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In classical mechanics, there are two objectivities: 1- The covariant objectivity concerns the universal
laws of physics required to be observer independent (true in any reference frame); This is a main topic in
this manuscript. 2- The isometric objectivity concerns the constitutive laws of materials once expressed
in a reference frame.

Covariant objectivity in continuum mechanics follows Maxwell’s requirements, cf. [15] page 1: “2. (...)
The formula at which we arrive must be such that a person of any nation, by substituting for the different
symbols the numerical value of the quantities as measured by his own national units, would arrive at
a true result. (...) 10. (...) The introduction of coordinate axes into geometry by Des Cartes was one
of the greatest steps in mathematical progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point is made to depend on the length of three lines
which are always drawn in determinate directions (...) But for many purposes in physical reasoning, as
distinguished from calculation, it is desirable to avoid explicitly introducing the Cartesian coordinates,
and to fix the mind at once on a point of space instead of its three coordinates, and on the magnitude
and direction of a force instead of its three components. This mode of contemplating geometrical and
physical quantities is more primitive and more natural than the other,...”

And see the (short) historical note given in the introduction of Abraham and Marsden book “Foun-
dations of Mechanics” [1], about qualitative versus quantitative theory: “Mechanics begins with a long
tradition of qualitative investigation culminating with KEPLER and GALILEO. Following this is the period
of quantitative theory (1687-1889) characterized by concomitant developments in mechanics, mathemat-
ics, and the philosophy of science that are epitomized by the works of NEWTON, EULER, LAGRANGE,
LAPLACE, HAMILTON, and JACOBI. (...) For celestial mechanics (...) resolution we owe to the genius of
POINCARE, who resurrected the qualitative point of view (...) One advantage (...) is that by suppressing
unnecessary coordinates the full generality of the theory becomes evident.”

After having defined motions, Eulerian and Lagrangian variables and functions, we give the definition
of the deformation gradient as a function. We then obtain a simple understanding of the Lie derivatives
of vector fields which meet the needs of engineers. Then we get the velocity addition formula and verify
that the Lie derivatives are (covariant) objective. Note that Cauchy would certainly have used the Lie
derivatives if they had existed during his lifetime: To get a stress, Cauchy had to compare two vectors,
whereas one vector is enough when using the derivatives of Lie.

We systematically start with qualitive definitions (observer independent), before quantifying with
bases and/or Euclidean dot products (observer dependent). A fairly long appendix tries to give in one
manuscript the definitions, properties and interpretations, usually scattered across several books (and
not always that easy to find).
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A quantity f being given then: g defined by « g equals f » is noted g := f.

Part I
Motions, Eulerian and Lagrangian
descriptions, flows

1 Motions

The framework is classical mechanics, time being decoupled from space. R? is the classical geometric
affine space (the space we live in), and (]1@3,4—, ) ={pg : p,q € R?} =noted /3 g the associated vector
space of bipoint vectors equipped with its usual rules. We also consider R and R? as subspaces of R3, i.e.
we consider R™ and I@", n=1,2,3.

1.1 Referential

Origin: An observer chOOS(ian origin_ O € R"; Thus a point p € R" can be located by the observer
thanks to the bipoint vector Op = ¥ € R” Hence p= O+ 7, and ¥ = Op —noted ,, (.
Another observer ch(£>ses an origin O e R™; Thus the point p can a_~>1so be located by this observer

with the bipoint vector (5p =7 R"; Sop=0+7= 9] +%, and 7 = 00 + 7.

Cartesian coordinate system: A Cartesian coordinate system in the affine space R” is a set Roary =
(O, (€i)i=1,...n), where O is an origin and (€;) := (€;)i=1,...n is a basis in R™ chosen by the observer.
Thus the location of a point p € R™ can quantified by the observer 3% € R” s.t.

1

p=0+7 with #=)Y 2, ie [Ople=Te=|: |, (1.1)

=1 T

s A . . .. A . . N
[#]je = [Op]e being the column matrix containing the components x; € R of Op = Z in the basis (€;).
Another observer with his origin O, and his Cartesian basis (l_)'l)lzln make the Cartesian coordinate
system Rcart,b = (Op, (b:)i=1,...n), and gets for the same position p in R,

n . Y1
- . - ~ 7 . AT .
p=0y+§ with §=) 7b;, ie Owlg=Wr=1 : |- (1.2)

=1 Yn
[gﬂlb [Obp]‘b being the column matrix containing the components y; € R of (’)bp = § in the basis (b;).

And (’)bp O 4] + Op, ie. y= OO + &, gives the relation between & and ¥ (drawing).

Chronology: A chronology (or temporal coordinate system) is a set Reime = (to, (At)) chosen by an
observer, where ¢y € R is the time origin, and (At) is the time unit (a basis in R).

Referentiel: A referential R is the set
R = (Riime, Rcart) = (to, (At), O, (€:)i=1,...n) = (“chronologie”“Cartesian coordinate system”), (1.3)

made of a chronology and a Cartesian coordinate system, chosen by an observer.

In the following, to simplify the writings, the same implicit chronology is used by all observers, and
a referential R = (Riime, Roart) Will simply be noted as the reference frame R = (O, (€;)) (so := Reoart)-

12



13 1.2. Finstein’s convention (duality notation)

1.2 Einstein’s convention (duality notation)

Starting point: The classical notation x; for the components of a vector Z relative to a basis, cf. (1.1).

Then the duality notion is introduced: z; ="°%4 g7 (enables to see the difference between a vector and a
function when using components). So
n n Z1 xl
- . i > - las. . dual .
Z= inei = z'eé; , and [z]‘gcgs : =2 I (1.4)
i=1 i=1 T "
—— —— n
classic not.  duality not.

The duality notation is part of the Einstein’s convention; Moreover Einstein’s convention uses the notation
Sorate; =noted gig e, the sum sign SO | can be omitted when an index (i here) is used twice, once
up and once down, details at § However this omission of the sum sign Y will not be made in this
manuscript (to avoid ambiguities): The TEX-IVTEX program makes it easy to print Y ..

Example 1.1 The height of a child is represented on a wall by a vertical bipoint vector Z starting from
the ground up to a pencil line. Question: What is the size of the child ?

Answer: It depends... on the observer (quantitative value = subjective result). E.g., an English
observer chooses a vertical basis vector @; which length is one English foot (ft). So he writes ¥ = x1d;,
and for him the size of the child (size of Z) is x; in foot. E.g. 1 = 4 means the child is 4 ft tall. A
French observer chooses a vertical basis vector b; which length is one metre (m). So he writes & = yll;l,
and for him the size of the child (size of %) is y' metre. E.g., if 1 = 4 then y; ~ 1.22, since 1 ft :=
0.3048 m: The child is both 4 and 1.22 tall... in foot or metre. This quantification is written & = 4 ft
= 1.22 m, where ft means d; and m means b, here. NB: The qualitative vector & is the same vector for
all observers, not the quantitative values 4 or 1.22 (depends on a choice of a unit of measurement).

With duality notation: # = z'@; = y'by, so if 2! = 4 then y! ~ 1.22. o

This manuscript insists on covariant objectivity; Thus an English engineer (and his foot) and a French
engineer (and his metre) will be able to work together ... and be able to avoid crashes like that of the Mars
Climate Orbiter probe, see remark And they will be able to use the results of Galileo, Descartes,
Newton, Euler... who used their own unit of length, and knew nothing about the metre defined in
1793 and adopted in 1799 in France (after 6 years of measurements), and considered by the scientific
community at the end of the ninetieth century... and couldn’t explicitly use the “Euclidean dot products”
either (which seems to have been defined mathematically by Grassmann around 1844).

1.3 Motion of an object

Let Obj be a “real object”, or “material object”, made of particles (e.g., the Moon: Exists independently
of an observer). Let t1,t2 € R, t1 < to.

Definition 1.2 The motion of Ob in R™ is the map
[thtz] X O@ — R"

3 (t, Ryy) — p = d(t, Ry)) . (1.5)
~—~— —_————
particle its position at ¢t in the Universe

And ¢ is the time variable, p is the space variable, and (¢,p) € R x R™ is the time-space variable. And
® is supposed to be C? in time.

With an origin O (observer dependent), the motion can be described with the bi-point vector

— ~
7= Od(t, Ry) = 0p "2 Z(t, Ry). (1.6)

But then, two observers with different origins O and O, have different description of the motion. There-
fore, in the following we won’t use ¢. Then (quantification) with a Cartesian basis (€;) to make a

referential R, we get (1.1)).

1.4 Virtual and real motion

Definition 1.3 A virtual (or possible) motion of Ol is a function ® “regular enough for the calculations
to be meaningful”. Among all the virtual motions, the observed motion is called the real motion.

13



14 1.5. Hypotheses (Newton and Einstein)

1.5 Hypotheses (Newton and Einstein)

Hypotheses of Newtonian mechanics (Galileo relativity) and general relativity (Einstein):
1- You can describe a phenomenon only at the actual time ¢ and from the location p you are at (you
have no gift of ubiquity in time or space);
2- You don’t know the future;
3- You can use your memory, so use some past time # and some past position py,;
4- You can use someone else memory (results of measurements) if you can communicate objectively.

1.6 Configurations
Obhj — R"

Fix t € [t1,12], and define d, -
By = p=®(Ryy) = (1, Royy)-

Definition 1.4 The “configuration at ¢’ of Olj is the range (or image) of E%, i.e. is the subset of R"”
(affine space) defined by

noted ¥ noted

Q= {peR": 3Ry € Ol s.t. p= &y(Ry)} "= @,(0b) "= Im (D). (1.7)

If ¢ is the actual time then Q; is the actual (or current or Eulerian) configuration.
If ¢y is a time in the past then {4, is the past (or initial or Lagrangian) configuration.

Hypothesis: At any time ¢, €; is supposed to be a “smooth domain” in R", and the map CT)t is assumed
to be one-to-one (= injective): Obj does not crash onto itself.

1.7 Definition of the Eulerian and Lagrangian variables
e If ¢ is the actual time, then p; = <T>t(PObj) € Q, is called the Eulerian variable relative to Ry, and ¢.

o If fy is a time in the past, then p, = By, (Ry;) € €, is called the Lagrangian variable relative to Ry
and ty. (A Lagrangian variable is a “past Eulerian variable”). (Two observers with two different origin of
time % and %’ get two different Lagrangian variable while they have the same Eulerian variable.)

1.8 Trajectories
Let ® be a motion of Oy, cf. 1} and Ry € Obj (a particle in Obj = e.g. the Moon).

Definition 1.5 The (parametric) trajectory of Ry, is the function

~ [tl,tg] — Rn,
q)%h] :

~ ~ 1.8
t = p(t) = ®p, (t) := O(t, Ry;) (position of Ry, at t in the Universe). (18

Its geometric trajectory is the range (image) of 6&7, ie.

geometric trajectory of Ry := {q € R" : 3t € [t1,t2] s.t. ¢ = 5)1?)@ )} = Im@g)@) = &)H)@([tl,tg}). (1.9)

1.9 Pointed vector, tangent space, fiber, vector field, bundle

(See e.g. Abraham-Marsden [I].) To deal with surfaces S in R3, e.g. with S = a sphere (and more
generally with manifolds in R™), a vector cannot simply be a “bi-point vector connecting two points of S”
(would get “through the surface”). A vector is defined to be tangent to S: Consider a “regular” curve
c:s €] —¢,e[— c(s) €S where S is a surface in an affine space, and the vector tangent to S at ¢(0) is
wW(c(0)) = limp_y0 M (it is defined with a parametrization of ¢ in a general manifold); Considering
all the possible curves, we get “all possible vectors on S”.

Notation:
T,S := {tangent vectors @, at S at p} = The tangent space at p € S. (1.10)

E.g., if S is a sphere in R? and p € S, then 7,5 is its usual tangent plane at p at S.
E.g., particular case: If S = is an open set in R”, then 7,5 = T,,Q2 = R" is independent of p.

14
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Definition 1.6
The fiber at p:= {p} xT,S ={ (p,w,) € {p} xT,S5}, (1.11)
~——

pointed vector

)

i.e., the fiber at p is the set of “pointed vectors at p’
the “base point” p and the vector @, defined at p.

, a pointed vector being the couple (p, w,) made of

Drawing: A vector in R can be drawn anywhere in R™; While a “pointed vectors at p” has to be
drawn at the point p in R”.
If the context is clear, a pointed vector is simply noted @(p) ="°%4 (p) (lighten the writing).

Particular case: If S = Q is an open set in R”, then the fiber at p is 7,2 = {p} x R™.

Definition 1.7

The tangent bundle T'S := U ({p} x T,,9), (1.12)
peS

that is, is the union of the fibers.
Definition 1.8 A vector field @ in S is a C* function (or at least C2 in the following)
~ [S =TS
@ - . (1.13)
p —@(p) = (p, w(p)).

If the context is clear, a vector field is simply noted w =noted ¢ (lighten the writing).

2 Eulerian description (spatial description at actual time t)

2.1 The set of configurations

Let ® be a motion of Obj, cf. 1} and Q; = &)t(Obj) C R™ be the configuration at ¢, cf. 1) The set
of configurations is the subset C C R x R™ (the “time-space”) defined by

C:

U ({t} x Q) (= set in which you find particles in “time-space”)
t€[ta,t2] (2.1)

{(t,p) € R x R™ : A(t, Ruy) € [t1,t2] x O, p = (¢, Boy)},

Question: Why don’t we simply use (¢, 4,1 € instead of C= Usety ) ({E} X 24)7

Answer: C gives the film of the life of Obj = the succession of the photos €, taken at each ¢; And Q,
is obtained from C thanks to the pause feature at t. Whereas Ute[tht?] Q; C R™ is the superposition of
all the photos on the image UtE[tl,tg] Q... and we don’t distinguish the past from the present.

2.2 Eulerian variables and functions

Definition 2.1 In short: A Eulerian function relative to Obj is a function, with m € N*|

ul - { C - R™ (or more generally a suitable set of tensors) (2.2)

(t,p) — &ul(t,p),

the spatial variable p being the Eulerian variable.
In details: A function &ul being given as in 1) the associated Eulerian function &ul is the function

- C — C xR™ (or Cx some suitable set of tensors)
Eul : ( (2.3)

t,p) — é/ﬂl(t,p) = ((t,p), &ul(t,p)) = (time-space position , value),
and is called “a field of functions”. So é/ﬂl(t,p) is the “pointed &ul(t,p)” at (¢,p) (in time-space).
So, the range Im(&ul) = &ul(C) of an Eulerian function &ul is the graph of &ul. (Recall: The graph of

a function f: 2z € A — f(x) € B is the subset {(z, f(z)) € A x B} C A x B: gives the “drawing of f”).
If there is no ambiguity, &ul ="°*4 &ul for short.

15



16 2.8. Eulerian velocity (spatial velocity) and speed

—~ Qt — Qt X IR_:”
At t, the Eulerian vector field at ¢ is Eul; : _
p — &uly(p) := (p, Euli(p)) = (position , value).

Example 2.2 &ul(t,p) = 0(t,p) € R = temperature of the particle Ry; which is at ¢t at p = E)(t, Rypj); da

Example 2.3 &ul(t,p) = u(t,p) € R™ = force applied on the particle Ry which is at ¢ at p. ua
Example 2.4 &ul(t,p) = dii(t,p) € L(R™ : R*) = the differential at ¢ at p of a Eulerian function 7.

Question: Why introduce &ul? Tsn't &ul sufficient?

Answer: The “pointed value” gﬂl(t,p) = ((t,p), Eul((t,p))) is drawn on the graph of &ul.

E.g., at t at p the velocity vector ¥(¢,p) € R3 can be drawn anywhere, while the “pointed vector”
%(t,p) = ((t,p); U(t,p)) is U(t,p) drawn at t at p (and 7 is called the velocity field).

Moreover emphasizes the difference between a Eulerian vector field and a Lagrangian vector
function, see (3.14)

Remark 2.5 E.g., the initial framework of Cauchy for his description of forces is Eulerian: The Cauchy

stress vector ¢ = ¢g.7 is considered at the actual time ¢ at a point p € €;. (It is not Lagrangian.) un

2.3 Eulerian velocity (spatial velocity) and speed

Definition 2.6 In short: Consider a particle Ry, and its (regular) trajectory 6@7 2t — p(t) = 5@7 (1),
cf. 1} Its Eulerian velocity at ¢ at p(t) = CI)H)@ (t) is

(1) = T, (1) " D21 ), when p(t) = B, (1), (2.4)

i.e., U(t,p(t)) is the tangent vector at ¢ at p(t) = (T)R;b, (t) to the trajectory CT)%,Z] This defines the vector
C »Rn
(tapt) - g(tvpt) .

field (in short) ¥ :

In details: cf.

~ C »CxRm
2.3)), the Eulerian velocity is the function o :

(t,p) — v(t,p) = ((t,p), (£, p))
(pointed vector) where ¥(t, p) is given by (2.4).

Remark 2.7 dq;?’ (t) = v(t, &)1%,7 (t)), with p(t) = (T’I%)b, (t), is often written

d dz dz

SO=(tp0). or T =(tIW), or T =t (2:5)
dt dt

the two last notations when an origin O is chosen and Z(t) = Op(ti. Such an equation is the pro-

totype of an ODE (ordinary differential equation) solved with the Cauchy-Lipschitz theorem, see §

(A Lagrangian velocity does not produce an ODE, see (3.21)).) ia

Definition 2.8 If an observer chooses a Euclidean dot product (-,-), (e.g. foot or metre built), the
associated norm being ||.||4, then the length ||T(¢,p)||, is the speed (or scalar velocity) of Ry; (e.g. in
ft/s or in m/s). And the context must remove the ambiguities: the “velocity” is either the vector velocity
¥(t,p) = ®p,’(t) or the speed (the scalar velocity) ||7(t, p)||,-

Exercice 2.9 Euclidean dot product (-,-)4, Z(t) = Op(t), T(t) = %, and f(t) = ||Z'(t)||y (speed).

Prove : %(t) = (f”(t),f(t))g —noted 2//(¢) . T'(t) (= tangential acceleration).

Answer. 2-D and Euclidean basis: Z(t) = (x(t)) gives f(t) = (2'(t)* + y'(t)2)%, thus f'(t) =

y(t)
& (D" (B)+y (DY (&) _ (&) * 7 (1) . .
1) = o Idem in n-D. m

2.4 Spatial derivative of the Eulerian velocity

Q; — Rm™

t € [t1,to] is fixed, &ul is a given Eulerian function, and &ul; : is C1.
p — Euly(p) := Eul(t, p)

16



17 2.4. Spatial derivative of the Eulerian velocity

2.4.1 Definition

Recall: If © is an open set in R" and if f : @ — R is differentiable at p, then its differential at p is the
linear form df (p) € L£(R";R) (linear map with real values) defined by, for all @ € R” (vector at p),

hi) —
df (p).i = lim w (2.6)
h—0 h
This expression is the same for all observers (English, French...: There is no inner dot product here).

Definition 2.10 The space derivative of &ul at (t,p) is the differential déul; at p, i.e., for all ¢ € [t1,t2],
all p € Q, and all W, € R} (vector at p),

(dEuly(p).5, =) | dullt, p).d, — lim SULEPTATp) = Eullt,p) | noted ag;z (tp)Gy  (27)

h—0 h

In Q, (the photo at t), déul(t, p).w, gives the rate of variations of &ul, at p in the direction .
E.g., at t, the space derivative dv of the Eulerian velocity field is defined by

(tap+hwz) — 77(t7p) (: dﬁt(p)-wp)- (2.8)

du(t,p).adp = lim

h—0

Remark 2.11 In differential geometry, (2.6) is also written @(f)(p) = 4 f(p+hi)j—o; Don’t use this
notation if you are not at ease with differential geometry (where a vector is defined to be a derivation,
so u[f] is the derivation of f by ). oa
2.4.2 The convective derivative déul.v

Definition 2.12 If ¥ is the Eulerian velocity field, then d&ul.v is called the convective derivative of &ul.

2.4.3 Quantification in a basis: df.7 is written (@.grad)f
Quantification: Let f: p € R" — f(p) € R be C. Let (&) be a basis in R". Let (usual definition)

of
axl( p) =

df(p).&; and [df(p)le=(2L(p) .. 2L (p)) (line matrix). (2.9)

(Recall: The matrix which represents a linear form is a line matrix.) And [df (p)]) is the Jacobian matrix
of f at p relative to (€;). So, with @ = .1 u;€; a vector at p, and with the usual matrix multiplication
rule, we have

df (p).@ = [df (p) Zaxz Zu% p) " (d.grad) . £ (p), (2.10)

where (4. grad) 1 CHQ;R) — CO(% R) is the differential operator defined relative to a basis (€;) by

L= . Of
(d.grad).(f) = Zuia . (2.11)
- 9T
If the basis (€;) is unambiguously imposed, then (ﬁ.gr&d)‘ =noted 7 orad

For vector valued functions f Q- R_;", the above steps apply to the components of f in a basis (I_J'Z)

in Rm; If f = Zglfll;“ ie. f(p) = Z;zlfz(p)l_);, then

(@.grad) . (f Z dfi.i)b; = Y _((i.grad) . fi)bi = > > (u;. gf )b;. (2.12)
i=1 i=1 i J

17



18 2.5. Streamline (current line)

2.4.4 Representation relative to a Euclidean dot product: gradf

An observer chooses a distance unit (foot, metre...) and uses the associated Euclidean dot product (-, -),.
Let © be an open set in R", f € C'(Q;R) (scalar valued function), and p € Q. Then the (-, -),-Riesz
representation vector of the differential form df (p) is called the gradient of f at p relative to (-,-),, and

named grgmdg f(p) € R7: Tt is defined by
Vi € R, (grad, f(p), @), = df (p).@, written gradf . = df.q, (2.13)

the last notation iff a Euclidean dot product (-,-), is imposed to all observer (quite subjective: foot,
metre 7).

(The first order Taylor expansion f(p+hi) = f(p) + hdf(p).@ + o(h) can therefore, after a choice of
an Euclidean dot product, be written f(p+hi) = f(p) + hgrad, f(p) +, @+ o(h).)

Quantification: Let (¢;) be a Cartesian basis in R”. Then (2.13) gives [df].[i@] = [gradf]T.[g].[@], for all
@ € R} (more precisely [df]z.[d] e = [gradgf]‘g. [9]|e-11d]|), thus (since [g]|e is symmetric)

[gradf] = [g].[df]" (column matrix). (2.14)

e., if gradf = o ja;é; then a; = ZJ 19”8 for all ¢. In particular, if (€;) is a (-, -)4-orthonormal
basis then [gradf] = [df]T.
With duality notations, grad f=>n =@’ '¢; and |l givesa’ = " =1 g” 811 : The Einstein convention

is not satisfied (the index j is twice bottom), which is expected since the definition of grad f depends on

a subjective choice (unit of length). In comparison, df = >, g :ZZ dx® satisfies the Einstein convention (a
differential is objective).

Mind the notations: The gradient grﬁdgf —noted gradf depends on (-,-)g, cf. 1}1 while
(ii.grad) f does not (only depends on a basis), cf. (2.11) (historical notations...).

2.4.5 Vector valued functions

For vector valued functions f Q) — R_;”, the above steps apply to the components f; of f relative to a
basis (b;) in R™... But, depending on the book you read:

1- Ambiguous: d f, the differential of f, is unfortunately also sometimes called the “gradient matrix”
(although no Euclidean dot product is required).

2- Ambiguous: It could mean the differential... or the Jacobian matrix... or its transposed... because
an orthonormal basis relative to an imposed Euclidean dot product is chosen (which one?) and then
[gradf;] = [df;]7... And calculations confuses [.] and [.]7...

3- Non ambiguous: In the objective framework of this manuscript, we will use the differential d f
(objective) to begin with; And only after an explicit choice of bases (€;) for quantitative purposes, the
Jacobian matrix, which is [df]z, will be used.

Exercice 2.13 A Euclidean framework being chosen, prove: (7.grad)7 = 3grad(||d||?) + curld A 7.
Answer. Euclidean basis (E;), Euclidean dot product (-, ), ="°%4 (., .), associated norm ||.||; ="°%9 ||.||. Thus
22 )
U= >" | viE; gives H17H2 = va, thus % = ZZW%, for any k = 1,2,3. And, the first component
81}3 8112

of curl? is (curld); = e " Due’ idem for (curl?)s and (curld)s (circular permutation). Thus (first component)
T2 XT3
- 0 0 0 0
(curld A ¥) = (B—Z; - a—?)vg (6—;2 - 8—;:)1}2, idem for (curl? A #); and (curlv A ¥)2. Thus (% d(||7]?)
curld A 7)1 = v G2 31 + vz avz +us gZ? + 352 Vs — gﬁ Vs — 32? v2 + aTl V2 = Vg, azl o2 avl +usg avl = (v.grad)vs
Idem for the other components. un

2.5 Streamline (current line)

Fix t € R, and consider the photo ; = &)t(Obj). Let p; € 4, € > 0, and consider the spatial curve in 2

at p; defined by:
] —&, 5[ - Qt
: .t. 0) = p;. 2.15

cpt { s — q= Cpt (8) S cpt( ) 2 ( )

18



19 2.6. Material time derivative (dérivées particulaires)

So s is a curvilinear spatial coordinate (dimension of a length), and the graph of ¢,, is drawn in the photo
Qt at t.

Definition 2.14 ¥ : (¢,p) — (¢, p) being the Eulerian velocity field of Obj, a streamline through a point
pr €  is a (parametric) spatial curve ¢, solution of the differential equation

dep,
ds

And Im(c,,) is the geometric associated streamline (C €2;).

NB: (2.16) cannot be confused with (2.5): In (2.5) the variable is the time variable ¢, while in (2.16)

the variable is the space variable s.
Usual notation: If an origin O is chosen at ¢ by an observer and Z(s) := Ocy, (s) , then 1' is written
di
dﬁ(s) = 5,(Z(s)) with (0) = Op,. (2.17)
s
Moreover, with a Cartesian basis (€;)) chosen at ¢ by the observer, with Z(s) = ZZ 1%i(s)€; we get
dT(g) = S d¥i(5);, and 1) reads as the differential system of n equations in R"

(s) = V(cp,(s)) with ¢p,(0) = py. (2.16)

ds i=1"ds
Vi=1,..,n, ilzz(s) =vi(t,21(8),...,xn(s)) with z;(0) = (O—pi)l (2.18)
(the n functions z; : s — z;(s) are the unknown). Also written
L TR (2.19)
vy U

which means: It is the differential system (2.18) of n equations and n unknowns which must be solved.

(With duality notations, %(s) = vi(t, z1(s),...,2"(s)) and 2*(0) = (O—p;)l for all 4.)

2.6 Material time derivative (dérivées particulaires)
2.6.1 Usual definition

Goal: To compute the variations of a FEulerian function &ul along the trajectory EI;H)@ of a particle Ry,
(e.g. the temperature of a particle along its trajectory). So consider the function gp, giving the values
of &ul relative to a Ry, along its trajectory:

IRy (1) := &ul(t,p(t)) when p(t) := p, (t). (2.20)
Definition 2.15 The Material time derivative of &ul at (,p(t)) is gp,’(t) —noted %(t,p(t)).
So: Déul /  Sul(t+h, p(t+h)) — Eul(t, (1))
o EP() = gr, () (= lim - )- (2.21)

Since gp, () == Eul(t, By, (1)) we get gp,"(t) = 25w (t, ®p, (1) + deul(t, B, (t)).Dp, (t), thus, having
i{?)@ (t) = 9(t,p(t)) (Eulerian velocity), D‘S“l (t,p(t)) = 6&” (t,p(t)) + déul(t, p(t)).v(t, p(t)):

Dé&ul o&ul
= + déul.v|. 2.22
Dt ot ( )
Proposition 2.16 L. is a derivation: All the functions being Eulerian and C*,

e Linearity:
D(é’ull + /\Eulg) Dé&uly Dé&uls

= . 2.2

Dt Dt 2 Dt (223)

e Product rules: If Euly, fuly are scalar valued functions then
D(Eullf,’ulg) Dé&uly Dé&uls
= . 2.24
Dt Dt &le 8ul1 Dt ( )
In paticular @ is a vector field and T' a compatible tensor (so T is meaningful) then

D(Tw) DT Z D

5t = Di +T. oTE (2.25)

19



20 2.6. Material time derivative (dérivées particulaires)

Proof. Let i = 1,2, and g; defined by g;(¢t) := &ul;(t,p(t)) where p(t) = &)1?»7 (t).
o (g1 + Ag2) = gi + Ag gives (2.23).

e On the one hand (T D) — a(gﬁ) +d(TW).v = aT W+ T + (dT.9).% + T.(dw.7), and on the
other hand 2L + T. fgg = (% +dT.0).0 + T.(%2 + dw.v). Thus 4;1;

2.6.2 Commutativity issue

The Schwarz theorem tells: If &ul is C2, the derivatives d(%) and % commute. But

Proposition 2.17 The material time derivative % does not commute with the partial derivation %
. . .. . D(Bful) o(Leut D(d&ul) Dé&uly :
or with the spatial derivative d, i.e. # —&— and =5~ # d(=5{) in general (because the
variables t and p are not independent along a trajectory). We have, if ul is C?,
D&ul asul "
o) _ DUoi) | g 07 g Pty _ DUED) et g
ot Dt ot and Dt Dt (2.26)
02&ul ~ Oul oV _ O(d&ul) | '
= e dw U+ déul.— TR o + d“&ul .V + d&ul.dv.
oB&ul (2l 4 qgul.)  92&ul O(d€ul) ot Dé&ul d&ul
P f. Dt = = —_— A = =
6r;);l 5 5 dg ?tZ + 5 U + déul. TR nd d B d(—— 5 + déul.v)
( = ) L aagut).v + deut.ds = 29D L qeuaz, thus (2.26).

D
i.e. 75; is a derivation),

Exercice 2.18 If &ul is C? and @ is C", check 22D — DUED 51 gy D (g

and
D(d&ulw)  0&ul ow . -
T d Frallins déul. 5 T (d(déul).v). 0 + dEul.di.v

D& O(déul)
= déu l — + 5

(2.27)

W + d2Eul(, @),

and

D%&ul  9*&ul 8€ul ov oo L
e = gz T 2d py U+ déul. T (d(d&ul).V).¥ + d&ul.dv.v

D7 9%&ul 0&ul _,  D(d&ul)
dglﬁt 92 +d T U+ i

(2.28)

i

Answer, 24EULT) _ O(d&ul.w) d(d&ul w).7 = W+ déul. %> + (d(d€ul).¥). b + dEul.dib. =
(dS ) Dt ot ot ot
U

W+ dul. ﬁ. And &l € C? and Schwarz give 24D — g(98uly and (d&ul )8 = d*Eul(T, D),

hence - And

A(d&ul ) ow

D*&ul DDREL (22U 4 qeul.v) d&ul
D = Iy (t) = Dr = e + d(—8 + déul .v).v
_ 9%&ul a(dé‘ul) ov | 0&ul 2
= e + o -l-dé'la—-i-da— + (d"&ul.0).¥ + déul.dv. v,

with 2 od=do 2 (Schwarz), 2U&l) — &) 4 q2gy) i and d€ul. BY = d€ul. 2% + dEul.dv.v, hence o

Exercice 2.19 Prove (2.26) with components.

d&ul d&ul i .
Answer. (€;) is a Cartesian basis aE;D?l _ 2 +%Z I 6;531 +>, §t§§f D %‘f;;l.aav; = "’;f;“ +
5 Gifstoo +deul. 7. And P = G5+ 55, 0 of = G54 T, S0
And d(5524) 32’5 =% gt B, _ S, Gt 45, v + 5, 92 S =
2 §f§Z§ ’ + d"’&u(ﬁ, w) + déul.dvp. And PN i — (9B giqeul).d).p = 298N q2ul(T,F) =
2 gz%i w' + d*&ul (v, ). Thus d(LE4).& = M W + déul.dv.ab for all w. La
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21 2.7. Eulerian acceleration

2.6.3 Remark: About notations

e The notation 4 (lowercase letters) concerns a function of one variable, e.g. %(t) := ¢/(t) :=

limy,_o g(t+h31)—g(t).

e The notation % concerns a function with more than one variable, e.g. %(t, p) =
limy, Eul(tJrh,p]_)LfEul(t, )’

e The notation % (capital letters) concerns a Eulerian function differentiated along a motion,
cf. (2.21)).

e Other notations, often practical but might be ambiguous if composed functions are considered:

d&ul(t, p(t)) , Dé&ul d&ul(t, p(t)) Dé&ul

— = t) = t,p(t d ——~Z = ! = . (2.29

i 9ry (8) =~ (8,p(1)),  an T (to) = —5;~(to, p(to))-  (2:29)

2.6.4 Definition bis: Time-space definition

Consider the affine time-space R x R™ and a C! function f: (t,p) € R x R — f(t,p).
Definition 2.20 The differential of f is called the “total differential”, or “total derivative”, and noted D f.

So, with R x R™ the associated time-space vector space, if py = (¢,p) € R x R™ and W} = (wo, W) €
R x R" then, by definition of a differential, Df (py ). := limy,_, LEFRTIT@L) 5 0

Df(t,p).(wp, W) := }llli% W . (2.30)
Thus 9
Df(t,p) = a—{(t,p) dt + df (t, p). (2.31)

(Recall: df is the space differentiation, so if (€;) is a Cartesian basis then df(¢,p) = %(tp)dm +..+
%(tap)dxn and i = Zi wzél gives Df(tap)(w07 W1y eeey wn) = %(tvp)w0+%(t7p)wl++%(t7p)wn)

Then consider the time-space trajectory

~ {[tl,tg} — R xR"
Up, : _ ~ (2.32)
t = Wp,(t) = (t, @, (1)) (= (1))
(So Im(\fl%@) = graph(@%@).) The tangent vector to this curve at ¢ is
Up, (t) = (1, Pp, () = (1,3(t, p(t)) € K x R (2.33)
where ¥(t, p(t)) = d&)d—?”(t) is the Eulerian velocity at (¢,p(t)). And (2.20) reads
iy, (1) = (Eul 0 U, )(t) = Eul(Vp, (1)), (2.34)
thus
G (1) = DEA(E(1)) T, (1) = P (1 (1)1 + déul(1,p(0)) 500,p(1)) "2 Do p) - (235

We have (2.22)): The material time derivative is the “total derivative” D&ul along the time-space trajec-
tory Wp, .

2.7 FEulerian acceleration

Definition 2.21 In short: If 5173@ is C?, then the Eulerian acceleration of the particle Ry; which is at ¢

at pr = ®(t, Ryy;) is
~ 2~
F(tp) o= B, (0) "2 L2 (1, By ). (2.36)
In details: as in (2.3), the Eulerian acceleration (vector) field 7 is defined with (2.36) by

%’(t,pt) = ((t,p1),7(t,p)) € C x R (pointed vector). (2.37)
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22 2.8. Time Taylor expansion onI;

Proposition 2.22

Dy 0v
J="7 = +diT 2.
~ T 5 dv.7 (2.38)
And if ¥ is C? then o(d) D(d#)
Ny = v 257 0.dv = v U.dv. 2.39
dy 5 + d°U.0 + dv.dv i + dv.dv. ( )

Proof. With g(t) = @(t,p(t)) = ®p,’(t) and (2.22) we get 7(t,p(t)) = ¢'(t) = 2U(t,p(t)). And &

being C2, the Schwarz theorem gives d%qt7 = a(adf). un

Definition 2.23 If an observer chooses a Euclidean dot product (-,-), (based on a foot, a metre...), the
associated norm being ||.||4, then the length ||5(¢, p;)||4 is the (scalar) acceleration of Ry,;.

2.8 Time Taylor expansion of o

Let Ry € Obj and t €]ty,t2[. Suppose 55),7] € C?(Jt1,t2[;R™). Its second-order (time) Taylor expansion
of ®p, is, in the vicinity of a t €]t;, to],

~ - - )2~
Dp,, (1) = p,, (t) + (T—)Pp, (1) + ( 2t) op, () + o((r—1)), (2.40)
p(7) = p(t) + (T=t)v(t, p(t)) + (T_Qt) F(t,p(1) + o((T-1)%). (2.41)

3 Lagrangian description = Motion from an initial configuration

Instead of working on Obj, an observer may prefer to work with an initial configuration Q, = (i(to, oY)
of Olj (essential for elasticity): This is the “Lagrangian approach”. This Lagrangian approach is not
objective: Two observers may choose two different initial (times and) configurations.

3.1 Initial configuration and Lagrangian “motion”
3.1.1 Definition

Obj is a material object, ® : [t1,t2[x O — R™ is its motion, O, = @, (Obj) is its configuration at 7,
to €]t1,t2[ is an “initial time”, and €, is the initial configuration for the observer who chose t.

Definition 3.1 The motion of Ol relative to the initial configuration 2, = &)(to, Oly) is the function

q)to ) { [thtz] X Qto — R"

_ _ (3.1)
(tapl‘o) = Pt = (I)to(tapl‘o) = (I)(t7]DOlU) when Py, = (I)(tO,POlZ])

So, pr = @ (t,py,) 1= EIv>(t7 PRy ) is the position at ¢ of the particle By,; which was at py, at . In particular
Py = P (t0, py,) == @(to, Foy)-

Marsden and Hughes notations: Once an initial time #, has been chosen by an observer, then
Plo =noted & then Diy =noted p(capital letter for positions at ty) and p, ="°'¢d p (lowercase letter for
positions at t), so

p=®(t, P) € Q. (3.2)
(When objectivity is under concern, we need to switch back to the notations ®%, p; and p;.)

NB: e Talking about the motion of a position p,, is absurd: A position in R™ does not move. Thus
®% has no existence without the definition, at first, of the motion ® of particles.

e The domain of definition of ®* depends on % through €2;: The superscript © recalls it. And a late

observer with initial time #’ > t, defines ®*" which domain of definition is [t1, 2] X Q4,/; And @’ £ oo
in general because €y, # €1y, in general.
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23 3.1. Initial configuration and Lagrangian “motion”

e The following notation is also used:

q)to(t7p7h) = q)(t7t0apl‘o) (33)

(The couple (to, py,) is “the initial condition”, or #y and p, are the initial conditions, see the § on flows).
e If a origin O € R™ is chosen by the observer, we may also use, with (1.6)),

A

ﬂtﬂzopm:(ﬁ'm(to,fm):)?:@ and ft:@:(ﬁto(t,ftﬂ):f: (‘9}}) (34)

3.1.2 Diffeomorphism between configurations

With (3.1)), define

Q. —Q
plo, 0 o . (3.5)
Py = P =P (pyy) = PO (t, pyy)-

Hypothesis: For all ty,t €]t,t[, the map &P : Q, — Q; is a C* diffeomorphism (a C* invertible
function whose inverse is C*), where k € N* depends on the required regularity.

Thus (3.5) gives tft(PObj) = ol (étﬂ(PObj)), true for all Ry, € Obj, thus ® o B, = Dy, ie.

Dl .= &, 0 (Dy,) " | (3.6)

Thus, @ = I and & o B = (B, 0 (By,) ") 0 (B4, 0 (B,) 1) = I give
P} = ()" (3.7)

3.1.3 Trajectories
Let (ty, pt,) € [t1,t2] X Q4 (initial conditions) and with (3.1) define
[tl, tg] — R"
oy, { (3.8)

t o p(t) = B, (1) = Bp, (t) = ©°(t,p,) when py, = Dp, (to).

Definition 3.2 <I>§)0t0 is called the (parametric) “trajectory of py”, which means: CID;?{O is the trajectory of

the particle Ry; that is located at p,, = ®(t, Ry;) at tp. And the geometric “trajectory of py” is

(@) = % (b t) = |J (@5 (0} (= Im(3p,)). (3.9)

tefty,ta]

NB: The terminology “trajectory of p,,” is awkward, since a position p;, does not move: It is indeed
the trajectory ®p, of a particle Ioy; which is at py, at fp that must be understood.

3.1.4 Streaklines (lignes d’émission)
Take a film between ¢ and T' (start and end).

Definition 3.3 Let @ be a fixed point in R™ (you see the point @ on each photo that make up the film).
The streakline through @ is the set

Eyr(Q) ={peQ:3r€[to,T]: p=27(Q) = () 71(Q)}
={peQ:Iuel0,T—t]:p=27Q) = (27_,) " (Q)}

= the set at T of the positions (a line in R™) of all the particles which were at Q at a 7 € [to, T.

(3.10)

Example 3.4 Smoke comes out of a chimney. Fix a camera nearby, choose a point @) at the top of
the chimney where the particles are colored, and make a film. At T stop filming. Then (at time T')
superimpose the photos in the film: The colored curve we see is the streakline. un

In other words = U, ¢, {25 (1)} = Uue[O’T_to]{tl)gfu(T)}.
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24 3.2. Lagrangian variables and functions

3.2 Lagrangian variables and functions

3.2.1 Definition

Consider a motion ®, cf. (L.5). An observer chose (subjective) a fy € [t1,%,] (“in the past”); So Q=
O (ty, Obj) is his initial configuration. Let m € N*.

Definition 3.5 In short: A Lagrangian function, relative to Obyj, ® and tp, is a function

ty,ta] X Q, — R™ or, more generally, some adequat set
Lagh - { [t1, 2] x € ( g y q ) (3.11)

(tv pfo) — Eagto (tv pfo)a

and py, is called the Lagrangian variable relative to the (subjective) choice t.
(To compare with (2.2): A Eulerian function does not depend on any t.)

Example 3.6 Scalar values: Lag®(t,p,) = ©°(t, p,) = temperature at ¢ at p, = ®©(p,,) = (¢, Ry;) of
the particle Ry, that was at py, at t. (So, continuing example O (t,py) = 0(t,pr).) un

Example 3.7 Vectorial values: Lag®(t,p,,) = U™ (t,py,) = force at t at p; = B (p,,) = &)(t,Pobj) acting

on the particle Ry; that was at py, at t. (So, continuing example U (t,py,) = @(t, py).) oa

If ¢ is fixed or if py, € Qy is fixed, then we define

Q. — Rm or, more generally, some adequat set
Lagl : { fo tg 8 o a ) (3.12)
Pt — Lagy (py) = Lag® (¢, py,),
t1,ta] — R™ or, more generally, some adequat set
Lagp ) t(o sy ) (3.13)
o t — Lagp, (t) := Lag"™ (t, py, )-

Remark 3.8 The position py, is also sometimes called a “material point”, which is counter intuitive:
Ry (objective) is the material point, and py, is just its spatial position at % (subjective); And a Eulerian
variable p; is not called a “material point” at t...

By the way, the variable p; is also called the “updated Lagrangian variable”... .

3.2.2 A Lagrangian function is a two point tensor

Definition 3.9 In details: Lag™ being defined in (3.11), a Lagrangian function is a function

— ty,ta] X Q —)CXR_"’”
‘0:{[ P (3.14)

Lag S
(t:p) — Lag (t,py) = ((t,p1), Lag®(t,p,))  when  p, = £ (py,)-
Le. Zzt/gto (t,p) = ((t, D2 (py,)), Lag® (t,py,)). (And R™ can be replaced by some set.)

Definition 3.10 (Marsden and Hughes [14].) A Lagrangian function is a “two point vector field” (or
more generally a “two point tensor”) in reference to the points p;, € €, (departure set) and p; € Q;
(arrival set) where the value Lag® (t,py,) is considered.

Interpretation: (3.14) tells that Lag™(t,py,) is not represented at (, py, ), but at (t,p;): That is, having

graph(Lag®) = {((t, i), Lag" (t,py)) and Tm(Lag) = {((t, pr), Lag® (¢, p))}, (3.15)

we have

Im(ZVagto) # graph(Lag™) : (3.16)

So a Lagrangian function does not define a tensor in the usual sense. To compare with the Eulerian
function &ul which defines a tensor (in particular Im(&ul) = graph(&ul)), cf. db
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25 3.3. Lagrangian function associated with o FEulerian function

3.3 Lagrangian function associated with a Eulerian function
3.3.1 Definition
Let ® be a motion, cf. 1} Let &ul be a Eulerian function, cf. db Let ty € [t1, t2].

Definition 3.11 The Lagrangian function Lag™ associated with the Eulerian function &ul is defined by,
for all (t, Roy) € [t1,t2] x Obj,

Lag® (t,®(lo, Ryy)) = Eul(t, B(t, Ryy)), (3.17)
i.e., for all (t,py,) € [t1,t2] X Q.
Lag® (t,py) := Eul(t,p;), when p, = ®(t, Ry) = D (p;) (3.18)
i.e., Lag™(t,py) = Eul(t,p;) when p,, = (®°)~1(p,) for all (¢,p;) € C. In other words:

Lagh := Eul, o Dl |, 3.19
’ t t

3.3.2 Remarks
o If you have a Lagrangian function, then you can associate the function

Eull := Lagl o (D)1 (3.20)
which thus a priori depends on . But, a Eulerian function is independent of any initial time %.

e For one measurement, there is only one Eulerian function &ul, while there are as many associated
Lagrangian function Lag™ as they are ; (as many as observers): The Lagrangian function Eagt‘)/ of a
late observer who chooses ty' > t, is different from Lag® since the domains of definition €, and Q, are
different (in general).

3.4 Lagrangian velocity
3.4.1 Definition

Definition 3.12 In short: The Lagrangian velocity at t at p; = 5(75, Ryy;) of the particle Ry, is the

function .
_ RxQ — R
Vo { ot _ ~ (3.21)
(t,py) — V(t,py) = Pp, (t) when py, = D(ty, Roy)-
In details: With (3.21)), the Lagrangian velocity is the two point vector field given by
= R x th — C X Rﬂn
Vo t, py) (3.22)

(tapto) - Vto(tvpto) = ((tapt)a Vto(tvpto))a when p; = P (t7pto)'

Thus V% (t,p,) = &%,ﬂ’(t) = 9(t,p:) is the velocity at ¢t at p; = &)(t,PObj) of the particle Ry; which
was at p, = 5(pt0,17(’)@) at fo; And Vo (t,pr,) is not tangent to graph(‘?tf’), cf. 1} It is tangent to

graph(?) at (¢, pt).
If t is fixed, or if py, € Qy, is fixed, then we define

Vo (p) = Vo (tpy), or V2 (1) i= V(2 py). (3.23)
Remark: A usual definition is given without explicit reference to a particle; It is, instead of ((3.21),
L o'
Vot py) = W(tvpl‘o% V(t,pr) € R x Q. (3.24)

3.4.2 Lagrangian velocity versus Eulerian velocity

1) and 1) give (alternative definition), with p, = ®(r, Ryj),
= . ol ~ .
Vot py,) =9(t,p) (= W(t,pto) = ®p, '(t) = velocity at t at p; of Ry;). (3.25)

In other words,

Vio = 5,0 dl | (3.26)
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26 3.5. Lagrangian acceleration

3.4.3 Relation between differentials
For C? motions (3.26)) gives

AV (py,) = dti(p,).d2P (py,)  when  p, = B (py,). (3.27)

Le., with
Flo = dol n9%d the deformation gradient relative to f and ¢, (3.28)
AV (py,) = dTy(pe).F{ (py,) | when py = @ (py,). (3.29)

Abusively written (dangerous notation: At what points, relative to what times?)

dV = du.F. (3.30)

3.4.4 Computation of dv called L = F.F~! wih Lagrangian variables
Start with a Lagrangian velocity Vto, then define the Eulerian velocity by, with p, = <I>;° (py),

6% (tapt) = vto (tap&))’ (331)

(the Eulerian velocity thus depends on # a priori), i.e. 7% (¢, @ (p;,)) = ag%(t,pto). Thus

oPto A(ddh) OF
di™ (t,py).d®" (¢ =d(——)(t ==t =—(t .32
v ( 7pt) ( apfo) ( ot )( 7p7h) ot ( 7pto) ot ( 7pf0)7 (33 )
with ®% C? for the second equality. Thus
—to aFtO to —1 . . — > —1
dv®(t,py) = W(t,pto).F (t,py,)” ", written in short L:=dv=F.F~ ", (3.33)

but L thus “defined” is defined at what points? What times?
In books, it seems that L is Eulerian (L(t,p;) = dv(t,p;)), not Lagrangian (not L (t,ps, ) = dv(t, pt)).
Reminder: Start with Eulerian quantities and use Eulerian quantities as long as possibleﬂ which in
particular say that dv doesn’t depend on #.

3.5 Lagrangian acceleration
Let Ry € O, to,t € R, pyy = EI;H)@. (to) and p; = E)R)@. (t) (positions of Ry, at tp and ¢).
Definition 3.13 In short, the Lagrangian acceleration at ¢ at p; of the particle Ry, is
T (t,pr,) == ®p,” (t) when pj, = Tp, (o). (3.34)

In other words .
Ftﬂ(t7p&)) = ’?(Lpt) when bt = (ptﬂ (t7p&))7 (335)

where Y(t,p;) = 5%@ "(t) is the Eulerian acceleration at ¢ at p; = &)(t,PObj), cf. (2.36).
In details, the Lagrangian acceleration is the “two point vector field” defined on R x €, by

Tt (t,py) = ((t,p0), Pry," (1)), when p, = (¢, py,). (3.36)

(To compare with 1} .) In particular I—"t‘)(t,p&)) is not drawn on the graph of Lo at (t,py, ), but on the
graph of ¥ at (¢, p;).

ITo get Eulerian results from Lagrangian computations can make the understanding of a Lie derivative quite difficult: To
introduce the “so-called” Lie derivatives in classical mechanics you can find the following steps: 1- At ¢ consider the Cauchy
stress vector ¢ (Eulerian), 2- then with a unit normal vector 7, define the associated Cauchy stress tensor o (satisfying
i= o.7), 3- then use the virtual power and the change of variables in integrals to be back into Q4 to be able to work
with Lagrangian variables, 4- then introduce the first Piola—Kirchhoff (two point) tensor B, 5- then introduce the second
Piola—Kirchhoff tensor 9K (endomorphism in Qy)), 6- then differentiate K in Q, (in the Lagrangian variables although the
initials variables are the Eulerian variables in €;), 7- then back in Q; to get back to Eulerian functions (change of variables
in integrals), 8- then you get some Jaumann or Truesdell or other so called Lie derivatives type terms, the appropriate choice
among all these derivatives being quite obscure because the covariant objectivity has been forgotten en route... While, with
simple Eulerian considerations, it requires a few lines to understand the (real) Lie derivative (Eulerian concept) and its
simplicity, see §@ and deduce second order covariant objective results.

26



27 3.6. Time Taylor expansion of &0

If ¢ is fixed, or if p;, € Qy, is fixed, then define
T (py) :==T°(t,py,), and T (1) :=T°(tpy). (337)

Thus

—

[P =700 and dLP(py) = d7:(p)-Fi (py,), (3.38)

when p; = ®(p;,) and F{° := d®¥ (the deformation gradient).
Risky notation: dI' = d¥.F (points? times?).

3.6 Time Taylor expansion of %

Let ps, € €,. Then, at second order,

ol (1) = Ol (1) + (r—t)@k (1) + #@,@o@ "(t) + o((T—1)?), (3.39)

that is, with p(1) = g, (1) = 8 (py,),

p(7) = plt) + V() + TS )+ of(r1)?), (3.40

NB: There are three times involved: # (observer dependent), ¢ and 7 (for the Taylor expansion). To

compare with 1b|| p(1) = p(t) + (7—t)v(t, p(t)) + (T;t)g F(t, p(t)) + o((7—t)?), independent of .

3.7 A vector field that let itself be deformed by a motion
C »R»

Consider a C9 Eulerian vector field @ : B
(t,ps) — W(t,pt)

}. Let ty € [t1,t2] and let o,

Q, — R®
o - . (vector field in €y,). Then define the (virtual) vector field
Py = Wy (pry) = W(to, Pry)

. C —»Rr

Wiy ~ o . N (3.41)
(t,pt) — Wigu(t, pe) = dPO(t, pyy )Wy (Py,),  When  p(t) = (¢, py,).

(The push-forward = result of the deformation of w;, by the motion, see figure )

Proposition 3.14 For C? motions, we have (time variation rate along a virtual trajectory)

— ATy, (3.42)

ie. LyW, = 61 where Lz := %’f —dv.id (= % + du.v — dv.d) is the Lie derivative of a (unsteady) vector
field @ : C — R" along ©.

Interpretation: We will see that LywW(ty,pr,) = limsy w(t’p(t))_f'“*(t’p(t)) measures the ‘re-
sistance of W to a motion”, see § Thus the result LyWy.(to,p,) = 0 is “obvious” (=
limy 4, wt‘)*(t’p(t));wt“*(t’p(t))): If & = Wy, then the vector (‘“force”) field W does not oppose any resistance
to the flow.

Proof. p, being fixed, with d®®(t,p,) =" F(t) we have Wy, (t, p(t)) =B F(t).5, (p,), thus
PR (t,p(t) = F'(t).451, (pry) = F'(£)-F () gy (8, p(1)) =E3D dir(t, p(t)) s (2, p(1)), Le. (3.42).

4 Deformation gradient F' := d®

~ Rx Oy — R" ~
Consider a motion ® : ~ , Q := ®(t, Obj) the configuration of Obj at any ¢,
(t’PObj> — Pt = (I)(t’PObj>

Qto _>Qt

Py = B(to, Boyy) — pe = O (py,) 1= O(t, Roy)
morphism. Notations for calculations (quantification), to comply with practices:

fix ty,t in R, and let O : }, supposed to be a C! diffeo-
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28 4.1. Definitions

1- Classical (unambiguous) notations as in Arnold, Germain: E.g., (@) and (b;) are bases resp. in H@?O

and RY, @y, (p) = X0 wio,i (1)@ € RY, Wi (pe) = 30, wei(pe)b; € RYY; And
2- Marsdeanughes duality notations: Ca_pital_‘letters at to, lower case Letters at t, duality notation,
e.g. (Er) and (&) are bases resp. in R}, and R, W (P) =Y, W/(P)E; € R}, w(p) = >, w'(p)é; € R}

4.1 Definitions

4.1.1 Definition of the deformation gradient F

Qu - L D)

Py — F{(py) = d®Y (pyy)

ant deformation gradient between t, and t”, or simply “the deformation gradient”. And “the covariant
deformation gradient at p;, between # and ¢”, or in short “the deformation gradient at p;,” is the linear

map F°(p;,) € E(Rg;@?), so defined by, for all @, (py,) € I@g (vector at py, ),

Definition 4.1 The differential ddl =noted plo . } is called “the covari-

. DY (py 4Ry, (py,)) — P (p ted B ted
FE () ) o= Jimy PP ZS00) e () (7)) " (1), (41)

with p; = ®(py,). See figure

Marsden—Hughes notations: ® := &% F:=d®, P :=p,, W(P) = Wy (pgy ), p = P(P), thus

F(P)W(P) . }LIL% (I)(P-l—hW(:)) —®(P) noted (I)*W(p) noted @u(p). (4.2)

Qto /—m

Figure 4.1: o is a Eulerian vector field. At # define vector field @y, in Q4 by Wy, (py,) := W(to,ps,). The
(spatial) curve ¢y, : s — pg, = ¢y(s) in Uy is an 1ntegral curve of Wy, i.e. satisfies ¢, ( ) Wy, (e, (8)).
It is transformed by ®% into the (spatial) curve ¢; = ®P ocy @ 8 — pr = ci(8)=PP (¢4, () in Qy;
Hence ¢;'(s) = d® (py,).ci,'(s) = d®P (py, ).y, (py, ) =204 wto*(t pt) is the tangent vector at ¢; at p; (the

push-forward of 1, by ®%). And @(t,p(t)) (actual value) is also drawn.

NB: The “deformation gradient” F{® = d®® is not a “gradient” (its definition does not need a
Euclidean dot product); This lead to confusions when covariance-contravariance and objectivity are at
stake. It would be simpler to stick to the name “F* = the differential of ®{°”, but it is not the standard
usage, except in thermodynamics: E.g., the differential dU of the internal energy U is not called “the
gradient of U” (there is no meaningful inner dot product): It is just called “the differential of U”...

4.1.2 Push-forward (values of F)
Qt{) — Rg

Pty — Wiy (Pry)
vector field (), () in Q; defined by

- - ted
(DF)<ity (pe) = Fi* (pt) Wy (o) "= Wios(t,p¢)  when  py = ©F (py ) (4.3)
See figure Marsden notation: ®,W (p) = F(P).W (P) ="°td g, (p) when p = &2 (P).

Definition 4.2 Let Wy, : { } be a vector field in Q. Its push-forward by ®{ is the
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29 4.1. Definitions

In other words
(D), := (F{°.,) o (BF2) " (4.4)

Marsden notation: ®,W = (F.W) o &~ = ,.

4.1.3 F is a two point tensors

With (4.1)), “the tangent map” is

Fy

(= x L(R™ R
to:{ to t (Rig; RY) (4.5)

P — F(pi) = (e, F*(p,))  when py = @ (py,).

Definition 4.3 (Marsden-Hughes [14].) The function F/° is called a two point tensor, referring to the
points p, € Qy, (departure set) and p; = ®2(p;,) € Q; (arrival set where Wy, (t, ps) = F{* (ps,).Ws, (ps,) is

drawn). And in short F° =noted plo ig said to be a two point tensor.

Remark 4.4 The name “two point tensor” is a shortcut than can create confusions and errors when
dealing with the transposed: F/® is not immediately a “tensor” A tensor is a multilinear form, so
gives scalar results (€ R), while F(P) := Ffo(P) =nroted [, ¢ L(RE;RY) gives vector results (in RY).
However Fp can be naturally and canonically associated with the bilinear form Fp € L(RP*, R} ;R)
defined by, for all @p € R and £, € R}, with p = & (P),

Fp(ly,ip) :={,.Fp.ip (€ R), (4.6)

see § and it is ﬁp which defines the so-called “two point tensor”.

But don’t forget that the transposed of a linear form (Fp here) is not deduced from the transposed
of the associated bilinear form (ﬁp here). So be careful with the word “transposed” and its two dis-
tinct definitions: The transposed of a bilinear form b(-,-) is intrinsic to b(-,-) (is objective), given by
b1 (ii,@) = b(w, @), while the transposed of a linear function L is not intrinsic to L (is subjective), given
by (LT.i,%), = (L.,@), where (-,-), and (-,-), are inner dot products (additional tools) chosen by
Human beings (LT should be written L; ). (Details in §|A 8. 2| and § |A 12. 1D ia

Remark 4.5 More generally for manifolds, the differential of ® := ®% at P € Q, is F(P) := d®(P) :

TPth — Tth
. . with p = ®(P). And the tangent map is
W(P) — . (p) = d®(P).W(P)

{ T, — T wn
(P,W(P)) —= T®(P,W(P)) = (p,d®(P).W(P)) = (p,@.(p)), where p=2ap(P), '
called the associated two point tensor. un

4.1.4 Evolution: Toward the Lie derivative (in continuum mechanics)

C={J{t} x ) > Rr

Consider a Eulerian vector field 0 : t , e.g. a “force field”. Then, at ty
(t,p) — @(t,p)

Q R
consider Wy, : o fo . . The push-forward of @, by ®¥ is, cf. (4.2),
Pt = Wy (Pry) = W(lo, Pry)

Wy (t, (1)) = F{* (py,) Wy, (pr,),  where  p(t) = @ (t,py,). (4.8)

See figure Then, without any ubiquity gift, at ¢ at p(t) we can compare w(¢, p(t)) (real value of W
at t at p(t)) with W, .(¢,p(t)) (transported memory along the trajectory). Thus the rate

Gt () = Wign (6, p(H)) _ actual(t, p(t)) = memory(t,p(1)) 4\ oovinoful at (£, p(t)  (4.9)

t—1 t—t
(no ubiquity oift required) This rate gives, as h — 0, the Lie derivative Lz (the rate of stress), and we
will see at § (9.3 that Lyw = ﬁ — dU.A0 (the dv term tells that a “non-uniform flow” acts on the stress).
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30 4.2. Quantification with bases

4.1.5 Pull-back
Formally the pull-back is the push-forward with (®{°)~!

Definition 4.6 The pull-back (®)*w; of a vector field @; defined on §; is the vector field defined on Q,
bY7 with Pty = (‘I’?)_l(pt)a

@ (to, pry) = (@) @y (py) 1= (F2) ™ (o) B(pr),  written  W*(P) = F~"(p).i(p), (4.10)

4.2 Quantification with bases

(Simple Cartesian framework.) (@;) is a Cartesian basis in RZ’O, (b;) is a Cartesian basis in R?, o, is an
origin in R” at ¢, ®% =noted & supposed C*, ; Oy, — R is its components in the referential (o, (l;z))

O(py,) = o0r + Y _ilp)bi, e 0:®(pry) = > oi(pi, )bi. (4.11)
=1

i=1

=~ _noted 5%(

Thus, with the classic notation dy;(py,).d; py,) since (@;) is a Cartesian basis, and (b;) being

a Cartesian basis,

n

R N = Dp; 7 0
P a; = E ; .a;)b; = ; h (0] L= = [F e
d (p&)) aj £ (d‘Pz (pto) aj)bz £ 8Xj (phj)bu thus [d (pfi) )}[a,b] [axj (pfo)] [ (pto)][a,bp

[d(b(pto)][a = [F(pfo)][a 5 being the Jacobian matrix of ® at py, relative to the chosen bases. In short:

- i

dd.d; =
=Y

bi, thus [d®]; ;= = [Flia 5 = [Fy), (4.12)

dO.W = FW =Y F;W;bi, ie. [FW]g=[F]
i=1

W)ja (4.13)

(more precisely: FY* (p)-W (p1y) = Y271 Fij (i)W (p1y )b0)- B
Similarly, for the second order derivative d?® = dF (when ® is C?): With U = Z?:1Ujaj and
=  Widk, and with (a@;) and (b;) Cartesian bases, we get

dF (U, W) = d*®(U, W) =Zd2%ﬁW* Z aX o Z( i@ W)ia) bis
B (4.14)

cp=B(P) =0+ Y G (P)E, FY(P)= 22 (P) (= dgl(P).Ey)
i=1
« F(P)W = Y Fy,(PYW'&, [F]=[F)]=d2], L (415)
iJ=1

Qi

SR - Py - & = i1 i) =
o dF(T, W) = 2®(0, W) = TV W e = > (101" a2 .0)) .
i, J,K=1 i=1

Remark 4.7 J,j are dummy variables when used in a summation: E.g., df. W = S =1 88){3 Wi =

h 1£{,W‘] =3 EggaWo‘ = af W+ 5 6f >W?2 + ... (there is no uppercase for 1, 2...). And
Marsden—Hughes notations (capital letters for the past) are not at all compulsory, classical notations

being just as good and even preferable if you hesitate (because they are not misleading). See § .
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31 4.8. The unfortunate notation dZ = F.dX

4.3 The unfortunate notation dz = F.dX
4.3.1 Issue
, i.e. @, (p) := F(P).W(P), is sometimes written
di = F.dX : “a very unfortunate and misleading notation” (4.16)

which amounts to “confuse a length and a speed”... And you also the phrase “(4.16)) is still true if
[|dX|| = 17... while dX is supposed to be small...

4.3.2 Where does this unfortunate notation come from?

The notation (4.16) comes from the first order Taylor expansion ®(Q) = ®(P) + d®P(P).(Q—P) +
o(]|Q—P||), where P,Q € Q,, i.e., with p = ®?(P) and ¢ = ®2(Q) and h = ||Q—P||,

¢—p=F(P).(Q—P) +o(h), written 0% = F.6X + o(6X), (4.17)
or pg = F(P @ + o(h). So as @ — P we get 0 = 0... Quite useless, isn’t it?
While
% = F(P). QZ +o0(1) is useful: (4.18)

As Q — P we get @, = F(P).W which relates tangent vectors, see figure Details:

4.3.3 Interpretation: Vector approach

. . [51,82] — . . fo
Consider a spatial curve ¢, : in ), cf. figure |4.11 It is deformed by @ to
s — P:=c¢y(s)

. to [817 82] — Qt .
become the spatial curve defined by ¢; := ®,° o ¢y, : " in ©;. Hence,
s = pi=cs) = PP (e (5)).
relation between tangent vectors:

Qe e .9 00, e o) — mxien. B (o) witten 4 0%
I (s) = dPP(eyy(5)). s (s), written ds(s)—F(X(s)).dS (s), written Is =F. I (4.19)

But you can’t simplify by ds to get dZ = F.dX: It is absurd to confuse “a slope %(s) and “a length

6X = p— ¢". Recall: With P = ¢y, (8) and p = (), 1} reads 1w, (p) = F(P).W(P), cf. 1'

NB: Hd% ()| = ||%* ( )|| = 1 is meaningful in 1) It means that the parametrization of the spatial
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curve ¢, in Qy, uses a curvilinear parameter s such that ||c,/(s)|| = 1 for all s, i.e. s.t. [|[Wp|| = 1 in
figure You cannot simplify by ds: ||dX|| =1 is absurd together with dX “small”.

4.3.4 Interpretation: Differential approach
(4.16)) is a relation between differentials... if you adopt the correct notations; Let us do it: With (4.11)),

noted

T=0p= 0t<1>t° Z% _’i noted sz bi, where ¢; = z; (function of P). (4.20)

Thus, with (m,;) = (dX;) the (covariant) dual basis of (d@;) we get the system of n equations (functions):
dpy(P) = 3511 5% (P) dX;

dd =F, ie. : . which is noted dZ = F.dX, (4.21)

den(P) = Y}_, 5% (P) dX;

this last notation being often misunderstoo It is nothing more than d® = F' (coordinate free notation).

28pivak [19] chapter 4: Classical differential geometers (and classical analysts) did not hesitate to talk about “infinitely
small” changes dz’ of the coordinates z?, just as Leibnitz had. No one wanted to admit that this was nonsense, because
true results were obtained when these infinitely small quantities were divided into each other (provided one did it in the
right way). Eventually it was realized that the closest one can come to describing an infinitely small change is to describe
a direction in which this change is supposed to occur, i.e., a tangent vector. Since df is supposed to be the infinitesimal
change of f under an infinitesimal change of the point, df must be a function of this change, which means that df should
be a function on tangent vectors. The dX; themselves then metamorphosed into functions, and it became clear that they
must be distinguished from the tangent vectors 8/90X;. Once this realization came, it was only a matter of making new
definitions, which preserved the old notation, and waiting for everybody to catch up.
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4.3.5 The ambiguous notation d;f = ﬁ'd)_('
The bad notation d = F.dX gives the unfortunate and misunderstood notations d.o? — F.dX , and then
d7 = L.df where L= F.F~!, (4.22)

Question: What is the meaning (and legitimate notation) of (4.22)?

[ ]
Answer: dZ = L.dZ means

Dy S . :
g}? = dU.Wy,« | = evolution rate of tangent vectors along a trajectory (4.23)
see figure Indeed, @y, (£, p(t)) =B3 Flo(t, py, )by, (py, ) gives
Dy, . OF - OF" 1o
o Lpt) = W(tvpl‘o)'wto (P) = W(@Pm)(ﬂ% (o)™ g (2, p(1))), (4.24)

e P58 (1, p(1)) = dii(t,p(t)) Diga (1, p(1)), L. (4:23). Tn particular 250 (to, py,) = dil(to, py )iy () s
the evolutlon rate of tangent vectors at ) at py,.

4.4 Change of coordinate system at t for F

P € Qug» pr = P (py,) € Q, W(py) € I@g, @(py) = F (py,) W (py,) € R, written @ = F.W.

4.4.1 Change of basis system at ¢t for F’

The observer at #, used a basis (d;) in I@g. At t, in H@?, a first observer chooses a Cartesian basis
(I_)'dd’i), and a second observer chooses a Cartesian basis ( new,i). And P = [P;;] is the transition matrix
from (boi,;) t0 (brew,i), 1-€. brew,; Zl 1 Pij boldZ for all j. The change of basis formula in Rt gives

[u_}']‘gﬂew - P_ .[u_))]lgold7 thus [F W]‘ b pew =P [F W]\bold (425)
Thus [F] ;5 . Wiz = Pil.[F]m’gdd.[W]m, true for all W, thus
) gy = £ g ¢ (4.26)

Remark 4.8 (4.26) is not [L] |, = P~'.[L]|qq.P, the change of basis formula for endomorphisms, which
would be nonsense since F' := Ft"( ) @" — R@’ is not an endomorphism; 1) is just the usual change

of basis formula [u‘i]‘g =P~ L[w ]IE for vectors i in R? (contravariant vectors). .
new

4.4.2 Change of basis system at ¢, for F'

The observer at ¢ with his basis (b ) in R" wants to compare results of two observers & #,: The first used a
Cartesian basis (i) €-g. Bernoulli w1th one Switzerland foot, the second used a Cartesian basis (@new,:)

e.g. Timoshenko with the English foot. P = [P;;] being the transition matrix from (Geq,;) t0 (Gnew,i), for
any W e R",

Wy = P~ W g (4.27)
And FW = FW gives [F. ]‘,; = [FW], thus [Fla. & W, = [F) 5 (W), hence
[F]WW’E.P—%[W]% s, [W]‘Edd, for all W. Thus [Flia 5P~ =[F; 5 thus

[F]ldnewa’; = [F]laoldag'P (4.28)

This is the change of basis formula for linear forms (covariant vectors), which is expected since here F' is
considered to be a linear function that acts on vectors in R} .

Exercice 4.9 Detail the matrix calculation which gave (4.28) with Marsden’s notations.

Answer. Let F.Ega; = 3, Fi ;& and F.Epew,y = 3, Fi ;&, and W = Y, W) Eaag.y = 3, W, Evew, s, and
Q=1[Q%) =P ' s [Wz =Qq. [W]Edd, ie. W) =3, QWX for all J. Thus FW =X, F. ;W& =
Sir P QeWEe: together with EW =, Fi x WX, for all W, thus 3, Fi ;Q% = F x for all i, K, thus
[F]IEWU,@'Q = [F]‘Eddvg. L
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4.5 Tensor notations: Warnings

As already noted, cf. , the linear map F = d® := d®}?(p,) € E(R @”) is naturally canonically
associated with the blpomt tensor F € E(R?*, R?:R) defined by, for all (¢, W) € RP* x @g,
F(O,W) = L.(F.W). (4.29)
Quantiﬁcation basis (d;) € ]R" with its (covariant) dual basis (74;) in R"*, origin o, € R™ and
basis (gl) in R” with its (covarlant) dual basis (m;) in Rt , ﬁ Yo 19011% and dy;.d; = g—)‘?;, ie.
doi =30 13}? Taj. Hence d®.@; = Y7 (dg;.@;)b; and

n

n n
opi - o 9
F&j = d‘I)C_i] = a;‘?f bi, thus F = Zbl X dgpl = a;?l b ® Taj- (430)
i=1"""7J i=1 ij=1
Indeed, (ZZj:lg% gz ® Waj)(ﬁbk,de) = Z:L] lBX (b ﬁbk)(ﬂ'ajdg) — Z:L] ng 61‘1{:6]'@ = 273’2’;, and

k- (Fap) = mo- (U 58 bi) = Yoy g8 mpnbi = Yy g;;; Ok = 9%&: Equality for all k, (.

So F(t,W) =3, FE-L;W when FW =Y, 52 W by, for all e = Zz‘ Cimy; and W =Y W;d;.
62

2 )
And similarly, d?;(d;, dx) = 8)?%& for all j,k, i.e. d?p; = Z?,k:laX%& Taj & Tak, and

n

R, ) = S il )b " aF = Zb ® d*p; = Z aX 3Xk bi ® (Taj © Tar), SO
i=1 i=1 i, k=1

. . (4.31)
dF (U, W) =dF(U,W) =Y d*¢:i(U,W)b; = Z U Wb
P st 5X 6X
Marsden duality notations: ZJ aa)fJ dX’, F;, = 3XJ, FE; = > Fhes, F = Y, & ®det =

Yo Py éidX Y, d*ot = ZJK aXJaXK AX7@dX ", dF =37, &i@d*0' =37, 5 axajw G@dX dX*.
Warning 1: The tensor notation can be misleading, e.g. if you use the transposed, see remark £.4] So,
you should always use the standard F.d; = Z] 1F”b notation (vector value), i.e. F.E; = Z:LJ Fie;
with Marsden notations. And avoid the use of F, i.e. of F(¢,W) (scalar value).

Warning 2: You can’t use @; instead of 7,; in ,i.e. you can’t use F = > =1 0X - b; ® a@; instead
of F in -, because there is no canonical natural 1som0rphlsm between R" and R"*: E. 8. Qnew,j =
z i Goid,i While Tanew i = Z Qwﬂ'add] where Q = P, see , and you get ., Fn ij b; ® Anew,; =
F = Dok Fozkb ® dadp = Zuk MkQka ® Gnew,j = Zl]([FO].Q )mb ® Gpew,j, thus [F ]\bvanew =

[ﬁ]‘gﬁ(ﬂd.P* , which is not (4.28). So it is wrong if you want to compare Euler’s results with those of
Newton, Lagrange, Cauchy... because they didn’t use the same unit of measurement.

In other words, an inner dot product can’t be confused with a matrix product, e.g. you never talk
about the “trace” ), g;; of an inner dot product g(-,-) : E x E — R (not invariant), while the trace of an
endomorphism (linear £ — E) is useful and invariant, see § [A.10]

Warning 3: In some manuscripts you find the notation F = d® ="°%*d & @ V. It does not help to
understand what F' is (it is the differential d®), and must be avoided as far as objectivity is concerned:

e A differentiation is not a tensor operation, see the fundamental example so why use the tensor
product notation ® ® V., when the standard notation d® (or if you use a basis (b;) in R the notation
dd(.) = Z?:ldgoi(.)l;;-) is legitimate, explicit and easy to use?

e It could be misinterpreted because in mechanics V f is often understood to be a vector (contravariant)
while the differential df is covariant (unmissable in thermodynamics because you can’t use gradients).

e It gives the confusing notation ® ® Vx ® Vx, instead of the legitimate, explicit and easy to use
notation d2® (or if you use a basis (b;) in R? the notation d2®(.,.) = S d%ei(. )b:).

4.6 Spatial Taylor expansion of F

Plo =noted ¢ ig supposed to be C3 for all #y,t, and F = d®. Then, in , with P € Qy, and W e H@?O
vector at P, ®(P+hW) = &(P) + h F(P).W + & dF(P)(W, W) + o(h), and

F(P+hW) = F(P) + hdF(P).W + %2 d2F(P)(W,W) + o(h?). (4.32)
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4.7 Time Taylor expansion of F

to is fixed, ®* is supposed to be C3, py = ®(ty, Roy), pr = D(to, Roy) = D (¢, py,), and Vo (t,py,)
%(t,pto) = u(t,p;) = U(t,®"(t,p,)) (Lagrangian and Eulerian velocities), py, is fixed, q);oto (t) =
Pl (t, py, ), and F;‘:O (t) := F(t,py,) = d®" (¢, py, ). Hence

, to to to .
10 = 2 ) = 20 1,9 = a2 ) = a0 1,) = (e p(0) 1 (1) (4.39)

(in short F=dv = dv.F). Thus the first order time Taylor expansion F0 (t+h) = Fjo (t) + thO (t) +
o(h) near t gives
Fp (t+h) = Fy (t) + hdV,2 (t) + o(h)

(4.34)
— ( I + hdi(t, p(t))) Ef (£) + o(h).

NB: They are three times are involved: ¢ and ¢t+h as usual, and # (observer dependent) through F' := Fl‘fi0
and V = 1_/;;‘% , as in 1) This Taylor expansion requires Lagrangian variables (requires ®%).

And, with A% (¢,p,) = atz 2 (t,py) = (£, p(t)) == F(t, &% (t,p;,)) (Lagrangian and Eulerian acceler-
ations),

§?Fto 0?(ddh 92 Plo - .
F;‘jol/(t) = W(tvpto) %(t Pi) = d(— 5 2 )(t,pry) = dA® (t, py,) = dF(t, pr).F(t) (4.35)

(in short F=di= dy.F). Thus (second order time Taylor expansion of FIS?O near t):

h2
W (t+h) = Fio (t) +hdVe (1) + —dAtﬂ (t) + o(h?)
h2 (4.36)
- (1 + hdi(t, p(t)) + 5 di(t, p(t))) F0 (1) + o(h?).
In particular with ¢ = to: Then F;‘t)o (to) = I, thus
F (tg+h) = I + hdV® (t)) + Ly (to) + o(h?)
o N o 2 (4.37)
. o '
= (I +hdito, p) + 5 dv(to,pto)) +o(h?).
Remark 4.10 ~ = %? + dv.v is not linear in ¢. Idem,
Dv ov o v 5, D(dv) o
i — = = 4.38
dy = d(Dt) d(ater ) = d@ +d*0U0+do.di ( V) (4.38)
is non linear in ¥, and gives F;fjo "(t) = (d2E + d*V.0 + du. dv)(t,pt).F;f:O (t), non linear in . o’

Exercice 4.11 Directly check that (short notation) F' = dv.F gives F" = d¥.F.
Answer. F'(t) = di(t,p(t)).F(t) gives F"(t) = 29 ¢ p(t)).F(t) + do(t, p(t)
cf. [£38), thus F"'(t) = (d¥ — dv.dv) (¢, p(t)).F(t) + dii(t, p(t)).dv(t, p(t)).F(t) =

).F' () with 249 — g5 — 473,
dy(t,p(t)). F(t). .
4.8 Homogeneous and isotropic material

Let P € Q, let F/°(P) := d®{(P); Suppose that the “Cauchy stress vector” filpy) at at p, = ®°(P)
only depends on P and on F[*(P) the first gradient at P, i.e. there exists a function fun such that

fi(pe) = tun(P, F*(P)). (4.39)

Definition 4.12 A material is homogeneous iff fun doesn’t depend on the first variable P of ftfn, ie.,
iff, for all P € Q,,
fun(P, F° (P)) = fun(EF°(P)) (= felp))- (4.40)

(Same mechanical property at any point.)
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35 4.9. The inverse of the deformation gradient

Definition 4.13 (Isotropy.) Consider a Euclidean dot product, the same at all time. A material is
isotropic at P € {0y, iff fun is independent of the direction you consider, i.e., iff, for any rotation Ry, (P)
in R,

fun(P, F{°(P) = fun(P, F}*(P).Ry,(P)) (= fi(p:)). (4.41)
(Mechanical property unchanged when rotating the material first.)

Definition 4.14 A material is isotropic homogeneous iff it is isotropic and homogeneous.

4.9 The inverse of the deformation gradient
(@)1 0 BL)(P) = P gives, with p = &0 (P),

d(@0) " (p).dDY (P) = Iy, thus d(®) ) (p) = dBL(P)~" = Fl(P) ", (4.42)
where F[° = d®} is the deformation gradient. We have thus define the two point tensor

Q — LRYRY)

Hp = (Ff)™! - s — . (4.43)
p | HE () = (FP) ' (p) = (FP(P) | when p=2f(P).
So .
H (p).di(p) = (F°) "' (p)d(p) := Ffo(P)"'.w(p) €R}, inshort H.i=F ', (4.44)
for all Wi(p) € I@? vector at p. This defines, with p, = ®% (¢, P),
C=J{t} x ) — LRY:Ry)
for, ¢ (4.45)

(t:pe) — HO(t,pe) == H (pe) = (F“(t,P))~".

NB: H looks like a Eulerian map, but isn’t: H% depends on a initial time ¢, and is a two point tensor
(starts in R}, arrives in R} ). We will however use the material time derivative % notation in this case,
that is, we define, along a trajectory ¢t — p(t) = ® (¢, P),

DH™ OH™ DH™  QH®

D (t,p(t)) :== W(t,p(t)) +dH™(t,p(t)).v(t, p(t)), ie. i = o + dH™.7, (4.46)

which is the time derivative ¢’(t) of the function g : t — g(t) = H% (¢, ®% (¢, P)) (i.e. g(t) = HY (¢, p(t))).
Hence, with p(t) = ®© (¢, P) and H(t,p(t)).F(t, P) = I,, written H.F = I, we get

DH oOF DH
—F+H— = h —— = —H.dv 4.4
i + 5 0, thus dv'|, (4.47)

Dt
since 2L (¢, P).F~1(t,p(t)) = di(t,p(t)) cf. (4.33).

