2 Example: Faraday electromagnetic field

Consider a particle with mass m, electrical charge e, velocity ¥, and momentum 7 = m%. Let E and
B be the ambient electric and magnetic fields. The energy £ = mc? + %va and the electromagnetic

force e(E + ¥ A B) satisfy

d& ~ dp o _
% _eBd and L =eE+7nB). (23.18)
dt dt
Choose a basis (€1, €, €3) € R3. With = Bé1 + Byé; + B.e3 and E=E,é + E,é, + E.és, write
B, E, 0 B, -B, 0 E., -E,
B=|By|and E=| E, |,and Rz = | —B, 0 B, and Rz = | —E. 0 B,
B, E, B, -B, 0 E, -E, 0
Thus: .
ﬁAézRg.ﬁ, and dit) = e(E+7TAB) zeE+eR§.ﬁ. (23.19)
(Rp is the antisymmetric endomorphism characterizing the magnetic field, and B is the associated
vector field, relative to the basis (€1, €3, €3), characterized by Rp.w = —B AW for all w.) Then consider
the position, velocity and momentum quadri-vectors
t 1 &
‘%, — x wriéten < z) ’ 1:), — Vg wrig;en (1) , 2_5»:: Pz Wrigcen ({) 7 (2320)
Yy T Uy v Py p
z Uz Y2

Then the Faraday tensor F' is defined by its matrix relative to the extended basis (é’o, é1, €, é’g) € R*
(with € = (1,0,0,0), &1 = (0,¢€1), ...)

0 E, E, BE. B
: E, 0 B, -B 0 [E]T
Fl=[F! = v Z vl = _, . 23.21

0
E. B, -B, 0
So (23.18) reads
— = e|[F].7. (23.22)

Then consider the Minkowski pseudo-metric given by n = Z?,j:O njet®el = —e@e’ +el @el +
2 ®e? + €3 ® e3, that is,

-1 0 0 O
0 1 00
0 0 0 1

and the associated Faraday tensor F” € Ay(R%)
0 —-E, —-E, -FE, B
F*=nF, [F]=[Fy)= gy _%Z o ‘BB;y - ( [%] ‘][%;T> . (23.24)
E. B, -B, 0
(Given by the contraction 21 =1 Fjet®el = (Zik:l nike' ® ek)(zk =1 Ffé, @ el).) That is,
F’ = —E,dt Ndx — E,dt Ndy — E.dt Adz + B, dz A dy + B, dz A dz + B, dy A dz. (23.25)
Thus the Hodge operator gives
(xF) (8o, €1) = F*(82,63), (xF)(, &) = —F’(é1,83),
the second equality because of the opposite orientation of (&y, €2, €1, €3) relative to (&, €1, €2, €3), and
(xF)(e1,82) = F* (€0, €3), (+F)(1,83) = —F(60,8), (+F)(éa,85) = F’(€p,é1).

Thus,
0 B, By B,

B, 0 -E. E, 0[BT
! = ~ . 23.26
e o = B (2220

-B, —-E, I, 0
The Hodge operator * has switched the roles of E and B (and the sign), cf. (23.24).

[+ F) =
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We will also need the action of the exterior differential: With (23.25) we get

0B 0B 0B
et F” = . . -
et ( or + oy + 0z

0B,  OE. OF

Ydx Ady A dz

+ ( 5 T 9y aZy)dt/\dy/\dz
+ (a;éy + 8;? — aa%)dmdmda:
+(aaBtZ 8{;% - aix)thdxAdy,
and
dexs(*F) = (%E; + aaEyy + aaEZZ)dx Ady A dz

n (aEx 0B, n 8By)
ot dy 0z
0E, 0B, 0B,

+(8t ~ 2 o Ydt A dz A dx

n (BEZ _ 0By n 0B,
ot or dy

With F* = =1 F and [F*] = [F"], since [n]~! = [n], we get :

dt Ndy N\ dz

)dt Adx A dy.

F' = —E, déy Adé) — E, déy A déy — E, déy Adés+ B, déy Adéy + By dés Adéy + By déy A dés.

And the divergence V - F* is (derivation line by line)
V.t = ZFij,jéi
ij
0E, OE, O0FE.
__(5':E + Oy + 62)
n (8EI N 0B, 0B,
ot dy 0z

0E, 0B, 0B, .

)+ ( ot Oz 0z

23.4.3 Maxwell equations

Maxwell equations:

divB =0, divE = 4mp,

oB _ . and OF _ -
= E= = _VAB=—4rJ.
o TV 0 5~ VA rJ

that is, -
dexs (¥F) =0, ie. V-F%=4nJ,

where J = (p,J) € RY. And

dext (+F) = dm(xJ),
where *.J € As (R*) is given by,

s = J0de Ady Adz — Jrdy Adz Adt+ J2dz A dt A da — J? di A da A dy

(23.27)

(23.28)

(23.29)

(23.30)

(23.31)

(23.32)

(23.33)

(23.34)

24 Second fundamental form: The curvature tensor k € T9(.5)

24.1 Curvature

24.1.1 Positive curvature of a curve in S C R"

Let ¢: s € [0,L] = p = c¢(s) € R™ be aregular curve in R™ parametrized with an intrinsic parameter s,
that is, such that ||¢’(s)|| = 1 for all s. With p = ¢(s), let ¥(p) = &’(s). The non negative curvature

of c at p=c(s) is
k(p) = [1€"(s)I| = [1d5(p)-T(p)l,
the last equation since ¥(c(s)) = ¢’(s).
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24.1.2 Algebraic curvature of a curve in S C R"

Let S be a regular hyper-surface in R™. If p € S, let 7i(p) be a (one of the two) normal unit vector
to S at p (it defines the orientation of \S).

