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In classical mechanics, there are two objectivities: 1- The covariant objectivity concerns the universal
laws of physics required to be observer independent (true in any reference frame); This is a main topic in
this manuscript. 2- The isometric objectivity concerns the constitutive laws of materials once expressed
in a reference frame.

Covariant objectivity in continuum mechanics follows Maxwell's requirements, cf. [15] page 1: �2. (...)
The formula at which we arrive must be such that a person of any nation, by substituting for the di�erent
symbols the numerical value of the quantities as measured by his own national units, would arrive at
a true result. (...) 10. (...) The introduction of coordinate axes into geometry by Des Cartes was one
of the greatest steps in mathematical progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point is made to depend on the length of three lines
which are always drawn in determinate directions (...) But for many purposes in physical reasoning, as
distinguished from calculation, it is desirable to avoid explicitly introducing the Cartesian coordinates,
and to �x the mind at once on a point of space instead of its three coordinates, and on the magnitude
and direction of a force instead of its three components. This mode of contemplating geometrical and
physical quantities is more primitive and more natural than the other,...�

And see the (short) historical note given in the introduction of Abraham and Marsden book �Foun-
dations of Mechanics� [1], about qualitative versus quantitative theory: �Mechanics begins with a long
tradition of qualitative investigation culminating with Kepler and Galileo. Following this is the period
of quantitative theory (1687-1889) characterized by concomitant developments in mechanics, mathemat-
ics, and the philosophy of science that are epitomized by the works of Newton, Euler, Lagrange,
Laplace, Hamilton, and Jacobi. (...) For celestial mechanics (...) resolution we owe to the genius of
Poincaré, who resurrected the qualitative point of view (...) One advantage (...) is that by suppressing
unnecessary coordinates the full generality of the theory becomes evident.�

After having de�ned motions, Eulerian and Lagrangian variables and functions, we give the de�nition
of the deformation gradient as a function. We then obtain a simple understanding of the Lie derivatives
of vector �elds which meet the needs of engineers. Then we get the velocity addition formula and verify
that the Lie derivatives are (covariant) objective. Note that Cauchy would certainly have used the Lie
derivatives if they had existed during his lifetime: To get a stress, Cauchy had to compare two vectors,
whereas one vector is enough when using the derivatives of Lie.

We systematically start with qualitive de�nitions (observer independent), before quantifying with
bases and/or Euclidean dot products (observer dependent). A fairly long appendix tries to give in one
manuscript the de�nitions, properties and interpretations, usually scattered across several books (and
not always that easy to �nd).
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A quantity f being given then: g de�ned by � g equals f � is noted g := f .

Part I

Motions, Eulerian and Lagrangian

descriptions, �ows

1 Motions

The framework is classical mechanics, time being decoupled from space. R3 is the classical geometric

a�ne space (the space we live in), and (R⃗3,+, .) = {p⃗q : p, q ∈ R3} =noted R⃗3 is the associated vector
space of bipoint vectors equipped with its usual rules. We also consider R and R2 as subspaces of R3, i.e.
we consider Rn and R⃗n, n = 1, 2, 3.

1.1 Referential

Origin: An observer chooses an origin O ∈ Rn; Thus a point p ∈ Rn can be located by the observer
thanks to the bipoint vector

−→Op = x⃗ ∈ R⃗n; Hence p = O + x⃗, and x⃗ =
−→Op =noted p−O.

Another observer chooses an origin Õ ∈ Rn; Thus the point p can also be located by this observer

with the bipoint vector
−→̃
Op = ˜⃗x ∈ R⃗n; So p = O + x⃗ = Õ + ˜⃗x, and ˜⃗x =

−−→
OÕ + x⃗.

Cartesian coordinate system: A Cartesian coordinate system in the a�ne space Rn is a set RCart =
(O, (e⃗i)i=1,...,n), where O is an origin and (e⃗i) := (e⃗i)i=1,...,n is a basis in R⃗n chosen by the observer.

Thus the location of a point p ∈ Rn can quanti�ed by the observer ∃x⃗ ∈ R⃗n s.t.

p = O + x⃗ with x⃗ =

n∑
i=1

xie⃗i, i.e. [
−→Op]|e⃗ = [x⃗]|e⃗ =

 x1
...
xn

 , (1.1)

[x⃗]|e⃗ = [
−→Op]|e⃗ being the column matrix containing the components xi ∈ R of

−→Op = x⃗ in the basis (e⃗i).

Another observer with his origin Ob and his Cartesian basis (⃗bi)i=1,...,n make the Cartesian coordinate

system RCart,b = (Ob, (⃗bi)i=1,...,n), and gets for the same position p in Rn,

p = Ob + y⃗ with y⃗ =

n∑
i=1

ỹi
˜⃗
bi, i.e. [

−−→Obp]|⃗b = [y⃗]|⃗b =

 y1
...
yn

 , (1.2)

[y⃗]|⃗b = [
−−→Obp]|⃗b being the column matrix containing the components yi ∈ R of

−−→Obp = y⃗ in the basis (⃗bi).

And
−−→Obp =

−−→ObO +
−→Op, i.e. y⃗ =

−−→̃
OO + x⃗, gives the relation between x⃗ and y⃗ (drawing).

Chronology: A chronology (or temporal coordinate system) is a set Rtime = (t0, (∆t)) chosen by an

observer, where t0 ∈ R is the time origin, and (∆t) is the time unit (a basis in R⃗).

Referentiel: A referential R is the set

R = (Rtime,RCart) = (t0, (∆t),O, (e⃗i)i=1,...,n) = (�chronologie�,�Cartesian coordinate system�), (1.3)

made of a chronology and a Cartesian coordinate system, chosen by an observer.

In the following, to simplify the writings, the same implicit chronology is used by all observers, and
a referential R = (Rtime,RCart) will simply be noted as the reference frame R = (O, (e⃗i)) (so := RCart).
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13 1.2. Einstein's convention (duality notation)

1.2 Einstein's convention (duality notation)

Starting point: The classical notation xi for the components of a vector x⃗ relative to a basis, cf. (1.1).
Then the duality notion is introduced: xi =

noted xi (enables to see the di�erence between a vector and a
function when using components). So

x⃗ =

n∑
i=1

xie⃗i︸ ︷︷ ︸
classic not.

=

n∑
i=1

xie⃗i︸ ︷︷ ︸
duality not.

, and [x⃗]|e⃗
clas.
=

 x1
...
xn

 dual
=

 x1
...
xn

 . (1.4)

The duality notation is part of the Einstein's convention; Moreover Einstein's convention uses the notation∑n
i=1x

ie⃗i =
noted xie⃗i, i.e. the sum sign

∑n
i=1 can be omitted when an index (i here) is used twice, once

up and once down, details at � A.4. However this omission of the sum sign
∑

will not be made in this
manuscript (to avoid ambiguities): The TEX-LATEX program makes it easy to print

∑n
i=1.

Example 1.1 The height of a child is represented on a wall by a vertical bipoint vector x⃗ starting from
the ground up to a pencil line. Question: What is the size of the child ?

Answer: It depends... on the observer (quantitative value = subjective result). E.g., an English
observer chooses a vertical basis vector a⃗1 which length is one English foot (ft). So he writes x⃗ = x1a⃗1,
and for him the size of the child (size of x⃗) is x1 in foot. E.g. x1 = 4 means the child is 4 ft tall. A

French observer chooses a vertical basis vector b⃗1 which length is one metre (m). So he writes x⃗ = y1⃗b1,
and for him the size of the child (size of x⃗) is y1 metre. E.g., if x1 = 4 then y1 ≃ 1.22, since 1 ft :=
0.3048 m: The child is both 4 and 1.22 tall... in foot or metre. This quanti�cation is written x⃗ = 4 ft
= 1.22 m, where ft means a⃗1 and m means b⃗1 here. NB: The qualitative vector x⃗ is the same vector for
all observers, not the quantitative values 4 or 1.22 (depends on a choice of a unit of measurement).

With duality notation: x⃗ = x1a⃗1 = y1⃗b1, so if x1 = 4 then y1 ≃ 1.22.

This manuscript insists on covariant objectivity; Thus an English engineer (and his foot) and a French
engineer (and his metre) will be able to work together ... and be able to avoid crashes like that of the Mars
Climate Orbiter probe, see remark A.17. And they will be able to use the results of Galileo, Descartes,
Newton, Euler... who used their own unit of length, and knew nothing about the metre de�ned in
1793 and adopted in 1799 in France (after 6 years of measurements), and considered by the scienti�c
community at the end of the ninetieth century... and couldn't explicitly use the �Euclidean dot products�
either (which seems to have been de�ned mathematically by Grassmann around 1844).

1.3 Motion of an object

Let Obj be a �real object�, or �material object�, made of particles (e.g., the Moon: Exists independently
of an observer). Let t1, t2 ∈ R, t1 < t2.

De�nition 1.2 The motion of Obj in Rn is the map

Φ̃ :


[t1, t2]×Obj → Rn

(t, PObj )︸︷︷︸
particle

→ p = Φ̃(t, PObj )︸ ︷︷ ︸
its position at t in the Universe

. (1.5)

And t is the time variable, p is the space variable, and (t, p) ∈ R × Rn is the time-space variable. And

Φ̃ is supposed to be C2 in time.

With an origin O (observer dependent), the motion can be described with the bi-point vector

x⃗ =
−−−−−−−→
OΦ̃(t, PObj ) =

−→Op noted
= ˜⃗φ(t, PObj ). (1.6)

But then, two observers with di�erent origins O and Ob have di�erent description of the motion. There-

fore, in the following we won't use ˜⃗φ. Then (quanti�cation) with a Cartesian basis (e⃗i) to make a
referential R, we get (1.1).

1.4 Virtual and real motion

De�nition 1.3 A virtual (or possible) motion of Obj is a function Φ̃ �regular enough for the calculations
to be meaningful�. Among all the virtual motions, the observed motion is called the real motion.

13
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1.5 Hypotheses (Newton and Einstein)

Hypotheses of Newtonian mechanics (Galileo relativity) and general relativity (Einstein):
1- You can describe a phenomenon only at the actual time t and from the location p you are at (you

have no gift of ubiquity in time or space);
2- You don't know the future;
3- You can use your memory, so use some past time t0 and some past position pt0 ;
4- You can use someone else memory (results of measurements) if you can communicate objectively.

1.6 Con�gurations

Fix t ∈ [t1, t2], and de�ne Φ̃t :

{
Obj → Rn

PObj 7→ p = Φ̃t(PObj ) := Φ̃(t, PObj ).

De�nition 1.4 The �con�guration at t� of Obj is the range (or image) of Φ̃t, i.e. is the subset of Rn
(a�ne space) de�ned by

Ωt := {p ∈ Rn : ∃PObj ∈ Obj s.t. p = Φ̃t(PObj )}
noted
= Φ̃t(Obj )

noted
= Im(Φ̃t). (1.7)

If t is the actual time then Ωt is the actual (or current or Eulerian) con�guration.
If t0 is a time in the past then Ωt0 is the past (or initial or Lagrangian) con�guration.

Hypothesis: At any time t, Ωt is supposed to be a �smooth domain� in Rn, and the map Φ̃t is assumed
to be one-to-one (= injective): Obj does not crash onto itself.

1.7 De�nition of the Eulerian and Lagrangian variables

• If t is the actual time, then pt = Φ̃t(PObj ) ∈ Ωt is called the Eulerian variable relative to PObj and t.

• If t0 is a time in the past, then pt0 = Φ̃t0(PObj ) ∈ Ωt0 is called the Lagrangian variable relative to PObj

and t0. (A Lagrangian variable is a �past Eulerian variable�). (Two observers with two di�erent origin of
time t0 and t0

′ get two di�erent Lagrangian variable while they have the same Eulerian variable.)

1.8 Trajectories

Let Φ̃ be a motion of Obj , cf. (1.5), and PObj ∈ Obj (a particle in Obj = e.g. the Moon).

De�nition 1.5 The (parametric) trajectory of PObj is the function

Φ̃PObj :

{
[t1, t2] → Rn,

t 7→ p(t) = Φ̃PObj (t) := Φ̃(t, PObj ) (position of PObj at t in the Universe).
(1.8)

Its geometric trajectory is the range (image) of Φ̃PObj , i.e.

geometric trajectory of PObj := {q ∈ Rn : ∃t ∈ [t1, t2] s.t. q = Φ̃PObj (t)} = Im(Φ̃PObj ) = Φ̃PObj ([t1, t2]). (1.9)

1.9 Pointed vector, tangent space, �ber, vector �eld, bundle

(See e.g. Abraham�Marsden [1].) To deal with surfaces S in R3, e.g. with S = a sphere (and more
generally with manifolds in Rn), a vector cannot simply be a �bi-point vector connecting two points of S�
(would get �through the surface�). A vector is de�ned to be tangent to S: Consider a �regular� curve
c : s ∈] − ε, ε[→ c(s) ∈ S where S is a surface in an a�ne space, and the vector tangent to S at c(0) is

w⃗(c(0)) = limh→0
c(h)−c(0)

h (it is de�ned with a parametrization of c in a general manifold); Considering
all the possible curves, we get �all possible vectors on S�.

Notation:
TpS := {tangent vectors w⃗p at S at p} = The tangent space at p ∈ S. (1.10)

E.g., if S is a sphere in R3 and p ∈ S, then TpS is its usual tangent plane at p at S.

E.g., particular case: If S = Ω is an open set in Rn, then TpS = TpΩ = R⃗n is independent of p.
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15 2.1. The set of con�gurations

De�nition 1.6
The �ber at p := {p} × TpS = { (p, w⃗p)︸ ︷︷ ︸

pointed vector

∈ {p} × TpS}, (1.11)

i.e., the �ber at p is the set of �pointed vectors at p�, a pointed vector being the couple (p, w⃗p) made of
the �base point� p and the vector w⃗p de�ned at p.

Drawing: A vector in R⃗n can be drawn anywhere in Rn; While a �pointed vectors at p� has to be
drawn at the point p in Rn.

If the context is clear, a pointed vector is simply noted ˜⃗w(p) =noted w⃗(p) (lighten the writing).

Particular case: If S = Ω is an open set in Rn, then the �ber at p is TpΩ = {p} × R⃗n.

De�nition 1.7
The tangent bundle TS :=

⋃
p∈S

({p} × TpS), (1.12)

that is, is the union of the �bers.

De�nition 1.8 A vector �eld ˜⃗w in S is a C∞ function (or at least C2 in the following)

˜⃗w :

{
S → TS

p → ˜⃗w(p) = (p, w⃗(p)).
(1.13)

If the context is clear, a vector �eld is simply noted ˜⃗w =noted w⃗ (lighten the writing).

2 Eulerian description (spatial description at actual time t)

2.1 The set of con�gurations

Let Φ̃ be a motion of Obj , cf. (1.5), and Ωt = Φ̃t(Obj ) ⊂ Rn be the con�guration at t, cf. (1.7). The set
of con�gurations is the subset C ⊂ R× Rn (the �time-space�) de�ned by

C :=
⋃

t∈[t1,t2]

({t} × Ωt) (= set in which you �nd particles in �time-space�)

= {(t, p) ∈ R× Rn : ∃(t, PObj ) ∈ [t1, t2]×Obj , p = Φ̃(t, PObj )},
(2.1)

Question: Why don't we simply use
⋃
t∈[t1,t2]

Ωt instead of C =
⋃
t∈[t1,t2]

({t} × Ωt)?

Answer: C gives the �lm of the life of Obj = the succession of the photos Ωt taken at each t; And Ωt
is obtained from C thanks to the pause feature at t. Whereas

⋃
t∈[t1,t2]

Ωt ⊂ Rn is the superposition of

all the photos on the image
⋃
t∈[t1,t2]

Ωt... and we don't distinguish the past from the present.

2.2 Eulerian variables and functions

De�nition 2.1 In short: A Eulerian function relative to Obj is a function, with m ∈ N∗,

Eul :

{
C → R⃗m (or more generally a suitable set of tensors)

(t, p) → Eul(t, p),
(2.2)

the spatial variable p being the Eulerian variable.

In details: A function Eul being given as in (2.2), the associated Eulerian function Êul is the function

Êul :

{
C → C × R⃗m (or C× some suitable set of tensors)

(t, p) → Êul(t, p) = ((t, p), Eul(t, p)) = (time-space position , value),
(2.3)

and is called �a �eld of functions�. So Êul(t, p) is the �pointed Eul(t, p)� at (t, p) (in time-space).

So, the range Im(Êul) = Êul(C) of an Eulerian function Êul is the graph of Eul. (Recall: The graph of
a function f : x ∈ A→ f(x) ∈ B is the subset {(x, f(x)) ∈ A×B} ⊂ A×B: gives the �drawing of f �).

If there is no ambiguity, Êul =noted Eul for short.
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16 2.3. Eulerian velocity (spatial velocity) and speed

At t, the Eulerian vector �eld at t is Êult :

{
Ωt → Ωt × R⃗n

p → Êult(p) := (p, Eult(p)) = (position , value).

Example 2.2 Eul(t, p) = θ(t, p) ∈ R = temperature of the particle PObj which is at t at p = Φ̃(t, PObj );

Example 2.3 Eul(t, p) = u⃗(t, p) ∈ R⃗n = force applied on the particle PObj which is at t at p.

Example 2.4 Eul(t, p) = du⃗(t, p) ∈ L(R⃗n : R⃗n) = the di�erential at t at p of a Eulerian function u⃗.

Question: Why introduce Êul? Isn't Eul su�cient?

Answer: The �pointed value� Êul(t, p) = ((t, p), Eul((t, p))) is drawn on the graph of Eul.
E.g., at t at p the velocity vector v⃗(t, p) ∈ R⃗3 can be drawn anywhere, while the �pointed vector�̂⃗v(t, p) = ((t, p); v⃗(t, p)) is v⃗(t, p) drawn at t at p (and ̂⃗v is called the velocity �eld).
Moreover (2.3) emphasizes the di�erence between a Eulerian vector �eld and a Lagrangian vector

function, see (3.14).

Remark 2.5 E.g., the initial framework of Cauchy for his description of forces is Eulerian: The Cauchy
stress vector t⃗ = σ.n⃗ is considered at the actual time t at a point p ∈ Ωt. (It is not Lagrangian.)

2.3 Eulerian velocity (spatial velocity) and speed

De�nition 2.6 In short: Consider a particle PObj and its (regular) trajectory Φ̃PObj : t → p(t) = Φ̃PObj (t),

cf. (1.8). Its Eulerian velocity at t at p(t) = Φ̃PObj (t) is

v⃗(t, p(t)) := Φ̃PObj
′(t)

noted
=

∂Φ̃

∂t
(t, PObj ), when p(t) = Φ̃PObj (t), (2.4)

i.e., v⃗(t, p(t)) is the tangent vector at t at p(t) = Φ̃PObj (t) to the trajectory Φ̃PObj . This de�nes the vector

�eld (in short) v⃗ :

{
C → R⃗n

(t, pt) → v⃗(t, pt)

}
.

In details: cf. (2.3), the Eulerian velocity is the function ̂⃗v :

{
C → C × R⃗m

(t, p) → ̂⃗v(t, p) = ((t, p), v⃗(t, p))

}
(pointed vector) where v⃗(t, p) is given by (2.4).

Remark 2.7
dΦ̃PObj

dt (t) = v⃗(t, Φ̃PObj (t)), with p(t) = Φ̃PObj (t), is often written

dp

dt
(t) = v⃗(t, p(t)), or

dx⃗

dt
(t) = v⃗(t, x⃗(t)), or

dx⃗

dt
= v⃗(t, x⃗), (2.5)

the two last notations when an origin O is chosen and x⃗(t) =
−−−→Op(t). Such an equation is the pro-

totype of an ODE (ordinary di�erential equation) solved with the Cauchy�Lipschitz theorem, see � 5.
(A Lagrangian velocity does not produce an ODE, see (3.21).)

De�nition 2.8 If an observer chooses a Euclidean dot product (·, ·)g (e.g. foot or metre built), the
associated norm being ||.||g, then the length ||v⃗(t, p)||g is the speed (or scalar velocity) of PObj (e.g. in
ft/s or in m/s). And the context must remove the ambiguities: the �velocity� is either the vector velocity

v⃗(t, p) = Φ̃PObj
′(t) or the speed (the scalar velocity) ||v⃗(t, p)||g.

Exercice 2.9 Euclidean dot product (·, ·)g, x⃗(t) =
−−−→Op(t), T⃗ (t) = x⃗ ′(t)

||x⃗ ′(t)||g , and f(t) = ||x⃗
′(t)||g (speed).

Prove : df
dt (t) = (x⃗ ′′(t), T⃗ (t))g =

noted x⃗ ′′(t) • T⃗ (t) (= tangential acceleration).

Answer. 2-D and Euclidean basis: x⃗(t) =

(
x(t)
y(t)

)
gives f(t) = (x′(t)2 + y′(t)2)

1
2 , thus f ′(t) =

x′(t)x′′(t)+y′(t)y′′(t)
f(t)

= r⃗ ′(t) • r⃗ ′′(t)
||r⃗ ′(t)|| . Idem in n-D.

2.4 Spatial derivative of the Eulerian velocity

t ∈ [t1, t2] is �xed, Eul is a given Eulerian function, and Eult :

{
Ωt → R⃗m

p → Eult(p) := Eul(t, p)

}
is C1.
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17 2.4. Spatial derivative of the Eulerian velocity

2.4.1 De�nition

Recall: If Ω is an open set in Rn and if f : Ω → R is di�erentiable at p, then its di�erential at p is the
linear form df(p) ∈ L(R⃗n;R) (linear map with real values) de�ned by, for all u⃗ ∈ R⃗n (vector at p),

df(p).u⃗ = lim
h→0

f(p+hu⃗)− f(p)
h

. (2.6)

This expression is the same for all observers (English, French...: There is no inner dot product here).

De�nition 2.10 The space derivative of Eul at (t, p) is the di�erential dEult at p, i.e., for all t ∈ [t1, t2],

all p ∈ Ωt and all w⃗p ∈ R⃗nt (vector at p),

(dEult(p).w⃗p =) dEul(t, p).w⃗p = lim
h→0

Eul(t, p+hw⃗p)− Eul(t, p)
h

noted
=

∂Eul
∂p

(t, p).w⃗p. (2.7)

In Ωt (the photo at t), dEul(t, p).w⃗p gives the rate of variations of Eult at p in the direction w⃗p.

E.g., at t, the space derivative dv⃗ of the Eulerian velocity �eld is de�ned by

dv⃗(t, p).w⃗p = lim
h→0

v⃗(t, p+hw⃗p)− v⃗(t, p)
h

(= dv⃗t(p).w⃗p). (2.8)

Remark 2.11 In di�erential geometry, (2.6) is also written u⃗(f)(p) = d
dhf(p+hu⃗)|h=0; Don't use this

notation if you are not at ease with di�erential geometry (where a vector is de�ned to be a derivation,
so u⃗[f ] is the derivation of f by u⃗).

2.4.2 The convective derivative dEul.v⃗

De�nition 2.12 If v⃗ is the Eulerian velocity �eld, then dEul.v⃗ is called the convective derivative of Eul.

2.4.3 Quanti�cation in a basis: df.u⃗ is written (u⃗. ⃗grad)f

Quanti�cation: Let f : p ∈ Rn → f(p) ∈ R be C1. Let (e⃗i) be a basis in R⃗n. Let (usual de�nition)

∂f

∂xi
(p) := df(p).e⃗i and [df(p)]|e⃗ = ( ∂f

∂x1
(p) ... ∂f

∂xn
(p) ) (line matrix). (2.9)

(Recall: The matrix which represents a linear form is a line matrix.) And [df(p)]|e⃗ is the Jacobian matrix
of f at p relative to (e⃗i). So, with u⃗ =

∑n
i=1uie⃗i a vector at p, and with the usual matrix multiplication

rule, we have

df(p).u⃗ = [df(p)]|e⃗.[u⃗]|e⃗ =

n∑
i=1

∂f

∂xi
(p)ui =

n∑
i=1

ui
∂f

∂xi
(p)

noted
= (u⃗. ⃗grad)|ef(p), (2.10)

where (u⃗. ⃗grad)|e : C
1(Ω;R)→ C0(Ω;R) is the di�erential operator de�ned relative to a basis (e⃗i) by

(u⃗. ⃗grad)|e(f) =

n∑
i=1

ui
∂f

∂xi
. (2.11)

If the basis (e⃗i) is unambiguously imposed, then (u⃗. ⃗grad)|e =
noted u⃗. ⃗grad

For vector valued functions f⃗ : Ω→ R⃗m, the above steps apply to the components of f⃗ in a basis (⃗bi)

in R⃗m: If f⃗ =
∑m
i=1fi⃗bi, i.e. f⃗(p) =

∑m
i=1fi(p)⃗bi, then

(u⃗. ⃗grad)|e(f⃗) =

m∑
i=1

(dfi.u⃗)⃗bi =

m∑
i=1

((u⃗. ⃗grad)|efi)⃗bi =

m∑
i=1

n∑
j=1

(uj .
∂fi
∂xj

)⃗bi. (2.12)

17



18 2.5. Streamline (current line)

2.4.4 Representation relative to a Euclidean dot product: ⃗gradf

An observer chooses a distance unit (foot, metre...) and uses the associated Euclidean dot product (·, ·)g.
Let Ω be an open set in Rn, f ∈ C1(Ω;R) (scalar valued function), and p ∈ Ω. Then the (·, ·)g-Riesz

representation vector of the di�erential form df(p) is called the gradient of f at p relative to (·, ·)g, and
named ⃗gradgf(p) ∈ R⃗n: It is de�ned by

∀u⃗ ∈ R⃗n, ( ⃗gradgf(p), u⃗)g = df(p).u⃗, written ⃗gradf • u⃗ = df.u⃗, (2.13)

the last notation i� a Euclidean dot product (·, ·)g is imposed to all observer (quite subjective: foot,
metre ?).

(The �rst order Taylor expansion f(p+hu⃗) = f(p) + h df(p).u⃗ + o(h) can therefore, after a choice of

an Euclidean dot product, be written f(p+hu⃗) = f(p) + h ⃗gradgf(p) •
g u⃗+ o(h).)

Quanti�cation: Let (e⃗i) be a Cartesian basis in Rn. Then (2.13) gives [df ].[u⃗] = [ ⃗gradf ]T .[g].[u⃗], for all

u⃗ ∈ R⃗nt (more precisely [df ]|e⃗.[u⃗]|e⃗ = [ ⃗gradgf ]
T
|e⃗.[g]|e⃗.[u⃗]|e⃗), thus (since [g]|e⃗ is symmetric)

[ ⃗gradf ] = [g].[df ]T (column matrix). (2.14)

I.e., if ⃗gradf =
∑n
i=1aie⃗i then ai =

∑n
j=1gij

∂f
∂xj

for all i. In particular, if (e⃗i) is a (·, ·)g-orthonormal

basis then [ ⃗gradf ] = [df ]T .

With duality notations, ⃗gradf =
∑n
i=1a

ie⃗i and (2.14) gives a
i =

∑n
j=1gij

∂f
∂xj : The Einstein convention

is not satis�ed (the index j is twice bottom), which is expected since the de�nition of ⃗gradgf depends on

a subjective choice (unit of length). In comparison, df =
∑n
i=1

∂f
∂xi dx

i satis�es the Einstein convention (a
di�erential is objective).

Mind the notations: The gradient ⃗gradgf =noted ⃗gradf depends on (·, ·)g, cf. (2.13)-(2.14), while
(u⃗. ⃗grad)f does not (only depends on a basis), cf. (2.11) (historical notations...).

2.4.5 Vector valued functions

For vector valued functions f⃗ : Ω → R⃗m, the above steps apply to the components fi of f⃗ relative to a
basis (⃗bi) in R⃗m... But, depending on the book you read:

1- Ambiguous: df⃗ , the di�erential of f⃗ , is unfortunately also sometimes called the �gradient matrix�
(although no Euclidean dot product is required).

2- Ambiguous: It could mean the di�erential... or the Jacobian matrix... or its transposed... because
an orthonormal basis relative to an imposed Euclidean dot product is chosen (which one?) and then

[ ⃗gradfi] = [dfi]
T ... And calculations confuses [.] and [.]T ...

3- Non ambiguous: In the objective framework of this manuscript, we will use the di�erential df⃗
(objective) to begin with; And only after an explicit choice of bases (e⃗i) for quantitative purposes, the
Jacobian matrix, which is [df ]|e⃗, will be used.

Exercice 2.13 A Euclidean framework being chosen, prove: (v⃗. ⃗grad)v⃗ = 1
2
⃗grad(||v⃗||2) + ⃗curlv⃗ ∧ v⃗.

Answer. Euclidean basis (E⃗i), Euclidean dot product (·, ·)g =noted (·, ·), associated norm ||.||g =noted ||.||. Thus

v⃗ =
∑n

i=1viE⃗i gives ||v⃗||2 =
∑
i

v2i , thus
∂||v⃗||2

∂xk
=

∑
i

2vi
∂vi
∂xk

, for any k = 1, 2, 3. And, the �rst component

of ⃗curlv⃗ is ( ⃗curlv⃗)1 =
∂v3
∂x2

− ∂v2
∂x3

, idem for ( ⃗curlv⃗)2 and ( ⃗curlv⃗)3 (circular permutation). Thus (�rst component)

( ⃗curlv⃗ ∧ v⃗)1 = (
∂v1
∂x3

− ∂v3
∂x1

)v3 − (
∂v2
∂x1

− ∂v1
∂x2

)v2, idem for ( ⃗curlv⃗ ∧ v⃗)2 and ( ⃗curlv⃗ ∧ v⃗)2. Thus ( 1
2

⃗grad(||v⃗||2) +
⃗curlv⃗ ∧ v⃗)1 = v1

∂v1
∂x1

+ v2
∂v2
∂x1

+ v3
∂v3
∂x1

+ ∂v1
∂x3

v3 − ∂v3
∂x1

v3 − ∂v2
∂x1

v2 + ∂v1
∂x2

v2 = v1
∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

= (v⃗. ⃗grad)v1.

Idem for the other components.

2.5 Streamline (current line)

Fix t ∈ R, and consider the photo Ωt = Φ̃t(Obj ). Let pt ∈ Ωt, ε > 0, and consider the spatial curve in Ωt
at pt de�ned by:

cpt :

{
]− ε, ε[ → Ωt

s → q = cpt(s)

}
s.t. cpt(0) = pt. (2.15)
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19 2.6. Material time derivative (dérivées particulaires)

So s is a curvilinear spatial coordinate (dimension of a length), and the graph of cpt is drawn in the photo
Ωt at t.

De�nition 2.14 v⃗ : (t, p)→ v⃗(t, p) being the Eulerian velocity �eld of Obj , a streamline through a point
pt ∈ Ωt is a (parametric) spatial curve cpt solution of the di�erential equation

dcpt
ds

(s) = v⃗t(cpt(s)) with cpt(0) = pt. (2.16)

And Im(cpt) is the geometric associated streamline (⊂ Ωt).

NB: (2.16) cannot be confused with (2.5): In (2.5) the variable is the time variable t, while in (2.16)
the variable is the space variable s.

Usual notation: If an origin O is chosen at t by an observer and x⃗(s) :=
−−−−−→Ocpt(s) , then (2.16) is written

dx⃗

ds
(s) = v⃗t(x⃗(s)) with x⃗(0) =

−−→
Opt. (2.17)

Moreover, with a Cartesian basis (e⃗i)) chosen at t by the observer, with x⃗(s) =
∑n
i=1xi(s)e⃗i we get

dx⃗
ds (s) =

∑n
i=1

dxi

ds (s)e⃗i, and (2.17) reads as the di�erential system of n equations in R⃗n

∀i = 1, ..., n,
dxi
ds

(s) = vi(t, x1(s), ..., xn(s)) with xi(0) = (
−−→
Opt)i (2.18)

(the n functions xi : s→ xi(s) are the unknown). Also written

dx1
v1

= ... =
dxn
vn

= ds, (2.19)

which means: It is the di�erential system (2.18) of n equations and n unknowns which must be solved.

(With duality notations, dx
i

ds (s) = vi(t, x1(s), ..., xn(s)) and xi(0) = (
−−→
Opt)

i for all i.)

2.6 Material time derivative (dérivées particulaires)

2.6.1 Usual de�nition

Goal: To compute the variations of a Eulerian function Eul along the trajectory Φ̃PObj of a particle PObj

(e.g. the temperature of a particle along its trajectory). So consider the function gPObj giving the values
of Eul relative to a PObj along its trajectory:

gPObj (t) := Eul(t, p(t)) when p(t) := Φ̃PObj (t). (2.20)

De�nition 2.15 The Material time derivative of Eul at (t, p(t)) is gPObj ′(t) =noted DEul
Dt (t, p(t)).

So:
DEul
Dt

(t, p(t)) := gPObj
′(t) (= lim

h→0

Eul(t+h, p(t+h))− Eul(t, p(t))
h

). (2.21)

Since gPObj (t) := Eul(t, Φ̃PObj (t)) we get gPObj ′(t) = ∂Eul
∂t (t, Φ̃PObj (t)) + dEul(t, Φ̃PObj (t)).Φ̃′

PObj
(t), thus, having

Φ̃′
PObj

(t) = v⃗(t, p(t)) (Eulerian velocity), DEul
Dt (t, p(t)) = ∂Eul

∂t (t, p(t)) + dEul(t, p(t)).v⃗(t, p(t)):

DEul
Dt

:=
∂Eul
∂t

+ dEul.v⃗ . (2.22)

Proposition 2.16 D
Dt is a derivation: All the functions being Eulerian and C1,

• Linearity:
D(Eul1 + λEul2)

Dt
=
DEul1
Dt

+ λ
DEul2
Dt

. (2.23)

• Product rules: If Eul1, Eul2 are scalar valued functions then

D(Eul1Eul2)
Dt

=
DEul1
Dt

Eul2 + Eul1
DEul2
Dt

. (2.24)

In paticular w⃗ is a vector �eld and T a compatible tensor (so T.w⃗ is meaningful) then

D(T.w⃗)

Dt
=
DT

Dt
.w⃗ + T.

Dw⃗

Dt
. (2.25)

19



20 2.6. Material time derivative (dérivées particulaires)

Proof. Let i = 1, 2, and gi de�ned by gi(t) := Euli(t, p(t)) where p(t) = Φ̃PObj (t).
• (g1 + λg2)

′ = g′1 + λg′2 gives (2.23).

• On the one hand D(T.w⃗)
Dt = ∂(T.w⃗)

∂t + d(T.w⃗).v⃗ = ∂T
∂t .w⃗ + T.∂w⃗∂t + (dT.v⃗).w⃗ + T.(dw⃗.v⃗), and on the

other hand DT
Dt .w⃗ + T.Dw⃗Dt = (∂T∂t + dT.v⃗).w⃗ + T.(∂w⃗∂t + dw⃗.v⃗). Thus (2.24)-(2.25).

2.6.2 Commutativity issue

The Schwarz theorem tells: If Eul is C2, the derivatives d(∂Eul∂t ) and ∂(dEul)
∂t commute. But

Proposition 2.17 The material time derivative D
Dt does not commute with the partial derivation ∂

∂t

or with the spatial derivative d, i.e.
D( ∂Eul

∂t )

Dt ̸= ∂(DEul
Dt )

∂t and D(dEul)
Dt ̸= d(DEul

Dt ) in general (because the
variables t and p are not independent along a trajectory). We have, if Eul is C2,

∂(DEul
Dt )

∂t
=
D(∂Eul∂t )

Dt
+ dEul.∂v⃗

∂t

=
∂2Eul
∂t2

+ d
∂Eul
∂t

.v⃗ + dEul.∂v⃗
∂t
,

 and


d(
DEul
Dt

) =
D(dEul)
Dt

+ dEul.dv⃗

=
∂(dEul)
∂t

+ d2Eul.v⃗ + dEul.dv⃗.
(2.26)

Proof.
∂DEul

Dt

∂t
=
∂(∂Eul∂t + dEul.v⃗)

∂t
=
∂2Eul
∂t2

+
∂(dEul)
∂t

.v⃗ + dEul.∂v⃗
∂t

. And d
DEul
Dt

= d(
∂Eul
∂t

+ dEul.v⃗) =
∂(dEul)
∂t

+ d(dEul).v⃗ + dEul.dv⃗ =
D(dEul)
Dt

+ dEul.dv⃗, thus (2.26).

Exercice 2.18 If Eul is C2 and w⃗ is C1, check D(dEul.w⃗)
Dt = D(dEul)

Dt .w⃗+ dEul.Dw⃗Dt (i.e. D
Dt is a derivation),

and
D(dEul.w⃗)

Dt
= d

∂Eul
∂t

.w⃗ + dEul.∂w⃗
∂t

+ (d(dEul).v⃗).w⃗ + dEul.dw⃗.v⃗

= dEul.Dw⃗
Dt

+
∂(dEul)
∂t

.w⃗ + d2Eul(v⃗, w⃗),
(2.27)

and
D2Eul
Dt2

=
∂2Eul
∂t2

+ 2d
∂Eul
∂t

.v⃗ + dEul.∂v⃗
∂t

+ (d(dEul).v⃗).v⃗ + dEul.dv⃗.v⃗

= dEul.Dv⃗
Dt

+
∂2Eul
∂t2

+ d
∂Eul
∂t

.v⃗ +
D(dEul)
Dt

.v⃗.

(2.28)

Answer.
D(dEul.w⃗)

Dt
=

∂(dEul.w⃗)

∂t
+ d(dEul.w⃗).v⃗ =

∂(dEul)
∂t

.w⃗ + dEul.∂w⃗
∂t

+ (d(dEul).v⃗).w⃗ + dEul.dw⃗.v⃗ =

D(dEul)
Dt

.w⃗ + dEul.Dw⃗

Dt
. And Eul ∈ C2 and Schwarz give ∂(dEul)

∂t
= d( ∂Eul

∂t
) and (d2Eul.v⃗).w⃗ = d2Eul(v⃗, w⃗),

hence (2.27). And

D2Eul
Dt2

= g′′PObj (t) =
DDEul

Dt

Dt
=

∂( ∂Eul
∂t

+ dEul.v⃗)
∂t

+ d(
∂Eul
∂t

+ dEul.v⃗).v⃗

=
∂2Eul
∂t2

+
∂(dEul)

∂t
.v⃗ + dEul.∂v⃗

∂t
+ d

∂Eul
∂t

.v⃗ + (d2Eul.v⃗).v⃗ + dEul.dv⃗.v⃗,

with ∂
∂t

◦ d = d ◦ ∂
∂t

(Schwarz), D(dEul)
Dt

= ∂(dEul)
∂t

+ d2Eul.v⃗ and dEul.Dv⃗
Dt

= dEul. ∂v⃗
∂t

+ dEul.dv⃗.v⃗, hence (2.28).

Exercice 2.19 Prove (2.26) with components.

Answer. (e⃗i) is a Cartesian basis.
∂ DEul

Dt
∂t

=
∂( ∂Eul

∂t
+
∑

i
∂Eul
∂xi .vi)

∂t
= ∂2Eul

∂t2
+

∑
i

∂2Eul
∂t∂xi .v

i +
∑

i
∂Eul
∂xi .

∂vi

∂t
= ∂2Eul

∂t2
+∑

i
∂2Eul
∂t∂xi .v

i + dEul. ∂v⃗
∂t
. And

D( ∂Eul
∂t

)

Dt
= ∂2Eul

∂t2
+

∑
i

∂ ∂Eul
∂t

∂xi .vi = ∂2Eul
∂t2

+
∑

i
∂2Eul
∂t∂xi .v

i.

And d(DEul
Dt

).w⃗ =
∑

j

∂ DEul
Dt

∂xj wj =
∑

j

∂( ∂Eul
∂t

+
∑

i
∂Eul
∂xi vi)

∂xj wj =
∑

j
∂2Eul
∂t∂xj w

j+
∑

ij
∂2Eul
∂xi∂xj v

iwj+
∑

ij
∂Eul
∂xi

∂vi

∂xj w
j =∑

j
∂2Eul
∂t∂xj w

j + d2Eul(v⃗, w⃗) + dEul.dv⃗.w⃗. And D(dEul)
Dt

.w⃗ = ( ∂(dEul)
∂t

+ d(dEul).v⃗).w⃗ = ∂(dEul)
∂t

.w⃗ + d2Eul(v⃗, w⃗) =∑
i

∂2Eul
∂xi∂t

wi + d2Eul(v⃗, w⃗). Thus d(DEul
Dt

).w⃗ = D(dEul)
Dt

.w⃗ + dEul.dv⃗.w⃗ for all w⃗.
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21 2.7. Eulerian acceleration

2.6.3 Remark: About notations

• The notation d
dt (lowercase letters) concerns a function of one variable, e.g. dg

dt (t) := g′(t) :=

limh→0
g(t+h))−g(t)

h ;

• The notation ∂
∂t concerns a function with more than one variable, e.g. ∂Eul

∂t (t, p) =

limh→0
Eul(t+h,p)−Eul(t,p)

h ;

• The notation D
Dt (capital letters) concerns a Eulerian function di�erentiated along a motion,

cf. (2.21).
• Other notations, often practical but might be ambiguous if composed functions are considered:

dEul(t, p(t))
dt

:= gPObj
′(t) =

DEul
Dt

(t, p(t)), and
dEul(t, p(t))

dt |t=t0
:= gPObj

′(t0) =
DEul
Dt

(t0, p(t0)). (2.29)

2.6.4 De�nition bis: Time-space de�nition

Consider the a�ne time-space R× Rn and a C1 function f : (t, p) ∈ R× Rn → f(t, p).

De�nition 2.20 The di�erential of f is called the �total di�erential�, or �total derivative�, and noted Df .

So, with R⃗× R⃗n the associated time-space vector space, if p+ = (t, p) ∈ R× Rn and w⃗+ = (w0, w⃗) ∈
R⃗× R⃗n then, by de�nition of a di�erential, Df(p+).w⃗+ := limh→0

f(p++hw⃗+)−f(p+)
h , i.e.

Df(t, p).(w0, w⃗) := lim
h→0

f(t+hw0, p+hw⃗)− f(t, p)
h

. (2.30)

Thus

Df(t, p) =
∂f

∂t
(t, p) dt+ df(t, p). (2.31)

(Recall: df is the space di�erentiation, so if (e⃗i) is a Cartesian basis then df(t, p) = ∂f
∂x1

(t, p)dx1 + ... +
∂f
∂xn

(t, p)dxn and w⃗ =
∑
i wie⃗i givesDf(t, p).(w0, w1, ..., wn) =

∂f
∂t (t, p)w0+

∂f
∂x1

(t, p)w1+...+
∂f
∂xn

(t, p)wn).