Exercice 4.15 With @, (t, p(t)) = F(t, P).W(P), i.e. H(t,p(t)).@«(t, p(t)) = W(P), when p(t) =
Pl (¢, P), prove (4.47).

Answer. 279 (¢, p(t)) = di(t, p(t))- Wi« (£, (1)), cf. (4.23); And (H @) (¢, p(t)) = W (P) gives 2H2 5, , +

Dy« o . -
H™ =29 = 0; Thus 222 4. + H™ .dv.by. = 0, thus 2 = —H.d7. un

Exercice 4.16 Prove: Hj° = H{° o H* and %(t,p(t)) = Htt‘l’(ptl).%(t,p(t)) for all tp,t; with
Pty = (I)zt&ti (pto)

Answer. W;e have @E"(pto) = <I>§1(<D;{; (pt,)), cf. 1) hence Fttﬂ (py) = F,f1 (ptl).Ftt{l’ (py,), thus F,fO (pto)_l =
F(po) ' F (py) ™", ie. HO(p:) = H{O(pw,)-H (p(t), thus, H®(t,p(t)) = H(ps,).-H" (t,p(t)), thus

DI (4 p(t)) = HE (pe, ). 22 (8, p(t)).

5 Flow

5.1 Introduction: Motion versus flow
e Motion: A motion ® : (t, Roj) = pr = E)(t, Ry) locates at ¢ a particle Ry, in the affine space R”,

d
cf. 1} From which the Eulerian velocity field ¥ is deduced: #(t, p;) := i}f’” (t, Boy;), cf. li
e Flow: A flow starts with a Eulerian velocity field ¥, from which we deduce a motion by solving the

ODE (ordinary differential equation) %2 (¢) = #(t, ®(t)).
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5.2 Definition
- { R x R* — Rr
Let v :

. be a unstationary vector field (e.g., a Eulerian velocity field which definition
(t,p) — (t,p)

R — R"
domain is C = Uycpy, 1 ({t} X Q1)) We look for maps @ : b p— () } which are locally (i.e. in
the vicinity of some #y) solutions of the ODE (ordinary differential equation)
dd d dz
() = (t, ®(t)), also written (1) = (L, p(t)), or —(t)=(t,Z(t)) (5.1)
dt dt dt
where Z(t) = Op(t) after a choice of an origin. Also written d—f = 9(t,p) or —”” = (¢, X).

Definition 5.1 A solution ® of (5.1)) is a flow of ¥; Also called an integral curve of ¥ since (5.1) also
reads ®(t) = [*_, @1, ®(r)) dr + ®(t1).

T:tl

Remark 5.2 Improper notation for (5.1):

0 gy reted IO g, poy)). (5.2

p(t)

Question: If the notation dT is used, then what is the meaning of W?

Answer: It mear;s,( ()either %(f(t)), or d(ziif)(t) = %(f(t))%(t): Ambiguous. So it is better to use
p(t

dp o> unless the context is clear (no composite functions). un

2 (t), and to avoid

5.3 Cauchy—-Lipschitz theorem

Let (to, pt,) be in the definition domain of @. We look for ® solution of “the ODE with initial condition
(to, py, )", in some vicinity of oy, i.e. such that

1) = a0, 2(1)) and B(to) = p,. (5.3)

(The couple (t, py,) is the initial condition, and the values ty and py, are the initial conditions.)

Definition 5.3 Let t1,t5 € R, 1 < to. _Let €2 be an open set in R™ and Q its closure supposed to be a
regular domain. Let ||.|| be a norm in R". A continuous map @ : [t1, 5] x © — R” is Lipschitzian iff it is
“space Lipschitzian, uniformly in time”, that is, iff

3k >0, Vt € [t1,t2], ¥p,q € Q, ||U(t, q) — (¢, p)|| < kllg — pl|- (5.4)

So, % < k, for all ¢t and all p # ¢ (the variations of ¥ are bounded in space, uniformly in time).

Theorem 5.4 (and definifion) (Cauchy-Lipschitz). If T : [t1,ts] x Q — R" is Lipschitzian and
(to, piy) Elt1,t2[ <2, then there exists € = e p, >0 s.t. ' has a unique solution ® :Jty—e, ty+e[— R,
noted <I>t0 :

(I)z)fo — to to —

7 (t) = o(t, ®p (1)) and @ (fo) = pr,- (5.5)

Moreover, if T is C* then ® is C*+1.

Proof. See e.g. Arnold [2|, or any ODE course. In particular ||7]|e := sup [|T(t, p)||rn
t€lto—e,totel, p€Q

(maximum speed) exists since ¥ € C° on the compact [t1, 2] x Q), see definition [5.3, hence we can choose

€ = min(tp—t1, ta—to, d(pg? 89)) (the time needed to reach the border 952 from py,). ua
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37 5.4. FEzamples

We have thus defined the function, also called “a flow”,

{ ]tl,tQ[X]tl,tQ[X th —Q
P (5.6)
ted
(t7t07pt0) — pP= (p(t7t07pk)) = (blt;)to (t) 1’10:e (I)(t, tOvpfo)~
And (5.5) reads
0P . .
E(t;toypto) =U(t, ®(t;to, py,)),  with  @(to; to, pry) = Pty - (5.7)
We have thus defined the function, also called “a flow”,
g ; o lotel B = R (5.8)
(t,py) —p=9"(t,py) == ‘I’Zio (t) :
And (5.5) reads
oPt -
W(tvpto) = 0(t, ®°(t,py,)), and @ (to,p,) = pry- (5.9)
Other definition and notation (can be ambiguous): ®;.;, = ®° : Q; — R", and (5.7) is written
d®s;t, (P ) -
Wenlte) _ 51,0, (p,)). and D (00) = pi. (5.10)

Theorem 5.5 Let ¥ be Lipschitzian, let ty €]t1,t2[, and let Qy, be an open set s.t. {4y, CC 2 (i.e. there
exists a compact set K € R s.t. Q) C K C ). Then there exists € > 0 s.t. a flow ®® exists on

]t()—EytO‘f'g[XQtO.

Proof. Let d = d(K,R"—Q) (la distance of K to the border of . -

Let ||T]]oc :=  sup  ||F(¢,p)||rn (exists since & € CY on the compact [t1,t2] x Q).

tE[t1,t2],pEQ

Let e = min(t—t1, to—tp, ﬁ) (less that the minimum time to reach the border from K at maximum
speed [[v]]o0)-

Let p;, € K and t €]{y—e,to+e[. Then @?fo exists, cf.theorem and H(I)?to (t) — <I>[t§’to (to)||rn <
[t —to] sup,ejyy—c ty4(|[(25, ) (7)[|rn) (mean value theorem since, &' being C°, @ is C'!). Thus ||®f, (t) —
<I>;0t0 (to)||re < [t — to| ||v]]oo, thus <I>1t;’tO (t) € Q. Thus @;9% exists on |ty—e, to~+¢[, for all p, € K. ou

Remark 5.6 The definition of a flow starts with a Eulerian velocity (independent of any initial time),
and then, due to the introduction of initial conditions, leads to the Lagrangian functions ®%, cf. (5.8).
Once again, Lagrangian functions are the result of Eulerian functions. .

5.4 Examples

Example 1 R? with an origin O, a Euclidean basis (€1, é) and Q = [0, 2] x [0, 1] (observation window).
Let p € R?, Op =0ted 7 — 18, + yéy =00ted (3 o) Let t, = —1, to = 1, to €]t1,t2], a,b € R, a # 0, and

N B ’L}l(t7x,y) = ay,
#tp) = { v2(t, z,y) = bsin(t—tp). (511

(b =0 corresponds to the stationary case = shear flow.) Z(t) = (zo ), Z(t) = (m(t;> = Oq)?m (t) and
0
(.9) give

dx 1
—(t) =v (t,z(t),y(t)) = ay(t), . .
jt( ) (t,z(t),y(t) = ay(t) . { (1) = o, -
%(t) = v2(t,z(t),y(t)) = bsin(t—tp), y(to) = yo.
Thus |
N G ) N
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38 5.5. Composition of flows

Example 2 Similar framework. Let w > 0 and consider (spin vector field)

won- ()0 Q) s
A o [y B 5 5 L[ @y =1y, cos(wlp) f
With Opy, = @, = (yto ), Ty = \/Ty + Yy, and O s.t. Ty, = (ytﬂ — ry, sin(wio) ; the solution ®p
of (5.9) is
to x(t) = ry, cos(wt)
= Op(t) = O, ( (1) = e sin(wt) ) (5.15)
ot (t ,’I_,“()) _ ’Ul(t,x(t,fo),y(t,x() —WZ/ t xO oz — _ —
Indeed, <3y . x0)> = (UQ(t,x(t,fo),y(t,xo wa(t, 7)) thus 37 (t,70) = —wy(t, 7o)
and %(t,xo) = wx(t,Zy), thus %(t,i})) = —w?y(t, 7o), hence y; Idem for x. Here di(t,z,y) =
w <(1) 01> =w (Z?jﬁ C(S)ISHWQ) is the 7/2-rotation composed with the homothety with ratio w.
2 2

5.5 Composition of flows

Let ¥ be a vector field on R x  and @?{0 solution of 1D We use the notations
pe = Y (P) = Pusty (p1y) = P (1) = D (t,) = D(t50, ty) = P, (1): (5.16)
5.5.1 Law of composition of flows (determinism)

Proposition 5.7 For all ty,t1,t2 € R, we have (determinism)

P}l 0 @0 = DY

to)

ie. (th;tl 9] (I)tl;to = (th;tO' (517)

(“The composition of the photos gives the film”). So,

t = D44 (1) = (D) when  py, = O (py,), (5.18)
ie.,
Pty = Piyity (P1y) = Prnitg (Pr,)  When  py, = Py, () (5.19)
Thus
d®t! (pe,)-dPE (pr,) = dPE (pr,), i dPiyit, (pr,)-APo, 0 (Pty) = APryst, (Pty)- (5.20)

Summary with commutative diagrams:

Pty

to t1
(I)tl (I)t2 q)tl;m (I)t2;t1
ie.

Pro
1)

bt
Dyt ’

Proof. Let p;, = @;?to (t1)- (5.9) gives

aot,

(1) = Wt B, (1)),

; gfl with py, = ®f (1) = ®% ().
bt = t
Tl(t) - U(t q)plt (t))a

Thus (I)zt?q) and ‘bgltl satisfy the same ODE with the same value at ¢;; Thus they are equal (uniqueness
thanks to Cauchy-Lipschitz theorem), thus @;161 (t) = @;?to (t) when p;, = @ (py,), that is, ®}*(p,) =
P (py,) when p;, = @2 (py, ), which is 1) for any t = t5. Thus 1) un

Corollary 5.8 A flow is compamble with the motion ® of an object Obj: @) gives <I>t1 ) <I>t° = (‘T%Q o
(@1,)71) 0 (Br, 0 (1) ™) = By, 0 (By,) ™! = @, that s (5.17).
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39 5.6. Velocity on the trajectory traveled in the opposite direction

5.5.2 Stationnary case

Definition 5.9 ¥ is a stationary vector field iff %f = 0; And then #(t, p) ="°*d §(p). And the associated

flow ®% which satisfies o
W(t,ptﬂ) = 9(p;) when p; = ®® (t, 1y )s (5.21)

is said to be stationary.

Proposition 5.10 If 7 is a stationary vector field then, for all ty,t1, h, when meaningful (h small enough
and t; close enough to ty),
(I)to

o) to+h’ ie. Pyynt, = Poythitys (5.22)

ti+h —

ie. @', (q) = 2, (q), ie. ®(t1+hit1,q) = P(to+h;ty,q) for all ¢ € Qy, (see theorem . In other
words,

(I)ioli}i = @2, Le. (I)tl-‘rh;to-i-h = étl;tg7 (523)
ie. @212((]) = @i‘i (@), i.e. D(t1+h;to+h,q) = ®(t1;t,q) for all ¢ € Q.

Proof. Let ¢ € Qy, a(h) = @2+h(q) = @M (ty+h) and B(h) = @E_Hl(q) = @l (t1+h).
Thus o/(h) = 52 (to+h) = @(to+h, B (to+h)) = F(DY(to+h)) = H(a(h)) (stationary flow), and

B'(h) = 2204 (t4h) = G(tr+h, ® (t14+h)) = T(DL (t1+h)) = G(B(h)) (stationary flow).

Thus « and S satisfy the same ODE with the same initial condition a(0) = 5(0) = ¢. Thus a = §.
Hence (5.22)). Thus, with h = t1—ty, i.e. with t; = {y+h and fh+h = t1, we get (5.23). =n

Corollary 5.11 If ¥ is a stationary vector field, cf. (5.21]), then

d® (py,).U(py,) = U(pe) when py = @ (py,), (5.24)

that is, if ¥ is stationary, then ¥ is transported (push-forwarded by ®) along itself.

Proof. (5.18), to = t;+s and t; = fy+s give @2‘_"@(@2_‘_3@%)) = @ .(py,), and ¥ is stationary, thus
DL (DR, () = PP o (pro), e B(t1; 1o, Dty p,, (tot5)) = Py p, (t1+5), thus (s derivative)

d®(t1;to, ®(to+5;t0, Pry))-Pry py, (tot5) = Pty (E1+5),

thus d®y (@(tots;:t0, Pty ))-U(to+5, Pty py, (fot5)) = T(t1+5, Pty p,, (t1+5)). Thus with s = 0, and ¥ being
stationary, d®{ (®(to; t0, P1))-U( Pty p, (t0)) = (Pt p,, (t1)), thus |l ua

5.6 Velocity on the trajectory traveled in the opposite direction
Let t5,t1 € R, t1 > t, and p;, € R”. Consider the trajectory @?{0 : { o, 1} = R” } So py,
t —p(t) =2, (t)
is the beginning of the trajectory, p;, = ®{ (py,) at the end, ¥(t, p(t)) = dq:f'o (t) being the velocity.
Define the trajectory traveled in the opposite direction, i.e. define

gu | J ol 2R
Py u — q(u) = \Iléltl (u) := @Z’ta (to+t1—u) = @;?to (t) =p(t) when t=t+t1—u.

(5.25)

In particular ¢(f) = \I/;,lt1 (to) = fI’f,",O (t1) = p(t1) and ¢(t1) = ‘I’éltl (t) = ‘I’?to (to) = p(to)-

Proposition 5.12 The velocity on the trajectory traveled in the opposite direction is the opposite of
the velocity on the initial trajectory:

dvh

df:l (u) = ¢'(u) = —p'(t) = —=0(t,p(t)) when t=ty+t;—u, (5.26)

tq ddto
Proof. Wi (u) = @g’m (to+t1—u) gives —t(u) = ——0 (tg+t;—u) = —17(t0+t17u,<1>g’f0 (to+t1—u)) =
—(t, @y, (t)) when t = to+t1—u. .
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40 5.7. Variation of the flow as a function of the initial time

5.7 Variation of the flow as a function of the initial time
5.7.1 Ambiguous and non ambiguous notations

Let @ : (t,u,p) € R x R x R"® — ®(¢,u,p) € R" be a C! function. The partial derivatives are

d(t+h — ®(t
O (t,u,p) = lim 2L wp) = 2t up) (5.27)
h—0 h
P(t h — P(t
P (t,u,p) := lim (t, uth,p) ( ,u,p)7 (5.28)
h—0 h
and 95 (t, u,p), defined for all W € R» (a vector at p) by,
D(t hw) — O(t
s (t, 1, p).7 1= Tim S PHID) = R 0p) moted gy oy (5.29)
h—0 h
When the name of the first variable is systematically noted ¢, then
o oD (t
81(b(ta U,p) no;ed E(tuap) noéed % (530)

NB: This notation can be ambiguous: What is the meaning of %—‘f(t; t,p)? In ambiguous situations, use

the notation 9;®, or (if no composed functions inside) use Wlu: , (so t is the derivation variable,

and after the calculation you take u = t).
When the name of the second variable is systematically noted u, then

noted 87(13 noted 0®(t,u,p)

62(I)(tau7p) 8“ (t7uap) au

. (5.31)

NB: Idem this notation can be ambiguous: What is the meaning of g—?j(u; u,p)? In ambiguous situations,

) D(t
use the notation Jo®, or use %lt:u-

When the name of the third variable is systematically a space variable noted p, then

ncied 87‘1) noéed a(b(ta uap)

() T (5.32)

03P (t, u,p) noted d®(t, u,p)

5.7.2 Variation of the flow as a function of the initial time
The law of composition of the flows gives (5.19)) gives ®(¢; u, ®(u;t, po)) = P(¢;to, po). Thus the derivative

in u gives

Do ®(t;u, ®(usty, po)) + d®(t;u, ®(u;ty, po)).01P(ui to, po) = 0,

5.33
e O®(t;u,p(u)) = —d®(t;u, p(u)).v(u,p(u)) when p(u) = (u; o, po)- (5.33)
In particular u = #y gives, for all (¢, po) € R? x €,
0D (t; tp, .
(W =) 02®(t;to, po) = —d®(t; o, po).-U(to, po)- (5.34)
In particular
d®(t; to, .
(M =) 02®(to; to, po) = —1(to, po)- (5.35)
dto lt=to
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Part 11
Push-forward

6 Push-forward

The general tool to describe “transport” is “push-forward by a motion” (the “take with you” operator),
cf. § and figure The push-forward also gives the tool needed to understand the velocity addition
formula: In that case, the push-forward is the translator between observers. The push-forward can also
be used to write coordinate systems. As usual, we start with qualitative results (observer independent
results); Then, quantitative results are deduced.

6.1 Definition

& and F are affine spaces, E and F are the associated vector spaces equipped with norms ||.||g and ||.||F
with dim F = dim F' = n, U and Ur are open sets in the affine space £ and F, or possibly the vector
spaces F and F', and

\I,:{% U (6.1)

pe — pr = VY(pe) is a diffeomorphism

(a C! invertible map which inverse is C), called the push-forward, and ¥ ~! is the pull-back (push-forward
with U—1),

U ¥ U

We.(pr)

/ pr = ¥(pe)

/-’ Im(Cg*)

Im(cg)
Figure 6.1: c¢ : s = pe = cg(s) is a curve in Us. Push-forwarded by ¥ it becomes the curve cg, := Pocg
in Ur. The tangent vector at pe = ce(s) is We(pe) = ce'(s), and the tangent vector at pr = cx(s) =

U(ce(s)) is Wew(pr) = cr'(s) = dU(pe).We(pe). Other illustation: See figure
Example: ¥ = &% : Q, — €, the motion that transforms €, into €, cf. (3.5).

Example: ¥ : Ug — Up a coordinate system, see example
Example: ¥ = O, : Rg — R4, a change of referential at ¢ (change of observer), see §

6.2 Push-forward and pull-back of points
Definition 6.1 If pc € U (a point in Us) then its push-forward by ¥ is the point

pF =|Vupe = \IJ(pE) = pe+ € Ur, (62)

see figure the last notation if ¥ is implicit. And if pr € Ur then its pull-back by ¥ is the point

e = ’ Urpr ==V (pr) ‘ =pr* €l. (6.3)

We immediately have ¥* o U, = I.

The notations , for push-forward and * for pull-back have been proposed by Spivak; Also see Abraham
and Marsden [1I] (second edition) who adopt this notation.
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42 6.3. Push-forward and pull-back of curves

6.3 Push-forward and pull-back of curves
We push-forward (and pull-back) the points on a curve:

|—¢eel = U

Definition 6.2 Let cg :
s = pe =ce(s)

} be a curve in U. Its push-forward by ¥ is the curve

|—¢ee] = Ur
V,ce :=Vocg: noted (6.4)
s = pr=Vace(s) = W(ce(s)) =" ceels) (=),
see figure (W,ce ="0%d ¢o. when W is implicit.) This defines
‘7:(] _575[;%) — ‘FG _576[;1/{.7:)
U noted (6.5)
ce >V, (ce)=Toce = U,cg = cex.
.. ] - 575[ — Z/[}‘ . . .
Definition 6.3 Let cr : . (s) is a curve in Ur. Tts pull-back by ¥ is
s — pr=cr(s
|—ee] = U
Urcr =0 loce i . noted 4 . (6.6)
s = pe=V%x(s) =V (cr(s)) = cxr(s) (=9 (pr)).
We have thus defined
F(CH] —e,eliur) — F(CH] —e,ef; L)
T . (6.7)
cr = Uer) =0 ocy "B Urer = cr”.

6.4 Push-forward and pull-back of scalar functions
6.4.1 Definitions
U —R

Definition 6.4 Let f¢ :
e — fe(pe)

} (scalar valued function). Its push-forward by ¥ is the (scalar

valued) function

Ur — R
(6.8)

noted

\Ij*ff = fSO\IJ_l:{ 1
pr — Vofe(pr) = fe(pe) = fe«(pr) when pe=¥""(pr),
(noted fe. when W is implicit), i.e. U, fe(P.pe) := fe(pe), or fex(pex) = fe(pe) when pe. = ¥(pe). We
have thus defined
{ FUesR) — F(Ur; R)
v, :

fo = fri=U(fe) = feo ¥ "Ly g,

fe since W, is linear: ((fe + Age) o W™ 1)(pF) = (fe + Age)(pe) = fe(pe) +

(6.9)

the notation W, (fg) = ¥

Age(pe) = (fe 0 U71)(pF) + Mge 0 U 1) (pF) gives Vu(fe + Age) = Uil fe) + AV.(ge)-
- Ur — R . .
Definition 6.5 Let fr: . Its pull-back by ¥ is the push-forward by ¥, i.e. is
pr — [r(pr)
U —R
U*fr:=froW: . noted , (6.10)
pe = U fr(pe) == fr(pr) = fr"(pe) when pr=U(p),

ie. U* fr(U*pr) := fr(pr), i.e. fr*(pr*) := fr(pr) when pr = ¥*(pr). We have thus defined
- {f(uf;R) — F(Ue; R)
. fr = U (fr) = 5= fro U " ur

We immediately have ¥* o ¥, = I and W, o U* = ] (the first I is the identity in F(l;R), the
second I is the identity in F(Ur;R)).

NB: We used the same notations ¥, and U* than for the push-forward and pull-backs of points: The
context removes ambiguities.

(6.11)
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43 6.5. Push-forward and pull-back of vector fields

6.4.2 Interpretation: Why is it useful?

E.g.: Let P : R x Obj — R™ be a motion of an object Obj. An observer records the temperature 6

C={J{t} x%) =R
t

(t,p) — 0(t,p)
valued function, cf. (2.2). Then he chooses an initial time #; and considers the associated motion ®%,

at all ¢t € [fp,T] and all p = ®(t, Obj): He gets 0 : a Eulerian scalar

Qto — R
cf. (3.1)), and considers 6y, : (snapshot of the temperatures at #y in §).
Pty — O (P1y) := 0(to, pry)

The push-forward of 0, by ®% is (®X),0;, := 0, o (P1°)~! defines the “memory function”

Qt — R

. . (6.12)
pt = (@)l (pt) := 04, (pt,) when p; = @ (py, ),

(D)0, : {

And he writes (®%),6,, (p,) ="°%4 9, .(t,p;), so the memory transported is at ¢ at p, (along a trajectory)
by
O (£, p(t)) = Oy (P1y)- (6.13)

Question: Why do we introduce 6y,. since we have 0,7

Answer: An observer does not have the gift of temporal and/or spatial ubiquity; He has to do with
values at the actual time ¢ and position p; where he is (Newton and Einstein’s point of view). So, when
he was at # at p;, the observer wrote the value 64, (py, ) on a piece of paper (for memory), puts the piece of
paper is his pocket, then once at ¢ at p(t) = ®® (¢, p;, ), he takes the paper out of his pocket, and renames
the value he reads as 6. (¢, p;) because he is now at ¢ at p;. And, now at ¢ at p;, he can compare the
past and present value. In particular the rate

0(t,p(t)) — Gt{]*(t,p(t)) _ actual(t, p(t)) — memory, (¢, p(t)) (6.14)

t—1t t—1t

is physically meaningful for one observer at ¢ at p; (no ubiquity gift required). For scalar value functions,

we get the usual rate w, but it isn’t that simple for vector valued functions.

And the limit t — # in 1) defines the Lie derivative for scalar valued functions.
6.5 Push-forward and pull-back of vector fields

This is one of the most important concept for mechanical engineers.

6.5.1 A definition by approximation

Elementary introduction. Let pe and g¢ be points in U, and let pr = pgx = ¥(pe) and gr = ges = V(g)
in Ur be the push-forwards by ¥ cf. (6.1). The first order Taylor expansion gives

(W(a) —Y() =) ar —pr=d¥(pe).(e —1e) + o(llee — rllE), (6.15)

thus,

F¢ E¢
w2l ) g oW

And the definition of the push-forward is obtained by “neglecting” the o(1) (limit as g¢ — pe):

(6.16)

Definition 6.6 If wg(pe) € F is a vector at pg € U then its push-forward by ¥ is the vector
15]:(])]:) =noted Wey (p]:) =noted \If*lﬁg(p]:) € F defined at pr = pex = \I/(pg) € Ur by

1

@ (pr) = W (pr) = AW (pe) i () | "= W (). (6.17)

6.5.2 The definition of the push-forward of a vector field

To fully grasp the definition, and to avoid making interpretation errors as in § (the unfortunate
notation d¥ = F.dX), we use the following definition of “a vector”™ It is a “tangent vector to a curve”
(needed for surfaces and manifolds). Details:
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44 6.5. Push-forward and pull-back of vector fields

—g,el — ] ]
o Let c¢ : } [ U be a C! curve in Ue. Its tangent vector at pe = cg(s) is
s — pe =ce(s)

1178(]95) = Cg/(s) (: ,llli)% CS(S + h})L - 05(5)

), (6.18)

. . Im(ce) = E
see figure|6.1} This defines the function wg : . called a vector field along Im(cg)Clk.
e — we(pe)

e The push-forward of ¢ by ¥ being the image curve cg, = ¥ o ce (the curve transformed by )
cf. (6.4), its tangent vector at pr = ce.(s) is

Wes(pr) = cei’(s) thus = dVU(pe).ce’(s) = dV(pe).We(pe). (6.19)

Thus we have defined the vector field wg, along Im(ce,) called the push-forward of wg by .
With all the integral curves of a vector field defined in U, we get:

Definition 6.7 The push-forward by ¥ of a C° vector field g : {Z/{g - ? } is the vector field
pe — we(pe)
_ _ Ur — F
YT [ () = AU )| " () when e = W),
see figure (U, e = =noted 5. if ¥ is implicit). In other words,
U g = (dV.abg) o UL, (6.21)

. C®(U; E) — C®(Ur; F) .
This defines the map W, : B . . N . (We use the same notation U, as
weg —r \If*(wg) = \I/*wg = Wex

in definition [6.4] for scalar valued functions: The context removes ambiguity.)

Remark 6.8 Unlike scalar functions, cf. § [6.4.2} At & at p;,, you cannot just draw a vector i, (py,)
on a piece of paper, put the paper in your pocket, then let yourself be carried by the flow ¥ = <I>t°
(push-forward), then, once arrived at ¢ at p;, take the paper out of your pocket and read it to get the
push-forward: The direction and length of the vector wy,.(t, p;) are modified by the flow (a vector is not

just a collection of scalar components). un

Exercice 6.9 Prove:

G (s) = dits (1) s (), (6.22)
and
dig.(pr)-dY (pe) = d¥(pe).die (pe) + d* (pe).-we (), (6.23)
and
ces''(s) = dibg.(pr) De.(pr) (= d¥(pe).c2"(s) + d*V(pe).c2'(s).c¢'(s)). (6.24)
Answer. ¢z’'(s) = We(ce(s )) gives ¢z (s) = die(ce(s)).c¢'(s), hence (6.22).
We (P(pe)) = d<I>(pg) ¢ (pe) by definition of we., hence (6.23).
C]:(S = \Il( ce )) es c7'(s) = d¥(ce(s)).c2'(s) = d¥(ce(s))-We(ce(s)) = Wex(cr(s)). Thus cx"(s) =

+ d¥(ce(s)).c¢"(s) = dbe.(cx(s)).c¥'(s), hence (6.24). .

\./<

6.5.3 Pull-back of a vector field
Z/{]: — F

pr — Wr(pr)
push-forward by ¥~ i.e. is the vector field on I defined by

Definition 6.10 If wr : { } is a vector field on Ur, then its pull-back by W is the

U — FE
U UF : - - = ted _ . (6.25)
Pe —>"I’ Wr(pe) = dV " (pr) i (pr) "5 Wz (), when pr=¥(p).
In other words,
Uiy o= (AU a5r) o U "% (6.26)
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And we get
U oW, =] and VY,oU*=1]. (6.27)
Indeed, U*(V,.1be)(pe) = dV " (pr). Vuibg (pr) = AV (pF).dV (pe ). We (pe) = We(pe), for all pe. Idem for
the second equality. on

6.6 Quantification with bases
6.6.1 Usual result

(d;) is a Cartesian basis in F, Oz and (l_)'z) are an origin in F and a Cartesian basis in F, pe € U,

n Y1 (pe)
pr=U(E) = O0r + > wil)bi, ie [Orprlz=| : |- (6.28)
=t Vo (pe)
Then, if @e is a vector field in U and We = >, w;d;, we get V,we(pr) = d¥(pe).We(pe) =
S (i (pe) e (pe)) by = 307w (pe) (dbi(pe ). i5) by = 3075y 52 (pe )y () B, s0
[‘I’*lﬁs(pf)]‘g = [d‘I’(ps)ha’g-[ws(ps)hm (6.29)

where [V (pe)] ;5 = [dvi(pe).a@;] =" [?3%1 (pe)] is the Jacobian matrix.

6.6.2 Example: Polar coordinate system

Example 6.11 Change of coordinate system interpreted as a push-forward: Paradigmatic example of
the polar coordinate system (model generalized for the parametrization of any manifold).
Parametric Cartesian vector space R x R =noted R? = {¢ = (r,0)}, with its canonical basis (a1, @2),

and ¢ = ra@ + 0a, =" (r,0), so [§ljz = (g

associated vector space R_'Q, O € R? (origin), ¥ = O_}>7, and a Euclidean basis (51, 52) in R2. The “polar

Geometric affine space R? (of positions), p € R?,

. , , @i xR CR? — R?
coordinate system” is the associated map W : P defined by
q=(r,0) —Z=¥(q) =Y(r?0),
S o > T o _ (@ =rcosf
Z=U(7):=rcosfb; +rsinfby, ie. [x]lb— (y:rsin&)' (6.30)
R —R?

s — Czi(s) =+ sd; }’

and its tangent vector at ¢z,(s) is ¢z,'(s) = d; for all s. This line is transformed by ¥ into the curve
R — R?

| s = cri(s) = U(7+ sd)

The i-th coordinate line at ¢'in R?, (parametric space) is the straight line ¢z ; : {

_ ~  __noted
V. (cqi) = Wocs; =" cz;

)

} (in particular ¢z ;(0) = ). So

(r+s)cosf

[Ocz1(s ]‘g = <(r+s)sin9> (straight line), and [Ocza(s ]‘g = <:Z?§éz:’3> (circle). (6.31)

@i (Z) (push-forward by ), so

. o 7 W(q+hds) —O(q) .. U(r,0+h)—U(r,0) 0¥ ‘
() = VaBa@) = V(@) = fig = = iy = = (@,
Thus B B . .
d1+(Z) = cos by +sinOby  and  da.(T) = —rsinfb; + r cos Oby, (6.33)
ie.
o,y [cosf o o _ [ —7rsind
[al*(x)]lg = <sin9) and [CLQ*(.’L‘)]‘E = ( v cos 0 ) . (6.34)

The basis (@1.(Z), d2« (%)) is called the basis of the polar coordinate system at Z (it is orthogonal
but not orthonormal since ||@2.(%)|| = r # 1 in general); And [d¥(q)] ;5 = ([%%’((D]“; [%’((f)]‘g) =

([51*(5)]5 [52*(5?)]\5) = <z?jz 7;2:190) = [‘gg’; (q)] is the Jacobian matrix of ¥ at §.
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46 6.6. Quantification with bases

And the dual basis of the polar system basis (@1.(Z), d2.(Z)) is called (dgi(Z),dg2(Z)) (defined by
dq;(%).djs(T) = 6i), 8

1 1
dq1(¥) = cos@dxy +sinfdry and dga(Z) = ——sinfdz; + — cos dxa, (6.35)
r T

e. [dq (% )]I = (cosf sind) and [dga (f)]“; = —1(sinf cosf) (row matrices) when & = U(q). ua

—

Remark 6.12 The components ”yfj(f) of the vector da;.(%).d;«(T) € R2 in the basis (@i« (Z)) are the
Christoffel symbols of the polar coordinate system (with duality notations as it is usually presented):

;. (T). G5 (T) = Y 55 (B)iie () (6.36)

At & = U(), with @, (&) = d¥(§).d;, ie. (@ 0 U)(q) = 2%, we get

0?v

ddi; (Z).0:x (T) = dqidqi

(@) = dn(@)3.@), 50 =5 (6.37)

for all i, j (symmetry of the bottom indices as soon as ¥ is C?).

= 7%1- And %%(‘j) =

—r and 73, = 0. e

Here for the polar_’coordinat_’es, %—E’((j} = cos0b; + sin by gives %27\3(‘3 = 0, thus h =7 =0,
and gee‘alj (§) = —sinbby + cosbby = 1. (&), thus 7, = 0 = 73y and 77, = +

—rsin Ob; + 7 cos Obs gives %29%’ () = —rcos 0b, — 7 sin Oby = —7rd14(T), thus va,

Remark 6.13 The (widely used) normalized polar coordinate basis (71 (%), 7i2(Z)) = (@14(Z), Ld@2.(%))
is not holonomic, i.e. is not the basis of a coordinate system (and its use makes higher deriva-
tion formulas complicated). Indeed 7ia(Z) = +d2.(Z) gives diia().71(T) = (d(3)(Z).71(Z))d2.(F) +

*dag*( ) ’fl1($), and ﬁl(f) = 61*(f) gives _'dﬁl(f)ﬁg(.fﬂ = dal*( ) (% - *), thus dng( ) ﬁ ( )
dity (7).7i2(7) = (d(7)(@).71())a@2(F) # 0, since ¢ = (2% + y?)77 gives d(;)(@)M(7) =
(—z(@? 4y "2 —y@2+y%)"2). <Z?§Z) = L (-rcos?f —rsin®0) = =L £ 0. ia

Remark 6.14 (Pay attention to the notations.) Let f : § € R?, — f(@) € R be C2. Call g its push-
forward by U, i.e. g : & € R? = ¢g(%) = f(q) € R when ¥ = ¥(g). So f(7) = (9o ¥)(q)and

4F(@)-; = dg(W(@))-AV(@).G; = dg().y.(7). (6.39)
With df (q).a; ="oted §qf7 (§) and dg(Z).b; ="°ted 889 (%) and @;. (%) = d¥(q).d; = >, %T‘If(cj)&'j, we get
noted 89
aqa (§) = Zaz’ 3q1 aq]( z) .. (1) (6.39)

O(go W
Mind this notation!! g is a function of #, not of ¢, so 89, (Z) = 3 -(q), i.e. 3 5 (Z) nans (gao )(q")
q q q°

dagt
which is [df (7)] = [dg(£)].[d¥(])... !
Then (with f and ¥ C?)

9 Bgi d(go\I/)
U () () = (. ) () 4(@) 6 = d(dg ) (7). (7)
9 3 . (6.40)
= (g )35 ()0 () + dg(@) (0 (2).5(2) "2 S50 (@)
So , .
o () () 5 (3), 832 (D) + Y % (El (D7), (6.41)

and %(f) is not reduced to d*g(7)(d@;. (%), aj*( %)) (the Christoffel symbols have appeared): First

order derivatives a are still alive. (Contrary to aw 7 (T) = d2g(2)(b;, bj) with a Cartesian basis (b;).)

NB: The independent variables r and 6 don’t have the same dimension (a length and an angle): There
is no physical meaningful inner dot product in the parameter space R2 R xR ={(r,0)}, but this space
is very useful... (As in thermodynamics: No meaningful inner dot product in the (T, P) space.) oa
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7 Push-forward and pull-back of differential forms
7.1 Definition

. : : : U — E" = L(E;R) .
Setting of § (6.1} Consider a differential form ag : on U (a field of linear forms),
pe — ag(x)

. U — F
and a vector field wg : . . Hence
pe — we(pe)

U — R

fe = ag.g : { e — fe(pe) = () (pe) = ag(pe) We(pe)

is a scalar valued function (value of Wg given by ag). And gives (push-forward fe = ag.Wg by ¥)
V. (ag.we)(pr) = (ag.we)(pe) = ce(pe) We(pe) when pr = W(pe). (7.1)
With We.(pr) = d¥(pe).We(pe) cf. (6.20) (push-forward of we), we get

U (g ) (pF) = cg(pe).d¥(pe) ! Br(pr) when pr=U(p) : (7.2)

_noted e (pF)

Definition 7.1 The push-forward of a differential form ag € Q(l) is the differential form € Q! ()
given by

Ur — F* = L(F;R)

U, 05 : oted (7.3)

= ag.(pr) when pr=V(p),

pF = ’ U,oe(pr) == ae(pe).d¥(pe) "

the last notation when W is implicit. In other words, V.ag(pr) = ag(V = (pr)).dV " (pr), i.e.
T,ap := (ag o U™1).qU 1, (7.4)

(Once again, we used the same notation ¥, than for the push-forward of vector fields and functions: The
context removes any ambiguities.)

Remark 7.2 We cannot always see a vector field (e.g. we can’t see an internal force field): To know it we
need to measure it with a well defined tool, the tool being here a differential form; And the definition
is a compatbility definition so that we can recover the push-forward of the vector field. on

Definition 7.3 The pull-forward of a a differential form ar € Q!(Ur) is the differential form

U — L(E;R)
\IJ*O‘}- :{ noted %
pe — Var(pe) = ar(pr).d¥(pe) = ar*(p) when pr=V(p),

In other words,
U*ar := (aF o ¥).d¥. (7.6)

(For an alternative definition, see remark [7.5])

Proposition 7.4 For all ag € Q' () and ar € Q' (Ur) (differential forms), and wWe € T'(Ue) and
wr € T'(Ur) (vector fields), we have (objectivity result)

(Viag)(pr) Wr(pr) = ag(pe) (Vaiz)(pe) when pr = U(pe), (7.7)

ie. age(pr) Wr(pr) = ag(pe) Wr*(pe). In particular with ag = df (exact differential form) where
[ € CH{UesR),
A, ) = U.(df). (78)

(This commutativity result is very particular to the case a = df: In general d(V,T) # U.(dT) for a
tensor of order > 2, see e.g. (8.19)).
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48 7.2. Incompatibility: Riesz representation and push-forward

Proof. ag.(pr).dr(pr) = (ae(pe).d¥ " (pr))dr(pr) = ac(pe). (¥ (pr)dr(pr)) = aelpe)Tx(pe),
for all pr = U(pe) € Ur.

And . f(pr) := f(pe) = F(¥ (pF)), thus d(W..f)(pr) = df (pe).dV " (pF) = C.(df)(pF)-

And we have
U*oW,=] and V,oVU*=1]. (7.9)

Indeed U* (U, ag)(pe) = Viae(pr).d¥(pe) = ag(pe).d¥ 1 (pr).d¥(pe) = ag(pe). Idem for ¥, o U* = .

Remark 7.5 The pull-back az* can also be defined thanks to the natural canonical isomorphism

L(E;F) — L(F*;E")
L —L”

is called the pull-back of ¢ by L. In particular with {p = ar(pr) and L = d¥(ps) we get

d¥ (pe)* (ar (pF)) = aF(pr)-d¥(pe), ie. (7.5). .

given by L*(KF)Q_L’E = EF(LﬁE) for all (’leygF) € ExXF*, and L*(KF) =Vr.L

7.2 Incompatibility: Riesz representation and push-forward

A push-forward is independent of any inner dot product: It is objective.

But here we introduce inner dot products (-,-)y in E and (-,-), in F, e.g. Euclidean dot products
in I@% and I@? (observer dependent therefore subjective), because some mechanical engineers can’t begin
with their beloved Euclidean dot products.

Let ag € Q' (k) and call 7 := ¥, a¢ its push-forward by ¥, i.e.

Br(pr) = ag(pe).d¥(pe)™" when pr=W(p). (7.10)

Then call d@,(ps) € E and b (pr) € F the (-, -)g and (-, -)n-Riesz representation vectors of ag and Sz, so,
for all g € T'(Uk) and all Wr € I'(Ur), in short,

ag.ils = (@g,ds)g, and Br.dr = (bp, Tr)n, (7.11)

which means g (pe)-te (pe) = (dg(ps), Ue(pe))g and Br(pr)-Wr(pr) = (bn(pF), Wr(pF))n, for all pe € U
and pr € Ur. This defines the vector fields d, € I'(lk) and by, € T'(Ur).

Proposition 7.6 by, # VU, d, in general (although Br = V,ag¢), because

bn(pr) = AW (pe) ™" iy (pe)

# dW(pe).dg(pe) in general (7.12)

(unless d¥ (pe)~7 = d¥(pe), i.e. d¥(pe)T.d¥(pe)~! = I, as a rigid body motion).

So the Riesz representation vector of the push-forwarded linear form is not the push-forwarded rep-
resentation vector of the linear form push-forwarded.

This is not a surprise: A push-forward is independent of any inner dot product, while a Riesz repre-
sentation vector depends on a chosen inner dot product (E.g. Euclidean foot? metre?).

So, as long as possible (not before you need to quantify), you should avoid using a Riesz representation
vector, i.e. you should use the original (the qualitative differential form) as long as possible, and delay
the use of a representative (quantification with which dot product?) as late as possible.

Proof. Recall: The transposed relative to (-,-), and (-,-)s of the linear map d¥(pe) € L(E; F) is the
linear map d\I/(pg)Z;h =noted g (p)T ¢ L(F;E) defined by, for all @¢ € E and @Wr € F vectors at pe

and Pr cf. ‘)
(d¥ (pe)" aF, tig) g = (Wr, AV (pe).ie)n- (7.13)

(7.11) gives, with pr = ¥(pe),

(@g(pe), Us)g = ag(pe).is = (Br(pr).d¥(pe)).Us = Br(pr).(d¥ (pe).Ur)

! ) : ) (7.14)
= (bn(pr), d¥ (pe).tg)n = (d¥(pe)” .br(pF), tig)g,
true for all @g, thus dy(pe) = d\I/(pg)T.gh(p]:), thus 1} .
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49 8.1. Push-forward and pull-back of order 1 tensors

8 Push-forward and pull-back of tensors
To lighten the presentation, we only deal with order 1 and 2 tensors. Similar approach for any tensor.

8.1 Push-forward and pull-back of order 1 tensors

Proposition 8.1 If T is either a vector field or a differential form, then its push-forward satisfies, for
all ¢ vector field or differential form (when required) in U,

in short: (U,T)(€) = T(V*¢), written W,T(.)=T(W*.), (8.1)
ie. (W.T)(pr)-&(pr) = T(pe). V"¢ (pe) when pr = W(pe). Similarly:

in short: (U*T)(€) = T(W.€), written W*T(.) = T(W..), (8.2)
ie. (W*T)(pe).£(pe) = T(pr)-Vs&(pF) when pr = W(pe).
Proof. o Case 7 = a¢ € (1) (differential form — a (}) tensor), then here ¢ = @y & I(lr)
and we have to check: (V.ag)(pr)Wr(pr) = ag(pe) Vwr(pe), ie. (ag(pe).d¥— () dr(pr) =

ag(pe)-(d¥ " (pe) W (pF)): True.
o Case T = wg € I'(Ue) (vector field ~ a ((1)) tensor), then here £ = ar € Q!(Ur) we have to check:
(U, We)(pr).ar(pr) = We(pe)-¥* (ar)(pe), where we implicitly use to the natural canonical isomorphism
E — E*
J: { q} defined by w(f) = £.40 for all £ € E*. So we have to check: ar(pr).(¥.dg)(pr) =
w

o noted
—“w =

U () (). T (), e az (pr). (A (1) T (pe)) = (0 (pr). A () ). Te) (pe) + True.
For , use U~ instead of W. .

8.2 Push-forward and pull-back of order 2 tensors

Definition 8.2 Let T be an order 2 tensor in Us. Its push-forward by W is the order 2 tensor W, T in Ur
defined by, for all &1, & vector field or differential form (when required) in Ur,

in short: W,T(&1,&) =T (9", ¥*E) written U, T(.,:) :=T(P*,T*.), (8.3)

Le. W.T(pr)(&1(pr), S2(pr)) = T(pe) (P& (pe), ¥ E2(pe)) when pr = W(pe).
Let T be an order 2 tensor in Ur. Its pull-back by ¥ is the order 2 tensor ¥*T in U defined by, for

all &1, & vector field or differential form (when required) in U,
in short: U*T(&1,&) :=T(V.&, V&) written UT(-, ) :=T(V,-, U,+), (8.4)

Le., U*T(pe)(&1(pe), E2(pe)) := T(pr)(Wa&i(pF), Vs&2(pF)) when pr = W(pe).
Example 8.3 If T € T9(U) (e.g., a metric) then, for all vector fields @y, Wa in Ur,

T (i, ) & 7,7, n7) = Ty, AU ), (8.5)

i.e., T (pr) (W1 (pF), w2 (pr)) = T(pe)(dV ™" (pr) @1 (pr), V™ (pr)-2(pr)) when pr = U(pe). ~
Expresswn with bases (@;) in E and (b;) in F: In short we have (T); i = T (bz,b ) = T(b;*,b;*) =

) [T ) = (B0 0] ) T (4] 8] ) = ()T T 09], L), thus
1T a9 L

which means [(W,7) ()] = (0% (z2)] .5)~ [T () (¥ ()] )" when pr = U(e).
Particular case of an elementary tensor T = oy ® ap € TY(Ue), where oy, s € QY (Ue), so Ty, iz) =
(a1 ® Ckz)(ﬁl,ﬁg) = (041.1_[1)(0[2 Ug) For all ’U)l,’LUQ S F(Z/{]-‘)

[T = [d9] %

b |@,b

E&3) i) (i) (

(1 ® )« (W1, W) = (a1 ® ag) (W7, Ws) = (.07 ) (g0 0141 ) (vgs Wa), (8.7)

thus
(a1 ® a2)s = 014 ® Quox. (8.8)

(And any tensor is a finite sum of elementary tensors.)
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50 8.3. Push-forward and pull-back of endomorphisms

And for the pull-back: For all vector fields 1, 4o in U,

T*(ity, i) B2 T(ity,, ils.) = T(dV.ily, V. 1), (8.9)
Example 8.4 If T € T} (U ) then for all vector fields @ € I'(Ur) and differential forms 8 € Q' (Ur),
T.(B,%) = T(B*,w*) = T(B.d¥, d¥ ' .%), (8.10)

ie., Tu(pr)(B(pr), W(pF)) = T(pe)(B(pr).d¥ (pe), AV~ (pr).uw(pr)) when pr =V (pe).
For the elementary tensor T = @ ® a € T} (Ue), made of the vector field @ € T'(Ue) and of the
differential form o € Q' (U ): For all 3, € QY (Ur) x I'(Ur), in short,

(@® ). (8,7) B2 (@ ® ) (8*,7) = (@.6)(a.d") E(@,.0) (a.d) = (@ ® a.)(8, D), (8.11)

thus
(@ Q)s = Uy @ . (8.12)
Expressionq with bases (@;) in ﬁE and (l;z) in F: In ihort we have (T.);; = T*(bi7gj) =
T(T*(b"), O*(bs)) = [O*(b")).[T).[9* ()] = [b°].[dW].[T).[d¥].[b;] = ([d¥].[T].[d®~"])s, thus

(1) =A%) 55 T law] (8.13)

|a

which means [(\I'*T)(p]:)]lg = [d\IJ(]%')]‘a,g.[T(pg)]‘d.[d\I/(pg)]l__"lg when pr = U(pe). -

a

8.3 Push-forward and pull-back of endomorphisms

We have the natural canonical isomorphism

. {E(E;E) — L(E*,E;R) 6.14)

L - T, =7%(L) where Tp(a,):=a.Ld, ¥Y(ad)e€E*"xE.
Thus U, Ty (m, @) = Tr(¥*m, U*5) = (U*m).L.(V*5) = m.d¥.L.dV 115, thus:

Definition 8.5 The push-forward by ¥ of a field of endomorphisms L on I is the field of endomorphisms
V,.L = L, on Ur defined by

in short: WL =|L, = dV.L.dU"| (8.15)
ie., L(pr) = d¥(pe)-L(pe)-d¥ ' (pr) when pr = ¥(pe).

Thus with bases we get [L*]“; = [d\II]‘ag.[L]‘d,[d\p]l—alg, “95in ,,_

Example 8.6 Elementary field of endomorphisms L = (7)™ (7 ® a), where @ € I'(E) and o € Q' (E):
So Ty, = @ ® a and L.ty = (a.iiz)@ for all @y € T(Ue)). Thus Lty = dV.L.dV 1ty = dV.Lavy* =
(o *)dW .1 = (ou..Wa )iy for all Wy € T(E), thus (T1)s = U ® qx. ua

Definition 8.7 Let L be a field of endomorphisms on Ur. Its pull-back by W is the field of endomorphisms
U*L = L* on U defined by

in short: W*L=|L* = d¥U~'.L.dv | (8.16)
Le., L*(p) = dU ' (pr).L(pr).d¥(pe) when pr = ¥ (pe).

8.4 Application to derivatives of vector fields

@ € T'(Ue) is a C* vector field in Ue), pe € Ue, so dit : Ue — L(E;E) (given by dii(pe).b(pe) =
limy, 0 u(pSJrhw(}’Zg))*“(pg) for all W € T'(Lk)). Thus its push-forward:

((dil), =) V,(dit) = dV.di.dV ! (8.17)

i.e. (di)«(pr) = dV(pe).dii(pe).d¥ (pe)~! when pr = ¥(pe).
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8.5 WU,(du) versus d(V,u): No commutativity

Here @ is C?, @ € T(Ue), pr € U, pr = W(zx), 50 Vo) = A (). i(ge) = (A (" (). (AT (pr)),
and, for all @ € T'(Ur),

d(V.@)(pr) W (pr) = (AU (pe)- (A9 ™" (pr)- W (pF)))-d(pe) + ¥ (pe).-di(pe).dV ™" (pF)w(pr),  (8.18)
with W, (dit)(pr) = d¥(pe).dii(pe).dV 1 (pF), thus, in short,
d(V @) .0 = W, (dit) & + d*V(V*0, @) # V,(dif) in general. (8.19)

So the differentiation d and the push-forward . do not commute (d(¥,.u) = ¥, (da) iff U is affine).

8.6 Application to derivative of differential forms

Let a € Q' (k) (a differential form on ). Its derivative da : Ue — L(E; E*) is given by da(pe).u(pe) =
liny, o 2P —ale) ¢ px for all @ € D(l), ie., for all @y, @2 € D(Ue),

(do(pe) i1 (p) ) 2 () = Jim, olpe ¥ hﬁl(pg))'@(pg)h_ (alpe). T (pe)-Ta(pe) (8.20)

With the natural canonical isomorphism L(E; E*) ~ L(E, E;R), cf. (U.16) with E** ~ E, we can write
da(pe) (@1 (pe)) o (pe) = dev(pe) (@ (pe ), o (pe ), e

da(ﬁl).ﬁg = dOé(’lIh 172) (821)
Thus the push-forward W, (do) ="°%d (da), of da, is given by, for all @, Wy € T'(Ur), in short,
(da)*(w17w2) = doz(u_)'f,u_iz) (8.22)

)117( 7)) W2 (pr) = (da(pe).d¥ " (pr).-wh (pr)).dY ™ (pF) W2 (pF)-

i.e., with pr = ¥(pe), (da).(pr
Wo) = d? f(dV 1y, dV ) (= d? f (w7, 3)).

)«
In particular, (d?f). (i

(P

8.7 V,.(da) versus d(¥,a): No commutativity

Here W is C?, @ € T'(Ue), pe € U and pr = VY(pe). We have V.a(pr) = a(p).dV i (pr) =
a(U=L(pr)). d\I' Ypr), thus, for all @, € T'(Ur),

d(v2) (pF)- @1 (pF) = (da(pe)-dV ™ (pF) i (pF)).d¥ ™ (pF) + alpe).d* 0 (pF) @1 (pF) € F*,  (8.23)
thus, for all Wy, ws € T'(Ur), in short
d(1p, ) (W, We) = da(d¥ ™ by, ¥ ) 4+ a.d* U (), Wy) # da(w;, W) in general. (8.24)

So the differentiation d and the push-forward . do not commute (d(¥.a) = ¥, (do) iff ¥ is affine).
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Part 111
Lie derivative

9 Lie derivative

9.0 Purpose and first results
9.0.1 Purpose?

Cauchy’s approach may be insufficient, e.g.:

1. - Cauchy’s approach needs to compare two vectors deformed by a motion, thanks to a Euclidean dot
product (-,-), and the deformation gradient F'; Recall, the Cauchy deformation tensor C'is defined by
comparing (@, W), and (@, W,), where @, = F.i and W, = F.« are the deformed vectors by the motion
(the push-forwards independent of a stress): We have (i, wW.)q — (@, W)y = ((C — I).4,W),. It is a
quantitative approach (needs a chosen Euclidean dot product: foot? metre?).

- Cauchy’s approach is a first order method (dedicated to linear material): Only the first order Taylor
expansion of the motion is used: Only d® = F is used (the “slope”), not d?® = dF (the “curvature”)
or higher derivatives.

2. - The Lie derivative Lzu of a vector field 4 measures the resistance of one vector field ¥ submitted to
a motion.

- Lie’s approach “naturally” applies to non-linear materials thanks to second order Lie derivatives which
uses the second order Taylor expansion of the motion.

- Lie’s approach is qualitative. So no Euclidean dot product are required to begin with. (The quantifi-
cation in a Galilean Euclidean framework for the first order approximation will give the usual results
of Cauchy’s approach.)

- In a non planar surface S, you need the Lie derivative if you want to derive along a trajectory.
(Cauchy died in 1857, and Lie was born in 1842.)

9.0.2 Basic results

With ¢ the Eulerian velocity of the motion:
The Lie derivative Lz f of a Eulerian scalar valued function f is the material derivative

Df
Lif =—. 9.1
I== 9.1
The Lie derivative Lzw of a Eulerian vector field « is more than just the material derivative %f:
Di
Lo = ?It” — dv.B. (9.2)

In particular the —dv.w term in Lz tells: The spatial variations dv of ¢ act on the evolution of the
stress (anticipated, d0 = 0 meaning ¥ = cst).
(9.1)-(9.2) enable to define the Lie derivatives of tensors of any type and order.

9.1 Definition
9.1.1 Issue (ubiquity gift)...

® is supposed to be regular. #(t,p(t)) = %(t,Pobj) is the Eulerian velocity at t at p(t) = ®(t, Ry).
Recall: If &ul is a Eulerian function then its material time derivative is

Eul(t+h,p(t+h))—Eul(t,p(t))

Issue: The rate - raises questions:

1- The difference Eul(t+h, p(t+h)) — Eul(t, p(t)) requires the time and space ubiquity gift to be cal-
culated by an observer, since it mixes two distinct times, ¢ and ¢+h, and two distinct locations, p(t)
and p(t+h).

2- The difference Eul(t+h,p(t+h)) — Eul(t,p(t)) can be impossible: E.g. if ul = & is a vector field
in a “non planar surface considered on its own” (manifold) then &ul(t+h, p(t+h)) and Eul(t,p(t)) don’t
belong to the same (tangent) vector space, so the difference @W(t+h, p(t+h)) — @W(t, p(t)) is meaningless.
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53 9.1. Definition

9.1.2 ...Toward a solution (without ubiquity gift)...

To compare Eul(t+h,p(t+h)) and Eul(t,p(t)) (to get the evolution of &ul along a trajectory), you need
the duration h to get from ¢ to t+h and to move from p(t) to p(t+h). So, you must:
o take the value &ul(t,p;)) with you (for memory),
e move along the considered trajectory, and doing so, the value &ul(t,p;) has possibly changed to,
with 7 = t+h,
(®L).Euly)(pr) noted Euly(T,p-) (push-forward); (94)

e And now, at (7,p,;) where you are, you can compare the actual value &ul(r,p,) with the value
Euly. (T, pr) you arrived with (the transported memory), thus the difference

Eul (Ta pT) - guzt* (Ta pT) (95)

is meaningful for a human being since it is computed at a unique time 7 and at a unique point p, (no
gift of ubiquity required).

—

—‘;t(ér P*)
W (?t)

&k

Figure 9.1: To compute with &ul = W a (Eulerian) vector field: At t define the vector field ; in €2
by W;(p;) := (¢, p:). The (spatial) curve ¢; : s — p = ¢i(s) in € is an integral curve of W, i.e. satisfies
¢’ (8) = Wi (ce(s)). ¢ is transformed by ®L into the (spatial) curve ¢, = ®Locs : s = pr = ¢ (8)=PL (ci(s))
in Q,; Hence ¢,’(s) = d®%(p;).c'(s) = d®L (p;). @, (pr) =204 B, (1, p,) is the tangent vector at ¢, at p,
(push-forward). Thus the difference @ (7, p;) — W (7, pr) can be computed by a human being, i.e. without
ubiquity gift.

9.1.3 ... The Lie derivative, first definition

Motion ® : (t, Ryj) — p(t) = B(t, Ry ), Eulerian velocity given by 4(t, p(t)) = %(t, Ry;) (velocity of Ry,
at t). Eulerian function &ul, and Euly(p;) := Eul(t,p;), and Eulps (T, pr) = ((PL).Euly)(p,), cf. (9.4).

Definition 9.1 The Lie derivative Lz&ul along ¥ of an Eulerian function &ul is the Eulerian function

LiEul defined by, at ¢ at p, := p(t) = ®(t, Ry),

_ t _
£178ul(t,pt) — lim &Llf(pr) ((@T)*&th)(pf) — lim Sul(T,p,.) E'U’lt*(7—7p7’).

Tt T—1 Tt T—1

(9.6)

Interpretation: Lz&ul measures the rate of change of ful along a trajectory:

e &ul(t,p;) is the value of &ul at T at p,, see figure with &ul = 0.

o Culyi(1,pr) = ((BL).Euly)(T,pr) is exclusively strain related (kinematic): It is the memory trans-
ported by the flow.

In other words, with g defined by
9(1) = ((27)+Euly) (p(7)) (9.7)

(in particular g(t) = Euli(pt)):
9(7) — 9(#) aiso written  d((®7)+Euly)(p(7))

Ls&ul(t,p) == ¢'(t) = lim p— o - (9.8)

Remark 9.2 More precise definition, as in (2.3)):
Ls&ul(t,pr) == ((t, py), Loul(t,p;)) (pointed function at (¢,p;)), (9.9)
And, to lighten the notation, £z&ul(t, p;) ="°%d Ly&ul(t, p;) (second component of L&ul(t, py)). oa
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54 9.2. Lie derivative of a scalar function

9.1.4 A more general definition

The rate in has to be slightly modified to be adequate in all situations: Eul(T,p;) — Euly (7, p,) is
computed at (7, p,) which moves as 7 — ¢, and on a “non-planar manifold” this is problematic (the tangent
plane changes with 7). The “natural” definition is to arrive with the memory (you can’t rejuvenate):

Definition 9.3 The Lie derivative Lz&ul of an Eulerian function &ul along @ is the Eulerian function
Liz&ul defined by, at t at p; = ®p,, (1),

Euly(pe) — (P§")Euly—p(pr) _ iy Sle(pe) — (27 Euly (py)

9.10
h Tt t—T ( )

sEul(t =i
ngu ( apt) hli&)
(The rate is calculated at (¢,p;), and a human being can’t rejuvenate so he takes h > 0, i.e. 7 < t.)

In other words, with g defined by

g9(r) = ((®7)Eul)(pt) (9.11)
(in particular g(t) = Eul(t, p;)):
£g€ul(t,pt) = g’(t) — 71—113 @ — 71_11{15 @ also vgitten d((q)z—)zcj’ftlr)(pt) ‘T:t. (9.12)

Here the observer must: _
e At 7 =t—h at p(1) = p(t—h) = ®p, (t—h), take the value Eul(7,p(7)) (memory),
e move along the trajectory 51%@,

e once at t at p; = ®p, (t), the memory turned into ((®7).Eul.)(pt),
e which can be compared with &ul(t, p;) without any ubiquity gift.

Exercice 9.4 Prove: and (9.10) are equivalent.

t *Eu —&u
Answer. With (®},,)" (P} ) = I, 1@) gives Lz&ul(t,p:) = limp_o (Pin)”2 l(t’:” Bule(tpe)
limh—>0 (¢§7h>*Eulti_h})fpt)igult(pt) = limh—m gult(pt>7((q)§7hhy>*£ultih)<pt), and use (<I>§7h)* = ((bi_h)*. I.l

9.1.5 Equivalent definition (differential geometry)

Definition 9.5 The Lie derivative of a Eulerian function &ul along a flow of Eulerian velocity ¢ is the
Eulerian function £z&ul defined at (¢, p;) by

(@5) Eulr)(pe) = Eultopr) _ yp (Bhn) Edlin)(pe) = Eulllope) g
T —1 h—0 h

Lzul(t,pt) = l1_)mt
In other words, with ¢ defined by
(1) = ((P7)"&ul:)(pr) (9.14)
(in particular g(t) = &ul(t, p)):

M also vgitten d((@;)*gulT)(pt)

Lz&ul(t,py) == §'(t) = lim ) 9.15
sbul(t,pi) = g'(8) = Iim =—— dr |r=t 913
Exercice 9.6 Prove: (9.10) and (9.13)) are equivalent.
t x _&u
Answer. li also reads Lz&ul(t,p:) = limp—o @y _n) sult:h)(m) & zt(pt)7 and (®_,)*.(®1"), = I. =

9.2 Lie derivative of a scalar function
Let f be a C! Eulerian scalar valued function. With (®:="), f, 1 (p;) = fi_n(p(t—h)), cf. (6.10), we get

Laf(tpe) g% ft:p0) _f(fl_h’p(t_h)), ie. | Lof = %{ - % +df. (9.16)

So, for scalar functions, the Lie derivative is the material derivative.

Interpretation: L;f measures the rate of change of f along a trajectory.
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55 9.3. Lie derivative of a vector field

Proposition 9.7 L;f = 0 iff f is constant along any trajectory (the real value is the memory value):

»Cﬁf =0 — Vth € [thT]a (q):*)ft(p'r) = f(tap(t)) when pr = @fr(pt)a (917)

ie. iff f(t,p(t)) = f(to,ps,) when p(t) = ®%(t,py,), i.e. iff f let itself be carried by the flow (unchanged).

Proof. Let p(t) = E)(t,Pobj) = p, for all ¢, so p(1) = &)(T, Ryj) =pr = <I>§+h(pt) O (1, ).
D If fr = (90, ,)ufe, then fr(pr) = fu(pe), thus lim, _,, {EPEVTEPE) — o that 45, 2F = 0,

=: If Df = 0 then f(,p(t)) is a constant function on the trajectory ¢t — ®(¢, Ry ), for any particle Ry,
so f(r.p(7)) = £(t,pr) when p(r) = @5 (pe), that is, f(7,pr) = (®},))fe(pr)-

2

Exercice 9.8 Prove: Ls(Lsf) = 2 = &L 4 2d(20).5+ d2f(5,7) + df (L + di).
Answer. See . n

9.3 Lie derivative of a vector field
9.3.1 Formula
Proposition 9.9 Let @ be a C! (Eulerian) vector field. We have

Dw ow
L0 = ?It“ — dvd ai;’ + AT — A (9.18)
So the Lie derivative is not reduced to the material denvatzve ( unless d = 0, i.e. unless ¥ is uniform):

The spatial variations dv of ¥ influences the rate of stress: ¥ tr1es to bend W (which is expected).

Proof. Here (9.14) reads g(r) = d®.(p,)~ (7, p(7)), and (9.15) reads g'(t) = Lzw(t, p(t)). Since
W(r,p(7)) = dP7(pe).g(7) = d®* (7, p1).G(7) we get

irpen = B epy o _aw  +aee). gl

d®*(7,p) =t d(7,p(7)) Fi(ps)  Lgw(r,p(T))

(9.19)
dv(7,p(7)).d®t (7,pt)

Thus 2E(t, p,) = dvi(t, p;).d(t, pe) + I.Lx0(t, py), thus (9.18).

Quantification: Basis (€;), U= ), vi€;, & = }_, wi€;, dv.€; = >, v;);€;, di.€; = >, w;;€; Then

" Qw; _, . ﬂ
Lz0 = (;Lt) €; + Z W[V €; — Z V)W, ;- (9.20)
i=1 i,j=1 i,j=1
So, with [] := []j&,
. D& |, 0w i
[Low] =[] = [dol.[d] | (= [5;]+ [dw.7] — [do].[]). (9.21)
(And [dw.5] = [d].[7].) Duality notations: Lo = Y, %%°¢; + Y, w01 — 3, vl wl ;.

9.3.2 Interpretation: Flow resistance measurement

Proposition 9.10 ®* is supposed to be a C? motion and a C' diffeomorphism in space, and 1 is a
vector field.

Ly =0 <<= Vte]t,T], ¥ = (BP).t,. (9.22)
ie, 2% = dyai < the actual vector W(t,p(t)) is equal to F{(ps,). Wy, (pry) = Wie«(t,p(t)) the deformed
vector by the flow, see ﬁgure So: The Lie derivative Lzw vanishes iff W does not resist the flow (let

itself be deformed by the flow), i.e. iff W(t, p:) = Wy« (t, pt).
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56 9.4. FEzamples

Proof. We have Ly = 2% — d.i and 2 (t py,) = do(t, p(t

). f. (3.33).

< (derivation): Suppose W(t,p(t)) = Fto(t,pfo) W(ty, pr,) when p(t = ®(p;,). Then %“E(t,p(t)) =

DL (¢, piy) (b, piy) = (dﬁ(t,p(t))-Ff“(pro))~(Ftt°(pm) A(t,p(1)) = du(t,p(t)).d(t, p(t)), thus 7 —

dv. = 0. (See proposition )
= (integration): Suppose

~—
~

)~Lad(t, p(t)) (= pull-back (2))*w(ty, py,
t )

when p(t) = ®%(t, py, ); Sow(tp D) =F 2 (1 p(1) = 257 (1, pyy) S+ L (p1y) S (1) =
di(t, p(t)).-F* (py,)-f(t) + F°(pi)-f () = du(t,p(t)-w(t,p(t) + F (). /() =" i (t,p(t) +
Flo (pto)_f (t) for all t; Thus F{(py,).f'(t) = 0, thus f'(t) = 0 (because ®* is a diffeomorphism), thus
f(t) = flto), ie. @ = (@?’)*wt{), for all ¢. oa

9.3.3 Autonomous Lie derivative and Lie bracket

The Lie bracket of two vector fields ¢ and & is
[3,0] = di.¥ — dv.i " 0. (9.23)
And L% = [v, 0] is called the autonomous Lie derivative of @ along . Thus

L od ., . 0w
Lyh = B + [0,d] = e + L0 (9.24)

NB: L% is used when et 1 are stationary vector fields, thus does not concern objectivity: A stationary
vector field in a referential is not necessary stationary in another (moving) referential.

9.4 Examples
9.4.1 Lie Derivative of a vector field along itself
1} with o = ¥ gives Ly7 = %f. In particular, if 7 is a stationary vector field then £37 = 0 (= [7,7]).

9.4.2 Lie derivative along a uniform flow

Here dv = 0, thus
Dw oW
s = — = "2 4 45 (when dif = 0). 2
L0 Dt o + dw.7 (when dv = 0) (9.25)

Here the flow is rectilinear (dv = 0): there is no curvature (of the flow) to influence the stress on .

Moreover, if @ is stationary, that is %—”“t” =0, then Lz = dw.v = the directional derivative % of the

vector field w in the direction 7.

9.4.3 Lie derivative of a uniform vector field

Here dui(t,p) = 0, thus

ow
L0 = a0 dv.d  (when dw = 0), (9.26)
thus the stress on  is due to the space variations of v. Moreover, is w0 is stationary then Lzw = —dv..

9.4.4 TUniaxial stretch of an elastic material

e Strain. With [0P]; = [X],z = (if) with & > 0, ¢ > fo, p(t) = B (t, P) and [7]z = [Op(1)] =

OB ),
g

& &
) = <1+€(t to) >, di(t,p) = <1+€(6—to) 8> (independent of p).

e Eulerian velocity 9(t,p) =
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57 9.4. FEzamples

o Deformation gradient (independent of P), with x, = {(t—tp):
I+re O 10
_ to t _
F, = dd" (P) = ( 0 1>—I+/~€t(0 0). (9.28)

Infinitesimal strain tensor, with FI = F; here:

1 0
gzo(P):Ft_I:K,t <0 O)_Et' (9‘29)

o Stress. Constitutive law = Linear isotropic elasticity:

A2 0
- nl
Cauchy stress vector T on a surface at p with normal 7;(p) = <n2> =7
oo o (A 2p)m oy A2 g
Ti(p) = g, = Ky ( iy = £(t—to) g =T;. (9.31)

e Push-forwards: T}, (p,,) = 0, thus Ftﬂ+h(pf0).ﬁ0 (py,) = 0.
o Lie derivative:

‘Cﬁf(tﬁa p&)) = lim

T;(pt) — Ftto (ptO)'T;O (o) = ((/\+2u)n1> (rate of stress at (o, py,))- (9.32)

t—to t—1 ANy
- o - . 1
e Generic computation with LT = %—f + dT.v — do.T: (9.31) gives % = ¢ ()\—;252)71 ) and
= I —5 0 (A+2p) nt 2t—t) [ (A+2p)nt .
dT' = 0 and dv;.T; = <1+5(6 to) 0) L(t—tp) < A2 ) = Trea—b) ( 0 > In particular,

- . - 1
di(to, pyy).T (to, pr,) = 0. Thus LT (to, pr,) =& (O\&Q:Q) " ) = rate of stress at the initial (%o, py, ).

9.4.5 Simple shear of an elastic material

Fixed Euclidean basis (€1, €2) in R? at all time. Initial configuration Q;, = [0, L1]®][0, La]. Initial position:
W Oi% = [X)e = (‘;5) —noted ¥ Position at t: p, = B (py,), [#]je = [Op(t)]|e =" Z. Let
& € R*, and

= <§:§3§f§§§> - <§+5(”0)Y> - (é*“(t)y> where r(t) = £(t—tp) = . (9.33)

e Deformation gradient:

d(I)’f(P):(é ';t>:Fttﬂ, thus Ff“—[:nt(g é) (9.34)

e Lagrangian velocity X_/;(pto) = (gy>, thus df/’t(pto) — (8 g)

e Eulerian velocity 7;(p¢) = Vi(py,) = (gy>, thus dv,(p,) = (8 f)) (We check that di.F = dV.)

o Infinitesimal strain tensor:

FtO(P)—I-‘r(FtO(P)—I)T 0 1 noted
to _t t — to
g (P)= 5 = 2 L o) =& g, (9.35)
e Stress. Constitutive law, usual linear isotropic elasticity (requires a Euclidean dot product):
t = \T I+2ue, = 01 9.36
g( ?pt) - r(gt) + /’Lgt - /J’h:t 1 O gt ( - )
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58 9.4. FEzamples

Cauchy stress vector T'(t,p;) (at t at p;) on a surface at p with normal 77 (p) = (?LQ) =n:

l

2 2 o
¢ =0, = ( Zl) = pé&(t—ty) ( Zl) =T(t) (stressindependent of p;). (9.37)

o Lie derivative, with ﬁo = 0:

. a _ o r 2
LiT (o, pr,) = tant}) Tilpe) ]zt_(ZZOtO)'TtO (Ps) = pé < Zl> (rate of stress at (o, py,))- (9.38)

- o - - - 2 ~
e Generic computation: LT = %—f +dT.v— dv.T. (9.37) gives %—f(t,p) = ué ( Zl) and dT = 0. With

— - N 2
dy,. Ty, = 0. Thus LT (to, py,) = pé ( Zl )

9.4.6 Shear flow
Stationary shear field, see (5.11) with a = 0 and # = 0 (or see (9.33) with £ = A):

. vl (z,y) = Ny, B} 0 A
U(x,y) = { () =0, dv(z,y) = (0 O) . (9.39)

0

measures “the resistance to deformation due to the flow”. See figure the virtual vector W, (t,p) =
d®(ty, py, ). W(ty, pr,) being the vector that would have let itself be carried by the flow (the push-forward).

Let w(t,p) = (2) = W(ty, py,) (constant in time and uniform in space). Then L0 = —d0.40 = (_)‘b)

wiE,

& f
Py o tI!I:" %] p—Cr_n‘ . (t)

o

Figure 9.2: Shear flow, cf. (9.39), with @ constant and uniform. Lz measures the resistance to the
deformation.

9.4.7 Spin
Rotating flow: Continuing (|5.14):
, _ 0 -1 T S _ 0 -1\ _
Uz, y) =w (1 0 ) (y) , di(z,y) =w <1 0 ) = w Rot(7/2). (9.40)
In particular d?v = 0. With @ = @, constant and uniform we get
LWy = —di(p). Wy = —w Rot(m/2) .0y (L (Z) = ). (9.41)

gives “the force at which w refuses to turn with the flow”.
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59 9.5. Lie derivative of a differential form

9.4.8 Second order Lie derivative

Exercice 9.11 Let ¥, be C2 and g(t) = (®LW)(t,p) = d®L(p,) L. @(7, p()) when p(1) = ®(7,p,).

We have Lyb(t, p(t)) =€) 7/(¢). Prove Ls(Ls®)(t, p(t)) = §" (1), i.e.:
.. D*@ Dw  D@dv) , . ..
Lz(Lz0) = D 2dv. ST T + dV.dvw
0% ow ow L ov Ov (9.42)
= e + 2d—— oY — 2dv.— o dw.a = da.w

+ (d*8.9).T + dib.dT.T — 2dv.dib. T — (d*0.7).40 + dv.dv.ab

Answer. D
0 D(E% _ di.d -
Lo(Loi) = 2 (g;“’) — 4. (Ls) = w - dﬁ.(llt” — d5.5)
D*%  D(dv) D6 D&
DE ~  Di - dvﬁfd D—terfude,
with (2.26)-@.27)-@.28).

9.5 Lie derivative of a differential form

When the Lie derivative of a vector field @ cannot be obtained by direct measurements, you need to use
a “measuring device” (Germain: To know the weight of a suitcase you have to lift it: You use work).

Here we consider a measuring device which is a differential form «. So, if w is a vector field then
f = a.¥ is a scalar function, and gives Lgz(a.wW) = Dlad) _ Do iy g, Dt , thus

Dt Dt -
D Dw
Eg(a.u')')—f(;w—i—ade—l—a%—ade (9.43)
—(Lya). @ =o. LW

Definition 9.12 Let «a be a differential form. The Lie derivative of « along ¥/ is the differential form

Do Oa
SO = —— — 44
Lyo Dt—i—adv at—l—dav—i—adv (9.44)

(An equivalent definition is given at (9.50).) Le., for all vector field &,

D
Lzl := ?(:.u_i +a.diaw (= 88—? W+ (da.0). 4 + o.dv.b). (9.45)

The definition of Lza, cf. (9.44), immediately gives the “derivation property”

Li(aW) = (Lza) W + a.(Lyw) (i.e. Liis a derivation). (9.46)
Quantification: Relative to a basis (€;) and with [-] := [],
Do . Oa ~
[Lza] = [Dt] + [a].[d7] | (row matrix) = [815] [de.] + [a].[dD]. (9.47)
Thus
Oa

[Load] = [Laa].[@] = [de.3).[d@] + [o].[d7].[@]. (9.48)

S0 +

Exercice 9.13 Prove (9.47) with components. And prove [da.t] = [§]7.[da]? (row matrix), thus

[dee.d).[] = [6]7.[do] " [&] = [@]T-[de).[7].

Answer. Basis (€;), dual basis (me;), thus - gives [Lza] = [22] 4 [add]. Let a = Y, aimei,
T = 3, 0i€, di = 3, ;€ ® Te; (tensorlal writing convenient for calculations), i.e. [d¥]jz = [v;;], thus
.dv =), v jTej, thus [.dV]|x, = [&]|x, .[dV]|e (row matrix). And da =}, @) jTei @ Tej, i.e. [daljr, = [a);],
gives da.V = 7,5 0|j0jTe; = D, ViQj|;Tej, and [da.v]|,, is a row matrix (da.v is a differential form), thus
(dj, = (B2 dall, . (Or compute (dos).is = 3, cvgyvyws = [i] e[ )¢ = (612 dol i)
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60 9.6. Incompatibility with Riesz representation vectors

Exercice 9.14 Let a be a differential form, and let oi;(p) := a(t,p). Prove, when ®¥ is a diffeomorphism,
Lya=0 <<= Vte|t,T], ay=(D°).ay. (9.49)

Le.: 22 = —0.di <= ay(pr) = auy (p1,)-F° (pr,) " for all ¢, when p, = @ (py,).

Answer < I ar(p(t) = aw(po)-Fi(py) ", then a(t,p(t)).F(t,py) = u(psy), thus 22(t,p:).F{ (py,) +
at(pt) (t py) = 0, thus %(t,p(t)).FttO(pfO) + at(pt).dz')'(t,pt).Ffo(pm) = 0, thus Lza = 0, since <I>E° is a
dlffeomorphlsm

=i If B(t) 1= () wcrsy (p1y) = e (p(t))-F{ (p1,) (pull-back at (fo, py,)), then B(t) = a(t, p(t)).F(t,py,), thus
B'(t) = %(t,pt).Ft“ (p) + oa(t,pt).dﬂ'(t,pt)‘Ft"( ) = 0 (hypothesis Lza = 0), thus B(t) = B(t) = a4, (p,). ==

Remark 9.15 A definition equivalent to is, cf. -,
() ar(pe) — Oét(Pt) ar (pr).d®%(pe) — cu(pr)

Loaltpe) = lg T—1 B llg%f T—1 ) (9.50)
noted D(®7ar(pt))  noted D(a7(pr)) (= D(a-(pr)-d®7(pr)) ) '
Dr |r=t Dt =t Dt lr=t’
Indeed, if 3(7) = (PL)*a, (pr) = ar(pr).dPL(p:), then 8'(7) and then T = ¢ give (9.44). o’
Exercice 9.16 ¥ and o being C?, prove:
0%a oo loJe} ov odv
(Lo ey 9 42—, - ik
Lolloo) = G + 25,0+ 25, di+ dagp a2 (9.51)

+ (d*a.9).T + do.(dV.7) + 2(do.¥).dT + a.(d*0.7) + (o.dv).dv.
Answer. gives

Ls(Lsa) = Ly (‘?;;) + Lo(dewT) + L(c.dT)
_ d*a da , O« d(da.v) N o o O(a.dv) o .
= oz + da v+ e dv + e + d(da.v).¥ + (da.v).dv + 5 + d(.d?).¥ + (.dv).dv
%« o Oa oda ov PR o N
= 28 +d— o v+ TR .dv + T U+ da e + (d°a.7).9 + do.(dv.9) + (do.V).dv
oo odv 2,
+Ed+ W—l—(dav)dv—l—advv—l—(adv)d
o oo oo 8" 9 L dv
= o2 + da v+ QE .dU + da Bt + (d*a.9).7 + da.(dv.9) + 2(da.v).dv + a. T

+ a.(d*¥.7) + (a.dD).dv.

9.6 Incompatibility with Riesz representation vectors

The Lie derivative has nothing to do with any inner dot product (the Lie derivative does not compare
two vectors, contrary to a Cauchy type approach).