Let ¢c: s € [0,L] — p =c(s) € S be a geodesic in S parametrized with an intrinsic parameter s,
that is, such that ||¢’(s)|| = 1 for all s, and let ¥(p) = &’(s) = ¥, at p = ¢(s). Since (¢'(s),¢’(s))rn =1
we have di(p).7(p) L T,S, cf. (20.1)), thus

Ik, €R, dU(p).0(p) = —kp7i(p), and &k, = —(dv(p).0(p), A(p))r~. (24.2)

Definition 24.1 The real x, is the algebraic curvature of the geodesic ¢ at p € Ime. (And |k,| =
[|¢”(s)|| is the non negative curvature along Imc at p = ¢(s), cf. (24.1).)

Definition 24.2 Considering all the geodesics in .S, we have thus defined &, on unit vector v, at p
by

() = (A 1)y "= k(o) ((0), T(0))- (24.3)
And thus we have defined « on vector fields ' € I'(S) by
K(T) = —(dv.7, 1), "2 (7, 7), (24.4)
and the curvature of S along ¥ is defined at p by x(0)(p) = k(p)(¥(p), ¥(p)) when ||¥]| = 1. So,
K(7) = k(¥,7) := —n’.(d0.7) (= —(d0.7,7),). (24.5)

Interpretation: We will see that k& = dn’, cf. 1} so, if n” varies slowly along ¢, then the
curvature is small (and the radius of curvature is large).

Corollary 24.3 The geodesic equation (20.2) then reads in R™ (with intrinsic coordinates), cf. (24.2),

.
di; = —k(%,7)

which means (di(p).7(p) =) 222 (s) = k(p)(3(p), 5(p))7i(p) when p = c(s).

Proof. In R", with p = &(s) we have 2Z(p) := d(zzg)( ) = di(p).7(p), and (24.4) gives (24.6). o

24.1.3 Curvature tensor k(-,-) for S C R"

, (24.6)

St

Definition 24.4 The curvature tensor k € T9(S) is defined (in S) by, for all ¥, @ € T'(S):
k(T,8) = —n’ (dw.7) (= —(7, di.0),). (24.7)

That is, —k (W, ¥)(p) gives the normal component of dw(p).7(p) at S at p. (And k(7, ¥) defined in (24.4)
is a particular case).

Proposition 24.5 k is a symmetric tensor: For all v,w € T'(5),

k(0,@) = k(@,7), ie. n’.(db.7)=n".(dv.D). (24.8)
Proof. [¥,w] = dw.v — di.w € T(S), cf. (10.6), thus n".[#, @] = 0 = n’.(dw.7) — n.(dv.15) s

24.2 k=dn’ € TY(S)

Proposition 24.6
k=dn’, ie k(¥,%)=dn’(7,4), V0,47 € T(S). (24.9)

and k is a (g) tensor in S (measures the variations of n® on S). In particular, dn’ is symmetric.
Proof. For all i € T'(S), n°. = 0, thus d(n’.4) = 0, thus, for all ¥ € T'(S),
(dn.B)a8 + n° (dib.F) = 0 = (dn”. 7). — k(¥, D),

thus k(7, @) = (dn’.¥).. And (24.8) gives (dn )b = (dn’.a0).7, thus (dn’.7).0 =""1"" dn’ (F,0)
with dn’ symmetric, thus (24.9). Hence k = dn’ is F(S)-multilinear: it is a tensor. a
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1 agij
2 0x”

Let ® be a coordinate system in S, (€;);=1,... n—1 the coordinate basis, and

24.3 Components k;; =

k= kije®e. (24.10)
ij=1
So k;j = k(e;, €;) and [k]|¢ = [ki;] the (n—1) x (n—1) matrix of k relative to (€;).
Consider 7i(p) =""1"*" &, (p) and (€;(p))i=1...n- The Euclidean metric reads

9= g @, g;(p) = @®).EWM), VpES. (24.11)

ij=1
(In particular g;, = 0 = gy, for all i = 1,...,n—1. And the Christoffel symbols are given by dé;.¢; =
22:1 'Ylkj €.

Corollary 24.7 Foralli,5 =1,...,n—1,

1 8gij

kij = —’}/lnj, and kij = 5 aq"

(=5, (24.12)

i
so, the curvature tensor is given thanks to the Fuclidean metric.