Then consider the time-space trajectory

Ψ̃PObj :

{
[t1, t2] → R× Rn

t → Ψ̃PObj (t) := (t, Φ̃PObj (t)) (= (t, p(t))).
(2.32)

(So Im(Ψ̃PObj ) = graph(Φ̃PObj ).) The tangent vector to this curve at t is

Ψ̃PObj
′(t) = (1, Φ̃PObj

′(t)) = (1, v⃗(t, p(t)) ∈ R⃗× R⃗n (2.33)

where v⃗(t, p(t)) =
dΦ̃PObj

dt (t) is the Eulerian velocity at (t, p(t)). And (2.20) reads

gPObj (t) = (Eul ◦ Ψ̃PObj )(t) = Eul(Ψ̃PObj (t)), (2.34)

thus

g′PObj (t) = DEul(Ψ̃(t)).Ψ̃PObj
′(t) =

∂Eul
∂t

(t, p(t)).1 + dEul(t, p(t)).v⃗(t, p(t)) noted=
DEul
Dt

(t, p(t)) : (2.35)

We have (2.22): The material time derivative is the �total derivative� DEul along the time-space trajec-

tory Ψ̃PObj .

2.7 Eulerian acceleration

De�nition 2.21 In short: If Φ̃PObj is C
2, then the Eulerian acceleration of the particle PObj which is at t

at pt = Φ̃(t, PObj ) is

γ⃗(t, pt) := Φ̃PObj
′′(t)

noted
=

∂2Φ̃

∂t2
(t, PObj ). (2.36)

In details: as in (2.3), the Eulerian acceleration (vector) �eld ̂⃗γ is de�ned with (2.36) by

̂⃗γ(t, pt) = ((t, pt), γ⃗(t, pt)) ∈ C × R⃗nt (pointed vector). (2.37)
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22 2.8. Time Taylor expansion of Φ̃

Proposition 2.22

γ⃗ =
Dv⃗

Dt
=
∂v⃗

∂t
+ dv⃗.v⃗ . (2.38)

And if v⃗ is C2 then

dγ⃗ =
∂(dv⃗)

∂t
+ d2v⃗.v⃗ + dv⃗.dv⃗ =

D(dv⃗)

Dt
+ dv⃗.dv⃗. (2.39)

Proof. With g(t) = v⃗(t, p(t)) = Φ̃PObj
′(t) and (2.22) we get γ⃗(t, p(t)) = g′(t) = Dv⃗

Dt (t, p(t)). And v⃗

being C2, the Schwarz theorem gives d∂v⃗∂t = ∂(dv⃗)
∂t .

De�nition 2.23 If an observer chooses a Euclidean dot product (·, ·)g (based on a foot, a metre...), the
associated norm being ||.||g, then the length ||γ⃗(t, pt)||g is the (scalar) acceleration of PObj .

2.8 Time Taylor expansion of Φ̃

Let PObj ∈ Obj and t ∈]t1, t2[. Suppose Φ̃PObj ∈ C2(]t1, t2[;Rn). Its second-order (time) Taylor expansion

of Φ̃PObj is, in the vicinity of a t ∈]t1, t2[,

Φ̃PObj (τ) = Φ̃PObj (t) + (τ−t)Φ̃′
PObj

(t) +
(τ−t)2

2
Φ̃′′
PObj

(t) + o((τ−t)2), (2.40)

i.e.

p(τ) = p(t) + (τ−t)v⃗(t, p(t)) + (τ−t)2

2
γ⃗(t, p(t)) + o((τ−t)2). (2.41)

3 Lagrangian description = Motion from an initial con�guration

Instead of working on Obj , an observer may prefer to work with an initial con�guration Ωt0 = Φ̃(t0,Obj )
of Obj (essential for elasticity): This is the �Lagrangian approach�. This Lagrangian approach is not
objective: Two observers may choose two di�erent initial (times and) con�gurations.

3.1 Initial con�guration and Lagrangian �motion�

3.1.1 De�nition

Obj is a material object, Φ̃ : [t1, t2[×Obj → Rn is its motion, Ωτ = Φ̃τ (Obj ) is its con�guration at τ ,
t0 ∈]t1, t2[ is an �initial time�, and Ωt0 is the initial con�guration for the observer who chose t0.

De�nition 3.1 The motion of Obj relative to the initial con�guration Ωt0 = Φ̃(t0,Obj ) is the function

Φt0 :

{
[t1, t2]× Ωt0 → Rn

(t, pt0) 7→ pt = Φt0(t, pt0) := Φ̃(t, PObj ) when pt0 = Φ̃(t0, PObj ).
(3.1)

So, pt = Φt0(t, pt0) := Φ̃(t, PObj ) is the position at t of the particle PObj which was at pt0 at t0. In particular

pt0 = Φt0(t0, pt0) := Φ̃(t0, PObj ).

Marsden and Hughes notations: Once an initial time t0 has been chosen by an observer, then
Φt0 =noted Φ, then pt0 =noted P (capital letter for positions at t0) and pt =

noted p (lowercase letter for
positions at t), so

p = Φ(t, P ) ∈ Ωt. (3.2)

(When objectivity is under concern, we need to switch back to the notations Φt0 , pt0 and pt.)

NB: • Talking about the motion of a position pt0 is absurd: A position in Rn does not move. Thus

Φt0 has no existence without the de�nition, at �rst, of the motion Φ̃ of particles.
• The domain of de�nition of Φt0 depends on t0 through Ωt0 : The superscript

t0 recalls it. And a late
observer with initial time t0

′ > t0 de�nes Φt0
′
which domain of de�nition is [t1, t2]×Ωt0′ ; And Φt0

′ ̸= Φt0

in general because Ωt0′ ̸= Ωt0 in general.
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23 3.1. Initial con�guration and Lagrangian �motion�

• The following notation is also used:

Φt0(t, pt0) = Φ(t; t0, pt0). (3.3)

(The couple (t0, pt0) is �the initial condition�, or t0 and pt0 are the initial conditions, see the � on �ows).
• If a origin O ∈ Rn is chosen by the observer, we may also use, with (1.6),

x⃗t0 =
−−→Opt0 = φ⃗ t0(t0, x⃗t0) = X⃗ =

−−→OP and x⃗t =
−−→Opt = φ⃗ t0(t, x⃗t0) = x⃗ =

−→Op. (3.4)

3.1.2 Di�eomorphism between con�gurations

With (3.1), de�ne

Φt0t :

{
Ωt0 → Ωt

pt0 → pt = Φt0t (pt0) := Φt0(t, pt0).
(3.5)

Hypothesis: For all t0, t ∈]t1, t2[, the map Φt0t : Ωt0 → Ωt is a Ck di�eomorphism (a Ck invertible
function whose inverse is Ck), where k ∈ N∗ depends on the required regularity.

Thus (3.5) gives Φ̃t(PObj ) = Φt0t (Φ̃t0(PObj )), true for all PObj ∈ Obj , thus Φt0t ◦ Φ̃t0 = Φ̃t, i.e.

Φt0t := Φ̃t ◦ (Φ̃t0)−1 . (3.6)

Thus, Φt0t0 = I and Φtt0 ◦ Φ
t0
t = (Φ̃t ◦ (Φ̃t0)−1) ◦ (Φ̃t0 ◦ (Φ̃t)−1) = I give

Φtt0 = (Φt0t )
−1. (3.7)

3.1.3 Trajectories

Let (t0, pt0) ∈ [t1, t2]× Ωt0 (initial conditions) and with (3.1) de�ne

Φt0pt0 :

{
[t1, t2] → Rn

t 7→ p(t) = Φt0pt0 (t) := Φ̃PObj (t) = Φt0(t, pt0) when pt0 = Φ̃PObj (t0).
(3.8)

De�nition 3.2 Φt0pt0 is called the (parametric) �trajectory of pt0�, which means: Φt0pt0 is the trajectory of

the particle PObj that is located at pt0 = Φ̃(t, PObj ) at t0. And the geometric �trajectory of pt0 � is

Im(Φt0pt0 ) = Φt0pt0 ([t1, t2]) =
⋃

t∈[t1,t2]

{Φt0pt0 (t)} (= Im(Φ̃PObj )). (3.9)

NB: The terminology �trajectory of pt0� is awkward, since a position pt0 does not move: It is indeed

the trajectory Φ̃PObj of a particle PObj which is at pt0 at t0 that must be understood.

3.1.4 Streaklines (lignes d'émission)

Take a �lm between t0 and T (start and end).

De�nition 3.3 Let Q be a �xed point in Rn (you see the point Q on each photo that make up the �lm).
The streakline through Q is the set

Et0,T (Q) = {p ∈ Ω : ∃τ ∈ [t0, T ] : p = ΦτT (Q) = (ΦTτ )
−1(Q)}

= {p ∈ Ω : ∃u ∈ [0, T−t0] : p = ΦT−u
T (Q) = (ΦTT−u)

−1(Q)}
(3.10)

= the set at T of the positions (a line in Rn) of all the particles which were at Q at a τ ∈ [t0, T ].

Example 3.4 Smoke comes out of a chimney. Fix a camera nearby, choose a point Q at the top of
the chimney where the particles are colored, and make a �lm. At T stop �lming. Then (at time T )
superimpose the photos in the �lm: The colored curve we see is the streakline.

In other words =
⋃
τ∈[t0,T ]{ΦτQ(T )} =

⋃
u∈[0,T−t0]{Φ

T−u
Q (T )}.
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24 3.2. Lagrangian variables and functions

3.2 Lagrangian variables and functions

3.2.1 De�nition

Consider a motion Φ̃, cf. (1.5). An observer chose (subjective) a t0 ∈ [t1, t2] (�in the past�); So Ωt0 =

Φ̃(t0,Obj ) is his initial con�guration. Let m ∈ N∗.

De�nition 3.5 In short: A Lagrangian function, relative to Obj , Φ̃ and t0, is a function

Lagt0 :

{
[t1, t2]× Ωt0 → R⃗m (or, more generally, some adequat set)

(t, pt0) → Lag
t0(t, pt0),

(3.11)

and pt0 is called the Lagrangian variable relative to the (subjective) choice t0.
(To compare with (2.2): A Eulerian function does not depend on any t0.)

Example 3.6 Scalar values: Lagt0(t, pt0) = Θt0(t, pt0) = temperature at t at pt = Φt0t (pt0) = Φ̃(t, PObj ) of
the particle PObj that was at pt0 at t0. (So, continuing example 2.2, Θt0(t, pt0) = θ(t, pt).)

Example 3.7 Vectorial values: Lagt0(t, pt0) = U⃗ t0(t, pt0) = force at t at pt = Φt0t (pt0) = Φ̃(t, PObj ) acting

on the particle PObj that was at pt0 at t0. (So, continuing example 2.3, U⃗ t0(t, pt0) = u⃗(t, pt).)

If t is �xed or if pt0 ∈ Ωt0 is �xed, then we de�ne

Lagt0t :

{
Ωt0 → R⃗m (or, more generally, some adequat set)

pt0 → Lag
t0
t (pt0) := Lag

t0(t, pt0),
(3.12)

Lagt0pt0 :

{
[t1, t2] → R⃗m (or, more generally, some adequat set)

t → Lagt0pt0 (t) := Lag
t0(t, pt0).

(3.13)

Remark 3.8 The position pt0 is also sometimes called a �material point�, which is counter intuitive:
PObj (objective) is the material point, and pt0 is just its spatial position at t0 (subjective); And a Eulerian
variable pt is not called a �material point� at t...

By the way, the variable pt is also called the �updated Lagrangian variable�...

3.2.2 A Lagrangian function is a two point tensor

De�nition 3.9 In details: Lagt0 being de�ned in (3.11), a Lagrangian function is a function

L̃ag
t0
:

{
[t1, t2]× Ωt0 → C × R⃗m

(t, pt0) → L̃ag
t0
(t, pt0) = ((t, pt),Lagt0(t, pt0)) when pt = Φt0t (pt0).

(3.14)

I.e. L̃ag
t0
(t, pt0) = ((t,Φt0t (pt0)),Lag

t0(t, pt0)). (And R⃗m can be replaced by some set.)

De�nition 3.10 (Marsden and Hughes [14].) A Lagrangian function is a �two point vector �eld� (or
more generally a �two point tensor�) in reference to the points pt0 ∈ Ωt0 (departure set) and pt ∈ Ωt
(arrival set) where the value Lagt0(t, pt0) is considered.

Interpretation: (3.14) tells that Lagt0(t, pt0) is not represented at (t, pt0), but at (t, pt): That is, having

graph(Lagt0) = {((t, pt0),Lag
t0(t, pt0)) and Im(L̃ag

t0
) = {((t, pt),Lagt0(t, pt0))}, (3.15)

we have
Im(L̃ag

t0
) ̸= graph(Lagt0) : (3.16)

So a Lagrangian function does not de�ne a tensor in the usual sense. To compare with the Eulerian

function Eul which de�nes a tensor (in particular Im(Êul) = graph(Eul)), cf. (2.3).
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3.3 Lagrangian function associated with a Eulerian function

3.3.1 De�nition

Let Φ̃ be a motion, cf. (1.5). Let Eul be a Eulerian function, cf. (2.3). Let t0 ∈ [t1, t2].

De�nition 3.11 The Lagrangian function Lagt0 associated with the Eulerian function Eul is de�ned by,
for all (t, PObj ) ∈ [t1, t2]×Obj ,

Lagt0(t, Φ̃(t0, PObj )) := Eul(t, Φ̃(t, PObj )), (3.17)

i.e., for all (t, pt0) ∈ [t1, t2]× Ωt0 ,

Lagt0(t, pt0) := Eul(t, pt), when pt = Φ̃(t, PObj ) = Φt0t (pt) (3.18)

i.e., Lagt0(t, pt0) := Eul(t, pt) when pt0 = (Φt0t )
−1(pt) for all (t, pt) ∈ C. In other words:

Lagt0t := Eult ◦ Φt0t . (3.19)

3.3.2 Remarks

• If you have a Lagrangian function, then you can associate the function

Eult0t := Lagt0t ◦ (Φ
t0
t )

−1 (3.20)

which thus a priori depends on t0. But, a Eulerian function is independent of any initial time t0.

• For one measurement, there is only one Eulerian function Eul, while there are as many associated

Lagrangian function Lagt0 as they are t0 (as many as observers): The Lagrangian function Lagt0
′
of a

late observer who chooses t0
′ > t0 is di�erent from Lagt0 since the domains of de�nition Ωt0 and Ωt0′ are

di�erent (in general).

3.4 Lagrangian velocity

3.4.1 De�nition

De�nition 3.12 In short: The Lagrangian velocity at t at pt = Φ̃(t, PObj ) of the particle PObj is the
function

V⃗ t0 :

{
R× Ωt0 → R⃗n

(t, pt0) → V⃗ t0(t, pt0) := Φ̃PObj
′(t) when pt0 = Φ̃(t0, PObj ).

(3.21)

In details: With (3.21), the Lagrangian velocity is the two point vector �eld given by

̂⃗
V t0(t, pt0) :

R× Ωt0 → C × R⃗n

(t, pt0) →
̂⃗
V t0(t, pt0) := ((t, pt), V⃗

t0(t, pt0)), when pt = Φt0(t, pt0).
(3.22)

Thus V⃗ t0(t, pt0) = Φ̃PObj
′(t) = v⃗(t, pt) is the velocity at t at pt = Φ̃(t, PObj ) of the particle PObj which

was at pt0 = Φ̃(pt0 , PObj ) at t0; And V⃗
t0(t, pt0) is not tangent to graph(V⃗ t0), cf. (3.16): It is tangent to

graph(v⃗) at (t, pt).
If t is �xed, or if pt0 ∈ Ωt0 is �xed, then we de�ne

V⃗ t0t (pt0) := V⃗ t0(t, pt0), or V⃗ t0pt0 (t) := V⃗ t0(t, pt0). (3.23)

Remark: A usual de�nition is given without explicit reference to a particle; It is, instead of (3.21),

V⃗ t0(t, pt0) :=
∂Φt0

∂t
(t, pt0), ∀(t, pt0) ∈ R× Ωt0 . (3.24)

3.4.2 Lagrangian velocity versus Eulerian velocity

(3.21) and (2.4) give (alternative de�nition), with pτ = Φ̃(τ, PObj ),

V⃗ t0(t, pt0) = v⃗(t, pt) (=
∂Φt0

∂t
(t, pt0) = Φ̃PObj

′(t) = velocity at t at pt of PObj ). (3.25)

In other words,

V⃗ t0t = v⃗t ◦ Φt0t . (3.26)
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26 3.5. Lagrangian acceleration

3.4.3 Relation between di�erentials

For C2 motions (3.26) gives

dV⃗ t0t (pt0) = dv⃗t(pt).dΦ
t0
t (pt0) when pt = Φt0t (pt0). (3.27)

I.e., with

F t0t = dΦt0t
noted
= the deformation gradient relative to t0 and t, (3.28)

dV⃗ t0t (pt0) = dv⃗t(pt).F
t0
t (pt0) when pt = Φt0t (pt0). (3.29)

Abusively written (dangerous notation: At what points, relative to what times?)

dV⃗ = dv⃗.F. (3.30)

3.4.4 Computation of dv⃗ called L =
•

F .F−1 wih Lagrangian variables

Start with a Lagrangian velocity V⃗ t0 , then de�ne the Eulerian velocity by, with pt = Φt0t (pt0),

v⃗t0(t, pt) := V⃗ t0(t, pt0), (3.31)

(the Eulerian velocity thus depends on t0 a priori), i.e. v⃗t0(t,Φt0t (pt0)) =
∂Φt0

∂t (t, pt0). Thus

dv⃗t0(t, pt).dΦ
t0(t, pt0) = d(

∂Φt0

∂t
)(t, pt0) =

∂(dΦt0)

∂t
(t, pt0) =

∂F t0

∂t
(t, pt0), (3.32)

with Φt0 C2 for the second equality. Thus

dv⃗t0(t, pt) =
∂F t0

∂t
(t, pt0).F

t0(t, pt0)
−1, written in short L := dv⃗ =

•

F .F−1, (3.33)

but L thus �de�ned� is de�ned at what points? What times?
In books, it seems that L is Eulerian (L(t, pt) = dv⃗(t, pt)), not Lagrangian (not Lt0(t, pt0) = dv⃗(t, pt)).
Reminder: Start with Eulerian quantities and use Eulerian quantities as long as possible1, which in

particular say that dv⃗ doesn't depend on t0.

3.5 Lagrangian acceleration

Let PObj ∈ Obj , t0, t ∈ R, pt0 = Φ̃PObj (t0) and pt = Φ̃PObj (t) (positions of PObj at t0 and t).

De�nition 3.13 In short, the Lagrangian acceleration at t at pt of the particle PObj is

Γ⃗ t0(t, pt0) := Φ̃PObj
′′(t) when pt0 = Φ̃PObj (t0). (3.34)

In other words
Γ⃗ t0(t, pt0) := γ⃗(t, pt) when pt = Φt0(t, pt0), (3.35)

where γ⃗(t, pt) = Φ̃PObj
′′(t) is the Eulerian acceleration at t at pt = Φ̃(t, PObj ), cf. (2.36).

In details, the Lagrangian acceleration is the �two point vector �eld� de�ned on R× Ωt0 by

˜⃗
Γ t0(t, pt0) = ((t, pt), Φ̃PObj

′′(t)), when pt = Φt0(t, pt0). (3.36)

(To compare with (2.37).) In particular Γ⃗ t0(t, pt0) is not drawn on the graph of Γ⃗ t0 at (t, pt0), but on the
graph of γ⃗ at (t, pt).

1To get Eulerian results from Lagrangian computations can make the understanding of a Lie derivative quite di�cult: To
introduce the �so-called� Lie derivatives in classical mechanics you can �nd the following steps: 1- At t consider the Cauchy
stress vector t⃗ (Eulerian), 2- then with a unit normal vector n⃗, de�ne the associated Cauchy stress tensor σ (satisfying

t⃗ = σ.n⃗), 3- then use the virtual power and the change of variables in integrals to be back into Ωt0 to be able to work

with Lagrangian variables, 4- then introduce the �rst Piola�Kirchho� (two point) tensor PK, 5- then introduce the second
Piola�Kirchho� tensor SK (endomorphism in Ωt0 ), 6- then di�erentiate SK in Ωt0 (in the Lagrangian variables although the
initials variables are the Eulerian variables in Ωt), 7- then back in Ωt to get back to Eulerian functions (change of variables
in integrals), 8- then you get some Jaumann or Truesdell or other so called Lie derivatives type terms, the appropriate choice
among all these derivatives being quite obscure because the covariant objectivity has been forgotten en route... While, with
simple Eulerian considerations, it requires a few lines to understand the (real) Lie derivative (Eulerian concept) and its
simplicity, see � 9, and deduce second order covariant objective results.
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27 3.6. Time Taylor expansion of Φt0

If t is �xed, or if pt0 ∈ Ωt0 is �xed, then de�ne

Γ⃗ t0t (pt0) := Γ⃗ t0(t, pt0), and Γ⃗t0pt0 (t) := Γ⃗ t0(t, pt0). (3.37)

Thus
Γ⃗ t0t = γ⃗t ◦ Φt0t , and dΓ⃗ t0t (pt0) = dγ⃗t(pt).F

t0
t (pt0), (3.38)

when pt = Φt0t (pt0) and F
t0
t := dΦt0t (the deformation gradient).

Risky notation: dΓ⃗ = dγ⃗.F (points? times?).

3.6 Time Taylor expansion of Φt0

Let pt0 ∈ Ωt0 . Then, at second order,

Φt0pt0 (τ) = Φt0pt0 (t) + (τ−t)Φt0pt0
′
(t) +

(τ−t)2

2
Φt0pt0

′′
(t) + o((τ−t)2), (3.39)

that is, with p(τ) = Φ̃PObj (τ) = Φt0τ (pt0),

p(τ) = p(t) + (τ−t)V⃗ t0(t, pt0) +
(τ−t)2

2
Γ⃗ t0(t, pt0) + o((τ−t)2). (3.40)

NB: There are three times involved: t0 (observer dependent), t and τ (for the Taylor expansion). To

compare with (2.40)-(2.41): p(τ) = p(t)+ (τ−t)v⃗(t, p(t))+ (τ−t)2
2 γ⃗(t, p(t))+ o((τ−t)2), independent of t0.

3.7 A vector �eld that let itself be deformed by a motion

Consider a C0 Eulerian vector �eld w⃗ :

{
C → R⃗n

(t, pt) → w⃗(t, pt)

}
. Let t0 ∈ [t1, t2[ and let w⃗t0 :{

Ωt0 → R⃗n

pt0 → w⃗t0(pt0) := w⃗(t0, pt0)

}
(vector �eld in Ωt0). Then de�ne the (virtual) vector �eld

w⃗t0∗ :

{
C → R⃗n

(t, pt) → w⃗t0∗(t, pt) := dΦt0(t, pt0).w⃗t0(pt0), when p(t) = Φt0(t, pt0).
(3.41)

(The push-forward = result of the deformation of w⃗t0 by the motion, see �gure 4.1.)

Proposition 3.14 For C2 motions, we have (time variation rate along a virtual trajectory)

Dw⃗t0∗
Dt

= dv⃗.w⃗t0∗, (3.42)

i.e. Lv⃗w⃗t0∗ = 0⃗, where Lv⃗u⃗ := Du⃗
Dt −dv⃗.u⃗ (= ∂u⃗

∂t +du⃗.v⃗−dv⃗.u⃗) is the Lie derivative of a (unsteady) vector
�eld u⃗ : C → R⃗n along v⃗.

Interpretation: We will see that Lv⃗w⃗(t0, pt0) = limt→t0
w⃗(t,p(t))−w⃗t0∗(t,p(t))

h measures the �re-

sistance of w⃗ to a motion�, see � 9.3.2; Thus the result Lv⃗w⃗t0∗(t0, pt0) = 0⃗ is �obvious� (=

limt→t0
w⃗t0∗(t,p(t))−w⃗t0∗(t,p(t))

h ): If w⃗ = w⃗t0∗ then the vector (�force�) �eld w⃗ does not oppose any resistance
to the �ow.

Proof. pt0 being �xed, with dΦt0(t, pt0) =
noted F (t) we have w⃗t0∗(t, p(t))=

(3.41) F (t).w⃗t0(pt0), thus
Dw⃗t0∗
Dt (t, p(t)) = F ′(t).w⃗t0(pt0) = F ′(t).F (t)−1.w⃗t0∗(t, p(t))=

(3.33) dv⃗(t, p(t)).w⃗t0∗(t, p(t)), i.e. (3.42).

4 Deformation gradient F := dΦ

Consider a motion Φ̃ :

{
R×Obj → Rn

(t, PObj ) → pt = Φ̃(t, PObj )

}
, Ωt := Φ̃(t,Obj ) the con�guration of Obj at any t,

�x t0, t in R, and let Φt0t :

{
Ωt0 → Ωt

pt0 = Φ̃(t0, PObj ) → pt = Φt0t (pt0) := Φ̃(t, PObj )

}
, supposed to be a C1 di�eo-

morphism. Notations for calculations (quanti�cation), to comply with practices:
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28 4.1. De�nitions

1- Classical (unambiguous) notations as in Arnold, Germain: E.g., (⃗ai) and (⃗bi) are bases resp. in R⃗nt0
and R⃗nt , w⃗t0(pt0) =

∑
i wt0,i(pt0 )⃗ai ∈ R⃗nt0 , w⃗t,i(pt) =

∑
i wt,i(pt)⃗bi ∈ R⃗nt ; And

2- Marsden�Hughes duality notations: Capital letters at t0, lower case letters at t, duality notation,
e.g. (E⃗I) and (e⃗i) are bases resp. in R⃗nt0 and R⃗nt , W⃗ (P ) =

∑
IW

I(P )E⃗I ∈ R⃗nt0 , w⃗(p) =
∑
i w

i(p)e⃗i ∈ R⃗nt .

4.1 De�nitions

4.1.1 De�nition of the deformation gradient F

De�nition 4.1 The di�erential dΦt0t =noted F t0t :

{
Ωt0 → L(R⃗nt0 ; R⃗

n
t )

pt0 → F t0t (pt0) := dΦt0t (pt0)

}
is called �the covari-

ant deformation gradient between t0 and t�, or simply �the deformation gradient�. And �the covariant
deformation gradient at pt0 between t0 and t�, or in short �the deformation gradient at pt0 � is the linear

map F t0t (pt0) ∈ L(R⃗nt0 ; R⃗
n
t ), so de�ned by, for all w⃗t0(pt0) ∈ R⃗nt0 (vector at pt0),

F t0t (pt0).w⃗t0(pt0) := lim
h→0

Φt0t (pt0+hw⃗t0(pt0))− Φt0t (pt0)

h

noted
= (Φt0t )∗(w⃗t0)(pt)

noted
= w⃗t0∗(t, pt), (4.1)

with pt = Φt0t (pt0). See �gure 4.1.

Marsden�Hughes notations: Φ := Φt0t , F := dΦ, P := pt0 , W⃗ (P ) := w⃗t0(pt0), p = Φ(P ), thus

F (P ).W⃗ (P ) := lim
h→0

Φ(P+hW⃗ (P ))− Φ(P )

h

noted
= Φ∗W⃗ (p)

noted
= w⃗∗(p). (4.2)

Figure 4.1: w⃗ is a Eulerian vector �eld. At t0 de�ne vector �eld w⃗t0 in Ωt0 by w⃗t0(pt0) := w⃗(t0, pt0). The
(spatial) curve ct0 : s → pt0 = ct0(s) in Ωt0 is an integral curve of w⃗t0 , i.e. satis�es ct0

′(s) = w⃗t0(ct0(s)).
It is transformed by Φt0t into the (spatial) curve ct = Φt0t ◦ ct0 : s → pt = ct(s)=Φt0t (ct0(s)) in Ωt;
Hence ct

′(s) = dΦt0t (pt0).ct0
′(s) = dΦt0t (pt0).w⃗t0(pt0) =

noted w⃗t0∗(t, pt) is the tangent vector at ct at pt (the
push-forward of w⃗t0 by Φt0t ). And w⃗(t, p(t)) (actual value) is also drawn.

NB: The �deformation gradient� F t0t = dΦt0t is not a �gradient� (its de�nition does not need a
Euclidean dot product); This lead to confusions when covariance-contravariance and objectivity are at
stake. It would be simpler to stick to the name �F t0t = the di�erential of Φt0t �, but it is not the standard
usage, except in thermodynamics: E.g., the di�erential dU of the internal energy U is not called �the
gradient of U � (there is no meaningful inner dot product): It is just called �the di�erential of U �...

4.1.2 Push-forward (values of F )

De�nition 4.2 Let w⃗t0 :

{
Ωt0 → R⃗nt0
pt0 → w⃗t0(pt0)

}
be a vector �eld in Ωt0 . Its push-forward by Φt0t is the

vector �eld (Φt0t )∗(w⃗t0) in Ωt de�ned by

(Φt0t )∗w⃗t0(pt) = F t0t (pt0).w⃗t0(pt0)
noted
= w⃗t0∗(t, pt) when pt = Φt0t (pt0). (4.3)

See �gure 4.1. Marsden notation: Φ∗W⃗ (p) = F (P ).W⃗ (P ) =noted w⃗∗(p) when p = Φt0t (P ).
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29 4.1. De�nitions

In other words
(Φt0t )∗w⃗t0 := (F t0t .w⃗t0) ◦ (Φ

t0
t )

−1. (4.4)

Marsden notation: Φ∗W⃗ = (F.W⃗ ) ◦ Φ−1 = w⃗∗.

4.1.3 F is a two point tensors

With (4.1), �the tangent map� is

F̂ t0t :

{
Ωt0 → Ωt × L(R⃗nt0 ; R⃗

n
t )

pt0 → F̂ t0t (pt0) = (pt, F
t0
t (pt0)) when pt = Φt0t (pt0).

(4.5)

De�nition 4.3 (Marsden�Hughes [14].) The function F̂ t0t is called a two point tensor, referring to the
points pt0 ∈ Ωt0 (departure set) and pt = Φt0t (pt0) ∈ Ωt (arrival set where w⃗t0∗(t, pt) = F t0t (pt0).w⃗t0(pt0) is

drawn). And in short F̂ t0t =noted F t0t is said to be a two point tensor.

Remark 4.4 The name �two point tensor� is a shortcut than can create confusions and errors when
dealing with the transposed: F t0t is not immediately a �tensor�: A tensor is a multilinear form, so

gives scalar results (∈ R), while F (P ) := F t0t (P ) =noted FP ∈ L(R⃗nt0 ; R⃗
n
t ) gives vector results (in R⃗nt ).

However FP can be naturally and canonically associated with the bilinear form F̃P ∈ L(R⃗n∗t , R⃗nt0 ;R)
de�ned by, for all u⃗P ∈ R⃗nt0 and ℓp ∈ R⃗n∗t , with p = Φt0t (P ),

F̃P (ℓp, u⃗P ) := ℓp.FP .u⃗P (∈ R), (4.6)

see � A.14, and it is F̃P which de�nes the so-called �two point tensor�.
But don't forget that the transposed of a linear form (FP here) is not deduced from the transposed

of the associated bilinear form (F̃P here). So be careful with the word �transposed� and its two dis-
tinct de�nitions: The transposed of a bilinear form b(·, ·) is intrinsic to b(·, ·) (is objective), given by
bT (u⃗, w⃗) = b(w⃗, u⃗), while the transposed of a linear function L is not intrinsic to L (is subjective), given
by (LT .u⃗, w⃗)g = (L.w⃗, u⃗)h where (·, ·)g and (·, ·)h are inner dot products (additional tools) chosen by
Human beings (LT should be written LTgh). (Details in � A.8.2 and � A.12.1).

Remark 4.5 More generally for manifolds, the di�erential of Φ := Φt0t at P ∈ Ωt0 is F (P ) := dΦ(P ) :{
TPΩt0 → TpΩt

W⃗ (P ) → w⃗∗(p) := dΦ(P ).W⃗ (P )

}
with p = Φt0t (P ). And the tangent map is

TΦ :

{
TΩt0 → TΩt

(P, W⃗ (P )) → TΦ(P, W⃗ (P )) := (p, dΦ(P ).W⃗ (P )) = (p, w⃗∗(p)), where p = Φt0t (P ),
(4.7)

called the associated two point tensor.

4.1.4 Evolution: Toward the Lie derivative (in continuum mechanics)

Consider a Eulerian vector �eld w⃗ :

C =
⋃
t

({t} × Ωt) → R⃗n

(t, p) → w⃗(t, p)

, e.g. a �force �eld�. Then, at t0

consider w⃗t0 :

{
Ωt0 → R⃗nt0
pt0 → w⃗t0(pt0) := w⃗(t0, pt0)

}
. The push-forward of w⃗t0 by Φt0t is, cf. (4.2),

w⃗t0∗(t, p(t)) = F t0t (pt0).w⃗t0(pt0), where p(t) = Φt0(t, pt0). (4.8)

See �gure 4.1. Then, without any ubiquity gift, at t at p(t) we can compare w⃗(t, p(t)) (real value of w⃗
at t at p(t)) with w⃗t0∗(t, p(t)) (transported memory along the trajectory). Thus the rate

w⃗(t, p(t))− w⃗t0∗(t, p(t))
t− t0

=
actual(t, p(t))− memory(t, p(t))

t− t0
is meaningful at (t, p(t)) (4.9)

(no ubiquity gift required). This rate gives, as h→ 0, the Lie derivative Lv⃗w⃗ (the rate of stress), and we
will see at � 9.3 that Lv⃗w⃗ = Dw⃗

Dt − dv⃗.w⃗ (the dv⃗ term tells that a �non-uniform �ow� acts on the stress).
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30 4.2. Quanti�cation with bases

4.1.5 Pull-back

Formally the pull-back is the push-forward with (Φt0t )
−1:

De�nition 4.6 The pull-back (Φt0t )
∗w⃗t of a vector �eld w⃗t de�ned on Ωt is the vector �eld de�ned on Ωt0

by, with pt0 = (Φt0t )
−1(pt),

w⃗∗
t (t0, pt0) = (Φt0t )

∗w⃗t(pt0) := (F t0t )−1(pt).w⃗t(pt), written W⃗ ∗(P ) = F−1(p).w⃗(p). (4.10)

4.2 Quanti�cation with bases

(Simple Cartesian framework.) (⃗ai) is a Cartesian basis in R⃗nt0 , (⃗bi) is a Cartesian basis in R⃗nt , ot is an
origin in Rn at t, Φt0t =noted Φ supposed C1, φi : Ωt0 → R is its components in the referential (ot, (⃗bi)):

Φ(pt0) = ot +

n∑
i=1

φi(pt0 )⃗bi, i.e.
−−−−−→
otΦ(pt0) =

n∑
i=1

φi(pt0 )⃗bi. (4.11)

Thus, with the classic notation dφi(pt0).⃗aj =
noted ∂φi

∂Xj
(pt0) since (⃗ai) is a Cartesian basis, and (⃗bi) being

a Cartesian basis,

dΦ(pt0).⃗aj =

n∑
i=1

(dφi(pt0).⃗aj )⃗bi =

n∑
i=1

∂φi
∂Xj

(pt0 )⃗bi, thus [dΦ(pt0)][⃗a,⃗b] = [
∂φi
∂Xj

(pt0)] = [F (pt0)][⃗a,⃗b],

[dΦ(pt0)][⃗a,⃗b] = [F (pt0)][⃗a,⃗b] being the Jacobian matrix of Φ at pt0 relative to the chosen bases. In short:

dΦ.⃗aj =

n∑
i=1

∂φi
∂Xj

b⃗i, thus [dΦ][⃗a,⃗b] = [
∂φi
∂Xj

] = [F ][⃗a,⃗b] = [Fij ], (4.12)

Thus, if W⃗ ∈ R⃗nt0 is a vector at pt0 and W⃗ =
∑n
j=1Wj a⃗j then, by linearity of di�erentials,

dΦ.W⃗ = F.W⃗ =

n∑
i=1

FijWj b⃗i, i.e. [F.W⃗ ]|⃗b = [F ]|⃗a,⃗b.[W⃗ ]|⃗a (4.13)

(more precisely: F t0t (pt0).W⃗ (pt0) =
∑n
i=1Fij(pt0)Wj(pt0 )⃗bi).

Similarly, for the second order derivative d2Φ = dF (when Φ is C2): With U⃗ =
∑n
j=1Uj a⃗j and

W⃗ =
∑n
k=1Wka⃗k, and with (⃗ai) and (⃗bi) Cartesian bases, we get

dF (U⃗ , W⃗ ) = d2Φ(U⃗ , W⃗ ) =

n∑
i=1

d2φi(U⃗ , W⃗ )⃗bi =

n∑
i,j,k=1

∂2φi
∂Xj∂Xk

UjWk b⃗i =

n∑
i=1

(
[U⃗ ]T|⃗a.[d

2φi]|⃗a.[W⃗ ]|⃗a

)
b⃗i,

(4.14)

[d2φi(pt0)]|⃗a = [ ∂2φi

∂Xj∂Xk
(pt0)] j=1,...,n

k=1,...,n
being the Hessian matrix of φi at pt0 relative to the basis (⃗ai).

With Marsden duality notations:

• p = Φ(P ) = ot +

n∑
i=1

φi(P )e⃗i, F iJ(P ) =
∂φi

∂XJ
(P ) (= dφi(P ).E⃗J),

• F (P ).W⃗ =

n∑
i,J=1

F iJ(P )W
J e⃗i, [F ] = [F iJ ] = [dΦ],

• dF (U⃗ , W⃗ ) = d2Φ(U⃗ , W⃗ ) =

n∑
i,J,K=1

∂2φi

∂XJ∂XK
UJWK e⃗i =

n∑
i=1

(
[U⃗ ]T .[d2φi].[W⃗ ]

)
e⃗i.

. (4.15)

Remark 4.7 J, j are dummy variables when used in a summation: E.g., df.W⃗ =
∑n
j=1

∂f
∂XjW

j =∑n
J=1

∂f
∂XJW

J =
∑n
α=1

∂f
∂XαW

α = ∂f
∂X1W

1 + ∂f
∂X2W

2 + ... (there is no uppercase for 1, 2...). And
Marsden�Hughes notations (capital letters for the past) are not at all compulsory, classical notations
being just as good and even preferable if you hesitate (because they are not misleading). See � A.
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31 4.3. The unfortunate notation dx⃗ = F.dX⃗

4.3 The unfortunate notation dx⃗ = F.dX⃗

4.3.1 Issue

(4.3), i.e. w⃗∗(p) := F (P ).W⃗ (P ), is sometimes written

dx⃗ = F.dX⃗ : �a very unfortunate and misleading notation� (4.16)

which amounts to �confuse a length and a speed�... And you also the phrase �(4.16) is still true if

||dX⃗|| = 1�... while dX⃗ is supposed to be small...

4.3.2 Where does this unfortunate notation come from?

The notation (4.16) comes from the �rst order Taylor expansion Φ(Q) = Φ(P ) + dΦt0t (P ).(Q−P ) +
o(||Q−P ||), where P,Q ∈ Ωt0 , i.e., with p = Φt0t (P ) and q = Φt0t (Q) and h = ||Q−P ||,

q − p = F (P ).(Q−P ) + o(h), written δx⃗ = F.δX⃗ + o(δX⃗), (4.17)

or −→pq = F (P ).
−−→
PQ+ o(h). So as Q→ P we get 0 = 0... Quite useless, isn't it?

While
q − p
h

= F (P ).
Q− P
h

+ o(1) is useful: (4.18)

As Q→ P we get w⃗∗ = F (P ).W⃗ which relates tangent vectors, see �gure 4.1 Details:

4.3.3 Interpretation: Vector approach

Consider a spatial curve ct0 :

{
[s1, s2] → Ωt0

s → P := ct0(s)

}
in Ωt0 , cf. �gure 4.1. It is deformed by Φt0t to

become the spatial curve de�ned by ct := Φt0t ◦ ct0 :

{
[s1, s2] → Ωt

s → p := ct(s) = Φt0t (ct0(s)).
in Ωt. Hence,

relation between tangent vectors:

dct
ds

(s) = dΦt0t (ct0(s)).
dct0
ds

(s), written
dx⃗

ds
(s) = F (X(s)).

dX⃗

ds
(s), written

dx⃗

ds
= F.

dX⃗

ds
, (4.19)

But you can't simplify by ds to get dx⃗ = F.dX⃗: It is absurd to confuse �a slope dX⃗
ds (s)� and �a length

δX⃗ = p− q�. Recall: With P = ct0(s) and p = ct(s), (4.19) reads w⃗∗(p) = F (P ).W⃗ (P ), cf. (4.2).

NB: ||dct0ds (s)|| = ||dX⃗ds (s)|| = 1 is meaningful in (4.19): It means that the parametrization of the spatial

curve ct0 in Ωt0 uses a curvilinear parameter s such that ||ct0 ′(s)|| = 1 for all s, i.e. s.t. ||W⃗P || = 1 in

�gure 4.1. You cannot simplify by ds: ||dX⃗|| = 1 is absurd together with dX⃗ �small�.

4.3.4 Interpretation: Di�erential approach

(4.16) is a relation between di�erentials... if you adopt the correct notations; Let us do it: With (4.11),

x⃗ = −→otp =
−−−−−−→
otΦ

t0
t (P ) =

n∑
i=1

φi(P )⃗bi
noted
=

n∑
i=1

xi(P )⃗bi, where φi
noted
= xi (function of P ). (4.20)

Thus, with (πai) = (dXi) the (covariant) dual basis of (⃗ai) we get the system of n equations (functions):

dΦ = F, i.e.


dφ1(P ) =

∑n
j=1

∂φ1

∂Xj
(P ) dXj

...

dφn(P ) =
∑n
j=1

∂φn

∂Xj
(P ) dXj

 , which is noted dx⃗ = F.dX⃗, (4.21)

this last notation being often misunderstood2: It is nothing more than dΦ = F (coordinate free notation).

2Spivak [19] chapter 4: Classical di�erential geometers (and classical analysts) did not hesitate to talk about �in�nitely
small� changes dxi of the coordinates xi, just as Leibnitz had. No one wanted to admit that this was nonsense, because
true results were obtained when these in�nitely small quantities were divided into each other (provided one did it in the
right way). Eventually it was realized that the closest one can come to describing an in�nitely small change is to describe
a direction in which this change is supposed to occur, i.e., a tangent vector. Since df is supposed to be the in�nitesimal
change of f under an in�nitesimal change of the point, df must be a function of this change, which means that df should
be a function on tangent vectors. The dXi themselves then metamorphosed into functions, and it became clear that they
must be distinguished from the tangent vectors ∂/∂Xi. Once this realization came, it was only a matter of making new
de�nitions, which preserved the old notation, and waiting for everybody to catch up.
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32 4.4. Change of coordinate system at t for F

4.3.5 The ambiguous notation
•

dx⃗ =
•

F .dX⃗

The bad notation dx⃗ = F.dX⃗ gives the unfortunate and misunderstood notations
•

dx⃗ =
•

F .dX⃗, and then

•

dx⃗ = L.dx⃗ where L =
•

F .F−1. (4.22)

Question: What is the meaning (and legitimate notation) of (4.22)?