Here we introduce a Euclidean dot product (-,-), and show that the Lie derivative of a linear form «
is not trivially deduced from the Lie derivative of a Riesz representation vector of « (which one?). (Same
issue as at §[7.2])

Let « be a Eulerian differential form; Then let @,(¢,p) € R” be the (-, -)g-Riesz representation vector
of the linear form a(t,p) € R™*: So, for all Eulerian vector field @,

il = (G, @), (= iy W), (9.52)

which means «(t, p).W(t, p) = (d4(t, p), W(t,p)), at all adm1s51ble (t,p). This defines the Eulerian vector
field @, (not intrinsic to a: @y depends on the choice of (-, )4, cf. -

Proposition 9.17 For all 7,1 € R™,

oo od, L L oL Do Dad,
n = ( Btg W)y, (da.v).d = (ddy.U,w0)g, D= (Ttg’w)g' (9.53)
Thus
Lyob = (Lydy, ©)g + (dg, (di+di").5),, and ]cga.wﬂcgag,w)g\ in general. (9.54)

So Lyd, is not the Riesz representation vector of Lyo (but for solid body motions). (Expected: A Lie
derivative is covariant objective, see §|11.4, and the use of an inner dot product ruins this objectivity.)
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61 9.7. Lie derivative of a tensor

Proof. A Euclidean dot product g(-,-) is bilinear constant and uniform, thus:
oa
( ddg

T @)y + (dg, %)g’ with a.% = (dg, %)g, thus we are left

oW = (A4, W), gives %.u’i+ a.%* =
with 22 .5 = (% ), for all .

aw = (dg,w), gives d(a.w).7 = d(dg, w),.v for all ¥, @, thus (da 0).0 + a.(dw.v) = (day.v,w), +
(dg, dw.v)g, with a.(dW.T) = (dg, dW.V),, thus we are left w1th (da.¥). W = (ddg.U, W),.

Thus % W= (%afg,w)g

Thus (Lya). = 2246 + a.dvd = (252, @), + (d@g, dv.0), = (Lyiiy + di.dg, By + (0T g, D)y dn

Remark 9.18 Chorus: a “differential form” (measuring instrument, covariant) should not be confused
with a “vector field” (object to be measured, contravariant); Thus, the use of a dot product (which one?)
and the Riesz representation theorem should be restricted for computational purposes, after an objective
equation has been established. See also remark un

9.7 Lie derivative of a tensor

The Lie derivative of any tensor of order > 2 is defined thanks to

Li(T®S)=(L;iT)®S+T®(LyS) (derivation formula). (9.55)

o\ %
(Or direct definition: LT (ty, py,) = %,W‘t:to)-

9.7.1 Lie derivative of a mixed tensor

Let T,, € T1(Q), and T, is called a mixed tensor; Its Lie derivative, called the Jaumann derivative, is
given by

DT _ g51, 4+ Ty did| = 250 4 T, 5 — 45T, + T d (9.56)
Dt ot

Can be checked with an elementary tensor 7' = W ® a: we have d(ﬁ@ ). 0 = (dW.7) @ a+ W ® (da.v) and

(V) @a = dv.(WRa), and W (a.dv) = (WQ«).dv , thus gives Lz(W@a) = (L7W0) @a+w0@ (L)

=% Qo+ (dw.d) ® o — (dﬁ.w)®a+w®%—%+w®(da.v)+w®(adm

= 2080 4 (4§ @ a).F — di.(F ® @) + (¥ @ a).dd.

LTy, =

Quantification. Relative to a basis (€;):

DTW’L

[L:D‘Tm] = [ Dt

| — [d6).[Ton] + [Tin]-[d7] (9.57)

(the signs F are mixed). “Mixed” also refers to positions of indices (up and down with duality notations):
T =31 211" € @ ¢/ with the dual basis (¢'), i.e. [Tn]je = [T7].

Exercice 9.19 With components, prove (9.57)).

Answer. %= =3 agt]ez ®e, dlm = 3, T jnéi ® & @ ", T = 3,0'€, di = 3, v};&; ® ¢, thus
AT v =3 le“cvka@ej dv. Ty, —Z v‘kT & ®el, T dv—z Tzkv@(?i@ej. e

ijk ijk ijk

9.7.2 Lie derivative of a up-tensor

Recall: If L € L(E; F) (a linear map) then its adjoint L* € L(F*; E*) is defined by, cf. §[A13]

Vme F*, [L*m:=m.L]| ie, Vm,ie (F*xE), (L*.m).i=m.L.i. (9.58)
(There is no inner dot product involved here.) In particular, do*.m = m.d7 for all m € Rp*, ie.
(dv*.m).d = (m.dv).4 = m.(dv.4) for all m € RP* and all @ € R}.

Let T, € TZ(Q), and T, is called a up tensor; Its Lie derivative is called the upper-convected (Maxwell)
derivative or the Oldroyd derivative and is given by

DTw | o,

LsT, = T, — T,,.dv" | =
Dt ot

¥ — dv.T, — T,,.div". (9.59)

Can be checked with an elementary tensor T'= @ ® @ and Lz(td @ W) = (Ly1) @ W+ U @ (LyW).
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62 9.7. Lie derivative of a tensor

Quantification. Relative to a basis (€;):

DT,
Dt

[£5Tu) = [5,"] = [d0).[T] = [T].[do]" (9.60)

“up” also refers to positions of indices (with duality notations): T, = Y.7',_,T"¢; ® €; with the dual
basis ('), i.e. [T0]je = [T¥].

Exercice 9.20 With components, prove (9.59)).

ar AT 5 o>
Answer. T =37, “5 €0, dTu =35

thus dT,,.T = Zi].k T‘ikjvké} Qe diT, =Y

ij o oo koo i o i o j - J 0o
TRéi®eRe’, v =3 ,v'e, dv =), v;&®e, di" =3, v)e'®e;

j )
i mkj 2 =, o ik, j _i - n
ik VRT € @ €, Tudv™ =32, T e’ ® €. .

9.7.3 Lie derivative of a down-tensor

Let T, € T9(Q), and Ty is called a down tensor; The Lie derivative is called the lower-convected Maxwell
derivative and is given by

DT, T,
LTy = Ttd + Ty di + dv* Ty | = aTd + dT.5 + Ty.dv + dv* T (9.61)

Can be checked with an elementary tensor T = ¢ ® m and Lz({ @ m) = (Lzl) @ m + £ ® (Lzm).

Quantification. Relative to a basis (€;):

DTy

[LoTal = [,

|+ [Tu).[d0) + [d0)".[T). (9-62)
“down” also refers to positions of indices (with duality notations): T, = >

i7j:1/1—1£jei ® e/ with the dual
basis (e'), L.e. [Tu)je = [T3]-

Exercice 9.21 With components, prove (9.62).

OTs5 i

Answer. 21 = 2 o€ ®el, dTy =3
thus dT4.0 =)

ol ed k = _ iz A7 — P2 el At — R
T;jine' ®e’Qe™, 7= v'&, di = i Vl;€i®e’, U = > i Vi€ @€,
k i — —% _
Tikv‘je ® €5, dv"Tqg =)

ijk

ki o - kgn  ioo o u
ik Tigievte’ ® €, Td.dv—zijk ik ViTkie’ ® €. an

Example 9.22 Let g = (-,-), € T9() be a constant and uniform metric (a unique inner dot product

for all ¢,p, e.g., a Euclidean dot product at all t). Then %ﬁ = 0, thus L3g = 0 + ¢.dv + dv*.g, thus

[L3g] = [g]-1d] + [d]".[g].
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Part IV
Velocity-addition formula

10 Change of referential and velocity-addition formula

10.0 Issue and result (summary)

Issue: The velocity-addition formula is usually written (classical mechanics)
Ua = Up + U, 1i.e. absolute velocity = (drive+relative) velocities, (10.1)

where ¥4 and ©p being described by an observer A in his referential R4 = (Oa, (/YZ)) and i being
described by an observer B in his referential R = (Op, (B;)). Hence (10.1) is problematic (inconsistent):
e U4 and 7Up are quantified in the basis (A4;), e.g. in foot/s, chosen by the absolute observer,

—

e U is quantified in the another basis (B;), e.g. in metre/s, chosen by the relative observer;
Thus, in (10.1)), U5 + 9p adds metre/s and foot/s... relative to different bases... Absurd. So:

Question: What are we missing (and how should ((10.1) be written, or what does it really mean)?
Answer: We miss a link = the translator between A and B:

Summary (full details in the following paragraphs): Olj is an object and d (t, Rowj) € [t1,t2] x Obj —

p(t) = (¢, Ry;) € R™ is its motion. It is quantified by A in his referential R4 thanks to @4 : (¢, Royj) —
Za(t) = Galt, Royj) := [04®(t, R)bj)]lg (stored components in (4;)), and by B in his referential R thanks
—_— =
to gg : (t, Ryy) — B(t) = (L, Ry) = [OB(I)(taF)Osz)]‘g (stored components in (B;)). At any t, the
translator ©; connects T4, := Z4(t) = Ga(t, Buy) and Tpy = Tp(t) = G (t, By ):
Tar = Ou(Zpe), so Galt, Roy) = O(t, B (t, Fog))- (10.2)

Thus (time differentiation)

[[%) 00, . 0y,
ShtRy) = (6@t Ry)  +dO( Gt Ry))- S (4 Boy) (10.3)
————

absolute velocity v (¢, Za;)  drive velocity up(t,Za:)  translated velocity Uz« (t, Zat)

Which gives “the velocity-addition formula™ For observer A,

(64 =t + 0. | where Tpp(ar) = dOy(T:).Tisi (Fpe) at Tar = Oy(dm), (10.4)

i.e.: Absolute velocity = Drive velocity + Translated relative velocity.

Example 10.1 e Translation motion of Rp in R4 with Ei = )\ffi (e.g. A ~ 3.28 when /L in foot and BZ
in meter). Here d©; = AI, hence tiat(Zat) = Upt(Zat) + A Upt(Zp:), which is the expected relation (“sum
of the velocities with the good units”, e.g. foot /s).
e “Rotation” of Rp in Ra: See §[10.12| (motion of the Earth around the Sun). oa
Then 1} gives (time differentiation), with D(D%) (t,7p(t)) = 8(;87?) (t,:E'Bt)—i-d(%—(?)(t,th).ﬁB(t,th),
and in the classical case d?0; =0,
o 0?0 0, _ . . _ ., 0%@
Far@ae) = (b @) +2d (b Epe) U (Fne) + dOy(Fpr). (1, By) 5 (10.5)
——— ot ot ot

Drive acc. Yp(t,Za:)  Coriolis acc. ¢ (t,Za:) Translated acc. ¥p«(t, Zat)

Absolute acc.

Which gives “the acceleration-addition formula” For observer A,

,  where Vg (Zar) = dOy(ZTpt) Vi (Tp) at Tay = Ou(Tpy),,

(94 =4p +7c + 7

(10.6)
i.e.: Absolute acceleration = (Drive 4 Coriolis + Translated relative) accelerations.

And D (t,Zp:) = Upe(O4(Tpr)) gives d(Z2)(t,Tpt))) = dipe(O¢(Tpe)).dO(Tpe), thus For(Zar) =
2 dtpi(Zat). Ui« (Zar), thus, e.g. for the motion of the Earth around the Sun,

Yot = 2Wpt X UBts. (10.7)
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64 10.1. Referentials and “matriz motions”

10.1 Referentials and “matrix motions”
10.1.1 Motion of Ol in our classical Universe

Classical mechanics framework: Time and space are decoupled, all the observers share the same time
origin and unit (e.g. the second) and live in “our Universe” modeled as the affine space R? with its usual

associated vector space R? (bi-point vectors). More generally, the affine space is R™ associated to the
vector space R”, n € {1,2,3}.
Obj is an object. Its (regular) motion (in our Universe) during a time interval [t1, ¢2] is the function

~ [thtg} X O@ — R"
3 - (10.8)
(t, Royj) — pr = ®(t, Ryyj) = position at ¢ of the particle Ry;.

With Q, = ®(¢, Obj) C R", its Eulerian velocities and accelerations vector fields are the functions
and 7 : Uyepy, 1, ({t} x Q) — R™ defined by, at ¢ at p, = ®(t, Ry;),

. 0P . 9P
U(t,pe) = E(t’%bj) and (t,pt) = ﬁ(t,%@'). (10.9)

10.1.2 Absolute and relative referentials ...

e An observer A, called the absolute observer, chooses a rigid object ObR4 in the Universe, chooses four
particles thich are at t at Oay, Pa1e, Past, Paze € ObjR4 s.t. the bi-point vectors A = Opr Py make a
basis in R™ at ¢. He has thus built his (Cartesian) referential Ra; = (Oas, (Aiz)) at ¢, called the absolute

—

referential at t. And Ra, is supposed fixed relative to A, so is written R4 = (Oa, (4;)) when used by A.
E.g. OhjR4 is the “Sun extended to infinity”, and at ¢, Oa; is the position of the center of the Sun in
the Universe and (A;;) = (OatPast) is a Euclidean basis in foot fixed relative to stars.

e An observer B, called the relative observer, proceeds similarly: He builds his Cartesian referential

—

Rp: = (Opy, (Byy)), called the relative referential, and written Rp = (Op, (B;)) when used by B.
E.g. ObjRg is the “Earth extended to infinity”, and at ¢, Op; is the position of the center of the Earth

=

and (Bj;) = (Op¢Pgit) is a Euclidean basis in metre fixed relative to the Earth.

10.1.3 ... Matrix representations of a vector ...
1 0

M, is the abstract vector space of n * 1 real column matrices and El =1 .| En = 0 makes
0 1

—

its canonical basis (E;) (with 0 and 1 the identity addition and multiplication elements in the field R).
In particular [Eit}lg =E; = [B’“}IE'

With the only purpose to know which observer builds column matrices, M, is called M;y(A) when
used by A and M,;y(B) when used by B. So, at ¢, a position p; € R™ is stored by A as the column matrix

—

in M,y given by the components x44; of the vector Oqp; = Z?:ﬁAtiAit, idem for B:

TAt1 IBt1
- b S . = e e .
LAt - — [OAtpt]‘A' = : S Mnl(A), and IBt ‘= [OBtpt]‘é = : S Mnl(B) (1010)
TAtn TBtn
10.1.4 ... Absolute and relative “motions” of Ol (quantification)

(10.10) defines the “absolute motion” @4 and the “relative motion” @ of Obj (matrix valued):

[tl, tg] X Obj — ./\/lnl(A)
D4 - — 10.11
- (t, Royj) — Zar = | Palt, Boy) := [Oa®(t, Boj)] 5 R AOE [OAP(t3]|,§» ot

[tl, tz] X Oly — Mnl(B)

Bs : —— (10.12)
(t, o) — ape = | Zp(t, Ioy) = [Op 2 (L, Foy)] 5 L () = [OBP(t;]\é
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65 10.1. Referentials and “matriz motions”

And (10.9) gives the “absolute” and “relative” velocities and accelerations of Iy, (column matrices):
g bj

N N = N - = - P
ta(t, Zae) := [U(t,pe)] 7| and  Fa(t, Zae) = [Y(t,pe)] 5, when  Zae := [Oapt], 1, (10.13)
— - Lo . . N
Up(t, Tpe) = [U(t,pe)]| 5| and  Fp(t,Ipe) := [(t,p)] |5, when g = [Oppi] 3. (10.14)

These definitions are consistent:

Proposition 10.2 ¥4 (t,Z4:) = %(t,Po@') (= Z4'(t)), and Up(t, Tpt) = aaif(t,PObj) (= Z'(t)).

Proof. Let Ai(t) := Ay, Oa(t) = Oa  Then [A(t)] ; = [imyso M]‘ n

: [Ai(t+0)] s— A 2 . BB, _ = : > / B
limy,_0 - = limp0 =5~ = 0 € My since Ay is fixed for A. And [OAi(t)]\A' =
[hmhﬁo M]‘A‘ — 1imh4)0 [OAz(t)OAz(t+h;]|K —_ limhﬁog _ (_)' c Mnl Since OAt iS ﬁxed

~ —>
for A. And <I><t Ry) = 0A<>+0A<> (t, By), thus [t Ruy)] 7 = [Oailt >]|A~+¢A<t Ry;), thus
da(t, #ar) =ECD [5(1, po)] 5 =D (921, Ry )] 5 = [Oas(1)] 5 + B2 Roy) = 0+ 22 (1, Ryy).  Idem

for B. un

Exercice 10.3 t is fixed. Let p € R™ (point), &y := [O—A];] i € My, i : R* — R" be a C1 vector

field in R™, and define @4 (Z4) := [& (p)]‘g (so @4 is a matrix ﬁeld in My). Prove: [dd(p )]‘A = diia(%a)
[

(endomorphism in Mu(A)), i.e. dia(Za).[w] 7 = [di(p )]Ig.[w}lg (= [dd(p).w ]IA) for all i € R".

Answer. A point p+hw € R" is stored by A as the matrix [O—A;) + hadl] x4 = [O_AI)?}\A + hld] ;= Za + h[w] 5
i 4 (Ba+h[@], ) —da(E d@(p+hd)]| z—[@(p)], 5 i(p+h@)—@(p)], 5

Thus dﬁA(fA)-[lﬁhg = limp_so Ta(Ea+ [wlhlA) Ta(Za) = limyo [iE(p w)]‘}? [@(p)], z = limyo w _

(limy, o LEHRD=CR] = [dii(p).1], x = [dii(p)], 5.[&], z, true for all .

Exercice 10.4 Call (; the transition matrix from (ff ) to (éit) at t. Prove T4y = [OAOBt]‘A’ + Q:.7Bt.

Answer. [7] 5 = Q. |x ] x for all 7 € R® (change of basis formula) gives Zar = [Oapt] 7 = [OaOst + Op:ipt] 3 =
[OAOBt]‘A [OBtpthA = [OAOBt]|A + Q. [OBtpt]|B [OAOBt]‘A + Qt.ZBt. ]

10.1.5 Motion of Rp ...
Particular case Obj = ObjRp in : The motion of ObjRg, also called the motion of Rp, is
~ [t1,t2] X ObjRg — R™
| { (1 Qrs) — @ = Bry (1, Q, ).
So the Eulerian velocity and acceleration of a particle Qr, € ObRp are, at t at ¢, = &JRB (t,Qry)s

8%‘3(@%) and 7 (t, q) = ;?B( t, Qry)- (10.16)

(10.15)

1_)7'?8 (ta Qt) =

10.1.6 ... Drive and static “motions of Rp”
The drive gp and static gs “motions” of Rp are the names given to @4 and g when Obj = ObjRp:
[t1,t2] X ObjRg — Mu(A)

P —————y 10.17
v (t,Qrs) — @p(t, Qrs) = [Oaq(t ; = [Oa®r, (t, Qrs)] 1 noted o (#), ( )
and
o R (10.18)
: — )
¥s Qrs — P5(Qrs) = [OBq(t ) 5= [OpPr, (t QRB)]‘B noted .

(Fs is independent of ¢ since Qr, is fixed in RB.) So the drive and static velocity of Qr, € ObjRp at t are

. . . J¢p . s
Up(t,4pt) = [Urs (tv(h)h 1= P (t POby) when ;s := [OAqthA'a

t
Us(t, Us) := [Urg (¢, qtﬂl =0 (null matrix since Qg, is fixed in Rp).

(10.19)

And the drive and static accelerations are ¥p (¢, 9pt) = [z (¢, qt)}lg = 8;%(75, Ry;) and 7s(t, %5) = 0.
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66 10.2. The translator Oy

Exercice 10.5 Why introduce @5 (static)?

Answer. You can’t confuse a particle Qr, with stored values: matrix yp: by A and matrix g5 by B. T

10.2 The translator O,
Definition 10.6 At ¢, the translator ©; connects the informations stored by A with that stored by B:

. . —_——>
o {MM(B) = Mu(d) } hen s = @s(Qrs) (= [OBPr, (t,Qry )] 5), and (10.20)

% = it = Ouik) e = @o(t, Qry) (= [Oadr, (t. Qr, )] 7)-

Le. ©; is the “translator at ¢ from B to A”, or the “inter-referential function at ¢ from Rp to R4”, i.e.
translates the “matrix position” stored by B to the corresponding “matrix position” stored by A. So, for

all Qr, € ObRg,
F01(Qrs) = O1(@(Qry)), L. [Poe = Oy o0 s | (10.21)

MuB) — Mud)
B = e = O4(ifs) = Ppe(F5 ' (iks))-

i.e.

Or:=@pro@s ' { (10.22)

E.g. [040pt] 7 = ©:([0p0pt],5) (for the particle Qo, chosen by B to be define his origin Op; at 1), so
[OAOBt]M = 0,(0) = position of Op; as stored by A at ¢. (10.23)
In other words, ©; is defined such that the following diagram commutes:

s = Ps(Qr, ) = localization of Qg, by B (10.24)

Qrs € ObjRg O,

k}

ot = Ppi(Qry ) = O+(gs) = localization at ¢ of Qr, by A.

Application to particles of Obj: Let p, := &)(t,PObj) = position at ¢t in the Universe of a particle

Ry € Obj. Let Qr, € OhRp be the particle which is at ¢ at ¢; = py, i.e. s.t. &)RB(L‘,QRB) = (f)(t,Pov), ie.
~ - ——— — . - P — .,
Qry = (Pry,) "' (pe)- So Zar = [Oapil x = [Oadi] x = 9pe and T, = [Oppi] 5 = [Opai] 5 = ¥s, and (|10.22)

gives
Tar = Ou(Tp1), e Gae(Roy) = OulFai(Roy)), e |Gar =010 Gl (10.25)

In other words, the diagram ((10.23) commutes with Obj, @p; and @a, in place of ObRg, Fs and Fp;.

10.3 The differential d©,, and push-forward of vector fields
Fix t and let ¢5 € Myu@B). Recall: ©; being supposed C?, the differential dO,(is) is defined by

MuB) — Mu@)

A0, (ifs) : i) — O, (i 10.26
() s — dO,(). s = lim 2BTDS) — O:(ik) (10:20
h—0 h
%
And if g : 'Mm(fj) /_\fbd(?) is a vector field in M,;3(B) then its push-forward by ©, is the vector
Yo — ws(is)

M) — Ma(A)

ﬁeld @t*u_fs = u_)'St* : . N N
Yot — Wsex(Upt)

} in Mu(A) defined by

u_)'St* (th) = d@t(gg)ws(g:g) when :Ith = @t(zZq) (1027)

Le., @se([0agi) 1) = 4005 1] )5 (1054i) ) for all Qr, € OWRs with v = B, (1, Qr,) € B,
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10.4 0O, is affine in classical mechanics
Proposition 10.7 t being fixed, ©; : Mu(B) — My(4) is affine: For all §js0, 51 € Mu(B) and all u € R,

O:((1—u)gso + uifsr) = (1—u)O¢(Ys0) + u O (%s1)- (10.28)
Thus
dO:(s0) noted d®©, is independent of s, (10.29)
and
O¢(ihk1) = O¢(¥s0) + dO¢.(Ys1—¥s0), i.e. Ypu = Ypro + dO¢.(ifs1—s0) (10.30)

where §pio = O¢(%s0) and §p = O(Ys1). In other words, for all Qpo, Q1 € ObjRp and all u € R, with
90 = Prs, (@B0), 11 = Pr,, (QB1) € R™, gso = [Oao], 5, %51 = [OBa1] 5, ¥pto = [Oaqo]| 45 bt = [Oaq] 5,

@t([O?Q(J)]\B’ JFU[M]\E) = [OT‘]O)]\AJFU[QO—QN\AW Le. [‘Io—qﬂvf = d@t-[qo—‘]l}hé- (10.31)

In particular

[éit}g = dO,.[B] (10.32)

|B
Proof At ¢, consider a straight line of particles (possible in classical mechanic) spotted along ¢ : u —
=qo+ugoq in R”. In partlcular q(0) = go and ¢(1 ) = q;. Let gj’s( ) = [Opq(u)] é and gp¢(u) =
——
OAq \A Wlth OBq OBqO+u qoql]‘ [(1 u)OBqO—I—u OBql]lB (1 u)[Oqu]‘B‘i‘U [OBQI]|§7
idem with yp:, we get

gs(u) = (1—u)gso + ugsr and  Ppi(u) = (1—u)ypio + uyps1  (straight lines in M) (10.33)
. = - - = - .

where 5o = 75(0) = [OBQO]‘B: g1 = 4s(1) = [Osai] 5, ¥pto = Upe(0) = [Oaqol 3, Joar = (1) =

[OAql]‘A And li glves @t(ys( )) = Upe(u) for all u, thus (10.33) gives O:((1—u)iso + uis1) =

(1-u)¥pto + ugps, thus : © is affine. Thus (10.29) and (10.30).

And with g5 = [OBOBt] 5 = 0 and g5 = (O Ppitl 5 = [Bil 5, we have ypiw = [OAOBt]M and
iipti = [OaPpid] 1, thus [Op; Pt 1 =020 d0,.[Op Pai] 5, i.e. (10.32).
Exercice 10.8 Call Q; = [Q;;;] the transition matrix from (ffit) to (git) in R". Prove

[d@t]lE-* = Qt, i.e. Vj, d@t.Ej = ZQt,ijEi (: Ejt*). (1034)
i=1

Answer. The transition matrix Q: is defined by éjt = Z?:th,ijgit- Thus [B‘jt]lg = >0 Quij [git]lﬁ =
Z:L:th,ijE_:i. With [B‘jt]h‘f : d@t.[éﬁ]‘é = d@tE_:J Thus d@t.Ej = Z;L:th,ijE_:i, thus [d@t]\é = Qt.

10.5 Translated velocities

Definition 10.9 The translated velocities and translated accelerations from B to A, called the translated
relative velocities and translated relative accelerations, are the push-forwards by ©; of the relative velocity
and the relative accelerations: At t at py,

’UBt*(fAt) = d@t( ) vBt(th) ‘ and ”th* xAt) = d@t( ) ’th th ‘ When ECAt @t(th) (1035)

In other words: 6Bt*(fAt) = d@t(fo)[ﬁf(pt)]g and iBt*(fAt) = d@t(fo) [’}/t(pf)] = in Mnl( )
In particular if ©; is affine, with Z4: = O¢(Zp:):

6Bt*(fAt) = d("‘)t.UBt (th) and ’VBt* (fAt) = d@t.’?Bt(th). (1036)
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68 10.6. Definition of ©

Exercice 10.10 (A4;) and (B;) are Euclidean bases (e.g. in foot and metre), (-,-)4 and (-,-)5 are the
associated Euclidean dot products, A = ||Bi||a (e.g. ~ 3.28), 50 (-,-)a = A2(-,-)5. And (-, )can is the
canonical inner dot product in M,; (defined by (E_';, Ej)can = ¢;; for all 4, j). Suppose O, is affine and let
Ejpv := dO,.E; (push-forward by ©;). Prove:

—

Vi, 5, (Eite, Ejix)ean = A20;5, and  d©,T.dO; = A°I. (10.37)

Answer. (B;) is a Euclidean basis for B, thus is a Euclidean orthogonal basis for all observers; It is seen at ¢
as (Bit) by A with ||Bit||a = A for all i, 0 (-,-)a = A*(-,-)p. And Ejix = dOy.Ei = dOy.[Bir] 5 =122 [Bi] 4.
Thus (Eicx, Eje)can = [Eie]"[Ejes] = [Biel [1-[Biel 5 = (Bt Bir)a = N(Bir, Bju)s = A\8ij, thus 410.37 5
Hence A2(Ei, Ej)ean = A20i; = (Eite, Ejt)ean = (dO1.E;, dO¢.Ej)can = (d0:T.dO.Ei, Ej)ecan, true for all i, ],

u

thus d©;T.d®; = X2I, thus ((10.37). .

10.6 Definition of ©
Definition 10.11 The translator from B to A is the function © defined with ((10.22)) by

[t1,t2] x MuB) — Mud)
O : (10.38)
{ (t.5) — o(t) =[B(t.1%) = O,(3)| = fior
So, for all Qr, € ObjRp and all ¢,
O(t, Fs(Qrs ) = P (t, Qrs)- (10.39)

E.g., ©(t,0) = [0405(1)] 1, cf. .

Remark 10.12 The translator © looks like a motion, but is not: A motion is characterized in one
referential and connects one particle to its positions; While © connects two referentials: It is an “inter-

referential” function. La

10.7 The “O-velocity” is the drive velocity

Definition 10.13 The “O-velocity” and “©O-acceleration” vg, Yo : [t1,t2] X Mu@) — R™ are defined by
(Eulerian type definition), at ¢ at ¢p; = O(¢, s ),

. . 00
ve(t,ym) = E
- . 0?0,
Yo (t, ipt) = ﬁ(tys)

(t, %),
(10.40)

(Recall: 29 (¢, i) = limy, o QLB ZOWE) ¢ Aq A))

i [fo=70) 0y

i.e. To(t,§) = (t,§) and Jo(t, §) = 7 (t, §) in Mu(A), for all t € [t1, ] and all F € Mu(A).

Proposition 10.14

Proof. @ (t, Qr,) =2 O(t, 35(Qr,)), for all t and Qg,, gives

%if@%) = %?(’fyﬁs(%))’ ie. (t,@n(t,Qry)) = To(t, Ot G5 (Qry))), (10.42)
i.e. T (t, Goi) = To(t,0:(f)) = To(t, Gpr). Tdem with 2. =
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69 10.8. The velocity-addition formula

10.8 The velocity-addition formula
gives

Ga(t, Ioy) = O(t, Gp(t, Ioy))- (10.43)
Thus 5 96 .
Pt Roy) = S (B (t, o))+ dO(t, @ (t, o)) (8, Roy) (10.44)
ot ot ot
e (Tae) Dy (#0) = dOu(Fse). e (F50) T=2 G0 (Ear)

i.e. Uar(Zar) = tpe(Zar) + Uex(Zar), where Ty = Fp(t, Roy) and Zay = Pa(t, Ruy;) = ©4(Zp:), Hence:

’ﬁAt = Up¢ + Upsx | = the velocity-addition formula in Ry, (10.45)

which reads:
absolute velocity = drive velocity

10.46
+ translated relative velocity from B to A. ( )
In other words (relation between the numerical values of the velocities stored by A and B),
- - 7 -
[0 ()] 1 = [Ura (2)] 5 + dO([Opepi] 5)-[0: (pe)] - (10.47)
10.9 Coriolis acceleration, and the acceleration-addition formula
(110.44) gives
0?@a 0?0 00 0Zp
—(t, ;) = —= (¢, 7 d——(t, Zpt).—— (t, Pow;
It2 ( ) Ob]) 2 ( ,th)'i_ ot ( 71'Bt) ot ( ) Olz])
Fat(Faz) Yot (Zar)
9(d®) 2 9¢p 2] & 2p
t, T d*0y(Zpt). —— (t, Bowj) ) - —— (t, Ropj ) + dO(Zt). ——— (t, Fows ),
+ ( ot (t, Zpt) + +(Zpt) ot (t, Roy)) ot (t, Fonj) + dO¢(Tpe) 2 (t, Royy)
VB« (Zat)
(10.48)
ie.
Yat(Zar) = Ve (Tae) + Yo (Zae) + Vs (Ta), (10.49)
where (with © € C?):
Definition 10.15 At ¢, the Coriolis acceleration ¢ is, at Zay,
Yer(Zar) = 2 dpg (Zar)-Tpes (Tar) + d*O(t, Ty ) (Upe (Tpe ), Ut (Tne)).- (10.50)
And the Coriolis acceleration y¢ at t at Zay is Yo (t, Zar) := Jor (Zar)-
Hence:
”7,415 = Apt + Yot + Ve« | — the acceleration-addition formula in R, (10.51)
which reads:
absolute acceleration = (drive + Coriolis + translated) accelerations. (10.52)
Particular case O; affine (d?0; = 0): At ¢, the Coriolis acceleration J¢; at Za; is
For(Ear) = 2dtpy (Tar) Upra(Far), i€ |For = 2dtDe.Up | (10.53)
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10.10 With an initial time
Let ty,t € R. Consider the Lagrangian associated function @? with the motion ® of Obyj:
plo :{ o o - (10.54)
=0(lo, Ry) — pr = O (pr,) := O(t, Roy)-
And, with Za; = Ga(t, By) = [(Tp;]lg and Zp; = @p(t, By) = [Ong;]lg, define the “matrix motions”
Ghy : Mud) = Mu(d) and @, : MuB) — MaB) by

B0 (Fary) = Far (= [0a®(t, Boy)] 1 = (042 (p1,)] 5 = Pae(Roy)),

- (10.55)
Gpi(Tpto) = T (= [Op®(t, By)) 5 = [OpPY (p 3h Gt (o ))-
And @t(th) = fAt; i.e. @t(@'gt(tho)) SDAt(xAtO) with xAtO = @tg (thO) thus
("')t o @jg)t = gb'z)t (e} @t{) : Mnl(B) — Mm_(A) (1056)
In other words, the following diagram commutes:
T, = PB(to, Fony) = Tp = B2, (Ti,) (10.57)
y Pt
Ry € Ob Oy, O,
QBAto
- o cpAt - to (= o -
Taty = Pallo, For;) = O (TBey) — Tar = Gy (Tar,) = Ou(Tpe)-
Thus, for any vector field @Wpy, in Rp,
A0, (Tp:) - dFR,(Thu)-Upt (Tpr,) = d@2, (Faso) -dO4, (Tpt, ) - Uty (Tpt,) - (10.58)
—_——
(translation at t) (deformation from tp to t)  (deformation from tp to t) (translation at tp)
Exercice 10.16 Redo the above steps with ObjRg instead of Obj.
Answer. Consider the Lagrangian associated function @;OBt with the motion ‘57?3 of ORs:
QI?BtQ =R" — QI?Bt =R"
q:'}t%OBt . N o . (1059)
qty = %(tﬂyQRB) —q= QRBt(th) = %(tQRBL
then define the “matrix motions” F9, : Mu(A) — Mu(A) and G, : MuB) — Mu®B) by
~—>
{ @5y (Fpe0) =i (= [Oa®r, (t, Qry )] 4 = [OA‘Pzté’sz(pm§]|g = ¢pt(Qrz)), (10.60)
@8 (s) =5 (= [Op®r, (t, Qry )5 = [O8P5(40)) 5 = F5(Qrs));

Thus s is a time-shift, which is also abusively noted F%, = I (algebraic identity). So with O (i) = ¥p: we get
O:(73: (1)) = @54 (Jpro), With Fpro = Oy (), thus

(0403 = 38,004, | Mul®) = Mu(®) (10.61)

(also abusively written ©; = @'fgt 0 Oy, ). In other words, the following diagram commutes:

U = &5 (Qrg U = @5 (Qrg) (10.62)
o = time shift
<Ps
Qrs € 01277?3 S2
@to
ymo = Gty (Qrs ) = Ot (i) —— T = Fo1(Qry ) = F5, (Tpro) = Ou(s)-
And (10.61)) gives, for any g5 = @'S(QRB) and all vector field 4y (static in Rp), with §pio = O (%),
dOu(gs) . A () us(F) = d3: (ipwo) - dOu (5)-5 (i) - (10.63)
——— —_— —_—— —_——

(translation at t) (time shift from & to t)  (Drive motion from # to t) (translation at &)
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71 10.11. Drive and Coriolis forces

10.11 Drive and Coriolis forces
10.11.1 Fundamental principal: requires a Galilean referential

Second Newton’s law of motion (fundamental principle of dynamics): In a Galilean referential, the sum
of the external forces f on an object is equal to its mass multiplied by its acceleration:

Z externalf = my (in a Galilean referential). (10.64)

Question: And in a Non Galilean referential?

Answer: Then you have to add “observer dependent forces”, i.e. you have to add “apparent forces”
due to the motion of the non Galilean observer. Indeed, the motion of an object in our Universe does
not care about the observer motion (his accelerations and velocities).

See e.g. https://www.youtube.com/watch?v=_36MiCUS1ro for a carousel (a merry-go-round),

See e.g. https://www.youtube.com/watch?v=aeY9tY9vKgs for tornadoes.

10.11.2 Drive + Coriolis forces — the inertial force

Consider f(t,pt) = the sum of the external forces acting on Ry; at ¢ at p; = ;I;(t, Ryy;).
In a Galilean referential R4, Newton laws ([10.64) means

[ft(pt)} =m[Ji(pt)] z» written Fac(@ag) = mAar(@ae) | (€ M), (10.65)

with 4, := [Oapt] g Fae(@ae) = [filpo)] 5 and Tau(Tar) = [Fu(po)] 5. With Za = ©,(75,), the accelera-
t) =

tion addition formula gives fAt( m(dO:. Y5 (Zpt) + Ypt(Zat) + Yot (Zar)) € Ra, thus, in Rg,

dO; ™ far(Tar) = mAs(Z:) + mdO; ~  Fpi(Tar) +m dO; o (Tar), (10.66)

Fae*(Zee)=Fpt(Tse) mype* (Zne) mAcs* (Tae)

and d@t_l.[ﬁ(pt)]‘g = d@t_l.fAt(fAt) —(032) [f,; (pt)]lg —noted th(th) is the external forces as quanti-
fied by B at t, cf. (10.32)) (with ©; supposed to be affine). And with the pull-back notation, cf. (10.32):

Definition 10.17 For B at t at p;, with Zg; = [OBtpt] in MyB):

e The drive force fapi(Zpi) == —mApe*(Tp1) (= —mdOy  Api(Zar)).
e The Coriolis force ]%Ct(th) = —mAc (@) (= —mdO, ' Fou(Zay)). (10.67)
e The inertial (or fictitious) force := ]%Dt(fgt) + ]%Ct(th) =—m Fpt" + Foir ") (b))

Then (10.66]) gives the fundamental principle quantified in Rp (non Galilean referential):

FBe(@s0) + fopi(T3e) + fact(Fpe) = m s (Ts) | (10.68)

i.e., at t,in Rp: The (external + Drive + Coriolis) forces = m times the acceleration.

10.12 Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Tllustation with a simplified (circular) motion of the (spherical) Earth around the Sun.

. Referentials.

Relative referential Rg = (Op, (El, Eg, ég)) chosen by the observer B fixed on the Earth, where Og; =
®r, (t,Qo, ) is the position of the particle Qp, at the center of the Earth, written Op by B (fixed for B),
and (Byy, Bag, Bs,) is a Euclidean basis (e.g. built with the metre) fixed in the Earth, written (By, Bs, Bs)
by B (fixed for B), with Bj chosen to be along the rotation axis of the Earth and oriented from the south
pole to the north pole; And (-,-)p is the associated Euclidean dot product. So, a fixed particle Qg, in

the Earth at longitude 6, €] — m, 7] and latitude pq,, € [-7F, 3] is referenced by observer B as the
_ ; cos(fr,, ) cos(qr, ) _ 5
matrix s = @5 (Qrs) = [OpPr, (1, Qrs)] |5 = Bp | sin(fog, ) cos(hgg,) | where Rp = [|OpPr, (1, Qrs)|| 5

siniag, )
is the distance between Qo, and Qg, (e.g. if Qr, is on the surface of the Earth then Rp ~ 6371 km).
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72 10.12. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Initial Galilean referential Rag = (Oao, (/_fl, /fg, ffg)): Oy is at the center of the Sun and (/fl, ffg, ffg) is
a Euclidean basis (e.g. built with the foot) fixed relative to the stars, such that A3 = uBs with u > 0
(e.g. 4 =0.3048 and A = i ~ 3.28); And (+,-)4 is the associated Euclidean dot product.

Deduced absolute Galilean referential R4 = (Oat, (/Yl, ffg, /I?,)) chosen by observer A, where Oy; = Og;y,
written Oy by A (fixed for A). Since it takes more that 365 days for Qp, to complete a rotation around
the Sun, the motion of Qo, will be considered to be rectilinear at constant velocity “in a short interval of
time” sufficient for the computation of the Coriolis acceleration with “sufficient accuracy” (simplifies the
calculations).

(If A prefers to work with the initial Galilean referential R4, then the absolute matrix motion

4>
Ba(t, Royj) = (04 (t, Po;y)]‘A has to be replaced by @a(t, o) = [Oa0Op(t |A + [Op(t)D(t PObJ)]‘A, idem
for the drive motion @p.)

Drive motion.

The motion t — q = <T>RB (t,Qr,) of a particle Qr, fixed on Earth is stored by A as the drive motion @p
given by (matrix valued), with w the angular velocity of the Earth in Ry,

cos(wt) cos g, YD1 (t)
o (t) = @t Q) = Ra(@ra) | sin(wt) cos e, | = [Oaa®] 5= | yp2(t) | . (10.69)
SIN P, yD3

where R4 (Qr;) = [|Qo @rs |l 7 is the distance between Qo, and @, for A (e.g. B4 ~ 20902231 foot if
Qr; is on the surface of the Earth). (And (wt) by replaced by (c+w(t—tp)) to be more general.)

Drive velocity: With &p = UJz‘Tg,

— sin(wt) cos Py, —ya(t) 0 -1 0
W (t, 9p(t) = Up (t) = WwRa | cos(wt) cos pgr, =w| ) |=w|1 0 0.9t =dpAip(t).
0 0 0O 0 O
(10.70)
Drive acceleration:
yo1(t)
Yo (t, i) = i (1) = &p A g () = &p A U (t,4pe) = @p A (@p Adip(t) = —w? | ypa(t) (10.71)
0
= the usual centrifugal acceleration (in a plane parallel to the equatorial plane, drawing).
Differential of the drive velocity (time and space independent here): (10.70) gives
0 —w 0
d?_]'D(t, :Ith) =dip=|w 0 0] =dpA. (10.72)
0 0 O
Translator.

Here O4; = Opy, thus ©,(0) = 0 (with [0] ="°td § = the null matrix), cf. (10.23).

Calculation of d©,. With ©, affine, d0,.[By] 5 = [Bi] 5. Thus By = AAj (hypothesis) and d©,.[Bs] 5 =
[Bgt]IA‘ give d©;.E5 = AE3 where (E;) is the canonical basis in M,;. Then let Qp; € ObjRs be the
Earth particle which position ¢; = ‘57?5@,@32’) makes Eit = Optqsi- S0, El and .§2 being in the

cos(wt)
equatorial plane, (10.69)) gives d©;.F; = d@t.[Bl]‘g = [Bl]‘g = [OAQtl]VT =\ | sin(wt) |, and dO;.Fy =
0
. . — sin(wt) cos(wt) —sin(wt) 0
det.[BQ]‘B’ = [BQ]M = [OAth]IA’ = X[ cos(wt) |. Thus [d@t]‘ﬁ = A | sin(wt) cos(wt) 0 | = the
0 0 0 1
expected rotation matrix expanded by A (change of unit of measurement).
Calculation of ©, (affine): ©.(%s) = Gt(ﬁ) + dOy.is, so, with O4; = Op; here,
Upt := O4(Ys) = dOy.Us (10.73)
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73 10.12. Summary for “Sun and Earth” (and Coriolis forces on the Earth)

Motions of Olyj.

B quantifies the motion ® of Oly, i.e. he stores the relative motion g of Obj, and the relative velocities

and accelerations U; and ¥ (matrices), cf. (10.12)-([10.14).

Translations for A: With Z4: = O¢(Zp:),
Uts(Tat) = dO(Tpt).Upe(¥pr) and Vg (Tar) = dO(Tpt) VBt (TB1)- (10.74)

Drive force (apparent force in Rp due to the motion of B):

2 41(t) zp1(t)
> 1. . (@ _ ([0-73)
fopi () = —mdO; ' Api(Tar) = Amw?dO; . | zaa(t) = Amw? | zpa(t) |, (10.75)
0 0
centrifugal force (in a “parallel plane” at latitude of Ry;).
Coriolis acceleration (apparent acceleration due to the motion of B):
Yo (Zar) = 2 dip,.(dO .U (Tpt)) = 2 dOy.dpy. U (Tpt) (10.76)

because d©; commutes with dijy; (composition of “rotations along the same south-north axis” which reads
s

as et s = i3 et = (319 in the equatorial plane).

Coriolis force (apparent force due to the motion of B):

fBCt(th) = —m d®t_1~’70t(fAt) = —2m dﬁthl_jBt(th) = —Qm(ﬁ A ﬁBt(th)‘ (1077)
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74 11.1. “Isometric objectivity” and “Frame Invariance Principle”

11 Objectivities

Goal: To give an objective expression of the laws of mechanics; As Maxwell [15] said: “The formula at

which we arrive must be such that a person of any nation, by substituting for the different symbols the

numerical value of the quantities as measured by his own national units, would arrive at a true result”.
Generic notation: if a function z is given as z(t, ), then z,(z) := z(¢,x), and conversely.

11.1 “Isometric objectivity” and “Frame Invariance Principle”

This manuscript is not intended to describe “isometric objectivity”:

“Isometric objectivity” is the framework in which the “principle of material frame-indifference” (“frame
invariance principle”) is settled, principle which states that “Rigid body motions should not affect the
stress constitutive law of a material”. E.g., Truesdell-Noll [22] p. 41:

« Constitutive equations must be invariant under changes of frame of reference. »
Or Germain [I1] :

« AXIOM OF POWER OF INTERNAL FORCES. The virtual power of the "internal forces" acting on a
system S for a given virtual motion is an objective quantity; i.e., it has the same value whatever be the
frame in which the motion is observed. »

NB: Both of these affirmations are limited to “isometric changes of frame” (the same metric for all), as
Truesdell-Noll [22] page 42-43 explain: The “isometric objectivity” concern one observer who defines his
Euclidean dot product and consider only orthonormal change of bases to validate a constitutive law.

If you want to interpret “isometric objectivity” in the “covariant objectivity” framework, then “isometric
objectivity” corresponds to a dictatorial management: One observer with his Euclidean referential (e.g.
based on the English foot), imposes his unit of length to all other users (isometry hypothesis). (Note:
The metre was not adopted by the scientific community until after 1875.)

Moreover, isometric objectivity leads to despise the difference between covariance and contravariance,
due to the uncontrolled use of the Riesz representation theorem.

Remark 11.1 Marsden and Hughes [14] p. 8 use this isometric framework to begin with. But, pages 22
and 163, they write that a “good modelization” has to be “covariant objective” (observer independent) to
begin with; And they propose a covariant modelization for elasticity at § 3.3. .

11.2 Definition and characterization of the covariant objectivity
11.2.1 Framework of classical mechanics

Framework of classical mechanics to simplify. Consider two observers A and B and their referentials
Ra = (04, (A;)) and Rp = (Op, (B;)). E.g., (4;) and (B;) are Euclidean bases in foot and metre, (-,-)
and (-,-)p is their associated Euclidean dot products. And © is the translator, cf. .

Consider a regular motion ® of an object Obj, py = &)(t, Ryj) € R™ the position at ¢ of a particle in
our Universe, Q; = ®(t, Obj) the configuration at ¢, and C = Usega,p ({3 x €2¢) the set of configurations.

And %4 = [OApt]‘g € Mu(A) and Zp; = [OBpt]IE; € M([B) are the stored components of p; relative to
the chosen referentials, M;(A) and M,3(B) being the spaces of n * 1 matrices as referred to by A and B.

11.2.2 Covariant objectivity of a scalar function

C =R
Let f be a Eulerian scalar function (e.g., a temperature field). f is
(tvpt) — f(tapt)

quantified by A and B as the functions fa : {

{RXMﬂ(B) —R }

RxMqa@) — R df
(t3a) — falt@ng) = fltp) [ 0 7P

(tath) — fB(ta th) = f(tvpt)
Definition 11.2 f is objective covariant iff, for all referentials R4 and Rp and for all ¢,
fAt(fAt) = ft(¥pt) when T = O4(Tp¢), (11.1)

i.e. fas = fBe+ is the push-forward of fg; by O, cf. .
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75 11.2. Definition and characterization of the covariant objectivity

11.2.3 Covariant objectivity of a vector field
C - R»
Let w : ~ be a Eulerian vector field (e.g., a force field). @ is quan-
(t.pe) — (L, pe)
RxMaA) — Mpu@)

- . ~ . and wp
(t, Zar) — Wa(t, Zar) := [w(f»pt)]g}

tified by A and B as the functions wy : {

RxMuB) — MuB)
(t,Zpt) — wWp(t,Tpe) := [W(t,pe)] 5
components of W(t,p;) in R4 and Rp.

}. So W (t, Zat) and Wg(t, Zp:) are the column matrices of the

Definition 11.3 0 is objective covariant iff, for all referentials R4 and Rp and for all ¢,
wAt(fAt) = d@t(th).’u_)'Bt(th) when fAt = @t(th), (112)
i.e. Way = Wpts is the push-forward of Wg, by ©; cf. (6.20).

Example 11.4 Fundamental counter-example: A Eulerian velocity field is not objective, cf.
because of the drive velocity ¥p # 0 in general. Neither is a Eulerian acceleration field, cf.

(10.45),

| |
Example 11.5 The field of gravitational forces (external forces) is objective covariant. ua

11.2.4 Covariant objectivity of a differential form

C - R
Let o : be a Eulerian differential form (e.g. a measuring device used to get the inter-
(tvpt) — a(tapt)

Rx M) — Ma(A) }

nal power). « is quantified by A and B as the functions a4 : { (t, Za0) (£, a0) = [a(t,po)]
yTAt) — aall, Tag) = |alL,Pt)| 3

RxMuB) — Mu®B)

and ap : - . . So a(t,Za;) and ap(t, ¥p¢) are the row matrices
(t,7t) — ap(t,¥p) = [a(tvpt)}é}
of the components of a(t,p;) in R4 and Rp.
Definition 11.6 « is objective covariant iff, for all referentials R4 and Rp and for all ¢,
aAt(fAt) = aBt(th).d@t(th)71 When fAt = @t(th). (113)

i.e. @a; = aps is the push-forward of ap; by ©, cf. (7.3).

NB: (|11.3) and (11.2) are compatible: If « is an objective vector field and if « is an objective differential
form, then the scalar function «.w is objective:

aAt(fAt)-wAt(fAt) = aBt(th)~wBt(th) (: (a(t7pt)'u_;(tapt))a (11-4)

—

since aAt(fAt)-wAt(fAt) = (OéBt(th)~d@t(th)71)-(d®t(th)-wBt(th)) = aBt(th)-wBt(th)-

11.2.5 Covariant objectivity of tensors

A tensor acts on both vector fields and differential forms, and its objectivity is deduced from the previous §.
So, let T be a (Eulerian) tensor corresponding to a “physical quantity”. The observers A and B
describe T" as being the functions T4 and 1.

Definition 11.7 T is objective covariant iff, for all referentials R4 and Rp and for all ¢,
Tat(Zas) = TBix(Zar) (11.5)

i.e. T's; is the push-forward of Tz, by ©;.
(Recall: TBt*(fAt)(Oél(fAt)a ceey ’(171 (fAt)) = TBt(th)(al*(th), veny u_)'l*(th)))
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76 11.3. Non objectivity of the velocities

Example 11.8 (Non covariant objectivity of a differential dw) Let « be an objective vector field,
seen as Wy by A and @Wp by B; So was(Zar) = 2 dO:(Zp:). Wpt(¥pt) when Zap = O4(Zp:), thus

dWay (Tar).dO(Tpe) = dO4(Tpt).dW e (Tpe) + (4O (Tpt) . Wi (Tpt)), (11.6)

hence

dwWas(Zar) = dO(Zpe).dWp(Zpe). d@t(_'Bt)_l + (d2@t(th).zﬁBt(th)).d@t(th)_l

. . oo (11.7)
7é d@t(l' ) d”LUBt( Bt) d@t( Bt) ! when d2®t 7& 0.

Thus dw is not covariant objective in general. However in classical mechanics for “change of Cartesian
referentials” ©; is affine, so d20; = 0, and in particular di is objective when 7 is. And

(d2u7,4t (fAt)‘d@t (th ) ) d@t (th) + d'll_}'At (fAt).dQ(—)t (th)

. oL . o . o (11.8)
= dO(Tp:).d*Wp (Tpt) + 2d° O (Tpy).dil gy (Tpt) + d°O(Tpe). i (Tpe).-
Thus d?i is not covariant objective in general (but if ©, is affine then d?i is objective if 1 is). nn
11.3 Non objectivity of the velocities
11.3.1 [Eulerian velocity ¥: not covariant (and not isometric) objective
Velocity addition formala: With Up. (Zat) = dO¢(Zpt) W(Zp:) when Zay = O4(Zp:), cf. (10.45),
Uat(Zae) = Uew(Tar) + Upe(Tar) (11.9)

7é UBt« (xAt) when th(fAt) 7é 67

thus a Eulerian velocity field is not covariant objective (and not isometric objective).

11.3.2 dv¥ is not objective

The velocity addition formula, (ta; — Upe)(Zar) = Upes(Zar) = dO(Tpy).Up(Fpe) when gy = Oy(Tpy),
gives

d(Tas — Upe)(Zaz).dO(Zps) = dO4(Tpy¢).dUp: (Tpt) + d*Oy(Zpt). Ut (Tpe), (11.10)
thus dv is neither covariant objective nor isometric objective because of dip:

dﬁAt (fAt) = dﬁBt* (fAt) + dUDt (fAt) + d2@t (th).QTBt(th).d@t (th)_l 7& dﬁBt* (fAt) in general. (1111)

Remark 11.9 Recall: “Isometric objective” implies
e The use of the same Euclidean metric in Rp and R4, i.e. (+,-)a = (-, ") B,

e &, (motion of Rp) is a solid body motion, and
e O, is affine (so d?0; = 0 for all t). oa

Exercice 11.10 Prove, with Q; the (orthonormal) transition matrix from (4;) to (B5;):

() 5 = Quldin) 7.0+ Q'(1).Qr Y, written  [L] 5 = Q[L] 7.0 + Q.Q7. (11.12)

(Used in classical mechanics courses, to prove that di isn’t “isometric objective” because of Q.Q7.)

Answer. fo,t € B, py, = ®(to, Ry), pr = B(t, Byy) = B (py,), Bt pi) = 22 (¢, Byy), and F(py,) = O ().

So (t, 0 (py)) = M;'tffo (t,py), thus di(t, pr). p,o(t) - gtﬂ (t). And (4.26), with Fo ="°%d | gives
PO, 5 = QOO 7 s [P0, 5 = Q') [F(t)h%AJrQ() )]0, 1 Thus [dit, Plis =
[Fo'(6).Fp D)5 = [ (0] 5.1F ()]\B = (@ ()[F(t)h Q)-IF' (1)) z, .4)-[F ()}r «Q() =

QM).RQM) ™ +QM).IF ()] g, F( )] LM =Q'M.Q)! ( )-[do(t, pe)], 5-Q(t) . And cf. v

Exercice 11.11 Prove that d?7 is “isometric objective” when EIVlRB is a rigid body motion.

Answer. (11.8) with ¢4 — Up instead of Wa, and ¥p instead of Wg give, in an “isometric objective” framework,
d*(Tar — Up1) (Zar) (@Bte, Bpex) = dO(Tpt).d> U (T ) (U, Ts). (11.13)

Here d*@p; = 0 (rigid body motion), thus d?#¥ is “isometric objective”. .
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11.3.3 dv + dvT is “isometric objective”
Proposition 11.12 If &, is a rigid body motion then d, + dvl is “isometric objective”
diiny + dit, = (digs + dik,)«. (11.14)

(Isometric framework: The rate of deformation tensor is independent of an added added rigid motion.)

Proof. Q.Q" = I gives @.QT + (C.Q.QT)T = 0, then apply (11.12). u

Exercice 11.13 Prove that 2 = M is not isometric objective.

2 2 2

. _ 4 ﬁ diig,—dis, dipi.—dig dips —dip AT —dTh .
Answer. (11.11) gives difi, = di'h,, + dip,, thus ”AtQ YAr — 9UBts—dUpr. | dDt_ Ay VBt DUpie oyep if
= . . . dvp, —di) o . . s
Pr, is a solid body motion (then 2Dt = GA is a rotation time a dilation). ua

11.3.4 Lagrangian velocities

The Lagrangian velocities do not define a vector field, cf. § Thus asking about the objectivity of
Lagrangian velocities is meaningless.

11.4 The Lie derivatives are covariant objective

Framework of § In particular we have the velocity-addition formula #4; = 5., + Up; in Ra where

ﬁBt* (fAt) = d@t(th).ﬁBt(th) and th = et(fAt); cf. 10.45.
The objectivity under concern is the covariant objectivity (no inner dot product or basis required).
The Lie derivatives are also called “objective rates” because they are covariant objectives. Easy proofs.

11.4.1 Scalar functions

Proposition 11.14 If f be a covariant objective function, cf. (11.1|), then its Lie derivative Lzf is
covariant objective:

,CﬁA fA = 9*(,6173 fB), ie. CﬁA fA(t,fAt) = ,CgB fB (t,.’th) When fAt = Gt(th), (].].].5)

ie., BIA(t, Bay) = BB (¢, Epr), Le. (B + dfata)(t, Ear) = (%2 + dfp.Tis) (¢, ).

Proof. Consider the motion ¢t — p(t) = ®(tRy;) of a particle Ry, and Z4(t) = [Oap(t ]IX and Zp(t) =
[Osp(1)] 5. With f objective, gives f5(t,7p(1)) = falt, Ot Z3 (1)) (= falt, (1)), thus

D - 0 - R 09, - S
DIa 1 1)) = 202 (1, 20(00) + dan(a )20, (1) + 04 (1)) e (35 (1))
Upt(Zat) Upts (Zar) (11]‘6)
d . N = o D "
= %(ta Tar) + dfar(Tar) - Vae(Tar) = Dif;(t,xAt)v
thanks to velocity addiction formula s = U + Upe. Ly

11.4.2 Vector fields

Proposition 11.15 Let @ be a covariant objective vector field, cf. (11.2). Then its Lie derivative LzwW
is covariant objective:

Lz Wa = 0,(Ly0p), (11.17)
i.e., when fAt = Gt(th);
L Wa(t, Zar) = dO(Zpt). Lo Wp(t, Tpt), (11.18)
ie.,
D L. . . Dw IR o
( Dt“‘ — diy i) (t, Fay) = dO(t, Zpe).( DtB — diigig)(t, Tpy), (11.19)
ie.,
OWa oL L. . . owp Lo L .
(W + dWg.Up — dUs.Wa)(t, Zar) = dO(t, th).(W + diip.vg — dUg.Wg)(t, ). (11.20)

But the partial, convected, material, and Lie autonomous derivatives are not covariant objective (not
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78 11.4. The Lie derivatives are covariant objective

even isometric objective because of the drive velocity tp): We have

d@t (det ’UBt) (dz(")t.wBt).gBt)(th), ].].2].)

(dias.(Uar—pe) ) (Za
11.22)

( (ngbUBt) =+ d26t (173,5, 173,5)) (th), 1123)

) = (
(d(Tar—Tpr)-Bar) (Tar) = (dO;.(dUs Tpt) + (d°O4.Tpe ) Tpt) (Tpe),
(d(Uiar—pe)-(Uar—Upe) ) (Zar) =

~ o~ o~ o~

E(’UAt Tpt) _’A (SUA ) Gt(.’I]Bt) ‘Cﬂ‘Btht(th) 1124)
o . L L . ow .
T;‘(t,%) + LY By (Tar) = d@t(th).a—tB(t,th), (11.25)
Dwy . WL . . D, o e o .
Di (t, Za¢) — dipy.Way (%ay) = d@t-(th).iDt (t, Zpt) + d“O¢(Upt, Wpt) (Tpt), (11.26)
O(Ua—7 . L . L . 01 .
% (1, Ta0) + £, (2—Tp) (6, Fae) = (T 2 (1, T, (11.27)
Proof. e lBAt(@t(th)) = d@t(th).’LﬁBt(th) giVGS
d’u_}'At(fAt).d@t(th) = dQ@t(th)-wBt(th) + d@t(.’th).de(th), (11.28)

thus, with dO:(Zp:). U5 (Zst) = (Uar—Upt)(Zar) = Upex(ar) (velocity-addition formula),
diia (Far)-(Uar—tpe) (Tar) = (d*Ou(Tpe). Ut (Tpe)) - Wpi (Tpe) + dO (Tt ).diwpe (Tpt ). Ut (Tpe),

hence . In particular dias(Za¢)-Uas(Faz) # dO¢(Zpt).(dips (Zpt)-Use (Tp¢)) (the vector field dii.v is
not obJectlve)

o (Tar—0p¢)(04(Tpy)) = dO(Tpy) . Upi (Tpe) gives
d(Tae—Tpe) (Tar)-dO (Tpe) = d* O (Tpe). Ut (Tpe) + dO(Te) . diipe (Tpe),
so, applied to Wp; (resp. Up:), we get (11.22) (resp. ) Hence .
o If %y = O4(Zp), then Wa(t,O(t, 7)) = dO(t, Zp).Wp(t, ¥p), so, with %(t,fB) = Uot(Zaz), we get

o 00 . N
g’t“ (t, Zas) + dbag (Tae)-Tor(Tag) = d s (t, Tg) B (Tn) + d@t(xB).%(t, )

ot
L T L, Oup,, |
= (dVoi(Za1).dO(TR)) Wr(ZTp) + d@t(xB).W(t@B),
Thus (|11.25)) since vg = vp; Then (11.21f) gives (11.26)).

L] ’UB* (t, @(t, fB)) = d@(t, fB)-gB (t, fB) gives

0By, o L 0de . . . . L. 0Ug,
o (0Za0) + dip(Ta) To (1, Far) = —5 > (635)  pu(Tp) + dO(t, Tp).— > (1, T,
——

dUe+(Zat).dO¢(Tr)

since 228 (¢, 73) = d(22)(t, i) and L2 (t, Zp) = Ve (t, Tar) = Ue,(O+(Zp)); hence (11.27).

11.4.3 Tensors

Proposition 11.16 It T is a covariant objective tensor, then its Lie derivatives are covariant objectives:

L5,Ta = 0,(LsTs). (11.29)

Proof. Corollary of (11.15) and (11.18) to get Lz(a.w) = (Lza). W + a.(LzwW); Then use Lz(t; ® to) =
(Lat1) @ta +t1 @ (Lyta). on
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11.5 Taylor expansions and ubiquity gift

11.5.1 First order Taylor expansion and ubiquity issue

— —

Let @ : RxR™ — R™ be regular and p(t) = ® (¢, p,, ). With f(t) = @(t, p(t)), f(t) = fto)+(t—to) f'(to)+
o(t—1ty) (first order Taylor expansion), we get

(1, (1) = W0, )+ h 2 (1, i) + ol1—1o) (11.30)

Issue: The left hand side w(t,p(t)) lives in 7,,(€;) while the right hand side (calculation) @(ty,py,) +
h 2L D“’ + (to, py,) lives in T}, (Q4,). Thus (11.30) is meaningless: To be meaningful, the w(t, p(t)) term should

ﬁrst be pull-backed by ®¥ (p;,) to be compared with 1 (ty, ps,) (or the w(ty, ps, ) term should first be push-
forwarded by ®(p,) to be compared with @(t,p;)). E.g., in a non-planar manifold (e.g. in a surface
in R?), @(t,p;) and w(ty, p,) don’t belong to the same vector space (the “tangent spaces” T,,(§;) and
1, (€, ) are different in general).

Ok with Lie: The Lie derivative uses the pull-back:

) €D 42y (pm)l-lﬁit,_pg)) —ll.pu) | (11.31)

is an equation in 7, (€24,). We have obtained the first order Taylor expansion in 7;,, (€,): With h = t—tq:

7W(to, Py,

(@ @ (to, pry) =) AP (pyy) (. (1)) = Wlto, p) + h L(to, pry) + o(h). (11.32)

Or with push-forwards, we have obtained the first order Taylor expansion in T;,,(£2;):

w(t,p(t)) = d®Y (py,).(W(to, pry) + h L (to, pry) + 0o(h))
= d®{ (py,)-W(to, pry) + h d® (py,)- Ly (to, piy) + o(h) (11.33)
= (D) (L, p(t)) + h D, (Lyw)(t, p(1)) + o(h).
Proposition 11.17 In R™, with the gift of ubiquity, (11.33) gives (of course).

Interpretation: Because ubiquity gifts don’t exist, (11.30) is meaningless while (11.33) is meaningful;
Which tells that “The Lie derivative is the meaningful derivative in physical sciences”.

Proof. With d®% (ty+h, p;,) I + hdi(ty, py,) + o(h) and Ly ZaE %} — dv., (11.33) gives
a(t,p(t) = Aoy (py,) . (W(to, i) +h Law(to, p))  +o(h)
(I + hdi(to,p,) +o(h)) (@& + h(BE — dv.b))(ty, py,) + o(h)
= @+ h (22— d.w) + hdg) (1, p(0)) + o(h).
Wthh is . e

11.5.2 Second order Taylor expansion

Jto—e, to+e[ — R™ N i} )
. Th 027 d _
2 t = ft):= w(t,p<t>)} us fis €%, and f(t) = f(to) +

hf'(t) + h—;f”(to) + o(h?) where h = t—tq (second order Taylor expansion). Thus, near (to, py, ),

In R", with @ € C? let f : {

Wi 2 2,7
W(t, p(t)) = (@ + h %t + h2 %tQ )(to, p(to)) + o(h?). (11.34)

Once again there is a ubiquity issue. Without ubiquity gifts, we have “the second order Taylor expansion:

B0, p(8)) = (7 + et + o LalL)) (o, 1) + 0l1), (11.35)

e, d (py, ) Lai(t, p(t)) = (0 + hLyii + 2L

#(Ls)) (o, pry) + 0(h?) (pull-back),
Le. @(t, p(t)) = B, (@ + h Low + & Lo(LaD)) (¢,

p(t)) + o(h?) (push-forward). Indeed:
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80 12.1. Newton fundamental laws

Proposition 11.18 In R"™, with the gift of ubiquity, (11.35) gives (11.34).

Proof. 1b gives Fzﬁfo( ) = I, + hdito,p,) + % d¥(to, py,) + o(h?). Thus, omitting the reference to
(to,py,) to lighten the writing, (11.35) gives

2
4D (p ).+ WL+ Lot + o(h)

h?

(11.36)
h2
(1 +hdi+ — d( ) + o(h2)> . (w + hLod + T Lol + 0(h2))

The h° term is I.@%6 = . The h term is Ly + dv.0 = %f. The h? term is the sum of
1 D¥5 D D(di)

. R v.dv.w 1.(9.42
5D U5y i W+ dv.dvad), cf.(9.42)),

Dw Dw
Y 4z, (2d ?z;) — 2d¥.dv.A0),

@ + dv.dvab), cf.([2.26),

[ ]
U N = Ql. N =
D
Sy
g1
Il
Q.
<y
\
Q
i
Q.
<y
g
H

which indeed gives .

2
D -
11.5.3 Higher order Taylor expansion

Exercice 11.19 Let @ € C™ and Eén) = Lzo...0Lz (n-times). For all n € N* prove (Taylor expansion)

(t— to)

@(t, p(t)) = AP (py)-(T + (t—10) L@ + ... + LTV D) (b9, pry) + 0 (t—10)"), (11.37)

e, F{(pi) ™1 (t p(1)) = (Sheo S5 (L) @) (fo, piy) + 0{(t—10)") i1 Ty, (h,)-

Answer. (Proof similar to one of the classical proof of Taylor’s theorem.) to and py, are fixed, p(t) = ®" (¢, py,),
and H®(t,p(t)) := H (p(t)) :== F/°(p,) "' With

Fan(t) = (H B)(t,p(t)) — (@ + (t—to) Lob + ... + t nto) L) (to, pry ), (11.38)

we have to prove: fu.n(t) = o((t—t)") (which means Ve > 0, 3h > 0, Vt € [to—h, to+h], || fan ()]s < ).
Recurrence hypothesis: With n € N*, for all @ € C™ | || fun(t)|lg = o((t—to)™).
This is true for n=1, cf. . Suppose it is true for n.
Let @ € C™F'. With 24% = _ [ d5, cf. (1.47), we get

s ’ D — t— " n —
Fomn’ () = (~H.dw + 5O D) (1)) — 0+ Lo+ .+ O 0 03)) 10, ) s
. : 11.39
— (H" Lo (b, p(t)) — (Lot + ..+ & _ntf) £3.L50)) (to, ) = Feginn(t).
1 fz,nt1 ()= Fiz,ny1( (IT.39)

And the mean value theorem tells S Al lly < SUD € (19—, to+h] | famia’ (T)]lo; And fisnyq(to)=
0, thus W‘“(‘A < SUP- ety —hto+h] ||f£4wn( )lg- And, Lzw € C™, hence the recurrence hypothesis tells:
1Feqwn(®)lly = of(t=to)"). Thus WepiOlle — o((1—to)", thus || ()l = of(t—10)"".

12 The virtual power principle

(See e.g. Germain [I0]).

12.1 Newton fundamental laws

Consider N > 1 distinct particles Ry, ¢ = 1,...,N. The set {Ry, ..., oy} is called a body. The
particle Ry, is at t at p; € R™ and its mass is m;, and p; # p; for all © # j. At t, each particle Ry
is subject to an acceleration 7, (p;) ="°*d 7;, an internal forces fupj (pi) ="°ted £ due to the other R

and ﬁz = 0 for all i, and an external force ft( ;) =noted fi (external to the body).
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Newton postulates: There exists a Galilean referential R, (called absolute) s.t. at any ¢:

e 1st law (Galileo law of inertia): “a body not acted upon remains at constant speed”. (12.1)
N

e2ndlaw: Vi=1,..N: m¥; =fi+ > fii (=Ffi+ > Fi)- (12.2)
= i

o 3rd law (law of action and reaction): Vi,j =1,...,N : f;l = —f;j and p;p; || f;j (12.3)

If N =1 (one particle), then (12.2) reads m7 = f and (12.3) is trivial.

And the 2nd and 3rd laws apply to any subset of {p1,...,pn} (on any sub-body).

12.2 D’Alembert formulation

12.2.1 The formulation, discrete framework

With the above discrete vectors fields '_y't,ﬁ,f;’pj :A{p1,..,pN} — ]1%_3”, consider a discrete vector field

i p € {p1,...,pN} — U(p) € R3 (virtual velocity field at t), and let @, (p;) ="°%*d ;. Choose a
Euclidean dot product (-,-), ="°%*d .« in R3. The scalars
N N N
Zmz’yz uza (’J) = Zfl 'ﬁi; ,Pmt(ﬁ) = Z Z jl 'uza (124)
i=1 i=1 j=1

are the acceleration virtual power, the external virtual power, the internal virtual power. Since f;l =0
for all i, we also have B, (w) = Zi(z#i fii) *Ui.
If there is just one particle then P, (@) = m7 « @, Po(@@) = f « @, and B (@) = 0.

D’Alembert virtual power formulatiorﬁ (variational formulation of 2nd and 3rd Newton’s laws).
There exists a Galilean referential R, s.t., together with Galileo’s law of inertia, at any ¢,

Vi € F({p1,..pn 1 R),  Pa(@) = Po(@d) + R (). (12.5)

Interpretation: To measure a force on a Ry, you need to move it (Germain: “to know the weight of a
suitcase you have to move it: Looking at it is not enough”), i.e. you need D’Alembert’s formulation.

Proposition 12.1 1- (12.2) is equivalent to (12.5).
2- { is equivalent to: B (@) = 0 for all discrete rigid body velocity field @ € F({p1,...,pn }; R3).

Proof. 1- (12.2) & (mﬁz — ﬁ — Zj# f;z =0 for all z) = ((m,% — ﬁ — Zj# El) «i; = 0 for all ﬁi) &
<Zi(mﬁi — fi= S foi) <, = O for all (ﬁi)izl,___,N) & (Pa(ﬁ) — D) — Bu(@) = 0 for all 7 € (R3)N

2- Consider the two particles at p; and py (others are outside the body {pi,p2}). A rigid body
motion of {p1,po} is characterized by iy = i) + & x p1ps (after the choice of a Euclidean basis needed
to define the vector product x). With ﬁi = 0, the internal virtual power is By (@) = fgl oty + ﬁg o lly =
(JF21+J§2)'771+J§2'(Q><M) (JF21+JF12)'7«71 +@ - (pips % fi2)-

21- Suppose (12.3), i.e. fo1+ fi2 = 0 and pips x fio: A rigid body motion of {p1,p2} glves R (@) = 040.

22- Suppose PW( ) = 0 for all rigid body motion of {p1, p2}: So (for + fi2) e @1 + f12 . (4 x M) =0
for all @;,d. In particular & = 0 (translation) glves (f21 + f12) «ii7 = 0 for all @ i, thus f21 + f12 =0. We

are left with fu o (& x p1ps) = 0=3e (Pip% % fu) for all &, thus pips x f12 =0.
23- Idem for any two particles at p; and p; (instead of p; and p2), for all 4, j. And a rigid body motion

of {p1,...,pn} implies a rigid body motion of any {p;,p;}. un

30r D’Alembert, Lagrange, Euler, ... virtual power formulation
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12.2.2  L?(Q) framework

At t, let Q be a regular domain in R3 (a simply connected bounded open set in R™ with a C° border).
Consider the space of finite energy scalar valued functions with its usual inner dot product and norm:

L*(Q)={u:Q = Rst. / Qu(p)2 dQ < oo},
Pe (12.6)

(u,w)pz = /EQ u(p)w(p)dQY and ||u||%2 = (u,u)pz = /EQ u(p)2 dQQ.

Let Ty (2) be the space of regular vector fields @ : p € Q — i(p) € R3 (simplified notations). Choose

a Buclidean dot product .« . in R3 with its associated norm ||.||, and consider the space of finite energy
vector fields with its usual inner dot product and norm:

12 = {7 € THQ) st. / a(p) |2 d2 < oo},
peQ

(12.7)
(7, F) = ;:/ (p) « i(p) 2 " /a.wda and |22 = (@, @)12.
pEQ Q

12.2.3 D’Alembert formulation, continuous framework

In (12.41 , replace the sum sign Y by the sum sign [, i.e., with p the mass density, define the acceleration,
external and internal virtual powers by, for all @ € T3 (),

P (@) ::/Qp'?-ﬁdﬂ, P.(i0) ::/Qf-ﬁdﬂ, R (D) ::/pr(ﬁ)dQ, (12.8)

where pyy : @ € Tg (Q) = pine (@) € F(Q;R) (50 pit (©) : p € Q — pa (@) (p) € R).

D’Alembert virtual power formulation. There exists a Galilean referential R, in which, at any ¢,

Vi € THQ), Pu(id) = Polil) + R (D). (12.9)

12.2.4 Remark: Rigid body motion and Germain’s notations

With a Euclidean basis (€;), the associated Euclidean dot product . « . and the associated vector product X,
let
SC = the screws := {@ € T, (Q) : 36 € R3, Vp,q € Q, ii(q) = i(p) + & x pg}
= {GeTHQ) : 35 € RB, Vg € Q, i(q) = #(0) + & x O},
where O € R3 (an origin): @ € SC is affine and @ € T3 () has implicitly been extended to @ € Tg(R?)
(infinite rigid body) so that #(O) is meaningful. (The equality in (12.10) because  is affine.)
dim(SC') = 6 because #@(0) and & characterize a screw .
Vocabulary: A screw which is the velocity field of a rigid body motion is called a twist or a kinematic
screw or a distributor; And a screw which gives the moment of forces is called a wrench.

Germain’s notations: R R R R

e A twist in noted @ (the hat for virtual), and, with (q) = u(p) + & x Py, the twist o is represented
by {C} = < [IL[(A_%])][€> —noted (U(A_Z?)> (a 6 * 1 matrix made of the reduction elements of i at D).

Wle w

e A wrench is noted m, and, with m(q) = m(p) + F x pg, the wrench 1 is represented by the matrix

[F] = ( _[,F][é ) =noted ( _.F > in that order.
[7i(p)]ie i (p)

Let SC’ be the dual of SC, i.e. the set of linear forms ¢ : SC' — R (continuous since dim(SC) < 00).
If SC = the twists then SC’ = the wrenches, and if SC' = the wrenches then SC” = the twists (thanks to
the natural canonical isomorphism SC” ~ SC).

(12.10)

Proposition 12.2 Suppose Q bounded, let p € Q. If ¢ € SC’ then 3(F,m(p)) € (R®)? s.t. Vi € SC,
with ii(q) = u(p) + & x pg we have

0@ = F«ip) + m(p) « & "2 [F] . (T} (12.11)

(Germain’s notation where the .. notation in [F]«{C} is the canonical inner dot product in Mg, the

space or 6 x 1 matrices). So if i € SC is a twist then £ can be represented by a wrench.
(In particular, in a Galilean Euclidean setting, B, restricted to SC' is the null function B, = 0.)
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83 12.2. D’Alembert formulation

Proof. Q bounded implies SC C L?*(Q): Indeed, if @ € SC then [, [|d(p)]|*dQ = [, ||@(0) + & x
Op||2dQ < QfQ [|1(0)]2 + ||| ||Op||2 dQ) < 2(||u@(0)||? + C||&|])|9, with | = fQ dQ) the volume of Q

and ' = sup,eq ||O_1>)||2 finite since Q is bounded, thus ||UHL2 < o0, thus @ € L2(Q)".

Hence SC' is a sub-vector space of L?(): Indeed, @,7 € SC Wlth i(q) = 4(p) + &z x p¢ and ¥(q) =
(p) + @y x by, give (@ + 7)(q) = t(q) + Av(q) = d(p )+wu><@+>\v ) + @ x pg = (@+ M) (p) + (&7 +
AJz) X D¢ = (i@ + A\0)(p) + Garaz X pg where Ggyag = Gz + Ay € R3.

And SC is finite dimensional (dim SC = 6), thus SC is a closed sub-vector space in L?(Q), thus
(SC, (+,-)r2) is a Hilbert space, and a linear ¢ : SC — R is continuous. Hence we can apply the (-,)p2-
Riesz representation theorem: If £ € SC’, then

e SC, Vit € SC, (i) = (£.@) 12 = / Tq) « illg) A0 (12.12)
qeN

with the Euclidean dot product « . relative to a chosen Euclidean basis (€; ) in R3. And ii(q) = i(p)+&xpy
thus ((@) = [ ., ¢ )+ & x pg) dQ = quQ p)dQ+ [ cq lq) « (& % pq) dS2 for all p, thus

(@) = Feii(p) + @ eiio(p) where F= [ flg)dQ and mi(p) = / W< fg) . (12.13)
qeQ qeN

Thus (T2.11).

12.2.5 First order linear hypothesis

Let (for scalar valued functions)

HY Q) :={uecL*(Q):Vj=1,..n, 6%“ € L*(0)} = {u € L*(N) : gradu € L*(Q)"}. (12.14)

H'(€) is needed in continuum mechanics when “deformation gradients” are considered. Let (-,-)z: and
||-||z1 be the usual dot product and associated norm in H'(Q):

(u,v) g1 = (u,v)2() + (gradu, gradv)Lz, llullgr == v/ (u,u) 1. (12.15)
Thus (H*(2), (-,-)g1) is a Hilbert space (Riesz-Fisher theorem).
The dual space of H!(Q) is H'(€)" = the space of continuous linear forms £ : H*(€) — R. We have,
see (V.16): £ € HY(Q) iff A(f,7) € L2(Q)xL2(Q)" s.t., Vb € H(RQ),
() = (f.0)1o + Gmadd)s = [ 0+ G- gradvag, (12.16)
Q
For vector valued functions,

HY Q)" = {ii € L*(Q)" : gradii € L*()" }:={d =Y w;& :Vi=1,..,n, u; € H(Q)}  (12.17)
=1

equipped with its usual inner dot product defined by, when @ =Y, w;&;, U=, v;€;,

L 8”1 8% d -
(@, 0) g := Z u;i, i)z + Z 9. D o " (@, ¥) 2 + (gradi, grad?) 2 (12.18)
-1 i,j=1 Ly x]

= [T+ gradi : gradvdQ where gradd : gradd := [dd]z : [d7] e = dij=1 9ui Bvi (double matrix
? J J

contraction).
Let HI(Q)W be the dual of H'(Q)", i.e. the set of linear continuous forms P : H'(Q)" — R. (|12.16))

leads to: P € H' ()" iff 3(F, o) € L2(Q)"xLA(Q)"™ st., Vi e H(Q)",

P(@) = (f, )12 + (g, VT) 2 = / feT+a:gradddQ. (12.19)
Q

Le. P fQZ fz z( ) Z” Uij(p) 67jl( )dQ when 7 = Z Ulelﬂ f Z fzeu [:] e = [Jij]'

83



84 12.3. Virtual power formulation with Lie derivatives

Galilean Euclidean referential: For P = Ry, B« (¥) = 0 for any @ s.t. di = 0 (i.e. ¥ = cste), true for

—

all subset in €2, thus f(p) «7 =0 for all p and ¥, thus (p) = 0 for all p, thus f: 0, thus

R (V) = / o : gradd df) |. (12.20)
¢

And By (0) = 0 for any ¥ s.t. dv+ dv" = 0 (rotation), true for all subset in €2, thus o : di—di’ _ () and

2
we are left with the usual .
dv+d
P () = / o HTU dQ. (12.21)
Q

Then, an integration by parts gives, with abusive notations (matrix calculations),
R (@) = —/ divo « 7dQ + /(g.fi) o U dS). (12.22)
Q = r—

Example 12.3 Pressure in a perfect fluid: f = 0 and o = prl where pr € L*(2) (pressure), thus

PV) = / pr divo dQ = —/ gradpr « 7dQ + / prvenidl. (12.23)
Q Q r
Germain’s notations: 73(5') = [op dive dQ with p the pressure and 7 a virtual velocity. un

12.2.6 Second order linear hypothesis

Generalization to

H2(Q) = {u e L2(Q) : gradu € LA(Q)", d®u e L3 Q)" }. (12.24)

)
with its inner dot product (u,v)y2 = (u,v)z2 + (gradu, gradv) 2 + (d?u,d?v).2 and associated norm

l[ul| g2 = /(u,u) 2. And idem with H2(Q)".
Second order linear formulation: P € (H2(Q)") iff 3(f, a,x) € L2(Q)"xL*(Q)" xL*(Q)" s.t.