Proof. gives dn? (&), &) = —n".(de..)) = —7;. And (17.15) gives v7, = 17, gm0 (0% 4 Qo
995k Wn Agnr _ 995k 995k ' u

aq[)f%( + e — aqn):é(ow— &) thus (2 o

24.4 Example: Sphere

T = 1 cosf cosp
Example 24.8 Let S = S(0,R) in R3. GPS coordinates p = ®(r,0,90) = | y=rsinfcose
z=rsinp
cf. (327). Basis €(p) = £=(r,0,¢) at p = ¥(r,0,¢) in R®. Basis (fi(p), f2(p), f5(p)) =
(€2(p), €3(p), €1(p)) at p = ®(r,0, ). Thus

b

r2cos¢o 0 0
la(P)], 7= l9i3(P)] = 0 2 0 (24.13)
0 0 1
Choose i(p) = +1(p) = f3(p) at p € S, thus () = dr(p). Thus &y = $20 = 122 — _y for
j =1,2 and with the basis (f1(p), f2(p)) in T,,S:
_(Rcos?p 0\ .,
[k(p)] 7= < 0 R) = [dn’(p)] 7, (24.14)

ie., k(p) = Rcos? ¢ df(p) ® df(p) + R dp(p) @ dp(p) = dn’(p) (or see - )
E.g., the curvature of the sphere along a meridian (a geodes1c in S) is
o f _ . % &3 )= 1 _1
1211 1 fol] l1esll” [lesll R? R

k(

thus the radius of curvature is —R, and the center of the sphere is p — R.7i(p) = 0. E.g., the curvature
of the sphere along a parallel is

ﬁ ﬁ €2 € 1 1
k(—=—, —=—) =k(i= 7=7) = Reos® p ———— = —,
[[f1l] 1 f1]] €] [|ez]] R2cos2¢ R

which is the curvature of the sphere.

NB: This is not the curvature of a parallel: This is the curvature of the sphere at a point p which
belong to many curves, in particular belongs to a geodesic tangent to fl(p) = &(p) at p (the only
information used is the vector ﬁ(p) which is tangent to many curves at p).
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Reminder: At a point p of the parallele = the curve ¢(d) = ®(R,0,p0) we have ¢'(0) =

—sinf cos 6
Rcosp | cos® | and é”(0) = —Rcosp | sinf |. And the osculating plane is the “horizontal affine
0 0

plane” (p, Vect{c’(6),c"(0)}) (contains the parallel, not 7i(p) the normal vector to the sphere); And the
curvature of the parallel is ||¢”(s)|| where é&(s) is the parallel with an intrinsic parameter, that is é(s) =

— s O R — 1 s
T = Rcos Rcosa COS Qo / sin Frcos o . T Rcols 70 €95 Reosgo
_ : 5 . ~ — 3 ~ — _ : s
y=Rsin z2—cosgy |;50(s) = | cos g |,and &(s)=| y= ~ Treos o S0 Freesge |
z = Rsinpg 0 0
s — 1 : : u
and |[¢”(s)|| = 555 so the radius of curvature of the parallel is R cos ¢o. s

24.5 The associated curvature tensor K € T}(S)

Consider the curvature tensor k € T9(S), cf. (24.7). With a Euclidean dot product (-,-), and the
Riesz representation theorem, let K € T} (S) be defined by, for all % € T'S,

(K.#,1%), = k(7, ). (24.15)

that is,
9K =k ie K’: =k (24.16)

Indeed, with a basis (¢;), (24.15) gives [@w]T.[g].[K].[v] = [¢]7.[k].[@], and the symmetry of k, cf. (24.8),

gives (24.16). And [K] = [g]1.[K].
(Component expressions: if g = szzlgijei(@ej and K = szleJ’:é}®ej and k = szzlkijei(@ej

then (24.15) and the symmetry of k give (K.€},€;), = k(€;,€;), that is, >, Kf(é’g,é’i)g = k;;, that is,
>0 9ie K = kij since g is symmetric, thus (24.16).)

Corollary 24.9 k being symmetric, K is symmetric (relative to (-,-),), that is K] = K: For all 7,1,

(K.0,W)y = (U, KWy (= k(U,d) = k(d,0)). (24.17)
And K gives the variations of i in S
K = dn, (24.18)
i.e., for all v,w € T'(S),
(dit.T,18)y = k(0,@) (= (dit’.7).0). (24.19)

Proof. (24.17) is given by (24.8).

Then n’. W = (7, W), = g(7, W) gives

(dn’ %)% + n’ (dib.T) = (dg.0)(7, @) + g(dii.T,) + (7, dib.7).

And dg = 0 (Euclidean metric), and n’.(dw.7) = (7, di.0) 4, cf. (23.13)), give (24.19). So, with (24.9),

(K.0,W)gn = k(@) = (dn”.0).0 = (di.7,@),, (24.20)

i.e. (24.18) and (24.19).
- —Rcos?¢ 0
Example 24.10 Continuing example [24.8 [k(p)]f = 0 “r) cf. (24.14)), [g(p)]lf =
R? cos? 0 _ Cis 0 i
955 (p)] = 7o ) thus g7t = (TR ) = (69 (), thus
0 R 2
£ 0 1

And the curvature of the sphere is % (the radius of curvature is R). un
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24.5.1 Principals, mean and Gaussian curvatures

Definition 24.11 Let p € S C R3. The eigenvalues x(p) and x2(p) of the endomorphism K (p) are
the principal curvatures at p € S, and their inverse n% and %2 are the principal radius of curvatures.

The trace (first invariant)
’IT(Kp) = K1+ K2 (24.22)

is the mean curvature. The determinant (second invariant)
det(K,) = ki1ko (24.23)
is the Gaussian curvature.