Answer:
•

dx⃗ = L.dx⃗ means

Dw⃗t0∗
Dt

= dv⃗.w⃗t0∗ = evolution rate of tangent vectors along a trajectory (4.23)

see �gure 4.1. Indeed, w⃗t0∗(t, p(t)) =
(4.8) F t0(t, pt0).w⃗t0(pt0) gives

Dw⃗t0∗
Dt

(t, p(t)) =
∂F t0

∂t
(t, pt0).w⃗t0(pt0) =

∂F t0

∂t
(t, pt0).(F

t0
t (pt0)

−1.w⃗t0∗(t, p(t))), (4.24)

i.e.
Dw⃗t0∗
Dt (t, p(t)) = dv⃗(t, p(t)).w⃗t0∗(t, p(t)), i.e. (4.23). In particular

Dw⃗t0∗
Dt (t0, pt0) = dv⃗(t0, pt0).w⃗t0(pt0) is

the evolution rate of tangent vectors at t0 at pt0 .

4.4 Change of coordinate system at t for F

pt0 ∈ Ωt0 , pt = Φt0t (pt0) ∈ Ωt, W⃗ (pt0) ∈ R⃗nt0 , w⃗(pt) = F t0t (pt0).W⃗ (pt0) ∈ R⃗nt , written w⃗ = F.W⃗ .

4.4.1 Change of basis system at t for F

The observer at t0 used a basis (⃗ai) in R⃗nt0 . At t, in R⃗nt , a �rst observer chooses a Cartesian basis

(⃗bold,i), and a second observer chooses a Cartesian basis (⃗bnew,i). And P = [Pij ] is the transition matrix

from (⃗bold,i) to (⃗bnew,i), i.e. b⃗new,j =
∑n
i=1Pij b⃗old,i for all j. The change of basis formula in R⃗nt gives

[w⃗]|⃗bnew
= P−1.[w⃗]|⃗bold

, thus [F.W⃗ ]|⃗bnew
= P−1.[F.W⃗ ]|⃗bold

. (4.25)

Thus [F ]|⃗a,⃗bnew
.[W⃗ ]|⃗a = P−1.[F ]|⃗a,⃗bold

.[W⃗ ]|⃗a, true for all W⃗ , thus

[F ]|⃗a,⃗bnew
= P−1.[F ]|⃗a,⃗bold

. (4.26)

Remark 4.8 (4.26) is not [L]|new = P−1.[L]|old.P , the change of basis formula for endomorphisms, which

would be nonsense since F := F t0t (pt0) : R⃗nt0 → R⃗nt is not an endomorphism; (4.26) is just the usual change

of basis formula [w⃗]|⃗bnew
= P−1.[w⃗]|⃗bold

for vectors w⃗ in R⃗nt (contravariant vectors).

4.4.2 Change of basis system at t0 for F

The observer at t with his basis (⃗bi) in R⃗nt0 wants to compare results of two observers à t0: The �rst used a
Cartesian basis (⃗aold,i) e.g. Bernoulli with one Switzerland foot, the second used a Cartesian basis (⃗anew,i)
e.g. Timoshenko with the English foot. P = [Pij ] being the transition matrix from (⃗aold,i) to (⃗anew,i), for

any W⃗ ∈ R⃗nt0 ,
[W⃗ ]|⃗anew = P−1.[W⃗ ]|⃗aold . (4.27)

And F.W⃗ = F.W⃗ gives [F.W⃗ ]|⃗b = [F.W⃗ ]|⃗b, thus [F ]|⃗anew ,⃗b
.[W⃗ ]|⃗anew = [F ]|⃗aold ,⃗b

.[W⃗ ]|⃗aold , hence

[F ]|⃗anew ,⃗b
.P−1.[W⃗ ]|⃗aold = [F ]|⃗aold ,⃗b

.[W⃗ ]|⃗aold , for all W⃗ . Thus [F ]|⃗anew ,⃗b
.P−1 = [F ]|⃗aold ,⃗b

, thus

[F ]|⃗anew ,⃗b
= [F ]|⃗aold ,⃗b

.P . (4.28)

This is the change of basis formula for linear forms (covariant vectors), which is expected since here F is

considered to be a linear function that acts on vectors in R⃗nt0 .

Exercice 4.9 Detail the matrix calculation which gave (4.28) with Marsden's notations.

Answer. Let F.E⃗old,J =
∑

i F
i
o,J e⃗i and F.E⃗new,J =

∑
i F

i
n,J e⃗i, and W⃗ =

∑
J W J

o E⃗old,J =
∑

J W J
n E⃗new,J , and

Q = [QI
J ] := P−1, so [W⃗ ]E⃗new

= Q.[W⃗ ]E⃗old
, i.e. W J

n =
∑

K QJ
KWK

o for all J . Thus F.W⃗ =
∑

iJ F i
n,JW

J
n e⃗i =∑

iJK F i
n,JQ

J
KWK

o e⃗i together with F.W⃗ =
∑

iK F i
o,KWK

o e⃗i, for all W⃗ , thus
∑

J F i
n,JQ

J
K = F i

o,K for all i,K, thus

[F ]|E⃗new,e⃗.Q = [F ]|E⃗old,e⃗
.
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4.5 Tensor notations: Warnings

As already noted, cf. (4.6), the linear map F = dΦ := dΦt0t (pt0) ∈ L(R⃗nt0 ; R⃗
n
t ) is naturally canonically

associated with the bipoint tensor F̃ ∈ L(R⃗n∗t , R⃗nt0 ;R) de�ned by, for all (ℓ, W⃗ ) ∈ R⃗n∗t × R⃗nt0 ,

F̃ (ℓ, W⃗ ) := ℓ.(F.W⃗ ). (4.29)

Quanti�cation: basis (⃗ai) ∈ R⃗nt0 with its (covariant) dual basis (πai) in R⃗n∗t0 , origin ot ∈ Rn and

basis (⃗bi) in R⃗nt with its (covariant) dual basis (πbi) in R⃗n∗t ,
−−→
otΦ =

∑n
i=1φi⃗bi, and dφi .⃗aj = ∂φi

∂Xj
, i.e.

dφi =
∑n
j=1

∂φi

∂Xj
πaj . Hence dΦ.⃗aj =

∑n
i=1(dφi .⃗aj )⃗bi and

F.⃗aj = dΦ.⃗aj =

n∑
i=1

∂φi
∂Xj

b⃗i, thus F̃ =

n∑
i=1

b⃗i ⊗ dφi =
n∑

i,j=1

∂φi
∂Xj

b⃗i ⊗ πaj . (4.30)

Indeed, (
∑n
i,j=1

∂φi

∂Xj
b⃗i ⊗ πaj)(πbk, a⃗ℓ) =

∑n
i,j=1

∂φi

∂Xj
(⃗bi.πbk)(πaj a⃗ℓ) =

∑n
i,j=1

∂φi

∂Xj
δikδjℓ = ∂φk

∂Xℓ
, and

πbk.(F.⃗aℓ) = πbk.(
∑n
i=1

∂φi

∂Xℓ
b⃗i) =

∑n
i=1

∂φi

∂Xℓ
πbk .⃗bi =

∑n
i=1

∂φi

∂Xℓ
δkj =

∂φk

∂Xℓ
: Equality for all k, ℓ.

So F̃ (ℓ, W⃗ ) =
∑
ij

∂φi

∂Xj
ℓiW

j when F.W⃗ =
∑
i
∂φi

∂Xj
Wj b⃗i, for all ℓ =

∑
i ℓiπbi and W⃗ =

∑
jWj a⃗j .

And similarly, d2φi(⃗aj , a⃗k) =
∂2φi

∂Xj∂Xk
for all j, k, i.e. d2φi =

∑n
j,k=1

∂2φi

∂Xj∂Xk
πaj ⊗ πak, and

dF (., .) =

n∑
i=1

d2φi(., .)⃗bi
noted
= dF̃ =

n∑
i=1

b⃗i ⊗ d2φi =
n∑

i,j,k=1

∂2φi
∂Xj∂Xk

b⃗i ⊗ (πaj ⊗ πak), so

dF (U⃗ , W⃗ ) = dF̃ (U⃗ , W⃗ ) =

n∑
i=1

d2φi(U⃗ , W⃗ )⃗bi =

n∑
i,j,k=1

∂2φi
∂Xj∂Xk

UjWk b⃗i.

(4.31)

Marsden duality notations: dφi =
∑
J
∂φi

∂XJ dX
J , F iJ = ∂φi

∂XJ , F.E⃗J =
∑
i F

i
J e⃗i, F̃ =

∑
i e⃗i ⊗ dφi =∑

iJ F
i
J e⃗i⊗dXJ , d2φi =

∑
JK

∂2φi

∂XJ∂XK dXJ⊗dXK , dF =
∑
i e⃗i⊗d2φi =

∑
iJK

∂2φi

∂XJ∂XK e⃗i⊗dXJ⊗dXK .

Warning 1: The tensor notation can be misleading, e.g. if you use the transposed, see remark 4.4. So,
you should always use the standard F.⃗aj =

∑n
j=1Fij b⃗i notation (vector value), i.e. F.E⃗J =

∑n
i,j=1F

i
J e⃗i

with Marsden notations. And avoid the use of F̃ , i.e. of F̃ (ℓ, W⃗ ) (scalar value).

Warning 2: You can't use a⃗j instead of πaj in (4.30), i.e. you can't use F̂ =
∑n
i,j=1

∂φi

∂Xj
b⃗i ⊗ a⃗j instead

of F̃ in (4.30), because there is no canonical natural isomorphism between R⃗n and Rn∗: E.g. a⃗new,j =∑
i Pij a⃗old,i while πanew,i =

∑
j Qijπaold,j where Q = P−1, see (A.27), and you get

∑
ik F̂n,ij b⃗i ⊗ a⃗new,j =

F̂ =
∑
ik F̂o,ik b⃗i ⊗ a⃗old,k =

∑
ijk F̂o,ikQjk b⃗i ⊗ a⃗new,j =

∑
ij([F̂o].Q

T )ij b⃗i ⊗ a⃗new,j , thus [F̂ ]|⃗b,⃗anew
=

[F̂ ]|⃗b,⃗aold
.P−T , which is not (4.28). So it is wrong if you want to compare Euler's results with those of

Newton, Lagrange, Cauchy... because they didn't use the same unit of measurement.
In other words, an inner dot product can't be confused with a matrix product, e.g. you never talk

about the �trace�
∑
i gii of an inner dot product g(·, ·) : E×E → R (not invariant), while the trace of an

endomorphism (linear E → E) is useful and invariant, see � A.10.

Warning 3: In some manuscripts you �nd the notation F = dΦ =noted Φ ⊗ ∇X . It does not help to
understand what F is (it is the di�erential dΦ), and must be avoided as far as objectivity is concerned:
• A di�erentiation is not a tensor operation, see the fundamental example S.1, so why use the tensor

product notation Φ⊗∇X , when the standard notation dΦ (or if you use a basis (⃗bi) in R⃗nt the notation

dΦ(.) =
∑n
i=1dφi(.)⃗bi) is legitimate, explicit and easy to use?

• It could be misinterpreted because in mechanics∇f is often understood to be a vector (contravariant)
while the di�erential df is covariant (unmissable in thermodynamics because you can't use gradients).
• It gives the confusing notation Φ ⊗ ∇X ⊗ ∇X , instead of the legitimate, explicit and easy to use

notation d2Φ (or if you use a basis (⃗bi) in R⃗nt the notation d2Φ(., .) =
∑n
i=1d

2φi(., .)⃗bi).

4.6 Spatial Taylor expansion of F

Φt0t =noted Φ is supposed to be C3 for all t0, t, and F = dΦ. Then, in Ωt, with P ∈ Ωt0 and W⃗ ∈ R⃗nt0
vector at P , Φ(P+hW⃗ ) = Φ(P ) + hF (P ).W⃗ + h2

2 dF (P )(W⃗ , W⃗ ) + o(h), and

F (P+hW⃗ ) = F (P ) + h dF (P ).W⃗ +
h2

2
d2F (P )(W⃗ , W⃗ ) + o(h2). (4.32)
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4.7 Time Taylor expansion of F

t0 is �xed, Φt0 is supposed to be C3, pt0 = Φ̃(t0, PObj ), pt = Φ̃(t0, PObj ) = Φt0(t, pt0), and V⃗ t0(t, pt0) =
∂Φt0

∂t (t, pt0) = v⃗(t, pt) = v⃗(t,Φt0(t, pt0)) (Lagrangian and Eulerian velocities), pt0 is �xed, Φt0pt0 (t) :=

Φt0(t, pt0), and F
t0
pt0

(t) := F t0(t, pt0) = dΦt0(t, pt0). Hence

F t0pt0
′
(t) =

∂F t0

∂t
(t, pt0) =

∂(dΦt0)

∂t
(t, pt0) = d(

∂Φt0

∂t
)(t, pt0) = dV⃗ t0(t, pt0) = dv⃗(t, p(t)).F t0pt0 (t) (4.33)

(in short
•

F = dV⃗ = dv⃗.F ). Thus the �rst order time Taylor expansion F t0pt0 (t+h) = F t0pt0 (t) + hF t0pt0
′
(t) +

o(h) near t gives

F t0pt0 (t+h) = F t0pt0 (t) + h dV⃗ t0pt0 (t) + o(h)

=
(
I + h dv⃗(t, p(t))

)
.F t0pt0 (t) + o(h).

(4.34)

NB: They are three times are involved: t and t+h as usual, and t0 (observer dependent) through F := F t0pt0
and V⃗ := V⃗ t0pt0 , as in (3.39). This Taylor expansion requires Lagrangian variables (requires Φt0).

And, with A⃗t0(t, pt0) =
∂2Φt0

∂t2 (t, pt0) = γ⃗(t, p(t)) == γ⃗(t,Φt0(t, pt0)) (Lagrangian and Eulerian acceler-
ations),

F t0pt0
′′
(t) =

∂2F t0

∂t2
(t, pt0) =

∂2(dΦt0)

∂t2
(t, pt0) = d(

∂2Φt0

∂t2
)(t, pt0) = dA⃗t0(t, pt0) = dγ⃗(t, pt).F (t) (4.35)

(in short
••

F = dA⃗ = dγ⃗.F ). Thus (second order time Taylor expansion of F t0pt0 near t):

F t0pt0 (t+h) = F t0pt0 (t) + h dV⃗ t0pt0 (t) +
h2

2
dA⃗t0pt0 (t) + o(h2)

=
(
I + h dv⃗(t, p(t)) +

h2

2
dγ⃗(t, p(t))

)
.F t0pt0 (t) + o(h2).

(4.36)

In particular with t = t0: Then F
t0
pt0

(t0) = I, thus

F t0pt0 (t0+h) = I + h dV⃗ t0pt0 (t0) +
h2

2
dA⃗t0pt0 (t0) + o(h2)

=
(
I + h dv⃗(t0, pt0) +

h2

2
dγ⃗(t0, pt0)

)
+ o(h2).

(4.37)

Remark 4.10 γ = ∂v⃗
∂t + dv⃗.v⃗ is not linear in v⃗. Idem,

dγ⃗ = d(
Dv⃗

Dt
) = d(

∂v⃗

∂t
+ dv⃗.v⃗) = d

∂v⃗

∂t
+ d2v⃗.v⃗ + dv⃗.dv⃗ (=

D(dv⃗)

Dt
+ dv⃗.dv⃗) (4.38)

is non linear in v⃗, and gives F t0pt0
′′
(t) = (d∂v⃗∂t + d2v⃗.v⃗ + dv⃗.dv⃗)(t, pt).F

t0
pt0

(t), non linear in v⃗.

Exercice 4.11 Directly check that (short notation) F ′ = dv⃗.F gives F ′′ = dγ⃗.F .

Answer. F ′(t) = dv⃗(t, p(t)).F (t) gives F ′′(t) = D(dv⃗)
Dt

(t, p(t)).F (t) + dv⃗(t, p(t)).F ′(t) with D(dv⃗)
Dt

= dγ⃗ − dv⃗.v⃗,

cf. (4.38), thus F ′′(t) = (dγ⃗ − dv⃗.dv⃗)(t, p(t)).F (t) + dv⃗(t, p(t)).dv⃗(t, p(t)).F (t) = dγ⃗(t, p(t)).F (t).

4.8 Homogeneous and isotropic material

Let P ∈ Ωt0 , let F
t0
t (P ) := dΦt0t (P ); Suppose that the �Cauchy stress vector� f⃗t(pt) à t at pt = Φt0t (P )

only depends on P and on F t0t (P ) the �rst gradient at P , i.e. there exists a function ⃗fun such that

f⃗t(pt) = ⃗fun(P, F t0t (P )). (4.39)

De�nition 4.12 A material is homogeneous i� ⃗fun doesn't depend on the �rst variable P of ⃗fun, i.e.,
i�, for all P ∈ Ωt0 ,

⃗fun(P, F t0t (P )) = ⃗fun(F t0t (P )) (= f⃗t(pt)). (4.40)

(Same mechanical property at any point.)
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35 4.9. The inverse of the deformation gradient

De�nition 4.13 (Isotropy.) Consider a Euclidean dot product, the same at all time. A material is

isotropic at P ∈ Ωt0 i� ⃗fun is independent of the direction you consider, i.e., i�, for any rotation Rt0(P )

in R⃗nt0 ,
⃗fun(P, F t0t (P ) = ⃗fun(P, F t0t (P ).Rt0(P )) (= f⃗t(pt)). (4.41)

(Mechanical property unchanged when rotating the material �rst.)

De�nition 4.14 A material is isotropic homogeneous i� it is isotropic and homogeneous.

4.9 The inverse of the deformation gradient

((Φt0t )
−1 ◦ Φt0t )(P ) = P gives, with p = Φt0t (P ),

d(Φt0t )
−1(p).dΦt0t (P ) = It0 , thus d(Φt0t )

−1(p) = dΦt0t (P )
−1 = F t0t (P )−1, (4.42)

where F t0t = dΦt0t is the deformation gradient. We have thus de�ne the two point tensor

Ht0
t := (F t0t )−1 :

Ωt → L(R⃗nt ; R⃗nt0)

p → Ht0
t (p) = (F t0t )−1(p) := (F t0t (P ))−1 when p = Φt0t (P ).

(4.43)

So
Ht0
t (p).w⃗(p) = (F t0t )−1(p).w⃗(p) := F t0t (P )−1.w⃗(p) ∈ R⃗nt0 , in short H.w⃗ = F−1.w⃗, (4.44)

for all w⃗(p) ∈ R⃗nt vector at p. This de�nes, with pt = Φt0(t, P ),

Ht0 :

C =
⋃
t

({t} × Ωt) → L(R⃗nt ; R⃗nt0)

(t, pt) → Ht0(t, pt) := Ht0
t (pt) = (F t0(t, P ))−1.

(4.45)

NB: Ht0 looks like a Eulerian map, but isn't: Ht0 depends on a initial time t0 and is a two point tensor
(starts in R⃗nt , arrives in R⃗nt0). We will however use the material time derivative D

Dt notation in this case,
that is, we de�ne, along a trajectory t→ p(t) = Φt0(t, P ),

DHt0

Dt
(t, p(t)) :=

∂Ht0

∂t
(t, p(t)) + dHt0(t, p(t)).v⃗(t, p(t)), i.e.

DHt0

Dt
=
∂Ht0

∂t
+ dHt0 .v⃗, (4.46)

which is the time derivative g′(t) of the function g : t→ g(t) = Ht0(t,Φt0(t, P )) (i.e. g(t) = Ht0(t, p(t))).
Hence, with p(t) = Φt0(t, P ) and Ht0(t, p(t)).F t0(t, P ) = It0 , written H.F = I, we get

DH

Dt
.F +H.

∂F

∂t
= 0, thus

DH

Dt
= −H.dv⃗ , (4.47)

since ∂F
∂t (t, P ).F

−1(t, p(t)) = dv⃗(t, p(t)) cf. (4.33).

Exercice 4.15 With w⃗t0∗(t, p(t)) = F t0(t, P ).W⃗ (P ), i.e. Ht0(t, p(t)).w⃗t0∗(t, p(t)) = W⃗ (P ), when p(t) =
Φt0(t, P ), prove (4.47).

Answer.
Dw⃗t0∗

Dt
(t, p(t)) = dv⃗(t, p(t)).w⃗t0∗(t, p(t)), cf. (4.23); And (Ht0 .w⃗t0∗)(t, p(t)) = W⃗ (P ) gives DHt0

Dt
.w⃗t0∗ +

Ht0 .
Dw⃗t0∗

Dt
= 0; Thus DHt0

Dt
.w⃗t0∗ +Ht0 .dv⃗.w⃗t0∗ = 0, thus DH

Dt
= −H.dv⃗.

Exercice 4.16 Prove: Ht0
t = Ht0

t1 ◦ H
t1
t and DHt0

Dt (t, p(t)) = Ht0
t1(pt1).

DHt1

Dt (t, p(t)) for all t0, t1 with

pt1 = Φt0t1(pt0).

Answer. We have Φt0
t (pt0) = Φt1

t (Φt0
t1
(pt0)), cf. (5.18), hence F t0

t (pt0) = F t1
t (pt1).F

t0
t1
(pt0), thus F t0

t (pt0)
−1 =

F t0
t1
(pt0)

−1.F t1
t (pt1)

−1, i.e. Ht0
t (pt) = Ht0

t1
(pt1).H

t1
t (p(t)), thus, Ht0(t, p(t)) = Ht0

t1
(pt1).H

t1(t, p(t)), thus
DHt0

Dt
(t, p(t)) = Ht0

t1
(pt1).

DHt1

Dt
(t, p(t)).

5 Flow

5.1 Introduction: Motion versus �ow

• Motion: A motion Φ̃ : (t, PObj ) → pt = Φ̃(t, PObj ) locates at t a particle PObj in the a�ne space Rn,

cf. (1.5); From which the Eulerian velocity �eld v⃗ is deduced: v⃗(t, pt) :=
dΦ̃PObj

dt (t, PObj ), cf. (2.4).
• Flow: A �ow starts with a Eulerian velocity �eld v⃗, from which we deduce a motion by solving the

ODE (ordinary di�erential equation) dΦ
dt (t) = v⃗(t,Φ(t)).
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36 5.2. De�nition

5.2 De�nition

Let v⃗ :

{
R× Rn → R⃗n

(t, p) → v⃗(t, p)

}
be a unstationary vector �eld (e.g., a Eulerian velocity �eld which de�nition

domain is C =
⋃
t∈[t1,t2]

({t} × Ωt)). We look for maps Φ :

{
R → Rn

t → p = Φ(t)

}
which are locally (i.e. in

the vicinity of some t0) solutions of the ODE (ordinary di�erential equation)

dΦ

dt
(t) = v⃗(t,Φ(t)), also written

dp

dt
(t) = v⃗(t, p(t)), or

dx⃗

dt
(t) = v⃗(t, x⃗(t)) (5.1)

where x⃗(t) =
−−−→Op(t) after a choice of an origin. Also written dp

dt = v⃗(t, p) or dx⃗
dt = v⃗(t, x⃗).

De�nition 5.1 A solution Φ of (5.1) is a �ow of v⃗; Also called an integral curve of v⃗ since (5.1) also

reads Φ(t) =
∫ t
τ=t1

v⃗(τ,Φ(τ)) dτ +Φ(t1).

Remark 5.2 Improper notation for (5.1):

dp

dt
(t)

noted
=

dp(t)

dt
(= v⃗(t, p(t))). (5.2)

Question: If the notation dp(t)
dt is used, then what is the meaning of dp(f(t))dt ?

Answer: It means, either dp
dt (f(t)), or

d(p◦f)
dt (t) = dp

dt (f(t))
df
dt (t): Ambiguous. So it is better to use

dp
dt (t), and to avoid dp(t)

dt , unless the context is clear (no composite functions).

5.3 Cauchy�Lipschitz theorem

Let (t0, pt0) be in the de�nition domain of v⃗. We look for Φ solution of �the ODE with initial condition
(t0, pt0)�, in some vicinity of t0, i.e. such that

dΦ

dt
(t) = v⃗(t,Φ(t)) and Φ(t0) = pt0 . (5.3)

(The couple (t0, pt0) is the initial condition, and the values t0 and pt0 are the initial conditions.)

De�nition 5.3 Let t1, t2 ∈ R, t1 < t2. Let Ω be an open set in Rn and Ω its closure supposed to be a
regular domain. Let ||.|| be a norm in R⃗n. A continuous map v⃗ : [t1, t2]×Ω→ R⃗n is Lipschitzian i� it is
�space Lipschitzian, uniformly in time�, that is, i�

∃k > 0, ∀t ∈ [t1, t2], ∀p, q ∈ Ω, ||v⃗(t, q)− v⃗(t, p)|| ≤ k||q − p||. (5.4)

So, ||v⃗t(q)−v⃗t(p)||
||q−p|| ≤ k, for all t and all p ̸= q (the variations of v⃗ are bounded in space, uniformly in time).

Theorem 5.4 (and de�ni�on) (Cauchy�Lipschitz). If v⃗ : [t1, t2] × Ω → R⃗n is Lipschitzian and
(t0, pt0) ∈]t1, t2[×Ω, then there exists ε = εt0,pt0 > 0 s.t. (5.3) has a unique solution Φ :]t0−ε, t0+ε[→ Rn,
noted Φt0pt0 :

dΦt0pt0
dt

(t) = v⃗(t,Φt0pt0 (t)) and Φt0pt0 (t0) = pt0 . (5.5)

Moreover, if v⃗ is Ck then Φ is Ck+1.

Proof. See e.g. Arnold [2], or any ODE course. In particular ||v⃗||∞ := sup
t∈]t0−ε,t0+ε[, p∈Ω

||v⃗(t, p)||Rn

(maximum speed) exists since v⃗ ∈ C0 on the compact [t1, t2]×Ω), see de�nition 5.3, hence we can choose

ε = min(t0−t1, t2−t0,
d(pt0 ,∂Ω)

||v⃗||∞ ) (the time needed to reach the border ∂Ω from pt0).
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37 5.4. Examples

We have thus de�ned the function, also called �a �ow�,

Φ :

{
]t1, t2[×]t1, t2[×Ωt0 → Ω

(t, t0, pt0) → p = Φ(t, t0, pt0) := Φt0pt0 (t)
noted
= Φ(t; t0, pt0).

(5.6)

And (5.5) reads
∂Φ

∂t
(t; t0, pt0) = v⃗(t,Φ(t; t0, pt0)), with Φ(t0; t0, pt0) = pt0 . (5.7)

We have thus de�ned the function, also called �a �ow�,

Φt0 :

{
[t0−ε, t0+ε]× Ωt0 → Rn

(t, pt0) → p = Φt0(t, pt0) := Φt0pt0 (t) :
(5.8)

And (5.5) reads
∂Φt0

∂t
(t, pt0) = v⃗(t,Φt0(t, pt0)), and Φt0(t0, pt0) = pt0 . (5.9)

Other de�nition and notation (can be ambiguous): Φt;t0 = Φt0t : Ωt0 → Rn, and (5.7) is written

dΦt;t0(pt0)

dt
= v⃗(t,Φt;t0(pt0)), and Φt0;t0(pt0) = pt0 . (5.10)

Theorem 5.5 Let v⃗ be Lipschitzian, let t0 ∈]t1, t2[, and let Ωt0 be an open set s.t. Ωt0 ⊂⊂ Ω (i.e. there
exists a compact set K ∈ Rn s.t. Ωt0 ⊂ K ⊂ Ω). Then there exists ε > 0 s.t. a �ow Φt0 exists on
]t0−ε, t0+ε[×Ωt0 .

Proof. Let d = d(K,Rn−Ω) (la distance of K to the border of Ω.
Let ||v⃗||∞ := sup

t∈[t1,t2],p∈Ω

||v⃗(t, p)||Rn (exists since v⃗ ∈ C0 on the compact [t1, t2]× Ω).

Let ε = min(t0−t1, t2−t0, d
||v⃗||∞ ) (less that the minimum time to reach the border from K at maximum

speed ||v||∞).
Let pt0 ∈ K and t ∈]t0−ε, t0+ε[. Then Φt0pt0 exists, cf.theorem 5.4, and ||Φt0pt0 (t) − Φt0pt0 (t0)||Rn ≤

[t− t0| supτ∈]t0−ε,t0+ε[(||(Φ
t0
pt0

)′(τ)||Rn) (mean value theorem since, v⃗ being C0, Φ is C1). Thus ||Φt0pt0 (t)−
Φt0pt0 (t0)||Rn ≤ [t− t0| ||v||∞, thus Φt0pt0 (t) ∈ Ω. Thus Φt0pt0 exists on ]t0−ε, t0+ε[, for all pt0 ∈ K.

Remark 5.6 The de�nition of a �ow starts with a Eulerian velocity (independent of any initial time),
and then, due to the introduction of initial conditions, leads to the Lagrangian functions Φt0 , cf. (5.8).
Once again, Lagrangian functions are the result of Eulerian functions.

5.4 Examples

Example 1 R2 with an origin O, a Euclidean basis (e⃗1, e⃗2) and Ω = [0, 2]× [0, 1] (observation window).

Let p ∈ R2,
−→Op =noted x⃗ = xe⃗1 + ye⃗2 =noted (x, y). Let t1 = −1, t2 = 1, t0 ∈]t1, t2[, a, b ∈ R, a ̸= 0, and

v⃗(t, p) =

{
v1(t, x, y) = ay,

v2(t, x, y) = b sin(t−t0).
(5.11)

(b = 0 corresponds to the stationary case = shear �ow.) x⃗(t0) =

(
x0
y0

)
, x⃗(t) =

(
x(t)
y(t)

)
=
−−−−−→
OΦt0pt0 (t) and

(5.9) give 
dx

dt
(t) = v1(t, x(t), y(t)) = ay(t),

dy

dt
(t) = v2(t, x(t), y(t)) = b sin(t−t0),

with

{
x(t0) = x0,

y(t0) = y0.
(5.12)

Thus

x⃗(t) =
−−−→Op(t) =

−−−−−→
OΦt0pt0 (t) =

(
x(t) = x0 + a(y0 + b)(t−t0)− ab sin(t−t0)
y(t) = y0 + b− b cos(t−t0)

)
. (5.13)
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38 5.5. Composition of �ows

Example 2 Similar framework. Let ω > 0 and consider (spin vector �eld)

v⃗(t, x, y) =

(
−ωy
ωx

)
= ω

(
0 −1
1 0

)(
x
y

)
noted
= v⃗(x, y). (5.14)

With
−−→Opt0 = x⃗t0 =

(
xt0
yt0

)
, rt0 =

√
x2t0 + y2t0 , and θ0 s.t. x⃗t0 =

(
xt0 = rt0 cos(ωt0)
yt0 = rt0 sin(ωt0)

)
, the solution Φt0pt0

of (5.9) is

x⃗(t) =
−−−→Op(t) =

−−−−−→
OΦt0pt0 (t) =

(
x(t) = rt0 cos(ωt)
y(t) = rt0 sin(ωt)

)
. (5.15)

Indeed,

( ∂x
∂t (t, x⃗0)
∂y
∂t (t, x⃗0)

)
=

(
v1(t, x(t, x⃗0), y(t, x⃗0))
v2(t, x(t, x⃗0), y(t, x⃗0))

)
=

(
−ωy(t, x⃗0)
ωx(t, x⃗0)

)
, thus ∂x

∂t (t, x⃗0) = −ωy(t, x⃗0)

and ∂y
∂t (t, x⃗0) = ωx(t, x⃗0), thus ∂2y

∂t2 (t, x⃗0) = −ω2y(t, x⃗0), hence y; Idem for x. Here dv⃗(t, x, y) =

ω

(
0 −1
1 0

)
= ω

(
cos π2 − sin π

2
sin π

2 cos π2

)
is the π/2-rotation composed with the homothety with ratio ω.

5.5 Composition of �ows

Let v⃗ be a vector �eld on R× Ω and Φt0pt0 solution of (5.5). We use the notations

pt = Φt0t (pt0) = Φt;t0(pt0) := Φt0pt0 (t) = Φt0(t, pt0) = Φ(t; t0, pt0) = Φt0,pt0 (t). (5.16)

5.5.1 Law of composition of �ows (determinism)

Proposition 5.7 For all t0, t1, t2 ∈ R, we have (determinism)

Φt1t2 ◦ Φ
t0
t1 = Φt0t2 , i.e. Φt2;t1 ◦ Φt1;t0 = Φt2;t0 . (5.17)

(�The composition of the photos gives the �lm�). So,

pt2 = Φt1t2(pt1) = Φt0t2(pt0) when pt1 = Φt0t1(pt0), (5.18)

i.e.,
pt2 = Φt2;t1(pt1) = Φt2;t0(pt0) when pt1 = Φt1;t0(pt0). (5.19)

Thus
dΦt1t2(pt1).dΦ

t0
t1(pt0) = dΦt0t2(pt0), i.e. dΦt2;t1(pt1).dΦt1;t0(pt0) = dΦt2;t0(pt0). (5.20)

Summary with commutative diagrams:

pt1
Φt1t2

''
pt0

Φt0t1
77

Φt0t2

// pt2

i.e.

pt1
Φt2;t1

''
pt0

Φt1;t0
77

Φt2;t0
// pt2

Proof. Let pt1 = Φt0pt0 (t1). (5.9) gives
dΦt0pt0
dt

(t) = v⃗(t,Φt0pt0 (t)),

dΦt1pt1
dt

(t) = v⃗(t,Φt1pt1 (t)),

 with pt1 = Φt0pt0 (t1) = Φt1pt1 (t1).

Thus Φt0pt0 and Φt1pt1 satisfy the same ODE with the same value at t1; Thus they are equal (uniqueness

thanks to Cauchy�Lipschitz theorem), thus Φt1pt1 (t) = Φt0pt0 (t) when pt1 = Φt0t1(pt0), that is, Φ
t1
t (pt1) =

Φt0t (pt0) when pt1 = Φt0t1(pt0), which is (5.17) for any t = t2. Thus (5.20).

Corollary 5.8 A �ow is compatible with the motion Φ̃ of an object Obj : (3.6) gives Φt1t2 ◦ Φ
t0
t1 = (Φ̃t2 ◦

(Φ̃t1)
−1) ◦ (Φ̃t1 ◦ (Φ̃t0)−1) = Φ̃t2 ◦ (Φ̃t0)−1 = Φt0t2 , that is (5.17).
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39 5.6. Velocity on the trajectory traveled in the opposite direction

5.5.2 Stationnary case

De�nition 5.9 v⃗ is a stationary vector �eld i� ∂v⃗
∂t = 0; And then v⃗(t, p) =noted v⃗(p). And the associated

�ow Φt0 which satis�es
∂Φt0

∂t
(t, pt0) = v⃗(pt) when pt = Φt0(t, pt0), (5.21)

is said to be stationary.

Proposition 5.10 If v⃗ is a stationary vector �eld then, for all t0, t1, h, when meaningful (h small enough
and t1 close enough to t0),

Φt1t1+h = Φt0t0+h, i.e. Φt1+h;t1 = Φt0+h;t0 , (5.22)

i.e. Φt1t1+h(q) = Φt0t0+h(q), i.e. Φ(t1+h; t1, q) = Φ(t0+h; t0, q) for all q ∈ Ωt0 (see theorem 5.5). In other
words,

Φt0+ht1+h
= Φt0t1 , i.e. Φt1+h;t0+h = Φt1;t0 , (5.23)

i.e. Φt0+ht1+h
(q) = Φt0t1(q), i.e. Φ(t1+h; t0+h, q) = Φ(t1; t0, q) for all q ∈ Ωt0 .

Proof. Let q ∈ Ωt0 , α(h) = Φt0t0+h(q) = Φt0q (t0+h) and β(h) = Φt1t1+h(q) = Φt1q (t1+h).

Thus α′(h) =
dΦt0

q

dt (t0+h) = v⃗(t0+h,Φ
t0
q (t0+h)) = v⃗(Φt0q (t0+h)) = v⃗(α(h)) (stationary �ow), and

β′(h) =
dΦt1q

dt (t1+h) = v⃗(t1+h,Φ
t1
q (t1+h)) = v⃗(Φt1q (t1+h)) = v⃗(β(h)) (stationary �ow).

Thus α and β satisfy the same ODE with the same initial condition α(0) = β(0) = q. Thus α = β.
Hence (5.22). Thus, with h = t1−t0, i.e. with t1 = t0+h and t0+h = t1, we get (5.23).

Corollary 5.11 If v⃗ is a stationary vector �eld, cf. (5.21), then

dΦt0t (pt0).v⃗(pt0) = v⃗(pt) when pt = Φt0t (pt0), (5.24)

that is, if v⃗ is stationary, then v⃗ is transported (push-forwarded by Φt0t ) along itself.

Proof. (5.18), t2 = t1+s and t1 = t0+s give Φt0+st1+s(Φ
t0
t0+s(pt0)) = Φt0t1+s(pt0), and v⃗ is stationary, thus

Φt0t1(Φ
t0
t0+s(pt0)) = Φt0t1+s(pt0), i.e. Φ(t1; t0,Φt0,pt0 (t0+s)) = Φt0,pt0 (t1+s), thus (s derivative)

dΦ(t1; t0,Φ(t0+s; t0, pt0)).Φt0,pt0
′(t0+s) = Φt0,pt0

′(t1+s),

thus dΦt0t1(Φ(t0+s; t0, pt0)).v⃗(t0+s,Φt0,pt0 (t0+s)) = v⃗(t1+s,Φt0,pt0 (t1+s)). Thus with s = 0, and v⃗ being

stationary, dΦt0t1(Φ(t0; t0, pt0)).v⃗(Φt0,pt0 (t0)) = v⃗(Φt0,pt0 (t1)), thus (5.24).

5.6 Velocity on the trajectory traveled in the opposite direction

Let t0, t1 ∈ R, t1 > t0, and pt0 ∈ Rn. Consider the trajectory Φt0pt0 :

{
[t0, t1] → Rn

t → p(t) = Φt0pt0 (t)

}
. So pt0

is the beginning of the trajectory, pt1 = Φt0t1(pt0) at the end, v⃗(t, p(t)) =
dΦt0

pt0

dt (t) being the velocity.
De�ne the trajectory traveled in the opposite direction, i.e. de�ne

Ψt1pt1 :

{
[t0, t1] → Rn

u → q(u) = Ψt1pt1 (u) := Φt0pt0 (t0+t1−u) = Φt0pt0 (t) = p(t) when t = t0+t1−u.
(5.25)

In particular q(t0) = Ψt1pt1 (t0) = Φt0pt0 (t1) = p(t1) and q(t1) = Ψt1pt1 (t1) = Φt0pt0 (t0) = p(t0).

Proposition 5.12 The velocity on the trajectory traveled in the opposite direction is the opposite of
the velocity on the initial trajectory:

dΨt1pt1
du

(u) = q′(u) = −p′(t) = −v⃗(t, p(t)) when t = t0+t1−u, (5.26)

Proof. Ψt1pt1 (u) = Φt0pt0 (t0+t1−u) gives
dΨt1

pt1

du (u) = −
dΦt0

pt0

dt (t0+t1−u) = −v⃗(t0+t1−u,Φt0pt0 (t0+t1−u)) =

−v⃗(t,Φt0pt0 (t)) when t = t0+t1−u.

39
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5.7 Variation of the �ow as a function of the initial time

5.7.1 Ambiguous and non ambiguous notations

Let Φ : (t, u, p) ∈ R× R× Rn → Φ(t, u, p) ∈ Rn be a C1 function. The partial derivatives are

∂1Φ(t, u, p) := lim
h→0

Φ(t+h, u, p)− Φ(t, u, p)

h
, (5.27)

∂2Φ(t, u, p) := lim
h→0

Φ(t, u+h, p)− Φ(t, u, p)

h
, (5.28)

and ∂3Φ(t, u, p), de�ned for all w⃗ ∈ R⃗n (a vector at p) by,

∂3Φ(t, u, p).w⃗ := lim
h→0

Φ(t, u, p+hw⃗)− Φ(t, u, p)

h

noted
= dΦ(t, u, p).w⃗, (5.29)

When the name of the �rst variable is systematically noted t, then

∂1Φ(t, u, p)
noted
=

∂Φ

∂t
(t, u, p)

noted
=

∂Φ(t, u, p)

∂t
. (5.30)

NB: This notation can be ambiguous: What is the meaning of ∂Φ∂t (t; t, p)? In ambiguous situations, use

the notation ∂1Φ, or (if no composed functions inside) use ∂Φ(t,u,p)
∂t |u=t (so t is the derivation variable,

and after the calculation you take u = t).
When the name of the second variable is systematically noted u, then

∂2Φ(t, u, p)
noted
=

∂Φ

∂u
(t, u, p)

noted
=

∂Φ(t, u, p)

∂u
. (5.31)

NB: Idem this notation can be ambiguous: What is the meaning of ∂Φ∂u (u;u, p)? In ambiguous situations,

use the notation ∂2Φ, or use
∂Φ(t,u,p)

∂u |t=u.

When the name of the third variable is systematically a space variable noted p, then

∂3Φ(t, u, p)
noted
= dΦ(t, u, p)

noted
=

∂Φ

∂p
(t, u, p)

noted
=

∂Φ(t, u, p)

∂p
. (5.32)

5.7.2 Variation of the �ow as a function of the initial time

The law of composition of the �ows gives (5.19) gives Φ(t;u,Φ(u; t0, p0)) = Φ(t; t0, p0). Thus the derivative
in u gives

∂2Φ(t;u,Φ(u; t0, p0)) + dΦ(t;u,Φ(u; t0, p0)).∂1Φ(u; t0, p0) = 0,

i.e. ∂2Φ(t;u, p(u)) = −dΦ(t;u, p(u)).v⃗(u, p(u)) when p(u) = Φ(u; t0, p0).
(5.33)

In particular u = t0 gives, for all (t, t0, p0) ∈ R2 × Ωt0 ,

(
∂Φ(t; t0, p0)

∂t0
=) ∂2Φ(t; t0, p0) = −dΦ(t; t0, p0).v⃗(t0, p0). (5.34)

In particular

(
dΦ(t; t0, p0)

dt0 |t=t0
=) ∂2Φ(t0; t0, p0) = −v⃗(t0, p0). (5.35)
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Part II

Push-forward

6 Push-forward

The general tool to describe �transport� is �push-forward by a motion� (the �take with you� operator),
cf. � 4.1 and �gure 4.1. The push-forward also gives the tool needed to understand the velocity addition
formula: In that case, the push-forward is the translator between observers. The push-forward can also
be used to write coordinate systems. As usual, we start with qualitative results (observer independent
results); Then, quantitative results are deduced.