P(ii) = (f,1)12 + (g, Vil) 2 + (x, d*il) 2 (12.25)
for all @ € H?(Q)". Gives “micropolar materials”. See Germain [1].

12.2.7 Issue: The linear hypothesis

The hypothesis (conjecture) “B, is linear for a second order formulation” raises questions:

A linearity hypothesis enables to do nice simple mathematics thanks to duality; It is used by
Germain[TI] (who liked mathematics and duality) to define micromorphic materials, cf (12.25). And
linearity yields simple computations.

But in “real life” are all “materials” linear?

In mechanics we learn that a constitutive law is useful if and only if the deduced calculations give
good approximations of the results obtained by experiments.

So, question: Does the second order linear hypothesis give convincing results (apart from the theo-
retical micromorphic materials)?

If not, why not consider non linear mathematics, in particular, why not consider non linear internal
virtual power? In fact non linearity is proposed in elementary mathematics, e.g. with the second (or
higher) order Taylor expansion.

This is proposed in the next § (non linearity of R,).

12.3 Virtual power formulation with Lie derivatives

The Lie derivatives being the “natural derivatives” (and being covariant objective), it is tempting to use
them to build the internal virtual power. Let us do it: The flow v’ will act on the Cauchy stress vector T’
to give LT (first order rate of stress), Lz(L3T') (second order), ...
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85 12.3. Virtual power formulation with Lie derivatives

12.3.1 First order approximation with Lie derivatives and classic result

7 and T are the velocity and Cauchy stress vector fields. The rate of stress of T along ¥ is the Lie

derivative

. DT . af

cf. § and To measure Eﬂ:, choose a differential form «, and define the internal virtual power

Ru(a,v,T) := / a.LyT dS, (12.27)
Q

w1tha£~T—o¢ —|—o¢dTv—ozdvT
Galilean referentlal framework: The internal power vanishes when d¢ = 0 (motion of translation),

true for all subset of 2, hence a.(%—f + dT'.%) vanishes in (12.27), and we are left with

Bulo, 0,T) = —/ o.dv.T d) = —/ T, 0dvdQ, where 1 := T® . (12.28)
Q Q- -

Recall: 7 () dv := Tr(z.dv) is the double objective contraction between the (1) tensors 7 and dv (no basis
and no inner dot product required a priori: covariant objective approach).

Then choose a Euclidean basis (€;), with its covariant dual basis (e’) and associated Euclidean dot
product .« . (isometric framework); With 7 the exterior Euclidean normal unit vector field on I', we get

Bulo, 0,T) = divr .17—/(1 ) efdl, where 7 =T ®a. (12.29)
r-° -

Q -

Recall: dAi;/;l is the objective divergence of a G) tensor, cf. db and ga.U: (a.f)’)f

Then choose a uniform measuring tool . Hence divz = (divT)er and ., 0= (a #)T, hence

Bulo, 7, T) = / (divT)(eu.7) dQ — / (a.) T « @ dl, (12.30)
Q T

—

the use of the Cauchy stress vector T being explicit. (Take o = e’ for a measurement along €;.)

Classic formulation recovered. T = >, 7€ and a = Y, aze’ give [z le == [Tiq;], and 7 =Y, v'E;

gives dU = E” SoF € ®el and .di.T = > i o 2 JT thus

Bm(amif) —/Qg: [dv)|zdS2,  where o = [ga]‘g: [;T7] (matrix),

n oy
= i1t (12.31)
/ diva « [0])e — /(g.[ﬁ]‘g) o [U]jedl’, where dive = :
Lz z

Zn ‘ Oonj
=1 BzI

is the divergence of a “tensor” in mechanics (in fact divergence of a matrix), and where .+. is also
the notation of the canonical dot product in the space M,; of n x 1 matrices. Here « is uniform thus
S 9r =2 o 2 81:3 = ;divT" and divg = (divT) [a]ﬁ;. And (12.31)) is abusively written (classic)

j OxJ

Pmt(a,ff,f):—/g:dUdQ:/divg-ﬁ—/(g.ﬁ)-ﬁdf. (12.32)
Q- Q - r-

Exercice 12.4 Write ((12.28))-(12.29)-(12.30) with components in a Euclidean framework.

Answer. T = 3, T, a = 3, aze’ where (e Z) is the (covariant) dual basis of (€i), = }_,; Tjel Re =
D T'aje; @€, =3 ,v'¢, dv = D) g“J & ®e, adiT = 2o BIJT]’ T.dv = Zi]kT,zg;J g®e, 1 ()dv=
Z” ;g;i Z”Tzajazl,d:a:Z”k arkez®ej®e (ﬁ(/( ):Z” Zmlej d1v( )17—2” g; vl A=) ne;,
n
fuﬁ:ZiTini,a.ﬁzziawi,ﬁmI—Z Jal Z/g;jl V7 dQ Z/Tlv]nldf‘ And ﬂ)
, i,j=1 ij=1
with « uniform, so g;{ = %aj7 divT = > ng , divT(a.7) = >, 2L s Z ajiv?. .
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86 12.3. Virtual power formulation with Lie derivatives

12.3.2 Second order approximation with Lie derivatives

We add the second order Lie derivative Eg(ﬁgfg) of a vector field Th (instead of the first order Lie
derivative Lzg of a tensor g, cf. e.g. the Jaumann derivative) to get, for all ¥,

Pl 5.7, ) = / a(CoT + LOTy) da, (12.33)
Q
where
2 = — —
@7 _ 62 L, 0T o o 0T 5 05 00 g
£5'To = Lal(LeTh) g T2 2dv. 5+ dly Gy —d gy T (12.34)

+ (d*T5.%).7 + dT5.d0.T — 2d7.dTs.7 — (d*3.7).Ts + dv.dv.T.

A simple choice is Ty =T , ¢ € R, to take into account, together with the first order variation ﬁf,f; the
second order variation C,C%Q)T.

-,

Galilean framework: R, vanishes if dif = 0, thus moreover choosing a stationary ¥ (so 22 Sr=0),

T
Bul..) = / (—do.T — 2d7. % + dTy.d7.7 — 2d.dT5.T — (d*0.0). Ty + dv.dv.Ty) dS
@ o (12.35)
= / o.(—dv.T — zdﬁ.ﬁf + dTy.d5.7 — (d*.0).Th + d.dv.Th) dQ.
Q
Then define 7 := T ® o and T, = Th ® a (for constitutive laws) and choose o uniform: We get
Dz,
Rul.) = / —z 0di-252 29 di+dr, O (dv.6)dQ + 1, 6 (dv.di — d*.5). (12.36)
Q -

NB: The result (12.36) is given with tensors 7 and z, to be able to compare classical results, e.g. with
Jaumann derivatives (Lie derivative of (}) tensor). But recall that here we only have Lie derivatives of

the vector fields T' and T (no Lie derivative of order 2 tensors).
(For an initial approach, see https://arxiv.org/abs/2301.01056 .)

Because E%z)fz is not linear in v, this gives a non-linear virtual power in ¢/, which in fact could be
expected: Not linear in v, like any second order Taylor type approximation. It is linear in a.

12.3.3 Non linear first order approximation with Lie derivatives

Technically simpler than the second order approximation: Add to (12.27)) a differential form «; (a mea-
suring tool) imbedded in the flow to measure some internal force 77 subject to the flow:

7?;77,;(047 aq, U, f, 7:1) = / Oé.[:{;f + C{,‘al.([,gfl) ds). (12.37)
Q

A first choice is @1 = a and T1 T. Recall: Lyoq = d‘“ + doy .U+ a.dv.
Then choose a; uniform and stationary, so Lzay = a1 dv, and

87—1’ = =, 87_—; — —
Rul...) = / a.(a +dT.0—do.T) + al.d{)’.(a—tl +dT .0 — dv.Ty) dSQ. (12.38)
Q
It is linear in « and «4, and we have a non linear dv.dv term in v.
The internal power has to vanish whenever dv' = 0, true for all subset of €2, hence the a.(% + df@')
term vanishes, and, with 7 := T ® a and T, = T ® a1, we are left with

—

DT,
Bt () = / —.di.T + ay.dv.(=—= — dv.T}) dQ
Q

Dt (12.39)

Dr,
:/—T @dv+ @dv—T 0 (dv.dv) d9Q.
Q
Recall: Only Lie derivatives of the vector fields T and T are used (no Lie derivative of order 2 tensors).
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Part V

“Studying Mathematics I had hoped to penetrate the essence of truth...
... But all I was learning was cheap calculating tricks.”

Bertrand Russell (beginning of the 20th century)

Isn’t this still too often the case in continuum mechanics? (“Studying Continuum Mechanics I had
hoped to penetrate the essence of truth... But all I was learning was cheap calculating tricks.”)

It is mainly due to the lack of basic math definitions:

What is a motion? A Eulerian variable? A Lagrangian variable?

Why domain and codomain of a function are rarely mentioned (hence errors and misunderstandings)?
What is a “canonical”’, a “Cartesian”, a “Euclidean” basis?

What is a transposed (of what)?

What is pseudo-vector versus a vector?

What are covariant and contravariant vectors?

Why a linear function can’t be identified with a vector?

Why a endomorphism E — E can’t be identified with a bilinear form F x E — R?

What is the difference between a differential and a gradient?

What is the definition of Einstein’s convention?

What is a tensor?

Why the infinitesimal tensor ¢ is not a tensor?

What is the Lie derivative? And why is it “The natural derivative in continuum mechanics™
What is a distribution?

What does gTVZ mean (derivation relative to components)?

(“This is the big advantage of not giving definitions: It allows you to say anything... and be sure that
you don’t understand what you are talking about.” Quote from one of my teachers.)

Appendix

In this appendix, we give standard simple definitions and results, useful in mechanics, often scattered
in the existing literature, and sometimes difficult to find. Hence no ambiguity will be possible; And we
avoid notations which are of no use and add to confusion (some notations can be nightmarish when not
understood, or misused, or made for calculus tricks, or come like a bull in a china-shop).

All the definitions apply to electromagnetism, chemistry, quantum mechanics, general relativity... and
continuum mechanics (solids, fluids, thermodynamics...): The same math apply to everyone.

A Classical and duality notations

A.1 Contravariant vector and basis
A.1.1 Contravariant vectors, covariant vectors

Let (E,+,.) ="°%d £ be a finite dimension real vector space (= a linear space on the field R).
Definition A.1 An element Z € F is called a vector, or a “contravariant vector”.

A vector is a vector... So why is it also called a “contravariant vector”?
Historical answer: Because of the change of basis formula [Z]jpey = P~'.[#]a4, see (A.29), which
uses P~!, P being the transition matrix.

Definition A.2 Let £(E;R) ="°td £* be the space of linear scalar valued functions on E, called the
space of linear forms on E. An element ¢ € E* (a linear form) is called a covariant vector.
So a covariant vector is the name given to a function £ — R which is linear.

Why a linear form is called a “covariant vector’™?

Historical answer: Because of the change of basis formula [(]},,c, = [€]jaq- P, which uses P, see .

To remember: A covariant vector is a linear form ¢ that gives values to vectors ¥: value £(7) € R. So
a covariant vector (a linear form) is a measuring tool for vectors.
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88 A.2. Representation of a vector relative to a basis

A.1.2 Basis

Recall (definitions):

e n vectors €, ...,€, € E are linearly independent iff for all A,..., A, € R the equality Y  \;&; = 0
implies \; = 0 for all ¢ = 1,...,m. (So n vectors é1,...,€, € E are linearly dependent iff there exists
1€ [1,n]N and Aq, ..., \i_1, )\i+17 L An ERst € = Zj;éi Ajgj)

e n vectors €1, ...,6, € E span F iff : V' € E, I\, .., A, e Rsit. T= Y1 Nés.

e A basisin F is a set {1, ..., €, } C E made of n linearly independent vectors which span E: In which
case the dimension of E is n.

A.1.3 Canonical basis

Consider the usual field R and the Cartesian product R x ... x R, n times. The canonical basis is

—

A; =(1,0,...,0), ..., A, = (0,...,0,1), (A1)
with 0 the addition identity element used n—1 times, and 1 the multiplication identity element used once.

Remark A.3 Consider the 3-D geometric space “we live in”, and the associated vector space R3 of “bi-
point vectors”. There is no canonical basis in R3: What would the identity element 1 mean? 1 metre?
1 foot? And there is no “intrinsic” preferred direction to define €.

However R3 is isomorphic to the mathematical Cartesian product R x R x R. But such an isomorphism
is not “canonical” (or “intrinsic” to ]1%_'3); For example an isomorphism 7 : R3 — R x R x R is defined after

the choice of a basis (€, @, é3) by some observer (English, French...) by J (&) = A;. ua

A.1.4 Cartesian basis

(René Descartes 1596-1650.) Let n = 1,2,3, let R™ be the usual affine space (space of points), and let
R" = (R",+,.) be the associated usual real vector space of bipoint vectors.
Let p € R™, and let (€;(p)) be a basis at p (see e.g. the polar coordinate system, example .
A Cartesian basis in R is a basis independent of p (the same at all p), and then (&(p)) ="°%d (&,).
A Euclidean basis is a particular Cartesian basis described in § [B.1]

A.2 Representation of a vector relative to a basis

There are to equivalent notation systems:

e the classical notation (non ambiguous), e.g. used by Arnold [3] and Germain [10], and

e the duality notation (can be ambiguous because of misuses), e.g. used by Marsden and Hughes [14].
Both classical and duality notation are equally good, but if you have any doubt, use the classical notations.

Definition A.4 Let ¥ € F and let (€;) be a basis in E. The components of Z relative to the basis (€;)
(in the basis (€;)) are the n real numbers w1, ..., 7, (classical notation) also named z?,...,2" (duality
notation) such that

—

T=2161 + .. + 2nlp = 26 + ... + 2"E,, ie. [@]je = = ], (A.2)

clas. dual Ty z

[7]|¢ being the column matrix representing # relative to the basis (€;). (Of course x; = z* for all i.) And
the column matrix [7] ¢ is simply named [7] if one chosen basis is imposed to all. With the sum sign:

n n n n
F=Y midi = ' (=) a8 =) a%). (A.3)
i=1 =1 J=1 a=1
N—_—— N—_——

clas. dual

The index in a summation is a dummy index; And with the Einstein’s convention (which uses the
duality notation) the sum sign Y can be omitted: 7 = Z?,laﬂe] =noted yig. — zig, = xl€; = 1€,
This omission was motivated by the difficulty of printing Z -, in the early 20th century. We won’t omit
the > sign in the following, thanks to TEX-IATEX which makes writing it simple.
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89 A.3. Dual basis

Example A.5 In R_é, let ¥ = 31 + 4é5 = 23:1 Ti€; = 2?21 x'€;, so x1=2'=3 and zo=x2=4. And

. ) =1if i=yg
[©]z = 3[e1]je + 4[é2]je = 25:1 zi[€)je = Zle 2'[€i]je. In particular, with ¢} = &;; := { J}

= 0if i#£j
(Kronecker),
1 0
S - . . 0 . :
€ = Zéijei = Zé;-ei, Le. [Be=] .|, [Ealle= O , (A.4)
i=1 i=1 ‘
—_—— — 0 1
clas. dual

that is, the components of €; in (&;) are d;; with classical notations, and 6; with duality notations.  wa

Definition A.6 The basis ([€}]¢) is called the canonical basis of the vector space M,y of n * 1 column
matrices. A column matrix [Z]z is also called a “column vector”, or a pseudo-vector.

Remark A.7 NB: A “column vector” is not a “bi-point vector of our geometric space”, but just a matrix
(a collection of real numbers) relative to the choice of a basis. See the change of basis formula (A.29)

where the same vector is represented by two different “column vectors” (two column matrices). un

A.3 Dual basis

General usual notations: If E and F are vector spaces then (F(E; F),+,.) ="°%d F(E; F) is the usual
real vector space of functions with the internal addition (f, g) — f+g defined by (f+g)(z) := f(z)+g(z)
and the external multiplication (A, f) — A.f defined by (A.f)(z) := A(f(z)), for all f,g € F(E;F),z € E,
A eR. And \.f =moted \f for all f € F(E; F) and X € R.

A.3.1 Linear forms = “Covariant vectors”

Definition A.8 E being a real vector space, the set F* := L(F;R) of linear real valued functions is
called the dual of E:
E* := L(E;R) = the dual of E. (A.5)

An element ¢ € E* is called a linear form. A linear form ¢ in E* is also called a “covariant vector”.

NB: Co-variant refers to:

1- The action of a function ¢ on a vector « that gives the real (), the calculation of /(%) being called
a co-variant calculation, and

2- The change of coordinate formula [(],ew = [€]jqq.P; see (A.29) (covariant formula).

Property: E* is a vector space, sub-space of F(E;R) (trivial check).

Notation: If / € E* then
Vie B, (@) "% q. (A.6)

The dot in £.4 in is “the distributivity dot” since linearity £(@ + \v) = £(@) + M(7) follows the
distributivity rule: £.(@ + A0) = £.4 + M.7.

Also written £(@) ="°" (¢, @) g~ p where (.,.) g~ g is the duality bracket.

NB: The dot in £.4 is not an inner dot product (since ¢ ¢ E while @ € E).

Remark A.9 More precisely, E* as defined in is the algebraic dual of E. If F is infinite dimen-
sional, then we may need to define a norm ||.||g for which E is a Banach space. E.g. E = L?(Q2) and
720 = Jo F(£)? d2. In that case E* is the name given to the set of continuous linear forms on E,
called the topological dual of E: It is essential in continuum mechanics.

(If F is finite dimensional then all norms are equivalent and a linear form is continuous.) un

Remark A.10 E* being a vector space, an element ¢ € E* is indeed a vector. But E* has no existence
if E has not been specified first! And ¢ € E* can’t be confused with a vector ¥ € FE since there is no
natural canonical isomorphism between E and E* (no “intrinsic representation”), see § So if you
want to represent a £ € E* by a vector then you need a tool which is observer dependent; E.g. you need
some inner dot product (observer dependent) if you apply the Riesz-representation theorem, or you need
to specify a basis (observer dependent) to represent ¢ with its matrix of components (in the dual basis). du

Remark A.11 (continuing.) Misner-Thorne-Wheeler [16], box 2.1, insist: “Without it [the distinction
between covariance and contravariance, one cannot know whether a vector is meant or the very different
object that is a linear form.” .
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90 A.3. Dual basis

A.3.2 Covariant dual basis (= the functions that give components of a vector)

Notation: If @y, ..., @y are vectors in F, then let Vect{wy, ..., @} be the vector space spanned by 1, ..., .
Let E be a finite dimensional vector space, and let (€;);=1, .., be a basis in E

Definition A.12 Let i € [1,n|y. The scalar projection on Vect{€;} parallel to Vect{éy, ..., €;_1,€it1, ..., En}
is the linear form named 7.; € E* with the classical notation, named e' € E* with the duality notation,
defined by, for all 1, 7,

(A7)

clas. not. : ﬂei(gj) = 51']', i.e. ﬂeié‘] = 51'3'7
B W~ B iz o si
dual not. : e'(€j) =05, ie. e'.€; =d;.

(The dual basis (7,;) = (e') is intrinsic to the (€;): The same for an English and a French observer...)
Thus, if ¥ = >7_ 2;8; = >.7_,27€; (classical or duality notations), m.; = ¢’ being linear, we have

Wei(f) = Z;L:lfﬂj Wei(gj) = Z;L:llfi §ij =y, SO

_, clas. i »dual . o
T @ 2 = e FR ' = the i-th component of Z, (A.8)

i-th component relative to the basis (€;), see figure

Figure A.1: Parallel projections: 7.1(%) = 21 and 7eo(¥) = z2 (dual not.: e!(Z) = 2! and €2(7) = z?).

NB: Fundamental: There can’t be any intrinsic (objective) notion of orthogonality in E because
orthogonality depends on the choice of an inner dot product (subjective). And 7.;.Z is not an inner
product because 7.; = €' € E* and ¥ € E do not belong to a same vector space.

Proposition A.13 and definition . (7.)i=1,..n = (¢))iz1. . ="%4 (1) = (¢') is a basis in E*,
called the (covariant) dual basis of the basis (€;). Thus dim E* = n. And for all { € E* the reals
l; ;= L.€; are the components of £ in the basis dual basis:

0B e TN e’ where 6 = 06 (A.9)
=1 =1

Proof. If Z?:l/\iﬂ-ﬂ = 0, then 0 = (Z?zlAiﬂei)(éj) = Z?zlAiWei(gj) = Z?le\idij = /\j for all j, thus
(Tei)i=1,...,n is a family of n independent vectors in E*. Then let £ € E* and m = ) _,({.€;)me;. Thus
m € E* (since E* is a vector space), and m(€;) = > _,(£.€;)(7ei-.€;) = >, (L.€;)0;; = L.€;, for all j, thus
m = {, thus £ = ), ({.€;)me;, thus Vect{(me;)i=1,....n} span E*; Thus (7e;)i—1,....n is a basis in E*; Thus
dim E* = n. (Use duality notations if you prefer.) un

Example A.14 The size of a child is represented on a wall by a bipoint vector @. An English observer
chooses the foot as unit of length and thus makes a vertical bipoint vector “one-foot long” which he
names . And then defines the linear form 7, : Vect{@} — R by n,.d = 1. Thus 7, is a measuring
instrument, and o = s,d where s, = 7,.u is the size of the child in foot.

A French observer chooses the metre as unit of length and thus makes a vertical bipoint vector “one-
metre long” which he names b. And then defines the linear form 7, : Vect{@} — R by 7.6 = 1. Thus
is a measuring instrument, and 4 = sbg where s, = .4 is the size of the child in metre. un

Exercice A.15 Let (d;) and (b;) be bases and let (m4;) and (m;) be the dual bases. Let A # 0. Prove:

- 1 ) .
If, Vi=1,..,n, b; = A\d;, then, Vi=1,...n, T = 3 Tai (i.e. b' = +a'). (A.10)
Answer. my;.b; = 8;j = Tai.G; = TFM'.% = %ﬂ'ai.gj for all j (since mq; is linear). un
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91 A.3. Dual basis

A.3.3 Example: aeronautical units

(Fundamental if you fly.) International aeronautical units: Horizontal length = nautical mile (NM),
altitude = English foot (ft).

Example ./i)lﬁ O = the position of the control tower, and a plane p is located thanks to the bipoint
vector & = Op. A traffic controller chooses €; = the vector of length 1 NM oriented South (first runway),
€ = the vector of length 1 NM oriented Southwest (second runway), €s = the vertical vector of length
1 ft: His referential is R = (O, (€1, €2,€3)). The dual basis is (me1, Te2, me3) defined by 7., (€;) = d;; for
all i, 7, cf. . He writes 7 = Y"1 | x;¢; € R”, so that 1 = 7. (Z) = the distance to the south in NM,
Lo = Tea (T ) = the distance to the southwest in NM, x5 = m.3(Z) = the altitude in ft.

Here the basis (€;) is not a Euclidean basis. ThlS non Euclidean basis (&;) is however vital if you fly:
A Euclidean basis is not essential to life... See next remark [A.T7l oa
Remark A.17 The metre is the international unit for NASA that launched the Mars Climate Orbiter
probe... But for the Mars Climate Orbiter landing procedure, NASA asked Lockheed Martin (who uses
the foot) to do the computation. Result? The probe burned in the Martian atmosphere because of A ~ 3
times too high a speed during the landing procedure: One metre is A ~ 3 times one foot, and someone
forgot it... NASA and Lockheed Martin used a Euclidean dot product... But not the same: One based
on a metre, and one based on the foot. Objectivity and covariance can be useful! .

A.3.4 Matrix representation of a linear form

Let ¢ € E*. Let (€;) be a basis. With the components ¢; of ¢, cf. (A.9),
e, = (6 o £) "%z (row matrix) (A.11)

is called the matrix of ¢ relative to (¢;). Thus, if Z € E and & =¢18s- 3" g, =dual ™ 3¢, then
0.7 = (Z?zlfiﬂei)-@?:lxj%) = Z” i jmei €5 =300 = lijbiy = 300 by = (€] -[Z]je, so

07— [ |7re _, clas Zéz Zdual ZE i noted [_’hé‘a (A.12)

with the usual matrix computation rule: A 1 n matrix times a n * 1 matrix.
In particular for the dual basis (m¢;) = (€*) (classical and duality notations),

i ted i e o
Teilir, =[] =0 .. 0 1 0 .. 0)" =" [mlie=[¢"]z (= row matrix [¢]]). (A.13)
jth position

Remark A.18 Relative to a basis, a vector is represented by a column matrix, cf. , and a linear
form by a row matrix, cf. . This enables:
e The use of matrix calculation to compute .7 = [{]z.[%]s, cf. (A.12), not to be confused with an
inner dot product calculation &« § := (Z, %), = [7] ﬁ; [9]x. -[#]|e relative to an inner dot product (-,-), in E.
e Not to confuse the “nature of objects™ Relative to a basis, a (contravariant) vector is a mathematical
object represented by a column matrix, wh11e a linear form (covarlant vector) is a mathematical obJect
represented by a row matrix. Cf. remark [A.1T] ..

A.3.5 Example: Thermodynamic

Consider the Cartesian space R2 = {(T, P) € R x R} = {(temperature,pressure)}. There is no mean-
ingful inner dot product in this R2: What would v72+P2 mean (Pythagoras: Can you add Kelvin
degrees and pressure (kg.m~!.s72)? Thus, in thermodynamics, a (covariant) dual bases is fundamental
for calculations.

E.g.: After a choice of temperature and pressure units, consider the basis (E1=(1,0), E3=(0,1)) in R x
R =noted R2: Tet X = TE) + PE, ="0ed (T P) € R2, and let (g1, 7mge) = (B, E2) ="oted (4T, dP)
be the (covariant) dual basis. The first principle of thermodynamics tells that the density « of internal
energy is an exact differential form: 3U € C'(R%R) s.t. o = dU. So, at any Xo = (Tp, Py), the linear
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form a(fo) = al(fo) dT + ag(fo)dT € (R?)* is given by oy = U and as = g—g:

o
dU(XO):g—Z(XO)dT+g—Z(XO)dP so [dU(Xo)] 5= (2%(Xo) 84(Xo)) (row matrix). (A.14)

With matrix computation, column matrices for vectors, row matrices for linear forms:

[El]ﬁz(é>7 [EQ]E=<(1’>, [XO]E:(]Z;E), [5215:((‘;]2), and (A.15)

[EY =Tl z=(1 0), [E*z=[dPlz=(0 1), [dU]z= (37 55) (A.16)
give
dU(Xo).0X = (2U(Xy) 2Y(Xy)). (g]{) = %(X0)5T+ ‘;%(Xo)ap. (A.17)

This is a “covariant calculation” (in particular no inner dot product has been used). And we have the
first order Taylor expansion in the vicinity of Xy = (Tp, Py), with 6X = (6T, 6P):

U(Xo+6X) = U(Xo) 4 dU(Xp).0X + 0(6X)
(A.18)

ou ou
= Uv(T()7 Py) + 6Ta7(T07 Po) + 6Pa7(TO7 PQ) + O(((ST, 5P)>

A.4 Einstein convention

A.4.1 Definition

When you work with components (after a choice of a basis), the goal is to visually differentiate a linear
form from a vector (to visually differentiate covariance from contravariance).
Framework: a finite dimension vector space E, dim ' = n, and duality notations.

Einstein Convention:

1. A basis in E (contravariant) is written with bottom indices: E.g., (€;) is a basis in E.
2. A vector ¥ € E (contravariant) has its components relative to (€;) (quantification) written with top
1
x
indices: = Y[ ,x'¢;, and is represented by the column matrix [#]jz = [ : |. (Classical notations:
:L.TL

T = Z?Zla:ié}, and column matrix of z;.)

3. The (covariant) dual basis of (€;) (in E* = L(E;R)) is written with top indices, so (e') is the dual basis
of the basis (€;). (Classical notations: (me;).)

4. A linear form ¢ € E* (covariant vector) has its components relative to (e!) (quantification) written with
bottom indices: £ = )7 ,¢;e’, and its matrix representation is the row matrix [{]z = (1 ... £y ).

5. Optional: You can use “the repeated index convention”, i.e. omit the sum sign Y when there are repeated
indices at a different position. E.g. Y aie; =noted gig; 77 g;el =noted giet S0 Lie; =noted Lig
> i 19Ty =noted g .iys ... In fact, before computers and word processors, printing > | was
not an easy task. With I¥TEX it’s asy: In this manuscript the sum sign ) is not omitted (and some
confusions are avoided).

A.4.2 Do not mistake yourself

1. Einstein’s convention is just meant not to confuse a linear function with a vector.
. It only deals with quantification relative to a basis.

3. Classical notations are as good as duality notations, even if you are told that classical notations cannot
detect obvious errors in component manipulations... But duality notations can be easily (and are often)
misused in classical mechanics (cf. the paradigmatic example of the vectorial dual basis treated at §,
and mainly adds confusion to the confusion.

. The convention does not admit shortcuts; E.g. with a metric: g(d,7) = 377" ;_, giju'v’ shows the observer
dependence on a choice of a basis and on the chosen metric (with the g;;); And even if g;; = d;; you
cannot write g(@,v) = szzluivj: You have to write g(i,7) = sz:lgijuivj: Unmissable in physics
because you need to see the metric and bases in use.

. Golden rule: Return to classical notations if in doubt. (Einstein’s convention can add confusions, un-
truths, misinterpretations, absurdities, misuses...)
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A.5 Matrix and transposed matrix

The definitions can be found in any elementary books, e.g., Strang [21]. Recall:
e M,,, will be the space of m * n matrices; It is a vector space (with the usual rules).
e Product: If M = [M;;]i=1..... € My, and M = [M;;]i=1...... € My, then their product is the mxp
g=1,"n J=1,

..........

e Transposed : If M = [M;;] i=tm € My, then its transposed is the matrix M7 = [(M™) ] i=1..n €

M, defined by 1 m
(MT);; == Mj; (A.19)

3 4 2 4
e M is symmetric iff MT = M (requires m=n).
o (M.N)T = NT.MT (because Y, M;jpNyi = >, (NT)ix(MT);).
o M € M,,, is invertible iff AN € M,,, s.t. M.N = I, and then N =nroted py—1,

Exercice A.19 Prove: If M is an n *n invertible matrix then M7 is invertible and (M7T)~! = (M~1)T
( =noted Ay=T); And if M is symmetric, then M~! is symmetric.

Answer. M.M~' = I gives (M~ 1)T.M" = I" = I, thus M7 is invertible and (M7)~! = (M~HT. Thus if
M= MT then M~' = (M~1)T. oa

(swapping rows and columns). E.g., M = (1 2> gives M7 = <1 3>, and (M™)1p=M3=3.

A.6 Change of basis formulas

E is a finite dimension vector space, dim E = n, (€gq,;) and (€pew,;) are two bases in E, (Tqq,;) and (Tpew,;)
are the associated dual bases in E*, written (el,;) and (el,,,) with duality notations.

A.6.1 Change of basis endomorphism and transition matrix

Definition A.20 The change of basis endomorphism P € L(E; E) from (€ud,i) tO (Enew,:) is the endo-
morphism (= the linear map E — FE) defined by, for all j € [1,n]y,

| P-Gott,j = Coew | (A.20)

Let
Py PY;

n n
— clas. - dual N . o . )
€new,j = Zpij Coldi = ZPZJ‘ Cold,is  1-€  [Cnew,jlle,y = : = : , (A.21)
=1 i=1 Pn] Pnj
i.e. the P;; = P, are the components of €new,j in (€pa;). And (A.20) gives P.€ou; = > 51 Pij Eoid,is SO
[P] =clas. [ p,.] =dual [pi ] is the matrix of the endomorphism P relative to the basis (€yq.;).

Definition A.21 The matrix P =°185:[P;;] =4ual [P7.] is the transition matrix from (€ ;) t0 (Enew.i)-

1€01d

You may find other “component type” notations:
| n dual n (Pj)l (Pj)l
gnew,j cas. Z(PJ)Z gold,i ua Z(F’j)z 501d,i; i.e. [é'new,j} o — = . (A22)
=l =l (Pj)n (B)"

So P;; = P'; = (P;); = (P;)" are four notations for the i-th component of €new j = P.Coid,j i (Eoid,i)-

A.6.2 Inverse of the transition matrix

The inverse endomorphism Q := P~! € L(E; E) of P in (A.20) is given by, for all j € [1,n]y,

ot j = QeCnewj (=P Crewj)- (A.23)
So Q is change of basis endomorphism from (€ey ;) t0 (€ i), and Q := [thﬂew = [Q;;] is the transition
matrix from (€pew,i) t0 (€oid,i):
n Q1
€oid,j = ZQijgnew,iv [Cod sl = | |- (A.24)
=1 an

Use other notation if you prefer: Q;; = (Q;); = Q'; = (Q,)"
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Proposition A.22
Q=r" (A.25)

Proof. gnewg = Pgold,] Z? 1 eoldz = ZZ 1 (Zk 1kaenewk Zk 1 lekz ij enewk
> he1(Q.P)yj€new, for all j, thus (Q P)y; = 0y for all j,k. Hence Q.P =1, i.e. - on

Pliegg = Pligge, = P
Exercice A.23 Prove { Plicag = [Pl }, ie.

P -Crew,j = Z?; 1 Pij€new,i (= ZZj:1Pingew)i = ZZj:1(Pj)i€nm,i)a (A.26)

Q.Coid,j = Doy i1 Qigoiti (= 207 jo1 Q" 5€otdi = i j—1(Q5) " Eoti)- '
Answer. 7 = [Zij] = [P]‘anew means P.€new,; = D_; ZijCnew,is 1€ Cnew; = (Z? 1 Zij€newi) =
Yo Zij QeCrew,i = 2 iy Zig (D ope 1 Qri€new k) = Dohm1 (201 Qi l])enewk =25 (Q. Z)kj€new, for all j, thus
(Q.Z)k; = Okj for all j, k, thus Q.Z = I, thus Z = P. Idem for Q, thus (A.26). un

—

Remark A.24 PT £ P~1in general. E.g., (€ga:) = (@;) is a foot-built Euclidean basis, (€pew.:) = (b;)
is a metre-built Euclidean basis, and b; = Ad; for all i (the basis are “aligned”), so P = AI; Thus PT = AI
and P~ = 1I # PT, since A = 53018 3048 # 1. Thus it is essential not to confuse PT and P!, cf. e.g. the
Mars Chmate Orblter probe crash (remark [A.17). un

A.6.3 Change of dual basis

Proposition A.25 (T ) = (€l,,) and (Taa;) = (€iy;) being the dual bases of (Enew,i) and (Eou,i), for
all i € [l,n]N,

n n

clas. ; dual i g

Tnew,s — ZQijﬂ-old,j = ezlew = ZQljefﬂda (A27)
Jj=1 Jj=1

and

[Ww,ihgdd =(Qi ... Qin)=l|e Hew]|@old (Q4 ... Q%) (thei-th row of Q). (A.28)

Proof. mpa,i(€od,k) —[E2 Tnew,i (D2 ; QjkEnew,;) = 225 Qjk Tnew,i(Cnew,) = > Qjrdij = Qix, and
Zj QijTad,j (Cold k) = Ej Qij0ik = Qik, true for all 4, k, thus e, ; = Ej Qij, i-e. 1) un

A.6.4 Change of coordinate system for vectors and linear forms

Proposition A.26 Let ¥ € E and ¢ € E*. Then

o [z =P 7 (contravariance formula for vectors: between column matrices),
new old (A.29)
o Uz =10z,,.P (covariance formula for linear forms: between row matrices).
|Znew €0l

And the scalar value ¢.% is computed indifferently with one or the other basis (objective result):

li= [€]|€old'[f]‘€old = [é]lgnew'[f]lgnew' (ASO)

Proof. Let ¥ = Zj xjé’old,j Z Yi€new,i- W€ have T = Zj xjgold,j = Zj xj(Z?leijé'HeW’i) =
> 1) Qi Cnew,is thus y; = 3=, Qi for all i, thus (A.29);.
And ¢ = Zj M Tnew,j = O ; biTad,i - Z 6 5 TTnew,j gives mj =Y. ¢; P;; for all j, thus 2.
Thus [, [7)ie,0, = (Hieyy P)- (P ]\eold) [E]‘eold'[ 7] jéq> hence (A-30).

Use duality notations if you prefer. on
Notation: Let ¥ € F, ¥ = Zj Zj€oidj = Y ; Yi€new,i- Hence give Y = Z;-l:lQijxj, which tells:
y; is the function defined by y;(z1,...,2,) = Z] 1Qijx;, thus Q” = (xl, <oy Tp); Similarly with P;j;
Which is written 9 9

Yi T
i = and P = —. A3l
Ql] 8.’1,‘]‘ ’ ] 8y] ( )
(Use duality notations if you prefer: Q; = % and P?; g; )

94
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Exercice A.27 Check that (A.29) applies to €new,; and e, i-

Answer. Let (EZ) be the canonical basis in My the space of n * 1 matrices. Thus [€new jljc. = Ej and
P'[gﬂewvj]‘gnm =29 [é’new,]-hgold reads P.E; = [gnew’j]lgold = column j of P : True.

[Trew,iljeyy = ET, thus [Tpew,q] Q=2 [Trnew,i]|e,,, Teads ET.Q= [Trew,i]je,y = row @ of @ : True. un

[€pew

A.7 Bidual basis (and contravariance)

Definition A.28 The dual of E* is E** := (E*)* = L(E*;R) and is named the bidual of E. E** is also
called the space of contravariant vectors. (the space of directional derivatives see § .

Then let (€;) be a basis in F, let (m.;) be its dual basis (basis in E*). The dual basis (9;) of (me;) is
called the bidual basis of (¢;). Duality notations: (9;) is the dual basis of (e).

Thus, the linear forms 9; € E** = L(E*;R) are characterized by, for all j,
Ormej =01 (=mej), so L= lime it £;=0;.L (=L&). (A.32)
i=1

Indeed, 81(6) = 81-(2?:1@-%]-) : Z?zléjai(wej) = Z?zlfj(sij = 61
Duality notation: 0;.¢/ =& = el.&; and £ =" l;e’.

Remark A.29 The notation 0; refers to the derivation in the direction €; because 0;(df (¥)) = df (¥).€;;

And 9; ="°ted & in differential geometry. Indeed, with the natural canonical isomorphism [J :
E — E*
. .. ¢ given by J(@).£ := {.4 for all £ € E*, see (U.9)), we can identify @ and J (@) (observer
i — J(@)

independent identification), thus 9; = J(¢;) ="°%d &;; And (A.32) reads &;.7.; = ;; and £; = &.0.  ou

A.8 Bilinear forms
A.8.1 Definition

Let E and F be vector spaces.

- . : : ExF —R e
Definition A.30 e A bilinear form is a function 8(-,-) : . . _. o satisfying:
(i, w) — B(u, W)
B(ty 4+ Mg, W) = B(dy, W)+ A3 (U2, W) (linearity for the first variable) and (@, W + Awa) = B(u, W) +
AB(t, ws) (linearity for the second variable) for all @, @y, ds € E, W, W, wWs € F, A € R.
e L(E, F;R) is the set of bilinear forms E x F' — R.
e If (¢,m) € E* x F*, then the bilinear form ¢ ® m € L(E, F;R) defined by

(@ m)(u,d) = L(@)m(w) (= (L.4)(m.w)), (A.33)

for all (@, W) € E x F, is called an elementary bilinear form.

A.8.2 The transposed of a bilinear form (objective)

(Warning: Not to be confused with the subjective definition of a transposed of a linear map which depends
on choices of inner dot products, see e.g. (A.52).)

Definition A.31 If 3 € £L(E, F;R) then its transposed is the bilinear form 87 € L(F, E;R) defined by,
for all (W, %) € F x E,

s (@, @) = B(d, ). (A.34)
(This definition is observer independent, i.e. same definition for all observers; In particular the definition
of BT doesn’t require a basis or an inner dot product.)
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A.8.3 Inner dot products, and metrics
Definition A.32 Here F = F and § € L(E, E;R).
e (3 is (semi-)positive iff, for all @ € E, B(u, @) > 0.
e [ is definite positive iff, for all @ # 0, B(u, @) > 0.
e 3 is symmetric iff 87 = 3, i.e., for all @, v € E, B(i,v) = B(¥, ).

Definition A.33 e An “inner dot product” (or “scalar dot product”, or “scalar inner dot product”, or
“Inner scalar product”, or “inner product”) in a vector space E is a bilinear form g € L(E, E;R),

ML) B M e g(@@) = (6,@), " Gy @, VA, GE B, (A35)

which is symmetric and definite positive: g(@, W) = g(w,¥) for all @, w, and g(@, @) > 0 for all @ # 0.
e A “semi-inner dot product” is a symmetric and semi-positive bilinear form.

Definition A.34 Let (-,-), be an inner dot product in E.

e Two vectors @, w € E are (-, -)g-orthogonal iff (@, @), = 0.
e The associated norm with (-, -), is the function ||.||, : E — Ry defined by, for all @ € E,

||ﬁ||g =\ (71 ﬁ)g- (A~36)

It is called a semi-norm iff (-,-), is a symmetric and semi-positive bilinear form.
Proposition A.35 (Cauchy-Schwarz inequality.) (-,-), being an inner dot product in E,
Vi, € B, [(u, W) ] < [4llg|]d]]g- (A.37)

And |(4, W) 4| = ||tl|g||W||q iff @ and W are parallel. And ||.||, is indeed a norm.

Q

Proof. Let p(\) = ||[u+\w]|2 = (G4 0, G+D) 4, s0 p(A) = aA? + b\ + ¢ where a = [|]|2, b = 2(i, )
and ¢ = ||a|[2. With p(\) > 0 (since(-, ), is positive), we get b*> — 4ac > 0, thus (A.37); And p(\) =
iff t+A@ = 0. Then ||ul|l; = 0 iff (¢,4)y; = 0 iff & = 0 since (-,-)4 is definite positive, and ||u],
V(@ i)y > 0, and ||M]|y = /(M MD)g = /N2(i, @) = || ||i][g, and ||&@ + &[5 = (i + o, @ + @), =
112 + 2, ), + |12 < 17112 + 2l [l + 1512 = (1]l + [[i]5)? thanks to Cauchy-Schwars
inequality, thus ||@ + ||, < ||d]|g + ||| 4; Thus ||.||4 is a norm. ’h

Il o

Definition A.36 (Metric.) 1- In R™ our usual affine geometric space, n = 1, 2 or 3, with R" = the
usual associated vector space made of bipoint vectors. Let  C R™ be open in R™. A metric in  is a C*°

Q — L(R?",R™R)
function g :

noted
p —=9p) =" 9
Case: If the g, is independent of p then a metric is simply called a inner dot product (e.g. a Euclidean
metric is called a Euclidean dot product).
2- In a differentiable manifold 2, a metric is a C*° (g) tensor ¢ s.t. g(p) is an inner dot product in the
tangent plane T, at each p € Q. A Riemannian metric is a metric s.t. g(p) is a Euclidean dot product
in 1,2 at each p € Q2.

} such that g, is an inner dot product in R™ at each p € Q. Particular

A.8.4 Quantification: Matrice [§;;] and tensorial representation

dim E = n, dim F = m, 8 € L(E, F;R), (d@;) is a basis in E which dual basis is (ma;), (b;) is a basis in F
which dual basis is (m;). (With duality notations, (74;) = (a*) and (m;) = (b%).)

Definition A.37 The components of 8 € L(E, F;R) relative to the bases (a;) and (b;) are the nm reals

ﬂij = B(C_i“ gj); and [ﬁ]ﬁj = [51”;;1 _____ . no;ed [BZ]] (A38)

1,...,m

-

is the matrix of § relative to the bases (d;) and (b;). And if F = E and (

1

S
S
S~—
Il
—~
S
N
—+
=3
@
=]

Bliaa "= (8] a- (A.39)
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Proposition A.38 A bilinear form € L(FE, F;R) is known as soon as the nm scalars f3;; = B(d'i,gj)
are known:

B=>"3 Biymai @my;, and (@, @) = [a@a"[8],;5[0) 5 = Z Bijuiw; (A.40)

i=1j=1 ,J=1

for all (@, @) € E x F with @ = Y, w;d; and @ = ¥, w;b;.

And a basis in L(E, F;R) is made of the nm functions mq; ® mp,;, and dim L(E, F;R) = nm.

(Duality notations: 8 = E?:]_Z;n:lﬁijai ®@ b and B(, W) = szzl,ﬁijuiwj.)

Proof. 3 being bilinear, @ = > ju;d; and & = Z;-l:lel;j give B(u, w) = 377, uiw;B(d;, b;) =
>t jmruiBiyw; = ([a]a)"[8]4 5

And (mq; ® mp;) (@, gg) =(A.33) (ﬂ'ai.c_ik)(ﬂbj.gg) = 8;1,0;¢ (all the elements of the matrix [mq; ® ij]‘
are zero except the element at the intersection of row ¢ and column j which is equal to 1).

Thus Y77 Bij (Tai®@my;) (@, W) = 350 Bijusw; = B(d, 0), for all @, &, thus B := 377, B (mai @),
thus the 7,; @ mp; span L(E,F;R). And Zij )\ij(ﬂ'ai ®7Tbj) = 0 implies 0 = ( ij /\ij(ﬂ'ai ®7Tbj))(c_ik, be) =
Zij Xij (Tai @mpi ) (Ek, be) = Zij Xij0ikdjr = Age = 0 for all k, ¢; Thus the m,; ® mp; are independent. Thus
(Tai @ mp;) is a basis in L(E, F;R) and dim(L(E, F';R)) = nm. ia

[d)’}lg. Thus if the j;; are known then § is known.

@b

1
0 3

Bliz, b1) = Ba1 = 0, B(da, bs) = Bz = 3. And Brz = [@1]].[8) ;5. [B2] 5 = (1 0). (é ;) . ((1)) —92 A

Example A.39 dim E = dim F = 2. [5]\55 = ( means ﬂ(d’hl_ﬁ) =B =1, 5(61,52) = B2 = 2,

Exercice A.40 Let 8 € L(E, E;R), let (@;) and (b;) be two bases in A, and let A € R*. Prove:
if, Vi€ [l,nly, b=\, then [B];=\[8]a (A.41)

(A change of unit, e.g. from foot to metre, has a true influence on the matrix of a bilinear form.)

Answer. b; = Ad@; give (b, b;) = B(\di, Ad;) = A2B(d;, a@,) (bilinearity), thus 1Bl5 = N[8]a- u

Exercice A.41 Prove
(87152 = ([Bla5)", written [87] = [5]". (A.42)

)
-

Answer. Let[ﬁ]a 5= [ﬂw} i=1,..., n and [ﬁT}ga = ['}/ij] i=1,...,m . ‘We have Yij = ﬂT(gi,dj) = 5(5],@) = ﬁji, qed. -.-
’ j=1 ’ j=1 n

seesm T T g =1

A.9 Linear maps
A.9.1 Definition

Let E and F be vector spaces.

Definition A.42 e A function L : E — F is linear iff L(@; + Mi2) = L(t1) + AL(u2) for all @y, € F
and all A € R (distributivity rule). And (distributivity notation):

L(@) "2 La, so L(dy + Miz) = L.(@1 + M) = L@ty + \L.@s. (A.43)

NB: This dot notation L(@) ="°**d L.7 is a linearity notation (distributivity type notation);
e It is an “outer” dot product between a (linear) function and a vector;
e It is not an “inner” dot product since L and @ don’t belong to a same space.
e It is not a matrix product (no quantification with bases has been done yet).

Definition A.43 L(E;F) is the set of linear maps E — F' (vector space, subspace of (F(E; F),+,.)).
If F = E then a linear map L € L(E; E) is called an endomorphism in E.
If F =R then a linear map F — R is called a linear form, and E* := L(F;R) is the dual of E.
L;,(E; F) is the space of invertible linear maps E — F, ie. L € L;(E;F) iff 3M € L;(F; E) s.t.
LoM =1Ip and M o L = Ig where Ig and I are the identity maps in F and F.
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98 A.9. Linear maps

Vocabulary: If F is a finite dimension vector space, dim E = n, then, in algebra, the set (L;(E; E),0)
of invertible endomorphisms equipped with the composition rule is called GL,,(E) = “the linear group”
(it is indeed a group, easy check). Particular case: The “linear group” of n * n invertible matrices is
GL,, (M) = (Lj(My; M,,),.) = the set of invertible matrices equipped with the matrix product.

Exercice A.44 (Math exercise.) E = (E,||.||g) and F = (F,||.]|r) are Banach spaces, and L;.(E; F)

is the space of invertible linear continuous maps £ — F' with its usual norm ||L[| = supy z =1 ||L-Z]|r.
Let Z : Lo . Prove: dZ(L).M = —L oMo L7} for all M € L;.(E; F) (and Z
—

is differentiable in any direction).

Answer. Consider limp_o w = limy,_,o LHID LT (="0ted GZ(L).M if the limit exists). With

R
N = L™ M we have L + hM = L(I 4+ hN), and (I + hN) is invertible as soon as |[|[AN]|| < 1, i.e. h <
HITH = m, its inverse being I — hN + h?N — ... (Neumann series); Thus I + hN = I — hN + o(h), and
(L+hM)™ = (I +hN)""L™" = (I = hN + o(h)).L™" = L™ — hN.L™" + o(h). Thus LHM_-L70 _
L’lth4L7hl+o(h)*L71 — _N.I 1 T 0(1) —h0 NIt =

A.9.2 Quantification: Matrices [L;;] = [LY}]

dimE =n, dimF =m, L € L(E;F), (d;) is a basis in E and (b;) is a basis in F.

Definition A.45 The components of a linear map L € L(E; F) relative to the bases (a;) and (b;) are
the nm reals named L;; (classical notation) = L*; (duality notation), which are the components of the

vectors L.d; relative to the basis (b;). That is:

m m Llj LIJ
L.ﬁj cl%s. ZLZJE; du:al = ZL%EM i.e. [Lc_iﬁhl; dgs. dl@l . (A44)
i=1 i=1 Lmj Lmj
And
[L)25 "2 L] i i) P Rl L) " L) (A.45)

—

is the matrix of L relative to the bases (d@;) and (b;); So [L.d'j}ll; is the j-th column of [L]|a P
Particular case: If E = F, i.e. if L is an endomorphism in E, and if (b;) = (@;) then
Daa "= Ll (A46)
Example A.46 n=m = 2. [L]|a §= (é g) means L.@; = by and L.ds = 2b; + 3by (column reading).

Here L11:1, L12:2, L21:O, L22:3 (duahty notations: L11:1, L12:2, L21:0, L22:3). =n
Let L € L(E;F). Forall i € E, @l = 2?21Ujaj = Z;’:Iujd’j, we get, thanks to linearity,

m m

n n
Lt BN N Lijugby 3N i, e [[Lodl g = (L] g5l | (A.47)

i=1j=1 i=1j=1

Shortened notation: [L.%] = [L].[&] when the bases are implicit.

Proposition A.47 A linear map L € L(E;F) is known as soon as the n vectors L.dy, ..., L.d, are
known. And, for i,k =1,...,n and j = 1,...,m, the linear maps L,;; € L(E; F') defined by L;;.d) = 5jk5i
(all the elements of the matrix [Eijha,l? vanish except the element at the intersection of row i and column j
which is equal to 1), constitute a basis € L(E; F). So, dim(L(E; F)) = nm.

(Duality notations: L;; =noted p.j and £;7.@), = 6%5;)

Proof. i € E and @ = ), u;d; give L. = >, u;L.dj, since L is linear. Thus L is known iff the n
vectors L.d; are known for all j = 1,...,n; And Zij Li; 5.0, = Zij Li;j0ikb; = >; Litb; = L.dy, for
all k, thus 3, LijLij = L, i.e. L =3, LijL4j, thus the £;; span L(E; F). And 77" 570 (N Lij = 0
implies Y7 S i Lij.dk = Sy S0 Aijdub; = S Agby = 0 for all k, thus Ay = 0 for all i,k

(because (b;) is a basis). Thus the £;; are independent. Thus (£;;) i=1n 8 2 basis in L(E; F). oa
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99 A.10. Trace of an endomorphism

A.10 Trace of an endomorphism

The trace of a n * n matrix [L;;] is Tr([L;;]) = Y., Li; = sum of its diagonal elements.
E is a vector space, dim E' = n, (@;) is a basis in E.

Definition A.48 The trace of an endomorphism L € £(E; E), with L.d; =Y . Lid; = > . L';d;, is
the real

TH(L) = 3 L = Te([L]jg) (= D L), (A.48)
i=1 i

. . L(E;E) =R
And the trace operator is the linear map Tr : .
L — Tr(L)

Proposition A.49 The real Tr(L) is independent of any basis in E: If (@;) and (b;) are bases in E, then

Tr([L]2) = Te([L] 5) = Te(L). (A.49)
If L,M € L(E; E) then
Tr(LoM)=Tr(MoL)= Z LijMj; = Tr([L) 4. [M]a)- (A.50)

i MyjLindi = 32;(3 0 LikMij)di-  Thus Tr(L o M) = 35,3, LieMwi) = 355 LijMji =
Tr([L)jg-[M]ja) = >_;; LjiM;; = Tr(MoL). And [L]lg = P~1.[L]|z.P where P is the transition matrix from

(@) to (b;) (change of basis formula for endomorphisms see ), thus Tr([L]‘g) =Tr(P~'.[L})3.P) =
Tr((P~'.[L]|z).P) = Te(P.(P~'.[L]|3)) = Tr((P.P~1).[L]|7) = Tx([L] 7). o

Example A.50 If b; = \d; for all i (change of unit of measurement), Tr(L) = > My =", Ny;. Trivial
check here: L.b; = 3", Ni;b; gives L.(A@;) = 3, Nij(A\d,), thus L.@; = 3, Nijd;, thus N = M.
Exercice A.51 For L := & ® ¢ (defined by (@ ® ¢).@ = (£.@)w for all @), check:

Tr(@ ® €) = L5 (A.51)

Answer. 'lB = Zl wzdl and ! = ZZ Kiﬂ'ai give [u')' [024] E) = ['I_Uifj], thus TI'('[E [024] E) = Zz wlél = Zz Zzwl = EIE l.l

Remark A.52 The “trace” of a bilinear form g : F x E — R (e.g. an inner dot product) defined by
Ta(g) = >, gii» where (d@;) is a basis and g(d;,d;) = gij;, is useless (not used) because it depends on the
choice of the basis (a@;): E.g. if b; = Ad; then Ty(g) = A2T4(g) # Tu(g) when X # +1. ou

A.11 A transposed endomorphism: Depends on a chosen inner dot product
Not to be confused with the transposed of a matrix, cf. (A.19), and not to be confused with the transposed
of a bilinear form which is observer independent, cf. (A.34))

A.11.1 Definition (requires an inner dot product: Not objective)

E is a finite dimensional vector space, g(:,-) = (+,-)g = . ¢ . is an inner dot product in E.

Definition A.53 Let L € L(E;E) (endomorphism). Its transposed relative to (-,-),, also called the
(-,-)g-transposed, is the endomorphism L] € L(F; E) defined by

Vi,i € E, (Ly.a,@), = (0, L.ii)g, ie. (Lj.a)e =1y (La). (A.52)

(It depends on (-,-)g, so L has an infinite number of transposed, see e.g. exercise [A.56])
Isometric framework, so (-,-), is an imposed Euclidean dot product (English, French,...); Then

LT =noted 1T and (A.52) is written (LT .) « & = & » (L.1).
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100 A.11. A transposed endomorphism: Depends on a chosen inner dot product

Exercice A.54 Prove: If (E, (-,-),) is an Hilbert space and if L € L(E; E) is continuous, then L] exists,
is unique, and is continuous (apply the Riesz representation theorem [F.1)).
(If F is finite dimensional then see next § for a direct computation.)

Answer. Let & € E, then let £z, : 4 € E — Lgy(Q) := (W, L.@)y € R. Ly is linear (trivial since L is linear and
(+,+)g is bilinear) and continuous: |[£ge.4| < ||W||g||L.4l|g < ||W||g]|L|| ||E]|g gives ||lag||ex < ||L||||W]|g < co. Let
(s, € E be the (-,-),-Riesz representation of £z, € E*: So Lgy.ii = (Lag, @)y for all @ and [|laglly = ||lael|m*-
Then define L} : @ € E — L} (@) := lsy € E; So (Lg(_»@'),ﬁ),, = (Ug, i)y = lug.@ = (@, L.@0)y, thus LT is linear
(since (-, "), is bilinear) and continuous: ||L} .10||g = ||Cagllg = ||lagllz= < ||L]|||@]|g gives [|LY|| < [|L||c(m:m) <
co. Uniqueness: if M, also satisfies (M, .0, %)y = (W, L.@0)g then (M) 10, @)g = (L} .10,1)g, for all @,, thus
M] =LL. oa

A.11.2 Quantification with bases
(€) is a basis in E, [g]jz = [9:;] = 9(€:, €;), [L]|z = [Li;] and [L]jz = [(L]):;] (classical notation):

Ly =S Lyt 118 =30 e (L= Lyl "2 (L, (L0 = ((ED)) " (2T,
= (A.53)
gi‘l’les (@)% 9)e-[Lg @)z = [L.ajz[9)jo-[@])e, thus [@]].[g)e-[L]] e [@)1e = [@jz-[L]z[9) e [@]e, for
all u, w0, thus
[9)ie (L3 = [L]i=1g)je Zgzk ki = ZLki Gkjs (A.54)
so [L1]1z = [g] E[L]‘Tg [9]j¢, written (the basis being implicit)
(LI =g "L o], ie (LD)i= > (o] )ixLerge;- (A.55)
k=1

Duality notations: L.g; =Y. L€, L &= (LT, L]z = (L], [Lfgp]‘g: [(L;F)ij], and
D gin@D)F = Lrgry, de. (L)'= (o] )ikl % 945 (A.56)
k=1 k=1

Particular case (€;) is (-, -)g-orthonormal: Then [g]z = [6;;] and (L])i; = Lj;.

Remark A.55 Warning: The last equation (A.56)5 is also written, only because it looks nice (!),

i — — d o ij
(L) Zg%g@ when  ([gle) 7" = [gi] 7 "2 [g7). (A.57)
k=1

But it does not satisfy Einstein notation because it has nothing to do with covariance-contravariance
here. In fact g% is the short notation for (9 94, see . And ¢ has nothing to do here...

So don’t be fooled by the notation g%, defined by [g”] [9i/]7'. Use classical notations to avoid
misuses and misinterpretations. un

Exercice A.56 In R2, let (¢),@) be a basis. Let L € £(R2;R2) be defined by [L];z = ((1) é) Find

two inner dot products (-,-), and (-,-), in R2 such that LT # L} (a transposed endomorphism is not
unique, is not intrinsic to L, since it depends on a choice of an inner dot product by an observer).

Answer. Calculations with (A.54)):

Choose (-,-), given by [g]j = <(1) (1)) = [I). Thus [LT),e = [I].[L},e.[1] = ((1) (1)) So LT = L.
Choose (-7 ')h given by [h]|€: ((1) (2)> Thus [L{]‘g = [h]lg,l.[L}‘g.[h]|€— (2 2) So L # L.
2
Thus Lg 7& Lg, e.g., 52 = Lz;éi 7& L;Té'l = %—)2. l.l

100



101 A.11. A transposed endomorphism: Depends on a chosen inner dot product

Exercice A.57 Prove: If L is invertible then LT is invertible, and (L)~ = (L~')] (written L;7T).

Answer. Suppose: 3w € E, @ # 0, s.t. LY. = 0. L being invertible, 3ld € E s.t. L.i = 0, with @ # 0 since
@ # 0 and L is linear; And LY 4 = 0gives L] .L.i = 0, thus (LY .L.@, @)y = 0, thus || L.d||; = 0, thus L.@ = 0, thus
@ = 0 since L is linear bijective; Absurd. Thus Ker(LY) = {0}, thus L? is invertible since it is an endomorphism.

And (LT (LY i, @), CE2 (LY i, Lav)y =2 (i, (LY. Lad), = (@,%) = (LT.(LY) " @,1%),, true Vi,
L]

thus LT (L™N)E = LT(L])~", thus (L") = (L) ™" since L] is invertible. .

Exercice A.58 Special case of proportional inner dot products (-,-)q and (-,-)p: IA > 0 s.t. (+,7)g =
A2(,)p. Prove: LT = LT': Two proportional inner dot products give the same transposed endomorphism.

Answer. (L., @)y = (@, L)y = \2(W, L.@W)q = N (LL 40, @) = (LI .40, @)p, for all @,w, so L{ = LI. oa

Exercice A.59 Prove: Tr(L]) = Tr(L) (independent of g).

Answer. Tr(Lg) = Tr([Lg)je) = Te([g];;" [L]fz-[9]1e) = Tr(lg)je-l9] 2 - [L][2) = Te([L)je) = Tx([L]je) = Tr(L). o

A.11.3 Dangerous tensorial notation for endomorphisms

Recall: The transposed 37 of a bilinear form 3 is objective, cf. lb We don’t need any tool like an
inner dot product to define 87.
Not to be confused with: The transposed Lg —noted I'T f a linear map L is subjective: It depends

on a choice of an inner dot products (-,-), by an observer.
E.g., a bilinear form 8 € L(E, E;R) satisfies [37]z = [8]z". But a linear endomorphism L € L(E; E)
. . 0 1 10
T T . — —
satisfies [Ly ]|z # [L]je" in general: E.g. take [L]z = (1 0 =0 2
Hence it is dangerous to represent an endomorphism in a basis with its “bilinear tensorial repre-

sentation” when dealing with the transposed: L € L(E; FE) is naturally canonically represented by the
bilinear form §(r) € L(E*, E;R) (and By ¢ L(E, E;R)): With (a*) the dual basis of (d,),

o

and [g]}z and use (A.55)).

L.L_ij = ZLijc_ii gives B(L) = Z Lij(fi ® aj, thus B(L)T Z Ljiai ® C_I:j. (A.58)

i=1 ij=1 ij=1

And, a (-,-)4 being chosen, Lz; € L(F; E) is represented by the bilinear form B(LQT) € L(E*, E;R):

Ly.d; =Y (L));d; gives Bry = > (Ly)'di ®a’; Thus |Brr) # Bury” (A.59)
i=1 i,j=1

because: 1- @; ® o/ # o' @ @; (1), and

2- ()7 is independent of any inner dot product, while LgT depends on a chosen inner dot product,
see (A.53): (LY)'; = Zz’ezl([g]_l)ikﬂzk ge; # L7; in general, while (8y")"; = (B(1))?: (always).

3- (B.)T € L(E*, E;R) is the tensorial representation of the adjoint L* € L(E*; E*) of L, i.e. (6,)T =

B(r+), see .

So in continuum mechanics it is strongly advised not to use the tensorial notation for linear maps
when dealing with transposed.

A.11.4 Symmetric endomorphism (depends on a (-,-),)

Definition A.60 An endomorphism L € L(E;E) is (-, -),-symmetric iff L] = L:
L (-,-)g-symmetric <<= L} =L <= (L., W), = (i,L.w),, Vi,dcE. (A.60)

Remark A.61 The symmetric character of an endomorphism L is not intrinsic to the endomorphism:
It depends on (-, -),; See exercise where L is (-, -),-symmetric while it is not (-, -),-symmetric. on
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A.11.5 The general flat > notation for an endomorphism (depends on a (-, )g)
Definition A.62 Let (-,-), be an inner dot product in a vector space E, and let L € L(E;E). Its
associated bilinear form LZ € L(E, E;R) is defined by, for all @, & € E,

L) (i, @) := (i, L15),. (A.61)

(The bilinearity of L” is trivialL?.) (The bilinear form LZ is continuous as soon as L is: |LZ (a,70)| <
Noll [|L-al| [|17]] < (|lgll 1|L]]) ||@]]||7]|.) We have thus defined the (-, -)4-dependent operator:

O = 7 :{E(E;E) — L(E, E;R) (A62)

L — Jy(L) =L,
This operator transforms a contravariance into a covariance: Indeed, with the natural canonical isomor-
phism L(E; E) ~ L(E*, E;R), L is represented by a bilinear form L € L(E*, E;R) (a G) tensor) which
is transformed by ()bg into a bilinear form LZ € L(E,E;R) (a (g) tensor).

Quantification: Let (&;) be a basis in E, and [g]\z = [g;], [L]|z = [L;] and [LZ]‘(; = [(LZ)U], ie.

g= Z gijei ® e, Le; = ZLijé}, LZ = Z (LZ)ijei ® e, (A.63)
4,j=1 i=1 i,j=1
Then
[L;] = [g].[L] | (A.64)
o o, (A6l - - o
Indeed: (Lj)i; = L} (&, &) = (&, L.&)g = (&, Y_ L*;ék)g = > L*;gix = ([g]-[L])i;-
k k

Exercice A.63 With the natural canonical isomorphism L € L(E;E) ~ Ty, € L(E*, E;R) given by
Ty, (¢, W) = £.L.a0, prove:
L) =g.T. € L(E,E;R) ~ L(E*; E). (A.65)

(A change of variance, here from the (}) tensor Ty, ~ L to the (3) tensor L’ is necessarily observer depen-
dent: There is no natural canonical isomorphism between a vector space E and its dual E*, see §[U.2])

Answer. If L.¢; =), L';& then T, = 24 L';é;®e’, thus g = 2 gije’ ® el gives g.Tp = ik ginL* ;& ® el
And LZ(gl,gj) " (5¢,L.€j)g = Zk Lk]-(é'i,é‘k)g = Zk ijgih thus LZ = Z”k gmijél' ® el = g.TL. l.l

A.12 A transposed of a linear map: depends on chosen inner dot products

This paragraph is needed to define the transposed of a deformation gradient.

A.12.1 Definition (depends on two inner dot products)

(E,(-,")g) and (F,(-,-)n) are Hilbert spaces, and L € L(E;F) (supposed continuous when E and F are
infinite dimensional). E.g., E = R, F = R?, deformation gradient L = d®%(P) e E(@%;R?), cf. li
(+,-)g is the foot built Euclidean dot product chosen by the observer at ¢, (measurements at ty), (-, ) is
the metre built Euclidean dot product chosen by the observer at ¢ (measurements at t).

Definition A.64 The transposed of L € L(E; F') relative to (-,-)4 and (-, ) is L;Fh € L(F; E) defined
by, for all (@, W) € E x F,
(L0, 10)g = (i, L.i0), (A.66)

where we used the dot notation L%, () ="%d LT i since L7, is linear. This defines the map

( T

'gh:

{ L(E;F) — L(F;E) (A7)

L = ()L =L,
(So a linear map has an infinite number of transposed (it depends on inner dot products.)

And if F=F and (-,-), = (-,")4 then Lgh = L], see § (transposed of an endomorphism).
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103 A.12. A transposed of a linear map: depends on chosen inner dot products

A.12.2 Quantification with bases

Let (d@;)i=1, .. and (gi)i=1,...,m be bases in £ and F, let [g]|z = [9:5] = [9(d;, a;)], [h]|g = [hiz] = [h(bs, gj)]:
and let (classical notation)

Laj =Y Libi, ie [Llz5= Ly "< (L),
=t (A.68)
o N . ted
Lypby =Y (Lgn)igdi, ie. [Linlgz = [(Lin)i] "= [Lan).
i=1

6) gives [@;.lg)ja-(Lgy-Wlia = ([L-@)5)" [h])5.[@] 5 for all @0, thus, [g]ja-[Lgy] ;54 = (L5571l
and [L niga = [h

hl5.a ]Ib Shortened notation with implicit bases:
[g][LT] = [L Zgzk gh k] ZLIM hkja (A69)
i.e.
‘ (L7] = [g] 2. (L) 7. [H] ‘, ie. ZZ ik Lowhe;. (A.70)
k=1¢=1

Duality notations: L.¢; = .1 | L*;&;, [L]jz = [L;], LgTh.é’j = Z?Zl(Lz;h)ij, [Lz;hhg = [(Lgh) 5], and

n n ) ; n B d n ;
gir(Lg)Fs =3 iy, ieo (L5)5 = () Dl hey (" (9" L% hey).  (ATL)
g g
k=1 k=1 k,e=1 k,e:1

(Be careful with the notation ([g] 1) ="°%d g%, see remark |A.55])

Exercice A.65 Prove: If L is invertible then (LT,L)_1 = (L_l)fg.

Answer. (L}, (L™ Y},.i,%)y = (L™ ")k,4, Lab)y = (@, L7 .Lad)y = (@,@)y = (L5,.(L},) "4, @), true

Vi, 1.

A.12.3 Deformation gradient symmetric: Absurd

The symmetry of a linear map L € L(F; F) is a nonsense if E # F.

E.g.: The gradient of deformation F°(p,) = d®®(p,) ="t F ¢ £(I§Z),I§?) cannot be symmetric
since FT € £(I§?; I@Z)) Idem for the first Piola~Kirchhoff tensor H[°, which motivates the introduction
of the symmetric second Piola-Kirchhoff tensor 9K}°, see Marsden-Hughes [14] or §

A.12.4 TIsometry
Definition A.66 A linear map L € £(E;F) is an isometry relative to (-,-), and (-, )y iff

Vi, @ € B, (L., L), = (@,%)g, ie. LT, oL =Ig (identity in E). (A.72)

Thus, if L € L(E;F) is an isometry and (€;) is a (-, -)g-orthonormal basis, then (L.€;) is a (-,)p-
orthonormal basis, since (L.€;, L.€;)y = (€, €;)q = d;; for all 4, j.
In particular, an endomorphism L € L(E; E) is a (-, -)4-isometry iff

Vi, @ € E, (L., L), = (@), ie. LIoL=Ip. (A.73)

Exercice A.67 Let f: E — F. Prove:

— —

if, Vi, &, (f(@),f(@))n = (@, @), then fis linear. (A.74)

—

Answer. Let (&;) bea (-, )g —orthonormal basis; Thus (f(€;)) is a (-, -)p-orthonormal ba51s (since f is an isometry).
— h n

Thus, if @ = Y7, ;€ then f(@) "< Z( (@), F(E))n (@) "2y (4, ), fle) =" szf &), thus J{ii+ i) =

zl i=1
n

Z(:rl + )\yZ sz )+ /\E:yZ f(e) i) + )\f( 7), thus fis linear. .

i=1
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Exercice A.68 R" is an affine space, R™ is the usual associated vector space, and (-, )4 is an inner dot
product in R™. Definition: A distance-preserving function f : p € R™ — f(p) € R™ is a function s.t.

1F@F@lls = I7lls:  ¥p.g € R™. (A.75)

Prove: If f is a distance-preserving function, then f is affine.

Answer Let O € R™ (an origin) and f = Op ER" — f = f(O } (vectorial associated functlon) Let
7 = Op and § = O¢. Then the remarkable identity 2((7), A Do = e DIE + IF@IE — 117 —F @12 gives
2(f(@), F@)g = IF@S+HIS@D-1F @ f @5 = IF@I+IF@IE-Naplly = 11215+17]]5 177115 = 2(, y)g,

thus f is an isometry, thus f is linear cf. (A.74), thus f is affine since f(p) = f(O) + f(@?a)

A.13 The adjoint of a linear map (objective)
(May produce misunderstandings, misuses, problematic mechanical interpretations, if not understood.)
A linear map L € L(FE;F) has one and only one adjoint L* (intrinsic to L); Must not be confused
with the many transposed L” := L], which depend on inner dot products.
A.13.1 Definition
E and F are vector spaces, and E* = L(E;R) and F* = L(F;R) are the dual spaces (of linear forms).
Definition A.69 Let L € L(E; F); Its adjoint is the linear map L* € L(F*; E*) canonically defined by
F* — E*
L*: . . . (A.76)
m — L*(m):=moL, written L*.m =m.L
thanks to the linearity of m, L and L*, i.e., for all (&,m) € E x F*,
L*(m)(@) :== m(L(@)), written (L*.m).4=m.L.4 (A.77)
thanks to the linearity of m, L and L*.

(The linearity of L* is trivial. And ||L*.m||g~ = ||m.L|
||L||z(p;Fy < 00, thus L* is continuous when L is.)

B < HmHF*HLHL(E;F) gives ||L*HL(F*;E*) <

A.13.2 Quantification

E and F are finite dimensional, dim E = n, dim F' = m, and (d@;) and (b;) are bases in E and F and (m4;)
and (mp;) are the (covariant) dual bases. Let [L] —noted 1], [L ]‘,Tb’,,a =noted [7+] " [m],, =noted [m]

and [u])z = —noted 7] (the matrices relative to the chosen bases). (A.77) gives
Y(m,@) € F* x E, [L*].[m].[d@] = [m].[L).[@], thus Vm € F*, [L*].[m]" = (L) .[m]" (A.78)

(recall: m € F*, thus [m] is a row matrix). Thus

[L*] = [L]"| (transposed matrix). (A.79)

(Full notation: [L*]x, , = ([L]Ia )7+ There is no inner dot products here.)
DetaiIS' L. C_I:j = E:‘ilLijgia 1e [Lhig = [[/”]1J 1, .,.,wLL, and L* 7'1'[,_7 = Z?:]_(L*)ijﬂ'm, 1e [L*]‘ﬂ'baﬂ-a =

,,,,,

(L*.my;).d; = mpj.(L.@;), thus |(L*);; = Lj; | gives [L*]=[L]". (A.80)
Duality notations: L.d; = 37" Lisb;, ie. [L] 5 = L] imtm, and L76 = ST0, (L7); 70, ie.
(L]0 = [((L*)i 7] i=1...n , thus, for all (i, 7) € [1, } x [1,m]y,
i= 1 ..... m
(L*.b).d@; =V .(L.d@;), thus (L*);9=L/; and [L*]=[L]7. (A.81)

(Recall: If in doubt then don’t use the duality notations! Use classical notations.)

NB: Reminder: The transposed b’ of a bilinear b form is intrinsic to b, and the adjoint L* of a linear
map L is intrinsic to L; But a transposed LT of a linear form L is not intrinsic to the linear form (it
depends on chosen inner dot products):

Watch out for the (unfortunate) vocabulary “transposed”!
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105 A.14. Tensorial representation of a linear map (dangerous)

A.13.3 Relation with the transposed when inner dot products are introduced

let L € L(E;F). We need inner dot products (-,-)y and (-,-)n in E and F to define L = L],. To

have a functional relation between L* and L gh» We use the (+,-)g-Riesz representation mapping R

E* - FE
o defined by £.4 = (Eg, U), for all & € E, see (F.3)); Idem in F.
(= Ry(0) =1,
Let L € L(E; F) (continuous). For all 4 € E and all m € F* we have
(L m).i B . (Ld), thus (R, (L*.m),id), = (Ba(m), L.ii), (A.82)

thus ((By o L*).m), i), = (LT, o Rp).m, L.ii)y. Thus Ry o L* = LT, o Ry, ie.

L
- E < F
Ll =RgoL*o(Ry)™'| ie R, 1 + R, is a commutative diagram. (A.83)
E* «— F*
L*
Exercice A.70 From (A.83), recover (A.69), i.e. [L],] = [g]~".[L]".[A].
Answer. [LT,]=E3 (B 1[0[R] " =ED [g] 1. [L]" [n].

A.14 Tensorial representation of a linear map (dangerous)
Consider the natural canonical isomorphism (between linear maps £ — F' and bilinear forms F* x ' — R)
7 { L(E;F) — L(F*, E;R)

L —f=J(L) } where i (m, @) :=m.(L.4), V¥(m,d)€F" xE, (A.84)

see § And f;, is also named L for calculations purposes, see (A.87).

Quantification: (d@;);=1,..., is a basis in E, (gz)zzlm is a basis in F' which dual basis is (m;), L €

L(E;F). Then (A.84) gives
Br (i, ;) = ;- L.d;. (A.85)

Thus, if L.@; = Y./, Lijby, i.e. [L]. ; = [Lij], then

e~ . ted
B = ZZLijbi & Taj, 1€ [5L]gma =[Ll;5 = [BL]E,E' (A.86)
i=1j=1
Indeed, (Z” Lijgi®ﬂaj)(ﬁbk,a£) = Zij Lij(l;i®7raj)(7rbk, 6[) = ZZJ Lij(gijrbk)(ﬂ—aj-ae) = Zij Lijékiéﬂ =
Lo = mpx.L.dy, so (A.85) gives (A.86).
Duality notations: L.d; = >;", L*;b; and G, = 37" | 37| L ;b b @ al.

Contraction rule. If you write L =2°ted g, — Zi:le:lLijbi ® Tq;, then the vector L.4 € F is
computed thanks to the “contraction rule”

m

Lu=p04d= E E L”b ® Mqj).U = E E L”b Taj-U E E L”uj is (A.87)
i=1j5=1 S~ i=1j=1 1=1j=1
contraction

which is the expected result.

Duality notations: L.u = ZZU bi ®aJ )4 = ZZL b; (o’ i ZZL ub;.

1j=1 = 1 15=1
=15= contractlon L= i=lj=

Remark A.71 Warning: The bilinear form J; should not be confused with the linear map L: The
domain of definition of 5, is F* x E, and f, acts on the two objects ¢ (linear form) and @ (vector) to get
a scalar result; While the domain of definition of L is F, and L acts one object i to get a vector result.
You can use the tensorial notation for L... only to calculate L.7 as in (contraction rule). ia

105



106 A.15. Change of basis formulas for bilinear forms and linear maps

A.15 Change of basis formulas for bilinear forms and linear maps
A.15.1 Notations

Let A and B be finite dimension vector spaces, dim A = n, dim B = m. (E.g. application to the change
of basis formula for the deformation gradient A=R} — B=R}".)