Remark 24.12 An alternative definition or the mean curvature is — |Tr(K)|, which for the sphere

gives & (expected), cf. (24.21)). 1
The non negative Gaussian curvature can be defined as (| det K|)»-7, which for the sphere gives
+ (expected), cf. (24.21). ua

Part VIII
Riemann curvature tensor

25 Geodesic deviation

Geodesics which are “somewhere parallel” do not remain “parallel” in a non-planar surface: E.g., two
nearby meridians are parallel on the equator, but meet at the poles, see figure 2T.1] This loss of the
parallelism gives a way to measure the curvature of a surface “from inside the surface” (Gauss).

25.1 Family of geodesics and separation vector

Let S be a surface in R”, and V be a usual Riemannian connection in R™ (the usual differential
operator V = d in R™). Let € > 0, a < b, and consider a regular geodesic family (c,)ye[—c,¢] in S,

[a,b] — S
s = p=cu(s),

u € [—¢e,e], cy: { } . 18 (s)]| = 1,Vs € [a, b)]. (25.1)

The velocity at p = ¢,(s) along ¢, is U,(p) = ¢,/(s), and ||U,(p)|| = 1. And

) [a,b] x [~e,¢] — S
o { (s,u) — p=c(s,u):=cy(s), (25.2)

is a 2-D parametrized (sub-)surface in S, supposed regular. E.g., the family of meridians give the
sphere. The velocity at p = ¢,(s) along ¢, is then

Bu(p) = /() = 9o(s,) - (and [ (p) = 1), (25.3)

Definition 25.1 The transverse displacement at s € [a, b] is the curve

| [a,0] =S
Cs : { u = cs(u) :=c(s,u) (= cul(s)). (25.4)

And the transverse velocity at p = ¢(s, u) is the velocity wWs(p) along c,:

We(p) = cs' (u) = %(S,u) (25.5)

And the transverse velocity at p is also called the separation vector at p.
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Thus, the surface ¢ being supposed regular, at p = ¢(s, u),

- Jdc

fi(p) = Tu(p) = 5-(s,u) and fo(p) = Ta(p) = 5 -(5,u) (25.6)

are the basis tangent vectors to the 2-D surface c at p.

Example 25.2 R?, polar curves ¢(r) = Ocy(r) = <TCOSG) (straight lines); Here & '(r) = <COSH>

rsin @ sin 6
is unitary, so r is an intrinsic curvilinear coordinate. So Up(p) = &'(r) = €1(p), and W, (p)
(_rrcf)lsn:> = é5(p) (the geodesics separate at 90°: €1(p) L €2(p)). ua

Example 25.3 Family of meridians on the 2-D sphere in R3: Intrinsic parametrization p = &(s)
cos 6 cos( )
c(s,0) = R | sinfcos(%) | (indeed, ||cp'(s)|| = 1 for all s), with s €] = RT, RT[. So Up(p) = Cp'(s) =

sin(4)
—cosfsin( %) B
—sinfsin(£) | = 22 (unit velocity along the meridian). In particular for s = 0 (on the equator),
R R g
cos( %)
0 . —sind
(p) =&’ (0) = | 0 | for all . And W,(p) = %(s, ) = Rcos(%) | cos@® | = éx(p) (the geodesics
1 0
separate at 90°). s

25.2 Separation velocity
Let 7, (p) ="2m€d §(p) and @, (p) ="21¢d i(p).

Definition 25.4 The separation velocity at p = ¢(s, ) in S is the vector

— dc ZC
Projg, s (di(p) (1) = Veis(p) = 2 (5) (= Projy, s( 2% (s,u)) = Projr, (1 i-(s,u))). ~(25.7)

(Measures the variations in S of & along a geodesic ¢, : s = ¢,(s).)

¢ being regular, we also have

o2 o2
j.v= 4 = & = dv.0. 25.
d.v D (s,u) B (s,u) = dv.w (25.8)

(Also obtained with (25.6): basis of a coordinate system.)

Example 25.5 Continuing example [25.2} des.€1(p) = (Vzw)(p) = ] (s,0) = <—sm0> = %, and

or cos 6
the separation velocity is orthogonal to the radial geodesic cy. wn
B 502 —sinf
Example 25.6 Continuing example [25.3 dé'g(p).e?—}(%m = 2(s,0) = —sin(g)| cosf =
0
— & tan & (p) = (V@)(p), which varies along the meridian 6 (and vanishes at the equator). ua

Exercise 25.7 Consider a family (€, )ye[—c ] Of parallel straight lines (intrinsic coordinate) in a plane
surface. Prove

D
g(pf) =0 (25.9)
i.e., the separation velocity vanishes (parallel straight lines remain parallel).
Answer. Let 7 = &,(s) = 25(u, s) the (unitary) common tangent vector to all curves, so, for all s € [a, b],
(Cu(s) =) c&(u,s) = sZo + c(u,0). (25.10)
oz oz 52 = _ 95 D& a9 2 .
Thus £ (u,s) = 52(u,0), and -2 (u,s) = 0 = 2= (u, s), thus Z=(ps) = 2=(0,5) = 0. s
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25.3 Separation acceleration (relative-acceleration)

Definition 25.8 The separation acceleration field along the fiducial geodesic ¢g : s — co(s) is, at
p= 8(03 5):