6.1 De�nition

E and F are a�ne spaces, E and F are the associated vector spaces equipped with norms ||.||E and ||.||F
with dimE = dimF = n, UE and UF are open sets in the a�ne space E and F , or possibly the vector
spaces E and F , and

Ψ :

{
UE → UF
pE → pF = Ψ(pE) is a di�eomorphism

(6.1)

(a C1 invertible map which inverse is C1), called the push-forward, and Ψ−1 is the pull-back (push-forward
with Ψ−1).

Figure 6.1: cE : s→ pE = cE(s) is a curve in UE . Push-forwarded by Ψ it becomes the curve cE∗ := Ψ ◦ cE
in UF . The tangent vector at pE = cE(s) is w⃗E(pE) = cE

′(s), and the tangent vector at pF = cF (s) =
Ψ(cE(s)) is w⃗E∗(pF ) = cF

′(s) = dΨ(pE).w⃗E(pE). Other illustation: See �gure 4.1.

Example: Ψ = Φt0t : Ωt0 → Ωt, the motion that transforms Ωt0 into Ωt, cf. (3.5).
Example: Ψ : UE → UF a coordinate system, see example 6.11.
Example: Ψ = Θt : RB → RA, a change of referential at t (change of observer), see � 10.

6.2 Push-forward and pull-back of points

De�nition 6.1 If pE ∈ UE (a point in UE) then its push-forward by Ψ is the point

pF = Ψ∗pE := Ψ(pE) = pE∗ ∈ UF , (6.2)

see �gure 6.1, the last notation if Ψ is implicit. And if pF ∈ UF then its pull-back by Ψ is the point

pE = Ψ∗pF := Ψ−1(pF ) = pF
∗ ∈ UE . (6.3)

We immediately have Ψ∗ ◦Ψ∗ = I.

The notations ∗ for push-forward and ∗ for pull-back have been proposed by Spivak; Also see Abraham
and Marsden [1] (second edition) who adopt this notation.
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6.3 Push-forward and pull-back of curves

We push-forward (and pull-back) the points on a curve:

De�nition 6.2 Let cE :

{
]− ε, ε[ → UE

s → pE = cE(s)

}
be a curve in UE . Its push-forward by Ψ is the curve

Ψ∗cE := Ψ ◦ cE :

{
]− ε, ε[ → UF

s → pF = Ψ∗cE(s) := Ψ(cE(s))
noted
= cE∗(s) (= Ψ(pE)),

(6.4)

see �gure 6.1. (Ψ∗cE =noted cE∗ when Ψ is implicit.) This de�nes

Ψ∗ :

{
F(]− ε, ε[;UE) → F(]− ε, ε[;UF )

cE → Ψ∗(cE) := Ψ ◦ cE
noted
= Ψ∗cE = cE∗.

(6.5)

De�nition 6.3 Let cF :

{
]− ε, ε[ → UF

s → pF = cF (s)

}
is a curve in UF . Its pull-back by Ψ is

Ψ∗cF := Ψ−1 ◦ cE

{
]− ε, ε[ → UE

s → pE = Ψ∗cF (s) := Ψ−1(cF (s))
noted
= cF

∗(s) (= Ψ−1(pF )).
(6.6)

We have thus de�ned

Ψ∗ :

{
F(C1(]− ε, ε[;UF ) → F(C1(]− ε, ε[;UE)

cF → Ψ∗(cF ) := Ψ−1 ◦ cF
noted
= Ψ∗cF = cF

∗.
(6.7)

6.4 Push-forward and pull-back of scalar functions

6.4.1 De�nitions

De�nition 6.4 Let fE :

{
UE → R
pE → fE(pE)

}
(scalar valued function). Its push-forward by Ψ is the (scalar

valued) function

Ψ∗fE := fE ◦Ψ−1 :

{
UF → R

pF → Ψ∗fE(pF ) := fE(pE)
noted
= fE∗(pF ) when pE = Ψ−1(pF ),

(6.8)

(noted fE∗ when Ψ is implicit), i.e. Ψ∗fE(Ψ∗pE) := fE(pE), or fE∗(pE∗) := fE(pE) when pE∗ = Ψ(pE). We
have thus de�ned

Ψ∗ :

{
F(UE ;R) → F(UF ;R)

fE → fF := Ψ∗(fE) = fE ◦Ψ−1 noted
= Ψ∗fE ,

(6.9)

the notation Ψ∗(fE) = Ψ∗fE since Ψ∗ is linear: ((fE + λgE) ◦ Ψ−1)(pF ) = (fE + λgE)(pE) = fE(pE) +
λgE(pE) = (fE ◦Ψ−1)(pF ) + λ(gE ◦Ψ−1)(pF ) gives Ψ∗(fE + λgE) = Ψ∗(fE) + λΨ∗(gE).

De�nition 6.5 Let fF :

{
UF → R
pF → fF (pF )

}
. Its pull-back by Ψ is the push-forward by Ψ−1, i.e. is

Ψ∗fF := fF ◦Ψ :

{
UE → R

pE → Ψ∗fF (pE) := fF (pF )
noted
= fF

∗(pE) when pF = Ψ(pE),
(6.10)

i.e. Ψ∗fF (Ψ
∗pF ) := fF (pF ), i.e. fF

∗(pF
∗) := fF (pF ) when pF = Ψ∗(pF ). We have thus de�ned

Ψ∗ :

{
F(UF ;R) → F(UE ;R)

fF → Ψ∗(fF ) = fF
∗ := fF ◦Ψ

noted
= Ψ∗fF .

(6.11)

We immediately have Ψ∗ ◦ Ψ∗ = I and Ψ∗ ◦ Ψ∗ = I (the �rst I is the identity in F(UE ;R), the
second I is the identity in F(UF ;R)).

NB: We used the same notations Ψ∗ and Ψ∗ than for the push-forward and pull-backs of points: The
context removes ambiguities.
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43 6.5. Push-forward and pull-back of vector �elds

6.4.2 Interpretation: Why is it useful?

E.g.: Let Φ̃ : R × Obj → Rn be a motion of an object Obj . An observer records the temperature θ

at all t ∈ [t0, T ] and all p = Φ̃(t,Obj ): He gets θ :

C =
⋃
t

({t} × Ωt) → R

(t, p) → θ(t, p)

 a Eulerian scalar

valued function, cf. (2.2). Then he chooses an initial time t0 and considers the associated motion Φt0 ,

cf. (3.1), and considers θt0 :

{
Ωt0 → R
pt0 → θt0(pt0) := θ(t0, pt0)

}
(snapshot of the temperatures at t0 in Ωt0).

The push-forward of θt0 by Φt0t is (Φt0t )∗θt0 := θt0 ◦ (Φ
t0
t )

−1 de�nes the �memory function�

(Φt0t )∗θt0 :

{
Ωt → R
pt → (Φt0t )∗θt0(pt) := θt0(pt0) when pt = Φt0t (pt0),

(6.12)

And he writes (Φt0t )∗θt0(pt) =
noted θt0∗(t, pt), so the memory transported is at t at pt (along a trajectory)

by
θt0∗(t, p(t)) = θt0(pt0). (6.13)

Question: Why do we introduce θt0∗ since we have θt0?
Answer: An observer does not have the gift of temporal and/or spatial ubiquity; He has to do with

values at the actual time t and position pt where he is (Newton and Einstein's point of view). So, when
he was at t0 at pt0 the observer wrote the value θt0(pt0) on a piece of paper (for memory), puts the piece of
paper is his pocket, then once at t at p(t) = Φt0(t, pt0), he takes the paper out of his pocket, and renames
the value he reads as θt0∗(t, pt) because he is now at t at pt. And, now at t at pt, he can compare the
past and present value. In particular the rate

θ(t, p(t))− θt0∗(t, p(t))
t− t0

=
actual(t, p(t))− memory∗(t, p(t))

t− t0
(6.14)

is physically meaningful for one observer at t at pt (no ubiquity gift required). For scalar value functions,

we get the usual rate θ(t,p(t))−θ(t0,p(t0))
t−t0 , but it isn't that simple for vector valued functions.

And the limit t→ t0 in (6.14) de�nes the Lie derivative for scalar valued functions.

6.5 Push-forward and pull-back of vector �elds

This is one of the most important concept for mechanical engineers.

6.5.1 A de�nition by approximation

Elementary introduction. Let pE and qE be points in UE , and let pF = pE∗ = Ψ(pE) and qF = qE∗ = Ψ(qE)
in UF be the push-forwards by Ψ cf. (6.1). The �rst order Taylor expansion gives

(Ψ(qE)−Ψ(pE) =) qF − pF = dΨ(pE).(qE − pE) + o(||qE − pE ||E), (6.15)

thus, −−→pFqF
||−−→pEqE ||E

= dΨ(pE).
−−→pEqE
||−−→pEqE ||E

+ o(1). (6.16)

And the de�nition of the push-forward is obtained by �neglecting� the o(1) (limit as qE → pE):

De�nition 6.6 If w⃗E(pE) ∈ E is a vector at pE ∈ U then its push-forward by Ψ is the vector
w⃗F (pF ) =

noted w⃗E∗(pF ) =
noted Ψ∗w⃗E(pF ) ∈ F de�ned at pF = pE∗ = Ψ(pE) ∈ UF by

w⃗F (pF ) = w⃗E∗(pF ) := dΨ(pE).w⃗E(pE)
noted
= Ψ∗w⃗E(pF ). (6.17)

6.5.2 The de�nition of the push-forward of a vector �eld

To fully grasp the de�nition, and to avoid making interpretation errors as in � 4.3 (the unfortunate

notation dx⃗ = F.dX⃗), we use the following de�nition of �a vector�: It is a �tangent vector to a curve�
(needed for surfaces and manifolds). Details:
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44 6.5. Push-forward and pull-back of vector �elds

• Let cE :

{
]− ε, ε[ → UE

s → pE = cE(s)

}
be a C1 curve in UE . Its tangent vector at pE = cE(s) is

w⃗E(pE) := cE
′(s) (= lim

h→0

cE(s+ h)− cE(s)
h

), (6.18)

see �gure 6.1. This de�nes the function w⃗E :

{
Im(cE) → E

pE → w⃗E(pE)

}
called a vector �eld along Im(cE)⊂UE .

• The push-forward of cE by Ψ being the image curve cE∗ = Ψ ◦ cE (the curve transformed by Ψ)
cf. (6.4), its tangent vector at pF = cE∗(s) is

w⃗E∗(pF ) := cE∗
′(s) thus = dΨ(pE).cE

′(s) = dΨ(pE).w⃗E(pE). (6.19)

Thus we have de�ned the vector �eld w⃗E∗ along Im(cE∗) called the push-forward of w⃗E by Ψ.
With all the integral curves of a vector �eld de�ned in UE , we get:

De�nition 6.7 The push-forward by Ψ of a C0 vector �eld w⃗E :

{
UE → E

pE → w⃗E(pE)

}
is the vector �eld

Ψ∗w⃗E = w⃗E∗ :

UF → F

pF → Ψ∗w⃗E(pF ) := dΨ(pE).w⃗E(pE)
noted
= w⃗E∗(pF ) when pF = Ψ(pE),

(6.20)

see �gure 6.1. (Ψ∗w⃗E =noted w⃗E∗ if Ψ is implicit). In other words,

Ψ∗w⃗E := (dΨ.w⃗E) ◦Ψ−1. (6.21)

This de�nes the map Ψ∗ :

{
C∞(UE ;E) → C∞(UF ;F )

w⃗E → Ψ∗(w⃗E) := Ψ∗w⃗E = w⃗E∗

}
. (We use the same notation Ψ∗ as

in de�nition 6.4 for scalar valued functions: The context removes ambiguity.)

Remark 6.8 Unlike scalar functions, cf. � 6.4.2: At t0 at pt0 you cannot just draw a vector w⃗t0(pt0)
on a piece of paper, put the paper in your pocket, then let yourself be carried by the �ow Ψ = Φt0t
(push-forward), then, once arrived at t at pt, take the paper out of your pocket and read it to get the
push-forward: The direction and length of the vector w⃗t0∗(t, pt) are modi�ed by the �ow (a vector is not
just a collection of scalar components).

Exercice 6.9 Prove:
c⃗E

′′(s) = dw⃗E(pE).w⃗E(pE), (6.22)

and
dw⃗E∗(pF ).dΨ(pE) = dΨ(pE).dw⃗E(pE) + d2Ψ(pE).w⃗E(pE), (6.23)

and
cE∗

′′(s) = dw⃗E∗(pF ).w⃗E∗(pF ) (= dΨ(pE).c⃗E
′′(s) + d2Ψ(pE).c⃗E

′(s).c⃗E
′(s)). (6.24)

Answer. c⃗E
′(s) = w⃗E(cE(s)) gives c⃗E

′′(s) = dw⃗E(cE(s)).c⃗E
′(s), hence (6.22).

w⃗E∗(Ψ(pE)) = dΦ(pE).w⃗E(pE) by de�nition of w⃗E∗, hence (6.23).

cF (s) = Ψ(cE(s)) gives c⃗F
′(s) = dΨ(cE(s)).c⃗E

′(s) = dΨ(cE(s)).w⃗E(cE(s)) = w⃗E∗(cF (s)). Thus c⃗F
′′(s) =

(d2Ψ(cE(s)).c⃗E
′(s)).c⃗E

′(s) + dΨ(cE(s)).c⃗E
′′(s) = dw⃗E∗(cF (s)).c⃗F

′(s), hence (6.24).

6.5.3 Pull-back of a vector �eld

De�nition 6.10 If w⃗F :

{
UF → F

pF → w⃗F (pF )

}
is a vector �eld on UF , then its pull-back by Ψ is the

push-forward by Ψ−1, i.e. is the vector �eld on UE de�ned by

Ψ∗w⃗F :

UE → E

pE → Ψ∗w⃗F (pE) := dΨ−1(pF ).w⃗F (pF )
noted
= w⃗F

∗(pE), when pF = Ψ(pE).
(6.25)

In other words,

Ψ∗w⃗F := (dΨ−1.w⃗F ) ◦Ψ
noted
= w⃗F

∗. (6.26)
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And we get
Ψ∗ ◦Ψ∗ = I and Ψ∗ ◦Ψ∗ = I. (6.27)

Indeed, Ψ∗(Ψ∗w⃗E)(pE) = dΨ−1(pF ).Ψ∗w⃗E(pF ) = dΨ−1(pF ).dΨ(pE).w⃗E(pE) = w⃗E(pE), for all pE . Idem for
the second equality.

6.6 Quanti�cation with bases

6.6.1 Usual result

(⃗ai) is a Cartesian basis in E, OF and (⃗bi) are an origin in F and a Cartesian basis in F , pE ∈ UE ,

pF = Ψ(pE) = OF +

n∑
i=1

ψi(pE) b⃗i, i.e. [
−−−→
OFpF ]|⃗b =

 ψ1(pE)
...

ψn(pE)

 . (6.28)

Then, if w⃗E is a vector �eld in UE and w⃗E =
∑
i wj a⃗i, we get Ψ∗w⃗E(pF ) = dΨ(pE).w⃗E(pE) =∑n

i=1(dψi(pE).w⃗E(pE)) b⃗i =
∑n
i,j=1wj(pE)(dψi(pE).⃗aj) b⃗i =

∑n
i,j=1

∂ψi

∂xj
(pE)wj(pE) b⃗i, so

[Ψ∗w⃗E(pF )]|⃗b = [dΨ(pE)]|⃗a,⃗b.[w⃗E(pE)]|⃗a, (6.29)

where [dΨ(pE)]|⃗a,⃗b = [dψi(pE).⃗aj ] =
noted [∂ψi

∂xj
(pE)] is the Jacobian matrix.

6.6.2 Example: Polar coordinate system

Example 6.11 Change of coordinate system interpreted as a push-forward: Paradigmatic example of
the polar coordinate system (model generalized for the parametrization of any manifold).

Parametric Cartesian vector space R × R =noted R⃗2
p = {q⃗ = (r, θ)}, with its canonical basis (⃗a1, a⃗2),

and q⃗ = ra⃗1 + θa⃗2 =noted (r, θ), so [q⃗]|⃗a =

(
r
θ

)
. Geometric a�ne space R2 (of positions), p ∈ R2,

associated vector space R⃗2, O ∈ R2 (origin), x⃗ =
−→
Op, and a Euclidean basis (⃗b1, b⃗2) in R⃗2. The �polar

coordinate system� is the associated map Ψ :

{
R⃗∗

+ × R ⊂ R⃗2
p → R⃗2

q⃗ = (r, θ) → x⃗ = Ψ(q⃗) = Ψ(r, θ),

}
de�ned by

x⃗ = Ψ(q⃗) := r cos θ b⃗1 + r sin θ b⃗2, i.e. [x⃗]|⃗b =

(
x = r cos θ
y = r sin θ

)
. (6.30)

The i-th coordinate line at q⃗ in R⃗2
p (parametric space) is the straight line c⃗q⃗,i :

{
R → R⃗2

p

s → c⃗q⃗,i(s) = q⃗ + sa⃗i

}
,

and its tangent vector at c⃗q⃗,i(s) is c⃗q⃗,i
′(s) = a⃗i for all s. This line is transformed by Ψ into the curve

Ψ∗(cq,i) = Ψ ◦ c⃗q⃗,i =noted cx⃗,i :

{
R → R2

s → cx⃗,i(s) = Ψ(q⃗ + sa⃗i)

}
(in particular cx⃗,i(0) = x⃗). So

[
−−−−−→
Ocx⃗,1(s)]|⃗b =

(
(r+s) cos θ
(r+s) sin θ

)
(straight line), and [

−−−−−→
Ocx⃗,2(s)]|⃗b =

(
r cos(θ+s)
r sin(θ+s)

)
(circle). (6.31)

And the tangent vector at cx⃗,i(s) is cx⃗,i
′(s) =noted a⃗i∗(x⃗) (push-forward by Ψ), so

a⃗1∗(x⃗) := Ψ∗a⃗1(x⃗) = dΨ(q⃗).⃗a1 = lim
h→0

Ψ(q⃗+ha⃗1)−Ψ(q⃗)

h
= lim
h→0

Ψ(r+h, θ)−Ψ(r, θ)

h
=
∂Ψ

∂r
(q⃗),

a⃗2∗(x⃗) := Ψ∗a⃗2(x⃗) = dΨ(q⃗).⃗a2 = lim
h→0

Ψ(q⃗+ha⃗2)−Ψ(q⃗)

h
= lim
h→0

Ψ(r, θ+h)−Ψ(r, θ)

h
=
∂Ψ

∂θ
(q⃗),

(6.32)

Thus
a⃗1∗(x⃗) = cos θ⃗b1 + sin θ⃗b2 and a⃗2∗(x⃗) = −r sin θ⃗b1 + r cos θ⃗b2, (6.33)

i.e.

[⃗a1∗(x⃗)]|⃗b =

(
cos θ
sin θ

)
and [⃗a2∗(x⃗)]|⃗b =

(
−r sin θ
r cos θ

)
. (6.34)

The basis (⃗a1∗(x⃗), a⃗2∗(x⃗)) is called the basis of the polar coordinate system at x⃗ (it is orthogonal
but not orthonormal since ||⃗a2∗(x⃗)|| = r ̸= 1 in general); And [dΨ(q⃗)]|⃗a,⃗b =

(
[∂Ψ∂r (q⃗)]|⃗b [∂Ψ∂θ (q⃗)]|⃗b

)
=(

[⃗a1∗(x⃗)]|⃗b [⃗a2∗(x⃗)]|⃗b
)
=

(
cos θ −r sin θ
sin θ r cos θ

)
= [∂Ψ

i

∂qj (q⃗)] is the Jacobian matrix of Ψ at q⃗.
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46 6.6. Quanti�cation with bases

And the dual basis of the polar system basis (⃗a1∗(x⃗), a⃗2∗(x⃗)) is called (dq1(x⃗), dq2(x⃗)) (de�ned by
dqi(x⃗).⃗aj∗(x⃗) = δij), so

dq1(x⃗) = cos θ dx1 + sin θ dx2 and dq2(x⃗) = −
1

r
sin θ dx1 +

1

r
cos θ dx2, (6.35)

i.e. [dq1(x⃗)]|⃗b = ( cos θ sin θ ) and [dq2(x⃗)]|⃗b = −
1
r ( sin θ cos θ ) (row matrices) when x⃗ = Ψ(q⃗).

Remark 6.12 The components γkij(x⃗) of the vector da⃗j∗(x⃗).⃗ai∗(x⃗) ∈ R⃗2 in the basis (⃗ai∗(x⃗)) are the
Christo�el symbols of the polar coordinate system (with duality notations as it is usually presented):

da⃗j∗(x⃗).⃗ai∗(x⃗) =

n∑
k=1

γkij(x⃗)⃗ak∗(x⃗). (6.36)

At x⃗ = Ψ(q⃗), with a⃗j∗(x⃗) = dΨ(q⃗).⃗aj , i.e. (⃗aj∗ ◦Ψ)(q⃗) = ∂Ψ
∂qj , we get

da⃗j∗(x⃗).⃗ai∗(x⃗) =
∂2Ψ

∂qi∂qj
(q⃗) = da⃗i∗(x⃗).⃗aj∗(x⃗), so γkij = γkji (6.37)

for all i, j (symmetry of the bottom indices as soon as Ψ is C2).

Here for the polar coordinates, ∂Ψ
∂r (q⃗) = cos θ⃗b1 + sin θ⃗b2 gives ∂2Ψ

∂r2 (q⃗) = 0⃗, thus γ111 = γ211 = 0,

and ∂2Ψ
∂θ∂r (q⃗) = − sin θ⃗b1 + cos θ⃗b2 = 1

r a⃗2∗(x⃗), thus γ
1
12 = 0 = γ121 and γ212 = 1

r = γ221. And ∂Ψ
∂θ (q⃗) =

−r sin θ⃗b1 + r cos θ⃗b2 gives ∂2Ψ
∂θ2 (q⃗) = −r cos θ⃗b1 − r sin θ⃗b2 = −ra⃗1∗(x⃗), thus γ122 = −r and γ222 = 0.

Remark 6.13 The (widely used) normalized polar coordinate basis (n⃗1(x⃗), n⃗2(x⃗)) = (⃗a1∗(x⃗),
1
r a⃗2∗(x⃗))

is not holonomic, i.e. is not the basis of a coordinate system (and its use makes higher deriva-
tion formulas complicated). Indeed n⃗2(x⃗) = 1

r a⃗2∗(x⃗) gives dn⃗2(x⃗).n⃗1(x⃗) = (d( 1r )(x⃗).n⃗1(x⃗))⃗a2∗(x⃗) +
1
rda⃗2∗(x⃗).n⃗1(x⃗), and n⃗1(x⃗) = a⃗1∗(x⃗) gives dn⃗1(x⃗).n⃗2(x⃗) = da⃗1∗(x⃗).(

1
r a⃗2∗), thus dn⃗2(x⃗).n⃗1(x⃗) −

dn⃗1(x⃗).n⃗2(x⃗) = (d( 1r )(x⃗).n⃗1(x⃗))⃗a2∗(x⃗) ̸= 0⃗, since 1
r = (x2 + y2)−

1
2 gives d( 1r )(x⃗).n⃗1(x⃗) =

(−x(x2 + y2)−
3
2 −y(x2 + y2)−

3
2 ) .

(
cos θ
sin θ

)
= 1

r3 (−r cos
2 θ − r sin2 θ) = −1

r2 ̸= 0.

Remark 6.14 (Pay attention to the notations.) Let f : q⃗ ∈ R⃗2
p → f(q⃗) ∈ R be C2. Call g its push-

forward by Ψ, i.e. g : x⃗ ∈ R2 → g(x⃗) = f(q⃗) ∈ R when x⃗ = Ψ(q⃗). So f(q⃗) = (g ◦Ψ)(q⃗)and

df(q⃗).⃗aj = dg(Ψ(q⃗)).dΨ(q⃗).⃗aj = dg(x⃗).⃗aj∗(x⃗). (6.38)

With df(q⃗).⃗aj =
noted ∂f

∂qj (q⃗) and dg(x⃗).⃗bj =
noted ∂g

∂xj (x⃗) and a⃗j∗(x⃗) = dΨ(q⃗).⃗aj =
∑
i
∂Ψi

∂qj (q⃗)⃗aj , we get

∂f

∂qj
(q⃗) =

∑
i

∂g

∂xi
(x⃗)

∂Ψi

∂qj
(q⃗)

noted
=

∂g

∂qj
(x⃗) ... (!!) (6.39)

Mind this notation!! g is a function of x⃗, not of q⃗, so
∂g

∂qi
(x⃗)

means
=

∂f

∂qi
(q⃗), i.e.

∂g

∂qi
(x⃗)

means
=

∂(g ◦Ψ)

∂qi
(q⃗)...

which is [df(q⃗)] = [dg(x⃗)].[dΨ(q⃗)...
Then (with f and Ψ C2)

∂ ∂g
∂qi

∂qj
(x⃗)

means
=

∂ ∂(g◦Ψ)
∂qi

∂qj
(q⃗) = d(dg.⃗ai∗)(x⃗).dΨ(q⃗).⃗aj = d(dg.⃗ai∗)(x⃗).⃗aj∗(x⃗)

= d((dg(x⃗).⃗aj∗(x⃗)).⃗ai∗(x⃗) + dg(x⃗).(da⃗i∗(x⃗).⃗aj(x⃗))
noted
=

∂2g

∂qi∂qj
(x⃗).

(6.40)

So
∂2g

∂qi∂qj
(x⃗)

means
= d2g(x⃗)(⃗ai∗(x⃗), a⃗j∗(x⃗)) +

n∑
k=1

∂g

∂xk
(x⃗)γkij(x⃗)⃗ak(x⃗), (6.41)

and ∂2g
∂qi∂qj (x⃗) is not reduced to d2g(x⃗)(⃗ai∗(x⃗), a⃗j∗(x⃗)) (the Christo�el symbols have appeared): First

order derivatives ∂g
∂xk are still alive. (Contrary to ∂2g

∂xi∂xj (x⃗) = d2g(x⃗)(⃗bi, b⃗j) with a Cartesian basis (⃗bi).)
NB: The independent variables r and θ don't have the same dimension (a length and an angle): There

is no physical meaningful inner dot product in the parameter space R⃗2
p = R×R = {(r, θ)}, but this space

is very useful... (As in thermodynamics: No meaningful inner dot product in the (T, P ) space.)
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47 7.1. De�nition

7 Push-forward and pull-back of di�erential forms

7.1 De�nition

Setting of � 6.1. Consider a di�erential form αE :

{
UE → E∗ = L(E;R)
pE → αE(pE)

}
on UE (a �eld of linear forms),

and a vector �eld w⃗E :

{
UE → E

pE → w⃗E(pE)

}
. Hence

fE = αE .w⃗E :

{
UE → R
pE → fE(pE) = (α.w⃗E)(pE) = αE(pE).w⃗E(pE)

is a scalar valued function (value of w⃗E given by αE). And (6.8) gives (push-forward fE = αE .w⃗E by Ψ)

Ψ∗(αE .w⃗E)(pF ) = (αE .w⃗E)(pE) = αE(pE).w⃗E(pE) when pF = Ψ(pE). (7.1)

With w⃗E∗(pF ) = dΨ(pE).w⃗E(pE) cf. (6.20) (push-forward of w⃗E), we get

Ψ∗(αE .w⃗E)(pF ) = αE(pE).dΨ(pE)
−1︸ ︷︷ ︸

=noted αE∗(pF )

.w⃗F (pF ) when pF = Ψ(pE) : (7.2)

De�nition 7.1 The push-forward of a di�erential form αE ∈ Ω1(UE) is the di�erential form ∈ Ω1(UF )
given by

Ψ∗αE :

UF → F ∗ = L(F ;R)

pF → Ψ∗αE(pF ) := αE(pE).dΨ(pE)
−1 noted

= αE∗(pF ) when pF = Ψ(pE),
(7.3)

the last notation when Ψ is implicit. In other words, Ψ∗αE(pF ) = αE(Ψ
−1(pF )).dΨ

−1(pF ), i.e.

Ψ∗αE := (αE ◦Ψ−1).dΨ−1. (7.4)

(Once again, we used the same notation Ψ∗ than for the push-forward of vector �elds and functions: The
context removes any ambiguities.)

Remark 7.2 We cannot always see a vector �eld (e.g. we can't see an internal force �eld): To know it we
need to measure it with a well de�ned tool, the tool being here a di�erential form; And the de�nition 7.1
is a compatbility de�nition so that we can recover the push-forward of the vector �eld.

De�nition 7.3 The pull-forward of a a di�erential form αF ∈ Ω1(UF ) is the di�erential form

Ψ∗αF :

{
UE → L(E;R)

pE → Ψ∗αF (pE) := αF (pF ).dΨ(pE)
noted
= αF

∗(pE) when pF = Ψ(pE),
(7.5)

In other words,
Ψ∗αF := (αF ◦Ψ).dΨ. (7.6)

(For an alternative de�nition, see remark 7.5.)

Proposition 7.4 For all αE ∈ Ω1(UE) and αF ∈ Ω1(UF ) (di�erential forms), and w⃗E ∈ Γ(UE) and
w⃗F ∈ Γ(UF ) (vector �elds), we have (objectivity result)

(Ψ∗αE)(pF ).w⃗F (pF ) = αE(pE).(Ψ∗w⃗F )(pE) when pF = Ψ(pE), (7.7)

i.e. αE∗(pF ).w⃗F (pF ) = αE(pE).w⃗F
∗(pE). In particular with αE = df (exact di�erential form) where

f ∈ C1(UE ;R),
d(Ψ∗f) = Ψ∗(df). (7.8)

(This commutativity result is very particular to the case α = df : In general d(Ψ∗T ) ̸= Ψ∗(dT ) for a
tensor of order ≥ 2, see e.g. (8.19)).
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48 7.2. Incompatibility: Riesz representation and push-forward

Proof. αE∗(pF ).w⃗F (pF ) = (αE(pE).dΨ
−1(pF )).w⃗F (pF ) = αE(pE).(dΨ

−1(pF ).w⃗F (pF )) = αE(pE).w⃗
∗
F (pE),

for all pF = Ψ(pE) ∈ UF .
And Ψ∗f(pF ) := f(pE) = f(Ψ−1(pF )), thus d(Ψ∗f)(pF ) = df(pE).dΨ

−1(pF ) = Ψ∗(df)(pF ).

And we have
Ψ∗ ◦Ψ∗ = I and Ψ∗ ◦Ψ∗ = I. (7.9)

Indeed Ψ∗(Ψ∗αE)(pE) = Ψ∗αE(pF ).dΨ(pE) = αE(pE).dΨ
−1(pF ).dΨ(pE) = αE(pE). Idem for Ψ∗ ◦Ψ∗ = I.

Remark 7.5 The pull-back αF
∗ can also be de�ned thanks to the natural canonical isomorphism{

L(E;F ) → L(F ∗;E∗)

L → L∗

}
given by L∗(ℓF ).u⃗E = ℓF .(L.u⃗E) for all (u⃗E , ℓF ) ∈ E×F ∗, and L∗(ℓF ) = ℓF .L

is called the pull-back of ℓF by L. In particular with ℓF = αF (pF ) and L = dΨ(pE) we get
dΨ(pE)

∗(αF (pF )) = αF (pF ).dΨ(pE), i.e. (7.5).

7.2 Incompatibility: Riesz representation and push-forward

A push-forward is independent of any inner dot product: It is objective.
But here we introduce inner dot products (·, ·)g in E and (·, ·)h in F , e.g. Euclidean dot products

in R⃗nt0 and R⃗nt (observer dependent therefore subjective), because some mechanical engineers can't begin
with their beloved Euclidean dot products.

Let αE ∈ Ω1(UE) and call βF := Ψ∗αE its push-forward by Ψ, i.e.

βF (pF ) := αE(pE).dΨ(pE)
−1 when pF = Ψ(pE). (7.10)

Then call a⃗g(pE) ∈ E and b⃗h(pF ) ∈ F the (·, ·)g and (·, ·)h-Riesz representation vectors of αE and βF , so,
for all u⃗E ∈ Γ(UE) and all w⃗F ∈ Γ(UF ), in short,

αE .u⃗E = (⃗ag, u⃗E)g, and βF .w⃗F = (⃗bh, w⃗F )h, (7.11)

which means αE(pE).u⃗E(pE) = (⃗ag(pE), u⃗E(pE))g and βF (pF ).w⃗F (pF ) = (⃗bh(pF ), w⃗F (pF ))h, for all pE ∈ UE
and pF ∈ UF . This de�nes the vector �elds a⃗g ∈ Γ(UE) and b⃗h ∈ Γ(UF ).

Proposition 7.6 b⃗h ̸= Ψ∗a⃗g in general (although βF = Ψ∗αE), because

b⃗h(pF ) = dΨ(pE)
−T .⃗ag(pE)

̸= dΨ(pE).⃗ag(pE) in general
(7.12)

(unless dΨ(pE)
−T = dΨ(pE), i.e. dΨ(pE)

T .dΨ(pE)
−1 = I, as a rigid body motion).

So the Riesz representation vector of the push-forwarded linear form is not the push-forwarded rep-
resentation vector of the linear form push-forwarded.

This is not a surprise: A push-forward is independent of any inner dot product, while a Riesz repre-
sentation vector depends on a chosen inner dot product (E.g. Euclidean foot? metre?).

So, as long as possible (not before you need to quantify), you should avoid using a Riesz representation
vector, i.e. you should use the original (the qualitative di�erential form) as long as possible, and delay
the use of a representative (quanti�cation with which dot product?) as late as possible.

Proof. Recall: The transposed relative to (·, ·)g and (·, ·)h of the linear map dΨ(pE) ∈ L(E;F ) is the
linear map dΨ(pE)

T
gh =noted dΨ(pE)

T ∈ L(F ;E) de�ned by, for all u⃗E ∈ E and w⃗F ∈ F vectors at pE
and pF , cf. (A.66),

(dΨ(pE)
T .w⃗F , u⃗E)g = (w⃗F , dΨ(pE).u⃗E)h. (7.13)

(7.11) gives, with pF = Ψ(pE),

(⃗ag(pE), u⃗E)g = αE(pE).u⃗E =
(
βF (pF ).dΨ(pE)

)
.u⃗E = βF (pF ).

(
dΨ(pE).u⃗E

)
= (⃗bh(pF ), dΨ(pE).u⃗E)h = (dΨ(pE)

T .⃗bh(pF ), u⃗E)g,
(7.14)

true for all u⃗E , thus a⃗g(pE) = dΨ(pE)
T .⃗bh(pF ), thus (7.12).
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49 8.1. Push-forward and pull-back of order 1 tensors

8 Push-forward and pull-back of tensors

To lighten the presentation, we only deal with order 1 and 2 tensors. Similar approach for any tensor.

8.1 Push-forward and pull-back of order 1 tensors

Proposition 8.1 If T is either a vector �eld or a di�erential form, then its push-forward satis�es, for
all ξ vector �eld or di�erential form (when required) in UF ,

in short: (Ψ∗T )(ξ) = T (Ψ∗ξ), written Ψ∗T (.) = T (Ψ∗.), (8.1)

i.e. (Ψ∗T )(pF ).ξ(pF ) = T (pE).Ψ
∗ξ(pE) when pF = Ψ(pE). Similarly:

in short: (Ψ∗T )(ξ) = T (Ψ∗ξ), written Ψ∗T (.) = T (Ψ∗.), (8.2)

i.e. (Ψ∗T )(pE).ξ(pE) = T (pF ).Ψ∗ξ(pF ) when pF = Ψ(pE).

Proof. • Case T = αE ∈ Ω1(UE) (di�erential form = a
(
0
1

)
tensor), then here ξ = w⃗F ∈ Γ(UF )

and we have to check: (Ψ∗αE)(pF ).w⃗F (pF ) = αE(pE).Ψ
∗w⃗F (pE), i.e. (αE(pE).dΨ

−1(pE)).w⃗F (pF ) =
αE(pE).(dΨ

−1(pE).w⃗F (pF )): True.
• Case T = w⃗E ∈ Γ(UE) (vector �eld ≃ a

(
1
0

)
tensor), then here ξ = αF ∈ Ω1(UF ) we have to check:

(Ψ∗w⃗E)(pF ).αF (pF ) = w⃗E(pE).Ψ
∗(αF )(pE), where we implicitly use to the natural canonical isomorphism

J :

{
E → E∗∗

w⃗ → w
noted
= w⃗

}
de�ned by w(ℓ) = ℓ.w⃗ for all ℓ ∈ E∗. So we have to check: αF (pF ).(Ψ∗w⃗E)(pF ) =

Ψ∗(αF )(pE).w⃗E(pE), i.e. αF (pF ).(dΨ(pE).w⃗E(pE)) = (αF (pF ).dΨ(pE)
−1).w⃗E)(pE) : True.

For (8.2), use Ψ−1 instead of Ψ.

8.2 Push-forward and pull-back of order 2 tensors

De�nition 8.2 Let T be an order 2 tensor in UE . Its push-forward by Ψ is the order 2 tensor Ψ∗T in UF
de�ned by, for all ξ1, ξ2 vector �eld or di�erential form (when required) in UF ,

in short: Ψ∗T (ξ1, ξ2) := T (Ψ∗ξ1,Ψ
∗ξ2) written Ψ∗T (·, ·) := T (Ψ∗·,Ψ∗·), (8.3)

i.e. Ψ∗T (pF )(ξ1(pF ), ξ2(pF )) := T (pE)(Ψ
∗ξ1(pE),Ψ

∗ξ2(pE)) when pF = Ψ(pE).
Let T be an order 2 tensor in UF . Its pull-back by Ψ is the order 2 tensor Ψ∗T in UE de�ned by, for

all ξ1, ξ2 vector �eld or di�erential form (when required) in UE ,

in short: Ψ∗T (ξ1, ξ2) := T (Ψ∗ξ1,Ψ∗ξ2) written Ψ∗T (·, ·) := T (Ψ∗·,Ψ∗·), (8.4)

i.e., Ψ∗T (pE)(ξ1(pE), ξ2(pE)) := T (pF )(Ψ∗ξ1(pF ),Ψ∗ξ2(pF )) when pF = Ψ(pE).

Example 8.3 If T ∈ T 0
2 (UE) (e.g., a metric) then, for all vector �elds w⃗1, w⃗2 in UF ,

T∗(w⃗1, w⃗2)
(8.3)
= T (w⃗1

∗, w⃗2
∗) = T (dΨ−1.w⃗1, dΨ

−1.w⃗2), (8.5)

i.e., T∗(pF )(w⃗1(pF ), w⃗2(pF )) = T (pE)(dΨ
−1(pF ).w⃗1(pF ), dΨ

−1(pF ).w⃗2(pF )) when pF = Ψ(pE).

Expression with bases (⃗ai) in E and (⃗bi) in F : In short we have (T∗)ij = T∗(⃗bi, b⃗j) = T (⃗bi
∗, b⃗j

∗) =

[⃗b∗i ]
T
|⃗a.[T ]|⃗a.[⃗b

∗
j ]|⃗a = ([⃗bi]

T
|⃗b
.[dΨ]−T

|⃗a,⃗b
).[T ]|⃗a.([dΨ]−1

|⃗a,⃗b
.[⃗bj ]|⃗b) = ([dΨ]−T

|⃗a,⃗b
.[T ]|⃗a.[dΨ]−1

|⃗a,⃗b
)ij , thus

[T∗]|⃗b = [dΨ]−T
|⃗a,⃗b

.[T ]|⃗a.[dΨ]−1

|⃗a,⃗b
, (8.6)

which means [(Ψ∗T )(pF )]|⃗b = ([dΨ(pE)]|⃗a,⃗b)
−T .[T (pE)]|⃗a.([dΨ(pE)]|⃗a,⃗b)

−1 when pF = Ψ(pE).

Particular case of an elementary tensor T = α1⊗α2 ∈ T 0
2 (UE), where α1, α2 ∈ Ω1(UE), so T (u⃗1, u⃗2) =

(α1 ⊗ α2)(u⃗1, u⃗2) = (α1.u⃗1)(α2.u⃗2): For all w⃗1, w⃗2 ∈ Γ(UF ),

(α1 ⊗ α2)∗(w⃗1, w⃗2)
(8.3)
= (α1 ⊗ α2)(w⃗

∗
1 , w⃗

∗
2) = (α1.w⃗

∗
1)(α2.w⃗

∗
2)

(7.7)
= (α1∗.w⃗1)(α2∗.w⃗2), (8.7)

thus
(α1 ⊗ α2)∗ = α1∗ ⊗ α2∗. (8.8)

(And any tensor is a �nite sum of elementary tensors.)
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50 8.3. Push-forward and pull-back of endomorphisms

And for the pull-back: For all vector �elds u⃗1, u⃗2 in UE ,

T ∗(u⃗1, u⃗2)
(8.3)
= T (u⃗1∗, u⃗2∗) = T (dΨ.u⃗1, dΨ.u⃗2). (8.9)

Example 8.4 If T ∈ T 1
1 (UE) then for all vector �elds w⃗ ∈ Γ(UF ) and di�erential forms β ∈ Ω1(UF ),

T∗(β, w⃗) = T (β∗, w⃗∗) = T (β.dΨ, dΨ−1.w⃗), (8.10)

i.e., T∗(pF )(β(pF ), w⃗(pF )) = T (pE)(β(pF ).dΨ(pE), dΨ
−1(pF ).w⃗(pF )) when pF = Ψ(pE).

For the elementary tensor T = u⃗ ⊗ α ∈ T 1
1 (UE), made of the vector �eld u⃗ ∈ Γ(UE) and of the

di�erential form α ∈ Ω1(UE): For all β, w⃗ ∈ Ω1(UF )× Γ(UF ), in short,

(u⃗⊗ α)∗(β, w⃗)
(8.3)
= (u⃗⊗ α)(β∗, w⃗∗) = (u⃗.β∗)(α.w⃗∗)

(7.7)
= (u⃗∗.β)(α∗.w⃗) = (u⃗∗ ⊗ α∗)(β, w⃗), (8.11)

thus
(u⃗⊗ α)∗ = u⃗∗ ⊗ α∗. (8.12)

Expression with bases (⃗ai) in E and (⃗bi) in F : In short we have (T∗)ij = T∗(b
i, b⃗j) =

T (Ψ∗(bi),Ψ∗(⃗bj)) = [Ψ∗(bi)].[T ].[Ψ∗(⃗bj)] = [bi].[dΨ].[T ].[dΨ−1].[⃗bj ] = ([dΨ].[T ].[dΨ−1])ij , thus

[T∗]|⃗b = [dΨ]|⃗a,⃗b.[T ]|⃗a.[dΨ]−1

|⃗a,⃗b
, (8.13)

which means [(Ψ∗T )(pF )]|⃗b = [dΨ(pE)]|⃗a,⃗b.[T (pE)]|⃗a.[dΨ(pE)]
−1

|⃗a,⃗b
when pF = Ψ(pE).