Let (Gog,i) and (Gpewi) be two bases in A, and (boq;) and (bpews) be two bases in B. Let Py and
T be the change of basis endomorphisms from old to new bases, and B = [Pi]jz,, = [[A;;] and

B = [%}lgold = [IB,;] be the associated transition matrices, and Q4 = P land Qs = Bt So:

n n
Qnew,j = 7DA~a01d,i = § B4ija01d,ia Tanew,j — § Q4i_j77aold,ia
ij=1 i=1

(A.88)

m n
bnewj = Po-boidi = D Bijboiais  Tonewj = Y, QijThad,i-
i,j=1 1,5=1
Dual 1065 dpew,j = Y5y P’ jotd s They = 27—y Q@5 brew,j = 31—y B jDokd,is Ve = D251 Q3" jbig-
A.15.2 Change of coordinate system for bilinear forms € L(A, B;R)
Let g € L(A, B;R), and, for all (,7) € [1,n]y x [1, m]n,

—

9(@otd,i, boia,;) = Mij, g(a:new,hgnew,j) = N;;, le. i le (A.89)

Proposition A.72 Change of basis formula:

) jnews = P27 -[9)jaas- B | ie. N =BT.M.I. (A.90)

—

In particular, if A = B and (@oq;) = (boig.i) and (@new.i) = (brew.i), then Py = B ="°ted p_and

[9)jnew = P".[glaa-P | ie. N =PT.M.P. (A.91)

Proof. Nij = g(@uew.is bew.j) = Sope BB 59(Toia pr boiae) = Sy B iMie B = 30 (RT) p My I 5. o

Exercice A.73 Prove (objective result):

900, @) = [T (gm0, = 01T, 6l [ 5, (A.92)
Answer. [@F; gl neus ()5, = (A" (1240 "-(AT Lol B)- (B[] )
A.15.3 Change of coordinate system for bilinear forms € L(A*, B*;R)
Let z € L(A*, B*;R), and, for all (3, 7) € [1,n]y x [1,m]x,
. ) y . ) - ] [Z]\olds =M = [M"] =1,
2(agg, b y) = MY, 2(aeys Uloy) = N7, e s — N [Ni‘j]]i=1‘,...v,n . (A.93)
i=1
Proposition A.74 Change of basis formula:
(inews = B " [2]jaas- BB, de. N=B~T.MI (A.94)
In particular, if A = B and (Goa,;) = (5010172') and (Gpew:) = (l;newﬂ;), then P, = B ="0t¢d P and
Epnew = P~ T [Zlag.P™", de. N=P T.MP. (A.95)

Proof. N;; = Z(aflew bim) =2 ke QAki%f»Z(a’Z}da bf;]d) = ke QAkiMMQBZj = Zkz(QAT)ikMMQBZT =
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A.15.4 Change of coordinate system for bilinear forms € £(B*, A;R)

(Toward linear maps L € L(A; B) ~ L(B*, A;R) thanks to the natural canonical isomorphism.)
Let T € L(B*, A;R), and, for all (i,7) € [1,n]y X [1, m]y,

o . o - [Tljotas = M = [M'}] =1,
T(bzldv a’Old,j) = Mljv T(b;ewa anew,j) = Nlj7 L.e. coT (A96)

Proposition A.75 Change of basis formula:

Tnews = B [Tjgas-Ba |, ie. N=Qu.MB. (A.97)

—

In pa,rticu]ar, if A= B and (aold}z) = (bold,i) and (5,18%1‘) = (gnew,i); then B4 = ]% :noted P, and

[T)jnew = P~V .[T)aa.P|, ie. N =P L. M.P. (A.98)

Proof. N'j = T(bipy: Gnew.j) = >0 Q3 kAT (Vs Goia ;) = o Q' kM 1 o=

A.15.5 Change of coordinate system for tri-linear forms € £(A*, A, A;R)

(Toward d?@: For a vector field @ € I'(U) ~ TE(U), d(p) € R, its differential satisfies dii(p) €
L(R";R?) ~ L(R"* R";R), and d2ii(p) € L(R"; L(R™; R7)) ~ L(R"*, K" R™;R), see §[T.1.3])
Consider a tri-linear form 7' € L(A*, A, A;R), and [T)5,, = [M;,] and [T]jz, = [N};], so where

new
M;y, = T(aly, Goid.js Goia k), N = T (s Gnew,j> Tnew,)- (A.99)
Then .
= > Q\PIPyM),. (A.100)
A p,v=1
Indeed 3, ,, M2, Gotan ® aliy @ aly = Yy iin My QAP PY Gnew,i @ @y, @ al,.

A.15.6 Change of coordinate system for linear maps € L(A4; B)
Notation of §|A.15.1] Let L € L(A; B) be a linear map, and let, for all j = 1,...,n,

Lo, = ZMijl?O]d,i = ZMijEO,d,i ie. [Lljotas = M = [My;] = [M";]i=1.om,
i=1 =1

j=1,...,n

- o (A.101)
L'(_inew,j = ZNijgnew,i = ZNijgné‘W,i Le. [L]\news =N= [NZJ] = [NZJ}’J:;I ----- ™
i=1 =1
with classical and duality notations.
Proposition A.76 Change of bases formula:
[Lljnews = B " [L]jaas-Br |, ie. N=I"'.MD. (A.102)

-

Particular case L endomorphism: A = B, (Gad.i) = (boid.i); (@new.i) = (brew.i), Bx = B ="°t¢d P and

[Lljnew = P~ [L)jga-P|, ie. N=P '.M.P. (A.103)
Proof. L.pw; = 3;N'jbuwi = SuNiBbaar = Xp(B.N)bar and Liwe; =
L(ZZ Bﬁjdolm) e Zi Bqu Zk Mkibold,k e Z}C(M-a)kjbold,ka for all 5, thus BB.N = M .E,. =n
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Exercice A.77 Prove:

CLu=[lg [Llnews-a,, = [f]lgold.[Lhdds.[ﬂhddd (objective result). (A.104)

10 new

Answer. [(] 5 [Ljnews- [, = (€5, -15)- (B [Ljaae- B2). (B [il] ) =

Remark A.78 Bilinear forms in £(A, A;R) and endomorphisms in £(A4; A) behave differently: The
formulas (A.91) and (A.103) should not be confused since P~! # PT in general. E.g., if an English
observer uses a Euclidean (old) basis (@;) = (daq,) in foot, if a French observer uses a Euclidean (new)

basis (b;) = (Gpew,i) in metre, and if (simple case) b; = Ad; for all i (change of unit), then

[Lljnew = [Lljaa,  while  [g]jnew :\/\i, [9]cla- (A.105)
>10

Quite different results! Le. P~'.[L] 4q.P # PT.[L]|qq.P for a general change of basis. See the Mars
Climate Orbiter crash, remark where someone forgot that 1 foot # 1 metre. .

B Euclidean Frameworks

Time and space are decoupled (classical mechanics). R™ is the geometric affine space, n = 1,2, 3, and R™
is the associated usual vector space made of “bi-point vectors”.

B.1 FEuclidean basis

Manufacturing of a Euclidean basis.

An observer chooses a unit of measure (foot, metre, a unit of length used by Euclid, the diameter a
of pipe...) and makes a “unit rod” of length 1 in this unit.

Postulate: The length of the rod does not depend on its direction in space.

e Space dimension n = 1: This rod models a vector & which makes a basis (€7) called the Euclidean
basis relative to the chosen unit of measure.

e Space dimension n > 2:

- The observers makes three rods of length 3, 4 and 5, to build a triangle (A, B,C) with A, B and C
are the vertices and A not on the side on length 5.

- Pythagoras: 32 + 42 = 52 gives: The triangle (A, B, C) is said to have a right angle at A.

- Two vectors @ and @ in R" are orthogonal iff the triangle (A, B, C) can be positioned such that AB
and AC are parallel to @ and .

- A basis (€;)i=1,... » is Euclidean relative to the chosen unit of measurement iff the €; are two to two
orthogonal and their length is 1 (relative to the chosen unit).

Example B.1 An English observer defines a Euclidean basis (@;) using the foot. A French observer
defines a Euclidean basis (b;) using the metre. We have

1
1foot = pmetre, p =0.3048, and 1metre= Afoot, A= — ~3.28. (B.1)
u

(= 0,3048 is the official length in metre for the English foot.) E.g., the bases are “aligned” iff, for all 4,

—

b; = Ad; (change of measurement unit), (B.2)
thus the transition matrix from (@) to (b;) is P = AI, thus P* = P, P~' = 1T and PT.P = A% ..

Remark B.2 The bases used in practice are not all Euclidean. E.g., see example if you fly. .
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B.2 FEuclidean dot product

Definition B.3 An observer has built his Euclidean basis (€;). The associated Euclidean dot product is
the bilinear form g(-,-) = (-,-), € L(R", R";R) defined by

i noted

g(€,€5) =" gij = 045, Vi, j, ie. [gllg=1. (B.3)
Le., with (m¢;) = (e') the dual basis of (€;) (with classical and duality notations),

n n
('7 ‘)g = Zﬂ'ei QR Tes = Zei & ei- (B4)
=1 i=1
With Einstein’s convention, (-,-)q := szzlgijei ® e’: You have to write g;; (although = §;; here). E.g.

with the repeated index convention: (-,-), := g;;e' ® €.

Thus, for all Z,§ € R", with & = Y7, 2;& and § = 37, y;¢; (classical notations),
- ted
= — noted - —
(& Dy =Y wiyi = @e[flle =" T 7. (B.5)
i—1

Duality notations: & =Y. z'¢;, ¥ = > - y'€ and (T,9)y = > x'y".
With Einstein’s convention: (7,9), := >;';_,gij7'y’.

Definition B.4 The associated norm is ||.||g := 1/(,-)g, and the length of a vector & relative to the
chosen Euclidean unit of measurement is ||Z||y := \/(Z, ), = \/T+, T.

Thus with a Euclidean basis (¢;) used to build (-,-),, if £ = >""_,2;¢;, then ||Z||; = \/>_ 1,27 is the
length of # relative to the chosen Euclidean unit of measure (Pythagoras).

Duality notations: |||, = \/>_;_, (%) Einstein convention: [|Z||, = /327, gijatad.

Definition B.5 The angle 6(Z, ) between two vectors 7,7 € R* — {0} is defined by

o r oy
cos(0(Z,9)) = (+=—, —=—)g- (B.6)
1zl Il ™
(With a computer, this formula gives 6(Z, §/) = arccos(( Hifllg’ Hﬁg\lg )g) in [0, 7].)

B.3 Two Euclidean dot products are proportional

Consider two Euclidean bases in R7: (@,), e.g. built with the foot, and (b;), e.g. built with the metre;
And let (-,-)g and (-, -)s be the associated Euclidean dot products.

Proposition B.6 If A = |\51\|g, then ||f_);||g =Aforalli=1,..,n and
(g =X )n, and ||.llg = All-{n- (B.7)

—

Proof. By definition of a Euclidean basis, the length of the rod that enabled to define (b;) is independent
of i, cf. § thus [|b;||g = ||b1]|4 for all i, and here ||b;||, ="°%d A. Thus [|b;||2 = A2 = A2[|b;||? for all i,
since ||51||,21 — 1. And if i # j then (b, gj)g =0 = (b;, 5j)h since b; and l_{j form a right angle (Pythagoras),
of. (B.4). Hence (5;,b;), = A2(bi,B;)n for all 4, j, thus (%, 7)y = A2(Z, ) for all #,§ (bilinearity of inner
dot products, thus (B.7). L

Example B.7 Continuation of example (v)a = i a’ ® a is the English Euclidean dot product
(foot), and (-,-)p = >~ b" ® b’ is the French Euclidean dot product (metre). (B.7) and (B.1) give:

(+)a=A2(,)p and |||la =Alllls, with A=~328 and A?~ 10.76. (B.8)

In particular, if « is s.t. ||@]|p = 1 (its length is 1 metre), then |||, = A (its length is A ~ 3.28 foot). oa
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B.4 Counterexample: Non existence of a Euclidean dot product)

1- Thermodynamic: Let T be the temperature and P the pressure, and consider the Cartesian vector
space {(T, P)} = {(temperature,pressure)} = R x R. There is no associated Euclidean dot product: An
associated norm would give ||(T, P)|| = vVT? + P? € R which is meaningless (incompatible dimensions).

See § (L33

2- Polar coordinate system ¢ = (r,0) € R x R: There is no Euclidean norm +/r2 + 62 for ¢ that is
physically meaningful (incompatible dimensions), see example

B.5 Euclidean transposed of a deformation gradient

Let n € {1,2,3} and consider a linear map L € L(R};R}) (e.g., L = d®) (P) = F}°(P)).
Let (-,-)¢ be a Euclidean dot product in @Z) (used in the past by someone), and let (-,-), and (-, )y,

be Euclidean dot products in @;‘ (the actual space where the results are obtained by two observers, e.g.,
(+,-)g built with a foot and (-, ) built with a metre). Let ng and LL, be the transposed of L relative to

the dot products: ng and L%, in E(I@?; @Z)) are characterized by, cf. (i for all (X, J) € I@Z) X I@?,
(LE, 7. X)c = (L.X,§), and (LE,.7.X)e = (L.X, §)n. (B.9)
Corollary B.8
If (-,)g=A(,)n then L&, =XNL,. (B.10)
NB: Do not forget \* (e.g. \> ~ 10 if an English man works with a French man).

Proof. (L&, .7, )Z')G(L.)?,y*)gﬂh%’" N(L.X, ) AQ(Lgh.g,)?)G for all X € R? and all § € R},
thus ng.gj’: NLL, . for all j € R, thus ng = \2LL,. .

B.6 The Euclidean transposed for endomorphisms

Let n € {1,2,3} and consider an endomorphism L € L(R?;R}); E.g. L = dt,(p) the differential of the
Eulerian velocity. Let (-,-)y and (-,-), be dot products in R". Let L] and L{ be the transposed of L
relative to (-,-)g and (-,-)p: LT and LT in £(R}; RY) are characterized by, cf. (A.52), for all 7,7 € RY,

(LY. 2)g = (L&4)g, and (Lj.4,%)n = (L.Z,§)n. (B.11)

Corollary B.9
It (-)g=A2(,)n then LT =rF "% [T (B.12)

(an endomorphism type relation). Thus we can speak of “the Euclidean transposed of an endomorphism”.

Proof. (LT.§,#), =" (L.Z,i), "L \(L.Z, n B2 22 (LT 5. 7 " (LF 7, 3), for all 7,5 € B7, thus

LT.j= L] g for all j € R", thus LT = LT.

B.7 Unit normal vector, unit normal form

The results in this § are not objective: We need a Euclidean dot product (need a unit of length: Foot?
Meter?) to get Euclidean orthogonality and a unit normal vector.
Framework: n =2 or 3, (-,-), is a Euclidean dot product in R™ and, for all , @ € R”,

noted o,
= Ue, W

(@, @)y "% i, (B.13)

(or ="°%d 7 4 4if when one chosen Euclidean dot product is imposed to all).

Q2 is a regular open bounded set in R", and I' := 09 is its regular surface. If p € I' then T,I" is the

tangent plane at p to I'. Let (31(p), ..., Bn_1(p)) be a basis in T,I' (e.g. obtained thanks to a coordinate
system describing T').
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111 B.7. Unit normal vector, unit normal form

B.7.1 Unit normal vector
Call 7i,4(p) the unit outward normal vector at p € I' at T,I" relative to (-,-)g; So 7ig(p) « Bi(p) = 0 for all
it =1,...,n—1, and ||fi4(p)|lg = 1, i.e. 71, is defined on I' by (up to its sign)

Vi=1,.,n-1, Biyi, =0, and figei,=1 (=]ii?), (B.14)

ie,atany peT, ﬁg( ) is orthogonal to the hyperplane Vect{f1(p), .. ,Bn 1(p)} and 74(p) is unitary.
So (51 (p), . ,,Bn 1(p), fy(p)) is a basis at p in R”, written in short (5, .. .,En_l,ﬁg). Drawing.
Thus, if @ € R” is a vector at p, W= Zfz_l wlﬂi + w, 7, (classical notations) then

wy, = we 7, = the normal component of & at p at I'. (B.15)
(wy, depends on (-,-)y.) (Duality notations: & = . 11 w'f; + w" fig and w” = (W, 74)4.)

Exercice B.10 Let (d;) be a basis in R, let gij = g(a“aJ) for all 4,7, and let B] = Y" Bj;a; for
j =1,..,n—1. Compute the components n; of 7, = >_._n;a;. Particular case (a;) is (-, -) j-orthonormal?
Answer. 1i gives [,Biha.[gha.[ﬁg]‘a = 0for i = 1,..,n—1: We get n—1 linear equations. With one more

equation given by [iig]i;.[g]|a.[7s)ja = 1: We get iy up to its sign.
E.g. if (@) is (-, -)g-orthonormal, then 377 | Bi;jn; =0 for j = 1,...,n—1, with 377 L oni =1 un

Exercice B.11 Let (@) be a Euclidean basis in foot, (b;) a Euclidean basis in metre, (-,-)q and (-,-),
the associated Euclidean dot products, so (+,-), = A2(, ) with A ~ 3.28, cf. (B.7). Let i, (p) and iiy(p)
be the corresponding unit outward normal vectors, cf. (B.14)). 1- Prove (up to the sign):

ity = Aita, and (@, 70)a = M@, M)y Vi € R” (B.16)
2- Then let 71, = >~ nq;d; and 71, = Z;’;lnbil;i; Prove:
If, Vi=1,...,n, 51 = Ad; then Vi=1,...n, ng = npy;. (B.17)

So the vectors 7i, and 7, are different (A > 1), and their respective components are equal... relative to
different bases! And of course 1 = [[7,|2 = Y7 (i) = Y (ne)? = ||7i]|7 = 1.

Answer. 7i,(p) || ©s(p), since the vectors are Euclidean and orthogonal to T,I" cf. (B.14). And ||.|[l« = All-|]»
cf - thus [|7ip]|s = 1 = [|alla = A|7alle = |[Aalls, 50 7iy = £A7a. And they both are outward vectors, so
2

= +Aily. Thus (W, 7a)a = N(W, 7a)s = N2 (W, Kb)b = X, 7ip)p
And if b; = Ad@; (B.16) gives Y7 nibi = A" k@i = Y1 nk(AGi) = Y1, nib;, then nl = nj. on

b

B.7.2 Unit normal form n’ associated to 7

For mathematicians: May produce misunderstandings and lack of mechanical interpretations. Don’t
forget: n” is obtained only after 7 has been defined (thanks to a chosen inner dot product).

Definition B.12 Let p € T, let (-, ), be an inner dot product, and let 7i,(p) be the outward unit normal.

The unit normal form n ( ) € R™" is the linear form defined by n ( ). = (7y(p), @), for all & € R
vector at p :

) = (g, 0),g. (B.18)
( =noted 77447 if one chosen Euclidean dot product is imposed to all).
Quantification: Let (&;) be a basis in R?; Then 1D gives [n)]z.[w] |z = [7 ]Ié[ lj&-[W] e simply
written [n°].[w] = [7]T.[g].[w] if the basis (&;) is imposed. Hence, with the dual basis (e?) in R™*,
if 7= Znié} and n’ = Zniei then n; = Zgijnj, (B.19)
i=1 i=1 j=1

where we used the duality notation to justify the * notation: The “top 77 gives the “bottom 7.
Particular case (€;) is a (-, -)4-Euclidean basis, then n; = n’. As usual the apparent contradiction in

the position of the index i in the equation n; = n’ is due to the implicit use of an inner dot product. Use

the Einstein convention to avoid this apparent contradiction: Write n; = -7, gijn? even if g;; = &;;.

Classical notations: Dual basis (me;), then n” = Y77 (n”)ime; and (n”); = Y27, gin.
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B.8 Integration by parts (Green—Gauss—Ostrogradsky)

Q is a regular bounded open set in R*, I' = 9Q, ¢ € CY(;R), (&) is a Euclidean basis and (-,-),
its associated Euclidean dot product, g—z(p) := dp(p).€; (usual notation), 7,(p) = 7ii(p) = Y i ni(p)€;

(classical notations) is the (-, -)g-outward normal unit vector at p € I'. Then (Green), for i =1,...,n,

i

peEN 3:172

(p) dQ:/ o(p)ni(p)dl’, in short /g@ sz/goni dr. (B.20)
pel Q 0T; T

Thus, for any v € C(;R), with @v instead of ¢ in (B.20), we get the integration by parts formula

(Green formula):
Op Ov
dQd = — dQ2 i dl. B.21
/aniv /Qsoaxi +/Fsmm (B.21)

Thus, for any 7 € C*(Q;R") (vector field), with 7(p) = Y7, vi(p)€; we get

9 aa=_ [,
o Oz B Qwaxi

dQ—l—/govmi dr. (B.22)
r

Thus, with the gradient vector gradp(p) = Z?:l%éi and with divi’ = ZZL:lg;)i , we get the Gauss—

Ostrogradsky formula:

(/ dp.TdQ =) / gradp » 7dQ2 = —/ o dividQ + / @ e dl. (B.23)
Q Q Q r
(And [0« @ dl is the flux through I'.)

Exercice B.13 Use the differential dip instead of the gradient radcp (which is the (-, -)4-Riesz represen-
tation vector of dy) to express (B.22). Is the use of n”, cf (B.18), useful in that case?

Answer. d(¢U) = dp.¥ + ¢divd, thus [, dp.0dQ = — [, @dividQ + [T« f,dl. And 07, = nZ.TJ’, o)
Jo devdQ = — [, pdividQ+ [ ©n’.7dl. But n), depends on 7i, (definition), so there is no reason that justifies
the use of "Z (unless you want to look erudite). .

B.9 Stokes theorem
B.9.1 The classic Stokes theorem

Consider a regular oriented 2-D surface ¥ C R3 parametrized with 7 : (u,v) € [a,b] X [¢,d] — T =
o7, OT
9u* 90 (y,v) defined at # € ¥ = Im(7). And ¥ has

BRI
a boundary T' positively parametrized with ¢: ¢ € [t1,t2] — ¢(t) € R3: At any & € T the vector @ x ¢’
points towards the surface.

(u,v) € R3; The unit oriented normal is (%) :

Theorem B.14 If f € Cl(@3;@3) then

/Ff.dE:/Echlf.di (:/cJﬂf.ﬁdz), (B.24)

b

—

ie [, Fla#)«q'(t)dt = [_, [ curlf(#(u,v))« (2L x Z5)(u,v) dudv.

Proof. See any elementary course, e.g. https://perso.isima.fr/ leborgne//Isimathlereannee/cousur.pdf. su

B.9.2 Generalized Stokes theorem

The curl operator curl is a differential operator which acts on vectors to give vectors. From a covariant
point of view, it would be nice to first define a “curl operator” curl as a (linear) function acting on vectors
(and eventually representing it with cﬁrl); Moreover this curl function should “kill the gradient”, i.e. should
satisfy curlod = 0 (in place of curl o grad = 0). To do so Cartan developed the “exterior differential” d..;
which acts on k-forms (= skew-symmetric covariant tensors), see [5]) and e.g. Marsden—Hughes [14]:

1. The set of C°°(R™;R) functions is called Q° (the set of (O) tensors = functions); Then define d.,¢ f := df

0
for all f € Q°, i.e. duy := d (50 duy is the usual differential operator on Q).
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113 C.1. The symmetric and antisymmetric parts of dv

. The set of C>°(R™;R"*) 1-forms is called Q' (the set of (}) tensors = differential forms); In particular
if f € Q0 then the exact differential form d..; f = df is in Q*.

. Definition: A 2-form is a bilinear skew-symmetric (J) tensor (order two covariant), and the set of 2-forms

is called Q?; So 8 € Q2 iff 3 is bilinear and §(i, W) = —B(w, @) for all @, v € R™ (a 1-form is meant to
“measure a length” and a 2-form is meant to “measure a surface”). And the wedge product a A 8 of two
1-forms «a, 8 € Q! is the 2-form a A 3 € Q2 defined by a A B = a® - ® a (and A is an exterior
product defined on Q! to give elements in Q%: from “lengths” you get a “surface”).

. Define the exterior differential d..; : Q' — Q2 s.t. d(df) = 0 for all f € Q°, and duy(a A B) =
Aozt A B — @ A doy B for any o, B € QL.

. (Generalization.) For k > 2 define a k-form (also called a differential k-form) to be a skew-
symmetric (2) tensor (order k covariant), the set of k-forms being called QF (so a € QF satis-
fies a(tr(1yy .., Un(r)) = sgn(m)a(dy, ..., u,) for all i,..,%, € R™ and all permutations 7). On
OF x QF define the exterior wedge product a A B € QFF by a A B(wy, ., Wi, W1, oy Whir) =
7 D oreo SEO(T)(Wry s ooy W, ) B(Wry sy s ooy Wiy ) Where o is the set of permutations. Then define
the exterior differential duy : QF — QFF! sit. di(dery) = 0 for all v € QF1 and doy(a A B) =
degt A B+ (—=1)*a A doyy 8 for any o € QF and 3 € QF.

. gy =10ted ¢ (creates confusions outside Cartan’s framework and for non-mathematicians).
The generalized Stokes theorem (see e.g. Abraham-Marsden [I]) is:

Theorem B.15 IfY is n dimensional, if T is positively oriented and if o € Q™! then

[ o= [ o (B.25)

written [ da = [ o

C Rate of deformation tensor and spin tensor

Let ® : [t1,t2] x O — R™ be a regular motion, cf. 1} and let @ : C — R" be the Eulerian velocity

field, cf. (2.4), that is, #(t,p) = 22(t, Ry;) when p = ®(t, Ryy).
At ¢, choose a unit of measurement (foot, metre...) and build the associated Euclidean dot prod-
uct (-, )y in RY, cf. § (We loose the objectivity here). And the same (-,-), is used at all ¢.

C.1 The symmetric and antisymmetric parts of dv

With the imposed chosen Euclidean dot product (-,-), in @?, we can consider the transposed endomor-
phism d7,(p)L =°td 47, (p)T € L(R?;R?), which is defined by, for all @y, w, € R vectors at p,

g
(d,(p)" 1, Wa)g = (@1, dT(p)-Ta), (C.1)
cf. §[A.12] We have thus defined

Q LR R?
d,l—)»T{ t ( t t) (02)

t - _ —
p — di] (p) := dvy(p)*
Other usual notations (definitions): d(p)T ="oted di(t, p)T =noted g (¢, p).

Definition C.1 The (Eulerian) rate of deformation tensor, or stretching tensor, is the (-, -),-symmetric
part of dv:

_dv+do”
2

e, Vitp) e Wt} x ), Dit,p) = T zdﬁ(’f’p)T. (C.3)

teR

D

The (Eulerian) spin tensor is the (-, -)g-antisymmetric part of do:

_dv —diT
- 2

e, Yitp) e J(t) x ), ,p) = TP ;dﬁ(t’p)T. (C.4)

teR

Q

(So di =D +Q.)

NB: The same notation is used for the set of points ; = ®(Q;,) C R™ and for the function “the spin
dy—dvl
2

tensor” ; = : The context removes ambiguities.
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C.2 Quantification with a basis
With a basis (€;) in @?, gives
[9)je-[d0")je = [dV] {5 [g)je, and  [dT7)z = [g]fgl-[dﬁ]@[gha- (C.5)
In particular, if (&) is a (-,-)g-orthonormal basis, then [d7"]z = [dd][ (orthonormal basis case).

Thus for the endomorphisms D and ©, with a Euclidean orthonormal basis, with D.¢; = >, D;;¢; and
Q.é}‘ = Z?:1Qij€i then Dij = (31}1 + 8UJ) and Qij = 1(8111 — %) that i 1S,

2\ 0x;
[d)je + [d0]}; [dd)je — [do] [z
[D]je = — and [Q]z = — 5 (Euclidean framework). (C.6)
Duality notations: D.¢; = Y.i Dié;, Di = %(81] + g;,) and Q.¢; = > QE, Q) = %(32; - ggi),

where Di = D and Q; = —QJ,.

D Interpretation of the rate of deformation tensor

We are interested in the evolution of the deformation gradient F'(t) := Fzﬁ?o (t) along the trajectory of a

particle Ry; which was at py, at . So let A = d(ty,py,) and B = b(ty, py,) be vectors at o at py, € Oy,
and consider their push-forwards by the flow ® (the transported vectors), i.e. the vectors defined at t

at p(t) = @y (t) by

a(t,p(t)) == F(t).A and b(t,p(t)) := F(t).B. (D.1)
see and figure Then consider the function
- C —-R
(@,B), . o (D.2)
(t,pe) — (a@,b)g(t, pr) := (@(t, pe), b(t, pr))g-

d1)+dv

Proposition D.1 The rate of deformation tensor D = gives half the evolution rate between two

vectors deformed by the flow, that is, along trajectories,

D((i, )g _ = 7
220 — 2., b, (D.3)

Proof. f(t) := (a(t,p(t)),b(t, p(t)))y = (F(t).A, F(t).B), gives (with (-,-), independent of t)
F(t

(1) = (F'(8).4,

Thus with F'(t) =833 az(t, p(t)).F(t) and @(t, p(t)) = F(t).A and b(t, p(t)) = F(t).B,

(t).B), + (F(t).A, F'(t).B),. (D.4)

F(t) = (di(t, p(1)).a(t, p(t)), b(t, p(t)))g + (@(t, p(t)), d(t, p(t)).b(t, p(t)))g (D.5)
= ((d(t, p(t)) + do(t, p(t))T).a(t, p(t)), b(t, p(t)))g,
ie. (D.3), since £(t) = (@, B)(t, p(t)) gives f'(t) = 2EDs ¢ p(r)).

E Rigid body motions and the spin tensor

Choose a Euclidean dot product (-, )4 (required to characterize a rigid body motion).

Simple definition: A rigid body motion is a motion whose Eulerian velocity satisfies dv’ + do? = 0,
i.e., D =0 (Eulerian approach independent of any initial time ¢, chosen by some observer).

But the usual classical introduction to rigid body motion relies on some initial time % (Lagrangian
approach). So, we start with the Lagrangian approach: Consider a motion CI), fix a ty € R, consider the
associated Lagrangian motion ®%, and for a fixed ¢ the associated motion ®¥. The first order Taylor
expansion of ® in the vicinity of a p;, € Qy, is, with d®® (p, ) =20td Ffo(p, ),

DL (q1,) = P (p1y) + F* (p1) Pty + 0D )- (E.1)
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E.1 Affine motions and rigid body motions
E.1.1 Affine motions ...

Definition E.1 ®% is an affine motion (understood “affine motion in space”) iff ® is an “affine motion”,
i.e. iff % is a C" diffeomorphism (in space), and (E.1) reads, for all p;,, g, € Q4 and all t € [t1, ts],

O (q1) = O (1) + F* (Po)-Pro s - (E2)
Marsden—Hughes notations: ®(Q) = ®(P) + F(P)]@

Proposition E.2 and definition. If ®* is an affine motion, then F[°(p;,) is independent of py, i.e.,
for all t €]ty, ta] and py, ¢, € Qs

ted
Ftto (py) = Ftto (1) e Ftto' (E.3)

And then dF/(p;) = 0, i.e. d>®(p,,) = 0. And for all t €]t,ts[, ®' is an affine motion, i.e. for all
T €]t1,to[ and all pt, gt € 4,
O (q) = % (pe) + Fr-pedi- (E.4)

And ® is said to be an affine motion.

Proof. g, = py, + Pudy gives O (a,) = @ (Do + Duds) = ¢ (py) + d®Y (py,)-Pi Ty and, similarly,
O () = @ (dho + Tubyy) = P (do) + AP (ar,)- TP~ Thus (addition) O (qs,) + D (p) = O (psy) +
O (1) + (AP (pry) — AP (s, -m, thus (d®f (py,) — dPY (¢1,))- Py, = 0, true for all py,, gy, thus
ddP (pg,) — d®P (qz,) = 0, i.e. (E.3)

to 4 t
Thus d?®Y (py, ).y, = limy_o dey (p“’+hut") 92 o) — i), M = 0 for all p;, and all @,

thus d?® (p ) = 0 for all py,, thus d?®)° = 0
And (5.17) gives (@ o ®)(p;) = <I>t70( ), thus, with p;, = ®°(p,), we get d®L(p;).dPP (p,) =
d® (py,), thus d®t (p;) = d@to(pto) d®P (py,) - , and . ) gives

dD (p) = dd'.dd% " "% 4pt  (independent of py), (E.5)

thus " . un

Corollary E.3 With ¢ the Eulerian velocity and Vo the Lagrangian velocity: If ® is affine then, v, is
affine for all t, and V" is affine for all ty,t, i.e., dv;(p;) = div; for all p; € Q; (independent of p;), and

df/;to (py, ) =m0ted df/;to for all py, € 4, (independent of py,). So, for all p,q; € Q4 and pyy, g1y € Qs

{ o Ti(q) = Ui(pe) + dvy.pea, (.6)

o Vi(a) = Vi(py) + AV P
Proof. (E.2) gives ®®(t,q,) = ®%(t,py) + F°(t).Ppay,, and the derivation in time gives (E.6),
hence (E.6); thanks to dV°(p,) = do,(p).F{°, cf. (3.27), and prqr, = (F°)~L.piq, cf. '

Example E.4 In R?, with a basis (E;, E») in R}, and a basis (€1, &) € R}, then F{* given by [F}°] 5 . =

|E,é
14+t 2t2 T 14+t 2t2 X .
< 33 gt > derives from the affine motion [®{ (p, )@ (¢,)]je = ( 33 ot ) .[ptoqto}lﬁ. oa
E.1.2 ... and rigid body motion

Let @ := ® and F := F/° if non ambiguous. Recall: If P € Q; and p = ®(P) (€ ) then the transposed
of the linear map F(P) € L(R};R}) relative to (-,-), is the linear map F7(p) € L(R};R}) defined by
R} — R}
FT(p) := F(P)T: { N v . ) } L (BT
W, — F(p), st. (F(p)y,Up)y= (0, F(P).Up)y,, YUpcRy.

Which defines the function FT : Q, — L(R}; R")
Particular case: For an affine motion F is independent of P, hence FT is independent of p.
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Definition E.5 A rigid body motion is an affine motion ® such that angles and lengths are unchanged
by ®: For all t5,t € R, P € Q4,, Up, Wp € R}, and with p = &(P),

(F.Up, FWp), = (Up,Wp)y, ie. (FT.EUp,Wp),= (Up,Wp),, ie. |FI.F=1I| (E.8)

In other words, with the Cauchy strain tensor C € E(I@g,@%) defined by C' = FT.F, the motion is

rigid iff it is affine and
[o=1] e [F=r"] (E9)

Proposition E.6 If &% is a rigid body motion, if ( _’i) is a (-,-)g-Fuclidean basis in @Zw if di(p) =
Flo(P).A; for all i when p = ®9(P), then d’it(p) =noted g js independent of p, and (i) is a (-,-),-
Euclidean basis with the same orientation than (A Z-), for all t.

Proof. ®Y is affine, thus, for all t, P, F}°(P) = F;° (independent of P), thus @, +(p) = Ftto./fi € I@? is in-
dependent of p, for all t. And (@i, djt), = (Fto./f,-,F;o./Yj)g = (FPT Fl A, &), ="V A A, =
(Ei,gj)g = ¢;; for all ¢,7, thus (@) is (-,-)gorthonormal basis.  And det(@,...,an) =
det(Ff Ay, ..., Flo A,)) = det(Fttﬂ)det(/Tl,...,A ) = det(F}) since (4;) is a (-,-),- orthonormal basis.
And, ®" being regular, ¢ — det(F}°) is continuous, does not vanish, with det(F;°) = det(I) =1 > 0;

Thus det(F{°) > 0 for all ¢, thus det(d;, ...,@,) > 0: The bases have the same orientation. ua
9 . L t _ (cos(8(t)) —sin(6(¢)) .

Example E.7 In R*, a rigid body motion is given by F,° = (sin(&(t)) cos(6(t)) with 6 a regular

function s.t. 6(tp) = 0. ia

Exercice E.8 Let ® be a rigid body motion. Prove

(FTY'(t) = (F'(t))", and FT.F'is antisymmetric: (F")T.F + FT F' =0. (E.10)

Answer. Let ¢t € R, F(t) = Fo(), pit) = ®9), U,W e R and @(t,p(t)) = F(t).W.

Recall: FT is defined by FT() = (F(t)7", so (FT(t).d(t,p(t),U), = (0 B(t,p(t), F(t).U)g.  Thus

((F7) (1)t p(8) + F7 (1) 557 (£ (1)), U)gf(%?(t,p(t)) F(1).0), + (@(t, p(t)), F'(1).U)g, whlch simplifies into
(FTY (1)t p(t), U)g = (w0 (t p(1), F'(t).U)g = ((F'(t))" (¢, p(t)), )g,thus (FT) () = (F'(t))", for all t.

And (E.8) reads FT(t).F(t) = Iy, thus (FT)'(t).F(t)+ FT(t).F'(t) = 0, thus (F')” ()F()+FT()F()_0,

s
thus F7'(¢).F’(t) is antisymmetric, for all ¢. u

E.1.3 Alternative definition of a rigid body motion: dv + di” =0

— —T = =T
The stretching tensor D; = % and the spin tensor €, = % have been defined in l)lb

Proposition E.9 (Here no initial time is required: Eulerian approach.) If d is a rigid body motion,
cf. , then the endomorphism dv; € L(R};RY) is antisymmetric at all t:

dvy +dv] =0, ie diy =, ie D;=0. (E.11)

Conversely, if dv; + dv} =0 at all t, then ® is a rigid body motion.
So the relation « dv; + dif =0 for all t » gives an equivalent definition to the definition

Proof. Let F(t) := Fp(t) and V(1) := () (@) (t) = T(t,pr) l) gives
(FETY(1) = 0 = F'(0.F"(t) + F(0).(F7) (1) B22 FE(t) + (F'()-FT ()T = dvV(t).F()~" +

@ ()P B2 g, p) + div(t, po) . Thus :I)

-,

Conversely, suppose dif + dil = 0. Then (D.3)) gives D(gtb)g =0, thus (@, b),(t, p(t )) = (d@,b H) (to, P)
when p(t) = ®(P), i.e. (Ff°(P).A, F{o(P). ) (/Y é)g, for all t, %, P, A, ]§ Thus @ is a rigid body

motion, cf (E.8). oa
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117 E.2. Vector and pseudo-vector representations of a spin tensor Q2

E.2 Vector and pseudo-vector representations of a spin tensor {2

We are dealing here with concepts that are sometimes misunderstood.
Framework: R" = R? with a Euclidean dot product (-,-), (so the following is not objective).

E.2.1 Reminder

e The determinant det |z associated with a basis (€;) in R? is the alternating multilinear form defined
by det|z(€1,€2,€3) = 1; The algebraic volume (or signed volume) limited by three vectors iy, s, i3 is
det (i1, U2, 3); And the (positive) volume is | detg(uy, Uz, U3)|, see §

e Let A and B be two observers (e.g. A=English and B=French), let (@;) be a Euclidean basis chosen
by A (e.g. based on the foot), let (b;) be a Euclidean basis chosen by B (e.g. based on the metre), see §

Let A = ||b1||s > 0 (change of unit of length coefficient). The relation between the determinants is:

+ if dqt(gl, by,bs3) >0 (i.e. if the bases have the same orientation),
det = +)° det  with S
la 13 — if d‘(ét(bl, ba,b3) < 0 (i.e. if the bases have opposite orientation).

(E.12)
In particular, if A and B use the same unit of length, then A =1 and det|z = + detlg.
e With an imposed Euclidean dot product (-,-),: An endomorphism L is (-, -),-antisymmetric iff

Vi, v, (L.@,0)y+ (4, L.5), =0, ie LT =-L. (E.13)

E.2.2 Definition of the vector product (cross product)

Let (&) be a (-, -)g-orthonormal basis, let @, v € R3, and let leaw € /.Z(R_é,R) be the linear form defined
by
R3 — R

Ceiii 2 5 bpas() = det(d, 5, )

|é

(E.14)

(the algebraic volume of the parallelepiped limited by @, ¢, Z' in the Euclidean chosen unit).

Definition E.10 The vector product, or cross product, @ Xe, ¥ (Written % Ag, ¢ in french) of two vectors
@ and U is the (-,-),-Riesz representation vector @ xq U € R3 of the linear form /g z5: It is given by,

cf. :

VZ € R3, U Xeg U, Z) g = det(@, v, 2) | E.15
g g

2

NB: @ x4 ¢ depends on (-, )4 and on the orientation of (€;).

We have thus defined the bilinear cross product operator

R3 x R3 — R3
xa,:{ R ) (E.16)

(@,7) — xg(u,?) :

g

Xeg V.

(The bilinearity is trivial thanks to the multilinearity of the determinant.)

And if a chosen ()4 is imposed to all, then @ xg, ¥ —noted 7 7.

Moreover if an orthonormal basis (€;) is imposed to all observers then @ x, 7@ ="°%d 7 x 7.

NB: The cross product is not an objective operator! It depends on a chosen Euclidean dot product
and on a chosen Euclidean basis (its orientation).

Notation: Isometric framework + imposed Euclidean basis (orientation imposed): is written

VZERS, (i x )7 =det(d,7, 7). (E.17)
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118 E.2. Vector and pseudo-vector representations of a spin tensor Q2

E.2.3 Calculation of the vector product

0= Y0, wid, U=,y v and (E.15) give

up V1 1
(U Xeg U, €1)g = d‘eét(ﬁ, v,e1) =det [ ug we 0 | =det (Zz :ji) = Ug¥3 — U3Vs. (E.18)
us Us 0

— = — =

Similar calculation: (@ X ¥, €2)e = ugvq — u1v3 and (4 Xg U, €3)e = u1v2 — ugv1, thus

U2V3 — U3V2 3
[U Xeg U]|g = u3v1 — U1vV3 y ie. u Xeg U = (ui+1vi+2 — ui+2vi+1) €; (E].g)
U1V2 — UV =1

with the generic notation wy := w; and ws = ws (indices modulo 3): In particular €; Xe €41 = €42.

Proposition E.11 1- @ Xg U = =7 Xg U

2- U0 || UM U Xgy U= 0.

3- U Xe U Is orthogonal to Vect{d, ¢’} the linear space generated by i and ¥.

4- U %o U depends on the unit of measurement and on the orientation of the (-,-)4- orthonormal
basis (€;): Consider two Euclidean dot products (-,-), and (-, ~)b, 50 (-,)a = A2(+,-)p for a X\ > 0; Choose

a (-, )q-orthonormal basis (@;) and a (-, -)y-orthonormal basis (b;); Then
U Xgg U = AU Xpp U, (E.20)

with the + sign iff (@;) and (b;) have the same orientation.

Proof. 1- (i X U, %)y = det (1, ¥, 2) = — det (0,1, Z) = —(U X U, Z) 4, for all Z.
2- If 4 || ¥ then det|z(u,v,2) = 0 = (U X ¥, Z)e, S0 U X U Ly Z, for all Z. And if % Xy U = 0 then
(E.19) gives @ || ¥.
3- If 7 € Vect{u, v} then det|z(i, 7, Z) = 0, thus (@ X ¥, 2)y = 0 thus @ x¢ 7 L4 2.
. 1
e md ct(@, 7 “)mi)\f‘d et(7, 7. ) B 0@ 7,2 = X055

v, 2 v,z

for all Z, thus . un

4- (U Xgq T (u Xpb Uy Z)a, true

Exercice E.12 Prove that @ X ¥ is a contravariant vector.

Answer. It is a vector (Riesz representation vector) in Rfé, so it is contravariant; Or calculation: It satisfies the
contravariance change of basis formula, see (F.18)). .

E.2.4 Antisymmetric endomorphism represented by a vector

Proposition E.13 Let (€;) be a (-,-)4-Euclidean basis. If an endomorphism 2 € E(R_B;R_’?’) is (-, +)g-
antisymmetric then there exists a unique vector &y € R3 s.¢., for all §,Z € R3,

(Q.9,2), —det( .7, 2), (E.21)

i.e., there exists a unique vector Jo € R? s.t., for all §,Z € R3,

|25 =By % 7 (E.22)
And
0 —c b a
[th = C 0 —a iff [ojeghg = b . (E.23)
-b a 0

In particular §).6¢ = 0 (= Geg Xeg Beg), 1.€. Wey is an eigenvector of ) associated with the eigenvalue 0.
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119 E.2. Vector and pseudo-vector representations of a spin tensor Q2

0
Proof. () is antisymmetric, thus [Q2] ¢ is given as in (E.23)). In particular [Q.€1]jz = [Qje.[e1]je = | ¢
—b
0
Calculation of the components of Wy, if it exists: Let & = w1 €1 + w5 +wses; thus [ Xy é’1]|g = ws |,
— s

cf. - thus wg = ¢ and wg = b; Idem with & so that w; = a. Thus if it exists & is unique. And & ey

given in (E.23)) satisfies : It exists. ua

Proposition E.14 Let (,)a and (-,-)p be two Euclidean dot products (e.g. in foot and metre), let (a;)

and (b;) be Euclidean associated bases, let ||b||la = A (change of unit coefficient), o (-,-)a = A2(-,")s
0 —c b a

And Goq =% G, and &y, ="t &, Suppose Qa=1| ¢ 0 —a|,thus[d]iz= | b |, cf (E.23).
-b a O c

Then (change of representation vector for Q):

e If (b;) and (a@;) have the same orientation, then @&, = Ad,,

. (E.24)
e If(b;) and (a@;) have opposite orientation, then o, = —AdJ,,
E.g., if l_); = Ad; for all i (change of unit, same orientation) then &, = AJ,, and if 51 = —\dy, 52 = A\ds,
bs = Ads (change of unit, opposite orientation) then & = —\dJ,.
NB: The formula &J, = £\d, is a change of vector formula, not a change of basis formula.
Proof. Apply (E.20). e
Notation: If (-,-), is imposed, then @, ="°%d &
0 -1 0
Interpretation of &.: Suppose [z =a 1 0 0 So Q is the rotation with angle 7 in the
0 0 0
0
horizontal plane composed with the dilation with ratio a. And [Je]jz = | 0 |, thus &, = aés is
1

orthogonal to the horizontal plane, hence &, %, is a rotation around the z-axis composed with a dilation
which coefficient is a.

0 —c b
Exercice E.15 Let 0 s.t. [Q)z= | ¢ 0 —a | (see (E.23)). Find a direct (relative to (€;)) or-
b a O
0 -1 0
thonormal basis (b;) s.t. [ =vVa*+b>4+c> {1 0 0
0 0 0

a =b
Answer. Let by = —2<— so [l_)‘g]r = _——L [ b]. Then let b; be given by [l_;l]p = L a S)
[&elle e /a c € Va ’
2+b2+ 2 c 2+52 0

—ac

b, L bs. Then let by = b Xe b , that is, b = 1 L —be . Thus l_)‘l is a direct orthonormal
1 3 2 3 1 [ 2]I Va2 462 /a2 12 +c2 e (bi)

basis, and the transition matrix from (&) to (b;) is P = ([b1)je [b2)je [bs)je). With Q] ;= P~1[Q]z.P (change
of basis formula), where P~! = P7 (change of orthonormal basis).

0 —c b —b —ac
With [ z.[b1]je = —=2 0 —al. =L ~be | = Vartbr+2[b ted
ith [Q]jz.[b1]) S (cb 0 0@) ( g ) e <a2 +ch) a 2[b2) e (expected),

0 -—c —ac bc? 4 b(a® + b?)
r _ 1 1 _ 1 1 2 2 2
Whelele = e Vmma | o 0 ) T BV vl W i
b a a abc — abe
Va2 102+ b1 ¢ expected), and
|
\

b D B Qe [b: ]| = [0] (expected since bs || De). Thus [Q].P =
vV a2+b2+c2 ([b } e —[b1]|g [0]|€) (P [ ] )zy = (PT [Qhe z] = [blhg.[th.[bjhg gives the result. l.l
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E.2.5 Curl

Definition E.16 If 7' is a C! vector field, if (&;) is a Euclidean basis in @3, and if ¥ = Z?:l v'€;, then

the curl (or rotational) of ¥ relative to (&) is the vector field curl, @ = curl. @ given by

3 Ovs _ Ovy
- 6vi+2 81}1‘4_1 - 92 93
- - . ) v
curl.¥ = Z(a o )éi, ie. [ewrlt]p= [ 52t — 52 |. (E.25)
o1 OFitl Tit2 dva _ duy
8.%1 01‘2
_9_
- _. o0z U1
And curl, 7 ="°td ¥ x_ ¢ (notation due to the matrix product 0%2 x | va |)
9 v
Oxo 3

= - T
Proposition E.17 Let Q(t,p;) = w and &.(t,p;) be its associated vector relative to the

Euclidean basis (€;), cf. (E.22). Then
1 -
Ge = icurleﬁ’. (E.26)

0 8w _ 9vs Ju _ Ous
Oxo Oz Ox3 oz

gives [z = 1| - 0 vz _ Jvs | with [Q]z antisymmetric. Thus (E.23),

(91’3 O 8902
(E19) and (E25)

gives (E.26). oa

E.3 Pseudo-vector, and pseudo-cross product

Framework: M3; the space of 3 x 1 matrices: We leave the framework of the vectors in R3 to enter the
matrix world.

E.3.1 Definition

Definition E.18 A column matrix is also called a pseudo-vector or a column vector.

O
Definition E.19 The pseudo-cross product X : Mgy X M3; — M3 is defined by

1\ o (U1 L2Y3 — T3Y2 noted - O
T2 | X Y2 | == | Tay1 — T1Y3 = [@x[g), (E.27)
Z3 Y3 T1Y2 — T2Y1
T1 Y1

notation used when [Z] := | z2 | and [§] := | y2 |. So the pseudo-cross product of two pseudo-vectors
€T3 Y3

is a pseudo-vector (is a matrix).

E.3.2 Antisymmetric matrix represented by a pseudo-vector

Recall. An antisymmetric matrix A = [4;;] € M,,, is s.t. A;; = —A,;; for all 4, j.

0 —c b
Definition E.20 Consider an antisymmetric matrix A = [4;;] = c 0 —a | € Ms3. The pseudo-
-b a 0
O . . . O
vecteur w associated to A is the column matrix w := | b | € Mjs;.
c
So, with (E27),
5O ) W REe) Y1 . W
Ayl =wx[y]|, ie. A |y | =wx |y |, forall matrix [g]=| y2 | . (E.28)
Y3 Y3 Y3
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E.3.3 Pseudo-vector representations of an antisymmetric endomorphism
Let R3 be our usual affine space, R3 its associated vector space, (-,-); a Euclidean dot product, and
(€;) a (-,-),-Euclidean associated basis. Let 2 be a (-, ) -antisymmetric endomorphism, so Q7 = —Q,
cf. 1' Thus [2]|z is an antisymmetric matrix. Call & the associated pseudo-vector, i.e., cf. 1}
for all ¢ € R3,
OO0

Q. [7]1e = Wx[{je- (E.29)

This formula is widely used in mechanics, and unfortunately sometimes noted Q.5 = & X ¥

Be careful: (E.29) is not a vectorial formula; This is just a formula for matrix calculations which
gives false result if a change of basis is considered; E.g., with (d1, d2, ds) be a (-, -)g-Euclidean basis, and
(51, 52, 53) = (—ay,da,ds). So (5;) is also a (-, )4-Euclidean basis, but with a different orientation.

-1 0 0
1- Vector approach: Let P be the transition matrix from (@;) to (b)), so P = | 0 1 0 |. Let
0 0 1
0 —c b
Qa = ¢ 0 —a |. Thus, Q being an endomorphism, the change of basis formula gives
-b a 0
-1 0 0 0 —c b -1 0 0 0 ¢ -b
Q=P L[QaP=(0 1 0].| ¢ 0 -—a 0 1 0)=(-c 0 —al|. (E30)
0 0 1 -b a O 0 0 1 b a 0
Thus the vectors &, and & are given by (E.23):
a a (,Ua = (161 + b&Q + Cﬁg,
[(Ea]‘g =101, [(Ij'b]‘g =1 -b], ie . o o o thus |&p = —dy | (E.31)
c —c Wy = ab1 - bbg - Cbg,
Or simply apply (E.24).
O O
2- Matrix approach (E.28) gives (2] q.[5] = @ x[7] and [2 ;.[7 = &y x[3], with
O “ O “ O O
We=1|0b and wp=| b |, so |WgF#* —Wp| (E.32)
—c

O . . . . . .
And @ does not represent a single vector either, since it does not satisfy the vector change of basis formula
O O O . . . .. .
wp # P~ 1.w,. Thus w is not a vector (is not tensorial): It is just a matrix (called a “pseudo-vector”).

E.4 Examples
E.4.1 Rectilinear motion

Let @ : [t1, 1] x Obj — R™ be a C! motion. Let ty €]t1,to[ and Ry, € Obj.

Definition E.21 The motion of Ry, is rectilinear iff, for all #,t € [t1, t2],

p, (1) — B, (1)

t—to I E’@b/(t@), (E.33)

B, (6)-F _ _
pe. Vig,t € R, 3ag,; € R, 202 o G /(o). (Eug., Bp, (1) = O + (1—10)¢1.)

The motion of Ry; is rectilinear uniform iff, for all %, ¢ € [t1,t2], with p(t) = ®(t, Ry),

Bp, (1) = P, (o) + (t—10) B, (), ie. p(t) = plto) + (t—to) V (to, p(to)) (E.34)

(the trajectory is traveled at constant velocity).
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E.4.2 Circular motion

® : [ty T] x O — R? is a motion, ® is the associated motion, P = i)(to Ry;). Let (E1, Es) be a
Euclidean basis. The motion @ is a circular motion iff, for all ¢, O®%(t) = x(t VE1 + y(t)Es with
{ x(t) = a + Rcos(0(t))

y(t) = b+ Rsin(6(t)) (E.35)

for some R > 0 (called the radius), some a,b € R, and some function 6 : R — R. And ( ) O¢ € R?

is the center of the circle and 6(t) is the angle at ¢. And the particle Ry, (s.t. d(1y, Roj)
the circle with center O¢ and radius R.
The circular motion is uniforme iff, for all ¢, 6/ (t) = 0, that is, Jwy € R, V¢ € [t1, 2], 0(t) = wot.

P) stays on

. — % .
Notation: @F5(t) = Oc®%(t), i.e

F2(t) = Reos(0(t) By + Rsin(0(8) Bs, so [83(1)] 5 = (ZZ?SEZS??) . (E.36)

Thus the Lagrangian velocity of a circular motion is

T = @80 = @0, s TR0l =m0 (o)) (E37)

(orthogonal to the radius vector 17];0 (t) is to F%(¢)). And the Lagrangian acceleration ffé’ (t) is given by

Ehiole = roo) (i) )+ re@? (i) (E.38)
Then consider the orthonormal basis (€,(t), €y(t)) given by
R BB ([ cos(8(t)) B [ —sin(6(t))
[67-(75)]\}? - [mhﬁ - (sin(@(t))) , and [eg(t)]‘g - ( cos(A(t)) ) : (E.39)
We get
Vi =R9'é and TR =R(0"e - (0)%E). (E.40)

Immersed in R3, the vertical line being given by Es:

—

VBt =&(t) x g5(t), where &(t) =w(t)és and w(t) = 6'(1). (E.41)
So d& d
2o W w =
L't == xapP+wa1§0:R(Eeg—w2er). (E.42)

E.4.3 Motion of a planet (centripetal acceleration)

Tlustration: O is e.g. a planet from the solar system. (€7, €, €3) is a Euclidean basis (e.g. fixed relative to
stars an (€7, €3) define the ecliptic plane), (-, -)4 is the associated Euclidean dot product, ||.|| the Euclidean

associated norm, O an origin in R3 (e.g. the center of the Sun), R = (O, (¢;)), P : [to, T) x Obj — R3is a
motion in R, cf. (1.5), ® =noted & and Gt := O ="ted 3 are the associated motions, cf. (3.1)-(3.4).
So the Lagrangian velocities and accelerations are given by

- dPp

d2®p 4 Gp
Ve(t) = —

— () == (). (E.43)

(t)—dip(), and  Ap(t) =

Definition E.22 The motion of a particle Ry, is a centripetal acceleration motion iff the particle is not
static and, at all time, its acceleration vector A(t) points to a fixed point F' (focus).

We choose a focus F to be the origin of the referential: O := F. So, for all t, ODp(t) || Ap(t)

O®p(t) x Ap(t) =0, ie. @p(t) x Ap(t) = 0. (E.44)
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Remark E.23 A rectilinear motion is a centripetal acceleration motion, but such a motion is usually
excluded in the definition [E.222] ou

Example E.24 The motion of a planet from the solar system is a centripetal acceleration motion: An
elliptical motion with one focus is at the center of the Sun. un

Example E.25 The second Newton’s law of motion f=m7 (Galilean referential) gives: If at all time
> f is directed to a unique point F, then the motion is a centripetal acceleration motion. .

Definition E.26 The areolar velocity at ¢ is the vector

2(t) = 5@0(t) x Vo (1), (E.45)

Proposition E.27 If ® is a centripetal acceleration motion, then the areolar velocity is contant, that is,
aZ

o (t) = 0 pour tout t, so

Z(t) = Z(tp), Vt. (E.46)

That is, the position vectors sweep equal areas in equal times. And 7 (to) = 0 iff ® is a rectilinear motion.
If Z(ty) # 0 then :
- @p(t) and Vp(t) are orthogonal to Z(ty) at all time t,
- The motion of the particle Ry takes place in the affine plane orthogonal to A (to) passing through O.
- Vi (t) never vanishes.

Proof. (B.45) and (B.44) give 247 (1) = 432 (6) < Vp (1) +5(0) x L (1) = Vi (1) x Vo (1) +3(0) x Ap (1) = 540,
Thus Z is constant, Z( )= (to) for all t. In particular, if Z(ty) # 0 then Z(t) # 0 pour tout ¢, and

o Z(t) = $@p(t) x Vi (t) gives that @p(t) et Vp(t) are orthogonal to Z(ty) for all ¢, thus Ap(t) is
orthogonal to Z(f), cf. .

e The Taylor expansion reads @p(t) = Gp (to)+Vp (o) (t—to) —|—ft Ap () (t—7)% dr, with Vp(to) L Z(ty)
and Ap(1) L Z(to) for all 7, thus @p(t) — @p(ty) L Z(ty) for all 7, that is Op(t) — OP = 43 1 Z(ty
for all 7, Thus p(t) belongs to the affine plane containing P orthogonal to Z(to) for all £. And OP =
@p(to) L Z(ty), thus O belong to the same plane.

o Z(t) = Z(ty) # 0 implies_“_/}a(t) # 0 for all ¢, and gives: (@p(t ) Vp (t

), Z(ty)) is a positively-
oriented basis. Since @p and Vp are continuous and do not vanish, since Z (to) # 0,

we get: Ry, “turns
around Z (tp)” and its velocity never vanishes.

If Z(t) = 0 then @p(t) || Vi (t) for all t, cf. , so Vp(t) = f(t)@p(t) where f is some scalar function.
And Vp(t) = @' (t) gives @' (t) = f(£)@p(t), thus Gp(t) = Gp(t)er ) where F is a primitive of f s.t.
F(ty) = 0, thus @p(t) || Fp(to), so ODp(t) || ODp(ty), for all ¢: The motion is rectilinear. oa

Interpretation. (Non rectilinear motion.) The area swept by gp(t) is, at first order, the area of the
triangle whose sides are gp(t) and @gp(t + 7) (“anglular sector”). So, with 7 close to 0, let

Si(r) = %@3@) x @p(t+7), and Sy(7) = [|Sy(7)]], (E.47)

the vectorial and scalar areas. With @p(t+7) = @p(t) + Vp(t)T + o(7) (Taylor) we get

Si(r) = 5@p(t) x (Ve ()T + o(7)), (E.48)

Since Sy(0) = 0 we get w = 13p(t) x Vp(t) + o(1), then

W(O) = §¢P(t) x Vp(t) = Z(t) = Z(t), (E.49)
thanks to (E.46)), thus
ds, ds,,
g(o) = ?(0)’ vt € [to, T7, (E.50)
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that is, the rate of variation of S; is constant. And with ||S;(A7)||2 = (S:(AT), Si(AT)) we get

d|| S| 2 ., dS, .
7 (A1) = 2(—d7_ (AT), Se(AT)), (E.51)
so, since S;(0) = 0,
dlISe?
2L (0) = 0. (E.52)

So the function ¢ — ||S;(0)||> = S;(0)? is constant, thus t — S(0) est constant, and 92:(0) is constant.

Exercice E.28 Give a parametrization of the swept area, and redo the calculations.

Answer. Let

—

r(t) = llge(®)[l, 0(t) =p(t)OP (angle), (E.53)
then
r(t) cos(0(t))
@p(t) = | r(t)sin(0(t)) | . (E.54)
0
Thus
B r'(t) cos(0(t) — r(t))0' (t) sin(6(t))
Ve(t) = | v/ (t)sin(0(t) + r(t))0'(t) cos(6(t)) (E.55)
0
With we get
0
Z(t) = % ( 0 ) . with 72(0)0'(t) = r’(%)0 (tt) (constant), (E.56)
()0’ (t)

cf. (E.46). A parametrization of the swept area is then

L ([0,1] x [to, T] —R? . pr(t)cos(0(t))
A: { . } , A(p,t) = | pr(t)sin(6(¢)) | . (E.57)
(p:t) — Alp,t)

Therefore, the tangent associated vectors are

od r(t) cos(0(t)) oA pr'(t) cos(0(t) — pr(t))0'(t) sin(6(t))
g, (D) = | r@)sin(0@0) |, ZE(p,t) = | pr'(t)sin(0(t) + pr(1))0'(¢) cos(0()) | , (E.58)
p 0 ¢ 0
hence the vectorial and scalare element areas are
oo 0
dé = (‘Z—A X aa—“;‘)dpdt = 0 , do = pr*0’ dpd§. (E.59)
P pr20’ dpdt
Therefore the area between t) and ¢ is
1 t t
A(t) = A(to) +/ / pr®(7)0' (1) dpdT = 1 / r(1)%0' (1) dr. (E.60)
p=0J 1=ty 2 T=ty
Hence .
A'(8) = (%0 () = r(t0)*0' () (= constant = ||Z(t)]]), (.61)
cf. E.56. l.l
Exercice E.29 Prove the Binet formulas (non rectilinear central motion):
1 d* q z2 1 4L
t2:22<— —T?)t r t:f—o(f T)t*rt E.62
Ve(t) = 25+ (EP) @, e = 22 (5 + 2 ) a0, (E.62)

for the energy and the acceleration.
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125 E.5. Screw theory (= torsors, distributors)

Answer. Proposition [E.27| tells that ® is a planar motion. With (E.53) and é,(t) = (2?;5353;) we have

P(t) = r(t)er(t) (in the plane). Let é(t) = (_C(s);lgé'?gg) ), thus

70) = T (06 (1) + () 57 (1) = 1 (e () + ()6 () 1),

And €-(t) L €y(¢) gives

VE() = (' ()" + (r(8)8' (1))
Since 6'(t) # 0 for all ¢ (non rectilinear central motion) Let s(6(t)) = r(t). Let us suppose that 6 is C*, thus
0’ >0or 0 <0,and §:t— 0(t) defines a change of variable. And

And lb and 60'(t) = TQZ—(“” give

2 o 2 Zg 2 Zg _ 2 (5/(9))2 1 _ 72 ﬁ : 1
VE((0)) = (s'(0)) () +r (t)r4(t) = Zo( s4(0) + 82(9)) = Zo| do ©)) + 32(0)]'
Thus r(t) = s(0) and % := 2% give the first Binet formula. Then
/o, dEr dép

)
—
~
=
<
—~
~
=
T
—~
~
=
—~
~
=

L(t) = r" (0@ (t) + 7' ()~ (£) + (' ()0 (t) +r(£)8" (1)

dt

with % || €0, and ddite(t) = —0'(t)é-(t), and & L T (central motion), we get

L) = (r" () = r(8)(8' (£)*)ex (0).

And )
’ ’ ’ ’ Zy 3/(9) d<
= = ~Z = —Zo2(0
(0 = 500 (0 = & (0) 705 = Z0agh =~ 2055 0),
thus 1 y i
" o s / _ ZO d s
r (t) ZO d92 (0) 9 (t) - TQ (t) d02 ( )7
which is the second Binet formula. .

E.5 Screw theory (= torsors, distributors)

See https://perso.isima.fr/leborgne/IsimathMeca/torseur.pdf

F Riesz representation theorem

F.1 The Riesz representation theorem

Framework: (E, (-,-)y) is Hilbert space (a vector space with an inner dot product (-,-),) such that, with
the associated norm defined by||Z||; := \/(Z,Z)g, (E,]|.]lg) is a complete space (a Banach space). E.g.,

E = R" with a Euclidean dot product, L2 (Q) with its inner dot product (f,g)rz = fQ fgdQ...
And E* = L(FE;R) is the space of linear and continuous forms on E (the space of linear “measuring

tools”) equipped with its usual norm ||¢||g~ := sup |(.Z|.
l1Z]]g=1

e We have the easy statement:

V7 € E (vector), v, € E* (linear continuous form) s.t. vy, = (¥,%),, VT € E, (F.1)
moreover ||vg||g- = ||V]g-

Indeed: Define v, : E — R by v4(Z) = (¥, %), for all £ € E; The definition domain of v, is E and
vy is trivially linear; And the Cauchy-Schwarz inequality gives |vg(Z)| = |(¥,Z)4| < [|0]]4]]Z]]g for all
Z € E, thus |jvg||g- < ||7]]g < oo, thus v, is continuous; And |vy ()| = [(T,7)4| = ||U]|g|V]|g, thus
llvglle= > ||V]|g, thus ||lvg||m+ = [|T]lg- And uniqueness: Another w, satisfying wy.# = (¥, %), gives

(wg —vg).7 = 0 for all &, thus w, — v, = 0.

e The Riesz representation theorem concerns the converse: A “measuring tool” ¢ € E* can represent
with he help of (-,-), by a vector ¢, € E:

125



126 F.2. The (-,-)g-Riesz representation operator

Theorem F.1 (Riesz representation theorem, and definition) (FE,(-,-),) being a Hilbert space,
V¢ € E* (linear continuous form), 3!(; € E (vector) s.t. L.% = (f_;],f)g, V¥ e E, (F.2)
and moreover ||€_;]\|g = ||¢||g~. And Zg is called the (-,-)4-Riesz representation vector of £.

(Usual notation in finite dimension: vy.& = '« T, or simply v.Z = U+ if a chosen (+,-)g is imposed
to all observers: Isometric framework.)

Proof. Easy in finite dimension: With a basis (¢;), if [(]jz = (£1 ... £, ) (row matrix since £ is a linear
form) then l} gives [{]|z.[7]1z = [Eg]?.[g]‘g. [7]|&, thus (03] = lg] |;1[£]‘Té. (column matrix), thus £,. Then

|0.2] = |(£g, @)g| < [1F]1g1|Zg, with [€.05] = |(Zg, &y)g| = |0yl 1101y, thus [1€]|z- = [1,]ly-
General case, infinite dimension (e.g. E = L?(Q) and the finite element method). Let £ € E*. ¢ being

linear and continuous, its kernel Ker/ = ¢=1({0}) is a closed sub-vector space in E. If £ = 0 then
¢, = 0 (trivial). Suppose ¢ # 0, thus Ker¢ C E. Thus if Z ¢ Ker/ then 3!, € Ker/ (called the (-,-),-
orthogonal projection of Z on Ker?), given by: Vi, € Kerl, (Z— Z,%0)g = 0, so Z— Zy L, Kerl. Then

let @ := Hszifoqu’ so 7t € (Kerf)* (and unitary); Moreover dim(Ker/)* = 1 (= dimR = dimension of

the codomain of ¢, see next exercise , so (Ker{)t = Vect{7i}. And E = Ker/ @ (Ker/)* since both
vector spaces are closed (an orthogonal is always closed in a Hilbert space), thus any Z € F satisfies
T =T+ (F— 7o) = To + i € Kerl @ (Ker/)L where (%,7), = 0+ Al and 4(Z) = 0+ M(), thus
U&) = (&,7),0(77) = (&, £(7)i), (bilinearity of (-,),); Thus #, := £()ii satisfies . And if 7,; and
(o satisfy then (£ — ly9,@), = 0 for all & € E, thus £ — 5 = 0. Thus £, is unique. And

ﬂ 7 = Cauch 7
e[|~ = SUp||z||,=1 |6(z)| = SUp||z||,=1 |(€g, T)gl :Sg:';;agz [1€gl1g-

Exercice F.2 Prove: If £ € E*—{0} then dim(Ker/)* =1 (= dim(Im(¢)) = dimR).
(Kert)* - R

. . _ ¢- It is linear (since ¢ is), it is onto
T = et L= 0.0

Answer. Consider the restriction £ge. o : {

since £ is linear and £ # 0. And it is one to one since £y q,L (T) = 0 = £(F) gives & € (Kerf)* NKerf = {0} thus
# = 0; Thus g, is (linear) bijective, thus dim(Kerf)* = dim(R) = 1. =

F.2 The (-, -),~Riesz representation operator
The Riesz representation theorem gives the (-, -),-Riesz representation operator

. E* - F .
R, : . R where (Ry({),0), = (.U, VU € E. (F.3)
0 — Ry(l) =Ly, ~——

g

Proposition F.3 Rg is an isomorphism between Banach spaces. And Eg is a change of variance tool:

ﬁg transforms a « covariant { » into a « contravariant Zg » thanks to the tool (-,-),. (F.4)
Proof. Linearity: (R,(0+Am), %), = (£ 4+ Am).T = L2+ Am.@ = (R, (0), ©)y + M Ry(m), )y = (Ry(£) +
ARy (m), Z),, for all &, gives Ry(£ + Am) = R,(f) + AR, (m). Bijectivity thanks to (F.1) and (F.2), and
|\Zg|| ¢ = ||¢||e~ thanks to the Riesz representation theorem: Isomorphism between Banach spaces. n

NB (fundamental): ﬁg is not objective since it requires a man made tool (an inner dot product e.g.
English or French) to be defined. In fact, an isomorphism E <+ E* can never be objective, see §

With G the set of inner dot products in F, we have thus defined the Riesz representation mapping

B} (F.5)

. GxE* - F
R: .
{ Ry(€) = U(g).

(9,0) — R(g,0) =0,

So R has two inputs: A choice (+,-)g by an observer for the first slot, a linear form for the second slot.
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127 F.3. Quantification with a basis

F.3 Quantification with a basis

Here E is finite dimensional, dim E = n, ¢ € E* (a linear form), (-,-), is an inner dot product, (€&;) is a
basis, (') is the dual basis (duality notations). Let

gij = 9(€;,€5), (= Zﬁjej, Zg = Z(Fg)ié}, ﬁg.ej ZR”e“ ie.,

7 7 Qﬂ (F.6)
[Glie =loi], W= (b o L) (row), [f]ie= : (column),  [R]. 7= [R"].
()"

Then (F.2) gives [(] 2%z = [f] 7.9z [#])z for all , thus [f)z = [fy]T-[g]|z, thus [ = [g]j2.[0,] = (since
[9]je = [9]jz), thus

[7) =

=)
|
-

S
!

m

Z iy, Vi (F.7)

And ﬁg.E: Zg gives [ﬁg]‘e7g.[€]ﬂ» = [Z;]g, thus

(Bl =[9) "} ie RY=(lg) Ny Virj, thus |(fy)' =D R4 | Vi (F.8)
j=1

Remark F.4 If a chosen inner dot product (-,-), is imposed (e.g. Euclidean foot based) and if duality
notations are used, then a usual notation for K is /%, because the bottom index i in ¢; has been raised

by ég to give Z; =noted gi Thep 1| and read with ¢f := Z =3l

A 4
(i =07 and D =R | : ), (F.9)
[ﬂ én
We won’t use this /¢ notation (we deal with objectivity: No isometric framework imposed). .

F.4 Change of Riesz representation vector, and Euclidean case

Let £ € E*, let (-,-)4 and (-,-)n be two inner dot products, let é_;, = EQ(Z) and @), := Ry,(¢), so, Vi € E,
0y, )y = L.Z = (L, ). (F.10)
Proposition F.5 For any basis (€;) in E, we have the change of Riesz representation vector formula:

(A1) = [9).16), dee. (6] = [W]~".[g]-[£5), (F.11)

short ﬂOtaﬁOﬂ for [h] 2. [0z = l9)jz-llie:  ie [Gnjz = [h] " 1g)jz- () e-
NB: (F.11)) is a “change of vector” formula: one basis, two vectors; It is not a “change of basis” formula
(one vector and two sets of components). In particular (for the Euclidean case):

If (--)g = X°( ) then G = X°F,. (F.12)
Conversely, if £, = )\QFQ for all linear forms ¢ € E*, then (-,-)g = A%(-, ).

So, a linear form ¢ cannot be identified with a Riesz representation vector (which one: Eg? %9}

Proof. (F.10) gives [#]7..[g) e [fo)1 = [f]fg-[h]\a-[zh]\a for all #, hence [g]|z-[0g) 2 = [B]jz-[0h]jz, ie. (F.11).
In particular A2(-,-), = (-,-)g give A2(y, D) = (£y, T)y =10 (7, 7)), for all Z, hence A2l = f),.

gr L
Converse: )\2579 = 0y, for all £ gives A (57 :E')h = (bh, B)n (57973?)9, for all Z and for all f_;, (because
ﬁg is an isomorphism cf. prop. (F.3)), thus A2(-, ), = (-, g- oa
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128 F.5. Riesz representation vector and gradients

Example F.6 If (-,-), and (-, ), are the Euclidean dot products made with the foot and the metre then,

with (F.10),
()g =N, )n =  ,=X4, with \>10: (F.13)
A linear form /£ is represented by quite different vectors by an English observer (Zg “small”) and by a French

observer (£}, “big”)! So a Riesz representation vector is (very) subjective, and certainly not “canonical” (a
word that you may find in books where... nothing is defined... nor justified...). on

Example F.7 Aviation: If you do want to use a Riesz representation vector to represent a £ € R™*,
it is vital to know which Euclidean dot product is in use, cf. the Mars Climate Orbiter probe crash
(remark [A.17)). Recall: The foot is the international unit of altitude for aviation. ua

F.5 Riesz representation vector and gradients

If f € CY(R™R) and p € R", the differential of f at p is the linear form df (p) € R™* defined by, for all
@ € R,

F.14
h—0 h ( )

See (T.6) (definition independent of any inner dot product or basis).
If you choose an inner dot product (-,-), then you can define the gradient grad, f(p): It is the (-,),-
Riesz representation vector of df (p):

grad, f(p) := Ry(df(p)), ie. df(p)as = (grad, f(p), )y, Vil € R™. (F.15)
E.g. gives
grad, f(p) = )\2gr$dgf(p) with A% > 10 (English vs French) : (F.16)
The gradient is very dependent on the observer (a gradient is subjective, the differential is objective).

Remark F.8 We already had this observer dependence in the 1-D case f:z € R — f(x) € R:

Question: What does f'(x) = 3 mean? Answer:

11- For one observer, it means f/(z) = limp_ W where in the departure space the observer

has chosen a basis vector @ of length 1 for him (e.g. 1 foot, 1 Fahrenheit...) which he calls @ = 1; So, with

no abusive notations, his derivative f’(z) is in fact f.(z) := df (x).d = limp_0 w

fla+h)—f(x)
7

12- For another observer, it means f'(z) = limp_0 where in the departure space the

observer has chosen a basis vector b of length 1 for him (e.g. 1 metre, 1 Celsius...), and he write b= 1;
So, with no abusive notations, his derivative f’(z) is in fact fj(z) := df (#).b = limp_o w.
13- If b = Aa, then

i @0 = f(2) @A) = f(2) g FathAa) = f(z) g
h—0 h h—0 h h—0 hA k—0

flz+ka) — f(x)
- :

E.g. with foot and metre,

fo(x) = Afl(z), with A~3.28, so fi(z)# f.(z). (F.17)

opposite side
In other WOTdS, f/($) = m

depends on the length of the adjacent side: In foot? metre?... ou
Exercice F.9 We have f/(z) =EID Ay (2) and grad, f(z) =FE19 \2grad, f(z). Why?

-

Answer. Because does not use the Riesz representation theorem. Details: (@) and (b) are two bases
in R, associated inner dot products (-,-)a and (-,-)s, and b = A@; thus (-, )a = A2(-,-)s. And fi(z) = Afi(z)
gives (gradfy(z),b), =2 df ()5 = fi(x) = Mi(z) = Mf (x).d =E2D N(gradfa(z),@)a = (gradfo(x), \d), =
2 (gradfa(x),d')b, SO gradfb(x) = )\2gr_édfa(:v) as expected. un

Exercice F.10 With ||.||; = Al|.||» we have ||Z4]|, = Al|€x]|n- Does it contradict the Riesz representation

theorem which gives ||¢|| = |[¢,4]|?

Answer. No, because ||{|| := sup Hlfz\-\iln depends on the norm ||.||[g» chosen; Here ||.||r» is either ||.||g or [].||a.
. 0.3 .7 0.7
And if ||4]]4 := supiﬁ (you have chosen the ||.|[gn := |[|.|l¢), then ||[€]|n = sup;cpm ﬁ = SUp;cpn %‘Hg\‘lg =
ASUD;cgn \‘Ie”'li\)L = M|¢||g. Don’t forget: ||¢|| = sup(...) depends on the choice of a norm: ||.||g7 ||.||n? un
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129 F.6. A Riesz representation vector is contravariant

F.6 A Riesz representation vector is contravariant

[g is a vector in E, cf. ( , S0 it is contravariant. To be convinced:
Exercice F.11 Check:

[Zq]|m =P ".[ly)j4a (contravariance formula). (F.18)

Answer. Consider two bases (€yq;) and (Epew ;) in E. With the change of basis formulas [Z]jnew = P~ [Z]|a
and [g]jnew = P".[g]aa-P, (F.2) gives, for all 7,

[ fota-[9) - 1o ia = €. = &[] i [C]

o R B . (F.19)
= ([@jaa-P™")-(P".[9]eta-P)-[lg] jnew = [#]]ca-[9] k- (P-[€g] e )
thus [Zg]‘dd =P [Zghw since [g] is invertible (an inner dot product is positive definite), thus 1) un

Remark F.12 e Dont forget: A representation vector é_;, is not intrinsic to the linear form ¢ because it
depends on a (-, ), (depends on a observer: foot? metre?). More generally, there is no natural canonical
isomorphism between E and E*, see § [U.2} It is impossible to identify a linear form with a vector.

. Eg is not compatible with the use of push-forwards and pull-backs, cf. §

° Zg is not compatible with the use of Lie derivatives, cf. || un

F.7 What is a vector versus a (-, -),~vector?

1- Originally, a vector was a bipoint vector & = AB in R3 used to represent a “material object”. E.g.
the height of a child is represented on a wall by a vertical bipoint vector Z starting from A the ground
up to B a pencil line. The vector & is objective: Any observer uses this same vector to get the height of
the child... And then they use “their subjective unit” (foot, metre...) to give a value.

2- Then (mid 19th century), the concept of vector space was introduced: It is a quadruplet (E, +, K, .)
where + is an inner law, (E,+) is a group, K is a field, . is a external law on E (called a scalar
multiplication) compatible with + (see any math book).

3- And the definition of scalar inner dot product (-,-), (in a vector space) was introduced.

4- We can then get non “material” vectors (“subjectively built vectors”). E.g.: start with our usual
vector space R" of bi-point vectors, and consider its dual R™* := E(H@;R). For a given £ € R"™ (a
given measuring device), consider two observers: An English observer with his foot built Euclidean dot
product (-,-)g, and a French observer with with his metre built Euclidean dot product (-,-),. These

observers build their own artificial (man made) Riesz representation vectors Fg = ﬁg (0) and €, = Ry (0),
cf (F.13); They remark that £, # £,: Their man made vectors are different (subjective).

5- Then, with differential geometry, a vector ¥ has been redefined: It is a “tangent vector”, which
means that there exists a C! curve c: s € [a,b] — ¢(s) € E such that ¥ is defined at a p = c(s) € Im(c)
by @(p) := ¢&’(s). Advantage: This definition of a tangent vector is applicable to “tangent vectors to a
surface” i.e. tangent vectors to a manifold, see e.g. § [0.1.1}2-. Then it is shown that ¥ is equivalent to
{% = the directional derivative in the direction ¢ (natural canonical isomorphism E ~ E** see § .

For other equivalent definitions of vectors, see e.g. Abraham—Marsden [IJ.