V#(Vaw)(p) = %(p) = called the relative-acceleration (25.11)
thus = Proj,, ¢ 8ijTpSé§%(s’u))( ,u)
Example 25.9 Continuing example VsVsw(p) = 0 (a vector space is flat). ua
- —sind
Example 25.10 Continuing example [25.68 (V;Vzw)(p) = a;sg?g (s,0) = —%cos(5) | cosb |,
which varies along the meridian 6 (and its norm is % at the equator where the meridians areoparal—
lel). o

26 Riemann curvature tensor

26.1 Lie bracket [V V] on I'(S)

Let S be a manifold, let V be connection, cf. definition 11.1 and let V be the differential operator on
scalar functions f € F(9), that is, Vyf = df.v' = L(f), cf. li

Definition 26.1 Let V be a connection in S. The Lie bracket [Vz, Vz] : T'(S) — I'(S) is defined by
Vi, V] (@) :== Vg(Vat) — Vi(Vaid)
= (V50 Vg — Vi o Va)(id) "= VsV — Vg Vy) (@),
V:T(S)xT(S) = TI(9S)
(7,%) — V(7,%) = Vs [’

cf. (11.1), which are torsion-free (like Riemannian connections), i.e. connections V related to

{ V:T(S) x F(S) — F(S) } I '
- , cf. (5.5), through the relation
(W, f) = Va(f) =df.v

Vgl — Vgl = VgoVg — VgoVy (= [7,4]), (26.2)

(26.1)

In the following will only consider connections {

cf. (11.11) (the vector field @ = V@ is identified with the derivation operator Vz on F(S), cf. (4.7)).
That is, we will only consider connections V such that, for all f € F(S),

(Vawd — Vg0)(f) = d(df @).¥) — d(df.¥).0) (26.3)
(Expression in a holonomic basis: The Christoffel symbols disappear in [¥, @], cf. (11.20).)

Example 26.2 And in S, with the Riemannian connection Vi = Projpg(dw.v), we get, for all
i, v, € T'(S),

[Vz, Vigl(@) = Vi(Vg) — Vg(Vii)

26.4
= Projpg (d(ProjTS(da.w).a) - d(ProjTS(dﬁ.ﬁ).w). (26.4)
(So the derivations of the projection Projpg(dié.w) and Projrg(di.v) are considered before being
differentiated.) E.g., on the 2-D sphere in R3, with @ = = €3 and ¥ = &, and with dé3(p).€5(p) =

—

—r&1(p) and déy(p).€3(p) = — tan @ & (p), cf. (3.34)-(3.35), we get Ve, é3 = Projpg(dés.e3) = 0, and
Vz,85 = Projpg(dés.éa) = —tanpeéy = Vg, s, thus, Vg, (Ve €3) = Vg, (0) = 0, and Vg, (Ve,é3) =

Projpg(d(—tan pés).e5) = —ProjTS(a(t%;ﬂ@)) = —Projrg((1 + tan? )&y — tan ¢ &) = —¢&,. Hence,

[Va,, Va,](€3) = €. (26.5)
NB: [Vg,,Va] : T'(S) — T'(S) is obviously different from [, €3] : F(S) — F(S). And moreover we
have [€3, €3] = 0, cf. (5.12]). ua
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Proposition 26.3 The Lie bracket operator B : (v,w) € TI'(S)? — B(#,W) = [V Vg €
F(I'(S);T(S)) is R-bilinear and antisymmetric. But is not F(S)-bilinear (not tensorial because of
a df term): For all f € F(S) and all @, v,w € T(5),

[Via, Val(d) = [ Ve, V(i) — (df @) Vi, (26.6)
and,
(Va, Val(fa) = [V, V] (@) + ([0, @](f))d. (26.7)
Proof. For all ,Z € I(S), B(0,w) (&) = —B(w, ¥)(&) (trivial). For all @, 7, &, Z € T'(S)
B(0+ Z,%) (@) = Varz(Vai) — Vg(Varzd), cf. (26.9),
= V5(Vgtd) + Vz(Vgi) — Vg(Vai + Vi),
= Vg Vmﬁ) + Vg(vujﬁ) — Vm(Vga’) — V@'(V;’J),
B i) + B(

For all f € F(S), i, #,w € T(S):

B(f7,@)(@) = V;5(Vaid) — Vis(Vysi0), cf. @61),
= fVy(Vai) = Va(fVga), cf. ([11.2), (26.8)
= [V(Vat) — (df-.0)Vyti — fV5(Vii), -
= [B(0, w)(t) — (df.¥) Vi

Thus B is R-bilinear (take f = constant), but not F(S5)-bilinear since (df.7) # 0 in general.
And for all f € F(S), @,7,w € T'(S):

df D)V g + fV3(Vgid) (26.9)
— (d(df V). W)U — (df D)V g — (df W)Vzu — fV5(Vad)

Example 26.4 Usual Riemannian connection V on a surface S in R™, that is, Vzu = Proj¢(dd.w):
We get

Ve, V(i) = Vi(Vat) — Va(Vit)

. o (26.10)
= Projrg (d(PI"OJTS(du w)). ) Projpg (d(PI"OJTS(du.U)).w).
To compare with
V5wt = Projpg(di.[v,w]]) = Projpg(di.(dw.v)) — Projpg(di.(dv.a)). (26.11)
Proposition 26.5
[Vz, V(@) # V[gﬂr,]ﬁ in general. (26.12)

In particular for the usual Riemann connection in S a 2-D surface in R3, if (€;) is a coordinate basis,
then [€;,€;] =0 but
V&, Ve #0  in general. (26.13)

Proof. On the 2-D sphere in R3, and &,¢é3 the coordinate basis, (26.5) gives [Va,, Vz,](€3) = éo,
whereas [€3, €3] = 0 (basis of a coordinate system) and then Vg, e3]( 3) =0. s
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26.2 Gravitation forces (tidal forces)

Proposition 26.6 If V is a torsion-free connection, then the separation vector w, cf. (25.5)), satisfies

D% . S - —
(W :) VeVgw = - [V@, Vﬁ}’U (: —V gVt — V,;va). (26.14)
relative-acceleration gravitation force
(The “separation acceleration” = “relative-acceleration”™ gives a measure of gravity.)