8.3 Push-forward and pull-back of endomorphisms

We have the natural canonical isomorphism

J2 :

{
L(E;E) → L(E∗, E;R)

L → TL = J2(L) where TL(α, u⃗) := α.L.u⃗, ∀(α, u⃗) ∈ E∗ × E.
(8.14)

Thus Ψ∗TL(m, w⃗) = TL(Ψ
∗m,Ψ∗w⃗) = (Ψ∗m).L.(Ψ∗w⃗) = m.dΨ.L.dΨ−1.w⃗, thus:

De�nition 8.5 The push-forward by Ψ of a �eld of endomorphisms L on UE is the �eld of endomorphisms
Ψ∗L = L∗ on UF de�ned by

in short: Ψ∗L = L∗ = dΨ.L.dΨ−1 , (8.15)

i.e., L∗(pF ) = dΨ(pE).L(pE).dΨ
−1(pF ) when pF = Ψ(pE).

Thus with bases we get [L∗]|⃗b = [dΨ]|⃗a,⃗b.[L]|⃗a.[dΨ]−1

|⃗a,⃗b
, �as in (8.13)�.

Example 8.6 Elementary �eld of endomorphisms L = (J2)−1(u⃗⊗ α), where u⃗ ∈ Γ(E) and α ∈ Ω1(E):
So TL = u⃗ ⊗ α and L.u⃗2 = (α.u⃗2)u⃗ for all u⃗2 ∈ Γ(UE)). Thus L∗.w⃗2 = dΨ.L.dΨ−1.w⃗2 = dΨ.L.w⃗2

∗ =
(α.w⃗2

∗)dΨ.u⃗ = (α∗.w⃗2)u⃗∗ for all w⃗2 ∈ Γ(E), thus (TL)∗ = u⃗∗ ⊗ α∗.

De�nition 8.7 Let L be a �eld of endomorphisms on UF . Its pull-back byΨ is the �eld of endomorphisms
Ψ∗L = L∗ on UE de�ned by

in short: Ψ∗L = L∗ = dΨ−1.L.dΨ , (8.16)

i.e., L∗(pE) = dΨ−1(pF ).L(pF ).dΨ(pE) when pF = Ψ(pE).

8.4 Application to derivatives of vector �elds

u⃗ ∈ Γ(UE) is a C1 vector �eld in UE), pE ∈ UE , so du⃗ : UE → L(E;E) (given by du⃗(pE).w⃗(pE) =

limh→0
u⃗(pE+hw⃗(pE))−u⃗(pE)

h for all w⃗ ∈ Γ(UE)). Thus its push-forward:

((du⃗)∗ =) Ψ∗(du⃗) = dΨ.du⃗.dΨ−1 (8.17)

i.e. (du⃗)∗(pF ) = dΨ(pE).du⃗(pE).dΨ(pE)
−1 when pF = Ψ(pE).
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51 8.5. Ψ∗(du⃗) versus d(Ψ∗u⃗): No commutativity

8.5 Ψ∗(du⃗) versus d(Ψ∗u⃗): No commutativity

Here Ψ is C2, u⃗ ∈ Γ(UE), pE ∈ UE , pF = Ψ(pE), so Ψ∗u⃗(pF ) = dΨ(pE).u⃗(pE) = (dΨ(Ψ−1(pF )).(u⃗(Ψ
−1(pF )),

and, for all w⃗ ∈ Γ(UF ),

d(Ψ∗u⃗)(pF ).w⃗(pF ) = (d2Ψ(pE).(dΨ
−1(pF ).w⃗(pF ))).u⃗(pE) + dΨ(pE).du⃗(pE).dΨ

−1(pF ).w⃗(pF ), (8.18)

with Ψ∗(du⃗)(pF ) = dΨ(pE).du⃗(pE).dΨ
−1(pF ), thus, in short,

d(Ψ∗u⃗).w⃗ = Ψ∗(du⃗).w⃗ + d2Ψ(Ψ∗w⃗, u⃗) ̸= Ψ∗(du⃗) in general. (8.19)

So the di�erentiation d and the push-forward ∗ do not commute (d(Ψ∗u⃗) = Ψ∗(du⃗) i� Ψ is a�ne).

8.6 Application to derivative of di�erential forms

Let α ∈ Ω1(UE) (a di�erential form on UE). Its derivative dα : UE → L(E;E∗) is given by dα(pE).u⃗(pE) =

limh→0
α(pE+hu⃗(pE))−α(pE)

h ∈ E∗, for all u⃗ ∈ Γ(UE), i.e., for all u⃗1, u⃗2 ∈ Γ(UE),

(dα(pE).u⃗1(pE)).u⃗2(pE) = lim
h→0

α(pE + hu⃗1(pE)).u⃗2(pE)− (α(pE).u⃗1(pE)).u⃗2(pE)

h
∈ R. (8.20)

With the natural canonical isomorphism L(E;E∗) ≃ L(E,E;R), cf. (U.16) with E∗∗ ≃ E, we can write
dα(pE)(u⃗1(pE)).u⃗2(pE) = dα(pE)(u⃗1(pE), u⃗2(pE)), i.e.

dα(u⃗1).u⃗2 = dα(u⃗1, u⃗2). (8.21)

Thus the push-forward Ψ∗(dα) =
noted (dα)∗ of dα, is given by, for all w⃗1, w⃗2 ∈ Γ(UF ), in short,

(dα)∗(w⃗1, w⃗2) = dα(w⃗∗
1 , w⃗

∗
2), (8.22)

i.e., with pF = Ψ(pE), (dα)∗(pF ).w⃗1(pF )).w⃗2(pF ) = (dα(pE).dΨ
−1(pF ).w⃗1(pF )).dΨ

−1(pF ).w⃗2(pF ).
In particular, (d2f)∗(w⃗1, w⃗2) = d2f(dΨ−1.w⃗1, dΨ

−1.w⃗2) (= d2f(w⃗∗
1 , w⃗

∗
2)).

8.7 Ψ∗(dα) versus d(Ψ∗α): No commutativity

Here Ψ is C2, u⃗ ∈ Γ(UE), pE ∈ UE and pF = Ψ(pE). We have Ψ∗α(pF ) = α(pE).dΨ
−1(pF ) =

α(Ψ−1(pF )).dΨ
−1(pF ), thus, for all w⃗1 ∈ Γ(UF ),

d(ψ∗α)(pF ).w⃗1(pF ) = (dα(pE).dΨ
−1(pF ).w⃗1(pF )).dΨ

−1(pF ) + α(pE).d
2Ψ−1(pF ).w⃗1(pF ) ∈ F ∗, (8.23)

thus, for all w⃗1, w⃗2 ∈ Γ(UF ), in short

d(ψ∗α)(w⃗1, w⃗2) = dα(dΨ−1.w⃗1, dΨ
−1.w⃗2) + α.d2Ψ−1(w⃗1, w⃗2) ̸= dα(w⃗∗

1 , w⃗
∗
2) in general. (8.24)

So the di�erentiation d and the push-forward ∗ do not commute (d(Ψ∗α) = Ψ∗(dα) i� Ψ is a�ne).
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Part III

Lie derivative

9 Lie derivative

9.0 Purpose and �rst results

9.0.1 Purpose?

Cauchy's approach may be insu�cient, e.g.:

1. - Cauchy's approach needs to compare two vectors deformed by a motion, thanks to a Euclidean dot
product (·, ·)g and the deformation gradient F ; Recall, the Cauchy deformation tensor C is de�ned by
comparing (u⃗, w⃗)g and (u⃗∗, w⃗∗)g where u⃗∗ = F.u⃗ and w⃗∗ = F.w⃗ are the deformed vectors by the motion
(the push-forwards independent of a stress): We have (u⃗∗, w⃗∗)g − (u⃗, w⃗)g = ((C − I).u⃗, w⃗)g. It is a
quantitative approach (needs a chosen Euclidean dot product: foot? metre?).

- Cauchy's approach is a �rst order method (dedicated to linear material): Only the �rst order Taylor
expansion of the motion is used: Only dΦ = F is used (the �slope�), not d2Φ = dF (the �curvature�)
or higher derivatives.

2. - The Lie derivative Lv⃗u⃗ of a vector �eld u⃗ measures the resistance of one vector �eld u⃗ submitted to
a motion.

- Lie's approach �naturally� applies to non-linear materials thanks to second order Lie derivatives which
uses the second order Taylor expansion of the motion.

- Lie's approach is qualitative. So no Euclidean dot product are required to begin with. (The quanti�-
cation in a Galilean Euclidean framework for the �rst order approximation will give the usual results
of Cauchy's approach.)

- In a non planar surface S, you need the Lie derivative if you want to derive along a trajectory.

(Cauchy died in 1857, and Lie was born in 1842.)

9.0.2 Basic results

With v⃗ the Eulerian velocity of the motion:
The Lie derivative Lv⃗f of a Eulerian scalar valued function f is the material derivative

Lv⃗f =
Df

Dt
. (9.1)

The Lie derivative Lv⃗w⃗ of a Eulerian vector �eld w⃗ is more than just the material derivative Dw⃗
Dt :

Lv⃗w⃗ =
Dw⃗

Dt
− dv⃗.w⃗. (9.2)

In particular the −dv⃗.w⃗ term in Lv⃗w⃗ tells: The spatial variations dv⃗ of v⃗ act on the evolution of the
stress (anticipated, dv⃗ = 0⃗ meaning v⃗ = c⃗st).

(9.1)-(9.2) enable to de�ne the Lie derivatives of tensors of any type and order.

9.1 De�nition

9.1.1 Issue (ubiquity gift)...

Φ̃ is supposed to be regular. v⃗(t, p(t)) = ∂Φ̃
∂t (t, PObj ) is the Eulerian velocity at t at p(t) = Φ̃(t, PObj ).

Recall: If Eul is a Eulerian function then its material time derivative is

DEul
Dt

(t, p(t)) = lim
h→0

Eul(t+h, p(t+h))− Eul(t, p(t))
h

. (9.3)

Issue: The rate Eul(t+h,p(t+h))−Eul(t,p(t))
h raises questions:

1- The di�erence Eul(t+h, p(t+h)) − Eul(t, p(t)) requires the time and space ubiquity gift to be cal-
culated by an observer, since it mixes two distinct times, t and t+h, and two distinct locations, p(t)
and p(t+h).

2- The di�erence Eul(t+h, p(t+h)) − Eul(t, p(t)) can be impossible: E.g. if Eul = w⃗ is a vector �eld
in a �non planar surface considered on its own� (manifold) then Eul(t+h, p(t+h)) and Eul(t, p(t)) don't
belong to the same (tangent) vector space, so the di�erence w⃗(t+h, p(t+h))− w⃗(t, p(t)) is meaningless.
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53 9.1. De�nition

9.1.2 ...Toward a solution (without ubiquity gift)...

To compare Eul(t+h, p(t+h)) and Eul(t, p(t)) (to get the evolution of Eul along a trajectory), you need
the duration h to get from t to t+h and to move from p(t) to p(t+h). So, you must:
• take the value Eul(t, pt)) with you (for memory),
• move along the considered trajectory, and doing so, the value Eul(t, pt) has possibly changed to,

with τ = t+h,

((Φtτ )∗Eult)(pτ )
noted
= Eult∗(τ, pτ ) (push-forward); (9.4)

• And now, at (τ, pτ ) where you are, you can compare the actual value Eul(τ, pτ ) with the value
Eult∗(τ, pτ ) you arrived with (the transported memory), thus the di�erence

Eul(τ, pτ )− Eult∗(τ, pτ ) (9.5)

is meaningful for a human being since it is computed at a unique time τ and at a unique point pτ (no
gift of ubiquity required).

Figure 9.1: To compute (9.5) with Eul = w⃗ a (Eulerian) vector �eld: At t de�ne the vector �eld w⃗t in Ωt
by w⃗t(pt) := w⃗(t, pt). The (spatial) curve ct : s→ pt = ct(s) in Ωt is an integral curve of w⃗t, i.e. satis�es
ct

′(s) = w⃗t(ct(s)). ct is transformed by Φtτ into the (spatial) curve cτ = Φtτ ◦ct : s→ pτ = cτ (s)=Φtτ (ct(s))
in Ωτ ; Hence cτ

′(s) = dΦtτ (pt).c
′(s) = dΦtτ (pt).w⃗t(pt) =

noted w⃗t∗(τ, pτ ) is the tangent vector at cτ at pτ
(push-forward). Thus the di�erence w⃗(τ, pτ )−w⃗t∗(τ, pτ ) can be computed by a human being, i.e. without
ubiquity gift.

9.1.3 ... The Lie derivative, �rst de�nition

Motion Φ̃ : (t, PObj )→ p(t) = Φ̃(t, PObj ), Eulerian velocity given by v⃗(t, p(t)) = ∂Φ̃
∂t (t, PObj ) (velocity of PObj

at t). Eulerian function Eul, and Eult(pt) := Eul(t, pt), and Eult∗(τ, pτ ) := ((Φtτ )∗Eult)(pτ ), cf. (9.4).

De�nition 9.1 The Lie derivative Lv⃗Eul along v⃗ of an Eulerian function Eul is the Eulerian function
Lv⃗Eul de�ned by, at t at pt := p(t) = Φ̃(t, PObj ),

Lv⃗Eul(t, pt) := lim
τ→t

Eulτ (pτ )− ((Φtτ )∗Eult)(pτ )
τ − t

= lim
τ→t

Eul(τ, pτ )− Eult∗(τ, pτ )
τ − t

. (9.6)

Interpretation: Lv⃗Eul measures the rate of change of Eul along a trajectory:
• Eul(τ, pτ ) is the value of Eul at τ at pτ , see �gure 9.1 with Eul = w⃗.
• Eult∗(τ, pτ ) = ((Φtτ )∗Eult)(τ, pτ ) is exclusively strain related (kinematic): It is the memory trans-

ported by the �ow.

In other words, with g de�ned by

g(τ) = ((Φtτ )∗Eult)(p(τ)) (9.7)

(in particular g(t) = Eult(pt)):

Lv⃗Eul(t, pt) := g′(t) = lim
τ→t

g(τ)− g(t)
τ − t

also written
=

d((Φtτ )∗Eult)(p(τ))
dτ |τ=t

. (9.8)

Remark 9.2 More precise de�nition, as in (2.3):

L̃v⃗Eul(t, pt) := ((t, pt),Lv⃗Eul(t, pt)) (pointed function at (t, pt)), (9.9)

And, to lighten the notation, L̃v⃗Eul(t, pt) =noted Lv⃗Eul(t, pt) (second component of L̃v⃗Eul(t, pt)).
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54 9.2. Lie derivative of a scalar function

9.1.4 A more general de�nition

The rate in (9.6) has to be slightly modi�ed to be adequate in all situations: Eul(τ, pτ ) − Eult∗(τ, pτ ) is
computed at (τ, pτ ) which moves as τ → t, and on a �non-planar manifold� this is problematic (the tangent
plane changes with τ). The �natural� de�nition is to arrive with the memory (you can't rejuvenate):

De�nition 9.3 The Lie derivative Lv⃗Eul of an Eulerian function Eul along v⃗ is the Eulerian function
Lv⃗Eul de�ned by, at t at pt = Φ̃PObj (t),

Lv⃗Eul(t, pt) := lim
h→0

Eult(pt)− (Φt−ht )∗Eult−h(pt)
h

= lim
τ→t

Eult(pt)− (Φτt )∗Eulτ (pt)
t− τ

. (9.10)

(The rate is calculated at (t, pt), and a human being can't rejuvenate so he takes h > 0, i.e. τ < t.)

In other words, with ḡ de�ned by

ḡ(τ) = ((Φτt )∗Eulτ )(pt) (9.11)

(in particular ḡ(t) = Eul(t, pt)):

Lv⃗Eul(t, pt) := ḡ ′(t) = lim
τ→t

ḡ(t)− ḡ(τ)
t− τ

= lim
τ→t

ḡ(τ)− ḡ(t)
τ − t

also written
=

d((Φτt )∗Eulτ )(pt)
dτ |τ=t

. (9.12)

Here the observer must:
• At τ = t−h at p(τ) = p(t−h) = Φ̃PObj (t−h), take the value Eul(τ, p(τ)) (memory),

• move along the trajectory Φ̃PObj ,

• once at t at pt = Φ̃PObj (t), the memory turned into ((Φτt )∗Eulτ )(pt),
• which can be compared with Eul(t, pt) without any ubiquity gift.

Exercice 9.4 Prove: (9.6) and (9.10) are equivalent.

Answer. With (Φt
t+h)

∗.(Φt
t+h)∗ = I, (9.6) gives Lv⃗Eul(t, pt) = limh→0

(Φt
t+h)∗Eul(t,pt)−Eult(t,pt)

h
=

limh→0
(Φt

t−h)∗Eult−h)(pt)−Eult(pt)
−h

= limh→0
Eult(pt)−((Φt

t−h)∗Eult−h)(pt)

h
, and use (Φt

t−h)
∗ = (Φt−h

t )∗.

9.1.5 Equivalent de�nition (di�erential geometry)

De�nition 9.5 The Lie derivative of a Eulerian function Eul along a �ow of Eulerian velocity v⃗ is the
Eulerian function Lv⃗Eul de�ned at (t, pt) by

Lv⃗Eul(t, pt) := lim
τ→t

((Φtτ )
∗Eulτ )(pt)− Eul(t, pt)

τ − t
= lim
h→0

((Φtt+h)
∗Eult+h)(pt)− Eul(t, pt)

h
. (9.13)

In other words, with ĝ de�ned by

ĝ(τ) = ((Φtτ )
∗Eulτ )(pt) (9.14)

(in particular ĝ(t) = Eul(t, pt)):

Lv⃗Eul(t, pt) := ĝ′(t) = lim
τ→t

ĝ(τ)− ĝ(t)
τ − t

also written
=

d((Φtτ )
∗Eulτ )(pt)
dτ |τ=t

. (9.15)

Exercice 9.6 Prove: (9.10) and (9.13) are equivalent.

Answer. (9.13) also reads Lv⃗Eul(t, pt) = limh→0
((Φt

t−h)∗Eult−h)(pt)−Eult(pt)
−h

, and (Φt
t−h)

∗.(Φt−h
t )∗ = I.

9.2 Lie derivative of a scalar function

Let f be a C1 Eulerian scalar valued function. With (Φt−ht )∗ft−h(pt) = ft−h(p(t−h)), cf. (6.10), we get

Lv⃗f(t, pt)
(9.10)
= lim

h→0

f(t, pt)− f(t−h, p(t−h))
h

, i.e. Lv⃗f =
Df

Dt
=
∂f

∂t
+ df.v⃗. (9.16)

So, for scalar functions, the Lie derivative is the material derivative.

Interpretation: Lv⃗f measures the rate of change of f along a trajectory.
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55 9.3. Lie derivative of a vector �eld

Proposition 9.7 Lv⃗f = 0 i� f is constant along any trajectory (the real value is the memory value):

Lv⃗f = 0 ⇐⇒ ∀t, τ ∈ [t0, T ], (Φ
t
τ ∗)ft(pτ ) = f(t, p(t)) when pτ = Φtτ (pt), (9.17)

i.e. i� f(t, p(t)) = f(t0, pt0) when p(t) = Φt0(t, pt0), i.e. i� f let itself be carried by the �ow (unchanged).

Proof. Let p(t) = Φ̃(t, PObj ) = pt for all t, so p(τ) = Φ̃(τ, PObj ) = pτ = Φtt+h(pt) = Φt(τ, pt).

⇐: If fτ = (Φtt+h)∗ft, then fτ (pτ ) = ft(pt), thus limτ→t
f(τ,p(τ))−f(t,p(t))

τ−t = 0, that is, DfDt = 0.

⇒: If DfDt = 0 then f(t, p(t)) is a constant function on the trajectory t→ Φ̃(t, PObj ), for any particle PObj ,
so f(τ, p(τ)) = f(t, pt) when p(τ) = Φtt+h(pt), that is, f(τ, pτ ) = (Φtt+h)∗ft(pτ ).

Exercice 9.8 Prove: Lv⃗(Lv⃗f) = D2f
Dt2 = ∂2f

∂t2 + 2d(∂f∂t ).v⃗ + d2f(v⃗, v⃗) + df.(∂v⃗∂t + dv⃗).

Answer. See (2.28).

9.3 Lie derivative of a vector �eld

9.3.1 Formula

Proposition 9.9 Let w⃗ be a C1 (Eulerian) vector �eld. We have

Lv⃗w⃗ =
Dw⃗

Dt
− dv⃗.w⃗ =

∂w⃗

∂t
+ dw⃗.v⃗ − dv⃗.w⃗. (9.18)

So the Lie derivative is not reduced to the material derivative Dw⃗
Dt (unless dv⃗ = 0, i.e. unless v⃗ is uniform):

The spatial variations dv⃗ of v⃗ in�uences the rate of stress: v⃗ tries to bend w⃗ (which is expected).

Proof. Here (9.14) reads g⃗(τ) = dΦtτ (pt)
−1.w⃗(τ, p(τ)), and (9.15) reads g⃗ ′(t) = Lv⃗w⃗(t, p(t)). Since

w⃗(τ, p(τ)) = dΦtτ (pt).⃗g(τ) = dΦt(τ, pt).⃗g(τ) we get

Dw⃗

Dτ
(τ, p(τ)) =

∂(dΦt)

∂τ
(τ, pt)︸ ︷︷ ︸

dv⃗(τ,p(τ)).dΦt(τ,pt)

. g⃗(τ)︸ ︷︷ ︸
dΦt(τ,pt)−1.w⃗(τ,p(τ))

+ dΦt(τ, pt)︸ ︷︷ ︸
F t

τ (pt)

. g⃗ ′(τ)︸ ︷︷ ︸
Lv⃗w⃗(τ,p(τ))

(9.19)

Thus Dw⃗
Dt (t, pt) = dv⃗(t, pt).w⃗(t, pt) + I.Lv⃗w⃗(t, pt), thus (9.18).

Quanti�cation: Basis (e⃗i), v⃗ =
∑
i vie⃗i, w⃗ =

∑
i wie⃗i, dv⃗.e⃗j =

∑
ij vi|j e⃗i, dw⃗.e⃗j =

∑
ij wi|j e⃗i; Then

Lv⃗w⃗ =

n∑
i=1

∂wi
∂t

e⃗i +

n∑
i,j=1

wi|jvj e⃗i −
n∑

i,j=1

vi|jwj e⃗i. (9.20)

So, with [·] := [·]|e⃗,

[Lv⃗w⃗] = [
Dw⃗

Dt
]− [dv⃗].[w⃗] (= [

∂w⃗

∂t
] + [dw⃗.v⃗]− [dv⃗].[w⃗]). (9.21)

(And [dw⃗.v⃗] = [dw⃗].[v⃗].) Duality notations: Lv⃗w⃗ =
∑
i
∂wi

∂t e⃗i +
∑
ij w

i
|jv

j e⃗i −
∑
ij v

i
|jw

j e⃗i.

9.3.2 Interpretation: Flow resistance measurement

Proposition 9.10 Φt0 is supposed to be a C2 motion and a C1 di�eomorphism in space, and w⃗ is a
vector �eld.

Lv⃗w⃗ = 0 ⇐⇒ ∀t ∈ [t0, T ], w⃗t = (Φt0t )∗w⃗t0 . (9.22)

i.e., Dw⃗Dt = dv⃗.w⃗ ⇔ the actual vector w⃗(t, p(t)) is equal to F t0t (pt0).w⃗t0(pt0) = w⃗t0∗(t, p(t)) the deformed
vector by the �ow, see �gure 9.1. So: The Lie derivative Lv⃗w⃗ vanishes i� w⃗ does not resist the �ow (let
itself be deformed by the �ow), i.e. i� w⃗(t, pt) = w⃗t0∗(t, pt).
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56 9.4. Examples

Proof. We have Lv⃗w⃗ = Dw⃗
Dt − dv⃗.w⃗ and ∂F t0

∂t (t, pt0) = dv⃗(t, p(t)).F t0t (pt0), cf. (3.33).

⇐ (derivation): Suppose w⃗(t, p(t)) = F t0(t, pt0).w⃗(t0, pt0) when p(t) = Φt0t (pt0). Then Dw⃗
Dt (t, p(t)) =

∂F t0

∂t (t, pt0).w⃗(t0, pt0) = (dv⃗(t, p(t)).F t0t (pt0)).(F
t0
t (pt0)

−1.w⃗(t, p(t))) = dv⃗(t, p(t)).w⃗(t, p(t)), thus Dw⃗
Dt −

dv⃗.w⃗ = 0. (See proposition 3.14.)

⇒ (integration): Suppose Dw⃗
Dt = dv⃗.w⃗. Let f⃗(t) = (F t0t (pt0))

−1.w⃗(t, p(t)) (= pull-back (Φt0t )
∗w⃗(t0, pt0))

when p(t) = Φt0(t, pt0); So w⃗(t, p(t)) = F t0(t, pt0).f⃗(t) and
Dw⃗
Dt (t, p(t)) =

∂F t0

∂t (t, pt0).f⃗(t)+F
t0
t (pt0).f⃗

′(t) =

dv⃗(t, p(t)).F t0t (pt0).f⃗(t) + F t0t (pt0).f⃗
′(t) = dv⃗(t, p(t)).w⃗(t, p(t)) + F t0t (pt0).f⃗

′(t)=hyp. Dw⃗Dt (t, p(t)) +

F t0t (pt0).f⃗
′(t) for all t; Thus F t0t (pt0).f⃗

′(t) = 0⃗, thus f⃗ ′(t) = 0⃗ (because Φt0t is a di�eomorphism), thus

f⃗(t) = f⃗(t0), i.e. w⃗t = (Φt0t )∗w⃗t0 , for all t.

9.3.3 Autonomous Lie derivative and Lie bracket

The Lie bracket of two vector �elds v⃗ and w⃗ is

[v⃗, w⃗] := dw⃗.v⃗ − dv⃗.w⃗ noted
= L0

v⃗w⃗. (9.23)

And L0
v⃗w⃗ = [v⃗, w⃗] is called the autonomous Lie derivative of w⃗ along v⃗. Thus

Lv⃗w⃗ =
∂w⃗

∂t
+ [v⃗, w⃗] =

∂w⃗

∂t
+ L0

v⃗w⃗. (9.24)

NB: L0
v⃗w⃗ is used when v⃗ et w⃗ are stationary vector �elds, thus does not concern objectivity: A stationary

vector �eld in a referential is not necessary stationary in another (moving) referential.

9.4 Examples

9.4.1 Lie Derivative of a vector �eld along itself

(9.18) with w⃗ = v⃗ gives Lv⃗ v⃗ = ∂v⃗
∂t . In particular, if v⃗ is a stationary vector �eld then Lv⃗ v⃗ = 0⃗ (= [v⃗, v⃗]).

9.4.2 Lie derivative along a uniform �ow

Here dv⃗ = 0, thus

Lv⃗w⃗ =
Dw⃗

Dt
=
∂w⃗

∂t
+ dw⃗.v⃗ (when dv⃗ = 0). (9.25)

Here the �ow is rectilinear (dv⃗ = 0): there is no curvature (of the �ow) to in�uence the stress on w⃗.
Moreover, if w⃗ is stationary, that is ∂w⃗

∂t = 0, then Lv⃗w⃗ = dw⃗.v⃗ = the directional derivative ∂w⃗
∂v⃗ of the

vector �eld w⃗ in the direction v⃗.

9.4.3 Lie derivative of a uniform vector �eld

Here dw⃗(t, p) = 0, thus

Lv⃗w⃗ =
∂w⃗

∂t
− dv⃗.w⃗ (when dw⃗ = 0), (9.26)

thus the stress on w⃗ is due to the space variations of v⃗. Moreover, is w⃗ is stationary then Lv⃗w⃗ = −dv⃗.w⃗.

9.4.4 Uniaxial stretch of an elastic material

• Strain. With [
−−→
OP ]|e⃗ = [X⃗]|e⃗ =

(
X
Y

)
, with ξ > 0, t ≥ t0, p(t) = Φt0(t, P ) and [x⃗]|e⃗ = [

−−−→
Op(t)]|e⃗:

[x⃗]|e⃗ =

(
x
y

)
=

(
X
Y

)
+ ξ(t−t0)

(
X
0

)
=

(
X(1 + ξ(t−t0))
Y

)
. (9.27)

• Eulerian velocity v⃗(t, p) =

(
ξX
0

)
=

(
ξ

1+ξ(t−t0)x
0

)
, dv⃗(t, p) =

(
ξ

1+ξ(t−t0) 0
0 0

)
(independent of p).
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57 9.4. Examples

• Deformation gradient (independent of P ), with κt = ξ(t−t0):

Ft = dΦt0t (P ) =

(
1 + κt 0

0 1

)
= I + κt

(
1 0
0 0

)
. (9.28)

In�nitesimal strain tensor, with FTt = Ft here:

εt0
t
(P ) = Ft − I = κt

(
1 0
0 0

)
= ε

t
. (9.29)

• Stress. Constitutive law = Linear isotropic elasticity:

σ
t
(pt) = λTr(ε

t
)I + 2µε

t
= κt

(
λ+2µ 0
0 λ

)
= σ

t
. (9.30)

Cauchy stress vector T⃗ on a surface at p with normal n⃗t(p) =

(
n1

n2

)
= n⃗:

T⃗t(pt) = σ
t
.n⃗ = κt

(
(λ+2µ)n1

λn2

)
= ξ(t−t0)

(
(λ+2µ)n1

λn2

)
= T⃗t. (9.31)

• Push-forwards: T⃗t0(pt0) = 0, thus F t0t0+h(pt0).T⃗t0(pt0) = 0⃗.
• Lie derivative:

Lv⃗T⃗ (t0, pt0) = lim
t→t0

T⃗t(pt)− F t0t (pt0).T⃗t0(pt0)

t− t0
= ξ

(
(λ+2µ)n1

λn2

)
(rate of stress at (t0, pt0)). (9.32)

• Generic computation with Lv⃗T⃗ = ∂T⃗
∂t + dT⃗ .v⃗ − dv⃗.T⃗ : (9.31) gives ∂T⃗

∂t = ξ

(
(λ+2µ)n1

λn2

)
and

dT⃗ = 0 and dv⃗t.T⃗t =

(
ξ

1+ξ(t−t0) 0
0 0

)
.ξ(t−t0)

(
(λ+2µ)n1

λn2

)
= ξ2(t−t0)

1+ξ(t−t0)

(
(λ+2µ)n1

0

)
. In particular,

dv⃗(t0, pt0).T⃗ (t0, pt0) = 0⃗. Thus Lv⃗T⃗ (t0, pt0) = ξ

(
(λ+2µ)n1

λn2

)
= rate of stress at the initial (t0, pt0).

9.4.5 Simple shear of an elastic material

Fixed Euclidean basis (e⃗1, e⃗2) in R2 at all time. Initial con�guration Ωt0 = [0, L1]⊗[0, L2]. Initial position:

[
−−→
OP ]e⃗ = [

−−→
Opt0 ]e⃗ = [X⃗]e⃗ =

(
X
Y

)
=noted X⃗. Position at t: pt = Φt0t (pt0), [x⃗]|e⃗ = [

−−−→
Op(t)]|e⃗ =

noted x⃗. Let

ξ ∈ R∗, and

x⃗ =

(
x = φ1(t,X, Y )
y = φ2(t,X, Y )

)
=

(
X + ξ(t−t0)Y
Y

)
=

(
X + κ(t)Y
Y

)
where κ(t) = ξ(t−t0) = κt. (9.33)

• Deformation gradient:

dΦt0t (P ) =

(
1 κt
0 1

)
= F t0t , thus F t0t − I = κt

(
0 1
0 0

)
. (9.34)

• Lagrangian velocity V⃗t(pt0) =

(
ξY
0

)
, thus dV⃗t(pt0) =

(
0 ξ
0 0

)
.

• Eulerian velocity v⃗t(pt) = V⃗t(pt0) =

(
ξy
0

)
, thus dv⃗t(pt) =

(
0 ξ
0 0

)
. (We check that dv⃗.F = dV⃗ .)

• In�nitesimal strain tensor:

εt0
t
(P ) =

F t0t (P )−I + (F t0t (P )−I)T

2
=
κt
2

(
0 1
1 0

)
= εt0

t

noted
= ε

t
. (9.35)

• Stress. Constitutive law, usual linear isotropic elasticity (requires a Euclidean dot product):

σ(t, pt) = λTr(ε
t
)I + 2µε

t
= µκt

(
0 1
1 0

)
= σ

t
. (9.36)
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Cauchy stress vector T⃗ (t, pt) (at t at pt) on a surface at p with normal n⃗t(p) =

(
n1

n2

)
= n⃗:

T⃗t = σ
t
.n⃗ = µκt

(
n2

n1

)
= µξ(t−t0)

(
n2

n1

)
= T⃗ (t) (stress independent of pt). (9.37)

• Lie derivative, with T⃗t0 = 0⃗:

Lv⃗T⃗ (t0, pt0) = lim
t→t0

T⃗t(pt)− F t0t (pt0).T⃗t0(pt0)

t− t0
= µξ

(
n2

n1

)
(rate of stress at (t0, pt0)). (9.38)

• Generic computation: Lv⃗T⃗ = ∂T⃗
∂t + dT⃗ .v⃗ − dv⃗.T⃗ . (9.37) gives ∂T⃗

∂t (t, p) = µξ

(
n2

n1

)
and dT⃗ = 0. With

dv⃗t0 .T⃗t0 = 0⃗. Thus Lv⃗T⃗ (t0, pt0) = µξ

(
n2

n1

)
.

9.4.6 Shear �ow

Stationary shear �eld, see (5.11) with α = 0 and t0 = 0 (or see (9.33) with ξ = λ):

v⃗(x, y) =

{
v1(x, y) = λy,

v2(x, y) = 0,
dv⃗(x, y) =

(
0 λ
0 0

)
. (9.39)

Let w⃗(t, p) =

(
0
b

)
= w⃗(t0, pt0) (constant in time and uniform in space). Then Lv⃗w⃗ = −dv⃗.w⃗ =

(
−λb
0

)
measures �the resistance to deformation due to the �ow�. See �gure 9.2, the virtual vector w⃗∗(t, p) =
dΦ(t0, pt0).w⃗(t0, pt0) being the vector that would have let itself be carried by the �ow (the push-forward).

Figure 9.2: Shear �ow, cf. (9.39), with w⃗ constant and uniform. Lv⃗w⃗ measures the resistance to the
deformation.

9.4.7 Spin

Rotating �ow: Continuing (5.14):

v⃗(x, y) = ω

(
0 −1
1 0

)(
x
y

)
, dv⃗(x, y) = ω

(
0 −1
1 0

)
= ωRot(π/2). (9.40)

In particular d2v⃗ = 0. With w⃗ = w⃗0 constant and uniform we get

Lv⃗w⃗0 = −dv⃗(p).w⃗0 = −ωRot(π/2).w⃗0 (⊥
(
a
b

)
= w⃗0). (9.41)

gives �the force at which w⃗ refuses to turn with the �ow�.
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59 9.5. Lie derivative of a di�erential form

9.4.8 Second order Lie derivative

Exercice 9.11 Let v⃗, w⃗ be C2 and g⃗(t) = (Φt∗τ w⃗)(t, pt) = dΦtτ (pt)
−1.w⃗(τ, p(τ)) when p(τ) = Φt(τ, pt).

We have Lv⃗w⃗(t, p(t)) =(9.13) g⃗ ′(t). Prove Lv⃗(Lv⃗w⃗)(t, p(t)) = g⃗ ′′(t), i.e.:

Lv⃗(Lv⃗w⃗) =
D2w⃗

Dt2
− 2dv⃗.

Dw⃗

Dt
− D(dv⃗)

Dt
.w⃗ + dv⃗.dv⃗.w⃗

=
∂2w⃗

∂t2
+ 2d

∂w⃗

∂t
.v⃗ − 2dv⃗.

∂w⃗

∂t
+ dw⃗.

∂v⃗

∂t
− d∂v⃗

∂t
.w⃗

+ (d2w⃗.v⃗).v⃗ + dw⃗.dv⃗.v⃗ − 2dv⃗.dw⃗.v⃗ − (d2v⃗.v⃗).w⃗ + dv⃗.dv⃗.w⃗

(9.42)

Answer.

Lv⃗(Lv⃗w⃗) =
D(Lv⃗w⃗)

Dt
− dv⃗.(Lv⃗w⃗) =

D(Dw⃗
Dt

− dv⃗.w⃗)

Dt
− dv⃗.(

Dw⃗

Dt
− dv⃗.w⃗)

=
D2w⃗

Dt2
− D(dv⃗)

Dt
.w⃗ − dv⃗.

Dw⃗

Dt
− dv⃗.

Dw⃗

Dt
+ dv⃗.dv⃗.w⃗,

with (2.26)-(2.27)-(2.28).

9.5 Lie derivative of a di�erential form

When the Lie derivative of a vector �eld w⃗ cannot be obtained by direct measurements, you need to use
a �measuring device� (Germain: To know the weight of a suitcase you have to lift it: You use work).

Here we consider a measuring device which is a di�erential form α. So, if w⃗ is a vector �eld then

f = α.v⃗ is a scalar function, and (9.16) gives Lv⃗(α.w⃗) = D(α.w⃗)
Dt = Dα

Dt .w⃗ + α.Dw⃗Dt , thus

Lv⃗(α.w⃗) =
Dα

Dt
.w⃗ + α.dv⃗.w⃗︸ ︷︷ ︸
→(Lv⃗α).w⃗

+α.
Dw⃗

Dt
− α.dv⃗.w⃗︸ ︷︷ ︸

=α.Lv⃗w⃗

: (9.43)

De�nition 9.12 Let α be a di�erential form. The Lie derivative of α along v⃗ is the di�erential form

Lv⃗α :=
Dα

Dt
+ α.dv⃗ =

∂α

∂t
+ dα.v⃗ + α.dv⃗. (9.44)

(An equivalent de�nition is given at (9.50).) I.e., for all vector �eld w⃗,

Lv⃗α.w⃗ :=
Dα

Dt
.w⃗ + α.dv⃗.w⃗ (=

∂α

∂t
.w⃗ + (dα.v⃗).w⃗ + α.dv⃗.w⃗). (9.45)

The de�nition of Lv⃗α, cf. (9.44), immediately gives the �derivation property�

Lv⃗(α.w⃗) = (Lv⃗α).w⃗ + α.(Lv⃗w⃗) (i.e. Lv⃗ is a derivation). (9.46)

Quanti�cation: Relative to a basis (e⃗i) and with [·] := [·]|e⃗,

[Lv⃗α] = [
Dα

Dt
] + [α].[dv⃗] (row matrix) = [

∂α

∂t
] + [dα.v⃗] + [α].[dv⃗]. (9.47)

Thus

[Lv⃗α.w⃗] = [Lv⃗α].[w⃗] = [
∂α

∂t
].[w⃗] + [dα.v⃗].[w⃗] + [α].[dv⃗].[w⃗]. (9.48)

Exercice 9.13 Prove (9.47) with components. And prove [dα.v⃗] = [v⃗]T .[dα]T (row matrix), thus
[dα.v⃗].[w⃗] = [v⃗]T .[dα]T .[w⃗] = [w⃗]T .[dα].[v⃗].

Answer. Basis (e⃗i), dual basis (πei), thus (9.44) gives [Lv⃗α] = [Dα
Dt

] + [α.dv⃗]. Let α =
∑

i αiπei,

v⃗ =
∑

i vie⃗i, dv⃗ =
∑

ij vi|j e⃗i ⊗ πej (tensorial writing convenient for calculations), i.e. [dv⃗]|e⃗ = [vi|j ], thus

α.dv⃗ =
∑

ij αivi|jπej , thus [α.dv⃗]|πe = [α]|πe .[dv⃗]|e⃗ (row matrix). And dα =
∑

ij αi|jπei ⊗πej , i.e. [dα]|πe = [αi|j ],

gives dα.v⃗ =
∑

ij αi|jvjπei =
∑

ij viαj|iπej , and [dα.v⃗]|πe is a row matrix (dα.v⃗ is a di�erential form), thus

[dα.v⃗]|πe = [v⃗]T|e⃗.[dα]
T
|πe

. (Or compute (dα.v⃗).w⃗ =
∑

ij αi|jvjwi = [w⃗]T|e⃗.[dα]|e⃗.[v⃗]|e⃗ = [v⃗]T|e⃗.[dα]
T
|πe

.[w⃗]|e⃗.)
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Exercice 9.14 Let α be a di�erential form, and let αt(p) := α(t, p). Prove, when Φt0t is a di�eomorphism,

Lv⃗α = 0 ⇐⇒ ∀t ∈ [t0, T ], αt = (Φt0t )∗αt0 . (9.49)

I.e.: Dα
Dt = −α.dv⃗ ⇐⇒ αt(pt) = αt0(pt0).F

t0
t (pt0)

−1 for all t, when pt = Φt0t (pt0).

Answer. ⇐: If αt(p(t)) = αt0(pt0).F
t0
t (pt0)

−1, then α(t, p(t)).F t0(t, pt0) = αt0(pt0), thus
Dα
Dt

(t, pt).F
t0
t (pt0) +

αt(pt).
∂F t0

∂t
(t, pt0) = 0, thus Dα

Dt
(t, p(t)).F t0

t (pt0) + αt(pt).dv⃗(t, pt).F
t0
t (pt0) = 0, thus Lv⃗α = 0, since Φt0

t is a
di�eomorphism.

⇒: If β(t) := (Φt0
t )∗αt0(pt0) = αt(p(t)).F

t0
t (pt0) (pull-back at (t0, pt0)), then β(t) = α(t, p(t)).F t0(t, pt0), thus

β′(t) = Dα
Dt

(t, pt).F
t0
t (pt0) + α(t, pt).dv⃗(t, pt).F

t0
t (pt0) = 0 (hypothesis Lv⃗α = 0), thus β(t) = β(t0) = αt0(pt0).