F.8 The “(-,),~dual vectorial bases” of one basis (and warnings)

Framework: FE is a finite dimensional vector space, dimF = n (e.g. E = @3) An observer chooses
an inner dot product (-,-), (e.g., in R3, a foot-built Euclidean dot product, hence the results will be

subjective). And (€&;) is some basis in F.
F.8.1 A basis and its many associated “dual vectorial basis”

Definition F.13 Let (€;) be a basis in E. Its (-, -)gs-dual vectorial basis (or (-,-)g-vectorial dual basis, or
(+,-)g-dual basis) is the basis (€j4) in E defined by
\V/j = 1, ceey 10, (é;'g, gj)g = 6ija i.e. gig ) é} = 6ij . (F20)

NB: A vectorial dual basis is not unique: It depends on the chosen inner dot product, see e.g. (F.24).
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130 F.8. The “(-,-)g-dual vectorial bases” of one basis (and warnings)

Definition F.14 (Equivalent definition.) Let (m.;) be the (covariant) dual basis of the basis (&;):
The w,; are the linear forms defined by m.;.€; = §;; for all j, cf. (A.7). (The m.; € E* are objective, i.e.
the same for all observers). The (-, -),-dual vectorial basis of the basis (&;) is the basis (€j4) in E made
of the (-, -),-Riesz representative vectors of the m;:

Gig 1= Ry(me;)|, so defined by &y« 7= 7.0, V7€ E. (F.21)

where ég is the (-, -)4-Riesz operator, see 1}
Duality notations: with (e') the dual basis,

g = Ry(e)), e (G 0)y=e'.¥, Vi€ E. (F.22)
The position of the index ¢ is down on the left and up on the right, because ﬁg changes the variance type.

NB: Pay attention to the notations: €, is a contravariant vector: €, € . So if you use the Einstein
convention then the index i in €;, must be a bottom index.

Exercice F.15 Prove that the vectors €;, satisfy the contravariant change of basis formula

[€iglinew = P~ ".[€igljaa  (the €, are “contravariant vectors”). (F.23)

Answer. o First answer: €, is a vector in F, thus it is contravariant.
e Second answer: Apply (F.18)) since €, is a Riesz-representation vector.
e Third answer = direct computation: Consider two bases (d@;) and (b;), and the transition matrix P from
= T N
(@) to (b:). and the change of basis formulas give [e]]la l9]ja-€iglia = (€ig,€j)g = [€ -]lg.[g]lg.[eig]lg =

(P~ [)a)" (PT [g] P).[€g]; = [&5)]5.19)ja- P.[€ig] . for all i, j, thus [€g]jz = P.[€q] 5, for all 4, ie. . LS
Exercice F.16 Choose one basis (€;) in E. Consider two inner dot products (-,-), and (-,-)» (e.g., a

foot and a metre built Euclidean dot products). Call (€;,) and (€;;) the (-,-), and (-, -)p-dual vectorial
bases of the basis (€;). Prove:

()a =X = €y = A€, Vi (F.24)

E.g., A2 > 10 with foot and metre built Euclidean bases: €j;, is much bigger than &;, : A vectorial dual
basis is not intrinsic to (€;) (not objective).
Answer. 1) gives (gib, é']-)b = 51']' = (éia, é}')a = )\2(51',1, é']-)b7 thus (5ib — A2€¢a, é}-)b = 51']', for all ’L,j .
Example F.17 If (¢;) is a (-, -) y-orthonormal basis we trivially get &;, = €; for all ¢, i.e., (€;4) = (€;).This
particular case is not compatible with joint work by an English (foot) and a French (metre) observer. ou
F.8.2 Components of €, in the basis (¢&;)
Proposition F.18 The components of €j, in the basis (€;) are the RY: for any j € [1,n]y,

Ejg=» RJ&, e &y=> Pjé where Pj=RY, ie [z =[Rlde (F.25)

j i=1

the j-th column of [¢];z~ " = R z). And [P] = [P}] = [R¥] is the transition matrix form (&) to (&;,).
el gll J g g
(Recall €;, = R, (e"): Change of variance, thus the position of the index.)

Use classic notations if you prefer: €, = >, P;ijé; =Y, Ry ;€.
Thus the matrix of g(-,-) in the basis (€;4) is the inverse of the matrix of g(-,-) in the basis (€;):
9(€ig, €i9)] = [glier, = lolie, ™" = (l9(&, &))" (F.26)

Proof. First proof of (F.25) (straight forward calculation): (F.20) gives
Vi, j, (€] 9l [€iglie = 0i; = [€}][z-Eje,  thus  [glie-[Eig)e = [€ilje, Vi (F.27)

Second proof of "F.25): Apply (F.8) (generic Riesz representation result) to get ([F.25).
Then, with [g]jz symmetric, g(€y,€9) = [Eigli-l9]j-[€)glle = [ eili=lglie " l9lie-lglie™ - [E5)1e =

€] z-[9lie " [€)]je = (lg]je™")ij» thus - i
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Example F.19 R?Q, [g]\gz <(1) g)) thus [g]‘—él — <(1) g) Thus €14 = €1 and €4 = %62. -

Remark F.20 Warning, cf remark When ([g] ré»l)ij =noted 4ij (instead of R™/) then 1} reads

n

g = g"&, (F.28)
=1

where the Einstein convention is not satisfied. The Einstein convention is satisfied with €;, =
S (Pj)ié;. (And P = [(P))"] = [P] is the transition matrix from (€&;) to (€;4)). So in gt
is also another name for (P;)* = P';:

gl‘] = (_Pj)z = Plj. (F29)

We insist: M = [g]|z = [M;;] is a matrix, and its inverse is the matrix M~! = [M;;]~! = |N;;]: A
matrix is just a collection of scalars, it is not tensorial (has nothing to do with the Einstein convention),
and its inverse is also a collection of scalars, and you don’t change this fact by calling M~! = [M%].

And because (P;)" equals ([g] rgl)ij =noted gij 'some people rename ¢, as €7... to get €7 = 31 g é;...
to have the illusion to satisfy Einstein’s convention, which is false: They confuse covariance and contravari-
ance... and add confusion to the confusion...

NB: Recall: If in trouble with a notation which comes as a surprise (the notation g™/ here), use classic

notations: Then no misuse of Einstein’s convention and no possible misinterpretation. .

F.8.3 Multiple admissible notations for the components of ¢},

Let P € L(E; E) be the change of basis endomorphism from (€;) to (€;4): defined by P.e; = €;4. And
let P = [P]z = the transition matrix from (€;) to (€i,). We have multiple admissible (non confusing)
notations for the components of €}, relative to the basis (€;):

j=1 j=1 j=1 j=1
clas. dual

i.e. the i-th component of the vector €j, has the names Pi; = (P;); = (P;)* = P*; or P},ie. P = [P]z =

[Pi;] = [(P;)i] = [(P})!] = [PY] (four different notations for the same matrix), i.e.
Py (Pj) Pl (Py)!
Vi, l€glle=Plelle=1 + | = : = : |= : (F.31)
Pnj (Pj)n P (P5)"

= the j-th column of P. You can choose any notation, depending on your current need or mood...

F.8.4 (Huge) differences between “the (covariant) dual basis” and “a dual vectorial basis”

1. A basis (€;) has an infinite number of vectorial dual bases (€;4), as many as the number of inner
dot products (-,-), (observer dependents), see (F.25). And two observers with two different inner
dot product get two different dual vectorial bases.

2. While a basis (€;) has a unique intrinsic (covariant) dual basis (me;) noted (e"), cf. (A.7): Two
observers who consider the same basis (€;) have the same (covariant) dual basis.

3. If you fly, it is vital to use the dual basis (7.;) = (e!): It is possibly fatal if you confuse foot and
metre at takeoff and at landing (if you survived takeoff) because of the choice of different Euclidean
dot product (-,-)4 or (-,)n; See e.g. the Mars Climate Orbiter crash, remark

4. Einstein’s convention can help... only if it is properly applied.
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132 G.1. Goal

F.8.5 About the notation g/ = shorthand notation for (g*)¥

Definition F.21 g¢(-,-) = (-, ), being an inner dot product in E, the Riesz associated inner dot product
g, = (, ")t in E* is the bilinear form in £(E£*, E*;R) defined by, for all £/, m € E*,

(6,m) e := (£g,171g)g, where £, =R,(() and 1, = Ry(m) (F.32)

the (-,-),-Riesz representation vectors). (g#(-,-) is indeed an inner dot product in E*: easy check.
g

Quantification: With (¢&;) a basis in F and (e') its dual basis (duality notations). (F.32) gives:
y =) . .- F25) . > -
(97 =g} (e, ¢?) = g(@ig, @), thus [¢F]ic =" =[g];}, de [[(6)7]=1lgy]"}  (F.33)

shorthand notation: | [(g%)¥] "2*¢ [¢%7] . (F.34)

Classical notations: [¢%]c = [(¢%)i;] = [9* (e, 7ej)] = [9(ig> €j9)] = [9i5] ™" = ([9)je) -
Exercice F.22 How do we compute g#(¢,m) with matrix computations?

Answer. ( = Y" L' and m = Y myel give g'(6,m) = YU limigt(e',€!) = X7, li(gF)Imy =
[4e-19%] - [m]‘g = [{]jz-]9] fgl[m]‘g (a linear form is represented by a row matrix,). un

Exercice F.23 QD tells that the (g) tensor ¢* € L(E*, E*;R) was created from the (g) tensor g =
(+,-)g € L(E, E;R) using twice the (-, -)4-Riesz representation theorem.

1- Show that if you use the (-,-),-Riesz representation theorem just once you get the G) tensor
g% € L(E*, E;R) ~ L(E; E) which is the identity endomorphism:

g =1. (F.35)

2- Reciprocal: What is the (3) tensor ¢” € £(E, E;R) that you create from the identity I € £(E; E)
when using the (-, -),-Riesz representation theorem once?

3- Summary: I = g gives (I)’ = ¢” = g and (1)? = ¢*
Answer. 1- ¢° € £L(E*, E;R) is defined by ¢° (¢, %) = (fy, %), for all ({,) € E* x E, where {, is the (-,-),-Riesz
representation vector of £. Thus ¢?(£, @) = £.40 = £.1.1%, for all (¢, @) € E* x E, hence g* € L(E*, E;R) is naturally
canonically associated with the identity I € L(FE; E).

2- The identity operator I € L(E; E) (observer independent) is naturally canonically associated with the (1)
tensor I € L(E*, E;R) defined by I(¢, %) = £.1.4 = £.47 for all ({,%) € E* x E, thus I = g". un

G Cauchy—Green deformation tensor C' = FT . F

~ [to,T] x Obj — R"
Framework: & : ~
(taPObj) - (I)(t"rblzj) _ _
uration of Obj at any 7. Then ®%(¢,p,) = @(t, Ry;) when py, = ®(to,ps,), and if ¢ is fixed
th — Qt

} is a motion of Obj, Q. = &(r,Ry,) is the config-

then ®P(p,) := ®%(t,p,) and & := P And F(P) := d®(P)
P = e = P(py)
R_i}) — R}
. . P ) — @ (deformation gradient at py, between # and t).
W — @i = F(py,). W := lim (P, +h W) (Ps)
h—0 h
G.1 Goal

Construction of C' (summary of Cauchy s approach):

1- At 1y, consider two vectors W1 and W2 at a point P € (.

2- At ¢, they have been distorted by the motion to become the vectors F.W; and F.W; at p = ®(P).

3- Then choose a Euclidean dot product (-, -), =noted .. the same at all ¢ (to simplify);

4- Then, by definition of the transposed, (FWl) . (FWQ) = (FT.F.Wl) «W,: You have got the
Cauchy strain tensor C := FT .F;

5- Then (F.W1) « (F.Ws) — Wy « Wy = ((C—1).W,) « Wy gives a measure of the deformation with W,
as a reference, value used to build a first order constitutive law for the stress (Cauchy).
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133 G.2. Transposed FT: Inner dot products required

G.2 Transposed F7': Inner dot products required

We first recall the functional definition of F'7; Then we get the usual matrix representation of F'7 relative
to observers (quantification).

G.2.1 Definition of the function FT

At ty, a past observer chose an inner dot product (-,)g in @”, and at t the present observer chooses an
inner dot product (-,-), in @?. Let P € 4, and p = ®(P) (€ Q). The transposed of the linear map
li‘(P) f L(R};RY) relative to (',_;)G and (-, ), is the linear map F(P)gg € C(R'?,R'ZJ) defined by, for all
Up € Ry vector at P and w, € R} vector at p,

— —

(F(P)&y-p, Up)g = (F(P).Up, )y, written |(F".b)+, U =1io (FU)| (G.1)

see (A.66). Don’t forget that F" := F(P)§, depends on (-,-)a, (,-)g, a P € Q4, fy and t. Recall: F
stands for F°, so_'F(P)é;g stands for Ftto(P)gg.
So F(P)gg : R} — R} acts on vectors defined at p, which defines

Q — LRYRY)

Fg; :
g p —|F&,(p) == F(P)E,| where P=&"'(p).

Hence 1} reads (Fgg(p).iﬁp, Up)g = (F(P).Up,zﬁp)g, written in short (FT.@) .+, U = We, (F.U). Don’t
forget that F'T := Fgg(p) depends on (-,-)¢ and (-,-)y and p € Q.
Recall: F stands for F}°, so F§ (p) stands for (F{*)%, (p) (= F{*(P)§,)-

Exercice G.1 1. With the ambiguous notation FT.ZW = Z.F.W = F.W.Z = W.FT.Z, which dots are
inner dot products?
2. With ambiguous notations, what does F.W;.F.Wy = Wh.FT.F.W5 mean?

Answer. 1. No choice: (W,Z) € R, x R}, and meaning (F”.2) o, W = Zo (F.W) = (FEW) ¢ Z =W+, (F".2).

2. No choice: Wl, Wo € ]@Z), and meaning (FVTG) ’g (FWQ) = - (FTFWQ) an
Remark G.2 On a surface Q (a manifold), (G.1) is defined for all (Up, Wp) € TPy x Ty ua

G.2.2 Quantification with bases (matrix representation)

Classical notations: (d;) is a basis in I@g, and (b;) is a basis in R?. Marsden—Hughes duality notations:

(E[) is a basis in I@g} and (€;) is a basis in I@? And the reference to the points P and p is omitted to
lighten the writings (use the full notation of § if in doubt). Let

Gij = (@1, d)c, gij = (bi,by)g, Fudy =Y Fijbi, F'.by =Y (FT);;d;, (G.3)
and [G]j7 = [Gyj] "E" G, o)1= lgs] "= (o), [F) 5 = [Fis) "2 [F), [F7) 50 = [(FT)i) "2 [FT).

) gives [U17.[G].[FT @] = [F.U)T.[G).]@], thus [U])7.[G.[FT).[w] = [U]T.[F]T.[g].[@], for all U,w,
thus

[GL.IFT] = [F]".[g], ie. |[FT]=I[G]""[F]".[g]} (G.4)
(More precisely: [G]jz.[F"]; ; = [Fl 75" 9]z i-e. [F7] 52 = [Glla " ([Fl;z5)" g]5.) So
zn:Gik(FT)kj = zn:Fkigkja ie. (FT);; = z”: (G Y irFrge; (G.5)
=1 k=1 ked=1

Remark G.3 If (@;) and (b;) are (-,)¢ and (+,-)g-orthonormal bases, then [G] = I = [g], thus [C] =
[F]T.[F]. But recall: If work with coordinate systems then the bases are usually the coordinate system

bases which are not orthonormal in general, i.e. [G]~! # I and [g]~! # I in general. o
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134 G.3. Cauchy—Green deformation tensor C

Exercice G.4 Detail the obtaining of (classical notation), then use Marsden duality notations to
express (G.5).
Answer. Classical notations: (FT.b;,d@)a = (b;,F.d), and 1) gives (X0  (F)kjdr,di)c =
(Bjs Xokey Fribr)gs thus 37y (F7)is (@, @i)a = Yop_y Fri(By,be)g with Fii = ([F]" )ik, thus (G.5).

Marsden duality notations: Basis (E7) at P at to, basis (&) at p at t, Gry = G(Er, E;), gi; = 9(&i, &),
F.E_'J = Z;’;l Z;]é'i, FT.gj = Z?zl(FT)IjEI, thus:

> Gi(FNS; = Flgy, e (FD);= > G Fligy where [G"]:=[Gr,] ™" L
K=1 k=1

K,k=1

G.2.3 Remark: F*

(F* doesn’t seem to be very useful in mechanics, apart from making simple things difficult... or playing
with components and pseudo-duality notations...).
For mathematicians (no “magic tricks”):

Definition G.5 The adjoint of the linear map F € E(I@%,]}i?) (acting on vectors) is the linear map
F* e L(Rp; Jli;)*) (acting on functions) canonically defined by, for all m € R7*,

F*(m):=moF, written F*m=m.F (€ I@Z*) (G.6)
So, for all (m, W) € ]RT* X I@g,
(F*m).W = m.FW (€ R). (G.7)

Quantification (matrix representation): We use (G.3), and (7q;) and (mp;) the (covariant) dual bases

—

of (d;) and (b;). Let (F*);; be the components of F** relative to these dual bases:

n

F*.’/Tbj = Z(F*)ij’]'rai7 1e [F*]\Trb,‘n'a = [(F*)”] (G8)

I=1

" gives (F*.Trbj).ﬁi = ij.F.ai, thus
Vi g, | (F)ij = Fji} ie. [Flimn, = ([Fljz5)", inshort [F*]=[F]T. (G.9)

Marsden duality notations: F*.e/ = > 7_ (F*)//E! gives (F*);/ = Fi for all I, j.

Interpretation of F'*. As usual in classical mechanics, we use Euclidean dot products, here (-, )¢ in RZ)
and (,-)g in R?. Then we use the (-,-)g-Riesz representation vector Rg(F*.m) € ]li’té of F*.m € I@%*,
and the (-, -),-Riesz representation vector Ry(m) € R} of m € R}*; So, for all m € R}* and W € R},

(F*m).W = Rg(F*m)+, W, and m.(F.W)= Ry(m)¢ F.W = (FT.Ry(m))+, W. (G.10)

Thus (G.7) gives Rg(F*.m) = FT.R,(m), thus
Rg.F* =FT.R,, ie F*=Rs 'F'.R,. (G.11)
Remark G.6 The definition of F* is intrinsic to F' (objective), while the definition of F is not intrinsic

to F' (not objective) since it needs inner dot products (observer choices) to be defined. ua

G.3 Cauchy—Green deformation tensor C'
G.3.1 Definition of C
Consider vectors W; € I@g at P, i = 1,2, and their push forwards o; at p = ®(P), i.e.
w; = F.W;, (G.12)

short notation for @;(p) = F(P).W;(P). With chosen inner dot products (-,-)¢ in I@% and (-,-)y in R,
we get

(W, )y = (F.Wh, W), = (FT.E.Wyi, Wa)e. (G.13)
C

More precisely: (Wip, Wap)g = (F(P).Wlp,F(P).ng)g () (Fgg(p).F(P).Wlp, ng)g.
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135 G.3. Cauchy—Green deformation tensor C

Definition G.7 The (right) Cauchy-Green deformation tensor at P € €, relative to (-,-)g, (-,-)g, to
and t is the endomorphism C:?GQ(P) =noted 0 (P) € E(@g; @g) defined by

Cay(P) = F&y(p) o F(P), inshort [C:=FT.F| (G.14)

(More precisely: Cy, (P) := F*(P)§, o F{*(P).)

So
T T =n I Y, N FT T Y, N
FloF:WeRy X5 FOW)eRy <5 FT(F(W)) € Rp. (G.15)
~—— —_————
=not. ¢ _not. C(V_[}')

(Recall: F and FT are linear, thus C = FT o F is linear and written C = F7.F.)
And 1} tells that C' is characterized by, for all Wi, W5 € Ry,

w1

Wy =| (C.W1) o, Wa = (FW1) o, (F.Wa) | (G.16)

D)
g

Moreover C'is a (-, -)g-symmetric endomorphism in @”, i.e., for all Wl, Wy € I@g,
(C.Wl, WQ)G = (Wl, C.Wg)g, i.e. (CWl) .G’ WQ = Wl .G’ (CWQ) (G17)
Indeed: (C.W]_,WQ)G = (FT.F.W17W2)G = (F.W17F.W2)g = (Wl,FT.F.WQ)G = (Wl,C.Wg)G.

G.3.2 Quantification
(G.14) gives [C] = [FT).[F], with [FT] =ED[G]~1.[F]T [g], thus

[C] = [G]".[F)" [g).1F]} (G.18)

short notation for [Cayliz = [G]Fl'([F]\a,E)T'[ghl?'[F]ﬁ,E'

Exercice G.8 Use classical notation, then duality notations, to express (G.18) with components.

Answer. Classical notations:

F.(fj = ZFZJEZ and Cﬁj = ZCZ]EL}, i.e. [th.j = [FZ} and [Cha = [C”] (G.lg)
i=1 i=1

Hence (d@;,C.d3j)¢ = (F.di, F.dj), thus (@i, Y, Crjdr)e = (X, Fribr, X, Fijbe)g, thus 3, Cij(@i,dr)e =
Zke Fki(bk,be)gng, ie.

n

zn:Gikaj = z": Fri greFey; = Z ([F]T)zk greFe;, so [Gl[C) = [F]T[g][FL (G.20)
k=1

k=1 k=1

so Cy; = Z:,g,mﬂ([G}_l)ikam greFr; = Zz,g,m:l([G]_l)im([F]T)mk gkeFyj. Duality notations:

F.EJ = ZFZJél and CEJ = ZCIJE[, i.e. [F]lﬁ,é' = [ 7:]} and [C}\E = [CIJ], and
=1 I=1

(G.21)

ZG[KOKJ = Z ij gngli], and CIJ = Z GIMFICM gk[FZJ when [GIJ] = [G[J}_l.
K—1 k=1 k0, M=1

Exercice G.9 (-,-)g is a Euclidean dot product in foot, (-,-), is a Euclidean dot product in metre, so
(,)g = p2(-,+)g with g = 0.3048; And (@;) is a (-, )g-orthonormal basis, and (b;) := (a@;). Prove:

[C] = W?[F]".[F). (G-22)

Answer. [C)jz =& (G2 [P 4.[9)ja.[Fla.a gives [C)ia = LIF]T; 4.4°1.[F)jz.2. Shorten notation = (G.22).

|a,a
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136 G.4. Time Taylor expansion of C

G.4 Time Taylor expansion of

Here we use a unique inner dot product (-,-)¢ = (-,-)4 at all time (to compare “comparable values” in
the vicinity of #,). And we use an orthonormal basis (@;) to lighten the notations, thus [G]jz = I = [g]|a
and gives [C]jz = [F]IE.[F]W, written [C] = [F]T.[F].

ATime Taylor expansion implicitly imposes “along a trajectory of a fixed particle”.

So P is fixed, F'(t, P) := F/°(P) and FX(t) := F'(t, P), and F3(t) ="°%d [(¢).

And Ch(t, P) := C°(P) and C%(t) := C'(t, P), and C8(t) ="°t°d O(t) = F(t)T.F(¢).

And here [C(t)] = [F(t)]T.[F(t)].

And V/o(P) =noted (1) and A% (P) =noted 4(¢) are the Lagrangian velocities and accelerations.

We have ®(t+h) = ®(t) +h V() + &= A(t) + o(h?), thus F(t-+h) = F(t)+hdV (t) + & dA(t) + o(h?),
thus

[C(t+h)] = [F(t+h)]T.[F(t+h)] = [F)T (t-+h).[F (t+h)]
2
= (1FY" + ha? %d[A’]T+o(h2)])([F+hd[V} A+ o)) 1)
2
= (ic1+ AVHAVITF) + 2 ((F)7 a4 +2ld P a7 )+ [d AT (F]) + o(h) 1),
(G.23)
Together with ,
(CHh)] = (O] + '] + 5 (€7 0]o(r?). (G.24)
thu
S [C'] = [FT.[aV]+[aV]T.[F] and [C"] = [F]".[dA]+2[dV]".[dV]+][dA]".[F). (G.25)
In particular [C7(f)] = [dV (to)]+[dV (t)]T, so
[Clto+h)] = I + h ([dV]+[dV]")(to) + %2 ([dA]+2[dV]" . [dV]+[dA]") (to) + o(h?). (G.26)

Abusively written C(ty+h) = I + (dV + dV7T)(ty) + & (dA + 2dVT.dV + dAT)(ty) + o(h?), but don’t
forget it is a matrix meaning.

With Eulerian variables and ¥(¢,p) and ¥(t,p) the Eulerian velocities and accelerations at t at p =
®(t, P) : We have dV(t, P) = di(t, p(t)).F(t) and dA® (¢, P) = d¥(t,p(t)).F(t), thus

CB(t+h) = CB(t) + h (FT(t).(dv + dvT)(t,p(t)).F(t))
h2 (G27)
+5 (FT(t).(d7 + 2d5™.dv + dyT)(t, p(t)).F(t)) + o(h?).

abusive notation of [CS(t+h)] = ... (matrices).

Remark G.10 F” = dA is easy to interpret, but ¢ = FT.dA + 2dVT.dV + dAT.F = (FT.dA +
dVT.dV) + (FT.dA+dVT.dV)T is not that easy to interpret (and in not linear in V).

We already had a problem with the composition of flows: The formula Fttg = Ftt;.Ftt‘f is simple
(determinism), but the formula Cy0 = (F{*)T.F = (F°)T (F{)T.Fj.Ffo = (F{)T.C}} .F} is “not that
simple” (# Cf;Cf‘;) (Indeed, to consider C instead of F' amounts to consider the “motion squared”, cf.
(CW, W)y =[|[FW]]7.)

Since C’(ty) = dV (tp) + dV (t,)T this may have little consequences for linear approximation near t,
but ultimately not small consequences for second-order approximations (and large deformations) if C” is
used to make constitutive laws. The consideration of Lie derivatives may be an interesting alternative. sm

G.5 Remark: C°

For mathematicians: May produce errors, misuses, covariance-contravariance confusion, see next §[G.5.2]
For the general ® notation see § [A.11.5
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187 G.5. Remark: C”

G.5.1 Definition of C"...

Definition G.11 At P € Qy, the bilinear form C%, (P) ="%d ¢* € £(R}, R} ;R) associated with the

linear map Cg,(P) ="0ted ¢(p) =noted ¢ ¢ £(I§g; I@Z)) is defined by, for all Wy, W, € ]@ZJ vectors at P,
C* (W1, Wa) == (W, CWa)g (= (FEWy, F.Wa),). (G.28)

NB: using (-, )¢ we have changed the variance of C' (a (}) tensor) to build C” (a (5) tensor).

C” is a bilinear symmetric form (trivial) and is a metric in I@g (trivial F being a diffeomorphism),
but not a Euclidean one (it is if C' = I i.e. for rigid body motions).

Quantification: (G.28) gives [W5]7.[C"].[W1] = [Wa]T.[G].[C].[W4] for all Wy, Ws since C* and (-,-)q
are symmetric, thus

[C"]=[GLIC] (= [F]".[g.IF)). (G-29)

More precisely: [Cb]‘é = [G]\E[C]\E = ([F]\E,é)T'[g]\g'[F]|E,é"
Classical notations: C” = Zij CijTai ® mej and C.d; =, C;;d; and G = Eij GijTa; @ Tqj give

= GiCrj (=Y FrigeeFij). (G.30)
k ke

Duality notations: C” =Y, , Cr;E' @ B and C.E; =Y, CLE; and G =Y, , Gr7E' @ E7 give

Cry=»_ C*,Gxr (=) FriguF'y), (G.31)
K ke
which justifies the flat notation: The top index I in [C] = [C!;] has been transformed into a bottom
index in [C®] = [C7/] (the use of an inner dot product changes the variance).
G.5.2 ... and remarks about C’... and Jaumann

C" can also be defined only with (-, -)g by, for all Wi, W, € I@g,
Cz(Wl,Wg) = (F.Wl,F.WQ)g, (G32)

ie., C":=C) := g* the pull-back of the metric (-,-), by @, see .

e However C” = C’g is useless in itself: C” is not a Euclidean dot product (it is a metric defined at
each P by Cg(P)(Wl, Wg) = (F(P).Wl, F(P).Wg)g for all Wy, W, € I@Z) vectors at P). C” is only useful
to characterize a deformation if the value C?(W;, W5) can be compared with the initial value (Wi, Wa)g,
i.e. if a Euclidean dot product (-, -)g was introduced in I@?ﬂ This is why C” is classically defined from C,
cf. .

e There is no objective “trace” for a () tensor like C”, while Tr(C) is objective (endomorphism).

e The Lie derivatives of a second order tensor depends on the type of the tensor, and the Lie derivative
of the ( ) tensor like C' gives the Jaumann derivative, which is usually preferred to the Lie derivative of
the (2) tensor like C* which is the lower convected Lie derivative, see next remark

e So the introduction and use of C” in mechanics mostly complicate things unnecessarily, and interferes
with basic understandings like the distinction between covariance and contravariance.

Remark G.12 Interpretation issue with Jaumann (and the use of C” should be avoided in mechanics).
With 269 @29 — q(D%) _ 4ij.dif = d — dv.d and with orthonormal bases, 2D = 20 | DUNT _
dy + dy" — dv.dv — dv".dvT (matrix meaning), thus, with (G.27) (matrix meaning),

c't)=F@)" (2%?+dvdv+dv AT 4 240" .d) (t, p(t)). F(t)

= 2F ()" (% +D.dv + di” D) (t, p(t)).F(t).

(G.33)

The + D.d7 + di'". D term looks like a lower-convected Lie derivative, but with do” instead of do™*,
cf. , So you may find 1} abusively written: C” = 2FT .LyD.F, or (C°)" = 2FT.£5DZ.F where

—b —b\T
DZ = W. But you get disappointing results (values) using the lower convected Lie derivative
(Jaumann is usually preferred). oa
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138 G.6. Stretch ratio and deformed angle

G.6 Stretch ratio and deformed angle

Here (-,-)g = (-,")q, i-e. at ty and ¢ we use the same Euclidean dot product, to be able to compare the
lengths relative to the same unit of measurement. (If (,-), # (-, )¢ then use (-,-), = p2(-,)g-)

G.6.1 Stretch ratio

The stretch ratio at P € I@g between ¢, and ¢ for a Wp € Hig is defined by

o v Fp.W v
AWp) = blla. e Welle (i (We )y (@30
Wella Wrlla Wella

where W), = Fp.Wp is the deformed vector by the motion at p = ®(P). Le., in short
YW eRY st. |[W]| =1, XW):=|[FW]. (G.35)

(You may find: A(dX) = ||F.dX|| with dX a unit vector(!); This notation should be avoided, see §-

G.6.2 Deformed angle

Recall: The angle 0;, = (Wl, Wg) between two vectors W, and W in R_;’;—{ﬁ} at P € Qy, is defined by

W W W w.
cos(By,) = ——— o, —— =(——— —2)a). (G.36)
Wille ™ [[W2lla Mille [IW2lla
Andhe deformed angle 6; between the deformed vectors @; = F.W; at p = ®(P), with (-, Jg = ("),
= 1[71 Ujg (CWI) 'G WQ
cos(0;) := (W, Wa) = =70, 7= = 7= : . (G.37)
ldhlle @ |ldalle [l@][e[|@:]le
G.7 Decompositions of ('
G.7.1 Spherical and deviatoric tensors
Definition G.13 The deformation spheric tensor is
1
Csph = ETr(C’) 1, (G.38)

with Tr(C) = the trace of the endomorphism C' (there is no “trace” for the ((2)) tensor C”).
Definition G.14 The deviatoric tensor is
Cev = C — Csph. (G.39)
So Tr(Cgey) = 0 and C' = Cspp, + Ceo-

G.7.2 Rigid motion
The deformation is rigid iff, for all #, ¢,
(FYT.FPe =1, ie. CpP =1, written C=1=F".F. (G.40)

After a rigid body motion, lengths and angles are left unchanged.

G.7.3 Diagonalization of C

Proposition G.15 C = FT.F being symmetric positive, C is diagonalizable, its eigenvalues are positive,
and R} has an orthonormal basis made of eigenvectors of C.

Proof. (C(P).Wy, Wy)a = (F(P).Wy, F(P).Ws), = (W, o(p). W2)G, thus C is (-, -)g-symmetric.
(C.W1,Wh)a = (F. V_Vl,FI/f/l) = ||F. WlH2 > 0 when W, # 0, since F invertible (®% is supposed to
be a diffeomorphism). Thus C est (-, )g-symmetric definite positive real endomorphism. ua

Definition G.16 Let A; be the eigenvalues of C'. Then the y/A; are called the principal stretches. And
the associated eigenvectors give the principal directions.
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139 G.7. Decompositions of C

G.7.4 Mobhr circle

This § deals with general properties of 3 * 3 symmetric positive endomorphism, like Cf°(P).

Consider R3 with a Euclidean dot product (-, )rs and a (-, -)gs-orthonormal basis (d;).

Let M : R3 — R3 be a symmetric positive endomorphism. Thus M is diagonalizable in a (-, -)gs-
orthonormal basis (€}, €2, €3), that is, A1, Ao, A3 € R, e}, €5, €3 € R3 s.t.

A0 0
Mé; = )\151 and (€i7€j)R3 = §ij, SO [Mhé‘ = diag()\l, A27 )\3) = 0 )\2 0 . (G41)
0 0 As

And the orthonormal basis (€7, &, €5) is ordered s.t. Ay > Ay > A3 (> 0).
Let S be the unit sphere in R3, that is the set {(z,y,2) : 2% + y* + 22 = 1}. Its image M(S) by M
2
is the ellipsoid {(z,y,2) : & + Y5 + %, = 1}. Then consider 7 = Y, 1, s-t. [|i][gs = 1:
1 2

AZ T

[]je = | no with n? +n3+nj = 1. (G.42)
n3

R . A1ng
A= Mﬁ, [ ]‘é‘ = )\2712 . (G43)
)\3’!13
Then define . . . .
A, = (A Rgs, AL =A—-A,i, Al :=|AL]| (G.44)

So A= Ayii+ A, € Vect{ii} ® Vect{ii}*. (Remark: A, is not orthonormal to the ellipsoid M(S), but
is orthonormal to the initial sphere S.)

Mohr Circle purpose: To find a relation:
AL = f(An), (G.45)

relation between “the normal force A4,,” (to the initial sphere) and the “tangent forceA,” (to the initial
sphere).
(G.42), (G.43) and A, = (M.7, ii)gs give
n? +ni + n% =1,
Afng + A3n3 + A3nj = ||A|]? = A2 + A3.
This is linear system with the unknowns n?,n2, n3. The solution is
n = Ai + (An - /\2)(An — )‘3)
' A= A2) (A —A3) 7
n2 = AT+ (An = A3)(An — )
(A2 =A3) (A2 = A1) 7
n2 = AT+ (An — M) (An — N2)
(As = A1) (As = Ao)
The n? being non negative, and with A; > Ay > A3 > 0, we get
AT+ (An — X2)(An — A3) >0,
AL+ (An = A3)(An = A1) <0, (G.48)
A7+ (An = M)(An — X9) > 0.

(G.47)

Then let x = A,, and y = A, and consider, for some a,b € R, the equation

(a—b)?
o

b
Pora—a)e-b)=0 so (z- )P +y=

This is the equation of a circle centered at (aT—&-b, 0) with radius @.
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140 G.8. Green—Lagrange deformation tensor E

Thus 1) tells that A, and A, are inside the circle centered at (%,O) with radius %,
and (G.48)13 tell that A, and A, are outside the other circles (adjacent and included in the first,

drawing).

Exercice G.17 What happens if Ay = Ay = A3 > 07

ni+ng+ng =1,
An

2 2 2 _ 4An
Answer. Then { ™1 772 +78 =37, Thus A, = A and A2 + A2 = A2, thus A, = 0. Here C' = \ 1,
A2 4 A2
n? 4nd4nd= %
1
and we deal with a dilation: A, = 0. .

Exercice G.18 What happens if A\; = Ay > A3 > 07

2 2 2
ny +n2+n3:1,

Answer. Then { A (1 —n3)+ Asn3 = A, Thus A, = A1 — (A1 — A3)n3 € [As, \1], and Ay = £(A\] —
AT(1—nj) +A3nj = A2 + AT
(A2 —X\3)n3 — Ai)%, with A2 + A% a point on the circle with radius A3 (1 —n3) + A3n3. un

G.8 Green—Lagrange deformation tensor F
(G.13) gives (i), @), = (F.Wy, F.Ws,), = (C.W, W) at p = ®(P), thus
(1, Wa)g — (Wi, Wa)a = ((C = I). Wy, Wa) . (G.49)

Definition G.19 The Green-Lagrange tensor (or Green—Saint Venant tensor) at P relative to % and ¢
is the endomorphism Ep°(P) € L(R?;R}) defined by

fo(py — T, -1 FTF—1T
:%, in short |E = ¢ (= 5

Eb(P) : )- (G.50)

(In particular F = 0 for rigid body motions.) And EJ° : €, — E(I@g; IE@Z)) is the Green-Lagrange tensor
relative to ¢y and t.

The % is introduced because (C.,.) = (F., F.) corresponds to the “motion squared”, see the following
linearization.

And we get the time Taylor expansion of ES(t) = $(CB(t) — I,) with p(t) = ®%(¢) and (G.27):
dv + dv™ hj(d%LdiT
2 2 2

= Ft)T, (hD + B2 (% +D.dv + dﬁT.D)) (t, p(t)).F2 () + o(h?).

EB(t+h) = F&(1)T (h + dﬁT.dU)) (t,p(t)).F2 (t) + o(h?)

(G.51)

G.9 Small deformations (linearization): The infinitesimal strain tensor ¢
G.9.1 Landau notations big-O and little-o
Reminder. Let f,¢g: R — R and zg € R.

o f=0(g9) near xy <= 3IC >0, In>0, Ve s.t |z—xo| <mn, |f(x) <Clg(z)| (G.52)

and f is said to be “comparable with ¢” near xo. If |g| > 0 then it reads \gég“ <C.

And % < C near =0 means f = O(x") near xo=0.

. f=o(g) near xy <= Ve>0,3In>0, Vrs.t |z—xol <n, |f(z) <elg(z). (G.53)

and f is said to be “negligible compared with g near x¢”. If |g| > 0 then it reads % — sz 0.

And \{éff\ —200 means f = 0(1‘”) near xo=0.
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141 G.9. Small deformations (linearization): The infinitesimal strain tensor ¢

G.9.2 Definition of the infinitesimal strain tensor £

The motion is supposed to be C2. Along a trajectory, with Ff;’ (to) = I we have, near t,
FR(to+h) = T+ O(h), (G.54)
thus F (to+h).W = W + O(h) for all W € I@g, i.e., near ty, with (-,-)g = (-,")c,
|| — W|| = O(h) when @ =F2(to+h).W. (G.55)

Full notation: ||F(t).Wp — Wp||, = O(t—ty) near t,. (More precisely ||F% (t).Wp — S©.Wp||, = O(t—to)
with Marsden shifter S, to avoid using any ubiquity gift.)

Definition G.20 With the same inner dot product (-, -), used at all time: If (&;) is a (-, -)4g-orthonormal
basis, the same at all time, then the infinitesimal strain tensor at P is the matrix defined by

[F(P))je+ [F(P))fZ

e(P)]je = = 11, (G-56)
written .
F+F
£:= +2 — I (matrix meaning). (G.57)
0 (Pt [0 (PYIT.
(And more precisely, at P € Q;, and between to and ¢, [/ (P)]je = % (P)]‘e;[Ft Bz _ [1].)
B ) L . W AT W e o
So gW _ W — W means [§]|€[W]|a — [F]Ir[W]Ie;[F]\E [W]\e - [Whé’

Remark G.21 ¢ in 1) cannot be a tensor (cannot be a function) since F[*(P) : R@) — R and
Fl(P)T : R} — R and Ip, : RP — R} don’t have the same definition domain.
So g is not a function, is not a tensor: It is a matrix... But is called “the infinitesimal strain tensor”... '

Proposition G.22 The Green-Lagrange tensor E = % € E(ﬁ%; I@g) satisfies near ty:

T
E=¢+o(t—t) (= dl J;F — I +o(t—ty)) (matrix meaning), (G.58)

which means [E] = [¢] + o(t—to) = LI (1] 4 o(t—t)).

. . . T
And “for small deformations” we write E ~ ¢, i.e. E ~ % -1

Interpretation: (G.58) is a linearization of E, since we keep the linear part of the “quadratic” E =
$(FT.F —1) given by (EW,U)y = 5 ((F.W,F.U)y — (W,U),) for all U,W € R} (“motion squared” cf.
the (F-, F-), term).

Proof. A (-,-),-orthonormal basis being chosen, [FT] =G [F|T, thus [C] = [F|T.[F], thus

Then, near f and with h = t—ty, (G.54) gives ([F]T — []).([F] — I]) = O(h)O(h) = O(h?), thus
2[E] = [F)T + [F] — 2[I] + O(h), thus (G.58).

G.9.3 The classic approach is weird

The classic approach is weird: It applies the small displacement hypothesis to the Green—Lagrange tensor
T T
E = % which is then linearized to get ¢ = % — I, that is, cf. 1)

Starting with F', the classical approach “squares the motion” to get F, then...
linearizes F ... to get back to F... with a spurious F7...(!)

141



142 H.1. Definition

H Finger tensor F.FT (left Cauchy—Green tensor)

Finger’s approach is consistent with the foundations of relativity (Galileo classical relativity or Einstein
general relativity): We can only do measurements at the current time ¢, and we can refer to the past.

There is a lot of misunderstandings, as was the case for the Cauchy—Green deformation tensor C', due
to the lack of precise definitions: Definition domain? Value domain? Points at stake (p or P)? Euclidean
dot product (English? French?)? Covariance? Contravariance?...

H.1 Definition

Let & be motion, t) € R, ®® the associated motion, P € . t € R, and F{*(P) := d®{(P) € L(R}; R}).
And let (-,-)g and (-,-)4 be Euclidean dot products in R_;’}) and R,

Definition H.1 The Finger tensor Qiﬁ (pt), or left Cauchy—Green deformation tensor, at ¢ at p; relative
to tp is the endomorphism € E(]R_f}; R_f}) defined by, with P = (I),tf—l(pt),

B (pr) = Fo(P).(F{*)5,(p) written in short |b= F.F" | (H.1)

i.e. is defined by (Qi“ (pe)- Wy, Wa)y = (Ff(P)T by, Ff(P)T o) = ((F)T (py). 1, (F)T (py) bz, for
all wy, Wy vectors at p; € €y, written in short

(b, iia) g = (FT iy, FT aby) . (H.2)
(To compare with C = FT.F and (C.Wy, Wa)g = (F.Wl,F.WQ)g.)
And the Finger tensor relative to #; is

C =t} x ) — L} ER)

b (H.3)
(t,pt) — Qtﬂ (t,pe) = Qiﬂ (pt)-
NB: Qtﬂ looks like a Eulerian function, but isn’t, since it depends on a t.
Other definition found:
B =00 ()", ie. BP(P):=0b"(p) = F(P).F°(P)", written B=F.F". (H.4)

Pay attention: B (P) € £(R}; R?) is an endomorphism at ¢ at p;, not at fo at P: E.g., BP(P).1(p;) =
Q’Z‘)(pt).wt(pt) is meaningful, while B{°(P).W,, (P) is absurd.

Remark H.2 For mathematicians. The push-forward by ® := ®© of the Cauchy-Green deformation
tensor C' = F'.F is ,(C) = F.C.F~! = F.FT = b, cf. (8.15): It is the Finger tensor. So the endomor-

phism C' in I@% is the pull-back of the endomorphism b in R}'. (However a push-forward and a pull-back

don’t depend on any inner dot product while the transposed F7 does...). .

H2 '

With pull-backs (towards the virtual power principle at t). With p, = ®9(P) and W;(P) =
(F{* (P)) ="l (pe):

(W1, Wa)g = (F~ by, F o) = (F~T . F~ iy, o) g = (b "y, Wa) . (H.5)
-1 ._ (ploy—1 ; .
So b~ = (b)) is useful:
9 - LERLRY)
(B o L to( p\—T frto ( py—1 to (0 \T Frto (H.6)
pe = ()" (p) = F°(P)".F°(P)™" = H (p)" -H; (pr)
with p; = ®°(P) and H(p;) = (F/°(P))~" cf. (4.43). Thus we can define

. Jdtr x ) — L&:RY) -
) (tpr) —= (%) (topr) == (B°) " (py)-

Remark: (Qt“)*1 looks like a Eulerian function, but isn’t, since it depends on #.
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143 H.3. Time derivatives of Q‘l

In short:
971 =HT H, tocompare with C = FT.F, (H.8)
and with @ = F.W,
Qil.w = HT.W, to compare with CW = FT a3, (H.9)
and with W; = F~1.1;, i.e. @; = F.W;,
(b~ "1, o)y = (Wi, Wa)g, to compare with (C.Wi, Wa)g = (w1, @a),. (H.10)
Remark H.3 For mathematicians. p, = ®(P), b(p;) = F(P).F(P)" and C(P) = F(P)T.F(P) give
b(p:).F(P) = F(P).C(P), (H.11)
written b= F.C.F~1. Thus b~' = F.C~1.F~!, so
o p ' =Fly  F=F'FT=(FTF)'=C", (H.12)
i.e. the pull-back of b~ is C~!, i.e. b~ " is the push-forward of C 1.

H.3 Time derivatives of l:)_l

With 1) let (p)~t =noted p=! = HT H. Thus, along a trajectory, and with (b we get

Db™'  DHT DH
= = H+H" =—— = —@¢".H".H — H” .H.dv
Dt Dt + Dt v v (H.13)

= —b ldv—dv" b
Exercice H.4 Prove (H.13|) with (H.10).

-1
Answer. 1| gives Dgt(bfl.uﬂ)l,w'g) =0 = (%.1171,1172)9 + (0 1.DL§‘21,1172) + (b 1w1,DL;‘; )g, and
w; (¢, p(t)) = Fto(t,P).Vf/to( ) gives DD“zl = dv.w;, thus (D%t A1, Wa)g + (Q .dv.wl,wz)g + (2 l.wl,dv,wg)g =0,

thus ‘) I.l
Exercice H.5 Prove || with FT.Q_I.F =1y.
Answer. b~ = (F.F")™! = F*T F~' gives FT.b™".F = I, thus (F")' b"".F + F". L P4 FT b F =0,

thus FT.d" b~ F 4 FT.22 b71.d7.F = 0, thus (FL13). S

H.4 Fuler—Almansi tensor a

Db~

Euler—Almansi approach is consistent with the foundations of relativity (Galileo relativity or Einstein
general relativity): We can only do measurements at the current time ¢, and we can refer to the past.
At t in §), consider the Finger tensor b = F.FT and its inverse 971 =FTFT =HT H f. 1’

Definition H.6 Euler-Almansi tenor at p, € ; is the endomorphism a’ (p;) € L(R; R defined by

a®(p) = 3 (I~ Y2 () ™) = 5 (I~ H(p) ™ H(p)), (H.14)

written 1 1
5([—9_1) = g(IfHT.H), (H.15)

to compare with the Green-Lagrange tensor E = 1(C — I) = 3(FT.F — 1) € L(R};R}!).

Q:

Remark: gtﬂ looks like a Eulerian function, but isn’t, since it depends on .

gives (@; = F.W;)

(W1, Wa)g — (Wi, Wa)g = 2(a.d, Wa),, (H.16)

to compare with (W, ws)g — (W1, Wa)g = 2(E.Wy, Ws)g. (This also gives (@, 2)y = (EWy, Wa)g.)
And (H.15) gives
F'aF=FE, ie. a=F T EF, (H.17)

standing for F}° (P)T.giﬂ (p).F}°(P) = El(P) when p = ®(P).
Remark H.7 gzﬂ is not the push-forward of E{° by ® (the push-forward is F.E.F~1). un
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144 H.5. Time Taylor ezpansion for a

H.5 Time Taylor expansion for a

(H.13) gives
Da b ldi+diTht
D= - TRE— (H.18)

H.6 Almansi modified Infinitesimal strain tensor ¢

Same Euclidean framework as in § and matrix meaning again.
We have I —b ' =1~ HT".H = —(I — H").(I - H) + 2] — HT — H where H stands for H;°(p;).
Thus, for small displacement we get [ —b~' =21 — H” — H 4+ O(h), so

_H+HT

5

And, with ¢t = fy + h we have F(t,P) = I + (t—ty) di(t, P) + o(t—tp), cf. (4.37), thus we have
HY(t,p(t)) = Flo(t,P)~! =1 — (t—ty) di(t, P) + o(t—ty) when p(t) = &% (¢, P). Thus

Fo(t,P)—1=1—H"(t,p(t) + O(t—ty). (H.20)

a(t,p(t)) =£(t,p(t)) +O(h) where 2:=1 (H.19)

Therefore, for small displacements (|t — 5] << 1):
a(t,p(t)) ~£(t, p(t)) ~°(¢, P) (matrix meaning). (H.21)

I Polar decompositions of F' (“isometric objectivity”)

Regular motion ® : (¢, Ryj) € [to, T] x Of — py = &)(t,PObj) € R™, Q, = O(t, Obj), associated Lagrangian
motion ®° : (t,py,) € [to, T] x Qyy — pr = PO (L, ) := (¢, Ryj) € R™ when py, = B(ty, Ry ), deformation
gradient F{(p;,) := d®® (p, ) ="°td F E([@g,ﬂi?)

The covariant objectivity is abandoned here, due to the need for inner dot products (-,-)¢ and (-, -),
in R}, and R} to define F” € £L(R;R}) and build C = FT.F € L(R};R}).

Recall: (F{°)Z,(p:) ="°%d FT is defined by (FT.w,U)q = (F.U,w), for all (U,w) € R x Ry, and
Ctt?Gg(ptO) = (Ftt")gg(pt) o Flo(py,) ="oted ¢ = FT F is a (-,-)g-symmetric endomorphism in Hig since
(C.X,Y)g=(FT.FX,Y)g=(FX,FY),=(X,FT.FY)s = (X,C.Y)g for all X,V € R}.

I.1 F = R.U (right polar decomposition)

C being (-, -)g-symmetric, Jay, ..., a, € R (the eigenvalues), 3¢y, ...,¢, € @y) (associated eigenvectors),
s.t.
Vi e [1,n]y, C.& =&, and ()isa (-,-)g-orthonormal basis in K7 (I.1)
ie. (¢,¢j)g = ;5 for all i, 5 € [1, n].
So, with (E;) a (-,-)g-orthonormal basis in R?, [C]s = D := diag(ay, ..., ay,) is the diagonal matrix
of eigenvalues, and with P = [P;;] the transition matrix from (E;) to (&) (ie. & = > P, E; for all j),

reads
[C]5.P=PD and P".P=1, so D=P ' [C]zP and P~' =P". (L.2)

And F being regular, 0 < ||F.G||2 = (F.¢;, F.¢;)y = (C.¢, &)a = ail|Gil|g, thus a; > 0, for all 4.
Definition I.1 With 1} the right stretch tensor U € E(]@%;]@g) is the endomorphism defined by
Vi e [1,n]ly, U.C; =+/a; G, (1.3)
the /a; being called the principal stretches. (Full notation: U := Uf?gg(pto)-)
So [Ulje = diag(y/a1, ..., /) = VD, and reads

U], 5P =PvD, so VD=P[U]zP " (1.4)
And U is (-,-)g-symmetric since (UT.G,¢)a = (G,U.G)a = (G, /a;G)a = /0505 = Joaiby; =
(Vaid, &) = (U.d,&)c for all i,j. And (UoU).&; = U(U.8)) = U(/w76)) = J/aiU(&) = J/aj yajes =
a;.C; = C.¢; for all j, hence

C=UoU "y y2  and v "% /0O, (L5)
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145 1.2. F = S.Ro.U (shifted right polar decomposition)

Definition I.2 The orthogonal transformation R € E(@g); I@?) is the linear map defined by

Ri=Fou~t"%d py-1, (L6)

(Full notation: R, (pi,) = F{* (py,) © (U{ (p1y)g) ") And

noted p U s called the right polar decomposition of F'. (1.7)

Proposition 1.3 1-
RToR=1, ie. R'=R" (L8)
written RT.R = I, i.e. R sends a (-, -)g-orthonormal basis in I@% to a (-, -)g-orthonormal basis in R
2- The right polar decomposition F = RoU is unique: If F = Ryolh with U € E(@g;@g) symmetric
definite positive and Ry € L(R};R}) s.t. Ry* = R}, then U = U and Ry = R.

Proof. 1- RT o R=C) T o FT o FoU ' =U Lo ColU! = U lo(UoU)oU~t =T identity in I@Z)
Thus (R.Ei, RE])Q = (RT.R.Ei, E])G = (E',“ EJ)G = 6ij for all i,j: (RE;) is a (-, -)g—orthonormal basis.

2- U, being symmetric definite positive, call /5; its eigenvalues (all positive) and (d;) a (-,-)g-
orthonormal basis made of associated eigenvectors. We have C = (Ul .RY).(Ra.lh) = Uh.(RY.Ry).Usp =
U 1.U;, = U22, thus C’.d; = U22.d:v = &dj;, thus the (; are eigenvalues of C' and the J; are associated
eigenvectors. Thus, even if it means reordering (5;), f; = «; and d; € Ker(C — «;1), for all i, and
U.d; =03 /aid; = Up.d; for all i, thus Uh = U. Thus Ry = F.U; ' = FU~' = R.

I.2 F = S.Ry.U (shifted right polar decomposition)

We need to be more precise if the gift of ubiquity is prohibited: Because we work with the affine space R"”,
we can consider the Marsden’s shifter, with p, = ®(py,),

Ty () — Tp(S2)
§:=8Pwe) . S (L9)
(Pto+ Wro,pyy) = (Pt, W,p,) where Wy p, := Wy, p, -
Shorten (misleading) notation:
R — R
Si=SP(p,):{ ' . (1.10)
W —ad=SW=W.

NB: 1- S is not “the identity” unless you have time and space ubiquity gift, since w, p, is defined at %
at py, while @y, = Sy, p, is defined at ¢ at p;, and ¢ # f and p; # py, in general;

2- S is not a topological identity since it changes the norms in general: You consider ||y, 5, ||¢ in R,

and ||S-@, py, (Pl g = 1., llg in R
Notation: Let Ry € E(@g,ﬂi%) be the endomorphism defined by
Ro:=S1oR"™ g-1R s R=SR, (=SoRy). (L11)
(Full notations: (Ro)!%, (pu) := (S (9)) ™ (R, (94)) € £(Ty(%,); Ty (%)) Thus
F=S0RyoU written . (I1.12)
Proposition 1.4 If (-,-), = (-,-)¢ (same inner dot product in I@% and R?") then
sts=1, ie. S1t=5T. (1.13)
And the endomorphism Ry = S™1.R € E(I@Z); @g) is a change of (-,-)g-orthonormal basis:

RYRy=1, ie. Ry'=RL. (L.14)
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146 1.3. F =V.R (left polar decomposition)

Proof. (ST.S.0,W)¢ " 2.0, W), "= (T, W), = (T, W)¢ (here (-, )y = (-, )¢), for all U, W €
Ry, thus ST.8 = I, thus S~' = S7.

Thus I = 5.57 and Ry = ST.R, thus (RY.Ro.U,W)a = (Ro.U, Ry.W)g = (ST.R.U,ST.RW)g =
(S.ST.RU,RW), = (RU,RW), = (T, W)g, for all U,W € Ry, thus R}.Ry = I.

Interpretation of li : F'is composed of: The pure deformation U (endomorphism in I@g), the change

of orthonormal basis with Ry (endomorphism in ]@g), and the shift operator S : Tp, () — Tp,(€2) (from
past to present time and position).

I.3 F =V.R (left polar decomposition)

Same steps than for the right polar decomposition.
Let Qf’ (pr) = F{*(py,) o (F°)"(pe) € L(RY;RY) (the Finger tensor), written b = F.F”. The endo-

morphism b being symmetric definite positive: 34, ..., 8, € R} (the eigenvalues) and 3z1,..., 2, € @;l
(associated eigenvectors) s.t.

Vi€ [1,n]ln, b7 = fiZ, and (Z)isa (:,-)g-orthonormal basis in R?. (I.15)
The left stretch tensor V € £(R?; R?) is the endomorphism defined by,

Vie [Lnln, V.5 =G5, and V"4 \@ (1.16)

(Full notation: ‘/tthGg (pt) = \/M) Then define the linear map Ry € L(I@g,@?) by

R, :=V~LF, (L.17)

, called the left polar decomposition of F'. (1.18)

Proposition I.5 1- b = V.V =n0ted 2 'V is symmetric definite positive, Rzl = RY. And the left polar
decomposition F = V.R, is unique.

2Ry =RandV = RUR™! (soU and V are similar), thus U and V have the same eigenvalues
(square root of those of C): «; = 3; and, with (I.1), Z; = R.C; is an associated eigenvector of b, for all i.

so that

Proof. 1- “Copy” the proof of prop. With F~land b ' = (F1)T.(F!) instead of F and C' = FT.F.

2- F = V.Ry = Re(R;"V.R;) with R;'.V.R, symmetric (since (R, '.V.R,)" = RI.VT.R;T =
R, '.V.R,) and definite positive (since (R, *.V.Ry.4i,7;)g = (R, ' V.Ro.%i, Ry T .5;) g = (V.Ro.Gis, R.Jj) g =
(V.Z;,Z;)y = B; where the §; := R, 'Z; make a basis). Thus F = R.U = R,.(R,'.V.R) gives R = Ry
(uniqueness of the right polar decomposition). Hence R.U = V.R (so V and U are similar), hence V and

U have the same eigenvalues and if ¢; is an eigenvector of U then R.¢; is an eigenvector of V: Indeed
V.(R.¢;) = R.U.¢; = R.(a,;¢;) = a;(R.¢;) for all i. n

J Linear elasticity: A Classical “tensorial” approach

J.1 Definition of elasticity

(See Ciarlet [B].) Motion @ : [t1,t2] X Obj — R™, Q; := ®(t, Obj) C R™ for all ¢ € [ty,ts], to € [t1, L],
associated motion ®% : (t,P) € [ti,tz] x Q, — ®O(t,P) € R", ®N(P) := dl(¢, P), Flo := ddl
(deformation gradient), and an imposed Euclidean dot product (-, -), ="°td o

Definition J.1 A material is elastic iff, at any ¢ € [t,t5] and p € €, the Cauchy stress vector T} (p) at t
and p only depends on the deformation gradient F{°(P) := d®(P) when p = ®(P) for any ty € [t1, to]
and P € Q. Le. there exists a mapping T : Qy, x M, — R" (constitutive equation) s.t.

Ty(p) = T(P,F*(P)) when p=o0(P). (3.1)
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147 J.2. Classical approach (“isometric objectivity”), and an issue

J.2 Classical approach (“isometric objectivity”), and an issue

Recall: With F(P) := F°(P) € L(R}; R}), the transposed F(P)T =noted pT(p) =noted pT" ¢ £(Rp; R? )
relative to (-,-), is defined by (F7T .0, ﬁ)g = (W, F.(j)g for all (U, @) € @g x R?. And the infinitesimal
strain “tensor” (which is not a tensor but a matrix) is defined relative to a (-, -)4-Euclidean basis (€;) (the
same at all time) by
[F)z+ [FIL F 7
slhet Ve — I, written &= +

2 = 2
And then the homogeneous isotropic elasticity constitutive law reads with A, p the Lamé coefficients and
g the Cauchy stress “tensor”

e = - I (J.2)

o = ATr(e)] + 2ue = (ATr(F)—(A+2p)) I + (F + FT), (1.3)
matrix equation which stands for

o = NTx(e)] + 2ulelje = (NTX([Flje)~(A240) T + ul[Flje + [F]T). (1.4)

|
(Recall: [ is not an endomorphism, so Tr(F') is meaningless: It is Tr([F]jz) which is meant in (J.3)).

Remark J.2 We can also first start with the matrix expression o, = = ATr(F) + p(F — 2I) where we

—=init
see the expected dependence on F' = d® (meaning: o, = = ATr([F]é +u([F]je—21I); Then in a Galilean

it -
. . . . o +ao.
Euclidean framework the stress “tensor” is symmetric, and we write o = Sinit_=init t0 get 1} un

Remark J.3 Issue (recall): Adding F and F” (and I) to make 2¢ (in (J.2)) is a mathematical nonsense

since they don’t have the same domain or codomain: F': ]@ZJ — I@? while FT' : @? — I@Z) (and T is some

identity operator so codomain = domain). Thus ¢ can’t be a function: It is the matrix in (J.3) (obtained
T

with some Euclidean basis). So Tr(g) := Tr([g]je) = Tr([F]'a)-;Tr([F he) _ = Tr([F]jz) — n (trace of a

matrix). Idem

o.i = ATr(g)il + 2pe.i means o[z = ATr([e]je) (7] je + 2ulg]je-[7])e (J.5)

with 7 the (-,-),-normal unit out of €; (not out of €,...). So, despite the eventual claims, neither ¢ nor
g are tensors (they don’t have any functional meaning). n

Remark J.4 You may read: “For small displacements the Eulerian variable p = p; and the Lagrangian
variable P = py, can be confused™ p; ~ py, (so 4, and € are “almost equal”). Which means that you
use the zero-th order Taylor expansions p; = @?to (t) = py, +0(1). But you cannot then use the first order

Taylor expansion (in time) in following calculations (you cannot use velocities)... oa

J.3 A functional formulation (“isometric objectivity”)
Can the constitutive law (J.3) be modified into a functional expression? Yes:
1. Consider the “right polar decomposition” F' = R.U where U € E(@Z),ﬁ%), cf. . The Green

Lagrange tensor E = % (endomorphism in @g) then reads, with ,
U1, U—1I)?+2U — I,
B 2to:( o) +2 U~ Iy) (7.6)

Then, with U — I, = O(h) (small deformation approximation), we get the modified infinitesimal strain
tensor at py, € (U,

E=U-1I, |€ LRY;RY), (J.7)

endomorphism in ]fé% (Full notation E?Gg (py) = Uf?Gg (pi,)—1I1, (p1,)-) Thus, for all W € R? |

gif =UW-W=R'w-W ‘ € R?, when &= F.W (push-forward). (J.8)

Interpretation: From & = F.W = R.U.W € R? (the deformed by the motion), first remove the “shifted
rotation” to get R~1.40 = UW € RY, then remove the initial W to obtain R —W = eW e RE.
In particular \|§W||G = ||(U~1I,,).W||¢ measures the relative elongation undergone by W.
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148 J.3. A functional formulation (“isometric objectivity”)

2. Then you get a constitutive law with the stress “tensor” S(®) ="oted 53 ¢ E(]@g;]@g) functionally
well defined:

S = ATv() Iy, + 208 | = ATr(U—I) ) Iy + 2u(U—~1Iy,). (J.9)

(The trace Tr(g) is well defined since ¢ is an endomorphism.) And, at p;, € €y, for any W e Rz,

SW = ATE@W + 2UEW = ATe(U—I, )W + 2u(UW-W) €R}. (J.10)

3. Then “rotate and shift” with R to get into R? at pq,

REW = ATt(E)RW + 2uREW = NTv(U~1I;,)RW + 2uR.(U~1I,,).W
= MTx(U—1,))RW + 2u(F — R).W, (J.11)
= ANTr(U—I;, ) RW + 2u(i — R.W), where o =F.W = RUW.

You have defined the two point “tensor” (functionally well defined)

RY = \Tr(§)R +2uRE € L(R};RY). (J.12)

4. You get the constitutive law for the stress “tensor” (well defined symmetric endomorphism) in I@?:

G(@®) =) |G=RoSoR "Y' RI R € LR)RY). (3.13)

So, for any W € Uy, B .
g =RYI.R " €R}. (J.14)

Interpretation of (J.13)-(J.14): Shift and rigid rotate backward by applying R~!, apply the elastic
stress law with ¥ which corresponds to a rotation free motion, then shift and rigid rotate forward by
applying R.

Detailed expression for (J.13)-(J.14): With Tr(R.Z.R™") = Tr(g) (see exercise , we get, at (¢,p:),

G = ATv(@) I, + 2uRER™ = ANTv(U~1I,) I, + 2uR.(U~1I;,). R~

(J.15)
= \Tr(U—~Iy) I; + 2u(F.R™*—1I;).
And for any @ € @?, and with @ = R.W, you get
G5 = ATr(8) @ + 2uREW = NTx(U—~1I;y) @ + 2uR.(U~1;y).W (J.16)
= MNTx(U—1,) @ + 2u(R.U.R™ b—1d). '
To compare with the classical “functionally meaningless” (J.5]).
Remark J.5 Doing so, you avoid the use of the Piola—Kirchhoff tensors. .

Exercice J.6 Prove: Tr(R.g.R_l) = Tr(g) = > ,(y—1). (NB: £ is an endomorphism in @% while

REZ.R™!is an endomorphism in R" )
(R

for all Euclidean bases (E;) and (&) in H_(g’tg and RP. (With L = Z and components, Tr(R.L.R™')
S (RLR Y= = ik RILL(R™Y)k = ij(Ril.R);?Li = ok = >, Ly =Tr(L).)

Answer. detz(RER™ — M) = detje(R.(E-Ay).R™") = det 5 .(R). det, 5(E—AI).det  z(R™") = det 5(E-AI)
-

Exercice J.7 Elongation in R? along the first axis : origin O, same Euclidean basis (El, Eg) and Eu-

clidean dot product at all time, & > 0, t > &, L,H > 0, P € [0, L] W =y ) and
0
[O@?(P ]lE—: — (XO +£§f_t0)X0> — (XO(}fj‘f'l)) = (':Z) = [O—;)ME_" where k = f(t—to) > 0 for t > 1.
0 0

1- Give F, C, U = /C and R = F.U L. Relation with the classical expression ?

2- Spring oD = O—ctg(s) = XoE, +YoEy+sW, ie. [@}IE = [O—Ctg]‘ﬁ = ()égijﬂv/[{;l

and W = W1 E, + WyE,. Give the deformed spring, i.e. give p = ¢,(s) = (¢, (s)), and &', and the
stretch ratio.

> with s € [0, L]
|E
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149 J.4. Second functional formulation: With the Finger tensor

k+1 0
0 1
2
then [C] = [FT].[F] = [F)? = ((H_El) (1)), thus [U] = [F] = <H_gl (1)>, thus [R] = [I]. All the matrices are
given relative to the basis (E;), thus F,C, U, R (e.g., C.E1 = (k+1)2E; and C.Ez = Es).
Since R = I and [¢] = [g], (J.15) gives the usual result [o] = ATr([g])] + 2ug], cf (J.3)) (matrix meaning).

—
2- Ocy(s) = 0D (cyy (5)) = (XO+SW1)(H+1)) , thus c'(s) = (WI(H—H)) , stretch ration WGt )? 4 Wi
|E |E

Answer. 1- [F] = [d®] = ( , same Euclidean dot product and basis at all time, thus [FT] = [F]T = [F],

Yo+sWo Wo WE+W3
at (t,pt). I.l
- o
Exercice J.8 Simple shear in R? : [O@?(P)]‘E = <X+£§f to)Y) —noted (X—;HY> = (;j) =

[O_1>)]| 5+ Same questions, and moreover give the eigenvalues of C.

Answer. 1- [F] = ((1) T): C] = (/1£ ?)(é T) = (}1‘i 52’11>~ Eigenvalues: det(C — AI) = A\* —

(2+x%)A+ 1. Discriminant A = (2+x%)® — 4 = k*(k*+4). Eigenvalues at+ = 1(2+x” £ kv/k2+4). (We check that
o+ > 0.) Eigenvectors ¥+ (main directions of deformations) given by (1—ax)z+ky =0, ie., y = L(k+Vr>+4)z,

L 2 L . i . .
thus, e.g., U+ = (li:l: M) (We check that ¥4 L ¥_.) With P the transition matrix from (E1, E2) to
(Hgﬁ,%) and D = diag(ay,a-) we get C = P.D.P™' (with P~!' = P7T since here (Hgﬁ,%) is an

orthonormal basis), thus U = P.v/D.P~! (we check that UT = U and U? = C). And R = F.U ™.
—
2- Oci(s) = 0D (cyy(s)) = <(X0+5W1) +r(YotsW2) ), thus [&/(s)] = (Wl + kW ) Stretch ratio

Yo+sWa Wa
(W1 +rW2)2 4+ W2 at

W12+W22 (t7pt). I.l

J.4 Second functional formulation: With the Finger tensor

The above approach uses the push-forward, i.e. uses F' (you arrive with your memory). You may prefer
to use the pull-back, i.e. use F'~! (you remember the past which is Cauchy’s point of view): Then you
use F~! = R~1. V! the right polar decomposition of F~!, and you consider the “tensor”

§=V'-I €L®HRY), (J.17)
and ~ _ ~ _
o, =ATr(E ) +2ug,, and g .70 = ATr(g,) fiy + 20, .71, (J.18)
(Quantities functionally well defined).
K Displacement
K.1 The displacement vector U
In R™, let p; = ®°(p;,). Then the bi-point vector
U (i) = F (1) — iy (P1y) = Pt — Pty = Do (K.1)

is called the displacement vector at p;, relative to #, and ¢. This defines the map

- Qto — ]R_)n
Uk o t (K.2)
Py — UL (D) =Pt — Piy = Dbt When  py = @ (py,).
Thus we have defined
o T x Qp — R» . to, T] — Rn
U { fo, T} x N e and U { fo. 7] e o (K.3)
(t,pe) = U (L, pe) == U (D), t = Uy (1) :=U (1)

Remark K.1 1/ (p, ) doesn’t define a vector field (it is not tensorial), because U (py, ) = pt — py, = P}

is a bi-point vector which is neither in ]I_ég nor in R} since py, € Oy, and p; € Q; (it requires time and
space ubiquity gift). In particular, it makes no sense on a non-plane surface (manifold). More at § [K.5] i
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150 K.2. The differential of the displacement vector

Remark K.2 For elastic solids in R"™, the function U is often considered to be the unknown; But the
“real” unknown is the motion ®®. And it is sometimes confused with the extension of a 1-D spring. But
see figure [|We, (py, )|| represents the initial length and ||Wy,« (¢, pt)|| represents the current length of
the spring, and the difference ||Why« (¢, pe)|| — || Wy, (P4, )] can be very small (< 1) while the length of the

displacement vector |[L|| = p; — py, can be very long (> 1). n

K.2 The differential of the displacement vector
The differential of U/ at py, is (matrix meaning)
AU (py,) = AP (py) — Ity = F{*(p1y) — Ly, written dld = F — 1, (K.4)

which means [d (p;,)] = [d®¥ (py, )] — [I;,] relative to some basis. It doesn’t defined a function, because
Flo (pg,) : Hig — R? while I, : Hig — Hig Idem, with W € Rg, matrix meaning

-,

dUW = FW —W : means [dUP (py,)].[W] = [F{ (py,)].[W] — [W]. (K.5)

K.3 Deformation “tensor” ¢ (matrix), bis
gives (matrix meaning)
Flo(py) = Iy + dU (py,), written F = I + dU. (K.6)
Therefore, Cauchy—Green deformation tensor C = FT.F reads, in short, (matrix meaning)
C=I+dd+dd" +dd” .did (matrix meaning), (K.7)

ie. [CF (pi)] = [T + (AU (piy)] + (AU (p1, )]+ [ (pi, )| [ (pyy)]-
Thus the Green—Lagrange deformation tensor E = %, cf. 1) reads, in short, (matrix meaning)

AU +dd” 1

E 5 + §dL7Tdﬁ (matrix meaning). (K.8)

Thus the deformation tensor g, cf. (G.57), reads (matrix meaning)

e=FE— Z(d)".dl, (K.9)

N —

with ¢ the “linear part” of £ (small displacements: we only used the first order derivative dd).

K.4 Small displacement hypothesis, bis

(Usual introduction.) Let py = ®%(py,), i = 1,2, W; € R_Z, @i(p) = F(py,).Wi(py,) € R (the push-
forwards), written @; = F.W;. Then define (matrix meaning)

Ap =0 —W; =dU.W;, and ||A]|s = max(||Aq]|gn, ||As][gn). (K.10)
Then the small displacement hypothesis reads (matrix meaning):
140 = o(||[W]|o0)- (K.11)
Thus @; = W; + A; (with A; “small”) and the hypothesis (-, )¢ = (-,-)¢ (same inner dot product at %
and t) give
(w1, W2)c — (W1, Wa)a = (A1, W2)g + (A2, Wi)g + (A1, A2)g.
So 1) gives 2(E.W1,W2)G = Q(Q.Wl, WQ)G + (dﬁT.M.Wl,WQ)G, And 1D gives
(BEW1,Wa)g = (W1, Wa)a + O(1A|[%), (K.12)

matrix meaning).

. . . T yi 7T
so Bl is approximated by €%, that is, B ~ gh = e
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151 K.5. Displacement vector with differential geometry

K.5 Displacement vector with differential geometry
K.5.1 The shifter

We give the steps, see Marsden—Hughes [14].
e Affine case R" (continuum mechanics). Recall : With p = ®(P), the shifter is:

Spo (K.13)

~ {Q% x K} — Q x R?
(P,Zp) = SP(P,Zp) = (p, SP(Zp)) with SP(Zp) = Zp.

(The vector is unchanged but the time and the application point have changed: A real observer has no

ubiquity gift). So:

SP e L(RY;RY) and [S{°];z = I identity matrix, (K.14)

the matrix equality being possible after the choice of a unique basis at # and at ¢. And (simplified
notation) S (P, Zp) ="°%d S} (Zp). Then the deformation tensor ¢ at P can be defined by
(S©) " (F (P).Z(P)) + F (P)T.(S2 (P).Z(P))

eh(P).Z(P) = 5 — Z(P), (K.15)

= 0)-1(p 7 07 o
in short: .7 = (5:) 1(F‘Z)2+FT‘(St 2) _ 7).

e In a manifold:  is a manifold (like a surface in R® from which we cannot take off). Let TpY,
be the tangent space & P (the fiber at P), and T, be the tangent space a p (the fiber at p). In
general TpQy, # T, (e.g. on the sphere “the Earth”). The bundle (the union of fibers) at t, is TQ;, =
UPEQHJ ({P} x TpSl,), and the bundle at ¢ is T = (J,cq, ({p} X Tp€2:). Then the shifter

—~ TQtO —>TQt
Sl : (K.16)

P, Zp) — SP(P,Zp) = (p, S (Zp)),

where S (Zp) is defined such that it distorts Zp “as little as possible” along geodesics.

E.g., on a sphere along a path which is a geodesic, if 6, is the angle between Zp and the tangent
vector to the geodesic at P, then 6, is also the angle between S;O(Zp) and the tangent vector to the
geodesic at p, and S (Zp) has the same length than Zp (at constant speed in a car you think the geodesic
is a straight line, although S¥(Zp) # Zp: the Earth is not flat).

K.5.2 The displacement vector
(Affine space framework, €, open set in R™.) Let P € €, Wp € R, p = ®P(P) € Oy, and ddP =
Flo € L(R};Ry). Define

— [ QxR — Q, x L(RY;RY)

U (K.17)

(P,Zp) — 60U (P, Zp) = (p,0U!*(Zp)) with &UP(Zp) = (Fi° — SP).Zp.

Then 6l = Fl> — S* . P € Q,, — 0UP(P) = F*(P) — S(P) € L‘(@ZJ,@?) is a two-point tensor. And

Ol = (FYT Flo = (U + )T (Ul + S

K.18
=T+ (SP)T.ouf + (suf)T .Sk + (suf)T .suf (K.18)

since (S©)T.8% = I identity in T€,: Indeed, ((5°)7.S° A, B)gn = (S%.A4,5% B)gn = (A, B)gn,
cf. 1) for all A, B. Then the Green—-Lagrange tensor is defined on €, by

(ST sufe 4 Spe.(sufe)™
2

1 1
Ep = 5(CP — 1) = + 5 (OU) T oU, (K.19)

to compare with (G.50).
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L. Determinants

L.1 Alternating multilinear form

Let E be a vector space, and let £(E, ..., E;R) =noted L(E™ R) be the set of multilinear forms, i.e.
m € L(E™;R) iff
Mmooy, T+ MY, o) = m(e, T, ) + A, 7, ) (L.1)

for all Z,y € E, all A € R, and any “slot”.

E.g., m(MT1, ..., \n@) = (leln Ai) m(Zy, ..., Zp), for all A1,.., A\, € Rand all Z4,...,%, € E.

In particular a 1-alternating multilinear function is a linear form, also called a 1-form. And the set of
1-forms is Q!(E) = E*. Suppose n > 2.

E" - R

Definition L.1 A/ : . R . .
(V1 0oy Un) — ATy, ..., Un)

} € L(E™;R) is a n-alternating multilinear form iff,

for all w,v € E,
Aty .., U,.) = =AU, T, ., T, L), (L.2)

the other elements being unchanged. The set of n-alternating multilinear forms is
O"(E)={A € L(E™;R) : A is alternating}. (L.3)

If A, Bl € Q"(E) and A € R then A + ABl € Q"(E) thanks to the linearity for each variable. Thus
QO™ (F) is a vector space, sub-space of L(E™;R).

L.2 Leibniz formula

Particular case dim E=n. Let A € Q"(E) (a n-alternating multilinear form). Recall (see e.g. Cartan [5]):

1- A permutation o : [1,n]y — [1,n]y is a bijective map (i.e. one-to-one and onto); Let S,, be the set
of permutations of [1, n]y.

2- A transposition 7 : [1,n]y — [1,n]y is a permutation that exchanges two elements, that is, 3i, j s.t.
T(eoyby ooy Jy o) = (eeey Jy veus &y ... ), the other elements being unchanged.

3- A permutation is a composition of transpositions (theorem left as an exercise, see Cartan). And a
permutation is even iff the number of transpositions is even, and a permutation is odd iff the number of
transpositions is odd. The parity (even or odd character) of a permutation is an invariant.

4- The signature (o) = 1 of a permutation ¢ is +1 if ¢ is even, and is —1 if ¢ is odd.

Proposition L.2 (Leibniz formula) Let A € Q"(E). Let (€;)i=1..
all vectors Uy, ..., U, € E, with 0 = Y " v%€; for all j,

—noted (&) be a basis in E. For

.n

ATy, ..., Up) =c¢ Z (o) H v;(j) =c Z e(r) Hvi(i) (with ¢ := Al(EY, ..., €x)). (L.4)

ocesS, Jj=1 TESH =1
Thus if ¢ = Al(éY, ..., Ey,) is known, then Al is known. Thus
dim(Q"(E)) = 1. (L.5)

(Classic not.: T = 31 0i;€, A(T1, .., Tn) = €Y ges. €(0) [T Vo(i)i = ¢ X res, €(T) TTiy vir(i)-)

1, — |1,
Proof. Let F := F([1,n]y; [1,n]y) ="0ted [1,n][§’nh\’ be the set of functions ¢ : { L, mhy L, ml }

k —ip = ’L(k?)
Al being multilinear, A/(vy,...,7,) = Z?lzl vl AU}, , T, ..., Tp) (“the first column” development). By
recurrence we get A(7y, ..., U) = Z;.Llwanzl v{l...v%nAﬁ(gjl, €)= D ier Il vi(k)Aé(éj(l), ey €j(n))-
And A(é;,,...,€;,) #0iff i : k € {1,...,n} = i(k) =ir € {1,...,n} is one-to-one (thus bijective). Thus
AT, ) = Xpes, Ty 07V A (1) oo Brn) = Spes, €(0) Ty v D A(EL, ..., €,), which is the
first equality in . Then ), (o) 13 07 = Yoes, (@) T 079 since o is bijectif, thus

i=1"i i=1 Yo=1(3)
Yoes, €@ ITiy o7 = Yres, e(T7 ) Iz, v (4, thus the second equality in 1} since e(7) 7! = (7).
(See Cartan [5].) ua
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153 L.3. Determinant of vectors

L.3 Determinant of vectors

Definition L.3 (€;);=1,...» being a basis in F, the determinant relative to (€;) is the alternating multi-
linear form det|z € Q"(E) defined by
det(éy,...,€,) = 1. (L.6)

And the determinant relative to (€;) of n vectors j is , with o; = Y ' | v%¢; for all j, and with prop.
(here ¢ = 1),

det(dy, .., Tn) = Y elo H => e [[vie (L.7)
e c€s, =1 TESn i=1
In particular,
Q" (E) = Vect{dl‘qt} (the 1-D vector space spanned by det)z). (L.8)
And any A € Q"(E) reads

A= A(éy, ..., E,) dlgt (L.9)

And if (b;) is another basis then
det = cdet where ¢ = det(€y,...,€y,). (L.10)

B |b
Exercice L.4 Change of measuring unit: If (a;) is a basis and Ej = Aa; for all j, prove

Vi=1,..,n, bj=ii; — dlqt = A\"det (L.11)
a |b

(gives the relation between volumes relative to a change of measuring unit in the Euclidean case).