Proof. Vil = Vil = 5 = 75, of. (25.5), thus Vi(Va) = Vi(Vg0).
And s — ¢,(s) being a geodesic, V0 = 0. Thus V3(V0) = 0.
Thus
ViVaw + [V,y, Vﬁ}ﬁ = Vg(Vuﬁ) + V,;,(Vgﬁ) — Vﬁ(v,yﬁ) =0.

—

Remark 26.7 The Riemann curvature tensor is defined by R(d, b, ¢) := [V, VE]E'—V[E 515’ see ([26.19)).
In particular, here [@, 9] = 0, cf. (25.6), and R(wW, ¥, V) = [Vg, V5]U describe the gravitation field. =u

26.3 Riemann curvature on I'(5)

—

If ¥, € I'(S) then the Riemann curvature operation p(¥, ) relative to ¥ and « is the map

. I'(S) —T(S)
p(U, ) : ~ L . . (26.15)
u — p(v,w)(u) = [Vm Vw](u) - v[f}‘ ] Us
that is,
p(U, W) (1) = V§(Vgil) — Vig(Vatd) — Vig g
written (2616)
= ViVt — VgV — Vg g U.
The Riemann curvature operator is the map
I'S) xIr(s) — FI(S); (s
) () x q(q) E (q) (5)) (26.17)
(U,W) — p(U,w)
The Riemann curvature is the map
r'(9))? —1(S
R: (q(q))q 7 (q)q# I . (26.18)
(U, 0,%) — R(u, 0, @) := p(v, W)(d) (= (VsVa—VgVa— Vigg)(d))

(NB: (26.18) is the definition found in Misner—Thorne-Wheeler [15] (to get “usual” symmetries).) It is
also the name of the associated tensor R € T4 (S) defined by

- {91(5)(>< T(9)? =R

Ll oL oL L . . (26.19)
U, U, W) — R, @, v, W) := . R(d, V,W) (= a.[Vy, Vg](U) — a. Vg g ().

Proposition 26.8 R defined in (26.19) is a (%) tensor: R € T1(S). And R defined in (26.18) is also
o)

said to be a tensor, as well as p defined in ( . And p is antisymmetric, that is, for all v,w € T'(S),

p(0, W) = —p(w, D), (26.20)

that is, for all 4,7, € T'(S

~—

R(u,v,w) = —R(t,w,v) (antisymmetry for the last to slots), (26.21)

R(e, i, V,W) = —R(a, 4, W, V) (antisymmetry for the last two slots). (26.22)
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Proof. We have to prove that R is F(S)-multilinear , that is, R(...,z1 + 22,...) = R(..., 21,...) +
R(...;z2,...) and R(..., f,...) = fR(...,z,...) for all f € F(S) and z, 21,29 in Q(S) or T'(S) where
appropriate.

0- Ry 21 + 22,...) = R(eory 21, ...) + R, 22, ...) is trivial, for all 21, 2o in Q(S) or T'(S) where
appropriate. Then for f € f(S)

1- ’R(fmu,u,w) fR(a, @, v, %) is trivial (= f a.R(@, T, W)).

2- Then gives [fU,w] = f([7,w] — (
ol BT )i - (df.45)V i — (7,15
Then R(d, fv,w) = f R(4, ¥, ).

3- Then p being antisymmetric, p(¥, f&)(d@) = —p(fw, ¥)(@) = —f p(W, ¥) (@) = fp(¥,W)(&). Then
R(@, v, fw) = f R(, U, W).

4- And, (26.7) and (11.3) give p(¥, @ :

JVe, Val(@) — (5, GT — V(@ = f[Ve,Val(@) — [Via(@ = fp(@T)@. Then
R(fﬁ, 77, ’LU) fR(’J 17 ’LB) mn

26.4 Expression in a coordinate system

With the coordinate basis (€;), let R;M be the components of the tensor R € Tj:
m
Z R;kfé;; ®€‘7 ®€k ®€£7 le R;'kf = R(ez,€j7€k,€e>. (2623)
0,9,k €=1
Thus R, = ¢'.R(€}, €k, €) = e".p(€k, €).€; and

R(€;, €, €r) = ZR]MeZ, and  p(€x, €r) Z Rjkeez ® el (26.24)
=1 1,j=1

In particular, (26.22) gives R(e', €, €k, €) = —R(€’, €;, €, €)), that is
R;-M = —R;-Zk (last two indices antisymmetry). (26.25)