Remark 9.15 A de�nition equivalent to (9.44) is, cf. (9.13),

Lv⃗α(t, pt) := lim
τ→t

(Φtτ )
∗ατ (pt)− αt(pt)

τ − t
(= lim

τ→t

ατ (pτ ).dΦ
t
τ (pt)− αt(pt)
τ − t

)

noted
=

D(Φt∗τ ατ (pt))

Dτ |τ=t

noted
=

D(α∗
τ (pt))

Dτ |τ=t
(=

D(ατ (pτ ).dΦ
t
τ (pt))

Dτ |τ=t
).

(9.50)

Indeed, if β(τ) = (Φtτ )
∗ατ (pt) = ατ (pτ ).dΦ

t
τ (pt), then β

′(τ) and then τ = t give (9.44).

Exercice 9.16 v⃗ and α being C2, prove:

Lv⃗(Lv⃗α) =
∂2α

∂t2
+ 2d

∂α

∂t
.v⃗ + 2

∂α

∂t
.dv⃗ + dα.

∂v⃗

∂t
+ α.

∂dv⃗

∂t

+ (d2α.v⃗).v⃗ + dα.(dv⃗.v⃗) + 2(dα.v⃗).dv⃗ + α.(d2v⃗.v⃗) + (α.dv⃗).dv⃗.

(9.51)

Answer. (9.44) gives

Lv⃗(Lv⃗α) = Lv⃗(
∂α

∂t
) + Lv⃗(dα.v⃗) + Lv⃗(α.dv⃗)

=
∂2α

∂t2
+ d

∂α

∂t
.v⃗ +

∂α

∂t
.dv⃗ +

∂(dα.v⃗)

∂t
+ d(dα.v⃗).v⃗ + (dα.v⃗).dv⃗ +

∂(α.dv⃗)

∂t
+ d(α.dv⃗).v⃗ + (α.dv⃗).dv⃗

=
∂2α

∂t2
+ d

∂α

∂t
.v⃗ +

∂α

∂t
.dv⃗ +

∂dα

∂t
.v⃗ + dα.

∂v⃗

∂t
+ (d2α.v⃗).v⃗ + dα.(dv⃗.v⃗) + (dα.v⃗).dv⃗

+
∂α

∂t
.dv⃗ + α.

∂dv⃗

∂t
+ (dα.v⃗).dv⃗ + α.d2v⃗.v⃗ + (α.dv⃗).dv⃗

=
∂2α

∂t2
+ 2d

∂α

∂t
.v⃗ + 2

∂α

∂t
.dv⃗ + dα.

∂v⃗

∂t
+ (d2α.v⃗).v⃗ + dα.(dv⃗.v⃗) + 2(dα.v⃗).dv⃗ + α.

∂dv⃗

∂t

+ α.(d2v⃗.v⃗) + (α.dv⃗).dv⃗.

9.6 Incompatibility with Riesz representation vectors

The Lie derivative has nothing to do with any inner dot product (the Lie derivative does not compare
two vectors, contrary to a Cauchy type approach).

Here we introduce a Euclidean dot product (·, ·)g and show that the Lie derivative of a linear form α
is not trivially deduced from the Lie derivative of a Riesz representation vector of α (which one?). (Same
issue as at � 7.2.)

Let α be a Eulerian di�erential form; Then let a⃗g(t, p) ∈ R⃗n be the (·, ·)g-Riesz representation vector
of the linear form α(t, p) ∈ Rn∗: So, for all Eulerian vector �eld w⃗,

α.w⃗ = (⃗ag, w⃗)g (= a⃗g •
g w⃗), (9.52)

which means α(t, p).w⃗(t, p) = (⃗ag(t, p), w⃗(t, p))g at all admissible (t, p). This de�nes the Eulerian vector
�eld a⃗g (not intrinsic to α: a⃗g depends on the choice of (·, ·)g, cf. (F.13)).

Proposition 9.17 For all v⃗, w⃗ ∈ R⃗n,
∂α

∂t
.w⃗ = (

∂a⃗g
∂t

, w⃗)g, (dα.v⃗).w⃗ = (da⃗g.v⃗, w⃗)g,
Dα

Dt
.w⃗ = (

Da⃗g
Dt

, w⃗)g. (9.53)

Thus

Lv⃗α.w⃗ = (Lv⃗a⃗g, w⃗)g + (⃗ag, (dv⃗+dv⃗
T ).w⃗)g, and Lv⃗α.w⃗ ̸= (Lv⃗a⃗g, w⃗)g in general. (9.54)

So Lv⃗a⃗g is not the Riesz representation vector of Lv⃗α (but for solid body motions). (Expected: A Lie
derivative is covariant objective, see � 11.4, and the use of an inner dot product ruins this objectivity.)
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61 9.7. Lie derivative of a tensor

Proof. A Euclidean dot product g(·, ·) is bilinear constant and uniform, thus:

α.w⃗ = (⃗ag, w⃗)g gives ∂α
∂t .w⃗ + α.∂w⃗∂t = (

∂a⃗g
∂t , w⃗)g + (⃗ag,

∂w⃗
∂t )g, with α.

∂w⃗
∂t = (⃗ag,

∂w⃗
∂t )g, thus we are left

with ∂α
∂t .w⃗ = (

∂a⃗g
∂t , w⃗)g, for all w⃗.

α.w⃗ = (⃗ag, w⃗)g gives d(α.w⃗).v⃗ = d(⃗ag, w⃗)g.v⃗ for all v⃗, w⃗, thus (dα.v⃗).w⃗ + α.(dw⃗.v⃗) = (da⃗g.v⃗, w⃗)g +
(⃗ag, dw⃗.v⃗)g, with α.(dw⃗.v⃗) = (⃗ag, dw⃗.v⃗)g, thus we are left with (dα.v⃗).w⃗ = (da⃗g.v⃗, w⃗)g.

Thus Dα
Dt .w⃗ = (

Da⃗g
Dt , w⃗)g.

Thus (Lv⃗α).w⃗ = Dα
Dt .w⃗ + α.dv⃗.w⃗ = (

Da⃗g
Dt , w⃗)g + (⃗ag, dv⃗.w⃗)g = (Lv⃗a⃗g + dv⃗.⃗ag, w⃗)g + (dv⃗Tg .⃗ag, w⃗)g.

Remark 9.18 Chorus: a �di�erential form� (measuring instrument, covariant) should not be confused
with a �vector �eld� (object to be measured, contravariant); Thus, the use of a dot product (which one?)
and the Riesz representation theorem should be restricted for computational purposes, after an objective
equation has been established. See also remark F.12.

9.7 Lie derivative of a tensor

The Lie derivative of any tensor of order ≥ 2 is de�ned thanks to

Lv⃗(T ⊗ S) = (Lv⃗T )⊗ S + T ⊗ (Lv⃗S) (derivation formula). (9.55)

(Or direct de�nition: Lv⃗T (t0, pt0) =
D((Φ

t0
t )∗Tt)(pt0 )

Dt |t=t0
).

9.7.1 Lie derivative of a mixed tensor

Let Tm ∈ T 1
1 (Ω), and Tm is called a mixed tensor; Its Lie derivative, called the Jaumann derivative, is

given by

Lv⃗Tm =
DTm
Dt

− dv⃗.Tm + Tm.dv⃗ =
∂Tm
∂t

+ dTm.v⃗ − dv⃗.Tm + Tm.dv⃗. (9.56)

Can be checked with an elementary tensor T = w⃗⊗α: we have d(w⃗⊗α).v⃗ = (dw⃗.v⃗)⊗α+ w⃗⊗ (dα.v⃗) and
(dv⃗.w⃗)⊗α = dv⃗.(w⃗⊗α), and w⃗⊗(α.dv⃗) = (w⃗⊗α).dv⃗ , thus (9.55) gives Lv⃗(w⃗⊗α) = (Lv⃗w⃗)⊗α+w⃗⊗(Lv⃗α)
= ∂w⃗

∂t ⊗ α+ (dw⃗.v⃗)⊗ α− (dv⃗.w⃗)⊗ α+ w⃗ ⊗ ∂α
∂t + w⃗ ⊗ (dα.v⃗) + w⃗ ⊗ (α.dv⃗)

= ∂w⃗⊗α
∂t + d(w⃗ ⊗ α).v⃗ − dv⃗.(w⃗ ⊗ α) + (w⃗ ⊗ α).dv⃗.

Quanti�cation. Relative to a basis (e⃗i):

[Lv⃗Tm] = [
DTm
Dt

]− [dv⃗].[Tm] + [Tm].[dv⃗] (9.57)

(the signs ∓ are mixed). �Mixed� also refers to positions of indices (up and down with duality notations):
Tm =

∑n
i,j=1T

i
j e⃗i ⊗ ej with the dual basis (ei), i.e. [Tm]|e⃗ = [T ij ].

Exercice 9.19 With components, prove (9.57).

Answer. ∂Tm
∂t

=
∑

ij

∂T i
j

∂t
e⃗i ⊗ ej , dTm =

∑
ijk T

i
j|ke⃗i ⊗ ej ⊗ ek, v⃗ =

∑
i v

ie⃗i, dv⃗ =
∑

ij v
i
|j e⃗i ⊗ ej , thus

dTm.v⃗ =
∑

ijk T
i
j|kv

ke⃗i ⊗ ej , dv⃗.Tm =
∑

ijk v
i
|kT

k
j e⃗i ⊗ ej , Tm.dv⃗ =

∑
ijk T

i
kv

k
|j e⃗i ⊗ ej .

9.7.2 Lie derivative of a up-tensor

Recall: If L ∈ L(E;F ) (a linear map) then its adjoint L∗ ∈ L(F ∗;E∗) is de�ned by, cf. � A.13,

∀m ∈ F ∗, L∗.m := m.L , i.e., ∀m, u⃗ ∈ (F ∗ × E), (L∗.m).u⃗ = m.L.u⃗. (9.58)

(There is no inner dot product involved here.) In particular, dv⃗∗.m := m.dv⃗ for all m ∈ R⃗n∗t , i.e.

(dv⃗∗.m).u⃗ = (m.dv⃗).u⃗ = m.(dv⃗.u⃗) for all m ∈ R⃗n∗t and all u⃗ ∈ R⃗nt .

Let Tu ∈ T 2
0 (Ω), and Tu is called a up tensor; Its Lie derivative is called the upper-convected (Maxwell)

derivative or the Oldroyd derivative and is given by

Lv⃗Tu =
DTu
Dt
− dv⃗.Tu − Tu.dv⃗∗ =

∂Tu
∂t

+ dTu.v⃗ − dv⃗.Tu − Tu.dv⃗∗. (9.59)

Can be checked with an elementary tensor T = u⃗⊗ w⃗ and Lv⃗(u⃗⊗ w⃗) = (Lv⃗u⃗)⊗ w⃗ + u⃗⊗ (Lv⃗w⃗).
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62 9.7. Lie derivative of a tensor

Quanti�cation. Relative to a basis (e⃗i):

[Lv⃗Tu] = [
DTu
Dt

]− [dv⃗].[Tu]− [Tu].[dv⃗]
T . (9.60)

�up� also refers to positions of indices (with duality notations): Tu =
∑n
i,j=1T

ij e⃗i ⊗ e⃗j with the dual

basis (ei), i.e. [Tu]|e⃗ = [T ij ].

Exercice 9.20 With components, prove (9.59).

Answer. ∂Tu
∂t

=
∑

ij
∂T ij

∂t
e⃗i⊗e⃗j , dTu =

∑
ijk T

ij
|k e⃗i⊗e⃗j⊗ek, v⃗ =

∑
i v

ie⃗i, dv⃗ =
∑

ij v
i
|j e⃗i⊗ej , dv⃗∗ =

∑
ij v

j
|ie

i⊗e⃗j ,

thus dTu.v⃗ =
∑

ijk T
ij
|k v

ke⃗i ⊗ ej , dv⃗.Tu =
∑

ijk v
i
|kT

kj e⃗i ⊗ e⃗j , Tu.dv⃗
∗ =

∑
ijk T

ikvj|ke
i ⊗ e⃗j .

9.7.3 Lie derivative of a down-tensor

Let Td ∈ T 0
2 (Ω), and Td is called a down tensor; The Lie derivative is called the lower-convected Maxwell

derivative and is given by

Lv⃗Td =
DTd
Dt

+ Td.dv⃗ + dv⃗∗.Td =
∂Td
∂t

+ dTd.v⃗ + Td.dv⃗ + dv⃗∗.Td. (9.61)

Can be checked with an elementary tensor T = ℓ⊗m and Lv⃗(ℓ⊗m) = (Lv⃗ℓ)⊗m+ ℓ⊗ (Lv⃗m).

Quanti�cation. Relative to a basis (e⃗i):

[Lv⃗Td] = [
DTd
Dt

] + [Td].[dv⃗] + [dv⃗]T .[Td]. (9.62)

�down� also refers to positions of indices (with duality notations): Td =
∑n
i,j=1Tije

i ⊗ ej with the dual

basis (ei), i.e. [Td]|e⃗ = [Tij ].

Exercice 9.21 With components, prove (9.62).

Answer. ∂Td
∂t

=
∑

ij

∂Tij

∂t
ei⊗ej , dTd =

∑
ijk Tij|ke

i⊗ej⊗ek, v⃗ =
∑

i v
ie⃗i, dv⃗ =

∑
ij v

i
|j e⃗i⊗ej , dv⃗∗ =

∑
ij v

j
|ie

i⊗e⃗j ,

thus dTd.v⃗ =
∑

ijk Tij|kv
kei ⊗ ej , Td.dv⃗ =

∑
ijk Tikv

k
|je

i ⊗ e⃗j , dv⃗
∗.Td =

∑
ijk v

k
|iTkje

i ⊗ e⃗j .

Example 9.22 Let g = (·, ·)g ∈ T 0
2 (Ω) be a constant and uniform metric (a unique inner dot product

for all t, p, e.g., a Euclidean dot product at all t). Then Dg
Dt = 0, thus Lv⃗g = 0 + g.dv⃗ + dv⃗∗.g, thus

[Lv⃗g] = [g].[dv⃗] + [dv⃗]T .[g].
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Part IV

Velocity-addition formula

10 Change of referential and velocity-addition formula

10.0 Issue and result (summary)

Issue: The velocity-addition formula is usually written (classical mechanics)

v⃗A = v⃗D + v⃗B , i.e. absolute velocity = (drive+relative) velocities, (10.1)

where v⃗A and v⃗D being described by an observer A in his referential RA = (OA, (A⃗i)) and v⃗B being

described by an observer B in his referential RB = (OB , (B⃗i)). Hence (10.1) is problematic (inconsistent):

• v⃗A and v⃗D are quanti�ed in the basis (A⃗i), e.g. in foot/s, chosen by the absolute observer,

• v⃗B is quanti�ed in the another basis (B⃗i), e.g. in metre/s, chosen by the relative observer;
Thus, in (10.1), v⃗B + v⃗D adds metre/s and foot/s... relative to di�erent bases... Absurd. So:

Question: What are we missing (and how should (10.1) be written, or what does it really mean)?
Answer: We miss a link = the translator between A and B:

Summary (full details in the following paragraphs): Obj is an object and Φ̃ : (t, PObj ) ∈ [t1, t2]×Obj →
p(t) = Φ̃(t, PObj ) ∈ Rn is its motion. It is quanti�ed by A in his referential RA thanks to φ⃗A : (t, PObj )→
x⃗A(t) = φ⃗A(t, PObj ) := [

−−−−−−−−→
OAΦ̃(t, PObj )]|A⃗ (stored components in (A⃗i)), and by B in his referential RB thanks

to φ⃗B : (t, PObj ) → x⃗B(t) = φ⃗B(t, PObj ) := [
−−−−−−−−→
OBΦ̃(t, PObj )]|B⃗ (stored components in (B⃗i)). At any t, the

translator Θt connects x⃗At := x⃗A(t) = φ⃗A(t, PObj ) and x⃗Bt := x⃗B(t) = φ⃗B(t, PObj ):

x⃗At = Θt(x⃗Bt), so φ⃗A(t, PObj ) = Θ(t, φ⃗B(t, PObj )). (10.2)

Thus (time di�erentiation)

∂φ⃗A
∂t

(t, PObj )︸ ︷︷ ︸
absolute velocity v⃗A(t, x⃗At)

=
∂Θ

∂t
(t, φ⃗B(t, PObj ))︸ ︷︷ ︸

drive velocity v⃗D(t, x⃗At)

+ dΘ(t, φ⃗B(t, PObj )).
∂φ⃗B
∂t

(t, PObj )︸ ︷︷ ︸
translated velocity v⃗B∗(t, x⃗At)

. (10.3)

Which gives �the velocity-addition formula�: For observer A,

v⃗A = v⃗D + v⃗B∗ , where v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).v⃗Bt(x⃗Bt) at x⃗At = Θt(x⃗Bt),

i.e.: Absolute velocity = Drive velocity + Translated relative velocity.
(10.4)

Example 10.1 • Translation motion of RB in RA with B⃗i = λA⃗i (e.g. λ ≃ 3.28 when A⃗i in foot and B⃗i
in meter). Here dΘt = λI, hence v⃗At(x⃗At) = v⃗Dt(x⃗At) + λ v⃗Bt(x⃗Bt), which is the expected relation (�sum
of the velocities with the good units�, e.g. foot/s).
• �Rotation� of RB in RA: See � 10.12 (motion of the Earth around the Sun).

Then (10.3) gives (time di�erentiation), with
D( ∂Θ

∂t )

Dt (t, x⃗B(t)) =
∂( ∂Θ

∂t )

∂t (t, x⃗Bt)+d(
∂Θ
∂t )(t, x⃗Bt).v⃗B(t, x⃗Bt),

and in the classical case d2Θt = 0,

γ⃗At(x⃗At)︸ ︷︷ ︸
Absolute acc.

=
∂2Θ

∂t2
(t, x⃗Bt)︸ ︷︷ ︸

Drive acc. γ⃗D(t, x⃗At)

+2 d
∂Θ

∂t
(t, x⃗Bt).v⃗Bt(x⃗Bt)︸ ︷︷ ︸

Coriolis acc. γ⃗C(t, x⃗At)

+ dΘt(x⃗Bt).
∂2φ⃗B
∂t2

(t, PObj )︸ ︷︷ ︸
Translated acc. γ⃗B∗(t, x⃗At)

, (10.5)

Which gives �the acceleration-addition formula�: For observer A,

γ⃗A = γ⃗D + γ⃗C + γ⃗B∗ , where γ⃗Bt∗(x⃗At) = dΘt(x⃗Bt).γ⃗Bt(x⃗Bt) at x⃗At = Θt(x⃗Bt), ,

i.e.: Absolute acceleration = (Drive + Coriolis + Translated relative) accelerations.
(10.6)

And ∂Θ
∂t (t, x⃗Bt) = v⃗Dt(Θt(x⃗Bt)) gives d(∂Θ∂t )(t, x⃗Bt))) = dv⃗Dt(Θt(x⃗Bt)).dΘt(x⃗Bt), thus γ⃗Ct(x⃗At) =

2 dv⃗Dt(x⃗At).v⃗Bt∗(x⃗At), thus, e.g. for the motion of the Earth around the Sun,

γ⃗Ct = 2 ω⃗Dt × v⃗Bt∗. (10.7)
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10.1 Referentials and �matrix motions�

10.1.1 Motion of Obj in our classical Universe

Classical mechanics framework: Time and space are decoupled, all the observers share the same time
origin and unit (e.g. the second) and live in �our Universe� modeled as the a�ne space R3 with its usual

associated vector space R⃗3 (bi-point vectors). More generally, the a�ne space is Rn associated to the

vector space R⃗n, n ∈ {1, 2, 3}.
Obj is an object. Its (regular) motion (in our Universe) during a time interval [t1, t2] is the function

Φ̃ :

{
[t1, t2]×Obj → Rn

(t, PObj ) → pt = Φ̃(t, PObj ) = position at t of the particle PObj .
(10.8)

With Ωt = Φ̃(t,Obj ) ⊂ Rn, its Eulerian velocities and accelerations vector �elds are the functions v⃗

and γ⃗ :
⋃
t∈[t1,t2]

({t} × Ωt)→ R⃗n de�ned by, at t at pt = Φ̃(t, PObj ),

v⃗(t, pt) =
∂Φ̃

∂t
(t, PObj ) and γ⃗(t, pt) =

∂2Φ̃

∂2t
(t, PObj ). (10.9)

10.1.2 Absolute and relative referentials ...

• An observer A, called the absolute observer, chooses a rigid object ObjRA in the Universe, chooses four
particles which are at t at OAt, PA1t, PA2t, PA3t ∈ ObjRA s.t. the bi-point vectors A⃗it :=

−−−−−→
OAtPAit make a

basis in R⃗n at t. He has thus built his (Cartesian) referential RAt = (OAt, (A⃗it)) at t, called the absolute

referential at t. And RAt is supposed �xed relative to A, so is written RA = (OA, (A⃗i)) when used by A.
E.g. ObjRA is the �Sun extended to in�nity�, and at t, OAt is the position of the center of the Sun in

the Universe and (A⃗it) = (
−−−−−→
OAtPAit) is a Euclidean basis in foot �xed relative to stars.

• An observer B, called the relative observer, proceeds similarly: He builds his Cartesian referential
RBt = (OBt, (B⃗it)), called the relative referential, and written RB = (OB , (B⃗i)) when used by B.

E.g. ObjRB is the �Earth extended to in�nity�, and at t, OBt is the position of the center of the Earth
and (B⃗it) = (

−−−−−→
OBtPBit) is a Euclidean basis in metre �xed relative to the Earth.

10.1.3 ... Matrix representations of a vector ...

Mn1 is the abstract vector space of n ∗ 1 real column matrices and E⃗1 =


1
0
...
0

, ..., E⃗n =


0
...
0
1

 makes

its canonical basis (E⃗i) (with 0 and 1 the identity addition and multiplication elements in the �eld R).
In particular [A⃗it]|A⃗ = E⃗i = [B⃗it]|B⃗ .

With the only purpose to know which observer builds column matrices, Mn1 is called Mn1(A) when
used by A andMn1(B) when used by B. So, at t, a position pt ∈ Rn is stored by A as the column matrix

inMn1 given by the components xAti of the vector
−−−→
OAtpt =

∑n
i=1xAtiA⃗it, idem for B:

x⃗At := [
−−−→
OAtpt]|A⃗ =

 xAt1
...

xAtn

 ∈Mn1(A), and x⃗Bt := [
−−−→
OBtpt]|B⃗ =

 xBt1
...

xBtn

 ∈Mn1(B). (10.10)

10.1.4 ... Absolute and relative �motions� of Obj (quanti�cation)

(10.10) de�nes the �absolute motion� φ⃗A and the �relative motion� φ⃗B of Obj (matrix valued):

φ⃗A :


[t1, t2]×Obj →Mn1(A)

(t, PObj ) → x⃗At = φ⃗A(t, PObj ) := [
−−−−−−−−→
OAΦ̃(t, PObj )]|A⃗

noted
= x⃗A(t) = [

−−−−→
OAp(t)]|A⃗,

(10.11)

φ⃗B :


[t1, t2]×Obj →Mn1(B)

(t, PObj ) → x⃗Bt = φ⃗B(t, PObj ) := [
−−−−−−−−→
OBΦ̃(t, PObj )]|B⃗

noted
= x⃗B(t) = [

−−−−→
OBp(t)]|B⃗ .

(10.12)
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65 10.1. Referentials and �matrix motions�

And (10.9) gives the �absolute� and �relative� velocities and accelerations of PObj (column matrices):

v⃗A(t, x⃗At) := [v⃗(t, pt)]|A⃗ and γ⃗A(t, x⃗At) := [γ⃗(t, pt)]|A⃗, when x⃗At := [
−−−→
OApt]|A⃗, (10.13)

v⃗B(t, x⃗Bt) := [v⃗(t, pt)]|B⃗ and γ⃗B(t, x⃗Bt) := [γ⃗(t, pt)]|B⃗ , when x⃗Bt := [
−−−→
OBpt]|B⃗ . (10.14)

These de�nitions are consistent:

Proposition 10.2 v⃗A(t, x⃗At) =
∂φ⃗A
∂t (t, PObj ) (= x⃗A

′(t)), and v⃗B(t, x⃗Bt) =
∂φ⃗B
∂t (t, PObj ) (= x⃗B

′(t)).

Proof. Let A⃗i(t) := A⃗it, OA(t) := OAt. Then [A⃗′
i(t)]|A⃗ = [limh→0

A⃗i(t+h)−A⃗i(t)
h ]|A⃗ =

limh→0
[A⃗i(t+h)]|A⃗−[A⃗i(t)]|A⃗

h = limh→0
E⃗i−E⃗i

h = 0⃗ ∈ Mn1 since A⃗it is �xed for A. And [OA
′
i(t)]|A⃗ =

[limh→0
OAi(t+h)−OAi(t)

h ]|A⃗ = limh→0
[
−−−−−−−−−−−→
OAi(t)OAi(t+h)]|A⃗

h = limh→0
0⃗
h = 0⃗ ∈ Mn1 since OAt is �xed

for A. And Φ̃(t, PObj ) = OA(t) +
−−−−−−−−−−→
OA(t)Φ̃(t, PObj ), thus [Φ̃(t, PObj )]|A⃗ = [OAi(t)]|A⃗ + φ⃗A(t, PObj ), thus

v⃗A(t, x⃗At) =
(10.13) [v⃗(t, pt)]|A⃗ =(10.9) [∂Φ̃∂t (t, PObj )]|A⃗ = [OA

′
i(t)]|A⃗ + ∂φ⃗A

∂t (t, PObj ) = 0⃗ + ∂φ⃗A
∂t (t, PObj ). Idem

for B.

Exercice 10.3 t is �xed. Let p ∈ Rn (point), x⃗A := [
−−→
OAp]|A⃗ ∈ Mn1, u⃗ : Rn → R⃗n be a C1 vector

�eld in Rn, and de�ne u⃗A(x⃗A) := [u⃗(p)]|A⃗ (so u⃗A is a matrix �eld inMn1). Prove: [du⃗(p)]|A⃗ = du⃗A(x⃗A)

(endomorphism inMn1(A)), i.e. du⃗A(x⃗A).[w⃗]|A⃗ = [du⃗(p)]|A⃗.[w⃗]|A⃗ (= [du⃗(p).w⃗]|A⃗) for all w⃗ ∈ R⃗n.

Answer. A point p+hw⃗ ∈ Rn is stored by A as the matrix [
−−→
OAp + hw⃗]|A⃗ = [

−−→
OAp]|A⃗ + h[w⃗]|A⃗ = x⃗A + h[w⃗]|A⃗.

Thus du⃗A(x⃗A).[w⃗]|A⃗ = limh→0

u⃗A(x⃗A+h[w⃗]|A⃗)−u⃗A(x⃗A)

h
= limh→0

[u⃗(p+hw⃗)]|A⃗−[u⃗(p)]|A⃗
h

= limh→0

[u⃗(p+hw⃗)−w⃗(p)]|A⃗
h

=

[limh→0
u⃗(p+hw⃗)−w⃗(p)

h
]|A⃗ = [du⃗(p).w⃗]|A⃗ = [du⃗(p)]|A⃗.[w⃗]|A⃗, true for all w⃗.

Exercice 10.4 Call Qt the transition matrix from (A⃗it) to (B⃗it) at t. Prove x⃗At = [
−−−−→
OAOBt]|A⃗ +Qt.x⃗Bt.

Answer. [x⃗]|B⃗ = Q−1
t .[x⃗]|A⃗ for all x⃗ ∈ R⃗n (change of basis formula) gives x⃗At = [

−−−→
OApt]|A⃗ = [

−−−−→
OAOBt +

−−−→
OBtpt]|A⃗ =

[
−−−−→
OAOBt]|A⃗ + [

−−−→
OBtpt]|A⃗ = [

−−−−→
OAOBt]|A⃗ +Qt.[

−−−→
OBtpt]|B⃗ = [

−−−−→
OAOBt]|A⃗ +Qt.x⃗Bt.

10.1.5 Motion of RB ...

Particular case Obj = ObjRB in (10.8): The motion of ObjRB , also called the motion of RB , is

Φ̃RB
:

{
[t1, t2]×ObjRB → Rn

(t, QRB
) → qt = Φ̃RB

(t, QRB
),

(10.15)

So the Eulerian velocity and acceleration of a particle QRB
∈ ObjRB are, at t at qt = Φ̃RB

(t, QRB
),

v⃗RB
(t, qt) =

∂Φ̃RB

∂t
(t, QRB

) and γ⃗RB
(t, qt) =

∂2Φ̃RB

∂2t
(t, QRB

). (10.16)

10.1.6 ... Drive and static �motions of RB�

The drive φ⃗D and static φ⃗S �motions� of RB are the names given to φ⃗A and φ⃗B when Obj = ObjRB :

φ⃗D :

 [t1, t2]×ObjRB →Mn1(A)

(t, QRB
) → φ⃗D(t, QRB

) := [
−−−−→
OAq(t)]|A⃗ = [

−−−−−−−−−−→
OAΦ̃RB

(t, QRB
)]|A⃗

noted
= y⃗D(t),

(10.17)

and

φ⃗S :

ObjRB →Mn1(B)

QRB
→ φ⃗S(QRB

) := [
−−−−→
OBq(t)]|B⃗ = [

−−−−−−−−−−→
OBΦ̃RB

(t, QRB
)]|B⃗

noted
= y⃗S .

(10.18)

(φ⃗S is independent of t since QRB
is �xed in RB .) So the drive and static velocity of QRB

∈ ObjRB at t are v⃗D(t, y⃗Dt) := [v⃗RB
(t, qt)]|A⃗ =

∂φ⃗D
∂t

(t, PObj ) when y⃗Dt := [
−−→
OAqt]|A⃗,

v⃗S(t, y⃗S) := [v⃗RB
(t, qt)]|B⃗ = 0⃗ (null matrix since QRB

is �xed in RB).
(10.19)

And the drive and static accelerations are γ⃗D(t, y⃗Dt) = [γ⃗RB
(t, qt)]|A⃗ = ∂2φ⃗D

∂t2 (t, PObj ) and γ⃗S(t, y⃗S) = 0⃗.
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66 10.2. The translator Θt

Exercice 10.5 Why introduce φ⃗S (static)?

Answer. You can't confuse a particle QRB with stored values: matrix y⃗Dt by A and matrix y⃗S by B.

10.2 The translator Θt

De�nition 10.6 At t, the translator Θt connects the informations stored by A with that stored by B:

Θt :

{
Mn1(B) →Mn1(A)

y⃗S → y⃗Dt = Θt(y⃗S)

}
when

 y⃗S = φ⃗S(QRB
) (= [

−−−−−−−−−−→
OBΦ̃RB

(t, QRB
)]|B⃗), and

y⃗Dt = φ⃗D(t, QRB
) (= [

−−−−−−−−−−→
OAΦ̃RB

(t, QRB
)]|A⃗).

(10.20)

I.e. Θt is the �translator at t from B to A�, or the �inter-referential function at t from RB to RA�, i.e.
translates the �matrix position� stored by B to the corresponding �matrix position� stored by A. So, for
all QRB

∈ ObjRB ,
φ⃗Dt(QRB

) = Θt(φ⃗S(QRB
)), i.e. φ⃗Dt = Θt ◦ φ⃗S , (10.21)

i.e.

Θt := φ⃗Dt ◦ φ⃗−1
S :

{
Mn1(B) →Mn1(A)

y⃗S → y⃗Dt = Θt(y⃗S) := φ⃗Dt(φ⃗
−1
S (y⃗S)).

(10.22)

E.g. [
−−−−→
OAOBt]|A⃗ = Θt([

−−−−→
OBOBt]|B⃗) (for the particle QOB

chosen by B to be de�ne his origin OBt at t), so

[
−−−−→
OAOBt]|A⃗ = Θt(⃗0) = position of OBt as stored by A at t. (10.23)

In other words, Θt is de�ned such that the following diagram commutes:

y⃗S = φ⃗S(QRB
) = localization of QRB

by B

Θt

��

QRB
∈ ObjRB

φ⃗S
22

φ⃗Dt

,,

y⃗Dt = φ⃗Dt(QRB
) = Θt(y⃗S) = localization at t of QRB

by A.

(10.24)

Application to particles of Obj : Let pt := Φ̃(t, PObj ) = position at t in the Universe of a particle

PObj ∈ Obj . Let QRB
∈ ObjRB be the particle which is at t at qt = pt, i.e. s.t. Φ̃RB

(t, QRB
) = Φ̃(t, PObj ), i.e.

QRB
:= (Φ̃RBt

)−1(pt). So x⃗At = [
−−−→
OApt]A⃗ = [

−−→
OAqt]A⃗ = y⃗Dt and x⃗Bt = [

−−−→
OBpt]B⃗ = [

−−−→
OBqt]B⃗ = y⃗S , and (10.22)

gives

x⃗At = Θt(x⃗Bt), i.e. φ⃗At(PObj ) = Θt(φ⃗Bt(PObj )), i.e. φ⃗At = Θt ◦ φ⃗Bt . (10.25)

In other words, the diagram (10.23) commutes with Obj , φ⃗Bt and φ⃗At in place of ObjRB , φ⃗S and φ⃗Dt.

10.3 The di�erential dΘt, and push-forward of vector �elds

Fix t and let y⃗S ∈Mn1(B). Recall: Θt being supposed C1, the di�erential dΘt(y⃗S) is de�ned by

dΘt(y⃗S) :


Mn1(B) →Mn1(A)

w⃗S → dΘt(y⃗S).w⃗S = lim
h→0

Θt(y⃗S+hw⃗S)−Θt(y⃗S)

h
.

(10.26)

And if w⃗S :

{
Mn1(B) →Mn1(B)

y⃗S → w⃗S(y⃗S)

}
is a vector �eld in Mn1(B) then its push-forward by Θt is the vector

�eld Θt∗w⃗S = w⃗St∗ :

{
Mn1(A) →Mn1(A)

y⃗Dt → w⃗St∗(y⃗Dt)

}
inMn1(A) de�ned by

w⃗St∗(y⃗Dt) := dΘt(y⃗S).w⃗S(y⃗S) when y⃗Dt = Θt(y⃗S). (10.27)

I.e., w⃗St∗([
−−→
OAqt]|A⃗) = dΘt([

−−−→
OBqt]|B⃗).w⃗S([

−−−→
OBqt]|B⃗) for all QRB

∈ ObjRB with qt = Φ̃RB
(t, QRB

) ∈ Rn.
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10.4 Θt is a�ne in classical mechanics

Proposition 10.7 t being �xed, Θt :Mn1(B)→Mn1(A) is a�ne: For all y⃗S0, y⃗S1 ∈Mn1(B) and all u ∈ R,

Θt((1−u)y⃗S0 + u y⃗S1) = (1−u)Θt(y⃗S0) + uΘt(y⃗S1). (10.28)

Thus

dΘt(y⃗S0)
noted
= dΘt is independent of y⃗S0, (10.29)

and
Θt(y⃗S1) = Θt(y⃗S0) + dΘt.(y⃗S1−y⃗S0), i.e. y⃗Dt1 = y⃗Dt0 + dΘt.(y⃗S1−y⃗S0) (10.30)

where y⃗Dt0 = Θt(y⃗S0) and y⃗Dt1 = Θt(y⃗S1). In other words, for all QB0, QB1 ∈ ObjRB and all u ∈ R, with
q0 = Φ̃RBt

(QB0), q1 = Φ̃RBt
(QB1) ∈ Rn, y⃗S0 = [

−−−→
OBq0]|B⃗ , y⃗S1 = [

−−−→
OBq1]|B⃗ , y⃗Dt0 = [

−−−→
OAq0]|A⃗, y⃗Dt1 = [

−−−→
OAq1]|A⃗,

Θt([
−−−→
OBq0]|B⃗ + u [−−→q0q1]|B⃗) = [

−−−→
OAq0]|A⃗ + u [−−→q0q1]|A⃗, i.e. [−−→q0q1]|A⃗ = dΘt.[−−→q0q1]|B⃗ . (10.31)

In particular
[B⃗it]A⃗ = dΘt.[B⃗i]|B⃗ . (10.32)

Proof. At t, consider a straight line of particles (possible in classical mechanic) spotted along q : u →
q(u) = q0 + u−−→q0q1 in Rn. In particular, q(0) = q0 and q(1) = q1. Let y⃗S(u) = [

−−−−→
OBq(u)]|B⃗ and y⃗Dt(u) =

[
−−−−→
OAq(u)]|A⃗. With [

−−−−→
OBq(u)]|B⃗ = [

−−−→
OBq0+u−−→q0q1]|B⃗ = [(1−u)−−−→OBq0+u

−−−→
OBq1]|B⃗ = (1−u)[−−−→OBq0]|B⃗+u [

−−−→
OBq1]|B⃗ ,

idem with y⃗Dt, we get

y⃗S(u) = (1−u)y⃗S0 + u y⃗S1 and y⃗Dt(u) = (1−u)y⃗Dt0 + uy⃗Dt1 (straight lines inMn1) (10.33)

where y⃗S0 = y⃗S(0) = [
−−−→
OBq0]|B⃗ , y⃗S1 = y⃗S(1) = [

−−−→
OBq1]|B⃗ , y⃗Dt0 = y⃗Dt(0) = [

−−−→
OAq0]|A⃗, y⃗Dt1 = y⃗Dt(1) =

[
−−−→
OAq1]|A⃗. And (10.20) gives Θt(y⃗S(u)) = y⃗Dt(u) for all u, thus (10.33) gives Θt((1−u)y⃗S0 + uy⃗S1) =

(1−u)y⃗Dt0 + uy⃗Dt1, thus (10.28): Θt is a�ne. Thus (10.29) and (10.30).

And with y⃗S0 = [OBOBt]B⃗ = 0⃗ and y⃗Si = [OBPBit]B⃗ = [B⃗i]|B⃗ , we have y⃗Dt0 = [OAOBt]|A⃗ and

y⃗Dti = [OAPBit]|A⃗, thus [OBtPBit]|A⃗ =(10.30) dΘt.[OBPBit]|B⃗ , i.e. (10.32).

Exercice 10.8 Call Qt = [Qt,ij ] the transition matrix from (A⃗it) to (B⃗it) in R⃗n. Prove

[dΘt]|E⃗ = Qt, i.e. ∀j, dΘt.E⃗j =

n∑
i=1

Qt,ijE⃗i (= E⃗jt∗). (10.34)

Answer. The transition matrix Qt is de�ned by B⃗jt =
∑n

i=1Qt,ijA⃗it. Thus [B⃗jt]|A⃗ =
∑n

i=1Qt,ij [A⃗it]|A⃗ =∑n
i=1Qt,ijE⃗i. With [B⃗jt]|A⃗ =(10.32) dΘt.[B⃗jt]|B⃗ = dΘt.E⃗j . Thus dΘt.E⃗j =

∑n
i=1Qt,ijE⃗i, thus [dΘt]|E⃗ = Qt.

10.5 Translated velocities

De�nition 10.9 The translated velocities and translated accelerations from B to A, called the translated
relative velocities and translated relative accelerations, are the push-forwards by Θt of the relative velocity
and the relative accelerations: At t at pt,

v⃗Bt∗(x⃗At) := dΘt(x⃗Bt).v⃗Bt(x⃗Bt) and γ⃗Bt∗(x⃗At) := dΘt(x⃗Bt).γ⃗Bt(x⃗Bt) when x⃗At = Θt(x⃗Bt). (10.35)

In other words: v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).[v⃗t(pt)]B⃗ and γ⃗Bt∗(x⃗At) = dΘt(x⃗Bt).[γ⃗t(pt)]B⃗ inMn1(A).

In particular if Θt is a�ne, with x⃗At = Θt(x⃗Bt):

v⃗Bt∗(x⃗At) := dΘt.v⃗Bt(x⃗Bt) and γ⃗Bt∗(x⃗At) = dΘt.γ⃗Bt(x⃗Bt). (10.36)
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Exercice 10.10 (A⃗i) and (B⃗i) are Euclidean bases (e.g. in foot and metre), (·, ·)A and (·, ·)B are the

associated Euclidean dot products, λ = ||B⃗i||A (e.g. ≃ 3.28), so (·, ·)A = λ2(·, ·)B . And (·, ·)can is the

canonical inner dot product inMn1 (de�ned by (E⃗i, E⃗j)can = δij for all i, j). Suppose Θt is a�ne and let

E⃗it∗ := dΘt.E⃗i (push-forward by Θt). Prove:

∀i, j, (E⃗it∗, E⃗jt∗)can = λ2δij , and dΘt
T .dΘt = λ2I. (10.37)

Answer. (B⃗i) is a Euclidean basis for B, thus is a Euclidean orthogonal basis for all observers; It is seen at t

as (B⃗it) by A with ||B⃗it||A = λ for all i, so (·, ·)A = λ2(·, ·)B . And E⃗it∗ = dΘt.E⃗i = dΘt.[B⃗it]|B⃗ =(10.32) [B⃗it]|A⃗.

Thus (E⃗it∗, E⃗jt∗)can = [E⃗it∗]
T .[E⃗jt∗] = [B⃗it]

T
|A⃗.[B⃗jt]|A⃗ = (B⃗it, B⃗jt)A = λ2(B⃗it, B⃗jt)B = λ2δij , thus (10.37)1;

Hence λ2(E⃗i, E⃗j)can = λ2δij = (E⃗it∗, E⃗jt∗)can = (dΘt.E⃗i, dΘt.E⃗j)can = (dΘt
T .dΘt.E⃗i, E⃗j)can, true for all i, j,

thus dΘt
T .dΘt = λ2I, thus (10.37)2.

10.6 De�nition of Θ

De�nition 10.11 The translator from B to A is the function Θ de�ned with (10.22) by

Θ :

{
[t1, t2]×Mn1(B) →Mn1(A)

(t, y⃗S) → y⃗D(t) = Θ(t, y⃗S) := Θt(y⃗S) = y⃗Dt.
(10.38)

So, for all QRB
∈ ObjRB and all t,

Θ(t, φ⃗S(QRB
)) = φ⃗D(t, QRB

). (10.39)

E.g., Θ(t, 0⃗) = [
−−−−−→
OAOB(t)]|A⃗, cf. (10.23).

Remark 10.12 The translator Θ looks like a motion, but is not: A motion is characterized in one
referential and connects one particle to its positions; While Θ connects two referentials: It is an �inter-
referential� function.

10.7 The �Θ-velocity� is the drive velocity

De�nition 10.13 The �Θ-velocity� and �Θ-acceleration� v⃗Θ, γ⃗Θ : [t1, t2]×Mn1(A)→ R⃗n are de�ned by
(Eulerian type de�nition), at t at y⃗Dt = Θ(t, y⃗S),

v⃗Θ(t, y⃗Dt) :=
∂Θ

∂t
(t, y⃗S),

γ⃗Θ(t, y⃗Dt) =
∂2Θ

∂t2
(t, y⃗S).