Answer. d‘gt(gl, by = d‘gt(/\d’l, ceey Ap) lm"m /\"d| et(d ) N N dgt(l_;h o bn). on
a a inear a 3

Proposition L.5 det|s(71,...,0,) # 0 iff (01,...,0y,) is a basis; Or equivalently, det|z(v1,...,0,) = 0 iff

V1, ..., Uy are linearly dependent.

Proof. If Z?:lcﬂ')} = 0 and one of the ¢; # 0 and then a v; is a linear combination of the others thus
det|z(1, ..., Un) = 0 (since det s is alternate); Thus det|z(71, ..., U,) # 0 = the ¥; are independent. And if
the ¥; are independent then (7, ..., ) is a basis, thus det|z(?1, ..., %) = 1 # 0, with det|z = cdet,s, thus
det|g(171, ceey Un) 7’5 0. .

Exercice L.6 In R?. Let ¢ = Y-, vi& and @ = 23:1 v}€; (duality notations). Prove:

det (T, Up) = viv: — vivi. (L.12)

|

Answer. Development relative to the first column: det|z(7h,72) = det|z(viél + viéa, o) = vi det)z(€1,v2) +
’U% det|g(€2, 172) Then det‘g(ﬁl, 172) =0+ U%’U% det(é&, 62) + ’U%U% det(é’g, 51) +0= ’U%’U% — U%’U%. =n

Exercice L.7 In R?, with 7; = Z? L V3€;, prove:

det (v, Vs, U3) = Z Eijpvivivl, (L.13)
i,5,k=1
where e;;, = (j—i)(k—j)(k—1i), Le. g5, = 1if (i,4,k) = (1,2,3), (3,1,2) or (2,3,1) (even signature),
e = —11f (4,5,k) = (3,2,1), (1,3,2) and (2,1,3) (odd signature), and ¢;;; = 0 otherwise.

Answer. Development relative to the first then second then third column (as in exercise |L.6)).

Result = viv3vd + viviv? + viv?vd — vivivd — viviel — viviud. =n
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154 L.4. Determinant of a matrix

L.4 Determinant of a matrix

matrices). Let ¥; € My and call M;; its components: ¥; = Z?:lMijEi. So [171]@ = M-[El]|§- And
[ﬁl]lﬁ —noted 7 hecause the canonical basis will be systematically used in M.
So M = (1717 7’[777,) = (M'Ela aMEn) = [M’Lj]

Definition L.8 The determinant of the matrix M = (¥4, ..., ¥, ) = [M;;] is

det(M) := det(v1, ..., 0,) (= det (M.El, s Mﬁn) = det([M;;])). (L.14)
\B \E
Proposition L.9 e det(]) = 1.
o If M, N € M,,, then det(M.N) = (det M)(det N).
o If M € M,,, then det(M7T) = det(M).

Proof. e det(I) := detlé(ﬁl, By =1.

e Define a,b : E® — R by a(th,..,0,) := det‘E(M.ﬁl, vy MT,) and b(04,...,T,) =
detlE(M.N.ﬁl, ...y M.N.7%,)). They are alternated forms (since the matrix product is linear) in Q! (E). Thus
b= Xa for a A € R since dim(Q"(E)) = 1. Thus det(M.N) = b(En, ..., Eyn) = Aa(En, ..., Eyp) = Adet(M),
and in particular det(N) = det(I.N) = Adet(I) = .

o det[My] = det (71, ... 7) B2 57 (@) [[o7® = 3 e(r) [[ vl o) = det M)
& o€Sn i=1 r€S, =1
Exercice L.10 Let g(-,-) be an inner dot product, (€;) be a basis, g;; = g(€;, €;). Prove det([g;;]) > 0.
Answer. [g]z is symmetric def. > 0, [g]|z = PT.D.P, det([g]|z) = det(P)? []7_,(\:) > 0. un
L.5 Volume

Definition L.11 Let (€;) be a Euclidean basis. Consider a parallelepiped in R™ which sides are given by
the vectors ¥y, ..., Un; Its algebraic volume and its volume relative to (€;) are

algebraic volume = dlgt(ﬁl, vy Un)y,  and  volume = |d‘gt(171, e T) |- (L.15)
If n =2 then volume is also called an area. If n = 1 then volume is also called a length.

Notation. Let (€;) be a Cartesian basis and (e*) = (dz?) be the dual basis. Then, cf. Cartan [6],

no;ed 61 n

(ilqt X ..x e =dxt x ... x da". (L.16)

And, for integration, the volume element (non negative) uses a Euclidean basis (€;) and is
A7) = | det | = \dz! x ... x dz"| "2 gzl dam. (L.17)
€

And the volume of a regular domain 2 is

0<|9| ::/dQ:/ dzt...dz". (L.18)
Q e

(cf. Riemann approach: any regular volume ) can be approximated with cubes as small as wished.)

[al,bl] X ... X [an,bn} — Q

Exercice L.12 Let U : . .
T=(q1yyqn) = ZT= (21 =", ..., zn = V,,(q))

} be a parametric

description of a domain . Prove
dF) = | Jo (D] dg'..dg", and |Q] = [|J@(®|dq1...dq”, (L.19)
q

where Jy () = det|g[d¥(q)]je = det[g—g(@} = det|g(ph, ...pn) is the Jacobian matrix of ¥ at ¢ — the
: ow
o, (D)

volume at & = ¥(q) relative to &;) limited by the tangent vectors p;(Z) =
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155 L.6. Determinant of an endomorphism

Answer. Polar coordinates for illustration purpose (immediate generalization): Consider the disk Q parametrized
i . 10, R] x [0,27] — R® .

with the polar coordinate system W : . . ) where a Euclidean ba-

= (p,0) - Z=(x=pcosh,y=psinh)

—

sis (€1, &) is used in R? (so & = pcosfer + psinfeéz). The associated polar basis at & = ¥(7) is (71(F) =

oo cos 6 P —psinf S or o g
50,0, (2) = 500, s0 @ = (Song ) ond (@l = (750 ). s detyi @), @) = o
(> 0 here), thus d2 = |p| dpdf = pdpdf. Thus the volume is [Q| = [._,dQ = pr:O f;;'o pdpdf = TR>. on

Exercice L.13 What is the “volume element” on a regular surface ¥ in R?, called the “surface element™?

X [CLQ, bg} — RS

(a1, bo]
Answer. Let U :
(u,v) = Z=Y(u,v) =z1(u,v)eé1 + ... + z3(u, v)es

} be a regular parametrization

of the geometric surface ¥ = Im(¥), where (&), ¢&s,&3) is a Euclidean basis in R®. Thus #;(Z) = gi’ (u,v) and
(%) = %Y (u,v) are the tangent vectors at ¥ at & = ¥(u,v). Hence a normal unit vector is (%) = %,
thus det z(t1, t2,7) = ||£1(&) x{2(Z)|| is the area of the parallelogram which sides are given by 1 and > (volume with
height 1). Thus the surface element at & = W(u, v) is d5(%) = |[£1(Z) x £2(Z)|| dudv = ||ZE (u,v) x T (u,v)|| dudv.

— b b | ]
Thus [¥| = [ dX(@) = [2, [.2,. | 2L (u,v) x 2L (u,v)|| dudv. u

L.6 Determinant of an endomorphism
L.6.1 Definition and basic properties
Definition L.14 The determinant of an endomorphism L € L(FE; E) relative to a basis (€;) in F is

det(L) := det(L.2, ..., L.&,) "% AH(L.21, o, L2). (L-20)

2 e
the last notation if the context is not ambiguous. This define (i\e/t|g :L(E;E) — R

Proposition L.15 Let L € L(E; E).
1- If L = I the identity, then det|s(I) = 1, for all basis (;).
2- For all vy, ...,v, € E,
det(L.04, ..., L.U,) = det(L) det(, ..., Up)- (L.21)

3- If ng = Z;;lLijgi: then ~
det(L) = det([L]) (= det((Ly;) (L.22)

4- For all M € L(E; E), and with M o L ="°td N[ [, (thanks to linearity),

det(M.L) = &lé:t(M) &lgt(L) = ci%}(L.M). (L.23)

|

5 L is invertible iff detjs(L) # 0.
6- If L is invertible then 1
det(L™Y) = ———. (L.24)
E deto(L)

7-If (-,-)4 is an inner dot product in E and L is the (-,-), transposed of L (i.e., (LW, ), = (&, L.@),
for all i, w € E) then
d‘gt(LZ) = dlgt(L). (L.25)

8- If (¢;) and (b;) are two (-,-),-orthonormal bases in R, then det); = £ defjz.

Proof. 1- &(?t‘g(l) Y detz(I. 81,.. Leé,)= det‘ #(€1, ..., €n) = 1, true for all basis.
2- Let m: (U1, ...,0n) = m(01,...,Ty) = det|e(L U1y eery LU, ) It is a multilinear alternated form, since
é,

L is linear; Thus m:- m(éy, ... en) det‘e, Wlth m(€y,...,8,) = (ia/t‘g(L), thus 1l
3- Apply (L.14) with M = [L]‘e to get (L

4- det|o((M.L).€1, ..., (M.L).€,) = det|g(M.(L.é’1), oy ML(L.2,)) =C2D det (M) detjo(L.E1, ..., L.r).
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156 L.7. Determinant of a linear map

5- If L is invertible, then 1 = det|¢(I) = det|s(L.L ") = detjo(L) det (L"), thus det|s(L) # 0.

If det e(L) # 0 then det|g(L.€1, ..., L.€,) # 0, thus (L.€1, ..., L.€,) is a basis, thus L is invertible.
lg |e-

6- (L.23) gives 1 = det 5(T) = detj(L~".L) = detz(L). det (L"), thus .
7- Lz = ([L]12)" [g]je gives det([g])z) det([Ly ] 12) = det(([L]lé)T)det glje)s

8- Let P be the change of basis endomorphism from (€;) to (b;), and P = [P]z (the transition
matrix from (€;) to (b;)). Both basis being (-,+)g-orthonormal, PT.P = I, thus det(P)? = 1, thus
det(P) = £1 = detg(P). And detig(bi, ..., by) = detje(P.c1,..., P.&,) = det|o(P)det|o(@1, ..., &) =
&gt|g(79) det‘g(l_ﬁ, cers gn , thus detlé‘ = CIEtw(P) det“; = :Edet‘g. =n

Definition L.16 Two (-, -)s-orthonormal bases (€;) and (b;) have the same orientation iff det j = + det)z.

Exercice L.17 Prove (i\e/tw()\L) =\" (ie/tw(L).

Answer. &lgt(AL) = d‘qt(/\L.é'l, oy AL.E,) = A" dlqt(L.é’l, ooy L&) = A" det(L). s

|€

L.6.2 The determinant of an endomorphism is objective

—

Proposition L.18 Let (@;) and (b;) be bases in E. The determinant of an endomorphism L € L(E; E)
is objective (observer independent, here basis independent):

(det([L)ja) =) det(L) = det(L) (= det([L] ;). (L.26)

NB: But the determinant of n vectors is not objective, cf. (compare the change of basis formula
for vectors [ﬁ]‘g = P~1.[w] |3 with the change of basis formula for endomorphisms [L]IE = P~ 1[L]jz.P).

Proof. Let P be the transition matrix from (a@;) to (b;). Hence [L]|5 = P7'[L];3.P and 1}1)
give det([L]‘g) = det(P~ 1) det([L] ) det(P) = det([L]z)- .

Exercice L.19 Let (d;) and (b;) be bases in E, and define P € L(E; E) by P.@; = b; for all j (the
change of basis endomorphism). Prove

- -

N — . detm
det(b,...,b,) = det(P), thus det =det(P)det, ie. det=———,
a |a |a |a 5 6 detz(P)

|@

(L.27)

Answer. det((,..5) = det(P.dy, ..., P-itn) 22 dot(P) det (@, ..., @n) = det(P) = det(P) det(Br, ..., bn), thus

la la
det‘a = (igtm('P) detlg. un
L.7 Determinant of a linear map
(Needed for the deformation gradient F/°(P) = d®®(P) : H@;} - R7)

Let A and B be vector spaces, dim A = dim B = n, and (&) and (b;) be bases in A and B.

L.7.1 Definition and first properties
Definition L.20 The determinant of a linear map L € £(A; B) relative to the bases (@;) and (b;) is

det(L) := det(L.dy, ..., L.dy). (L.28)
|a,b b

(And ci\e/tla (L) =noted qet(L) if the bases are implicit.)

Thus, with L.d; = 37—, Lijbi, i.e. [L] ;5 = [Lij], and with (L.14):

det(1) = det([Li). (L29)
a,b
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157 L.7. Determinant of a linear map

Proposition L.21 Let iy, ...,u, € A. Then

det(L.ty, ..., L.i,) = det(L) det (i, ..., iy). (L.30)
|b

Proof. m: (4, ...,u,) € A™ — m(ﬁl, ey Uy 1= det“;(L.fZl7 .., L.,) € R is a multilinear alternated form
since L is linear; And m(dy, ... = detyz(L.d, ..., L.dn) =323 &gtla 7(L) = det| (L) det|g(ar, ..., d@y).
Thus m = det| L) detg, cf. , thus 1 3 un

Corollary L.22 Let A, B, C be vector spaces such that dim A = dim B = dim C = n. Let (@;), (b;), (¢}
be bases in A,B,C. Let L : A— B and M : B — C be linear. Then, with M o L ="°*¢d M [ (thanks
to linearity),

det(M.L) = det(L) det(M). (L.31)

ac |@,b 6,¢

Proof. (I{e’g(M.L) = dlqt(M.L.ch), oy M.L.@,)) = det(M) det(L.@y, ..., L.@,) = det(M) det(L).
a,c c |b,¢ |b [b,¢ la,b

L.7.2 Jacobian of a motion, and dilatation

F = Ft0 (p,b) = dOP (py,) : ]R; — R? is the deformation gradient at p, € Qto relative to # and t,
cf. . Let (E;) be a Euchdean basis in ]R” and (ez) be a Buclidean basis in R? for all ¢ > f,. Let Fi;
be the components of F relative to these bases, so F.E; = .7 F;;é& for all j and [FhE == [Fij].

Definition L.23 The “volume dilatation rate” at py, relative to the Euclidean bases (E;) and (¢;) is

J5.(®0) (0, —det( ) (= (il(ét(F.El,...,F.En):det([Fij])), (L.32)

|E \B.e

often written J 5 . := det([FhEg) (or simply J = det(F) when everything is implicit).

So, at ty at py,, (El, ey En) is a unit parallelepiped which volume is 1 (relative to the unit of measure-
ment chosen in Hig), and, at t at p; = @2 (py,), J|E,g(¢)?)(p&1) = det|g(F.E1, ..., F.E,)) is the volume of the
parallelepiped (py, F.E1, ..., F.E,) at p, = ® (p1,) (relative to the unit of measurement chosen in I@?)
Interpretation: With t5 > t1 > to, and [€;) is the b351s at t1 and to:

e Dilatation if J, 5 (P )( 6) > €(<I>§° )(py,) (volume increase),

e contraction if J, 5 @0 () < JE (@) (p,) (volume decrease), and

e incompressibility if J|E AP0 (py,) = J\g 76(@2)(1%) for all ¢ (volume conservation).

In particular, if (&;) = ( l) then Jjgz(® 2)(])1‘0) =1, and if ¢ > #, then

e Dilatation if Jjz(®{)(ps,) > 1 (volume increase),

e contraction if Jiz (@) (py,) < 1 (volume decrease), and

e incompressibility if J|g,€(<1>§°)(pfo) =1 for all ¢ (volume conservation).

Exercice L.24 Let (E;) be a Euclidean basis in I@g, and let (@;) and (b;) be two Euclidean bases in R
for the same Euclidean dot product (-,-)4. Prove:

J15.2(®F (P)) = £J 5 5(2¢ (P)). (L.33)

Answer. P being the transition matrix from (@) to (b;), det(P) = +1 here. And l} gives [F] 5 - = P.[F] 55,
thus det([F] z ;) = + det([F], 5 5), thus detjz(F.E\, ..., F.E,) = £ det z(F.E\, ..., F.Ey). s

157



158 L.8. Dilatation rate

L.7.3 Determinant of the transposed

Let (A,(,-)y) and (B, (-,-)s) be finite dimensional Hilbert spaces. Let L € L(A;B) (a linear map).
Recall: The transposed Lgh € L(B; A) is defined by, for all @ € A and all & € B, cf. 1}

(Liy a6, i)g := (W, L.i0)p. (L.34)
Let (@;) be a basis in A and (b;) be a basis in B. Then

(L.35)

Indeed, gives [, )glia- (Ll .z = (L ap) (¢ )nl g

L.8 Dilatation rate

A unique Euclidean basis (€;) at all time is chosen, and (-, )4 is the associated inner dot product.

L.8.1 252 (t,py,) = JO(t,py,) divii(t, pi)

The Eulerian velocity is 9(t,p;) = %—%(t,PObj) at py = &)(t,PObj). The Lagrangian velocity is V(t,pto) =
%(t,ptﬂ) at p, = ®(t, Ry;) (so with py = ®%(t,py,)). The deformation gradient along the motion of a
particle is F(t,py ) := d®P (t,py,) = F;?O (t). The Jacobian “along the motion of a particle” is

Ty (£) := Ot py) = T (py) = dlgt(FJ‘) (P1)), (L.36)
Lemma L.25 agt (t,py,) satisfies, with p; = ®2 (py,),
aJt f -
W(@Pm) = JO(t, py,) divi(t, py) (L.37)

(value to be considered at t at p;). In particular, d is incompressible iff divi(t,p;) = 0.

Proof. Let O be a origin in R™. Let OB — S biE, Vo = S Vie, ¢ = Y1 viE, FhE; =

% By = Y7 9% Let [F°) 5 . :nztefj F, Jb " noted Jand [dO7] 5 = (22, .. 220) =noted g
d
(row matrix). Thus J = det F' = det * |, thus (a determinant is multilinear)
don
o(de?) 49!
ot :
oJ :
5= det d? + ...+ det don—1
: A(dd™)
da" T
o(dd’ 0P
With $ C, thus = ) (1, pi) S harte g 92 5 )(6p) = dV' (6. py) = dv'(t,p).F (£, py,), of. (8.27). Thus
o(d?) 8U1. Ao’ @dq)l do!
o, = o det i oz, vt do? vt
det de = det dP2 25 det do = —_det -
: . alternating : Ox! : Oxt
don Jan don der
Idem for the other terms, thus
aJ ovt ov" .
ot —(t,py) = Eysy (t,p) J(t,pyy) + ... + a?(t,pt) J(t,py,) = divo(t, pe) J(t, 1),
ie. (C37).

Definition L.26 divi(t,p;) is the dilatation rate.
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159 L.9. 8JJ)0F = JF~T

L.8.2 Leibniz formula

Proposition L.27 (Leibniz formula) Under regularity assumptions (e.g. hypotheses of the Lebesgue
theorem to be able to differentiate under [) we have

d _ Df ¢ ios
dt(/ptem f(t7pt)th) = /pteﬂt(Dt + fdivd) (¢, pe) A

_ / (%{erf.m £ i (D)) (t, pr) A (L.38)
PrE€Q

= [ G avm)ep o
P+ EQ:

Proof. Let
Z(t) ::/ ft,p)dQy = / ft, % (t, P)) J(t, P)dQy,.
pEQ: Pefy,

(The Jacobian is positive for a regular motion.) Then (derivation under [)

D aJt
Z/(t) = / ﬁ{(t’pt) Jto(t,P)—f—f(t,pt)W(t,P) de
PleO
Df . .
= (E(t7pt) + f(tapt) le’U(t,pt))J (t7p) thov
PeQy,
thanks to (L.37). And div(f?) = df.v + f div? gives (L.38). ua

Corollary L.28 With (i, @), ="°*°? i« (in the given Euclidean framework),

d 0
G [ sepgane= [ Sapgincs [ (e ar, (1.39)

sum of the temporal variation within €); and the flux through the surface 0€;.

Proof. Apply (L.38)s. un

L.9 0J/0F = JF-T

L.9.1 Meaning of %?
Let My, = {M = [M;;] € R"’} be the set of n % n matrices, and consider the function

Mpn — R

Z = det: { M = [My] — Z(M) := det(M) = det([M;]). (L.40)

Question: What does dad—Z”(M) mean?
of

Answer: It is the “standard meaning” of a directional derivative 5 (¥) = df(¥).€;... where here
f = Z, thus & ="°%d A is a matrix (a vector in M,,,), and (&) is the canonical basis (m;;) in M.,
(all the elements of the matrix m;; vanish but the element at intersection of line ¢ and column j which
equals 1). So:

4 _ . Z(M 4+ hmg;) — Z(M)
o, (M) :=dZ(M).m;; = ilzli% W (e R). (L.41)
L.9.2 Calculation of g]\df
Proposition L.29
.. 07 _ . 0Z _
Vi, 4, M(M) =Z(M)(M~T);;, written oaf =~ 4 M T (L.42)
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160 L.9. 8JJ)0F = JF~T

Proof. aBTZ?(M) = Timy, o 2HOHRmi) At - e development of the determinant det(M + hm;)
relative to the column j gives
det(M + himy;]) = det(M) + hc;; (L.43)

where ¢;; is the (¢, j)-th cofactor of M; Thus BQTZ](M) = limy,_,0 w = ¢;;; And since

M1 = W[Q;’]T, ie. [c;j] = det(M)M~T, we get %(M) =det(M)(M~T);;, i.e. 1} oa

L.9.3 0J/OF = JF~T usually written [8‘3,—{]] =JF T

Setting of § With F := d®(p,,) we have F.Ej =" Fi;é; where F;; = %(pto), and

LR?;RY) - R

a0 F oo J(F) = det(Fy)) (= det([ 9t ()] = dit(dp, ).
j |E,&
so, J(F) = J(®) is the Jacobian of ® at py, relative to (E;) and (&;). Thus gives:
Corollary L.30 R
Vi, j, ;F{_j(F) = J(F)([F)™T)i;, written g% =JF T (L.45)
L.9.4 Interpretation of %{j?
The first derivations into play are along the directions Ej at t because Fj; = g%’_ = d@i.ﬁj, when

b= Zi (I)ié;, SO FE_:j = szgz

Question: What does % mean ? That is, derivative of J in which direction ?

Answer: 1- “Identify” F € E(@%,@?) with the tensor F € E(@?*,@g;R) given by F(¢,0) = (.(F.U);
SO, if FEJ = Z?:lFijgi then ﬁ = Z
dual basis of (E;) basis in R} .

;l,j:1Fij €; ® Tgj, where €; is a basis in R} and (7g;) is the covariant

LR™,RY;R) — R
F = Jac(F) := J(F) = det(F)

Ee

2- Define the function Jac :

3- Then it is meaningful to differentiate Jac along the direction €; ® 7g; € E(@?*, I@;, R) to get

- I+ he: A Ia
dJac (F) = lim Jac(F + hé; @ mgj) — Jac(F) noted oJ
C{)Fij h—0 h 8FZ

(F). (L.46)

dJac (T _ 1 Jac(F+h&QE”)—Jac(F)
oF; (F) = limp—0 - J)

Question: This is a derivation in both directions €; in ]l_éf (present at p;) and 7g; in Rﬁ{‘) (past at py,
and dual basis vector); So, what does this derivative mean?
Answer: ?

(Duality notation:

M Transport of volumes and areas

Here R” = R3 the usual affine space, t5,t € R, ® := <I>£0 R x Q) — § is a regular motion, and
Fp =d®(P). Weneed a (-, )4 be a Euclidean dot product in R, the same at all time. And (E;) and (&)
are (-,-)g-Euclidean bases in ]1@?0 and R7.
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161 M.1. Transport of volumes

M.1 Transport of volumes
M.1.1 Transformed parallelepiped

The Jacobian of ® at P relative to the chosen Euclidean bases is

—

Jp = J(P) :=det(F°(P)) (= det(F/°(P).Ei,..., F{°(P).E,))), (M.1)

|E,e 3

cf. (D The motion being regular, Jp > 0. And if ((jlp,...,[jnp) is a parallelepiped at #y at P, if
Uy = Fp.U;p, then (t1p, ..., Unp) is a parallelepiped at ¢ at p = ®(P) which algebraic volume is

dlqt(ﬁ'lp, s lnp) = Jp det(Uip, ..., Upp). (M.2)
e |E

M.1.2 Transformed volumes

Riemann integrals and (M.2) give the change of variable formula: For any regular function f: Q; — R,

/ f(p) Ay = / F(@(P)) | J(P)| d (M.3)
pEQ: PeQy,
Here Jp > 0 (regular motion), hence
/ f(p) 2 = / F(@(P)) J(P) d, . (M.4)
peE, PEQy,

In particular, [Q| = [

peEQ, th == fPleﬂ J(P) thO

M.2 Transformed surface
M.2.1 Transformed parallelogram and its area

Consider vectors ﬁlP, Usp € @g at tp at P, and, ® being a diffeomorphism, the two independent vectors
Uy = Fp.Ulp and s, = Fp.(_jgp at t at p = ®(P). The areas of the associated quadrilaterals are
||Up x ﬁngg and ||ty X Uap)l|g, and the unit normal vectors to the quadrilaterals are (up to the sign)

NP = 7_[{113 X _qu , and 7, = 731]9 X 32‘” . (M.5)
[|Uip x Uspllg |[t@1p X t2pllg
Proposition M.1
ﬁlp X ﬁgp = Jp FI;T(ﬁlp X ﬁgp), in short ﬁl X 17:2 = JFiT.(Ual X ﬁg), (M6)
and T T ~F
F;*.N - F~*.N
ity = fTif (# Fp.Np in general), in short 1= —————. (M.7)
|Fp" -Npllg IF~T.Nl|g
Proof. Let Wp € R_t;j), and o, = Fp.Wp. The volume of the parallelepiped (@1, Uap, Wy) is
(i X oy, Wp)g = det(iry, tzp, p) = Jp (}%t(ﬁlp, Usp, Wp) = Jp (Uip x Usp, Wp),
=Jp (ﬁlP X ﬁ2P7FEI~wp)g =Jp (F;T-(ﬁw X ﬁ?)awp)ga
. GipXiay _ Jp Fp T .(UipxUap) u
for all @, thus (M.6), thus e, = JpHF;PT.(ﬁLPXﬁzp)IIg (here Jp > 0), thus (M.7). e
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162 M.2. Transformed surface

M.2.2 Deformation of a surface
A parametrized surface ¥y, in €2, and the associated geometric surface S;, are defined by

2, - {[a,b] x([c,d] — Oy

d S, =Im(¥ Q. M.8
U, v) —>P:\Ilt0(u,v)} an fo m(Wy,) C g ( )

Consider the basis (E; = (1,0), E; = (0,1)) in the space R x R D [a,b] X [¢,d] = {(u,v)} of parameters,
and suppose that Uy, is regular. Thus the tangent vectors at P = Uy, (u,v) € Sy, given by

~ noted a\Ifto

Tip = dWy, (u,v).E "= a—(u,v),
8\1? (M.9)
Top = dWy, (u,v).Ey nofed It (u,v),
Ov
are independent: fl p X fg pF 0.
Call ¥; := ®P o Uy = ® o ¥, and S; the transformed parametric and geometric surfaces:
[a,b] x [e,d] —
\Ijt =do \Ijto : and St = (I)(Stg) (M].O)
{ (u,0) = p=Vi(u,0) = B(Vy (u,0)) (= 2(P))
The tangent vectors at S; at p = ®(P) at t:
-~ OV ov - -
t p = d\I/t(u, U).El = a—t(u,v) = dq)? (P)a—to(u,v), i.e. tlp = Fp.Tlp,
5 éj 5 \; (M.11)
op 1= A, (u,v).Ey = a—vt(u,v) = APl (P).a—vt”(u,v), ie. o= Fp.Top,

are independent since <I>§0 is a diffeomorphism and ¥, is regular.

M.2.3 Euclidean dot product and unit normal vectors

Relative to (-,-)q, the scalar area elements dXp at P at Sy, relative to ¥, , and do, at p at S; relative
to WU,, are

ov ov ~ ~
aSp = 1|52 (w0) x S8 w0l dudv (= |[Tip x Toplly dudv),
v
(M.12)
(9\I/t oV, - -
dop == ||—— 50 (u,v) x Do (u,v)||gdudv (= |[t1p X tap||g dudv).
And the areas of S;, and S, are
ov ov
Sul= [ ame= [ [ 120 x Dy
PecSy, u=a Jv=c ov
° ow ow (M.13)
\54:/ dap:/ / 122 01, 0) x 22 1, 0) | s s
PpES u=a Jv=c ou ov
And the unit normal vectors Np at S, at P at ty and 71, at Sy at p at ¢ are (up to the sign)
o o = =
Vp = g (u,0) X =52 (u, v) _ _TipxTop
OV, v, T T
||a\p ( ) Xa‘pav (u,v)Hg _|’| 1P_‘X 2PH9 (M14)
_ u (W, 0) X Git(u,v)  t1p Xty
p = =— = .
15t (1, v) % Tt (u, 0) g [It1p % tapllg
And the vectorial area elements d¥, p at P at Sy and dd), at p at S; are
- - v v - -
dSp := NpdSp = a—to(u,v) X a—t‘)(u,v) dudv (=Tip x Top dudv)
ou Ov
ov (M.15)
¢

W(U’U) X %(u,v) dudv (=t x ta, dudv).

(And the flux through a surface is [, f+7ido =2%d [ f.d3.)

dop = fip dop, =
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163 M.2. Transformed surface

M.2.4 Relations between area elements

flp X f;p =Jp F;T.(flp X fgp), cf. 1D gives

8\Ijt 8\Ift -7 8\I/t0 8\11150
=t =t = Jp F;T (= —f . M.1
8“ (U,U) X av (u,’U) JP P ( 8” (u,v) X av (u? U)) ( 6)
And
iido, =|dg, = Jp F5T.d%p |= Jp F T .NpdSp, and do,=Jp||F5T.Np|l,dEp. (M.17)
(Check with (M.7).)

M.2.5 Piola identity...

Reminder: The divergence (in continuum mechanics) of a 3 % 3 matrix function M = [M;] is: divM :=

n M oMl | oMl | oM}

. -~ 1 2 3
> i1 Sﬁi X1 + ox? + X’

n : _ | am2? | amZ | oM : i o
P (= axt + ax% + oxt ), cf. (T.66)). Its matrix of cofactors Cof(M) is given by
g M) oMy 4 oMy | oMy

j=1 dXJ X X X

7+1 +2 7+1 +2 1
Cof(M); = M; [y M;T5 — M7, M;77, and (det M)M~1 = Cof(M)T.

Application: det([F(P)]lE’e) ([F(P)]|E,€) = Cof ([F'(P )]lE’eﬁ)), Written in short det(F(P)) F(P)~T =
Cof (F(P)) (matrix meaning); So, in Qy,

JF~T = Cof(F) (matrix meaning). (M.18)

Proposition M.2 (Piola identity)

div(JF"T) =0, ie Vi, VP, ZaCOf )=0 or (P) = 0. (M.19)

Also sometimes ambiguously written ZJ 1aXJ (JaX )=0o0r Y _ 5% (Jac(aXi )) = 0...

i+l git? Tl §eit?

i+1 i4-2 i+1 pi+2 2]
Proof. Cof(F ) ngleiZ FinF]il = ST 5T — 5T HaFr. Lhus
3cof(F)§ B 2L it? dpitl  §2yit2 - it dpit? - Dpitl  §2pit?
0XJ  0XIOXi+l9Xit+2  9Xi+l 9Xi9Xit+2  9XIi0Xi+29Xitl  9Xi+2 9XigXit+l'
And summation: The terms cancel out two by two. .

M.2.6 ... and Piola transformation

Goal: for a @ : Qy — R?, find Upiopa : 4, — @t’é s.t., for all w; = ®P (w;,) (With wy, open subset in ),

/ Upiola » N dX = / i« ido, (M.20)
Owy, Owy
i.e.
/ divUpiora dQ, = / divi dS, (M.21)
Wig Wt
i.e., with (M.4), for all P € Q,,
divUpiola(P) = J(P) divii(®(P)). (M.22)

Proposition M.3 With p = ®(P),
Upioa(P) = J(P)F(P)~".i(p), (M.23)

ie., Upiola := J ®* (i), i.e. = J times the pull-back of @ by ®. Hence

/ i(p)do = / (J(P)F(P)~ .@(®(P))) « N(P)dx. (M.24)
pEBw, P€0wy,
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164 M.2. Transformed surface

Proof. d(i o ®)(P) = di(p).F(P), thus

div((JF1).(70 ) (P) B2 divp(JF~1)(P).A(@% (P)) + J(P)F(P)~" 0 (dii(p).F(P))
— div(JF-T)(P) - i(p) + J(P)(F(P).F(P)~") @ di(p)
0+ J(P)I, 0 dii(p) = J(P)divii(p)

thus Upiela(P) := J(P)F(P)~L.i(p) satisfies (M.22). (Check with components if you prefer.) n

Definition M.4 The Piola transform is the map (between vector fields in ©; and ,)

T, —TQ
{ ' o (M.25)

@ — Upiolas  Upiola(P) := J(P)F(P) " .ii(p) when p=®°(P).
N Conservation of mass

Let p(t,p) = p:(p) be the (Eulerian) mass density at ¢ at p € €, supposed to be > 0; The mass m(w;) of
a subset w; C Qy is

m(wy) = /e pt(p) dw. (N.1)

Conservation of mass principle (no loss nor production of particles): For all wy, C Q4 and all ¢,

mi) = miw). e [ p)da= [ py(P)dey. (N.2)
PEW PEwtO
Proposition N.1 If then, with J(P) = det(d® (P)) (positive Jacobian the motion being sup-
posed regular) and p = ®°(P),
Pt (P)
pt(p) = : (N.3)
J{(P)

Proof. The change of variable formula gives

/ pu(p) duor = / pu(DL(P)) T (P) duo,
pEwWL PEwtO
thus (N.2) gives p(®7 (P))Ji"(P) = pi, (P).

Proposition N.2 ¥ = ¥(t,p;) being the Eulerian velocity at (t,p;) € R x Qy, gives

Dp op

ot pdivi =0, ie. n +div(p?) =0. (N.4)
Thus, for all w; C €y,
0
/ —pdwt = —/ pv.il doy. (N.5)
we 8t 8wt
Proof. (N.2) gives & ([, ey, Pt 0(t )) ¢) = 0, and Leibniz formula 1} applied for all w; gives (N.4).
Then the Green formula [, div(p®)dQ = [, pv.ido, gives v

Exercice N.3 Use (N.3) to prove (N.4).

Answer. J(t, P)p(t, ®(t, P)) = py (P) give, with p, = ®(¢, P),

0J
ot

Thus %7 (t, P) = J(t, P) divi(t,p), cf. (L.37), gives (N.4). un

9T 1 P) plt.pr) + J(t, P) (3

00 (1,00 + dp(t, ).02(0,P) ) = 0.
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165 O.1. Definitions

O Work and power

0.1 Definitions
0.1.1 Work along a trajectory

Let a be a differential form (unmissable in thermodynamics, e.g. @« = dU the internal energy density,
a = 0W the elementary work, a = §@ the elementary heat...).
And consider a regular curve c: t € [ty,T] — c(t) € R™ and let ¢(¢,c(t)) := &' (¢t).

Definition O.1 The work of the differential form « along the curve c is

T ted T
/ o / ot (). (t) dt "2 / o.dé
¢ t=to t=to

T T
/t alt, e(t).d(t, ())dtnOted/t a.ddt.

=t =t
Eg., W;P (a,c) = f 0W = work along c of the differential form o = §W.
E.g. (work of a Lie derivative): [ Lgo = ftito Lza.vdt = ft (57 + dad + a.di).v dt.

Remark 0.2 : If o is a stationary and exact differential form, i.e. 3U € C* s.t. a(t, p) = dU(p), then

/ dU = U(e(T)) — Ulelto)) "2 A, (0.2)
because [ dU = ft 1o AU (c(1)) ft o d(gtoc t)dt = [Uodi =U(c(T)) — U(c(t)); Le. the work
is independent of the traJectory Jomlng c(to) and ¢(T ) wa

.)g _noted

Representation with an Euclidean dot product (-, .s, - the linear forms a4 (p) € R™* can

be represented with its (-, -)4-Riesz representation vector fi(p) € R™ (observer dependent), hence

(/ca:) /t;a.daz/t;f.gda (= /;f-gﬁdt). (0.3)

In particular if f: gradggo (i.e. if @ = dy, and fis said to derive from a potential ¢) then j;ito de.vdt =
ftito f-g ¥dt = Ay is independent of the trajectory joining c(ty) and ¢(T').

0.1.2 Work

Consider an object Obj, a motion ® : (t, Rwy) € [to,T) x Obj — p(t) = 5(&]30@-) = 5%@ (t) € R", the
trajectories CH)M:EI;]&H it € [to,T] = p(t) = 5%@ (t) € R", the Eulerian velocities 4(t,p(t)) = cp,’(t).

Definition 0.3 The work of « along ® is the sum of the works of o along all the trajectories: With
P = O(to, Royy), e = O(t, Ryj) = P, () = <I>g;0 (t) and Q; = (¢, Oj), it is

T
WE@) = > /~ o= / (/ alt,®p (1).0(t, @5 (1)) dt) dQy,, (0.4)
Ry€0tj 7 Py P €~ 1=lo
written = f%eﬂm (ftT:tO a.ddt)dy, (with 37, .o for a finite number of particles instead of fptﬂeﬂtﬂ)‘

0.1.3 The associated power density

Definition: The power density of a differential form « relative to a Eulerian velocity field ¢ is the Eulerian

function
C= |J ({t}x) -R
V= .7 te(to,T] (0.5)
(t,p) — (¢, p) = alt,p).u(t, p).
And the power at ¢t is, with ¢ (p) := ¥(¢, p),
Pui) = [ wu(p)dQ = / ae(p)- 5, (p) dQ "2 / 0.5 0. (0.6)
pEQ: pEQ: Q
E g with a differential form Lgza (a Lie derivative of a differential form): P.(}) fQ Lzoa.0dQ =
fQ %+ dol + a.dw). v dQ = fQ 2 (t,p) + doy (p). Wi (p) + e (p)-diby(p)).Ti (p) dSL.
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166 0.2. Piola—Kirchhoff tensors

Particular case: If o; is an exact differential form, i.e. AU; s.t. oy = dUy, then

Pt(gt) = / dUt.’l_)'t dQ) = — Ut diV'[Tt dQ+/ Ut {J}'ﬁt df). (07)
Q¢ Q I8

With a Euclidean dot product (-,-), and with the (-, -),-Riesz representation vector ﬁ of oy we get

A / F(p) - 5u(p) d2, (0.8)
PEQ,
and if f; = gradU, then Pu(th) = — fQ Uy divy dQ + [ Uy @y « 71y d2.

0.2 Piola—Kirchhoff tensors

0.2.1 Classical presentation

At all time, a unique Euclidean basis (€;) and associated Euclidean dot product .« . are imposed.
Usual (first order) hypothesis for the internal stress in a material: The power density is of the type

Y=g :dv (subjective quantity), (0.9)
which means:
If [g]|e = [04;] and ¥ = ;vlel then ¢ = ”zzl ij 8 _. (0.10)
So the power at t is
Pi) = [ wpdi= [ o) du) i (0.11)
peEQ, peQ,

0.2.2 Objective internal power for the stress

Recall: If ¥ is a (regular) Eulerian velocity field, then du;(p) is an endomorphism at each ¢ and p.
First order hypothesis for the internal stress in a material: There exists an endomorphism 7 s.t. the
power density is given by

Y =1 @ dv (objective quantity = Tr(z.dv)), (0.12)
And the power at t is
P) = [ 1,0) 0 dii(p)d. (013
PEQ:
Quantification with a basis (€;) at t: With [z]jz = [r;] and [d0]jz = [vy;], i.e. .€; = Y 7i;€,

_, n - N n -
U= yvi€i and dU.€j = )17 vy);€;,

Y= Tyvy and Py(d) = Y / 7ij(P)vj1i(p) €% (objective quantity). (0.14)
ij=1 i,j=17PEh
(Duality notations : [1]z = [7} gy 1, [dv] e :[ ] and ¢ = Z” 17§ \1)
(Cartesian basis: v;|; = 2%‘_ = Ufj = %-)

With chosen Euclidean dot product (-,-), and (-,-),-Euclidean basis (&;): ¢ := [7]L gives
g 9 2= I8

V=g [di)e = Z 7ijvi;-) (0.15)

1,j=1

0.2.3 The first Piola—Kirchhoff tensor

The Piola—Kirchhoff approach consists in transforming Eulerian quantities into Lagrangian quantities
to refer to the initial configuration, with the help of a Euclidean dot product. # and ¢ are fixed,
Plo =noted ¢ gplo — plo —noted p o _noted 1/ (T yorangian velocity). Recall: Vi°(P) = @,(®P(P))
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167 0.2. Piola—Kirchhoff tensors

gives dV,0(P) = dt,(p).F(P) when p = ®%(t, P), written dV (P) = d#(p).F(P). Thus (0.13) gives (the
Jacobian Jf(P) ="oted j(P) being positive for a regular motion)

Py = [z @) 6 (aVPLEP)) TP,

(0.16)
_ / (J(P)F(P)"".2,(&(P))) @ dV(P)de, (objective).
PeQy, B
Quantification: Choose a basis and a Euclidean dot product (-,-), to get
Py(;) = / (J(P)z,(p)" . F(P)™T): dV (P)dSy, (subjective). (0.17)
PeQy, —

K (P)

Definition 0.4 Relative to %, and ¢t and a Euclidean dot product, and with £t<p)T —noted a,(p), the
first Piola—Kirchhoff tensor at P €  is the linear map B(?jg (P) =noted e (P) € ﬁ(ﬂi%; R?) defined by

K (P)=J(P)g,(®(P)).F(P)~", written |K =Jo.F"| (0.18)
So
Pu(t) = | HK(P):dV,(P)dS,. (0.19)
Qe

Remark 0.5 Looking at (0.16), we can also define I°(P) = JfO(P)FZ'O(P)’l.;t((I)?(P)) (ob-

jective) which can be called “the objective Piola—Kirchhoff tensor”. And we have P (7;) =

Jo, TI(P) 0 dVo(P) dSY, (objective); And then introduce a Euclidean dot product to use the trans-
to

posed to define A (P) = II°(P)T (subjective). v

0.2.4 The second Piola—Kirchhoff tensor

K (py,) is not symmetric: It can’t be since H(py) € 5(@%,@?) is not an endomorphism. To get a
symmetric tensor, the second Piola—Kirchhoff tensor is defined:

Definition O.6 The second Piola—Kirchhoff tensor is the endomorphism K (P) € E(@%,ﬁ%) defined
by, in short,
K=F'K=JF"'oF " (0.20)

In particular, if ¢ (p) € LR R is (-, -)g-symmetric then I (P) € L(@Z); I@Z)) is symmetric.
Thus, with the pull-back of the endomorphism dv; € E(I@?, I@?),
(®"dvy)(P) = F(P)_1~d17t(Pt)-F(P)7 (0.21)

and with d,(p;) = dV (P).F(P)~! and o, (p) symmetric (so K is symmetric),

P = | H(;dvdmﬁ:/ﬂ (F.SK):dVthO:/Q (FLIK)) : [dV]T d,
t tg to
R (0.22)
T T
— [ @it ryao, - [ s & 'dV;dV a0,
Q4 Q4

Remark 0.7 It is a “chosen time derivative” of 3 (t) = J(¢)F(t)~*.a(t).F(t)~" that leads to some kind
of Lie derivative as explain in books in continuum mechanics, see footnote page ]
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168 0.3. Classical hyper-elasticity and the notation OW/OF

0.3 Classical hyper-elasticity and the notation 0W/J0F
0.3.1 Notation OW/OF
A and B are finite dimensional spaces, dim A = n, dim B = m, and W e ol (L(A4; B);R), so

e {E(A; B) —»R } _ {L(A; B) — L(L(A; B);R) }
W — , and dW: ey (0.23)
L — W(L) L — dW(L)

gy ineari /W L hM — ﬁ/\ L
is given by W (L)(M)"™ 2 I (L).M = tim WL = WIL)
IlOtdthn h—0 h
when L is the name of the variable:

for all M € L(A;B). Notation

— oW — oW
AW (L) "2 (), so dW(L).M "% T (L). (0.24)

OL oL
Example 0.8 A= B =R" and W(L) := Tr(L) (the trace of an endomorphism L € £(R";R")). Here
dTr(L)(M) = limp 0 w = Tr(M) since the trace is linear: %TL’ (L) :=dTr(L) = Tr. oa

Example 0.9 A = R}, B = R, [ = F = d®(p,,). Then dW(F).M ="°ted 2 (p) A ¢ R is the
derivative of W at F € E(@’tg; R?) in a direction M € £(I§Z}; R). n

0.3.2 Expression with bases (quantification) and the notation OW/0L;;

Let (@;) € A" and (b;) € B™ be bases in A and B, and let (m4;) € (A*)™ be the dual basis of (@;). Then
consider the basis (£;;) =t —noted (. ®mq;) in L(A; B) (made of the linear maps £;; : A — B defined

by L;j.G¢ = jzl_);' for all i = 1,..,mand 5,/ =1,...,n).
The derivation of W at a L € £(A; B) in the direction of a basis vector £;; is, cf. (T.14),

oW o noted oW . W(L + hLii;) — W(L)
(L)=——(L)=dW(L).L;; = L =1 2
e, (1) = (1) = dW(L)., " T 1) (= Jim : ) (02)
notation used when the L;; are the components of L, i.e. L =370 >0 Li;jLq; (e L.d; = S Lijh;
for all j, i.e. [L]\ag = [L;;])- So, the Jacobian matrix of W at L relative to (L;;) is
. oW tod -
AV (D)), = Lop (D] S ()] 5 = [T (L)) (0.26)
P =
So, dW( L) being linear, if M =3, M;;L;; then (linearity)
— — — oW
dW(L).M = ZMU AW (L).Lij = [M] ;5 [dW (L)) 5 = Z MijaTij(L) (0.27)
1] ()
(= [d/V[7(L)}|a P [M]m 7) with the double matrix contraction.
Duality notations: a := ma;, £;7 =20t b, @4 (because L(E; E) ~ L(E*, E;R)), [M]\a ;= [M%], ie.
M.d; =3, M b for all j, written M =3, M b; ®al; dW( ).L;7 =noted aaLVK (L), so [dW(L)]lgl@aj
oW
[aLij (L)}, and .
AW (L).M = 381‘;{/ (L)M?;. (0.28)

ij

NB: dW( ) € (C( R™);R) and M = L£(R";R™) are different kinds of mathematical objects,
hence [M ]‘ pild ( )] nothlng but a “term to term product” called “double matrix contraction”.

Example 0.10 Continuing example |0.8] - with (b;) = (Eil) Then W( ) = Tr(L) gives dW( L).M =
Te(M) = ), My, thus —( ) = 0;; for all 4, j, thus [dW( Nie =] = [88 (L)] (identity matrix), and

we recover dTr(L)(M) = [8‘92?; (L)) : M) =1[I]: [M] =" M,;; = Tr(M). -
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169 0.3. Classical hyper-elasticity and the notation OW/OF

Remark O.11 Continuing example The meaning of the derivation % = g;vi is intriguing:
v J

gg‘? (F) = dW(F).Eij = dW(F).(é} ® mgj) is a derivation “at the same time” in the directions €; (at

(t,p)) and 7, (dual basis of (E;) at (f, P)). Duality notation: gl?} (F) = dﬁ/\(F)(é; ® E7). oa

0.3.3 Motions and w-lemma

Generalization of (0.23)): With U; open subset in a affine space which associated vector space is A, let
— [UaxL(AB) =R
W .

(P,L) — W(P,L) } and Wp(L):=W(RL) (at any fixed P€ Qo). (0-29)

And let (usual notation) de(L) —noied BQW(R L) =noted %—?(P, L): So, for all M € L(A; B),

oW . W(P,L+hM)—W(P,L)
or (P L)-M = limy h

(= d(Wp)(L).M = 0,W (P, L).M). (0.30)

Then consider a motion ® := ®X : Q, — Q;, and F :=d®d: P € Q) — d®(P) € L(R%;@?); And define
CH Q%) = C° (25 R) — —
: e , so f(®)(P)=W(P,dP(P)) =Wp(d®(P)). (0.31)
O — f(P):=W(.,dP(.))

So f is a function of ® which only depends on its first (covariant) gradient F' = d®. (Toward: “The power
of a motion ® at P only depends on the deformation gradient”.)

10,0, 1o, -0)-C°%0, -
So df : {c (Ui ) = L(C (U3 )i € (%R)} and

& — df(®)
df (®) - {Cl(%;ﬂg :Z)(EI)Q)‘%‘I;IR) } with  (df(®).0)(P) = df (®(P)).U(P). (0.32)
Lemma 0.12 (w-lemma) If f and W are C* then, for all ®, ¥ € C1(Qy: QY),
df (®).0 = zV;V(.,d«b).dqf = 0, W (.,d®).d7T, (0.33)

i.e. (df(®).0)(P) = DX(P,dd(P)).dU(P) , for all P € Q.

Proof. df(®)(¥) = limy,_o LI ¢ 00(Q, ' Q;), ie., for any P € Q;, we have df(®)(¥)(P)
limy,_o LEHRDEVS@E) _ jypy, - We @)DV PN We @2E) _ g7, (dd(P)).dY(P), ie. (0.33) da

Quantification: With bases (E;) and (&) in ]@Z) and R? and d@.ﬁj = Z?:lg—)%éi, we get

1 oW OV, noted . OW OY, . noted (OW
df (). = Z: or, x5 g (a5 OV =" [GE] - 49, (0.34)
. . “OOW 0w OW., 0W . oW
Marsden duality notations: df (®).¥ = | = : [8XJ] = [6—F] : [dP].

42 OF; 0X7  1oF;

0.3.4 Application to classical hyper-elasticity: I = 0W/0F

(€;) = (E;) is Euclidean basis and (-, -)¢ is its associated Euclidean dot product, the sames at all times ¢.
Let o, (p) be the Cauchy stress tensor at ¢t at p = ®(P). Let IK = I (®) be the first Piola—Kirchhoff

tensor, i.e. B (®)(P) = det(dq)(P))gt(q)(P)).dé(P)_T, cf. ll
Definition 0.13 If there exists a function X such that (first order hypothesis)

IK(D)(P) = K (P,d®(P)) (0.35)

then IK is called a constitutive function (K only depends on d® = F' the first order derivative of ®).
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170 P.1. Introduction: Cauchy’s hypothesis

O x LRY;RY) — R

Definition O.14 The material is hyper-elastic iff W _ s.t.
(P,L) - W(PL)

(K (D) =) ﬁ((.,d@):a—w(.,dé), written H(:Z—V;, (0.36)

that is, 7K (P, F(P)) = BW 'L(P,F(P)) for all P € €y, where F = d®.

Quantification (Marsden notations): (ET) dual basis of (E;), F.E; = YI Fig, K.E; =

S IKYE, and [IK(., @) = [IKY(.,®)] = [g;mz (., F)]: For any (virtual) motion ¥ : Q) — Q,
J

., d®).dV = ZW . g;’; = [IK(.,F)]: [dY], (0.37)

which means, B (d®)(d¥)(P) = Y, g;ﬁ (P, Flo(P))

GXJ( ) for all P € Q.

Exercice 0.15 With C = FT.F = C(F), and with F =Y, Fi.¢; ® EX prove

gg F) = ZK Fie(EBy @ BX + By @ BY) (= dC(F).(6 & B)), (0.38)
and Ve 9
cC 1 —-10C .
SF = 5(\@ ) g e 2V/C.d(VC) = dC. (0.39)

Answer. Euclidean basis, thus (€; ® E‘])T —FE;® e/, and FT =>u FF E; ® €. Thus
C(F+hé&@E’) = (F+hé& @E)" (F+hé& @E’) = (F' + hE; ®¢€").(F + hé; @ E”)
=F ' F+h(E;®e)F+hFr.(&oE)+h (E;®e).(6 o E’) (0.40)
=C(F)+h()_ FkE;®E"+Y FiEx @ E))+h E; @ E.
K K

Thus (0.38). And dC(F) is linear, hence dC(F).L=3,,L;dC(F).¢; ® E’.

With f : & = Vf(Z) := /f(Z) we have f(g”hz") 1@ — (VF(Z+ hZ) + ﬂ(f))w, thus
b 0 g (520~ DT ST B, o @) - 2T ),
In particular, f = C and & = F give dC(F) = 2v/C(F).dv/C(F), thus . un

0.3.5 Corollary (hyper-elasticity): 9 = 0W/0C

For the second Piola—Kirchhoff tensor 9 = F~L1.HK: We get the existence of a function W
{Qta x L(RY;RE) — R

— s.t. (constitutive function), with C = FT.F,
(P,L) - W(P,L)

o0 =220 (0.41)

oC
See Marsden and Hughes [14] for details and the thermodynamical hypotheses required.

P Balance of momentum

P.1 Introduction: Cauchy’s hypothesis

See the introduction of [7]. Summary: formerly expansion-contraction normal forces and bending forces
were considered. Cauchy proposed reducing these forces to a single force (not generally perpendicular
to the surface on which it is applied) which can be deduced from tensions exerted on three orthogonal
planes.

So take 3 orthonormal planes 1,2,3 at one points, with unit normals 711, 7i, 7735 and three forces T1, fg, Ty
exerted on the planes, and the tension is obtained with a “tensor” g s.t. g.7; = T;—, 1=1,2,3.

Later Cauchy’s hypothesis was transformed into the master balance law (to satisfy newton’s principle
> f = m#) and its consequence called Cauchy’s theorem (which is in fact Cauchy’s hypothesis).

170



171 P.2. Framework

P.2 Framework

® : [fo, T] x Obj — R™ is a regular motion, Q; = ®(¢, Oj), Ty = 09 (the boundary), 7 is the Eulerian
velocity field, w; is a regular sub domain in Q; and Jdw; is its boundary.

An observer chooses a Euclidean basis (€;) (e.g. made with the foot or the metre) and call (-,-), the
associated Euclidean dot product. And 7i(¢, p) = 7i;(p) is the outer unit normal at ¢t at p € Ow;.

All the functions are assumed to be regular enough to validate the following calculations.

U ({t} x2) =R U ({t} x Q) — R»

Let p: ¢ t€to,T] (a mass density), let f: { t€lto,T] (a
(t,pe) — p(t, pe) (t.pe) — f(tpe)
U (#} x 0w xRE) —R»
body force density), and let T : { tefto,T] (a surface force density)

(t,pe.7i(pe)) — T(t,pe, 7 (pr))
defined for any regular subset w; C €.
P.3 Master balance law

Definition P.1 The balance of momentum is satisfied by p, f and T iff, for all regular open subset w;
in Qt,

%(/ pUd) = fdo, —|—/ T'dl; (master balance law). (P.1)
wi wi Owy

(It is in fact a linearity hypothesis, see theorem [P.2]) Equivalent to, with (L.38)),

D(pv)
Dt

+ podive dQy = [ fdQ. + / T dr. (P.2)
Wi Owy

wi
With the conservation of mass hypothesis, cf. (N.4)), we then have

D7 R .
/ pF: a0, = | fdo, + / Tdr,, (P.3)
wi Wt Owy

with %f = 4 = the Eulerian acceleration.

P.4 Cauchy theorem T = o.7i (stress tensor g)

Theorem P.2 (Cauchy first law: Cauchy stress tensor) If the master balance law is satis-
fied, then T' is linear in 7i, that is, there exists a Eulerian tensor g € TE (), called the Cauchy stress
tensor, s.t. on all Owy, in short

T =o.1, (P.4)

IS}

where 1 is the unit outward normal to dw; (i-e., f(t,pt) = a(t,ps).n(t,pt) for all t and p; € Ow;).

(Remark: This result is based on Cauchy’s hypothesis that a “tension” T on a surface depends on the
unit normal 7 to the surface, see [7], and thus [.Tdl’ = [, dive dQ. Hence the “tension” T is obtained
from a tensor g, i.e., with a basis, 3 functions 77,75, T3 are obtained from 9 functions o;.)

The proof is based on:

0 —>R _ O x R3 _
Lemma P.3 Let p:{ el @Ry andy: | L TR Lo ovg mr). 1r
p — ¢(p) (p, W) — ¥(p, )
Yw C Q, w open, / o(p)dQ = / ¥(p,7i(p))dr, (P.5)
PEW pEIw

(this hypothesis imposes that fw @ only depends on faw and on 11, and not on the curvature or on higher
derivatives on I") then ¢ is linear in 7 and is a divergence:

Ik € CY (4 R3) s.t. op = (k,ii)y, and o = divk. (P.6)

(Thus under the hypothesis the scalar function  is obtained from a vector function 12, i.e., with a
basis, ¢ is obtained from 3 functions ki, ko, k3.)
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Proof. (Lemma ) Standard proof: Let p € Q C R3. Consider the tetrahedral defined by its vertices
p, p+ (h1,0,0), p+ (0, h2,0) and p + (0,0, hg), with h; > 0 for all i. (On each face of a tetrahedron, the
unit normal vector is uniform.) Let X; the side which outer unit normal is fE_’}: It area is 01 = %hzhg
(square triangle). Idem for ¥ and ¥3. Let ¥ be the fourth side: its area is ¢ = 2+/h2hZ + h2h? + h?h3
and its outer unit normal is 7 = %(hzhgnhghl, hihs) (see exercise , that is @7 = (n1,n92,n3) with
n; = 2t pour i = 1,2,3. The volume of the tetrahedral is éhlhghg —noted g3 Tet M := SUp,cq lo(p)l;
We have M < oo, since ¢ is continuous in 2. Then give

MG >| [ (p,i(p)dl|, so ¥(p,ii(p)) dl = O(%). (P.7)

Owy Owy

And 1 being continuous, the mean value theorem applied on ¥; gives: There exists p; € ¥; s.t.

/ O, 7(p)) dT = b (ps, 7:)-

Thus

g Y(p,7i(p)) dl' = (011/1(171, —E)) + o0(t, pa2, —E) + o3(p3, —E3) + 01/)(174777))-

Then, ¥ being continous, (P.7) gives

o19(p1, —E1) + 029(p2, —Eb) + 033(p3, —E3) + ot(pa, @) = O(£3). (P.8)

We flatten the tetrahedron on the yz face by taking hy = hg ="°%d b and hy = h?; Thus o, = %hz,
oy = o(h?), 03 = o(h?), 0 ~ 09, {3 = %h‘*, with i ~ —71; = E; and p; ~ p; Then

Idem with zz and zy. And for a fixed tetrahedron with hq, ho, hg given, consider the smaller tetrahedron

with ehq,ehs,chs. Then as e — 0 with give

b)) = = Zb(p,~E) = Zo(p,~Ea) — Zulp Zniw

since n; = 2 pour i = 1,2,3. The same steps can be done for any (inclined) tetrahedron (or apply a
change of variable to get back to the above tetrahedron). Thus ¢, is a linear map in 7, that is, there
exists a linear form «,, s.t. ¥ (f,) = .7, for any p € Ow. And the Riesz representation theorem gives:

3k s.b. ap.iiy = (kp, p)g =" k) o if,.
Proof. (Theorem.) With ¢ = p%’z —f= S p'e;, apply Lemmato the ;, cf. . oa
Corollary P.4 With divg := 37, (377, %‘;’ )€; (definition of “the matrix divergence” see 4 0)),
f-i— divg = png in Qy, (P.10)
g = T on I,
(matrix meaning). (With duality notations, divg := Zf;l(Z? 1 ZZ )é-)

Proof. Apply the divergence Formula to (P.3]). un

Exercice P.5 Consider a triangle 7' in R3 which vertices are A = (h1,0,0), B = (0, ho,0), C = (0,0, h3).
Prove that 7 = (hahs, h3hi, hihso) is orthogonal to T and that o = 1/h2h2 + h2h2 + h2h3 is its area.

Answer. Consider the parametric surface 7(t,u) = A+ tAB 4+ uAC for t,u € [0, 1] describing the triangle. Thus

—h1 —h1 hahs
=2 x9 = AB x AC = ha X 0 = | hsh1 | is orthonormal. And do = ||Z} x 2||dudt =

ot ou
0 hs hiha
VV/h3h2 + h2h? + h?h3dudt. Thus o = ft 0 f do = \/h3h% + h3h} + h}h% is twice the aera of the triangle. o
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Q Balance of moment of momentum

Definition Q.1 The balance of moment of momentum is satisfied by p, j? and T iff for all regular
sub-open set wy C

dt

4 pmxﬁdﬂt:/ pmxfdﬂt—l-/ OM x T dry, (Q.1)
wi wi O

Wi

equality called the master balance of moment of momentum law. (This excludes e.g. Cosserat continua
materials.)

Theorem Q.2 (Cauchy second law.) If the master balance law (so T = g.it) and the master balance of
moment of momentum law are satisfied then ¢ is symmetric.

Proof. Standard proof: Let ¥ = oM = > xiﬁi, and T = > T.E;, = a.i Z” a”n]E Then
(ﬁrst COIIlpOIlth) ({Z" X T)l = 1’2T3 — {I?3T2 = 552(0'3177,1 + 03212 + 0'33713) — (Eg(O’anl + 022M12 + 023713) =

(2031 — x3091)N1 + (X2032 — X3092)N2 + (X2033 — r3023)n3. Thus fawt (Z x f)l dT, = fwt B(mgcrgal;lmsam) 4

3(r20’32 z3022) 3(962033 £3023)
6I3 dQ -

ll gives p f leU thus & x (pi f) = & x divg, so the first component of Z x (py — ]?) is

ro(diva)z— xg(dlva 2, cf. Thus glves f 039—0923 dwt = 0. True for all wy, thus o35 —093 = 0.
Idem for the other components ais symmetrlc oh

/., o, 2(diva)s + z3(diva)s + 032 — 023 dwy.

R Uniform tensors in L(F)

Uniform tensors enable to define without ambiguity the “objective contraction rules”. Uniform tensors
are scalar valued multilinear functions acting on both vectors and linear forms.

NB: In classical mechanics courses, what is called a “tensor” generally not a tensor but a matrix.
E.g. you may encounter the expression “Euclidean tensor” which means: The matrix representation of
“something” with respect to a Euclidean basis (based on the foot, metre,...) chosen by some observer.
(An “Euclidean tensor” is a non-sense, e.g. can you define a “Euclidean vector”?)

R.1 Tensorial product and multilinear forms

Let Ay, ..., Ay, be n finite dimension vector spaces. And A¥ = L(A;;R) the set of linear forms.

R.1.1 Tensorial product of functions

Let fi: A1 = R, ..., fn, : A, — R be n functions. Their tensorial product is the function f; ® ... ® f, :
A X ... x A, — R defined by (separate variable function)

(E.g., n =2 and A; = As = R and (cos ®sin)(z, y) = cos(x) sin(y).)

R.1.2 Tensorial product of linear forms: multilinear forms

Let £(Aq, ..., Ap; R) be the set of R-multilinear forms on the Cartesian product A; x ... X A, that is, the
set of the functions M : A3 X ... x A, > Rs.t., foralli=1,...,n, all Z;,7; € A; and all A € R,

Moy @5+ Aoy ) = Mooy @iy ) + A M (oo G, ), (R.2)

the other variables being unchanged.
Definition: An elementary tensor is multilinear form M =/¢; @ .... ® £,,, with ¢; € A} for all i; So

V(@i)ien- € [[Ai (1@ . @ €)(&1, o0y Bn) = (61.81)..(Ln Ep) ER. (R.3)
=1

(The dot in ¢;.%; is not an inner dot product: It is the duality “outer product” ¢;.%; := £;(Z;), cf. (A.43)).)
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R.2 Uniform tensors in £2(F)

Let E be a real vector space, with dim(E) = n € N*. In this section we consider the first overlay on F

made of multilinear forms M on F, called the uniform tensors of type 0 s or of type (2)

E.g., M € £L9(E) a linear form, M € £L}(E) an inner dot product, M € £2(E) a determinant...
Notations for quantification purposes: (€;) is a basis in E, (7¢;) is its (covariant) dual basis (basis in
E* = L(E;R)), (0;) is its bidual basis (basis in E** = L(E*;R)).
R.2.1 Definition of type (2) uniform tensors

L3(E) :=R, and if s € N* then
LYE):=L(E x ... x E;R) (R.4)
———

s times

is called the set of uniform tensors of type (g) on E.

R.2.2 Example: Type ((1)) uniform tensor — linear forms
A type () uniform tensor is an element of £L9(E) = £(E;R) = E*: It is a linear form ¢ € L(E) = E*.
Quantification: With ¢; := ¢(¢;) we have, cf. (A.11),

- d
0= limei, and [, = (6 o L) "EC L) (R.5)
i=1
(row matrix for a linear form). Duality notations: (e’) is the covariant dual basis and £ = " | {;e’.
vy
Thus, if ¥ € E, ¥ =), v;€;, then ¥ is represented by [¢]jz = | : (column matrix for a vector),
Un
and the matrix calculation rules give
(% n
(@) = Weldlie= (G o )| 2] =Yt " ea, (R.6)
vn i=1

Duality notations: v =Y. v'¢; and ¢(7) = Y. ,{;v", and Einstein’s convention is satisfied.

R.2.3 Example: Type (g) uniform tensor
A type (g) uniform tensor is an element of £3(F) = L(E, E;R): It is a bilinear form T € L(E, E;R).
Quantification: Let T;; := T'(¢;,€;). Then, with ¢ = Y7  v,6; and & = Y ;" w;€;,

T(@,0) = Y Tyviw,; = WG ez, ie. T=> Tijme® mej. (R.7)
i,j=1 i,j=1
Duality notations: T'(v,w) = >},
An elementary uniform tensor in £J(E) is a tensor T = ¢ ® m, where £,m € E*. And so, for all
v, € B,

T;jv*w’, and Einstein’s convention is satisfied.

(6 ® m) (7, @) = (£.5)(m.D). (R.8)

R.2.4 Example: Determinant
The determinant is a alternating (2) uniform tensor, cf. 1)

R.3 Uniform tensors in L(F)

In this section we consider an over-overlay on E: The multilinear forms acting on both vectors (€ E) and
functions € E* (linear forms).
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R.3.1 Definition of type (g) uniform tensors
Let r,s € Ns.t. r+ s > 1. The set of multilinear forms

LI(E):=L(E" x...xE",Ex..xE;R) (R.9)

7 times s times

is called the set of uniform tensors of type (%) on E.

The case r = 0 has been considered at §

When r > 1, a tensor T' € L7(E) is a functional: Its domain of definition contains a set of functions
(the set E* = L(E;R)).

R.3.2 Example: Type ((1)) uniform tensor: Identified with a vector

A uniform () tensor is a element T' € L{(E) = L(E*;R) = L(L(E;R);R) = E**. With the natural

canonical isomorphism

E — E* = L}(E)
e B B . (R.10)
W — J(W) =w, defined by w(f):=L(w), VIe€FE",
cf. (U.9) and prop.
w G so wl "G (= D). (R.11)

So a ((1)) type uniform tensor w is identified (natural canonical) to the vector @ = J 1 (w).

Interpretation: FE** is the set of directional derivatives. Indeed, if £ is an affine space, if F is the
associated vector space, if p € £, and if f is a differentiable function at p, then w.df (p) : df (p). is
the directional derivative along .

Remark: In differential geometry, w.df is written w(f), so @W(f)(p) := df (p).w, the definition of a
vector being a directional derivative.

Quantification: For all i, j,
8i.7rej = 5ij = ﬂej-aa thus 81 = \7(6_;) noéed é; (R12)

Duality notations: 0;.¢7 = 5{ = el.¢. Eg., if fis a C* function then df(p) = >0, f1i(p) mei (=
>z fii(p)e’) and
oudf(p) = df(p)-; = i) "= 0)(0) "= (1) ). (R.13)

R.3.3 Example: Type (1) uniform tensor

An elementary uniform tensor in £1(FE) is a tensor T = u ® 3, where v € E** and 8 € E*. And, with
@ =J Y(u) € E, cf. (R.10), we also write T = & ® 3. Thus, for all £ € E* and w € F

(u@ B) (€, @) = u(0)B(w) = £(i@)B(@) "= () B(w) "= (i@ @ B) (£, ). (R.14)

Quantification: Let T'(m,;, €;). So

T = Z Tij €; ® Tej, and [T]|g = [Tij], (R15)
ij=1
[T])z = [T;;] being the matrix of T relative to the basis (¢;). Duality notations: T'(e’,&;) = T";, [T]z =
[T%], T =327 ,-,T";€ ® ¢, and Einstein’s convention is satisfied.
Thus with £ € E*, £ =37 lie' € E*,and W € E, W=, w'é; € E, (R.15) gives

T(0,w) = Z T;5€i(0)Te; (W) = Z Tijtiwj = [€)12.[T))e.[W] (R.16)

n

([¢]|¢ is a row matrix). Duality notations: T'(¢, W) = ZiJ:lTij&wj and Einstein convention is satisfied.
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176 R.4. FEzxterior tensorial products

R.3.4 Example: Type (;) uniform tensor
The same steps are applied to any tensor. E.g., if T € L1(E), then with duality notations, 7%, =

T(e', €;,éx) and

Z T'wéi el @e®, and T(¢ Z Tl w (R.17)
i,5,k=1 i,7,k=1
R.4 Exterior tensorial products

Let Ty € L7} (E) and Ty € L72(E). Their tensorial product is the tensor Ty ® Ty € L' 17*(E) defined by

(T1 ® Tg)(ﬁl,l, ...,82’1, -~-7'L_[1,1» ...,ﬁ2’17 ) = Tl(gl,la -~-7ﬁl,17 ...)Tg(fg’l, ...,7:&'2’1, ) (R18)

Particular case: with A € L)(E) =R and T € L7(E),

A@T =T®\:=A\T € L1(E). (R.19)

Example R.1 let T1,T2 € L1(E). Quantification: Let T3 = Z?] ((Th)5€ @ € and let Ty =
Zm 1(T2) €r ®e™; Then T) @ Ty = EZj,k,m:l(Tl) (TQ) €; ® 63 & ek ®Re™ e £2( ) un
Remark R.2 Alternative definition: 71T, := ZZj,k,m:l(Tl) (M)ke @ ¢ @ & @ em €

L(E*,E,E*,E;R). And we get back to the previous definition thanks to the natural canonical
isomorphism J : L(E*,E,E*, E;R) — L(E*,E*,E,E;R) = L3(E) defined by J(T) = T where
T4, m,v,w) =T (L, T, m,w). .n
R.5 Contractions

R.5.1 Contraction of a linear form with a vector

Let £ € LY(E) = E* and @ € E. Their contraction is the value

o) A g g noted g (R.20)

And with a basis (€;) and its dual basis (m¢;), £ = > 1 liTe; and @ =Y w;€é; give
0l =Y liw; = [0z [W])e = Y wili = 0.0 = Tr(@ @ L), (R.21)

where Tr is the objective trace operator Tr : L(E; E) ~ L](E) — R (defined by Tr(€; ® me;) = 0%).
Duality notations: .0 = ;" /;w’, and Einstein convention is satisfied.

Exercice R.3 Use the change of coordinate formulas to prove that the computation £.4 in (R.21)) gives
a result independent of the basis.

Answer. Let P be the change of basis matrix. S0 [Wnew = P~ .[Wwa and [fnew = [faa-P, cf. (A.29)), thus
[new - [Wlnew = ([C)ea-P)-(P~*.[W]da) = [(oa-(P-P ™). [W]oa = [{Joa[]eta (= £.5). i
R.5.2 Contraction of a G) tensor and a vector

Let £ € E* and i € E. The contraction of the elementary tensor  ® ¢ € L}(E) with  is defined by:

(@ ® 0).0 = (L.9)F. (R.22)
~~
contraction

Thus, if (€;) is a basis in E and (m;) is the dual basis, and T = Y. T};€; @ me; € Li(E) and

1,7=1
=37 u;€; € F, then
n n )
T=> T;&od = Ti= )Y Tué (R.23)
i,j=1 ,j=1
because 7 () = u;. Duality notations: T.4 = ZZLJ \Tiul .

176



177 R.5. Contractions

Then, with the natural canonical isomorphism (L£}(E) =) L(E,E*;R) ~ L(E;FE), see (U.7), any
endomorphism L € L(E; E) defined by L.¢; = ", L;;é; can be written, for calculation purpose,

n n
L= Z Lijé; ® me; noted L, which means L.ﬁ ZLijujé;- (R.24)
i,j=1 i=1

when @ = ), u;€;, since 7. (@) = u;. Duality notations: L ="

iz J
m.zlL € ® el

R.5.3 Contractions of uniform tensors

More generally, the contraction of two tensors, if meaningful, is defined thanks to (R.20): Let Ty € L} (E),
Tye LE(E), e B and i€ E.

Definition R.4 The objective contraction of Ty ® £ € L2, (E) and 4 ® T € L2T1(E) is the tensor
(Ty ®0).(E® Tp) € LLM17? given by
(Th ®0).(U@Ts) := (L.4) Ty @ Th. (R.25)
contraction

In particular (77 ® £).4 = (£.@) Ty (as in (R.22), and £.(d @ Ty) = (£.10) To.
And the objective contraction of Ty ® 4 € L2T1(E) and (@ T € L2 | (E) is the tensor (T} ® @).({ ®
Ty) € L1172 given by
(TheW).eTy)=(UH)TieT, (={d)TT)). (R.26)
Quantification with a basis (€;), examples to avoid cumbersome notations:
Example R.5 Let T € Li(E) = L{(E), T = EZjZIT;é} ®el. With @ € E ~ E* = L{(E),
@ =1 wle), (R.25) gives T.w € Li(E) ~ E and

n
Tii= Y Tjw'e;, ie [Tab]iz=[T)zw]z (column matrix). (R.27)
ij=1
(Einstein’s convention is satisfied.) Indeed, T.w/ = Y77, Tjw ke ®el).e, = sz7k=1’_l’jwké;(ej.é’k) =

S Tl (5]) = S0 Tiwié,. With € € E* = LY(E), £ = 37 ;¢ (R.25) gives (.T € LI(E) =
E* and

=Y 4Tje, e [LT)z=[l)[T)jz (row matrix). (R.28)

ij=1
(Einstein’s convention is satisfied.) Indeed £.7 = (3°1"_,4; ei).(zzkzlﬂké’k@)ej) = sz’k:l&Tf(ei.é’k)ej =
Zz = 1€ T 6 =n

Example R.6 Let S,T € LI(E), S =37, _,Siei®ef and T =", | Tfé, @ e/. Then

Y SiTfeiee, ie [ST)e=[S)[T)e (R.29)
i,9,k=1
(Einstein’s convention i sat'isﬁed.) Indeed ST = (CrpmiSie © €).(F o Tem ® ef) =
sz’k’mzls,iT;”é}(ek.é’m) ®el = sz’kZISiTké} ®el. e

Example R.7 Let T € L5(E), T =327, T}éi @ ¢l @ e, and @, € E ~ L{(E), & = Y;_ w'¢; and
4= ,u'€. Then

i= Y Thutéwe € LU(E), and (Td)i= Y Thuw'ale " 7(a,@). (R.30)
iyj k=1 i\j k=1
(Einstein’s convention is satisfied.) So [T.] s = [3_,_, T}, w"] i=t..n. And with £ € E*, (= Sor b€,
(Tab).a@).l = > Thwblt; = T(L,i,%) = LT (i, %) = £.(T.F).q. (R.31)
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178 R.5. Contractions

R.5.4 Objective double contractions of uniform tensors

Definition R.8 Let S,T € L{(E). And let (¢;) be a basis in E, (¢') its dual basis, S = Y., 57¢; ® ¢/
and T = szlejé} ® e/. The double objective contraction S () T of S and T is defined by
S QT ="Tr(S.T) ZS’T] (=> . Tjs/=T089). (R.32)

7,7=1 7,7=1
(Einstein convention is satisfied.)

Proposition R.9 S () T defined in (R.32) is an invariant: It is the trace Tr(Lg o Ly) of the endo-
morphisms Lg, Ly € L(E; E) naturally canonically associated to S and T (given by {.Lg.ui := S({, )
and (.Ly. := T((,4) for all (@,0) € E x E*). So the real value ', SiT] has the same real value
regardless of the chosen basis (€;). (Which is not the case of the term to term matrix multiplication
§:T=3,_,SiT}, see next §|R.5.5 and example|R.13 m)

17737

Proof. Let (@) and (b;) be two bases and P = | P!] be the transition matrix from (d;) t o (b)),
ie., Ej = Y Pja; for all j. Let Q@ = [Q} := P~'. Then b' = Y7 Q' Let S =
Zij(Sa)gﬁi ®a = Zij(Sb)él_);— @ b. So [(Sp)i] = P7'.[(Sa)}].P (change of basis formula for ()

tensors identified with endomorphisms), i.e. (Sp)i = >, Qi(Sa)k, Py for all i,j. Idem with T.
Thus Zi,j(sb)j'(Tb)z = Zi,j,k,m,a,ﬁ Q}.(Sa)m, PmQJ( )apﬂ = Zi,j,k,m,a,ﬁ(Sa)fn(Ta)gpiﬁQ;chmQé =
> e (S (Ta) 50100 = S04 (Sa )i (T .

Definition R.10 More generally, the objective double contractions S () 7" of uniform tensors, is obtained
by applying the objective simple contraction twice consecutively, when applicable.

E.g., T1 ® 61’1 ® 61’2 and ﬁ271 ® 172’2 ® T2 give

(Th @ 11 ®l12). (a1 Qlz2 @ To) = (1,2.U2,1)(Th ® £1,1) ® (Uz,2 @T3)
—_———— —_——
first second (R33)
= (l1,2.Uz,1)(f1,1.Uz,2) Th @ To.

Example R.11 Let S € L3(E), T € L3(E), S = Y0, ;oS &i0el @, T =30 5 ToPe, @és@e.
Then

n
ST= > STFéedeégoe, and SOT= Z SUTHE ® . (R.34)
1,9,k,8,7=1 i,5,k,y=1
(Einstein’s convention is satisfied.) oa

Exercice R.12 If S € L(E,F;R), T € L(F,G;R) and U € L(G, E;R) then prove

S QT.U)=(ST) QU= (U.S) T (circular permutation). (R.35)
Answer. If S = ZS;EL}- Y, T = ZT;EZ ®c and U = ZU;& ® a’, then T.U = ZT,;UJ}“EZ ® a’, thus
S O(T.U) = Y SL,TUF, and ST = Y. SiTFa; @ ¢, so (S.T) QU = Y. SiTEU™. And the second equality
thanks to the symmetry of (), i.e. (S.T) QU =U ((S.T) = (U.S) () T with the previous calculation. .

We define in the same way the triple objective contraction (apply the simple contraction three times
consecutively). E.g., with (R.34) we get

SOT= Y ST, (R.36)
i,,k=1

(Einstein’s convention is satisfied.)
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179 R.6. Kronecker (contraction) tensor, trace

R.5.5 Non objective double contraction: Double matrix contraction

The engineers often use the double matrix contraction of second order tensors defined by (term to term
multiplication): If S = [Sj;] = [S] and T' = [Tj;] = [T}] then

S:T:=Y 5Ty =Y ST " Te(s.77). (R.37)

i,j=1 i,j=1
Einstein’s convention is not satisfied, and the result is observer dependent for associated endomorphism:

0 4

Example R.13 Let (€;) be a basis, let S € L(E;E) given by [S]z = (2 0

) (so S.e1 = 2¢; and
S.€5 = 4¢é1). Then the double matrix contraction (R.37) gives

SZS:[S]g:[S}gi4*4+2*2:20. (R38)

Change of basis: let by = & and by = 2&,. The transition matrix from (&) to (b;) is P = (1 0). Thus

0 2
[S]E—Pl.[S]g.P—((l) g)(g 3)—(‘1) g).Thus

S:8=[S];:[S];=8%8+1x1=65#20. (R.39)

To be compared with the double objective contraction: [S]z () [S]e = 4%24+2x4 = 16 = [S]; O[S]; =S 0 S
(observer independent result = objective result).