Proposition 26.9 With the Chistoffel symbols 'y;»k = ei.ngé’k, we get

- (9’)/5 v i \=
V& Ve, €5 = Z(ij + Z’VZj’qu)ei' (26.26)
Then,
; afyi[ 6’y e
ke — J j Z’Yk;ﬁ]e Z’YZV,YJIC (2627)

- P o -
Proof. V€5 =3, 7;,€i gives

i P o\ i o 874 g
V&, (Vg €)) = Z(d’%jﬁk)ei"‘Z’Y@jveﬁcei = dq k] "‘Z’Yz;’)’meu
i i
Thus V¢, V¢, €5 — Ve, Ve, €5 and [€), €] = 0 and v, = 7% give (26.27). o
Remark 26.10 R(¢;,8,&) = > i~ R%;,€ is also written R(3%, 3%, 5%7) = Y1t Rl g o

26.5 Flat space: R=0
Corollary 26.11 Let V be a usual Riemannian metric. If S is a flat surface in R™, then R = 0.

Proof. Choose a Cartesian basis: Thus ’y;k =0, and ([26.27)) gives the result. un

Definition 26.12 A flat manifold is a manifold such that R = 0.
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26.6 Bianchi identities

Proposition 26.13 For all 4,7, w € T'(S):
First Bianchi identity (cyclic permutation):

- = - S o - o o . wrltten
R(@,v,w) + R(wW, 4, v) + R(U,w,d) =0, ie. R]M + RMJ + R[Jk =0 []M]. (26.28)
Second Bianchi identity: If V is torsion free then, for all Z € T'(S),
(V=p)(5,0) + (Vasp) (2. 7) + (Vip) (i, ) = 0, (26.20)
that is, (Vzp) (¥, @).q@ + (Vap)(Z,0).0 + (Vgp) (@, 2).4 = 0. And
i wrltten
Rl + R + Rl =0 R (26.30)
Proof. The Jacobi identity (10.10) reads Vi([w, i]) — Viz g1 + Vg ([@, 0]) = Vig,qt + Va (v, 7]) —
Vig,ow = O Thus, with (26.18) we have R(u, ¥, W) + R(U, W, @) + R(W, @, V)

=ViVgt — VgVl — V[{;@‘ U+ VgVat — VngT— V[u-; i

= V{;(Vu-;ﬁ — V*w) + VU-;(V,;’U— V{;ﬁ) + Vi (V{;’LE - Vﬂ;ﬁ) — V[{; — V[uj ﬁ] V[u 7| W w

= Vi([w, d]) + Vg ([d, v]) + Va([0,7]) = Vig.a¥ — Vig.aq?¥ — Via, 0 (Jacobi identity), i.e. (26.2
Then (See https://math. stackexchan e.com/ ques tlons/ 1494262/ direct-proof-of- the—

second-bianchi-identity) Vz(p(0,w).q@) = (Vzp)(0,).q + p(VzU,W).4 + p(U, VzW).4 + p(¥, ).V 4,

ie.,

(Vzp) (0, )5 = Vz(p(V, w).@) — p(VzV,%).0 — p(¥, V)0 — p(V, ).
= Vz(p(¥,d).70) + p(V 0, 0).4 — p(V 0, F).q — p(, D).

p being antisymmetric. And for the first term in (26.31]),
o p(U,W).U = VsVgi — VgVl — Vg gt gives

\Y
26.31
o (26.3)

Vg(p(ﬁ, lf))ﬁ) =VzViVgid — VzVgVai — V;V[gﬂg]ﬁ,

with VgV[g’u-;]’lI — V[{;@]V;ﬁ — V[g’[g’m] U= p(Z, [’17, ’lﬁ]).ﬁ, SO

Vz(p(¥,0).1) = VzViVagil — VzVgVail — Viga Vil — Viz et — p(Z, [0, @]).4d.
Thus (circular permutation),

Vz (p(0,4).7) + Vi (p(2,7).7) +
= V:ViVgu — VzViVau+ VgVeVatd — VgVVzti + VeV Vel — ViV
U= Vigz Vet = Vizwa) U — Va0 — Vw,[w,snﬁ

=
L
i

— p(Z, [U,w]).d — p(, [Z,v]).4 — ( [w Z])

—

Hence ((26.29) (sum of the two above equations with p antisymmetric). And (26.27) gives (26.30)). o=
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26.6.1 Example with the sphere

2-D in R3, usual Riemannian connection, and (€, €3) renamed (€1,é>). So, with (3.33)-(3.34)-(3.35)

(and Projrg), Ve, €1 = cossin gy, Vg € = —tanpe) = Vg, €1, Vg, = 0. Thus:
V&, (Ve €1) = Ve, (cos sin péy) = cos psin oV & = —sin? e,
Vgl(Vé' €2) = Ve (Ve €1) = —Ve (tanpér) = —tan pVeg, (€1) = — sin? pés,
v€1 (v52€2) = v51 (0) =Y .
V&, (Ve €1) = Ve, (cos gsin péy) = (—sin? ¢ 4 cos? )& + 0,
Ve, (Ve é2) = Vg, (Vg,€1) = —Veg, (tanper) = —(1 + tan? ¢)é; + tan? pé) = —é,
Ve, (Ve,&) = 0.

H
=
jo
wm
D N
—~
(9]
ok
At
(ISR
1

= p(€,€>) = 0, and with [}, €;] = 0 for all 7, j (basis of a coordinate system) we get

2 (Va,€1) — Vg, (Ve @) = — cos® péy = Riyyés (26.32)

(The Riemann tensor does not vanish: The sphere is not flat!).