(10.40)

(Recall: ∂Θ
∂t (t, y⃗S) = limh→0

Θ(t+h,y⃗S)−Θ(t,y⃗S)
h ∈Mn1(A).)

Proposition 10.14

v⃗Θ = v⃗D and γ⃗Θ = γ⃗D , (10.41)

i.e. v⃗Θ(t, y⃗) = v⃗D(t, y⃗) and γ⃗Θ(t, y⃗) = γ⃗D(t, y⃗) inMn1(A), for all t ∈ [t1, t2] and all y⃗ ∈Mn1(A).

Proof. φ⃗D(t, QRB
) =(10.22) Θ(t, φ⃗S(QRB

)), for all t and QRB
, gives

∂φ⃗D
∂t

(t, QRB
) =

∂Θ

∂t
(t, φ⃗S(QRB

)), i.e. v⃗D(t, φ⃗D(t, QRB
)) = v⃗Θ(t,Θ(t, φ⃗S(QRB

))), (10.42)

i.e. v⃗D(t, y⃗Dt) = v⃗Θ(t,Θt(y⃗S)) = v⃗Θ(t, y⃗Dt). Idem with ∂2

∂t2 .
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10.8 The velocity-addition formula

(10.25) gives
φ⃗A(t, PObj ) = Θ(t, φ⃗B(t, PObj )). (10.43)

Thus
∂φ⃗A
∂t

(t, PObj )︸ ︷︷ ︸
v⃗At(x⃗At)

=
∂Θ

∂t
(t, φ⃗B(t, PObj ))︸ ︷︷ ︸

(10.41)
= v⃗Dt(x⃗At)

+ dΘ(t, φ⃗B(t, PObj )).
∂φ⃗B
∂t

(t, PObj )︸ ︷︷ ︸
= dΘt(x⃗Bt).v⃗Bt(x⃗Bt)

(10.35)
= v⃗Bt∗(x⃗At)

, (10.44)

i.e. v⃗At(x⃗At) = v⃗Dt(x⃗At) + v⃗Bt∗(x⃗At), where x⃗Bt = φ⃗B(t, PObj ) and x⃗At = φ⃗A(t, PObj ) = Θt(x⃗Bt), Hence:

v⃗At = v⃗Dt + v⃗Bt∗ = the velocity-addition formula in RA, (10.45)

which reads:
absolute velocity = drive velocity

+ translated relative velocity from B to A.
(10.46)

In other words (relation between the numerical values of the velocities stored by A and B),

[v⃗t(pt)]|A⃗ = [v⃗RBt
(pt)]|A⃗ + dΘt([

−−−→
OBtpt]|B⃗).[v⃗t(pt)]B⃗ . (10.47)

10.9 Coriolis acceleration, and the acceleration-addition formula

(10.44) gives

∂2φ⃗A
∂t2

(t, PObj )︸ ︷︷ ︸
γ⃗At(x⃗At)

=
∂2Θ

∂t2
(t, x⃗Bt)︸ ︷︷ ︸

γ⃗Dt(x⃗At)

+d
∂Θ

∂t
(t, x⃗Bt).

∂φ⃗B
∂t

(t, PObj )

+
(∂(dΘ)

∂t
(t, x⃗Bt) + d2Θt(x⃗Bt).

∂φ⃗B
∂t

(t, PObj )
)
.
∂φ⃗B
∂t

(t, PObj ) + dΘt(x⃗Bt).
∂2φ⃗B
∂t2

(t, PObj )︸ ︷︷ ︸
γ⃗Bt∗(x⃗At)

,

(10.48)
i.e.

γ⃗At(x⃗At) = γ⃗Dt(x⃗At) + γ⃗Ct(x⃗At) + γ⃗Bt∗(x⃗At), (10.49)

where (with Θ ∈ C2):

De�nition 10.15 At t, the Coriolis acceleration γ⃗Ct is, at x⃗At,

γ⃗Ct(x⃗At) = 2 dv⃗Dt(x⃗At).v⃗Bt∗(x⃗At) + d2Θ(t, x⃗Bt)(v⃗Bt(x⃗Bt), v⃗Bt(x⃗Bt)). (10.50)

And the Coriolis acceleration γ⃗C at t at x⃗At is γ⃗C(t, x⃗At) := γ⃗Ct(x⃗At).

Hence:
γ⃗At = γ⃗Dt + γ⃗Ct + γ⃗Bt∗ = the acceleration-addition formula in RA, (10.51)

which reads:

absolute acceleration = (drive + Coriolis + translated) accelerations. (10.52)

Particular case Θt a�ne (d2Θt = 0): At t, the Coriolis acceleration γ⃗Ct at x⃗At is

γ⃗Ct(x⃗At) = 2 dv⃗Dt(x⃗At).v⃗Bt∗(x⃗At), i.e. γ⃗Ct = 2dv⃗Dt.v⃗Bt∗ . (10.53)

69



70 10.10. With an initial time

10.10 With an initial time

Let t0, t ∈ R. Consider the Lagrangian associated function Φt0t with the motion Φ̃ of Obj :

Φt0t :

{
Ωt0 → Ωt

pt0=Φ̃(t0, PObj ) → pt = Φt0t (pt0) := Φ̃(t, PObj ).
(10.54)

And, with x⃗At = φ⃗A(t, PObj ) = [
−−−→
OApt]|A⃗ and x⃗Bt = φ⃗B(t, PObj ) = [

−−−→
OBpt]|B⃗ , de�ne the �matrix motions�

φ⃗t0At :Mn1(A)→Mn1(A) and φ⃗
t0
Bt :Mn1(B)→Mn1(B) by φ⃗t0At(x⃗At0) := x⃗At (= [

−−−−−−−−→
OAΦ̃(t, PObj )]|A⃗ = [

−−−−−−−→
OAΦ

t0
t (pt0)]|A⃗ = φ⃗At(PObj )),

φ⃗t0Bt(x⃗Bt0) := x⃗Bt (= [
−−−−−−−−→
OBΦ̃(t, PObj )]|B⃗ = [

−−−−−−−→
OBΦ

t0
t (pt0)]|B⃗ = φ⃗Bt(PObj )).

(10.55)

And Θt(x⃗Bt) = x⃗At, i.e. Θt(φ⃗
t0
Bt(x⃗Bt0)) = φ⃗t0At(x⃗At0) with x⃗At0 = Θt0(x⃗Bt0), thus

Θt ◦ φ⃗t0Bt = φ⃗t0At ◦Θt0 :Mn1(B)→Mn1(A). (10.56)

In other words, the following diagram commutes:

x⃗Bt0 = φ⃗B(t0, PObj )

Θt0

��

φ⃗t0Bt

// x⃗Bt = φ⃗t0Bt(x⃗Bt0)

Θt

��

PObj ∈ Obj

φ⃗Bt0
55

φ⃗At0

))

x⃗At0 = φ⃗A(t0, PObj ) = Θt0(x⃗Bt0)
φ⃗t0At // x⃗At = φ⃗t0At(x⃗At0) = Θt(x⃗Bt).

(10.57)

Thus, for any vector �eld u⃗Bt0 in RB ,

dΘt(x⃗Bt)︸ ︷︷ ︸
(translation at t)

. dφ⃗t0Bt(x⃗Bt0).u⃗Bt0(x⃗Bt0)︸ ︷︷ ︸
(deformation from t0 to t)

= dφ⃗t0At(x⃗At0)︸ ︷︷ ︸
(deformation from t0 to t)

. dΘt0(x⃗Bt0).u⃗Bt0(x⃗Bt0)︸ ︷︷ ︸
(translation at t0)

. (10.58)

Exercice 10.16 Redo the above steps with ObjRB instead of Obj .

Answer. Consider the Lagrangian associated function Φt0
RBt with the motion Φ̃RB of ObjRB :

Φt0
RBt :

{
ΩRBt0 = Rn → ΩRBt = Rn

qt0 = Φ̃RB (t0, QRB ) → q = Φt0
RBt(qt0) := Φ̃RB (t, QRB ),

}
(10.59)

then de�ne the �matrix motions� φ⃗t0
Dt : Mn1(A) → Mn1(A) and φ⃗t0

St : Mn1(B) → Mn1(B) by φ⃗t0
Dt(y⃗Dt0) := y⃗Dt (= [

−−−−−−−−−−→
OAΦ̃RB (t, QRB )]|A⃗ = [

−−−−−−−−→
OAΦ

t0
RBt(pt0)]|A⃗ = φ⃗Dt(QRB )),

φ⃗t0
St(y⃗S) := y⃗S (= [

−−−−−−−−−−→
OBΦ̃RB (t, QRB )]|B⃗ = [

−−−−−−−−→
OBΦ

t0
RBt(qt0)]|B⃗ = φ⃗S(QRB )),

(10.60)

Thus φ⃗S is a time-shift, which is also abusively noted φ⃗t0
St = I (algebraic identity). So with Θt(y⃗S) = y⃗Dt we get

Θt(φ⃗
t0
Dt(y⃗S)) = φ⃗t0

Dt(y⃗Dt0), with y⃗Dt0 = Θt0(y⃗S), thus

Θt ◦ φ⃗t0
St = φ⃗t0

Dt ◦Θt0 : Mn1(B) → Mn1(A) (10.61)

(also abusively written Θt = φ⃗t0
Dt ◦Θt0). In other words, the following diagram commutes:

y⃗S = φ⃗S(QRB )

Θt0

��

φ⃗t0
St = time shift

// y⃗S = φ⃗S(QRB )

Θt

��

QRB ∈ ObjRB

φ⃗S
55

φ⃗t0
D

))

y⃗Dt0 = φ⃗Dt0(QRB ) = Θt0(y⃗S)
φ⃗t0
Dt // y⃗Dt = φ⃗Dt(QRB ) = φ⃗t0

Dt(y⃗Dt0) = Θt(y⃗S).

(10.62)

And (10.61) gives, for any y⃗S = φ⃗S(QRB ) and all vector �eld u⃗S (static in RB), with y⃗Dt0 = Θt0(y⃗S),

dΘt(y⃗S)︸ ︷︷ ︸
(translation at t)

. dφ⃗t0
St(y⃗S).u⃗S(y⃗S)︸ ︷︷ ︸

(time shift from t0 to t)

= dφ⃗t0
Dt(y⃗Dt0)︸ ︷︷ ︸

(Drive motion from t0 to t)

. dΘt0(y⃗S).u⃗S(y⃗S)︸ ︷︷ ︸
(translation at t0)

. (10.63)

70



71 10.11. Drive and Coriolis forces

10.11 Drive and Coriolis forces

10.11.1 Fundamental principal: requires a Galilean referential

Second Newton's law of motion (fundamental principle of dynamics): In a Galilean referential, the sum

of the external forces f⃗ on an object is equal to its mass multiplied by its acceleration:∑
externalf⃗ = mγ⃗ (in a Galilean referential). (10.64)

Question: And in a Non Galilean referential?
Answer: Then you have to add �observer dependent forces�, i.e. you have to add �apparent forces�

due to the motion of the non Galilean observer. Indeed, the motion of an object in our Universe does
not care about the observer motion (his accelerations and velocities).

See e.g. https://www.youtube.com/watch?v=_36MiCUS1ro for a carousel (a merry-go-round),
See e.g. https://www.youtube.com/watch?v=aeY9tY9vKgs for tornadoes.

10.11.2 Drive + Coriolis forces = the inertial force

Consider f⃗(t, pt) = the sum of the external forces acting on PObj at t at pt = Φ̃(t, PObj ).
In a Galilean referential RA, Newton laws (10.64) means

[f⃗t(pt)]|A⃗ = m [γ⃗t(pt)]|A⃗, written f⃗At(x⃗At) = mγ⃗At(x⃗At) (∈Mn1), (10.65)

with x⃗At := [
−−−→
OApt]|A⃗, f⃗At(x⃗At) := [f⃗t(pt)]|A⃗ and γ⃗At(x⃗At) = [γ⃗t(pt)]|A⃗. With x⃗At = Θt(x⃗Bt), the accelera-

tion addition formula gives f⃗At(x⃗At) = m(dΘt.γ⃗B(x⃗Bt) + γ⃗Dt(x⃗At) + γ⃗Ct(x⃗At)) ∈ RA, thus, in RB ,

dΘt
−1.f⃗At(x⃗At)︸ ︷︷ ︸

f⃗At
∗(x⃗Bt)=f⃗Bt(x⃗Bt)

= mγ⃗B(x⃗Bt) +mdΘt
−1.γ⃗Dt(x⃗At)︸ ︷︷ ︸

mγ⃗Dt
∗(x⃗Bt)

+mdΘt
−1.γ⃗Ct(x⃗At)︸ ︷︷ ︸

mγ⃗Ct
∗(x⃗Bt)

, (10.66)

and dΘt
−1.[f⃗t(pt)]|A⃗ = dΘt

−1.f⃗At(x⃗At) =
(10.32) [f⃗t(pt)]|B⃗ =noted f⃗Bt(x⃗Bt) is the external forces as quanti-

�ed by B at t, cf. (10.32) (with Θt supposed to be a�ne). And with the pull-back notation, cf. (10.32):

De�nition 10.17 For B at t at pt, with x⃗Bt = [
−−−→
OBtpt]|B⃗ inMn1(B):

• The drive force f⃗BDt(x⃗Bt) := −mγ⃗Dt
∗(x⃗Bt) (= −mdΘt

−1.γ⃗Dt(x⃗At)).

• The Coriolis force f⃗BCt(x⃗Bt) := −mγ⃗Ct
∗(x⃗Bt) (= −mdΘt

−1.γ⃗Ct(x⃗At)).

• The inertial (or �ctitious) force := f⃗BDt(x⃗Bt) + f⃗BCt(x⃗Bt) = −m (γ⃗Dt
∗ + γ⃗Ct

∗)(x⃗Bt).

(10.67)

Then (10.66) gives the fundamental principle quanti�ed in RB (non Galilean referential):

f⃗Bt(x⃗Bt) + f⃗BDt(x⃗Bt) + f⃗BCt(x⃗Bt) = mγ⃗B(x⃗Bt) , (10.68)

i.e., at t, in RB : The (external + Drive + Coriolis) forces = m times the acceleration.

10.12 Summary for �Sun and Earth� (and Coriolis forces on the Earth)

Illustation with a simpli�ed (circular) motion of the (spherical) Earth around the Sun.

1. Referentials.

1.1. Relative referential RB = (OB , (B⃗1, B⃗2, B⃗3)) chosen by the observer B �xed on the Earth, where OBt =

Φ̃RB
(t, QOB

) is the position of the particle QOB
at the center of the Earth, written OB by B (�xed for B),

and (B⃗1t, B⃗2t, B⃗3t) is a Euclidean basis (e.g. built with the metre) �xed in the Earth, written (B⃗1, B⃗2, B⃗3)

by B (�xed for B), with B⃗3 chosen to be along the rotation axis of the Earth and oriented from the south
pole to the north pole; And (·, ·)B is the associated Euclidean dot product. So, a �xed particle QRB

in
the Earth at longitude θQRB

∈] − π, π] and latitude φQRB
∈ [−π2 ,

π
2 ] is referenced by observer B as the

matrix y⃗S = φ⃗S(QRB
) = [

−−−−−−−−−−→
OBΦ̃RB

(t, QRB
)]|B⃗ = RB

 cos(θQRB
) cos(φQRB

)
sin(θQRB

) cos(φQRB
)

sin(φQRB
)

 where RB = ||
−−−−−−−−−−→
OBΦ̃RB

(t, QRB
)||B

is the distance between QOB
and QRB

(e.g. if QRB
is on the surface of the Earth then RB ≃ 6371 km).
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1.2. Initial Galilean referential RA0 = (OA0, (A⃗1, A⃗2, A⃗3)): OA0 is at the center of the Sun and (A⃗1, A⃗2, A⃗3) is

a Euclidean basis (e.g. built with the foot) �xed relative to the stars, such that A⃗3 = µB⃗3 with µ > 0
(e.g. µ = 0.3048 and λ = 1

µ ≃ 3.28); And (·, ·)A is the associated Euclidean dot product.

1.3. Deduced absolute Galilean referential RA = (OAt, (A⃗1, A⃗2, A⃗3)) chosen by observer A, where OAt = OBt,
written OA by A (�xed for A). Since it takes more that 365 days for QOB

to complete a rotation around
the Sun, the motion of QOB

will be considered to be rectilinear at constant velocity �in a short interval of
time� su�cient for the computation of the Coriolis acceleration with �su�cient accuracy� (simpli�es the
calculations).

(If A prefers to work with the initial Galilean referential RA0, then the absolute matrix motion

φ⃗A(t, PObj ) = [
−−−−−−−−→
OAΦ̃(t, PObj )]|A⃗ has to be replaced by φ⃗A(t, PObj ) = [

−−−−−−→
OA0OB(t)]|A⃗ + [

−−−−−−−−−−→
OB(t)Φ̃(t, PObj )]|A⃗, idem

for the drive motion φ⃗D.)

2. Drive motion.

2.1. The motion t→ q = Φ̃RB
(t, QRB

) of a particle QRB
�xed on Earth is stored by A as the drive motion φ⃗D

given by (matrix valued), with ω the angular velocity of the Earth in RA,

y⃗D(t) = φ⃗D(t, QRB
) = RA(QRB

)

 cos(ωt) cosφQRB
sin(ωt) cosφQRB
sinφQRB

 = [
−−−−→
OAq(t)]|A⃗ =

 yD1(t)
yD2(t)
yD3

 , (10.69)

where RA(QRB
) = ||−−−−−→QOB

QRB
|||A⃗ is the distance between QOB

and QRB
for A (e.g. RA ≃ 20902231 foot if

QRB
is on the surface of the Earth). (And (ωt) by replaced by (α0+ω(t−t0)) to be more general.)

2.2. Drive velocity: With ω⃗D := ωA⃗3,

v⃗D(t, y⃗D(t)) = y⃗D
′(t) = ωRA

− sin(ωt) cosφQRB
cos(ωt) cosφQRB
0

 = ω

−y2(t)y1(t)
0

 = ω

 0 −1 0
1 0 0
0 0 0

 .y⃗D(t) = ω⃗D∧y⃗D(t).

(10.70)

2.3. Drive acceleration:

γ⃗D(t, y⃗Dt) = y⃗D
′′(t) = ω⃗D ∧ y⃗D′(t) = ω⃗D ∧ v⃗D(t, y⃗Dt) = ω⃗D ∧ (ω⃗D ∧ y⃗D(t)) = −ω2

 yD1(t)
yD2(t)

0

 (10.71)

= the usual centrifugal acceleration (in a plane parallel to the equatorial plane, drawing).

2.4. Di�erential of the drive velocity (time and space independent here): (10.70) gives

dv⃗D(t, y⃗Dt) = dv⃗D =

 0 −ω 0
ω 0 0
0 0 0

 = ω⃗D ∧ . (10.72)

3. Translator.

3.1. Here OAt = OBt, thus Θt(⃗0) = 0⃗ (with [⃗0] =noted 0⃗ = the null matrix), cf. (10.23).

3.2. Calculation of dΘt. With Θt a�ne, dΘt.[B⃗it]|B⃗ = [B⃗it]|A⃗. Thus B⃗3 = λA⃗3 (hypothesis) and dΘt.[B⃗3]|B⃗ =

[B⃗3t]|A⃗ give dΘt.E⃗3 = λE⃗3 where (E⃗i) is the canonical basis in Mn1. Then let QBi ∈ ObjRB be the

Earth particle which position qti = Φ̃RB
(t, QBi) makes B⃗it :=

−−−−→
OBtqti. So, B⃗1 and B⃗2 being in the

equatorial plane, (10.69) gives dΘt.E⃗1 = dΘt.[B⃗1]|B⃗ = [B⃗1]|A⃗ = [
−−−→
OAqt1]|A⃗ = λ

 cos(ωt)
sin(ωt)

0

, and dΘt.E⃗2 =

dΘt.[B⃗2]|B⃗ = [B⃗2]|A⃗ = [
−−−→
OAqt2]|A⃗ = λ

− sin(ωt)
cos(ωt)

0

. Thus [dΘt]|E⃗ = λ

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 = the

expected rotation matrix expanded by λ (change of unit of measurement).

3.3. Calculation of Θt (a�ne): Θt(y⃗S) = Θt(⃗0) + dΘt.y⃗S , so, with OAt = OBt here,

y⃗Dt := Θt(y⃗S) = dΘt.y⃗S (10.73)
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4. Motions of Obj .

4.1. B quanti�es the motion Φ̃ of Obj , i.e. he stores the relative motion φ⃗B of Obj , and the relative velocities
and accelerations v⃗Bt and γ⃗B (matrices), cf. (10.12)-(10.14).

4.2. Translations for A: With x⃗At = Θt(x⃗Bt),

v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).v⃗Bt(x⃗Bt) and γ⃗Bt∗(x⃗At) = dΘt(x⃗Bt).γ⃗Bt(x⃗Bt). (10.74)

5. Drive force (apparent force in RB due to the motion of B):

f⃗BDt(x⃗Bt) = −mdΘt
−1.γ⃗Dt(x⃗At)

(10.71)
= λmω2dΘt

−1.

xA1(t)
xA2(t)

0

 (10.73)
= λmω2

xB1(t)
xB2(t)

0

 , (10.75)

centrifugal force (in a �parallel plane� at latitude of PObj ).

6. Coriolis acceleration (apparent acceleration due to the motion of B):

γ⃗Ct(x⃗At) = 2 dv⃗Dt.(dΘt.v⃗Bt(x⃗Bt)) = 2 dΘt.dv⃗Dt.v⃗Bt(x⃗Bt) (10.76)

because dΘt commutes with dv⃗Dt (composition of �rotations along the same south-north axis� which reads
as eiωt.ei

π
2 = ei

π
2 eiωt = ei(

π
2 +ωt) in the equatorial plane).

7. Coriolis force (apparent force due to the motion of B):

f⃗BCt(x⃗Bt) = −mdΘt
−1.γ⃗Ct(x⃗At) = −2mdv⃗Dt.v⃗Bt(x⃗Bt) = −2mω⃗ ∧ v⃗Bt(x⃗Bt). (10.77)
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11 Objectivities

Goal: To give an objective expression of the laws of mechanics; As Maxwell [15] said: �The formula at
which we arrive must be such that a person of any nation, by substituting for the di�erent symbols the
numerical value of the quantities as measured by his own national units, would arrive at a true result�.

Generic notation: if a function z is given as z(t, x), then zt(x) := z(t, x), and conversely.

11.1 �Isometric objectivity� and �Frame Invariance Principle�

This manuscript is not intended to describe �isometric objectivity�:
�Isometric objectivity� is the framework in which the �principle of material frame-indi�erence� (�frame

invariance principle�) is settled, principle which states that �Rigid body motions should not a�ect the
stress constitutive law of a material�. E.g., Truesdell�Noll [22] p. 41:

� Constitutive equations must be invariant under changes of frame of reference. �

Or Germain [11] :

� Axiom of power of internal forces. The virtual power of the "internal forces" acting on a
system S for a given virtual motion is an objective quantity; i.e., it has the same value whatever be the

frame in which the motion is observed. �

NB: Both of these a�rmations are limited to �isometric changes of frame� (the same metric for all), as
Truesdell�Noll [22] page 42-43 explain: The �isometric objectivity� concern one observer who de�nes his
Euclidean dot product and consider only orthonormal change of bases to validate a constitutive law.

If you want to interpret �isometric objectivity� in the �covariant objectivity� framework, then �isometric
objectivity� corresponds to a dictatorial management: One observer with his Euclidean referential (e.g.
based on the English foot), imposes his unit of length to all other users (isometry hypothesis). (Note:
The metre was not adopted by the scienti�c community until after 1875.)

Moreover, isometric objectivity leads to despise the di�erence between covariance and contravariance,
due to the uncontrolled use of the Riesz representation theorem.

Remark 11.1 Marsden and Hughes [14] p. 8 use this isometric framework to begin with. But, pages 22
and 163, they write that a �good modelization� has to be �covariant objective� (observer independent) to
begin with; And they propose a covariant modelization for elasticity at � 3.3.

11.2 De�nition and characterization of the covariant objectivity

11.2.1 Framework of classical mechanics

Framework of classical mechanics to simplify. Consider two observers A and B and their referentials
RA = (OA, (A⃗i)) and RB = (OB , (B⃗i)). E.g., (A⃗i) and (B⃗i) are Euclidean bases in foot and metre, (·, ·)A
and (·, ·)B is their associated Euclidean dot products. And Θ is the translator, cf. (10.20).

Consider a regular motion Φ̃ of an object Obj , pt = Φ̃(t, PObj ) ∈ Rn the position at t of a particle in

our Universe, Ωt = Φ̃(t,Obj ) the con�guration at t, and C =
⋃
t∈[a,b]({t} × Ωt) the set of con�gurations.

And x⃗At := [
−−−→
OApt]|A⃗ ∈ Mn1(A) and x⃗Bt := [

−−−→
OBpt]|B⃗ ∈ Mn1(B) are the stored components of pt relative to

the chosen referentials,Mn1(A) andMn1(B) being the spaces of n ∗ 1 matrices as referred to by A and B.

11.2.2 Covariant objectivity of a scalar function

Let f :

{
C → R

(t, pt) → f(t, pt)

}
be a Eulerian scalar function (e.g., a temperature �eld). f is

quanti�ed by A and B as the functions fA :

{
R×Mn1(A) → R

(t, x⃗At) → fA(t, x⃗At) := f(t, pt)

}
and fB :{

R×Mn1(B) → R
(t, x⃗Bt) → fB(t, x⃗Bt) := f(t, pt)

}
.

De�nition 11.2 f is objective covariant i�, for all referentials RA and RB and for all t,

fAt(x⃗At) = fBt(x⃗Bt) when x⃗At = Θt(x⃗Bt), (11.1)

i.e. fAt = fBt∗ is the push-forward of fBt by Θt cf. (6.8).
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75 11.2. De�nition and characterization of the covariant objectivity

11.2.3 Covariant objectivity of a vector �eld

Let w⃗ :

{
C → R⃗n

(t, pt) → w⃗(t, pt)

}
be a Eulerian vector �eld (e.g., a force �eld). w⃗ is quan-

ti�ed by A and B as the functions w⃗A :

{
R×Mn1(A) →Mn1(A)

(t, x⃗At) → w⃗A(t, x⃗At) := [w⃗(t, pt)]A⃗

}
and w⃗B :{

R×Mn1(B) →Mn1(B)

(t, x⃗Bt) → w⃗B(t, x⃗Bt) := [w⃗(t, pt)]B⃗

}
. So w⃗A(t, x⃗At) and w⃗B(t, x⃗Bt) are the column matrices of the

components of w⃗(t, pt) in RA and RB .

De�nition 11.3 w⃗ is objective covariant i�, for all referentials RA and RB and for all t,

w⃗At(x⃗At) = dΘt(x⃗Bt).w⃗Bt(x⃗Bt) when x⃗At = Θt(x⃗Bt), (11.2)

i.e. w⃗At = w⃗Bt∗ is the push-forward of w⃗Bt by Θt cf. (6.20).

Example 11.4 Fundamental counter-example: A Eulerian velocity �eld is not objective, cf. (10.45),
because of the drive velocity v⃗D ̸= 0⃗ in general. Neither is a Eulerian acceleration �eld, cf. (10.51).

Example 11.5 The �eld of gravitational forces (external forces) is objective covariant.

11.2.4 Covariant objectivity of a di�erential form

Let α :

{
C → Rn∗

(t, pt) → α(t, pt)

}
be a Eulerian di�erential form (e.g. a measuring device used to get the inter-

nal power). α is quanti�ed by A and B as the functions αA :

{
R×Mn1(A) →Mn1(A)

(t, x⃗At) → αA(t, x⃗At) := [α(t, pt)]A⃗

}

and αB :

{
R×Mn1(B) →Mn1(B)

(t, x⃗Bt) → αB(t, x⃗Bt) := [α(t, pt)]B⃗

}
. So αA(t, x⃗At) and αB(t, x⃗Bt) are the row matrices

of the components of α(t, pt) in RA and RB .

De�nition 11.6 α is objective covariant i�, for all referentials RA and RB and for all t,

αAt(x⃗At) = αBt(x⃗Bt).dΘt(x⃗Bt)
−1 when x⃗At = Θt(x⃗Bt). (11.3)

i.e. αAt = αBt∗ is the push-forward of αBt by Θt cf. (7.3).

NB: (11.3) and (11.2) are compatible: If w⃗ is an objective vector �eld and if α is an objective di�erential
form, then the scalar function α.w⃗ is objective:

αAt(x⃗At).w⃗At(x⃗At) = αBt(x⃗Bt).w⃗Bt(x⃗Bt) (= (α(t, pt).w⃗(t, pt)), (11.4)

since αAt(x⃗At).w⃗At(x⃗At) = (αBt(x⃗Bt).dΘt(x⃗Bt)
−1).(dΘt(x⃗Bt).w⃗Bt(x⃗Bt)) = αBt(x⃗Bt).w⃗Bt(x⃗Bt).

11.2.5 Covariant objectivity of tensors

A tensor acts on both vector �elds and di�erential forms, and its objectivity is deduced from the previous �.
So, let T be a (Eulerian) tensor corresponding to a �physical quantity�. The observers A and B

describe T as being the functions TA and TB .

De�nition 11.7 T is objective covariant i�, for all referentials RA and RB and for all t,

TAt(x⃗At) = TBt∗(x⃗At) (11.5)

i.e. TAt is the push-forward of TBt by Θt.
(Recall: TBt∗(x⃗At)(α1(x⃗At), ..., w⃗1(x⃗At)) := TBt(x⃗Bt)(α1

∗(x⃗Bt), ..., w⃗1
∗(x⃗Bt)).)
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Example 11.8 (Non covariant objectivity of a di�erential dw⃗) Let w⃗ be an objective vector �eld,
seen as w⃗A by A and w⃗B by B; So w⃗At(x⃗At)=

(11.2) dΘt(x⃗Bt).w⃗Bt(x⃗Bt) when x⃗At = Θt(x⃗Bt), thus

dw⃗At(x⃗At).dΘt(x⃗Bt) = dΘt(x⃗Bt).dw⃗Bt(x⃗Bt) + (d2Θt(x⃗Bt).w⃗Bt(x⃗Bt)), (11.6)

hence

dw⃗At(x⃗At) = dΘt(x⃗Bt).dw⃗Bt(x⃗Bt).dΘt(x⃗Bt)
−1 + (d2Θt(x⃗Bt).w⃗Bt(x⃗Bt)).dΘt(x⃗Bt)

−1

̸= dΘt(x⃗Bt).dw⃗Bt(x⃗Bt).dΘt(x⃗Bt)
−1 when d2Θt ̸= 0.

(11.7)

Thus dw⃗ is not covariant objective in general. However in classical mechanics for �change of Cartesian
referentials� Θt is a�ne, so d2Θt = 0, and in particular dw⃗ is objective when w⃗ is. And

(d2w⃗At(x⃗At).dΘt(x⃗Bt)).dΘt(x⃗Bt) + dw⃗At(x⃗At).d
2Θt(x⃗Bt)

= dΘt(x⃗Bt).d
2w⃗Bt(x⃗Bt) + 2 d2Θt(x⃗Bt).dw⃗Bt(x⃗Bt) + d3Θt(x⃗Bt).w⃗Bt(x⃗Bt).

(11.8)

Thus d2w⃗ is not covariant objective in general (but if Θt is a�ne then d2w⃗ is objective if w⃗ is).

11.3 Non objectivity of the velocities

11.3.1 Eulerian velocity v⃗ : not covariant (and not isometric) objective

Velocity addition formala: With v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).w⃗(x⃗Bt) when x⃗At = Θt(x⃗Bt), cf. (10.45),

v⃗At(x⃗At) = v⃗Bt∗(x⃗At) + v⃗Dt(x⃗At)

̸= v⃗Bt∗(x⃗At) when v⃗Dt(x⃗At) ̸= 0⃗,
(11.9)

thus a Eulerian velocity �eld is not covariant objective (and not isometric objective).

11.3.2 dv⃗ is not objective

The velocity addition formula, (v⃗At − v⃗Dt)(x⃗At) = v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).v⃗Bt(x⃗Bt) when x⃗At = Θt(x⃗Bt),
gives

d(v⃗At − v⃗Dt)(x⃗At).dΘt(x⃗Bt) = dΘt(x⃗Bt).dv⃗Bt(x⃗Bt) + d2Θt(x⃗Bt).v⃗Bt(x⃗Bt), (11.10)

thus dv⃗ is neither covariant objective nor isometric objective because of dv⃗D:

dv⃗At(x⃗At) = dv⃗Bt∗(x⃗At) + dv⃗Dt(x⃗At) + d2Θt(x⃗Bt).v⃗Bt(x⃗Bt).dΘt(x⃗Bt)
−1 ̸= dv⃗Bt∗(x⃗At) in general. (11.11)

Remark 11.9 Recall: �Isometric objective� implies
• The use of the same Euclidean metric in RB and RA, i.e. (·, ·)A = (·, ·)B ,
• Φ̃RB

(motion of RB) is a solid body motion, and
• Θt is a�ne (so d2Θt = 0 for all t).

Exercice 11.10 Prove, with Qt the (orthonormal) transition matrix from (A⃗i) to (B⃗i):

[dv⃗t]|B⃗ = Qt.[dv⃗t]|A⃗.Q
−1
t +Q′(t).Q−1

t , written [L]|B⃗ = Q.[L]|A⃗.Q
T +

•

Q.QT . (11.12)

(Used in classical mechanics courses, to prove that dv⃗ isn't �isometric objective� because of
•

Q.QT .)

Answer. t0, t ∈ R, pt0 = Φ̃(t0, PObj ), pt = Φ̃(t, PObj ) = Φt0
t (pt0), v⃗(t, pt) = ∂Φ̃

∂t
(t, PObj ), and F t0

t (pt0) = dΦt0
t (pt0).

So v⃗(t,Φt0
t (pt0)) =

∂Φ
t0
pt0

∂t
(t, pt0), thus dv⃗(t, pt).F

t0
pt0

(t) =
∂F

t0
pt0

∂t
(t). And (4.26), with F t0

pt0
=noted F , gives

[F (t)]|⃗at0
,B⃗ = Q(t).[F (t)]|⃗at0

,A⃗, thus [F ′(t)]|⃗at0
,B⃗ = Q′(t).[F (t)]|⃗at0

,A⃗ + Q(t).[F ′(t)]|⃗at0
,A⃗. Thus [dv⃗(t, pt)]|B⃗ =

[F t0
pt0

′
(t).F t0

pt0
(t)]|B⃗ = [F t0

pt0

′
(t)]|B⃗ .[F

t0
pt0

(t)]|B⃗ = (Q′(t).[F (t)]|⃗at0
,A⃗ + Q(t).[F ′(t)]|⃗at0

,A⃗).[F (t)]−1

|⃗at0
,A⃗
.Q(t)−1 =

Q′(t).Q(t)−1 +Q(t).[F ′(t)]|⃗at0
,A⃗.[F (t)]−1

|⃗at0
,A⃗
.Q(t)−1 = Q′(t).Q(t)−1 +Q(t).[dv⃗(t, pt)]|A⃗.Q(t)−1. And cf. (3.33).

Exercice 11.11 Prove that d2v⃗ is �isometric objective� when Φ̃RB
is a rigid body motion.

Answer. (11.8) with v⃗A − v⃗D instead of w⃗A, and v⃗B instead of w⃗B give, in an �isometric objective� framework,

d2(v⃗At − v⃗Dt)(x⃗At).(u⃗Bt∗, w⃗Bt∗) = dΘt(x⃗Bt).d
2v⃗Bt(x⃗Bt)(u⃗B , w⃗B). (11.13)

Here d2v⃗Dt = 0 (rigid body motion), thus d2v⃗ is �isometric objective�.
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11.3.3 dv⃗ + dv⃗T is �isometric objective�

Proposition 11.12 If Φ̃RB
is a rigid body motion then dv⃗t + dv⃗Tt is �isometric objective�

dv⃗At + dv⃗TAt = (dv⃗Bt + dv⃗TBt)∗. (11.14)

(Isometric framework: The rate of deformation tensor is independent of an added added rigid motion.)

Proof. Q.QT = I gives
•

Q.QT + (
•

Q.QT )T = 0, then apply (11.12).

Exercice 11.13 Prove that Ω = dv⃗−dv⃗T
2 is not isometric objective.

Answer. (11.11) gives dv⃗TAt = dv⃗TBt∗ + dv⃗TDt, thus
dv⃗At−dv⃗T

At
2

=
dv⃗Bt∗−dv⃗T

Bt∗
2

+
dv⃗Dt−dv⃗T

Dt
2

̸= dv⃗Bt∗−dv⃗T
Bt∗

2
, even if

Φ̃RB is a solid body motion (then
dv⃗Dt−dv⃗T

Dt
2

= ω⃗∧ is a rotation time a dilation).

11.3.4 Lagrangian velocities

The Lagrangian velocities do not de�ne a vector �eld, cf. � 3.2.2. Thus asking about the objectivity of
Lagrangian velocities is meaningless.

11.4 The Lie derivatives are covariant objective

Framework of � 10. In particular we have the velocity-addition formula v⃗At = v⃗Bt∗ + v⃗Dt in RA where
v⃗Bt∗(x⃗At) = dΘt(x⃗Bt).v⃗Bt(x⃗Bt) and x⃗Bt = Θt(x⃗At), cf. (10.45).

The objectivity under concern is the covariant objectivity (no inner dot product or basis required).
The Lie derivatives are also called �objective rates� because they are covariant objectives. Easy proofs.

11.4.1 Scalar functions

Proposition 11.14 If f be a covariant objective function, cf. (11.1), then its Lie derivative Lv⃗f is
covariant objective:

Lv⃗AfA = Θ∗(Lv⃗BfB), i.e. Lv⃗AfA(t, x⃗At) = Lv⃗BfB(t, x⃗Bt) when x⃗At = Θt(x⃗Bt), (11.15)

i.e., DfADt (t, x⃗At) =
DfB
Dt (t, x⃗Bt), i.e. (

∂fA
∂t + dfA.v⃗A)(t, x⃗At) = (∂fB∂t + dfB .v⃗B)(t, x⃗Bt).

Proof. Consider the motion t → p(t) = Φ̃(tPObj ) of a particle PObj , and x⃗A(t) = [
−−−−→
OAp(t)]|A⃗ and x⃗B(t) =

[
−−−−→
OBp(t)]|B⃗ . With f objective, (11.1) gives fB(t, x⃗B(t)) = fA(t,Θ(t, x⃗B(t))) (= fA(t, x⃗A(t))), thus

DfB
Dt

(t, x⃗B(t)) =
∂fA
∂t

(t, x⃗A(t)) + dfAt(x⃗A(t)).(
∂Θ

∂t
(t, x⃗B(t))︸ ︷︷ ︸
v⃗Dt(x⃗At)

+ dΘt(x⃗B(t)).v⃗Bt(x⃗B(t)))︸ ︷︷ ︸
v⃗Bt∗(x⃗At)

=
∂fA
∂t

(t, x⃗At) + dfAt(x⃗At).v⃗At(x⃗At) =
DfA
Dt

(t, x⃗At),

(11.16)

thanks to velocity addiction formula v⃗At = v⃗Bt∗ + v⃗Dt.

11.4.2 Vector �elds

Proposition 11.15 Let w⃗ be a covariant objective vector �eld, cf. (11.2). Then its Lie derivative Lv⃗w⃗
is covariant objective:

Lv⃗Aw⃗A = Θ∗(Lv⃗B w⃗B), (11.17)

i.e., when x⃗At = Θt(x⃗Bt),
Lv⃗Aw⃗A(t, x⃗At) = dΘt(x⃗Bt).Lv⃗B w⃗B(t, x⃗Bt), (11.18)

i.e.,

(
Dw⃗A
Dt

− dv⃗A.w⃗A)(t, x⃗At) = dΘ(t, x⃗Bt).(
Dw⃗B
Dt

− dv⃗B .w⃗B)(t, x⃗Bt), (11.19)

i.e.,

(
∂w⃗A
∂t

+ dw⃗A.v⃗A − dv⃗A.w⃗A)(t, x⃗At) = dΘ(t, x⃗Bt).(
∂w⃗B
∂t

+ dw⃗B .v⃗B − dv⃗B .w⃗B)(t, x⃗Bt). (11.20)

But the partial, convected, material, and Lie autonomous derivatives are not covariant objective (not
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even isometric objective because of the drive velocity v⃗D): We have

(dw⃗At.(v⃗At−v⃗Dt))(x⃗At) = (dΘt.(dw⃗Bt.v⃗Bt) + (d2Θt.w⃗Bt).v⃗Bt)(x⃗Bt), (11.21)

(d(v⃗At−v⃗Dt).w⃗At)(x⃗At) = (dΘt.(dv⃗Bt.w⃗Bt) + (d2Θt.v⃗Bt).w⃗Bt)(x⃗Bt), (11.22)

(d(v⃗At−v⃗Dt).(v⃗At−v⃗Dt))(x⃗At) = (dΘt.(dv⃗Bt.v⃗Bt) + d2Θt(v⃗Bt, v⃗Bt))(x⃗Bt), (11.23)

L0
(v⃗At−v⃗Dt)

w⃗At(x⃗At) = dΘt(x⃗Bt).L0
v⃗Bt
w⃗Bt(x⃗Bt), (11.24)

∂w⃗A
∂t

(t, x⃗At) + L0
v⃗D
w⃗At(x⃗At) = dΘt(x⃗Bt).

∂w⃗B
∂t

(t, x⃗Bt), (11.25)

Dw⃗A
Dt

(t, x⃗At)− dv⃗Dt.w⃗At(x⃗At) = dΘt.(x⃗Bt).
Dw⃗B
Dt

(t, x⃗Bt) + d2Θt(v⃗Bt, w⃗Bt)(x⃗Bt), (11.26)

∂(v⃗A−v⃗D)
∂t

(t, x⃗At) + L0
v⃗D

(v⃗A−v⃗D)(t, x⃗At) = dΘt(x⃗Bt).
∂v⃗B
∂t

(t, x⃗Bt). (11.27)

Proof. • w⃗At(Θt(x⃗Bt)) = dΘt(x⃗Bt).w⃗Bt(x⃗Bt) gives

dw⃗At(x⃗At).dΘt(x⃗Bt) = d2Θt(x⃗Bt).w⃗Bt(x⃗Bt) + dΘt(x⃗Bt).dw⃗B(x⃗Bt), (11.28)

thus, with dΘt(x⃗Bt).v⃗Bt(x⃗Bt) = (v⃗At−v⃗Dt)(x⃗At) = v⃗Bt∗(x⃗At) (velocity-addition formula),

dw⃗At(x⃗At).(v⃗At−v⃗Dt)(x⃗At) = (d2Θt(x⃗Bt).v⃗Bt(x⃗Bt)).w⃗Bt(x⃗Bt) + dΘt(x⃗Bt).dw⃗Bt(x⃗Bt).v⃗Bt(x⃗Bt),

hence (11.21). In particular dw⃗At(x⃗At).v⃗At(x⃗At) ̸= dΘt(x⃗Bt).(dw⃗Bt(x⃗Bt).v⃗Bt(x⃗Bt)) (the vector �eld dw⃗.v⃗ is
not objective).