So it is absurd to use S : S (double matrix contraction) if you need objectivity: Recall that the foot is
the international vertical unit in aviation, and thus the use of the double objective contraction is vital,
while the use of the double matrix contraction can be fatal (really). Also see the Mars climate orbiter
probe crash. un

Exercice R.14 Let S € £J(E) (e.g. a metric), let (@;) be a Euclidean basis in foot, and let (b;) = (Ad@;)
be the related euclidean basis in metre (change of unit). Give [5])5 : [S]jz and [5] ; : [S]; and compare.

(The simple and double objective contractions are impossible here since S and T are not compatible.)

Answer. Let S = Y0 S,a' ®@a’ = 327 Spub" @ b, Since (b)) = (Ad;) we have b = La’. Thus

) ] i,j=1 - ) i,j=1 by
szzlSa,ijal ®a = szzlSa,ij)?bl %4 b], thus )\2Sa’¢j = Sbﬂ'j. Thus
(Sl [Sls = D (S0,i0)* = A" Y (Sais)? = X'[S)ja : [Sja (R.40)
i,j=1 i,j=1
with A* > 100: Quite a difference isn’t it? a

R.6 Kronecker (contraction) tensor, trace
Definition R.15 The Kronecker tensor is the (}) uniform tensor § € £1(E) defined by

V{6, @) € B x E, 8L, @) = (.. (R.41)

And the Kronecker symbols relative to a basis (€;) are the reals defined by, calling (7.;) the dual basis,

, lifi=j,| . ;
0ij = 6(7rei,ej)={ Oi“#j} e, 6:=) mi®@e, [8]=1[5;]=[] (R.42)
’ =1

(identity matrix whatever the basis). Duality notations: % := d(e’,€;), d := >, & ® ¢’ and [d] = [6}].
Definition R.16 The trace of a () uniform tensor T’ € £1(E) is

Te(T)=6 0T (=Te(Lr)) (R.43)
(with the natural canonical isomorphism T € L}(E) ~ Ly € L(E; E) given by T'(¢, %) := {.Ly.7).

Thus Tr(T) = 3.1, T%.
In particular Tr(§) = n, and Tr(§ @ ¢) = Y, v'¢; = £.¥ when 7 = ), v'€; and ¢ = > liel.
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S Tensors in 7T (U)

S.1 Fundamental counter-example (derivation), and modules

Let A and B be any sets, and let F(A; B) be the set of functions A — B. The “plus” inner operation
and the “dot” outer operation are defined by, for all f,g € F(A; B), all A € R and all p € A,

{ (f+9)(p) = f(p)+g(p), and
ML) = A (), AN

(F(A;B),+,.,R) is thus a vector space on the field R (see any elementary course) called F(A; B).
But the field R is “too small” to define a tensor which can be seen as “a linear tool that satisfies the
change of coordinate system rules™

(S.1)

Example S.1 Fundamental counter-example: Derivation. Let U be an open set in R”. The
derivation d : @ € CH(U;R") — dif € CO(U; L(R™;R")) is R-linear: In particular d(A@) = A(d) for all
AeR...

...but d doesn’t satisfy the change of coordinate system rules, see (T.306]).

So a derivation it not a tensor (it is a “spray”, see Abraham—Marsden [I).

In fact, one requirement for T to be a tensor is, e.g. with T' = « a vector field: For all ¢ € C°(U;R),
and all @ € T'(U) (C*°-vector field),

(i) = o T(). (S:2)
While
d(pW) # pd(W), because d(pwW) = @ dw + dp.d. (S.3)
Thus the elementary R-linearity requirement “T.(\w) = A(T.w) for all A € R is not sufficient to charac-
terize a tensor: The R-linearity has to be replaced by the C'*°(U;R)-linearity, cf. .

Thus we will have to replace a real vector space (V,+,.,R) over the field R with the “module”
(V,+,.,C>(U;R)) over the ring C>(U;R), which mainly amounts to consider for all A = ¢ €
C>*(U;R). Remark: The use of a module is very similar to the use of a vector space, but for the use of
the inverse: all real A # 0 has a multiplicative inverse in R (namely 1), but a function f € C>(U;R) s.t.
“f # 0 and f vanishes at one point” doesn’t have a multiplicative inverse in C*°(U;R). .

S.2 Field of functions and vector fields

U is an open set in the affine space , its associated space being E which is I@, R2 or R3. The definition
of tensors is done at a fixed time ¢ (concerns the space variables in classical mechanics). The approach is
first qualitative, then quantitative with a basis (€;(p)) and its dual basis (7.;(p)) = (e*(p)), at any p € £.

S.2.1 Framework of classical mechanics

£ is the affine space R, R? or R? made of points p, and £ = R™ is the usual associated vector space R R2
or R3 made of b1p01nt vectors @ = pg ="°ted ¢ — p and we then write ¢ = p + &, which means: If O € £
(an origin) then Oq = Op + @ (which is Chasles’ relation pg = 1@ + @)]) relatlon independent of the
choice of O, and hence the vectors @ in E are called “free vectors” (congruence relation: @R iff @ = ),

i.c. PIgiRPags iff Pigt = Pags, ie. Pr@i RPags iff p1O + Og) = p20 + Ogs, i.c. PigiRpags iff Pips = F03).
S.2.2 Vector fields

U —=FE
Let  : . be a vector valued function. The associated field is
p — w(p)

(S.4)

w :

- {U —SUXxXE
p — d(p) = (p;d(p)).

So Tmw = {(p;wW(p)) : p € U} is the graph of W, and the definition ofiﬁ tells that the vector w(p) has to
be drawn at p called the base point (first component of w(p)); and @(p) is called a vector at p. Usual
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181 S.3. Differential forms

rules: ~ _ ~
i(p) +uw(p) = (p,u(p) +w(p)), and \i(p) = (p, \i(p)) (S.5)

(usual rules for “vectors at p”). To lighten the notations, w(p) ="°%d (p) (but don’t forget it is a pointed
vector). Notations:

I(U) = T4 (U) := the set of vector fields on U = the set of (é) tensors on U. (S.6)

More precisely, we will use the definition of vector fields (see e.g. Abraham—Marsden [I]): A vector
field is built from tangent vectors to curves. It makes sense on non planar surfaces, and more generally
on differential manifolds.

Example S.2 Discrete case: n “force vectors” f_;(pl) applied at n points p; € R3 give the discrete vector

field £ : p; € {p1,.pn}t C R = f(pi) = (pi, fi(pi)) € R3 x R3 where p; is “the point of application”

of fi(ps), and f(p;) = (ps, f;) is a pointed vector. Essential in mechanics. "
S.2.3 Field of functions

U =R
Let f: be a scalar valued function. The associated field is
p = f(p)

_ (5.7)
p — f(p) == f(p)),

_ {U —SUxR

and the first component p of the couple f(p) = (p; f(p)) is called the base point. So Imf = {(p; f(p)) :
p € U} is the graph of f. Definition:

T9(U) := {field of functions} = the set of ({) tensors on U, (S.8)
or the set of tensors of order 0 on U. Abusive short notations (to lighten the writings):
o)™ fp), and TEW) " C¥(UIR), (5.9)

but keep the base point in mind (no ubiquity gift).
In T{(U), the internal sum is defined by, for all f,g € T9(U) with f(p) = (p; f(p)) and g(p) = (p; 9(p)),

J+90) = (f+9)p) (= @:f ) +9(0)), (S.10)
and the external multiplication on the ring C°°(U;R) is defined by, for all ¢ € C*(U;R),
(NP = 3 () (= (pe(0)f(P)) (S.11)

(the base point p remains unchanged). Thus (T3 (U),+,.) is a module over the ring C>°(U;R).

S.3 Differential forms

The basic concept is that of vector fields. A first over-layer is made of differential forms (which “measure
vector fields”):

U = E*
Definition S.3 Let « ) (so «a(p) is a linear form at p). The associated differential form
p —alp

(also called a 1-form) is “the field of linear forms” defined by

(S.12)

«

" U —-UxFE*
p — a(p) = (p;a(p)) (= “apointed linear form at p”).

And p is called the base point, and Ima = {(p; a(p)) : p € U} is the graph of a.
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Thus, if @ € Q1(U) (differential form) and W€ I'(U) (vector field), then a1 € TY(U) (field of scalar
valued functions) satisfies

~ [U =UxR
RN o~ . . (5.13)
p = (@) (p) = (p; (d)(p)) = (p; alp).w(p)) €U xR.
Short notation:
a(p) "= a(p), instead of &(p) = (p: a(p)): (S.14)
but keep the base point in mind. And
QY(U) =TY(U) := the set of differential forms on U = the set of (}) tensors on U. (S.15)

S.4 Tensors

A second over-layer is introduced with the tensors with are “functions defined on vector fields and on
differential forms” (which “measure vector fields and differential forms”).
U — LL(E)

p — T(p)

Let r,s € N, r+s > 1, and let T : {
cf. (R.3.1)). And consider the associated function

} (so T(p) is a uniform (7) tensor for each p,

- { U = UxLLE)
T: ~ (5.16)
p = T(p) = (p;T(p))
Abusive short notation: N N
T(p) " T(p) instead of T(p) = (13 T(p)), (S.17)

but keep the base point in mind.

Definition S.4 (Abraham-Marsden [1].) T is a tensor of type (7) iff T is C*°(U; R)-multilinear (not only
R-multilinear), i.e., for all f € C°(U;R), all z1, zo vector field or differentiable form where applicable,
and all p € U,

{ T(p)(..es 21(p) + 22(p), o) = T(P) (-, 21(p), ) + T(P) (s 22(p), -.), and (5.18)
T(p)(-rs f(P)21(D), ) = () T(P)(-res 21(p); ), '
written in short
T(, 21 + 22, ) = T’(7 21, ) + T’(7 22, ), and
And
TI(U) := the set of (]) type tensors on U. (S.20)

(Recall: TY(U) := C>(U;R) the set of function fields, cf. (S.7).)

Remark S.5 Definition in differential geometry lessons: A tensor is a section of a certain bundle over a
manifold. For classical mechanics, definition [S.4] gives an equivalent definition. o

S.5 First Examples
S.5.1 Type ((1)) tensor — differential forms

If T € TY(U) then T(p) € E*,s0 T = a € QY(U) is a differential form: T2(U) c Q' (V).

Converse: Does a differential form o € Q' (U) defines a ((1]) type tensor on U? Yes: We have to
check (S.18), which is trivial. So o € TY(U), so QY (U) c TY(U).

Thus

(U) = QY (U). (S.21)
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S.5.2 Type ((1)) tensor (identified to a vector field)

Let T € TY(U), so T(p) € L{(E) = L(E*;R) = E** for all p € U. Thus, thanks to the natural canonical
isomorphism E** ~ E, T(p) can be identified to a vector, thus TP (U) c T'(U).
Converse: Does a vector field @ € I'(U) defines a ((1)) type tensor on U? Yes: We have to check ,
which is trivial. So I'(U) C T4 (U).
Thus
T, (U) ~T(U). (S.22)

S.5.3 A metric is a (g) tensor
Let T € T9(U), so T(p) € LY(E) for all p € U, and T (i, w) € T(U) for all @,@ € T'(U).

Definition S.6 A metric g on U is a (g) type tensor on U such that, for all p € E, g(p) ="°ted gp is an
inner dot product on E.

S.6 G) tensor, identification with fields of endomorphisms

Let T € TL(U), so T(p) € LI(E) for all p € U, and T, w) € TY(U) for all a € QY(U) and @ € T'(U) (so
T(p)(a(p),w(p)) € R for all p).

~ U —-UXxL(E;E)
The associated field of endomorphisms on U is Lt :

~ where Lr(p) is
p — Lr(p) = (p, LT(p))}
identified with T'(p) thanks to the natural canonical isomorphism L(E; E) ~ L(E*, E;R) = L1(E) given
by

Ve E*, Vi e E, {.(Ly(p).w)=T(p)(¢ ). (5.23)

S.7 Unstationary tensor

Let t € [t1,t2] C R. Let (T})et, t,) be a family of (Z) tensors, cf. () Then T : t — T(t) := Ty is called
an unstationary tensor. And the set of unstationary tensors is also noted 77 (U). E.g., a Eulerian velocity

field is a ((1)) unstationary vector field.

T Differential, its eventual gradients, divergences

T.1 Differential

The definition of the differential of a function is observer independent: All observers have the same
definition (qualitative: no man made tool required, like a basis or an inner dot product).

T.1.1 Framework

Classical Framework: £ are F affine spaces associated with vector spaces E and F, and ||.||g and ||.||F
are norms in F and F such that (E,||.||g) and (F,||.||r) are complete (we need limit “that stay in the

U —7F

space” as h — 0). U is an open set in &, and P : is a function. If applicable, £
p —pr=2(p)

and/or F can be replaced by E and/or F'. Reminder:

Definition T.1 At p € U the function @ is continuous iff ®(q) — ®(p) relative to the considered norms,
a—=p

ie., [|®(q) — 2(p)||F —||g—p||s—0 0, also written (Landau notation): Near p,
B(g) = B(p) + o(1), (T.1)
called “the zero-th order Taylor expansion of ® near p”. Which means:
Ve >0, In > 0, s.t. Vg € € satisfying ||¢ — p||lg <1, ||®(q) — P(p)||F < e. (T.2)

And C°(U; F) is the set of functions that are continuous at all p € U.
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184 T.1. Differential

T.1.2 Directional derivative and differential (observer independent)
Let pe U, u € F, and let f: R — F defined by

f(h) :== ®(p + hi). (T.3)
(In a manifold: f(h) := ®(c(h)) where cis a C! curve s.t. ¢(0) = p and ¢/(0) = @.)

Definition T.2 The function @ is differentiable at p in the direction « iff f is derivable at 0, i.e. iff the
limit f'(0) = limp—0o M =noted 4§ (p) () exists in F, i.e. iff, near p,

O(p + hit) = D(p) + hd®(p) () + o(h), (T.4)

equation called the first order Taylor expansion of ® at p in the direction @ (it is the first order Taylor
expansion of f near p).

Then d®(p)() is called the directional derivative of ® at p in the direction .

And if, for all @ € E, d®(p)(@) exists (in F') then ® is called Gateaux differentiable at p.

Exercice T.3 Prove: If ® is Gateaux differentiable at p then d®(p) is homogeneous, i.e., d®(p)(A\d) =
Ad®(p)(u) for all & € E and all X € R.

2(p+h(A1@)) —2(p) 2 (p+Ahit) —2(p)
h

Ah

2 (ptki)—P(p)

Answer. limj_o = Alimp_0 = Alimy, o SEE—2R =

Definition T.4 If ¢ is Gateaux differentiable and if moreover d®(p) is linear and continuous at p, then
® is said to be differentiable at p (or Fréchet differentiable at p).

In that case reads
®(q) = D(p) + hd®(p).pg + o(||pd|| &), (T.5)

since d®(p) (@) =" dd(p).i for all @ € E (linearity of ®(p)).
And the affine function aff, : ¢ — aff,(¢) := ®(p) + d®(p ).p¢ is the affine approximation of ® at p.
(So, the graph of aff, is the tangent plane of ® at p.)

Definition T.5 ® : U — F is differentiable in U iff ® is differentiable at all p € U. Then its differential
is the map

b {U — L(E; F) (T6)

p — d®(p).
And CY(U; F) is the set of differentiable functions ¢ such that d® € C°(U; L(E; F)).

And C?(U; F) is the set of differentiable functions v such that d® € C*(U; £(E, F)).
. And C*(U; F) is the set of differentiable functions 1 such that d® € C*~Y(U; L(E; F))....

CYWU; F) — CO(U;E(E;F))} N

Proposition T.6 The differentiation (or derivation) operator d :
& —do

R-linear (“a derivation is linear”).

Proof. d((I) + )\\I’)( ) hmh (tI>+)\\I/)(p+hu) (P+AT)(p) hmh 0 (P+hﬁ)—<1>(p)+});\ll(p+hﬁ)—)\\I/(p) _
limy, o ZEHPD=L@) 4 )i, % AP (p).ii + AdU(p).i = (d®(p) + Ad¥(p)).i for all p
and @, thus d(® + AV) = d® + \dV for all A € R and ®,¥ € CY(U; F). oa

Exercice T.7 Prove: if f € C'(U;R) (scalar values) and ® € C1(U; F) then, for all 7 € F,
d(fD).i = (df-@) + f(dD.@) (T.7)

(also written d(f®) = ® @ df + f d® for a use with contraction rules).

Answer.

(D) (p).7 = ,?L% f(p+hﬁ)¢’(p+;zﬁ) — I(0)2(p)

f(p+h@)®(p+hit) — f(p)®(p+hi)

ho0 h h (T.8)
Tt = T0) (g(p) + o(1)) + lim 7p) 2D

)@ (p) + f(p)(d®(p).4).

I
g

Il
—
&
=
S
)
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185 T.2. A basis and the j-th partial derivative (subjective)

Remark T.8 In differential geometry, the tangent map is

(T.9)

T - UxFE — FxF
| (pd) = TO(p, @) = ((p), d®(p).0).

The two points p (input) and ®(p) (output) are the base points, and the two vectors @ (input) and
d®(p).u (output) are the initial vector and its push-forward by ®. un
T.1.3 Notation for the second order Differential

Let ® € C%(U; F); Thus d® € CY(U; L(E; F)), thus d(d®) € C°(U; L(E; L(E; F))); So, forp € U and @ €
E, we have d(d®)(p).@ = limy, o LCHDAY@) ¢ (B ) and, with & € E we have (d(d®)(p).7).7 € F.

The bilinear map d?®(p) € L(E, E; F) is defined by
d*®(p)(, 7) = (d(d®)(p).q).7, (T.10)

thanks to the natural canonical isomorphism L € L(E;L(E;F)) < T € L(E,E;F) given by
Ty (U, tz) := (L.ty).ds for all @y, ds € E; Thus L —noted 77 thyg d(d®) —noted d*®(p) € L(E,E; F).
This gives the usual second order Taylor expansion of ® (supposed C?) near p in the direction :

O(p + hil) = ®(p) + hd®(p).u + %2 d*®(p) (i, @) + o(h?) (T.11)

(=the second order Taylor expansion of f : h — f(h) = ®(p + hi) near h =0, cf. (T.3)).
And Schwarz’s theorem tells: If ® is C? then d?®(p) is symmetric, i.e. d*®(p)(d, v) = d*®(p)(7, @0).

T.2 A basis and the j-th partial derivative (subjective)

Definition T.9 Let ® € C'(U; F), @ € T'(U) (a vector field), p € U. The derivative of ® at p along  is
defined by

P P U -
0x(p) := d(p).(p) "% 22 () (= tim 2EFPID) = P) oy (T.12)
ou h—0 h
This defines the directional derivative operator along u:
CY(U;F) = CO(U; F
o - (U; F) — CYU; F) . ) (T.13)
O — 0z(®) :=d®.u, so Oz(P)(p) :=dP(p).d(p).

(And 9z(®) =m°ted 7(®) in differential geometry thanks to E ~ E** which gives g ~ .)
In particular, if (€;(p)) is a basis at p, then the j-th partial derivative of ® at p is

0% noted o noted . ®(p+hej(p) — P(p)
=o5 @ = %% =) (= lim N

e, ®(p) := d®(p).€;(p) ), (T.14)

and the j-th directional derivative operator is

5 CYU;F) — CYU; F)
O = 0; = — : T.15
T 9€; @—)8-@::0[@.6:83@:8—?:@-. ( )
J J j ¢, |7

Moreover if U is an open set in the vector space E, if p ="oted 7 — Yo, xi€; € E,if (¢;) is a Cartesian
basis in F, then for any we have the usual notation:
noted o®

05, (2) " (&), ie. 0@
J

noted 0P

< (T.16)

Warning: This notation % is ambiguous since it depends on the name of a component.
J
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186 T.3. Application 1: Scalar valued functions

T.3 Application 1: Scalar valued functions
T.3.1 Differential of a scalar valued function (objective)

U —-R
Here & "24 7. { ) } is a C'! scalar valued function, so df € Q1 (U)NC°(U; E*) (a C° differential
p —Jp

form). So df(p) € E* for all p € U, and df (p).d = limy,_, M cRforall @€ E.

Exercice T.10 Prove: If f,g € C'(U;R) then (derivative of a product)

d(fg) = (df)g + f(dg), (T.17)
ie., d(fg).w = (df W)g + f(dg.w) for all w € I'(U).

Answer. limj,_o f(p+hw)9<p+hw)*f<P)g(P) = limp_0 2
limp 0 W( (p) + o( ) + limp—o f(p )w calculatlon that only requires the first order (affine)
approximation of f and g: We get the same result as with the affine functions f(z) = ao+a1z and g(x) = bo+b1z,
which give (fg)(z) = aobo + (aobi+ai1bo)z + a1bi2?, and then (fg)'(z) = aobi+aibo + 2a1b1x, which is indeed
equal to (f'g+ fg')(z) = a1(bo+b1z) + (ao+a17)bs. u

f(pthi)g (P+hw) F@)gth®) | Jipy, 0 f()g(p+h@)—f(p)g(p) _

T.3.2 Quantification ...
If (€;(p)) is a basis at p, then

df ()2 (0) B2 00, 1 (0) " 0, £(p) "2 £, (p)- (T.18)

Thus, with (7.;(p)) the dual basis of the basis (€;(p)),
Z fiP)mej(p) and  [df(D)]jz = (fu(®) ... fin(p)) (row matrix). (T.19)

Duality notations: m¢; = ¢', @ = Y0 w/é;, df =30, fi; ¢, df i =377, fiul.

Interpretation. In E = R", call ¢;; : h € [—¢,e] = ¢pi(h) = p+ héi(p) € R" the i-th coordinate line
at p: Hence c},;(0) = €;(p) is the tangent vector at p = ¢,;(0) to Im(cp;). Thus (f o ¢,:)'(0) = df (p)-€i(p)

__noted f(

is the tangent vector at p to the image f o cp; ¢pi) or the i-th coordinate line at p.

Exercice T.11 Prove: (fg); = fj; 9+ fg;; when f,g: U — R are C' scalar valued functions.
Answer. Apply (T.8): here d(fg) = gdf + fdg, i.e. d(fg).€; = (df.€;) g + f (dg.€;) for all j. .
T.3.3 ... and the notation %

O is an origin in &, (&) is a Cartesian basis in E, (m;) ="°%d (dz;) is the (covariant) dual basis,

p=noted Op — 7 = > ;€. Then (unmissable in thermodynamics)

noted of 7 . aif ]
oif e dff; o dz;, (T.20)

Le. df (¥) = X0, g (%) daj, Le. df (7).6 = 3; 55 (F)u; for all i@ = 37 u;€; € E. And 9,f(p) = df (p)-€i is
the derivative along the i-th Cartesian coordlnate line at .
(Duality notations: df = 3. 2L dui and df (7).d = 3., 2L (&)ud.)

J Oxd j OxJ
T.3.4 ... is subjective
An English observer chooses a Euclidean basis (&;) made with the foot, writes £ = ). x;d; and uses gj.
A French observer chooses a Euclidean basis (51) made with the metre, writes =) « 2;b; and uses gj-

But the English % is not equal to the French %
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187 T.3. Application 1: Scalar valued functions

Indeed, if & = 3", %a,1G; = Y, 70.:bi, then ;2 (p) = df (p).d; while 5ol (p) = df (). b;, and e.g.

" 0 0
if b; =Ad;, Vi, then ! =A / (change of unit formula), (T.21)
Oy ; 04 ;

since df (p).b; = df (p).(A@;) = Adf (p).@, (linearity of df (Z)). (Duality notations: g—f =22L)
(

More generally, with P the transition matrix from (@;(p)) to (b;(p)), we have [df (p )}
(change of basis formula for linear forms):

of <~ Of Of O,
df|,» = |df]z.P, i.e. = ——PF;; written T.22
[4f)j5 = ldf)a drpj = Oray &Ubd Zf)xw Oxp (T-22)
- ions: 2 — s of of _ n  Of O
(Duality notations: P S B P!, written Bl = Yo D37 5a )
Remark T.12 Why this last notation P;; —noted giz L7
¥
Answer : []|z = P.[7] 5, tells that [z is a function of [7] 5, so is written [7]a([];;) = P.[2];5, so
xr(x, .y zl) E;lejlxi .
: = : . thus zj (z1,..,20) = P, Vi, j. (T.23)
P (ehs o a}) v P b

More details: With an origin O € £ and & = O_];, define fa7fb 6 C!' (M3 R) by fa([Z])z) := f(p) and S(d]p) =
f(p). Thus fi([7])5) = fa([Z]a) = (fa o [2]1a)([Z] 5), hence should be written (with no abusive notations):
Ofs

. Ofa 1= Ol .,
o 1) = zaig([x]la)axé([whg)- (1.24)

Question: Why did we need to introduce f, and f, (and not just keep f)? Answer: Because £ € R™ while

Tz, [Z] 7 € Mu and [T]\5z Z] 71 A vector Z can’t be reduced to a matrix of components (which one?). n
|a@>» 16 nl |a@ |5 p

T.3.5 Gradient (subjective: requires some inner dot product)

Let f € CY(U;R) (a C! scalar valued function). Choose (subjective) an inner dot product (-,-), in E.

Definition T.13 The (-, -),-conjugate gradient grzmdgf(p) —noted ﬁgf(p) of f at p € U relative to (-,-),
is the vector in E defined by

Vi€ B, | df(p).i = (grad, f(p), @), | = grad, f(p) 4 @ "E Vo f(p) 4 @ (T.25)

g9

If an inner dot product (-,-), is imposed then gradgf —noted gr?mdf = V7 is called the gradient of f.

So grgdgf(p) ég(df(p)) is the (-, -)4-Riesz representation vector in E of the linear form df (p) € E*.

Fundamental: An English observer with his foot, his Euclidean basis (a@;) and associated Euclidean dot
product (-, +)a, and a French observer with his metre, his Euclidean basis (b;) and associated Euclidean
dot product (-, -)s: They do not have the same gradient. E.g. if (b;) = (\@;) then

grad, f Agrad,f with A% > 10. (T.26)

gradb f is quite different from gr?zdLL fisn’t it? And to forget this fact leads to accidents like the crash of
the Mars Climate Orbiter probe, cf. remark [A.T7]

Subjective first order Taylor expansion: If an inner dot product (-,-), exists and is used, then the
first order Taylor expansion (T.4) gives

f(p+ hit) = f(p) + h(grad, f(p), @)y + o(h) (= f(p) + hgrad,f(p) +, @+ o(h)). (T.27)

Fundamental once again (we insist):
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188 T.4. Application 2: Coordinate system basis and Christoffel symbols

e An inner dot product does not always exist (as a meaningful tool), see § (thermodynamics),
thus, for a C! function, a gradient does not always exists (contrary to a differential).

e df(p) is a linear form (covariant) while gradg f(p) is a vector (contravariant). In particular the
change of basis formulas differ, cf. (A.29):

[Af]jnew = dfjaa- P, while  [grad, f]jne, = P~ " [grad, f]| - (T.28)

e df cannot be identified with gradf (with one?) (Recall: there is no natural canonical isomorphims
between E and E*.) Vocabulary: The differential df is also called the “covariant gradient of f”, while the
vector grad, f is called the “contravariant gradient of f relative to (-,-),™

Isometric Euclidean framework: If one Euclidean dot product is imposed to all observers (foot?
metre?) then grad, f ="°%d gradf = Vf and (T.25) is written df.@ = gradf «@ = V[ « 4.

Exercice T.14 Cartesian basis (€;) and (-,-), given by [g]fz = <(1) g) Give [gr_édgfhg.
B o
Answer. [df]jz = ( % (,%J;) (row matrix), thus (T.25) gives [grad, f]z = ( f“glf ) (column matrix # [df]T). =m
2 923

T.4 Application 2: Coordinate system basis and Christoffel symbols

(Needed when dealing with covariance.)

T.4.1 Coordinate system, and coordinate system basis

(/L) is the canonical basis of the Cartesian vector space R X ... X R (n times), Upg, =]a1,b1[X...X]an, by |
is an non empty open set called the set of parameters, §= )", qi/L = (q1, s qn) € Upayr-

O is an origin in the affine geometric space R™, (a@;) is a Cartesian basis in an, z = O_}>9 € R" for
all p e R", U = {Z € R"} is an open set, and ¥ : § € Uy — T € U is a C2-diffeomorphism called a
coordinate system.

¥ being a diffeomorphism, at any & = W(q) € U, the basis (€;(Z)) defined by, for all i,

&(T) = dU(q). A, (T.29)

is called the coordinate system basis at #. Its dual basis at # is made of the linear forms
73 (Z) =10%d dg;(Z) € R™* defined by, for all 4, j,

Duality notations: e’(z) ="' dg’(&), thus dq'(Z).¢€; (%) = o¢ for all 4, j.

Remark T.15 Pay attention to the notations that could contradict themselves: In U, the dual basis
(ma;) of the Cartesian basis (A;) is a uniform basis (independent of §)... and is (almost) never written (dg;),
because the notation dg; is used for the dual basis cf. . Historical notations...

E.g., cf. the polar coordinate system at § 7 =rA; 4+ 04, ="°%d (1 0) = (q1,q2), and &(F) :=

dip(q).A; at & = W(q) is the polar basis, and (dq1 (%), dg2(Z)) = (dr(Z), d0(Z)) is the dual basis at 7. o

T.4.2 Parametric expression of a differential

. U —-R . . Upr — R

A function f: ¢ _. ¢ can be studied with g ;== fo ¥ : R . .
7 - f(@) 7 — o(@) = F(&) when # = ¥(@)
thanks to ¥ (diffeomorphism). In particular, if f is C*,
dg(§) = df (¥).dV(§) when #—W(q) (T.31)

so for all j,

O(foW 0 - R - N o d Of

NoW) gy - 99 gy = ag(@). A, = af (2).a9(@). 4 = df@ 5@ " Ly . (1)

aq]' 8(]]‘ aq]‘

... Warning (notations!): f is a function of Z, not of ¢ (!), and the notations g—(j(f) means := 8(57;‘1})(@
J J
when & = ¥(§), and nothing else. Historical notations...
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189 T.4. Application 2: Coordinate system basis and Christoffel symbols

Thus with (dg;(Z)) the dual basis of the coordinate basis (€;(Z)) = (A:,(Z)) at T,
" —Jf "
@) =S 0L (@) dg, 7). (1.3

(Check: (27—, 52-(&) dg; (&)).€:(%)
Duality notations: df (&) =,

31 5 (7) (da () 6(7) = FL(7) =T df (7). (7))

T.4.3 Christoffel symbols

We use duality notations for readability.

Definition T.16 In a coordinate system basis (€;(Z)) in E, the Christoffel symbol ’y;k(f) € R are the
components of the vector dey(p).€;(p), i.e. déy(Z).€;(Z) =Y p_ 1’7]k( 2)e;(Z): In U,

n n
ey = i€l or dE.é =Y ke (T.34)
i=1 k=1
So, with (e?(Z)) the dual basis of (&;(%)), 7]11@ := e'.déy,.€;, and, for calculations with contractions,

dey ="oted 3oy & @ el (or déj =Y e @ ).
(The Christoffel symbols vanish if (€;) is Cartesian.)

(Differential geometry in manifolds: The 'y;k = ei.ng € are the component of the connection V,
the usual connection in a surface in R™ being the Riemannian connection, in which case Vg, e} is the
orthogonal projection of déy.€; on the surface relative to a Euclidean dot product. E.g. in R™ the usual

connection V is nothing but the differential d: It is not the gradient V...! In facts, [gradcp]‘g = [ch]‘g =
[dgo]lq; once an inner dot product and a basis have been chosen (hence confusions in mechanics).

Exercice T.17 Polar coordinate system, see remark [6.12] déy.¢, = —réy, thus 73, = —r and 72, = 0. i

Exercice T.18 Prove: If (&;(Z)) is the coordinate system basis of a C? coordinate system, then:

C o aa S - 9*v . -
Vi, j, dé;.€; = déj.e; (= 9400 ), and Vi, j,k, fyﬁ- = ’yfj (symmetry for lower indices).  (T.35)
- - - o2%
Answer. ¢€(Z) = (€; 0 ¥)(q) = dV¥(q).A; gives dei(:c).ex(a:) = dei(¥(q).d¥(q).A; = d(d¥(9).-Ai).A; = 55 =
ow
aaqqu (Schwarz theorem since ¥ is C?) = dé;(Z).6:(Z) = aqﬂaq (q), thus Y 7_ e = X0 vhék. o

Exercice T.19 Consider two coordinate system bases (@;(Z)) and (b;(Z)) at &, P(Z) = [P} (Z)] the
transition matrix from (&@;(%)) to (b;()), and Q = P~1. Using the generic notation déj,.¢; = Dot Vok.oCin
prove the change of basis formula for the Christoffel symbols:

Yok = Z QAP Pipa+ Y Q\Pf(dP.d,) Z AP/ P 0+ Y QAAPLD;)).
A\ p,v=1 Apu=1 A p,v=1 A=1
(T.36)

(Because of the term 3 QgP]“(dP,g\.&'u), a derivation is not a tensor.)

Answer. b(Z) = 3, PY(2)d,(Z) gives dbp.b; = Y, (dPY.b))d, + 32, PY(dd,.by) = 3, PH(dPY.d,)d, +
> PR Pj(dady.dy); And b' =3, Qia’, thus

Viko = b dbi.by = > QA\PH(dPY d@y)a’.d, + Y QAPIPYa* (ddy.du) = QAP (AP .d) + > QAP Pl Viv.a;

Apv Apv A Apv

thus |) . l.l
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190 T.5. Application 3: Differential of a vector field

T.5 Application 3: Differential of a vector field

Here F = E = R», ® ="°td 7 ¢ I(U) is a vector field. Thus d(p) € L(E; E) and dib.i is a vector field
in E for all @ € T(U), given by (dw.@)(p) = dw(p).u(p) = limp—0 M € E.

—

Quantification: (€;(p)) is a basis at p in E. Call w;(p) € R the components of @(p), i.e. W(p) =
> wi(p)€;(p)- And call w;);(p) the components of diui(p) (endomorphism in E):

n
W= Zwié’i7 di.e; = Zw”jel, [d]|e = [w;;] (Jacobian matrix). (T.37)
i=1
And tensorial notations for calculations with contractions: (m;(p)) being the dual basis,
n
di = Zwi‘ja(@ﬂej. (T.38)
ij=1
Duality notations: @ = 377 w'€;, d.€; = Y, wi, &, [dd]je = [w)], and dw = Y, jwi & @ €.
In a Cartesian basis: Here (€;) is uniform, so @(p) = Y i w;(p)€; gives dw(p).€; = > i, (dw;(p).€;)é;,

thus (T.37) gives
8wi

8wj

ow; (p) noéed

Wili = B, wij, so [dif]jz=|

). (T.39)

Duality notations: wj; = 9w and [di]; = [2%].

In a coordinate system basis: With the coordinate system described in § [T 4Jand the duality notations
for readability (and usage). @(p) = > i, w'(p)&;(p) gives, for all j,

n n

di.é; =Y (dw'.€)E + Y w'(dee;) (=) whé). (T.40)
=1

i=1 i=1

(Tensorial notations to be used with contractions: dw = 37, € ® dw’ + 3, w' dé; = 3-,; wf;& @ e'.)
And Y, w'(de;.€;) =39 ik wEr = 2 whahé, thus, for all 7, 7,

i _ 0w S ow’ iz
wj; = o + ;w Vi | where 3 = dw’.€;. (T.41)
=1

((?97?:; := dw'.¢€; is the derivation along the j-th coordinate line of the scalar valued function w?).

(In particular, if @ = & = Y, 6.€;, we recover déy.€; = >, 06 + > ., 657%6’} =3, 'y]i.éej-, cf. )

Exercice T.20 di(p) being an endomorphism, with exercise[T.19, @ = 3, u‘d@; = 3, v'b; and Q = P,
check (calculations):

i)y = P~V [did)ja. P, e of; = ZQWMP@ (T.42)
k=1

Answer. [u]; = Q.[W]z, i-e. vt =3, Qiu” for all i, thus dv'.b; = 3, (dQ4.bj)u* + 3, Q4 (du’.b;), thus

i
’U‘J- do’ b +Zv 'ngb

(T.36| PR 7 — w 7 v 7 v =
C2 S PP a) + S QMPHdn d) + 3 (QSu) QAP PYrha + S (Q5uN)QLPI (dPY d,)
Ap A

kwAipv kxpv

And QE P} = 6 gives (dQF.a, )P + QF dPj;.d,) = 0, thus the fourth term reads
K g )k 3

> wrQLPIQN(APY ) = - > uwrQLPIPY(AQX.y) = — > u PI(dQA.dy),

kApv kApv Ap

which cancels the first term: Thus vf; = W QAP (du.dy) + Do U YQA\P Y, = Soan Q\uf; P!, i.e. 1' u

190



191 T.6. Application 4: Differential of a differential form

T.6 Application 4: Differential of a differential form

Here F = R, ® ="°ted ¢ ¢ O1(U) (differential form) supposed C', p € U, so £(p) € E*. Its differential at p
in a direction @ is df(p).@ = limp_,q Mh)—f(p) € E*. And (d{(p).@).0 = limp, M eR
for all w,v € E.

Quantification: (7.;(p) its the dual basis.
Call 4;(p) € R the components of £(p), i.e. £(p) = > ;" 14i(p)7ei(p). And call ¢;;(p) the components
of dl(p) € L(E; E*):
0= lime, dl.é; = Zawm, [0z = [€y;]- (T.43)
i=1
Tensorial notations, to be used with contractions: d¢ = Zi7j=1€z‘\j7rei ® Tej-

Duality notations: £ =3, {e’, d.&; = Y1 byze’, [dl)je = [Cy);], and df = 377, i e’ @ .

In a Cartesian basis: Here (€;) is uniform, so

ot; noted ot
il = (p) = lij, so [dljz=[5—] (T.44)
li 8$j J al'j
Duality notations: ¢;; = df;.€; = gﬁ; and [dl]z = [gﬁj-].
In a coordinate system basis: With duality notations and Christoffel symbols:
de'.¢; = —Z’y}kek . (T.45)

Indeed, e'.¢), = 0}, gives (de.¢;).6 + ¢'.(dé}.€;) = 0, thus (de’.&)).¢, = —e'. 3", 7.8 = —7i;.. Thus

o & o, .
by = 545 ~ ;&g%’% where  55(p) = dli(p)-&i(p). (T.46)

Indeed, £ = 3=, lie" gives dl.¢; = 3, (dl;.&;)e’ + 37, 4i(de’.&5) = 3, (dl;.€5)e’ — 3 Liviper.

T.7 Application 5: Differential of a 1 1 tensor
{U %E(E*,E;R)}

p —1(p)
z(p+hd)—z(p)

. Its differential dr : is

Consider a C* (}) tensor 7 :

U — L(E;L(E*,E;R))
p — dz(p)

€ L(B", E5R), so (dr(p).) (£, ) = limy, o XX 00D

defined by dz(p).u = limp, o
(e R), for all 4,7 € F and £ € E*.

Quantification (duality notations): Basis (€;(p)) in E at p, dual basis (e’(p)), call 7/(p) the components
of 7(p), call 7}, (p) the components of dz(p):

E:ané}@ej, dr.ey = Z |kel®e ) dr = Z ‘kel®e ® e". (T.47)
Lj i,5=1 i,5,k=1

(Classical notations: 7 = Z Tij€i @ Tej, dT.€) = Zij Tij|k€i @ Tej, and dr = Zijk Tij|k€i ® Tej @ Tek.)
Cartesian basis: dz(p).¢. = Zij(dT}(p).é'k)é} ®el = Diik %(p)é} ® el ® ek gives

i ({97’; noted ; (

Tilk = Bk i (= dT;.é'k). (T.48)

Coordinate system basis: 7(p) = szle; (p)é;(p) @ e’ (p) gives, for all k,

dr.éy = Y, (d7}.€)é @ el +22 71 (dé;.6x) @ € +22 TjeZ ® (de’ .éx,)
= Z j(dTJZ é )el ® 6 + EUZ j’ykle‘g ® 6 ZZJZ j’ykéez ® 6 (T49)
Yldrie)eE e +32,, TiYheCi @ € — D ije {6 @ €

kol
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192 T.8. Divergence of a vector field: Invariant

thus

. ort n . L ort .
Tk = 87(1?“ + ZTf’y}d - ngﬂyﬁj where a—q; = dT}.€). (T.50)
=1 =

(We have the + sign from vector fields, cf. , and the — sign from differential forms, cf. )
Exercice T.21 If ¢ € E, ¢ € E* then for the elementary ( ) tensor T = @ ® £ prove:

d(i®l).€, = (du.éy) ® L+ U ® (dl.€), and (¥® E)z‘k = u‘ikéj + ui€j|k, (T.51)
when @ =), u'é;, { = Z.é-ej, di.éy, =), u‘iké’i, dl.ek =3 ; e

_ = _ i i > _ i 2o i ipy,
Answer. T =U®L =}, 7/€; ® €. where 7/ = u'(;, and dr.ex = 3 7 ;176 ® e’ where Tl e = (W) =

ufkﬁj + Ul = (T ® E);-‘k Thus (s1m11ar to the derivation of a product):

(@ ® ) (pt+hek(p)) — (@@ £)(p) i(p+hek(p)) ® Lip+hex(p)) — u(p) ® £(p)

d(i @ £)(p)-€i(p) = lim 5 = lim W
_ lim 2@ thes(p)) ® Up+hei(p)) — dp+hei(p) @ Up) |y, T(p+hek(p) @ Up) — (p) ® U(p)
h—0 h h—0 h
_ hm( (p—|—h ( )) ( (p+h6k(5)) _ Z(p)) + }ll%(ﬁ(p+h€k(]f)) - ﬁ(p)) ® f(p)

= i(p) ® (dl(p)-€k(p)) + (dii(p)-ex(p)) ® £(p),
thus (T.51)1. Which gives d(@ ® £).& = (3, u'@) @ (X &xe’) + (3, uiy&) ® (3, £5¢7), thus (T.51),.

T.8 Divergence of a vector field: Invariant

[(U) is the set of C! vector fields in U, and Tr : L(E; E) — R is the trace operator.
Definition T.22 The divergence operator is

I'(U) — C°(U;R)

T.52
W — divw := Tr(dw), ( )

diV::Trod:{

so divid(p) = Tr(dwi(p)) is the trace of the endomorphism d(p).
Tr and d are linear, hence div = Tr o d is R-linear (composed of two R-linear maps).
Proposition T.23 The divergence of a vector field is objective (is an invariant): Same value for all

observers (objective quantity) intrinsic to .

Proof The differential and the trace are objective. (Computation: @ = Y, u'd@; = 3, v'b; gives
= 4 QkulePf see 1} thus ), v = Y ke PZ.ZQ}CU"“Z =1 5,‘;u‘k€ => u"“k) un

Quantlﬁcatlon: w e L(U), (&) is a basis, & = )" jw;é; with classical notations, and w;;(p) are the
components of the vector dw(p).€;(p) in the basis (€;(p)). Thus

divid =Y “w;; | (T.53)

Duality notations: @ = >/ w'€;, d.€; = i wi;&, [d]je = [w])], divd = 377 w;.

noted Ow; and

Cartesian basis (€;) (classical notations): dw;.€; = 5
Tj

wj); = %7 thus divd = ZZZ}Z (T.54)

(Duality notations: divid = >, ‘37; )

Coordinate system basis (€;) (duality notations): With the Christoffel symbols, cf. (T.34), (T.41)
gives

wlz = + Zu) Ve, thus divid = Zaw . (T.55)
i=1 i,k=1
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193 T.9. Objective divergence for 1 1 tensors

Exercice T.24 Prove:
div(fw) = df @ + f divd. (T.56)

Answer. d(fw) =W @ df + fdw gives Tr(d(fw)) = Tr(W @ df) + Tr(f dw) = df. & + f Tr(dw). Use a coordinate

system if you prefer. .

Remark T.25 If o = )" o€’ is a differential form, then da = Y7 o, e' @ €7 where a); := €;.da.¢;.
Here it is impossible to define an objective trace of da like Z?:lai‘i: The result depends on the choice of
the basis (the Einstein convention is not satisfied, and e.g. with a Euclidean basis the result depends on
the choice of unit of length: Foot? Meter?). Thus the objective (or intrinsic) divergence of a differential
form is a nonsense. E.g. the trace of an inner dot product (-,-), is a nonsense. nn

T.9 Objective divergence for 1 1 tensors

To create an objective divergence for a second order G) tensor 7 € TE(U), in l we have to contract
an admissible index with the “differential index k”. So, no choice: Contract i and k to get divr :=
> j=17j€ - Let us start with:

Definition T.26 Let @ € I'(U) and ¢ € QY(U) be C*. The objective divergence of the elementary ()
tensor @ ® ¢ € TL(U) is the differential form div(@ ® ¢) € Q(U) defined by

div(@ ® ¢) = (divid)l + dl.ii, meaning div(d ® £).40 := (divad)(£.47) + (d0.5).i (T.57)

for all & € E. (No basis and no inner dot product needed.)

— (TiU) = Q'(U)
And the objective divergence operator div : — is the linear map defined on ele-
Tz —divz

mentary tensors with (T.57)).

Quantification: If (¢€;) is a Cartesian basis, ( %) its dual basis, @ = Y, u'é;, W = Y, w'e;, £ = >t e,
then T ® ¢ = Zij u'l;€; @ el and divii = Zl aa:t - and d¢ = Z” giﬁ e’ ®el, thus dl.av = gi’@ wle?, thus

div(d ® ). = (diva) (045) + (ded).d = 32, 9% 3, Gw? + Y, e wiul, thus

ij Oxt

R Bu 8€ i _q . _,
div(z ® 0) = i;:l(axl 0+ 5t ued (= (divi)l + dL.i). (T.58)
Thus for the elementary tensor 7 = @ @ € = 3 u 0 el ® el =3, 7ié; @ e, where T} = u'l;, we get

ij 'j
. ari or! a; ot} ae;

_ j _ i i Ot
dr.ex, = ik 7.+ €i @€’ and dlv( )=> i axle with axk = BME +u amfw S0 7.7 8x1€ +u' 5t

Thus, by linearity of dlv, for all tensors 7 € TE(U), we have with .

— " o9rt ; y
divy = Z 5‘;1' e, e [divr]e= (ZZ g;& > g;?) (T.59)

ij=1

e P . . . . or! ;
(row matrix since divz is a differential form). I.e., we have contracted i and kindr = 3, #el@ej ®ek.
And in a coordinate system basis, with (T.47)):

&R@ = Z T;‘Z—ej, ie. [le’T] =(> Tlll DY Tflli)‘ (T.60)
ij=1
(Classical notations: &ﬁf; = szleijliﬂ'ej, ie. [&ivv;hé» =(22iTitli -2 Timli )-)

Exercice T.27 Prove: If f € C'(U;R) and z =)' ._ 7j€; ® ¢/ € T (U) N C" then

i,j=

div(fz) = df 2 + f divz. (T.61)

jgmwer. fr=3%, friéi @ el gives d(f1) :,injk(fT;)|k€i ®el @ek = Z”k(_ﬂij + f TiR)E ® ) @ e”, thus
div(fr) =32, (furj + frj)e’s And df. + fdive = 37, furje! + f 32, 7‘}|Zej, Thus . un
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194 T.10. Euclidean framework and “classic divergence” of a tensor (subjective)

Exercice T.28 Prove: If 7 € T} (U) and « € T'(U) then

div(z.) = div(z).W + 7 () d |, (T.62)

o j P o M
Answer. 7 =3 .. 7; '€, @el and W =Y, w'e; give T =3 Tiw! €;, thus div(z.@) =32, mw e wl un

17 7

Exercice T.29 If 7 € T} (U) check with component calculations (since div(z) € 77 (U) is objective):
[dlv( lp = [le( 7)]ja-P  (covariance formula), (T.63)

where P is the transition matrix from a basis (@;) to a basis (I;Z)
Answer. Let 7=}, 0; ' ®a =3 ij @Y, s0 T = =3 Q)\O’APM.

1- Cartesian bases: >, 7, = Y, dTJ.bz =2>,d(2,, Q\opP1).(3, PY.dy) = i Q\P!'P! (doy .d@y) =
D oaw X Pf (doy.d) =32, , Pf(doy.dx) = z#(z)\ UQM)P;‘ as 'desired. '

2- Coordinate system bases: >, 7 N =3 AT E Y T Vs — Téwfj,b (with j fixed); With

S (drib) = Y QA (dopbi) P+ (dQSbi) op P+ > Q4 o (AP by)

7 i I TAL
= Y Q\P!'P!(do.d,) + Y op PIPY(dQN.d) + Y op QNP (P .dy)
IApY iApv iApv
= Y P(dop.dx) — Y op PLQN(AP! .d) + Z oy (dP.d
Ap TApLY

since PY Q% = 8% gives P} (dQ%.d,) — Q4 (dP? .d@.). And, with (T.36),
S rvie = Y O QNP | QP PP + Y QP (AP dp))
il

il Ap afBw apB

A Dl o A pr o = (T64)
= ZO—MPJ' Yaxr,a + Z O—;LQ/\P]' (dPZ 'aa)y
Apa \pa
and
> Tivie = — > O Q\n PO PAPI Qs + ZP“QW APy o))
174 il Ap afw (T 65)
= - Zaﬁpffy‘;@‘a - Z o (dP.dy).
AppB A
Thus >, 7 ]‘Z ZA# #(dop,.dx) + ZMQ U#P”’yak @ Z)\Hﬁ UZPjB'YiLB,a = ZM PJ.“‘O‘:M as desired. un

T.9.1 Divergence of a 2 0 tensor

Letz € Tg(U)and £ = 77, 7€ ®¢;, thus dz = sz,k:ﬂ”“keﬂi@eﬂj ®e”; Then two objective divergences
may be defined: by contracting k with 4, or k with j. (The Einstein convention is then satisfied.)

T.9.2 Divergence of a 0 2 tensor

Let £ = 0 mije' @ el € TY(U). Thus dz = 37— 7ijke’ ® ¢/ @ ¥, and there are no indices to
contract to satisfy Einstein convention: There is no objective divergence of 0 2 tensors.

T.10 Euclidean framework and “classic divergence” of a tensor (subjective)

Let g € THU) be a (}) C* tensor (so at any point in U naturally canonically identified with an endomor-
phism). An observer chooses a Euclidean basis (€;) and call (-, -), the associated Euclidean dot product.
Let [g]jz = [07;].

Definition T.30 The usual divergence div.o in continuum mechanics is the column matrix (it is not a
vector)
n Balj
Zj:l Oz N cod
diveg := : = [dive]¥ = divg. (T.66)

Z’n Bo'nj
j=1 Oz

So: Take the divergences of the “row vectors” of [g]. = [04;] to make the “column vector” [div.g].
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195 U.1. The adjoint of a linear map

Proposition T.31 If i € T3 (U) (a vector field), then

[div(g.@)]jz = divea” [z + [g]‘qé : [did))e. (T.67)
Proof. 1} gives div(c.7) = &ivv(g).ﬁ+ o () di, thus 1| Or direct calculation. ia

More general definition of divergence in classical mechanics : Let g be a C! tensor of order 2 of any
kind. Then the divergence div.g of g relative to the basis (¢;), is the column matrix (it is not a vector)

Zn 80’1]'
j=1 0xJ
div.o = : , written diveg = E

Zn ’ aUnj
j=1 0xJ

where (E;) is the canonical basis in M,; the space of n 1 column vectors.

302 j

E (T.68)

Exercice T.32 Prove that the “so called vector” diva defined by

divg = Z %(;” g, (T.69)
J

is not a vector of any kind.
Answer. We have to prove that: If (d;) and (l;l) are bases, if P is the transition matrix from (d;) to (51), then
neither [dive]; # P_l.[divgha nor [dlva} [leO’]‘a (T.70)

i.e. the divergence as defined in (T.69) is neither contravariant nor covariant (does not satisfy any change of basis
formula). (Compare with (T.63))

X .
For a (}) temsor: o = 3_,.(00)jbsi @ b/ = ZZ_J( a)ids © d, (o] = P~ [ ]|aP = LloljaA = [o]ja, ie
(0a); = (ov)} for all i,j. Thus (T.69) gives dive = 32, (d(03)5.5;)b; = 3=, (d(0a)}-(Ad;))(AG;) = A*divag. Thus

[diva]; # P~ [diwg])z and [divbg]‘g [diveo ]Ia P.

For a (3) tensor: g = 32, 00,450’ @V = 3, 0050’ @@, and [g] 5 = PT.[a]ja.P = N?[g]ja, i.e. 0v,i5 = A?0a,ij
for all i,5. Thus (T.69) gives divg = 3_,;(dov,i;.b;)bi = A>3, (doa,i5.(Ad;))(Ad:) = Adivag. Thus [div,g]; #
P*l.[divbg]‘;i and [divbg]lqll) # [divao ]‘7; P. )

For a () tensor: a=3 ]b ®b; = =2 o9d; ® d;, and o]z =P~ Tlolja-P™' = szlo)ja ie. o)) = 320
for all 4,j. Thus (T.69) gives divg = 3, (doy .by)bi = 35 3,,(doi/.(Ad;))(AG:) = divag. Thus [divg]; #
.. v

|a@

P~ [divg]|z and [divbg]lj;; # [diveg]

U Natural canonical isomorphisms

U.1 The adjoint of a linear map

Setting of § E and F are vector spaces, E* = L(FE;R) and F* = L(F;R) are their dual spaces,
and the adjoint of a linear map P € L(E; F) is the linear map P* € L(F*; E*) canonically defined by

Vle F*, P*({):=LoP, written P*.L=L(P (U.1)
(dot notations P*(¢) =noted P* ¢ and foP =1°%d ¢ P since £ and P* are linear), i.e., for all (£, @) € F*x F,
P*(l) (@) = L(P(@)), written (P*.0).u=LP.u. (U.2)

Interpretation: If P is the push-forward of vector fields, then P* is the pull-back of differential forms,
see remark In particular, it will be interpreted with P € £;(E; F) (linear and invertible = a change
of observer).
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196 U.2. An isomorphism E ~ E* is never natural (never objective)

U.2 An isomorphism F ~ E* is never natural (never objective)

Two observers A and B consider a linear map L € L(E; E*); Let P € L(E; E) be the change of observer
endomorphism. Willing to work together, A and B (“naturally”) consider the diagram

E —L> E* . + considered by observer A
Pl TP (U.3)
E —L> E* < considered by observer B

Definition U.1 (Spivak [19].) A linear map L € L(E; E*) is natural iff the diagram (U.3) commutes
for all P € L(E; E):

L e L(E;E*) is natural <= VP € L(E;E), P*oLoP =L. (U.4)

(In that case, if A computes L.@ with the top line of the diagram, if B computes with the bottom line of
the diagram, then they can easily check their results since here L. = (P* o L o P).4.)

Question: Does there exist an endomorphism L such that the diagram (U.3)) commutes for all change
of observers? That is, do we have

I?L € L(E;E), VP € Li(E;E), P oLoP=0L?7? (U.5)
Answer: Always no (if L # 0):
Theorem U.2 A (non-zero) linear map L € L(E; E*) is not natural: If L € L(E; E*) — {0}, then
IP e Li(E;E) st. L#£P*oLoP. (U.6)

Proof. (Spivak [19].) It suffices to prove this proposition for E=R. Let L € L(R; (R)*), L #0.

Let (@) be a basis in R (chosen by A). Let (bl) be a basis in R (chosen by B).

Cons1der PeLl; (]R R) defined by P(al) b1 (change of observer), and let A € R s.t. b1 = A\d;. Then
gives P*(0)(dy) := ((P(d)) = £(by) = £(Ad1) = M(a@,), thus P*(£) = M for all £ € (R)*.

Thus P*(L(P(d1))) = P*(L ()\Eil)) = \P*(L(a@)) = N2L(@;) # L(@;) when \2 # 1. E.g., P = 2I glves
L+#P*oLoP (=4L), thus (U.6): A (non-zero) linear map E — E* cannot be natural. wn

Example U.3 Consider F s.t. dim F = 1, and consider the linear map L € L(E; E*) which sends a
basis (@) onto its dual basis (741), so L is defined by L.d; := 741.

Question: If (by) is another basis, A # +1 and by = M@ (change of unit of measurement), does
L.b, = mp1, 1.€. does L also sends (bl) onto its dual basis?

Answer: No. Indeed, b1 = \d gives mp; = /\71',11, thus L. b1 = AL.@; = A\mq1 = A2my; # w1 since
A2 2 1. In words: L is not natural, cf. (U.6).

A different presentation: Let L4 and Lp be defined by L4.d; = m4; and LB.gj = mp; for all j. And
suppose that b; = Ad@; for all j. Then, La.b; = AL 4.@; = Ama; = A2my; = A\2Lp.b; # Lp.b; when A2 # 1,
that is, L4 # Lp when A2 # 1: An operator that sends a basis onto its dual basis is not natural. .

Example U.4 Let (-,-), be an inner dot product in E = R”. Let ﬁg € L(E*;E) be the Riesz rep-
resentation map, that is, defined by R,(f) = £, where £, is defined by (£,,7), = £.7 for all 7 € R™,

cf (F.3).

Question: Is ﬁg natural?

Answer: No: Consider the diagram (P* 4 1) 73) with P = A, A # £1. Then P* = \I, and

P.EQ.P*.E = A2§g.€ #* Ryt gives P.ﬁg.’P* # ﬁg: So ég is not natural, cf. . (You may prefer to
consider the diagram 1} with L = ﬁg_l.)

A different presentation: Consider two distinct Euclidean dot products (-, )4 and (-, )5, (e.g., built with
a foot and built with a metre). So (-,-), = A*(-, )y with A # 1. Let ﬁg7ﬁh € L(R™*;R™) be the Riesz
operators relative to (-, ) and (-, )p, that is E L= Z and éh L= Zh are given by £.0 = (Zg, U)g = (Ch, D)
for all 7 € R*. We have {}, = )\Zég, cf. , thus Bj, = X2 Rg # R since A\? # 1: A Riesz representatlon
operator is not natural (it is observer dependent) un
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U.3 Natural canonical isomorphism F ~ E**

Two observers A and B consider the same linear map L € L(E; E**) (where E** = (E*)* = L(E*;R)).
Willing to work together, they (“naturally”) consider the diagram

E — E* <« considered by observer A
Pl L P (U.7)
E ? E** <« considered by observer B

where P € L(FE;E) is a linear diffeomorphism, P* € L(E*; E*) its adjoint, given by P*({) = £ o P
cf. (U.1), and P** € L;(E**; E**) the adjoint of P*, thus given by P**(u) = uo P* for all u € E**
cf. (U.1)), i.e. P** is given by, for all (¢,u) € E* x E**,

(P (w)(0) =u(loP), ie (P u).l=u(lP). (U.8)

Question: Does there exist a linear map L € L(E; E**) that is natural?
Answer: Yes (particular case of the next proposition):

Proposition U.5 The canonical isomorphism

T E — E™ (U.9)
PP i s u=Jp(@) defined by Jp(@)(l) = tid, Ve E* ‘

is natural, that is, F' being another finite dimensional vector space, the diagram

Pl L P written P | P (U.10)
F — F — F*
Jr J

commutes for all P € L(E; F), i.e.
VP e L(E;F), P"oJg=JroP, andwe write E ~ E**. (U.11)
Thus we can use the unambiguous notation (observer independent)
J(@) "G and J(@).0" L a0 (= a). (U.12)
(And u = J (@) is the derivation operator in the direction i.)

Proof. (Spivak [19].) It is trivial that Jg is linear and bijective (E is finite dimensional): It is an

isomorphism. Then (P** o 7(@))(0) & 7u(@) (¢.P) B2 (0 0 P)() = 0P (@) D T2 (P(@))(£), for al
e F* and all 4 € E, thus P** o Jg (1) = Jr(P(W)), for all @ € E, thus P** o Jg = Jr o P. ia

Proposition U.6 (Characterization of Jg.) Jg sends any basis (@;) onto its bidual basis. (Expected,
since Jg (i) is the directional derivative in the direction @, whatever .)

Proof. Let (d;) be a basis and (m,;) be its dual basis (defined by 74;.d@; = ;5 for all 4, ). Then (U.9)
gives Jg(d;).mqi = Tqi.G; = d;; for all 4, j, thus (Jg(d;)) is the dual basis of (m,;), i-e., is the bidual basis
of (@;); True for all basis: jE(gj).wbi = mn-.l;j = 0;; for all ¢, j. =n

U.4 Natural canonical isomorphisms L(F; F') ~ L(F*, E;R) ~ L(E*; F*)

E F A, B are finite dimensional vector spaces. Consider the canonical isomorphism

EF.{ﬂ(E;F) — L(F*, E;R) (013

L — L=Jg(L) where L({,@):=(Lid, V(@) ecF*xE.
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198 U.5. Natural canonical isomorphisms L(E; L(E; F)) ~ L(E,E; F) ~ L(F*,E, E;R)

Let Py € L;(E; A) and P2 € L(F; B), and consider the diagram

JEF

L(E;F) =% L(F*,E;R)
Ip | 1Ip (U.14)
L(A;B) — L(B*,A;R)
JaB
where o B
Ip(L) = Po.L Py and Zp(L)(b,@) = L(b.Ps, Py L.@) V(b,d) € B* x A. (U.15)

(Zp and Zp are the push-forwards for linear maps L € L(E; F) and for bilinear forms L € L(F*, E;R).)

Proposition U.7 The canonical isomorphism Jgp is natural, that is, the diagram (U.14) commutes for
all Py € L;(E,A) and all Py € L(F, B):

natural

Zp o Jor = Jap o Ip, and L(E;F) L(F*,E;R). (U.16)
Thus L(E*; F*) """ £(E; F).
Proof. Jus(Zr(D)) (b, @) T2 .25 (1).d T2 b.(Py. L. P Vi = (0.P2) L. (P @) T2 Jo (L) (0P, P )
@(JEF(L))(b,a), true for all L € L(E; F), be B*, d € A, thus (U.16).
- U.11

Thus £(E*; F*) = L((F*)*,E*;R)L(F E*;R) =" L(E™;F) =" L(E;F).

S
-
S
=

Consider the canonical isomorphism (defines the transposed of a bilinear map)

L(E,F;R) — L(F,E;R
ICEF:{ ( ) = L( )

T — Kgr(T) } Ker (T)(i, 0) := T(¥,4), V(7)€ E x F, (U.17)

-,

and Zyp € L(E, F;R) — L(A, B;R) defined by Zug(T)(@,b) := T(P; .@, Py L.b) for all (7,b) € A x B.

Proposition U.8 The canonical isomorphism Kgr is natural: For all (P1,Ps) € L;(E; A) x L(F; B), the

L(E,F;R) X Ker L(F,E;R) ura
diagram ZaB \ Zpa commutes: L(E,F;R)"“~" L(F,E;R).
L(A, B;R) @ L(B, A;R)

-,

Proof. 1CEF(ZAB(T))(57 @) = Zus(T)(@,b) = T(Py'.b, Py @) and Zpa (Ker (T)) (@, b) = Ker (T)(Py @, Pyt b) =
T(Py b, P L.d), thus Kup o Zap = Zpa o Kgr.

U.5 Natural canonical isomorphisms L(E; L(E; F)) ~ L(E,E; F) ~ L(F*,E, E;R)
For application to the second order derivative d(di) ~ d*@ and, with @ € T¢(U), the notation dii € TH(U),
then d*i € T3 (U), ..., d*i € T}H(U), .
Consider the canonlcal 1somorphlsm
L(E;L(E;F)) — L(E,E; F)
T2k

, Ty)(ty, 1) =Ty (1) .Uy € F, Vip,ids € E,
T —>T2:j12E(T1)} leE( 1)(U1 Uz) 1(U1) U2 U1, U2

(U.18)
and the canonical isomorphism

Ty s FE B 2 LU B ER) L ) 0Ty i), Vi, € B, Ve e F. (U.19)
23E - T, %jng(TQ):T:a 36, U, V) 1= L. d2(UL, U2), Uy, U2 , . .

Proposition U.9 7> and Jos3 are natural. Thus Ja3 o Ji2 is natural.
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Proof. 1- We have to prove that the following diagram commutes:

J12
L(E;L(E;F)) ““2¥ L(E,E;F) e (TG )50 e T+ (P-1.3) (P-1 &
Zap | L Yap  where s 1)(f1)f12~ 1(7311 -_C,h).(zjl _,.a2), (U.20)
Yap(T2)(a1, dz) = To(Py .1, Py~ .d2),

L(A;£(A: B)) T28 £(A 4;B)

(the “push-forwards) for all @,ds € A and Lap € L(A; B).
Let Ty € L(E; L(E; F)). We have
T124(Zap (T0) )(@1)-Ga = Zap(Ty)(d@1).dy = Ty (Py *.dn).(Py '.dia), and
Yap(Jrop (Th)) (@1, d@2) = Jiop(Th)(Pr @1, Py tds) = Ty (Py ta@r). (P t.d@a),
thus Ji24 © Zag = Yap o J12E, thus Ji2 is natural.
2- We have to prove that the following diagram commutes:

j23 *

ZC(E’E%F) = L(F", B, E;R) 5. Zap(To) (@1, @) = (05.Po). To(Pr L@y, Py L),

B L 1 Yap where oL P,

(A, A:B) Js LB A AR) Yap(T3)({p, a1, d2) = T3({p. P2, Py .1, Py .d2),

(U.21)
(the “push-forwards) for all @;,ds € A and ¢ € B*.

Let Ty € L(E, E; F). We have
To3a(U, Zap(To) (@1, ds)) = €p.Zap(Ta) (@1, d2) = (05.Pa).To(Py a1, Py t.ds), and
Yap(Ja3a(To))(Up, @1, @) = Jaza(To) (L. Pe, Py tdy, Py tdz) = Lp. Po.To(Py t.dy, Py t.d2)
thus J234 © Zag = Yag 0 ngE, thus Jo3 18 natural. n

V Distribution in brief: A covariant concept

For a full description, see the books of Laurent Schwartz.

V.1 Definitions

Usual notations with © an open set in R™: Let p € [1, 0] (e.g. p = 2 for finite energy functions), and let
Q)= {f: Q—>R:/Q|f(x)|pd§2 <oo} and |Ifll, = (/Q|f(m)\pd9)57 (V.1)

the space of functions f such that |f|P is Lebesgue integrable, with |[.||, its usual norm. (L?(Q),[|.||,) is
a Banach space (a complete normed space). And let

L2Q) :={f: Q= R: zlelg(lf(w)l) <oo}, and |[[fflec = zlelgﬂf(x)lh (V.2)

the space of Lebesgue measurable bounded functions, with ||.||o its usual norm. (L°(),[].||r=) is a
Banach space (a complete normed space).

Definition V.1 If f € F(Q;R), then its support is the set

supp(f) :={zx € Q: f(z) # 0} = the closure of {z € Q: f(z) # 0}. (V.3)

The closure in the definition of supp(f) is required: E.g., if  =]0,27[ and f(x) = sinz, then {f #
0} :={z € Q: f(z) # 0} =)0, n[U]r, 27[. Here ® ¢ {f # 0}, but 7 is a point of interest since sin varies in
its vicinity: f/(r) = —1 # 0. So {f # 0} is “too small”, and it is its closure supp(f) := {f # 0} = [0, 27]
that is needed: supp(f) = the set where it is interesting to study f.

Schwartz notation:
D) := C (A R) = {p € C (4 R) s.t. supp(yp) is compact in Q}. (V.4)

Eg.,Q=R, ¢o(z) = e T if g €]—1,1[ and ¢(x) := 0 elsewhere: ¢ € D(R) with supp(y) = [-1,1].
Result: D(Q) is a vector space which is dense in (LP(€2),||.||z») for any p € [1, o0].
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200 V.2. Derivation of a distribution

Definition V.2 A distribution in 2 is a linear D(Q)—continuouﬁ function

{D(Q) —R Vs
T : )
o = T(p) "ZNT, )

The space of distribution in  is named D’(2) (the dual of D(Q?)).
The notation (T, ¢)pr)p) = (T,¢) is the “duality bracket” — the “covariance-contravariance
bracket” between a continuous linear form 7' € D’(Q2) and a vector ¢ € D(2).

Definition V.3 Let f € LP(2). The regular distribution Ty € D’(2) associated to f is defined by
/ F@)p(@)dQ, Ve € D(Q). (V.6)

So Ty is a measuring instrument with density dmys(z) = f(z)dQ, i.e. Tf(p) := [, (x) dmys(z).

Definition V.4 Let x¢g € R”. The Dirac measure at xg is the distribution 7' noted

by, for all ¢ € D(R),

8z, € D'(R) defined

Oz () = (w0),  Le. (b, ) = p(20)- (V.7)

And §,, is not a regular distribution (d,, is not a density measure): There is no integrable function f
such that Ty = d,,. Interpretation: d,, corresponds to an ideal measuring device: The precision is perfect
at xo (gives the exact value ¢(z¢) at zp). In real life ., is the ideal approximation of Ty, where f, is

e.g- given by fi(x) = nly, .11y (drawing): For all ¢ € D(Q), T, (#) —Fn—soc 020 () = @(@0)-

Generalization of the definition: In (V.5) D(Q2) = COO(Q R) is replaced by C2°(Q;R"). So if you
consider a basis (€;) then @ € C2°(€; R?) reads G =" p'€ with ¢’ € D(Q) for all 7.

Example V.5 Power: Let o : Q — TP(2) be a differential form. Then the distribution P, defined by
P, (v fsz a.vdf) gives the virtual power associated to « relative to the vector field . un

V.2 Derivation of a distribution

Let O be a point in R™ (an origin). If p € R™ and if (&) is a basis in R, let & = Op S i€

Definition V.6 The derivative 2~ of a distribution 7' € D’(Q) is the distribution in D’(Q) defined by,
for all p € D(),

oT e Op . o . . 09
(o) = —T(52), e (5o.phim—(T. 52, (V)

(% is indeed a distribution: Easy check.)

Example V.7 If T = T} is a regular distribution with f € C'(Q ) then éwl) T( 2Ly Indeed, for all

¢ € D(), 8,(9Tf)(80) Tf axl = —fQ s dQ) = +fQ x)dQ + fFOdF since ¢ vanishes on

I' = 09 (the support of ¢ is compact in Q), thus %Zf)( ) =T, an)( ) for all ¢ € D(Q). .

(3

Example V.8 Consider the Heaviside function (the unit step function) Hy = 1g £ and the associated
distribution T' = Ty,. Then ((Ty,)’, ) = —(Th,, ') = —fQ Ho(z)¢'(z) dz = —fo ' (z)dz = ¢(0) =
(80, ) for any ¢ € D(R), thus (Ty,)" = §o. Written Hy' = & in D’(Q) which is not in a equahty between
functions, because Hy is not derivable at 0 as a function, and Jy is not a function; It is equality between
distributions: The notation Hy' can only be used to compute Hy' () (= (Hy', ) := —(Ho, ¢')). oa

4The D(Q)-continuity of T is defined by: 1- A sequence (¢, )n+ in D(2) converges in D(Q) towards a function ¢ € D(Q)

iff there exists a compact K C § s.t. supp(¢n) C K for all n, and Hax 0" o = axa e —|loo —n—o0 0 for all k € N
i i1 0T,

and all ij; 2- T is continuous at ¢ € D(Q) iff T'(¢n) e T(¢) for any sequence (on)n € DN ¢ in D(Q).
n oo
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201 V.3. Hilbert space H' ()

V.3 Hilbert space H'(Q)

V.3.1 Motivation
=z+1ifx €[-1,0],
Consider the hat function A(z) ¢ =1 — =z if z € [0,1], (drawing). When applying the finite element

= 0 otherwise
method, it is well-known that, if you use integrals (if you use the virtual power principle which makes
you compute average values), then you can consider the derivative of the hat function A as if it was the
usual derivative, i.e. at the points where the usual computation of A’ is meaningful, that is,

=1ifz €] —1,0]

~1ifz €]0,1], (V.9)
—0ifzeR—{-1,0,1}

N (z)

(drawing).

Problem: A’ is not defined at —1,0,1 (the function A is not derivable at —1,0, 1);

Question: So does and the “usual” computation I = [ A'(x)¢(x) dx gives the good result? (This
is not a trivial question: E.g., with Hy = 1g, instead of A, we would get the absurd result H) = 0,
absurd since Hj = dy.)

Answer: Yes in the distribution meaning, i.e.:
1- Consider T} the regular distribution associated to A, cf. (V.6);
73)

2- Then consider (Th)', cf. li We get <(TA)’,¢>7<TA,§0’> = f/RA(x)cp/(x)dx =

0 1 0 1
—/ A(z)¢' (z) dx — / Az)¢' () dx = —|—/ Lj_q,0/(z)(z) d —|—/ Ljgape(z) dz, for any ¢ € D(R);

1 0 -1 0

3- Thus (Tx)" = Ty where f = 1j_1 o; + 1jo,1], that is (T)" is the regular distribution T%.

4- Then Ty = (Ty)' ="°%*d A’ when used within the distribution framework, i.e. when used with
¢ € D(R) and the Lebesgue integral [, A'(x)¢(z) dz := — [, A(x)¢ () dz: Ok for finite element methods.

V.3.2 Definition of L?(Q2) and its dual

The space C°(2;R) is too small in many applications, e.g. to consider step functions; Hence consider
L2(Q) :={f: Q= R: [, |f(x)]?dQ < oo} (the space of finite energy functions) with its usual inner dot
product and norm defined by

(1, v) 2 = /Qu(x)v(ac) a0 and [[v]fs = ||ollgz = /(0. 0) 52 = (/Q o(z)2 d). (V.10)

(L2(%2), (-,+)r2) is a Hilbert space (Riesz-Fisher theorem).
The dual space of L?(12) is the space

L2(Q) = £(L*(Q);R) := {¢ : L*() — R linear and continuous}, (V.11)

i.e. the space of linear forms ¢ : L?(Q) — R s.t. £ is linear and 3C > 0, Vv € HY(Q), |[((v)| < C||v]|L=.
L2(9) equipped with the norm I[€l[z2(ay ==  sup  |[€(v)] is a Banach space.
[lv L2(Q):l
Duality bracket: If £ € L2(€)’ then ¢(v) =n0ted (6,v) g2 2 for all v € L?(9).
And thanks to the (-,-)r2-Riesz representation theorem, a ¢ € LQ(Q)/ being linear and continuous,
¢ € L2(Q)" can be represented by function f € L2(Q): 3f € L2(Q), Vv € L*(Q),

(bv) =) (o) = (f;v)r2 (= Qf(p)v(p)dQ)- (V.12)

NB: L%(Q) is called the “pivot space”.
Idem with ¢ € L>(Q)": 3f € L*(Q)", ¥& € L*(Q)", ((,7) = (f, )12 = [, F(p) + T(p) d2, an inner dot
product in R” being a priori given.
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202 V.3. Hilbert space H' ()

V.3.3 Definition of H!(2) and its dual

The space C*(£2;R) is too small in many applications (e.g., for the A function above). We need a larger
space where the functions are “derivable is a weaker sense™ The distribution sense. Consider a Cartesian
basis (€;) in R”.

Definition V.9 The Sobolev space H!() is the subspace of L?() restricted to functions whose gener-
alized derivatives are in L?(Q):

HY(Q) = {v e LA(Q) : [gradv] iz € L*(Q)"} == {v € L*(Q) : 831;

Li

Usual shortened notation: H'(Q) = {v € L2(Q2) : gradv € L2(Q)"}.

€ L*(Q), Vi=1,..,n}. (V.13)

So to check that v € H'(2), even if 8% does not exists in the classic way (see the above hat function A),
you have to: 1- Consider its associated regular distribution T, 2- Compute ?T“ in D'(Q), 3- If, for all i,
there exists f; € L*(Q) s.t. ‘Zz; =Ty,, then v € H'(Q). 4- Then Ty, = I’; is noted 0;’7, when used with
v € D(2) and the Lebesgue infegral: Jo g—;’b(x)@(x) dx = [, v( 071(56) dx. /

Then define, for all u,v € H'(Q),

(u,0) g1 = (u,v) 2 + (gradu, gradv) 2, and |[v]|m = (v,0) 2, (V.14)
where (gradu, gradv) 2 := Z?:l(g—;‘i, %)Lz. Thus (H*(2), (-,-)g1) is a Hilbert space (Riesz—Fisher).
The dual space of H'(Q) is
HY(Q) = L(H"(Q);R) := {¢: H'() — R linear and continuous} (V.15)

i.e. the space of linear forms ¢ : H*(Q) — R s.t. £ is linear and 3C > 0, Vv € HY(Q), [¢(v)| < C||v|| g
And (duality bracket) if £ € H*(Q)" then £(v) =% (0, 0) g1/ g _noted (¢,v) for all v € H ().

Theorem V.10 ¢ € H'(Q) iff 3(f, @) € L ( )X L2(Q)", Yy € HY(R),
() = (f,4) 2 + (@, grad)) . (V.16)

Proof. From Brézis [4] (application of the Riesz representation theorem). The space Z = L?(2)x L? (Q)d
with its inner dot product ((f, ) (9,7)z := (f,9) 2 + (@, 7) 2 is a Hilbert space. Let T : H(Q) — Z
be defined by T()) = (¢,grady); T is linear and ||T(¢)||z = |[¢||gr, thus T(1)) = 0 imply
1 = 0, so T is one-to-one, thus 77! : ImT — H(Q) is well defined. And T~! continuous since
T—1(, gradyp) = 1. (Remark: ImT is not closed in Z.) Let ¢ € H'(Q)', then define L : Im(T) — R
y (L, (¥, grade)) 2 z = (6, T~ (¢, grady)) g1/ g1: so L = £o T~ is linear continuous since £ and 7!
are, and (L, (¢7gr3d1/})>zf,z = ((,¥) g1 gr; With Hahn-Banach theorem, extend L : Im(T) — R to
Lz : Z — R linear continuous. Apply Riesz representation theorem: 3(f, @) € Z s.t. (Lz, (¢, W))z 7z =
((f, 1), W,0)z = (f,¥)r2 + (€, W)z for all (¢Y,W) € Z, in particular for all (¢, W) € ImT, thus

() g g = (f, )12 + (@, grady) 2 for all ¢ € HY(Q).
NB: For Neumann boundary value problems then (V.16) gives, if @ € H'(£2),

6, sy 1 = / F@)() dz — /Q divit(z)i(z) dz + /F (x) » 7(z) () dz. (V.17)

V.3.4 Subspace H}(Q) and its dual space H~1(Q)

Definition: )
—H
H;(Q) :==D(Q) the closure of D(Q) in H(Q). (V.18)
So H}(Q) is closed in H(£2), hence (H}(Q), (,+)g1) is a Hilbert space. If the boundary T' = 9Q of Q is
bounded and regular then

H{(Q) = {ve HY(Q): vy =0} | (V.19)
(See Brézis [4].) The dual space of (H}(Q),||.]|z:) is the space

noted

(H3 (Q)) := L(HL(Q);R) := {£: H}(Q) — R linear and continuous} HYQ), (V.20)

i.e. space of linear forms ¢ : H}(Q) — R s.t. 3C > 0, Voo € HL(Q), [4(¥)] < C|[¥||g:- And then
{(zp) =noted (6, ¢) -1, gy (duality bracket).
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203 V.3. Hilbert space H' ()

Theorem V.11 (€ H-Y(Q) = (H}(Q)) iff 3(f,§) € L*(Q) x L*(Q)" s.t.
(= f—divg (€ D'()), (V.21)

ie., for all € H (),
(¢, w>H*1,Hé = / fydQ —|—/ dy.g dfd. (V.22)
Q Q

And if Q is bounded then we can choose f = 0, and moreover if § € H'(Q)" then
(€ == [ divia)i(a) da. (v.23)
(In fact we only need § € Hy;,(Q) = {g € L*(Q)" : divg € L*(Q)}.)

Proof. Apply (V.16) here with ¢ € D(Q) or ¢ € Hj(R), so with ¢ = 0 (for the integration by parts). da

W  Basics of thermodynamics

See https://perso.isima.fr/leborgne /IsimathMeca/Thermo.pdf
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