26.7 Remarkable Theorem of Gauss (theorema egregium)

With a Riemannian metric and the associated connection, cf. Lévi-Civita theorem [22.23

Theorem 26.14 (theorema egregium) The Riemann tensor only depends on the metric in the
manifold (does not depend on the metric in a supposed affine space containing the manifold).

Proof. (17.14) tells that the 'y;k are function of the metric, thus, so are the Réké, cf. (26.27). un

26.8 Metric and R’ associated tensor
With a Riemannian metric (-, -), and the associated connection V, cf. Lévi-Civita theorem [22.23

26.8.1 Associated covariant Riemann tensor

Definition 26.15 R € T3 (S) being the Riemann tensor in S, the associated covariant Riemann
tensor R? € TY(S) is defined by

R(d,

B

7,%) = (@, R(@,7,%)), (= (@ p(7,@).Q),)- (26.33)

In other words, if > € Q!(S) (differential form) and if @ € T'(S) (vector field) is the (-,-),-Riesz
representation of «, that is,

-,

a’.b = (@,b),, (26.34)
for all b € I'(S), then
R(@, @, 7,0) := R(d’,@,7,%) (=ad .R(@,7,7)), (26.35)

Quantification: With a basis (€;) of a coordinate system, let R;jie = Rb(é’i,@,é'k7é’g) be the
components of R:
= Z Rijkeei Qe ®e* e (26.36)
ijke

Then, with R(€}, €k, ) =, R§-k£a and g =), 59ape® @ el we get

Rije = ng O (= 9(&, R(E, &, 1), (26.37)

since Rijue = R (€, €}, €, €) = g(€, R(€}, €, €)) = 9(&, Y0 R%fa) = Yoo RSpiGia-
Thus, (26.27)) gives

Rijre = Zgia( 8qj’f _ 8;‘ + Z Vi Vie — Z YeuVik)- (26.38)
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26.8.2 Anti-symmetries of R’
(26.21) gives a”.R(#, ¥, %) = —a’.R(i, W, ¥), thus R°(@, i, ¥, W) = —R’(@, @, W, ¥), and

Rijke = —Rijer.  (antisymmetry of the last 2 indices). (26.39)
Proposition 26.16 o’.(p(7,w).@) = —u’.(p(¥,0).d), i.e. (@,p(v,0).i0), = —(i, p(¥,0).d),, that is
R(ab,ﬁ, v, W) = —R(ub,d, U,w), and Rjjpe = —Rjike (antisymmetry of the first 2 indices).
(26.40)

Proof. At a point p € S, choose a orthonormal coordinate system ®, that is, such that the &;(p) =
3;}2 () satisty g(p)(€i(p), €j(p)) = d; (the coordinate lines are orthonormal geodesics at p). Then, at p,
the Christoffel symbols vanish (not their derivatives), and ((26.38) gives

3’7 1 V5,
zgké Zgia ] qjﬁ )

And 1) that is 7§, = § Y59 (89‘” + %gfjk - é)g““) give, at p,

o = Ok I ap, P OPgse g
dek-e_ jk _ Z B( B3 B j )

£ ot 2 5 g 0q%dqt " 9qiogt  9qPaq’

since dg*?.¢; = 0 (thanks to Vg = 0 at p). Thus

0qt0qk  0qidgk  0qPOgk  OqgkOqt  Oqidgt  OqPOqt

NG Gk 12 aB( 9°gs; %950 Pgje gsi  Pgsr | Pgjn )
Oqk Oq* 2 5 ’

2 2
And % = ;}fg{;g (Schwarz equality) and at p, g;; = 0;; (orthonormal system), thus thus

_ Pgiu  Pgie  Pgi n gk
0¢i0qk  Oqidgk  Oqidqt  Oqidqt’

Thus, at p, Rijre = —Rjike, thus R"(@, i, v, W) = —R (i, d@, W, ¥) for all @, 1, v, 0. un

26.9 Example in R3

Let S be a 2-D surface in R3. Then [R;jkeli j k=12 is a set of 2¢ = 16 scalars. The k, ¢ antisymmetry
and the ¢, j antisymmetry gives 2 x 2 = 4 independent scalars.

Proposition 26.17 Let K be the mean curvature, cf. (24.22). Then, for all i,j,k, ¢ = 1,2,
Rijre = K(gingje — GieGjk)- (26.41)

26.10 Ricci tensor and scalar curvature

Let (€;) be a coordinate basis.

Definition 26.18 Ricci tensor (Ric)” € T9(S) is obtained by contracting the first and third index

of R,
(Ric)’ = i (Rw) e/ @ e’ where (Ric)’ )0 = Z W“itcn Rj,. (26.42)
jib=1
And the associated tensor (Ric) € T} (S) is defined by
((Ric)d@, @), = (Ric)’(@,1). (26.43)
Thus m
(Ric) = Z (Ric))é; @ ¢* where (Ric)) = ZgﬂaRM (26.44)
jil=

Definition 26.19 The scalar Riemannian curvature is R = Tr(Ric) = Y ;- (Ric)!.

Thus,
R=Y (Ric)l =Y ¢"Raj=> ¢“Rly; (26.45)
j ja

ijo
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