• (v⃗At−v⃗Dt)(Θt(x⃗Bt)) = dΘt(x⃗Bt).v⃗Bt(x⃗Bt) gives

d(v⃗At−v⃗Dt)(x⃗At).dΘt(x⃗Bt) = d2Θt(x⃗Bt).v⃗Bt(x⃗Bt) + dΘt(x⃗Bt).dv⃗Bt(x⃗Bt),

so, applied to w⃗Bt (resp. v⃗Bt), we get (11.22) (resp. (11.23)). Hence (11.24).

• If x⃗At = Θt(x⃗B), then w⃗A(t,Θ(t, x⃗B)) = dΘ(t, x⃗B).w⃗B(t, x⃗B), so, with
∂Θ
∂t (t, x⃗B) = v⃗Θt(x⃗At), we get

∂w⃗A
∂t

(t, x⃗At) + dw⃗At(x⃗At).v⃗Θt(x⃗At) = d
∂Θ

∂t
(t, x⃗B).w⃗Bt(x⃗B) + dΘt(x⃗B).

∂w⃗B
∂t

(t, x⃗B)

= (dv⃗Θt(x⃗At).dΘt(x⃗B)).w⃗Bt(x⃗B) + dΘt(x⃗B).
∂w⃗B
∂t

(t, x⃗B),

Thus (11.25) since v⃗Θ = v⃗D; Then (11.21) gives (11.26).

• v⃗B∗(t,Θ(t, x⃗B)) = dΘ(t, x⃗B).v⃗B(t, x⃗B) gives

∂v⃗B∗

∂t
(t, x⃗At) + dv⃗B∗(x⃗At).v⃗Θ(t, x⃗At) =

∂dΘ

∂t
(t, x⃗B)︸ ︷︷ ︸

dv⃗Θt(x⃗At).dΘt(x⃗B)

.v⃗Bt(x⃗B) + dΘ(t, x⃗B).
∂v⃗B
∂t

(t, x⃗B , )

since ∂dΘ
∂t (t, x⃗B) = d(∂Θ∂t )(t, x⃗B) and

∂Θ
∂t (t, x⃗B) = v⃗Θ(t, x⃗At) = v⃗Θt(Θt(x⃗B)); hence (11.27).

11.4.3 Tensors

Proposition 11.16 It T is a covariant objective tensor, then its Lie derivatives are covariant objectives:

Lv⃗ATA = Θ∗(Lv⃗BTB). (11.29)

Proof. Corollary of (11.15) and (11.18) to get Lv⃗(α.w⃗) = (Lv⃗α).w⃗ + α.(Lv⃗w⃗); Then use Lv⃗(t1 ⊗ t2) =
(Lv⃗t1)⊗ t2 + t1 ⊗ (Lv⃗t2).
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79 11.5. Taylor expansions and ubiquity gift

11.5 Taylor expansions and ubiquity gift

11.5.1 First order Taylor expansion and ubiquity issue

Let w⃗ : R×Rn → R⃗n be regular and p(t) = Φt0(t, pt0). With f⃗(t) = w⃗(t, p(t)), f⃗(t) = f⃗(t0)+(t−t0) f⃗ ′(t0)+
o(t−t0) (�rst order Taylor expansion), we get

w⃗(t, p(t)) = w⃗(t0, pt0) + h
Dw⃗

Dt
(t0, pt0) + o(t−t0). (11.30)

Issue: The left hand side w⃗(t, p(t)) lives in Tpt(Ωt) while the right hand side (calculation) w⃗(t0, pt0) +
h Dw⃗
Dt (t0, pt0) lives in Tpt0(Ωt0). Thus (11.30) is meaningless: To be meaningful, the w⃗(t, p(t)) term should

�rst be pull-backed by Φt0t (pt0) to be compared with w⃗(t0, pt0) (or the w⃗(t0, pt0) term should �rst be push-
forwarded by Φt0t (pt0) to be compared with w⃗(t, pt)). E.g., in a non-planar manifold (e.g. in a surface
in R3), w⃗(t, pt) and w⃗(t0, pt0) don't belong to the same vector space (the �tangent spaces� Tpt(Ωt) and
Tpt0(Ωt0) are di�erent in general).

Ok with Lie: The Lie derivative uses the pull-back:

Lv⃗w⃗(t0, pt0)
(9.13)
=

dΦt0t (pt0)
−1.w⃗(t, p(t))− w⃗(t0, pt0)

t− t0
+ o(1) (11.31)

is an equation in Tpt0(Ωt0). We have obtained the �rst order Taylor expansion in Tpt0(Ωt0): With h = t−t0:

(Φt0∗t w⃗(t0, pt0) =) dΦt0t (pt0)
−1.w⃗(t, p(t)) = w⃗(t0, pt0) + hLv⃗w⃗(t0, pt0) + o(h). (11.32)

Or with push-forwards, we have obtained the �rst order Taylor expansion in Tpt(Ωt):

w⃗(t, p(t)) = dΦt0t (pt0).(w⃗(t0, pt0) + hLv⃗w⃗(t0, pt0) + o(h))

= dΦt0t (pt0).w⃗(t0, pt0) + h dΦt0t (pt0).Lv⃗w⃗(t0, pt0) + o(h)

= (Φt0t ∗w⃗)(t, p(t)) + hΦt0t ∗(Lv⃗w⃗)(t, p(t)) + o(h).

(11.33)

Proposition 11.17 In Rn, with the gift of ubiquity, (11.33) gives (11.30) (of course).
Interpretation: Because ubiquity gifts don't exist, (11.30) is meaningless while (11.33) is meaningful;

Which tells that �The Lie derivative is the meaningful derivative in physical sciences�.

Proof. With dΦt0(t0+h, pt0)
(4.37)
= I + h dv⃗(t0, pt0) + o(h) and Lv⃗w⃗

(9.18)
=

Dw⃗

Dt
− dv⃗.w⃗, (11.33) gives

w⃗(t, p(t)) = dΦt0t (pt0)︸ ︷︷ ︸
(I + h dv⃗(t0, pt0) + o(h))

. (w⃗(t0, pt0) + hLv⃗w⃗(t0, pt0))︸ ︷︷ ︸
(w⃗ + h (Dw⃗Dt − dv⃗.w⃗))(t0, pt0) + o(h)

+ o(h)

= (w⃗ + h (
Dw⃗

Dt
− dv⃗.w⃗) + h dv⃗.w⃗)(t, p(t)) + o(h),

which is (11.30).

11.5.2 Second order Taylor expansion

In Rn, with w⃗ ∈ C2 let f⃗ :

{
]t0−ε, t0+ε[ → R⃗n

t → f⃗(t) := w⃗(t, p(t))

}
. Thus f⃗ is C2, and f⃗(t) = f⃗(t0) +

h f⃗ ′(t0) +
h2

2 f⃗
′′(t0) + o(h2) where h = t−t0 (second order Taylor expansion). Thus, near (t0, pt0),

w⃗(t, p(t)) = (w⃗ + h
Dw⃗

Dt
+
h2

2

D2w⃗

Dt2
)(t0, p(t0)) + o(h2). (11.34)

Once again there is a ubiquity issue. Without ubiquity gifts, we have �the second order Taylor expansion:

Φt0∗t w⃗(t, p(t)) =
(
w⃗ + hLv⃗w⃗ +

h2

2
Lv⃗(Lv⃗w⃗)

)
(t0, pt0) + o(h2), (11.35)

i.e. dΦt0t (pt0)
−1.w⃗(t, p(t)) =

(
w⃗ + hLv⃗w⃗ + h2

2 Lv⃗(Lv⃗w⃗)
)
(t0, pt0) + o(h2) (pull-back),

i.e. w⃗(t, p(t)) = Φt0t ∗(w⃗ + hLv⃗w⃗ + h2

2 Lv⃗(Lv⃗w⃗))(t, p(t)) + o(h2) (push-forward). Indeed:
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80 12.1. Newton fundamental laws

Proposition 11.18 In Rn, with the gift of ubiquity, (11.35) gives (11.34).

Proof. (4.36) gives F t0pt0 (t) = It0 + h dv⃗(t0, pt0) +
h2

2 dγ⃗(t0, pt0) + o(h2). Thus, omitting the reference to

(t0, pt0) to lighten the writing, (11.35) gives

dΦt0t (pt0).(w⃗ + hLv⃗w⃗ +
h2

2
Lv⃗Lv⃗w⃗ + o(h2))

=
(
I + h dv⃗ +

h2

2
d(
Dv⃗

Dt
) + o(h2)

)
.
(
w⃗ + hLv⃗w⃗ +

h2

2
Lv⃗Lv⃗w⃗ + o(h2)

) (11.36)

The h0 term is I.w⃗ = w⃗. The h term is Lv⃗w⃗ + dv⃗.w⃗ = Dw⃗
Dt . The h

2 term is the sum of

• 1

2
Lv⃗Lv⃗w⃗ =

1

2
(
D2w⃗

Dt2
− 2 dv⃗.

Dw⃗

Dt
− D(dv⃗)

Dt
.w⃗ + dv⃗.dv⃗.w⃗), cf.(9.42),

• dv⃗.Lv⃗w⃗ = dv⃗.
Dw⃗

Dt
− dv⃗.dv⃗.w⃗ =

1

2
(2dv⃗.

Dw⃗

Dt
− 2dv⃗.dv⃗.w⃗),

• 1

2
d(
Dv⃗

Dt
).w⃗ =

1

2
(
D(dv⃗)

Dt
.w⃗ + dv⃗.dv⃗.w⃗), cf.(2.26),

which indeed gives D2w⃗
Dt2 .

11.5.3 Higher order Taylor expansion

Exercice 11.19 Let w⃗ ∈ Cn and L(n)
v⃗ = Lv⃗ ◦ ...◦Lv⃗ (n-times). For all n ∈ N∗, prove (Taylor expansion)

w⃗(t, p(t)) = dΦt0t (pt0).(w⃗ + (t−t0)Lv⃗w⃗ + ...+
(t−t0)n

n!
L(n)
v⃗ w⃗)(t0, pt0) + o((t−t0)n), (11.37)

i.e. F t0t (pt0)
−1.w⃗(t, p(t)) =

(∑n
k=0

(t−t0)k
k! (Lv⃗)(k)w⃗

)
(t0, pt0) + o((t−t0)n) in Tpt0(Ωt0).

Answer. (Proof similar to one of the classical proof of Taylor's theorem.) t0 and pt0 are �xed, p(t) = Φt0(t, pt0),
and Ht0(t, p(t)) := Ht0

t (p(t)) := F t0
t (pt0)

−1. With

f⃗w⃗,n(t) = (Ht0 .w⃗)(t, p(t))− (w⃗ + (t−t0)Lv⃗w⃗ + ...+
(t−t0)

n

n!
L(n)

v⃗ w⃗)(t0, pt0), (11.38)

we have to prove: fw⃗,n(t) = o((t−t0)
n) (which means ∀ε > 0, ∃h > 0, ∀t ∈ [t0−h, t0+h], ||f⃗w⃗,n(t)||g ≤ ε).

Recurrence hypothesis: With n ∈ N∗, for all w⃗ ∈ Cn , ||f⃗w⃗,n(t)||g = o((t−t0)
n).

This is true for n=1, cf. (11.32). Suppose it is true for n.

Let w⃗ ∈ Cn+1. With DHt0

Dt
= −Ht0 .dv⃗, cf. (4.47), we get

f⃗w⃗,n+1
′(t) = (−Ht0 .dv⃗.w⃗ +Ht0 .

Dw⃗

Dt
)(t, p(t))− (0 + Lv⃗w⃗ + ...+

(t−t0)
n

n!
L(n+1)

v⃗ w⃗)
)
(t0, pt0)

= (Ht0 .Lv⃗w⃗)(t, p(t))− (Lv⃗w⃗ + ...+
(t−t0)

n

n!
Ln

v⃗ .Lv⃗w⃗)
)
(t0, pt0) = f⃗Lv⃗w⃗,n(t).

(11.39)

And the mean value theorem tells
||f⃗w⃗,n+1(t)−f⃗w⃗,n+1(t0)||g

|t−t0|
≤ supτ∈[t0−h,t0+h] ||f⃗w⃗,n+1

′(τ)||g; And f⃗w⃗,n+1(t0)=
(11.35)

0⃗, thus
||f⃗w⃗,n+1(t)||g

|t−t0|
≤ supτ∈[t0−h,t0+h] ||f⃗Lv⃗w⃗,n(τ)||g. And, Lv⃗w⃗ ∈ Cn, hence the recurrence hypothesis tells:

||f⃗Lv⃗w⃗,n(t)||g = o((t−t0)
n). Thus

||f⃗w⃗,n+1(t)||g
|t−t0|

= o((t−t0)
n, thus ||f⃗w⃗,n+1(t)||g = o((t−t0)

n+1.

12 The virtual power principle

(See e.g. Germain [10]).

12.1 Newton fundamental laws

Consider N ≥ 1 distinct particles PObji, i = 1, ..., N . The set {PObj1, ..., PObjN} is called a body. The
particle PObji is at t at pi ∈ Rn and its mass is mi, and pj ̸= pj for all i ̸= j. At t, each particle PObji

is subject to an acceleration γ⃗t(pi) =
noted γ⃗i, an internal forces f⃗t,pj (pi) =

noted f⃗ji due to the other PObjj

and f⃗ii = 0⃗ for all i, and an external force f⃗t(pi) =
noted f⃗i (external to the body).
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81 12.2. D'Alembert formulation

Newton postulates: There exists a Galilean referential Ra (called absolute) s.t. at any t:

• 1st law (Galileo law of inertia): �a body not acted upon remains at constant speed�. (12.1)

• 2nd law: ∀i = 1, ..., N : miγ⃗i = f⃗i +

N∑
j=1

f⃗ji (= f⃗i +
∑
j ̸=i

f⃗ji). (12.2)

• 3rd law (law of action and reaction): ∀i, j = 1, ..., N : f⃗ji = −f⃗ij and −−→pipj ∥ f⃗ij . (12.3)

If N = 1 (one particle), then (12.2) reads mγ⃗ = f⃗ and (12.3) is trivial.
And the 2nd and 3rd laws apply to any subset of {p1, ..., pN} (on any sub-body).

12.2 D'Alembert formulation

12.2.1 The formulation, discrete framework

With the above discrete vectors �elds γ⃗t, f⃗t, f⃗t,pj : {p1, ..., pN} → R⃗3, consider a discrete vector �eld

u⃗t : p ∈ {p1, ..., pN} → u⃗t(p) ∈ R⃗3 (virtual velocity �eld at t), and let u⃗t(pi) =
noted u⃗i. Choose a

Euclidean dot product (·, ·)g =noted . • . in R⃗3. The scalars

Pa(u⃗) =
N∑
i=1

miγ⃗i • u⃗i, Pe(u⃗) =
N∑
i=1

f⃗i • u⃗i, Pint(u⃗) =
N∑
i=1

(

N∑
j=1

f⃗ji) • u⃗i, (12.4)

are the acceleration virtual power, the external virtual power, the internal virtual power. Since f⃗ii = 0⃗
for all i, we also have Pint(u⃗) =

∑
i(
∑
j ̸=i f⃗ji) • u⃗i.

If there is just one particle then Pa(u⃗) = mγ⃗ • u⃗, Pe(u⃗) = f⃗ • u⃗, and Pint(u⃗) = 0.

D'Alembert virtual power formulation3 (variational formulation of 2nd and 3rd Newton's laws).
There exists a Galilean referential Ra s.t., together with Galileo's law of inertia, at any t,

∀u⃗ ∈ F({p1, ..., pN}; R⃗3), Pa(u⃗) = Pe(u⃗) + Pint(u⃗). (12.5)

Interpretation: To measure a force on a PObj you need to move it (Germain: �to know the weight of a
suitcase you have to move it: Looking at it is not enough�), i.e. you need D'Alembert's formulation.

Proposition 12.1 1- (12.2) is equivalent to (12.5).

2- (12.3) is equivalent to: Pint(u⃗) = 0 for all discrete rigid body velocity �eld u⃗ ∈ F({p1, ..., pN}; R⃗3).

Proof. 1- (12.2) ⇔
(
miγ⃗i− f⃗i−

∑
j ̸=i f⃗ji = 0⃗ for all i

)
⇔

(
(miγ⃗i− f⃗i−

∑
j ̸=i f⃗ji) • u⃗i = 0 for all u⃗i

)
⇔(∑

i(miγ⃗i− f⃗i−
∑
j ̸=i f⃗ji) • u⃗i = 0 for all (u⃗i)i=1,...,N

)
⇔

(
Pa(u⃗)−Pe(u⃗)−Pint(u⃗) = 0 for all u⃗ ∈ (R⃗3)N

)
.

2- Consider the two particles at p1 and p2 (others are outside the body {p1, p2}). A rigid body
motion of {p1, p2} is characterized by u⃗2 = u⃗1 + ω⃗ × −−→p1p2 (after the choice of a Euclidean basis needed

to de�ne the vector product ×). With f⃗ii = 0⃗, the internal virtual power is Pint(u⃗) = f⃗21 • u⃗1 + f⃗12 • u⃗2 =

(f⃗21 + f⃗12) • u⃗1 + f⃗12 • (ω⃗ ×−−→p1p2) = (f⃗21 + f⃗12) • u⃗1 + ω⃗ • (−−→p1p2 × f⃗12).
21- Suppose (12.3), i.e. f⃗21+f⃗12 = 0⃗ and−−→p1p2×f⃗12: A rigid body motion of {p1, p2} gives Pint(u⃗) = 0+0.

22- Suppose Pint(u⃗) = 0 for all rigid body motion of {p1, p2}: So (f⃗21 + f⃗12) • u⃗1 + f⃗12 • (ω⃗×−−→p1p2) = 0

for all u⃗1, ω⃗. In particular ω⃗ = 0⃗ (translation) gives (f⃗21 + f⃗12) • u⃗1 = 0 for all u⃗1, thus f⃗21 + f⃗12 = 0⃗. We

are left with f⃗12 • (ω⃗ ×−−→p1p2) = 0⃗ = ω⃗ • (−−→p1p2 × f⃗12) for all ω⃗, thus −−→p1p2 × f⃗12 = 0⃗.
23- Idem for any two particles at pi and pj (instead of p1 and p2), for all i, j. And a rigid body motion

of {p1, ..., pn} implies a rigid body motion of any {pi, pj}.

3Or D'Alembert, Lagrange, Euler, ... virtual power formulation
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82 12.2. D'Alembert formulation

12.2.2 L2(Ω) framework

At t, let Ω be a regular domain in R3 (a simply connected bounded open set in Rn with a C∞ border).
Consider the space of �nite energy scalar valued functions with its usual inner dot product and norm:

L2(Ω) = {u : Ω→ R s.t.

∫
p∈Ω

u(p)2 dΩ <∞},

(u,w)L2 :=

∫
p∈Ω

u(p)w(p) dΩ and ||u||2L2 = (u, u)L2 =

∫
p∈Ω

u(p)2 dΩ.

(12.6)

Let T 1
0 (Ω) be the space of regular vector �elds u⃗ : p ∈ Ω → u⃗(p) ∈ R⃗3 (simpli�ed notations). Choose

a Euclidean dot product . • . in R⃗3 with its associated norm ||.||, and consider the space of �nite energy
vector �elds with its usual inner dot product and norm:

L2(Ω)
3
= {u⃗ ∈ T 1

0 (Ω) s.t.

∫
p∈Ω

||u⃗(p)||2 dΩ <∞},

(u⃗, w⃗)L2 :=

∫
p∈Ω

u⃗(p) • w⃗(p) dΩ
noted
=

∫
Ω

u⃗ • w⃗ dΩ and ||u⃗||2L2 = (u⃗, u⃗)L2 .

(12.7)

12.2.3 D'Alembert formulation, continuous framework

In (12.4), replace the sum sign
∑

by the sum sign
∫
, i.e., with ρ the mass density, de�ne the acceleration,

external and internal virtual powers by, for all u⃗ ∈ T 1
0 (Ω),

Pa(u⃗) :=
∫
Ω

ργ⃗ • u⃗ dΩ, Pe(u⃗) :=
∫
Ω

f⃗ • u⃗ dΩ, Pint(u⃗) :=
∫
Ω

pint(u⃗) dΩ, (12.8)

where pint : u⃗ ∈ T 1
0 (Ω)→ pint(u⃗) ∈ F(Ω;R) (so pint(u⃗) : p ∈ Ω→ pint(u⃗)(p) ∈ R).

D'Alembert virtual power formulation. There exists a Galilean referential Ra in which, at any t,

∀u⃗ ∈ T 1
0 (Ω), Pa(u⃗) = Pe(u⃗) + Pint(u⃗). (12.9)

12.2.4 Remark: Rigid body motion and Germain's notations

With a Euclidean basis (e⃗i), the associated Euclidean dot product . • . and the associated vector product×,
let

SC = the screws := {u⃗ ∈ T 1
0 (Ω) : ∃ω⃗ ∈ R⃗3, ∀p, q ∈ Ω, u⃗(q) = u⃗(p) + ω⃗ ×−→pq}

= {u⃗ ∈ T 1
0 (Ω) : ∃ω⃗ ∈ R⃗3, ∀q ∈ Ω, u⃗(q) = u⃗(O) + ω⃗ ×−→Oq},

(12.10)

where O ∈ R3 (an origin): u⃗ ∈ SC is a�ne and u⃗ ∈ T 1
0 (Ω) has implicitly been extended to u⃗ ∈ T 1

0 (R3)
(in�nite rigid body) so that u⃗(O) is meaningful. (The equality in (12.10) because u⃗ is a�ne.)

dim(SC) = 6 because u⃗(O) and ω⃗ characterize a screw u⃗.
Vocabulary: A screw which is the velocity �eld of a rigid body motion is called a twist or a kinematic

screw or a distributor; And a screw which gives the moment of forces is called a wrench.
Germain's notations:
• A twist in noted ̂⃗u (the hat for virtual), and, with ̂⃗u(q) = ̂⃗u(p) + ̂⃗ω ×−→pq, the twist ̂⃗u is represented

by {Ĉ} =
(
[̂⃗u(p)][e⃗
[̂⃗ω][e⃗

)
=noted

( ̂⃗u(p)̂⃗ω
)
(a 6 ∗ 1 matrix made of the reduction elements of ̂⃗u at p).

• A wrench is noted m⃗, and, with m⃗(q) = m⃗(p) + F⃗ ×−→pq, the wrench m⃗ is represented by the matrix

[F ] =
(

[F⃗ ][e⃗
[m⃗(p)][e⃗

)
=noted

(
F⃗

m⃗(p)

)
in that order.

Let SC ′ be the dual of SC, i.e. the set of linear forms ℓ : SC → R (continuous since dim(SC) < ∞).
If SC = the twists then SC ′ = the wrenches, and if SC = the wrenches then SC ′ = the twists (thanks to
the natural canonical isomorphism SC ′′ ∼ SC).

Proposition 12.2 Suppose Ω bounded, let p ∈ Ω. If ℓ ∈ SC ′ then ∃(F⃗ , m⃗(p)) ∈ (R⃗3)2 s.t. ∀̂⃗u ∈ SC,
with u⃗(q) = ̂⃗u(p) + ̂⃗ω ×−→pq we have

ℓ.u⃗ = F⃗ • ̂⃗u(p) + m⃗(p) • ̂⃗ω noted
= [F ] • {Ĉ} (12.11)

(Germain's notation where the . • . notation in [F ] • {Ĉ} is the canonical inner dot product in M61 the

space or 6 ∗ 1 matrices). So if ̂⃗u ∈ SC is a twist then ℓ can be represented by a wrench.
(In particular, in a Galilean Euclidean setting, Pint restricted to SC is the null function Pint = 0.)
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Proof. Ω bounded implies SC ⊂ L2(Ω): Indeed, if u⃗ ∈ SC then
∫
Ω
||u⃗(p)||2 dΩ =

∫
Ω
||u⃗(0) + ω⃗ ×

−→
Op||2 dΩ ≤ 2

∫
Ω
||u⃗(0)||2 + ||ω⃗|| ||−→Op||2 dΩ ≤ 2(||u⃗(0)||2 + C||ω⃗||)|Ω|, with |Ω| =

∫
Ω
dΩ the volume of Ω

and C = supp∈Ω ||
−→
Op||2 �nite since Ω is bounded, thus ||u⃗||L2 <∞, thus u⃗ ∈ L2(Ω)

3
.

Hence SC is a sub-vector space of L2(Ω): Indeed, u⃗, v⃗ ∈ SC with u⃗(q) = u⃗(p) + ω⃗u⃗ × −→pq and v⃗(q) =
v⃗(p)+ ω⃗v⃗ ×−→pq, give (u⃗+λv⃗)(q) = u⃗(q)+λv⃗(q) = u⃗(p)+ ω⃗u⃗×−→pq+λv⃗(p)+ ω⃗v⃗ ×−→pq = (u⃗+λv⃗)(p)+ (ω⃗u⃗+

λω⃗v⃗)×−→pq = (u⃗+ λv⃗)(p) + ω⃗u⃗+λv⃗ ×−→pq where ω⃗u⃗+λv⃗ := ω⃗u⃗ + λω⃗v⃗ ∈ R⃗3.
And SC is �nite dimensional (dimSC = 6), thus SC is a closed sub-vector space in L2(Ω), thus

(SC, (·, ·)L2) is a Hilbert space, and a linear ℓ : SC → R is continuous. Hence we can apply the (·, ·)L2-
Riesz representation theorem: If ℓ ∈ SC ′, then

∃ℓ⃗ ∈ SC, ∀u⃗ ∈ SC, ℓ(u⃗) = (ℓ⃗, u⃗)L2 =

∫
q∈Ω

ℓ⃗(q) • u⃗(q) dΩ (12.12)

with the Euclidean dot product . • . relative to a chosen Euclidean basis (e⃗i) in R⃗3. And u⃗(q) = u⃗(p)+ω⃗×−→pq
thus ℓ(u⃗) =

∫
q∈Ω

ℓ⃗(q) • (u⃗(p) + ω⃗ ×−→pq) dΩ =
∫
q∈Ω

ℓ⃗(q) • u⃗(p) dΩ+
∫
q∈Ω

ℓ⃗(q) • (ω⃗ ×−→pq) dΩ for all p, thus

ℓ(u⃗) = F⃗ • u⃗(p) + ω⃗ • m⃗e(p) where F⃗ =

∫
q∈Ω

ℓ⃗(q) dΩ and m⃗(p) =

∫
q∈Ω

−→pq × ℓ⃗(q) dΩ. (12.13)

Thus (12.11).

12.2.5 First order linear hypothesis

Let (for scalar valued functions)

H1(Ω) := {u ∈ L2(Ω) : ∀j = 1, ..., n,
∂u

∂xj
∈ L2(Ω)} = {u ∈ L2(Ω) : ⃗gradu ∈ L2(Ω)

n}. (12.14)

H1(Ω) is needed in continuum mechanics when �deformation gradients� are considered. Let (·, ·)H1 and
||.||H1 be the usual dot product and associated norm in H1(Ω):

(u, v)H1 := (u, v)L2(Ω) + ( ⃗gradu, ⃗gradv)L2 , ||u||H1 :=
√

(u, u)H1 . (12.15)

Thus (H1(Ω), (·, ·)H1) is a Hilbert space (Riesz-Fisher theorem).

The dual space of H1(Ω) is H1(Ω)
′
= the space of continuous linear forms ℓ : H1(Ω)→ R. We have,

see (V.16): ℓ ∈ H1(Ω)
′
i� ∃(f, g⃗) ∈ L2(Ω)×L2(Ω)

n
s.t., ∀ψ ∈ H1(Ω),

ℓ(ψ) = (f, ψ)L2 + (g⃗, ⃗gradψ)L2 =

∫
Ω

fψ + g⃗ • ⃗gradψ dΩ. (12.16)

For vector valued functions,

H1(Ω)
n
= {u⃗ ∈ L2(Ω)

n
: gradu⃗ ∈ L2(Ω)

n2

} := {u⃗ =

n∑
i=1

uie⃗i : ∀i = 1, ..., n, ui ∈ H1(Ω)} (12.17)

equipped with its usual inner dot product de�ned by, when u⃗ =
∑
i uie⃗i, v⃗ =

∑
i vie⃗i,

(u⃗, v⃗)H1 :=

n∑
i=1

(ui, vi)L2 +

n∑
i,j=1

(
∂ui
∂xj

,
∂vi
∂xj

)L2
noted
= (u⃗, v⃗)L2 + (gradu⃗, gradv⃗)L2 (12.18)

=
∫
Ω
u⃗ • v⃗ + ⃗gradu⃗ : ⃗gradv⃗ dΩ where ⃗gradu⃗ : ⃗gradv⃗ := [du⃗]|e⃗ : [dv⃗]|e⃗ =

∑n
i,j=1

∂ui

∂xj

∂vi
∂xj

(double matrix

contraction).

Let H1(Ω)
n′

be the dual of H1(Ω)
n
, i.e. the set of linear continuous forms P : H1(Ω)

n → R. (12.16)
leads to: P ∈ H1(Ω)

n′
i� ∃(f⃗ , σ) ∈ L2(Ω)

n×L2(Ω)
n2

s.t., ∀v⃗ ∈ H1(Ω)
n
,

P(v⃗) = (f⃗ , v⃗)L2 + (σ,∇v⃗)L2 =

∫
Ω

f⃗ • v⃗ + σ : gradv⃗ dΩ. (12.19)

I.e. P(v⃗) :=
∫
Ω

∑
i fi(p)vi(p) +

∑
ij σij(p)

∂vi
∂xj

(p) dΩ when v⃗ =
∑
i vie⃗i, f⃗ =

∑
i fie⃗i, [σ]|e⃗ = [σij ].
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84 12.3. Virtual power formulation with Lie derivatives

Galilean Euclidean referential: For P = Pint, Pint(v⃗) = 0 for any v⃗ s.t. dv⃗ = 0 (i.e. v⃗ = ⃗cste), true for

all subset in Ω, thus f⃗(p) • v⃗ = 0⃗ for all p and v⃗, thus f⃗(p) = 0⃗ for all p, thus f⃗ = 0⃗, thus

Pint(v⃗) =
∫
Ω

σ : gradv⃗ dΩ . (12.20)

And Pint(v⃗) = 0 for any v⃗ s.t. dv⃗ + dv⃗T = 0 (rotation), true for all subset in Ω, thus σ : dv⃗−dv⃗
T

2 = 0, and
we are left with the usual

Pint(v⃗) =
∫
Ω

σ :
dv⃗ + dv⃗T

2
dΩ. (12.21)

Then, an integration by parts gives, with abusive notations (matrix calculations),

Pint(u⃗) = −
∫
Ω

divσ • v⃗ dΩ+

∫
Γ

(σ.n⃗) • v⃗ dΩ. (12.22)

Example 12.3 Pressure in a perfect �uid: f⃗ = 0⃗ and σ = prI where pr ∈ L2(Ω) (pressure), thus

P(v⃗) =
∫
Ω

pr divv⃗ dΩ = −
∫
Ω

⃗gradpr • v⃗ dΩ+

∫
Γ

pr v⃗ • n⃗ dΓ. (12.23)

Germain's notations: P(̂⃗v) = ∫
Ω
p div̂⃗v dΩ with p the pressure and ̂⃗v a virtual velocity.

12.2.6 Second order linear hypothesis

Generalization to

H2(Ω) := {u ∈ L2(Ω) : ⃗gradu ∈ L2(Ω)
n
, d2u ∈ L2(Ω)

n2

}. (12.24)

with its inner dot product (u, v)H2 = (u, v)L2 + ( ⃗gradu, ⃗gradv)L2 + (d2u, d2v)L2 and associated norm
||u||H2 =

√
(u, u)H2 . And idem with H2(Ω)

n
.

Second order linear formulation: P ∈ (H2(Ω)
n
)′ i� ∃(f⃗ , σ, χ) ∈ L2(Ω)

n×L2(Ω)
n2

×L2(Ω)
n3

s.t.

P(u⃗) = (f⃗ , u⃗)L2 + (σ,∇u⃗)L2 + (χ, d2u⃗)L2 (12.25)

for all u⃗ ∈ H2(Ω)
n
. Gives �micropolar materials�. See Germain [11].

12.2.7 Issue: The linear hypothesis

The hypothesis (conjecture) �Pint is linear for a second order formulation� raises questions:
A linearity hypothesis enables to do nice simple mathematics thanks to duality; It is used by

Germain[11] (who liked mathematics and duality) to de�ne micromorphic materials, cf (12.25). And
linearity yields simple computations.

But in �real life� are all �materials� linear?
In mechanics we learn that a constitutive law is useful if and only if the deduced calculations give

good approximations of the results obtained by experiments.
So, question: Does the second order linear hypothesis give convincing results (apart from the theo-

retical micromorphic materials)?
If not, why not consider non linear mathematics, in particular, why not consider non linear internal

virtual power? In fact non linearity is proposed in elementary mathematics, e.g. with the second (or
higher) order Taylor expansion.

This is proposed in the next � (non linearity of Pint).

12.3 Virtual power formulation with Lie derivatives

The Lie derivatives being the �natural derivatives� (and being covariant objective), it is tempting to use

them to build the internal virtual power. Let us do it: The �ow v⃗ will act on the Cauchy stress vector T⃗
to give Lv⃗T⃗ (�rst order rate of stress), Lv⃗(Lv⃗T⃗ ) (second order), ...
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85 12.3. Virtual power formulation with Lie derivatives

12.3.1 First order approximation with Lie derivatives and classic result

v⃗ and T⃗ are the velocity and Cauchy stress vector �elds. The rate of stress of T⃗ along v⃗ is the Lie
derivative

Lv⃗T⃗ =
DT⃗

Dt
− dv⃗.T⃗ =

∂T⃗

∂t
+ dT⃗ .v⃗ − dv⃗.T⃗ , (12.26)

cf. � 9.3 and 9.5. To measure Lv⃗T⃗ , choose a di�erential form α, and de�ne the internal virtual power

Pint(α, v⃗, T⃗ ) :=
∫
Ω

α.Lv⃗T⃗ dΩ, (12.27)

with α.Lv⃗T⃗ = α.∂T⃗∂t + α.dT⃗ .v⃗ − α.dv⃗.T⃗ .
Galilean referential framework: The internal power vanishes when dv⃗ = 0 (motion of translation),

true for all subset of Ω, hence α.(∂T⃗∂t + dT⃗ .v⃗) vanishes in (12.27), and we are left with

Pint(α, v⃗, T⃗ ) = −
∫
Ω

α.dv⃗.T⃗ dΩ = −
∫
Ω

τ
α 0.. dv⃗ dΩ, where τ

α
:= T⃗ ⊗ α. (12.28)

Recall: τ 0.. dv⃗ := Tr(τ .dv⃗) is the double objective contraction between the
(
1
1

)
tensors τ and dv⃗ (no basis

and no inner dot product required a priori: covariant objective approach).
Then choose a Euclidean basis (e⃗i), with its covariant dual basis (ei) and associated Euclidean dot

product . • . (isometric framework); With n⃗ the exterior Euclidean normal unit vector �eld on Γ, we get

Pint(α, v⃗, T⃗ ) =
∫
Ω

d̃ivτ
α
.v⃗ −

∫
Γ

(τ
α
.v⃗) • n⃗ dΓ, where τ

α
:= T⃗ ⊗ α. (12.29)

Recall: d̃ivτ
α
is the objective divergence of a

(
1
1

)
tensor, cf. (T.59), and τ

α
.v⃗ = (α.v⃗)T⃗ .

Then choose a uniform measuring tool α. Hence divτ
α
= (divT⃗ )α and τ

α
.v⃗ = (α.v⃗)T⃗ , hence

Pint(α, v⃗, T⃗ ) =
∫
Ω

(divT⃗ )(α.v⃗) dΩ−
∫
Γ

(α.v⃗) T⃗ • n⃗ dΓ, (12.30)

the use of the Cauchy stress vector T⃗ being explicit. (Take α = ei for a measurement along e⃗i.)

Classic formulation recovered. T⃗ =
∑
i T

ie⃗i and α =
∑
i αie

i give [τ
α
]|e⃗ := [T iαj ], and v⃗ =

∑
i v
ie⃗i

gives dv⃗ =
∑
ij
∂vi

∂xj e⃗i ⊗ ej and α.dv⃗.T⃗ =
∑
ij αi

∂vi

∂xj T
j , thus

Pint(α, v⃗, T⃗ )
(12.28)
= −

∫
Ω

σ : [dv⃗]|e⃗ dΩ, where σ
α
:= [τ

α
]T|e⃗ = [αiT

j ] (matrix),

(12.29)
=

∫
Ω

divσ • [v⃗]|e⃗ −
∫
Γ

(σ.[n⃗]|e⃗) • [v⃗]|e⃗ dΓ, where divσ =


∑n
j=1

∂σ1j

∂xj

...∑n
j=1

∂σnj

∂xj

 (12.31)

is the divergence of a �tensor� in mechanics (in fact divergence of a matrix), and where . • . is also
the notation of the canonical dot product in the space Mn1 of n ∗ 1 matrices. Here α is uniform thus∑
j
∂σij

∂xj =
∑
j αi

∂T j

∂xj = αidivT⃗ and divσ = (divT⃗ )[α]T|e⃗. And (12.31) is abusively written (classic)

Pint(α, v⃗, T⃗ ) = −
∫
Ω

σ : dv⃗ dΩ =

∫
Ω

divσ • v⃗ −
∫
Γ

(σ.n⃗) • v⃗ dΓ. (12.32)

Exercice 12.4 Write (12.28)-(12.29)-(12.30) with components in a Euclidean framework.

Answer. T⃗ =
∑

i T
ie⃗i, α =

∑
i αie

i where (ei) is the (covariant) dual basis of (e⃗i), τ
α

=
∑

ij τ
i
j e⃗i ⊗ ej =∑

ij T
iαj e⃗i ⊗ ej , v⃗ =

∑
i v

ie⃗i, dv⃗ =
∑

ij
∂vi

∂xj e⃗i ⊗ ej , α.dv⃗.T⃗ =
∑

ij αi
∂vi

∂xj T
j , τ .dv⃗ =

∑
ijk τ

i
k
∂vk

∂xj e⃗i ⊗ ej , τ 0.. dv⃗ =∑
ij τ

i
j
∂vj

∂xi =
∑

ij T
iαj

∂vj

∂xi , dτα
=

∑
ijk

∂τi
j

∂xk e⃗i⊗ej⊗ek, d̃iv(τ
α
) =

∑
ij

∂τi
j

∂xi e
j , d̃iv(τ

α
).v⃗ =

∑
ij

∂τi
j

∂xi v
j , n⃗ =

∑
i n

ie⃗i,

T⃗ • n⃗ =
∑

i T
ini, α.v⃗ =

∑
i αiv

i, Pint = −
n∑

i,j=1

∫
Ω

τ i
j
∂vj

∂xi
dΩ =

n∑
i,j=1

∫
Ω

∂τ i
j

∂xi
vj dΩ−

n∑
i,j=1

∫
Γ

τ i
jv

jni dΓ. And (12.30)

with α uniform, so
∂τi

j

∂xi = ∂T i

∂xi αj , divT⃗ =
∑

i
∂T i

∂xi , divT⃗ (α.v⃗) =
∑

i
∂T i

∂xi

∑
j αjiv

j .
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12.3.2 Second order approximation with Lie derivatives

We add the second order Lie derivative Lv⃗(Lv⃗T⃗2) of a vector �eld T⃗2 (instead of the �rst order Lie
derivative Lv⃗σ of a tensor σ, cf. e.g. the Jaumann derivative) to get, for all v⃗,

Pint(α, v⃗, T⃗ , T⃗2) =
∫
Ω

α.(Lv⃗T⃗ + L(2)
v⃗ T⃗2) dΩ, (12.33)

where

L(2)
v⃗ T⃗2 = Lv⃗(Lv⃗T⃗2)

(9.42)
=

∂2T⃗2
∂t2

+ 2d
∂T⃗2
∂t

.v⃗ − 2dv⃗.
∂T⃗2
∂t

+ dT⃗2.
∂v⃗

∂t
− d∂v⃗

∂t
.T⃗2

+ (d2T⃗2.v⃗).v⃗ + dT⃗2.dv⃗.v⃗ − 2dv⃗.dT⃗2.v⃗ − (d2v⃗.v⃗).T⃗2 + dv⃗.dv⃗.T⃗2.

(12.34)

A simple choice is T⃗2 = cT⃗ , c ∈ R, to take into account, together with the �rst order variation Lv⃗T⃗ , the
second order variation cL(2)

v⃗ T⃗ .

Galilean framework: Pint vanishes if dv⃗ = 0, thus moreover choosing a stationary v⃗ (so ∂v⃗
∂t = 0⃗),

Pint(...) =
∫
Ω

α.(−dv⃗.T⃗ − 2dv⃗.
∂T⃗2
∂t

+ dT⃗2.dv⃗.v⃗ − 2dv⃗.dT⃗2.v⃗ − (d2v⃗.v⃗).T⃗2 + dv⃗.dv⃗.T⃗2) dΩ

=

∫
Ω

α.(−dv⃗.T⃗ − 2dv⃗.
DT⃗2
Dt

+ dT⃗2.dv⃗.v⃗ − (d2v⃗.v⃗).T⃗2 + dv⃗.dv⃗.T⃗2) dΩ.

(12.35)

Then de�ne τ := T⃗ ⊗ α and τ
2
:= T⃗2 ⊗ α (for constitutive laws) and choose α uniform: We get

Pint(...) =
∫
Ω

−τ 0.. dv⃗ − 2
Dτ

2

Dt
0.. dv⃗ + dτ

2 0.. (dv⃗.v⃗) dΩ+ τ
2 0.. (dv⃗.dv⃗ − d2v⃗.v⃗). (12.36)

NB: The result (12.36) is given with tensors τ and τ
2
to be able to compare classical results, e.g. with

Jaumann derivatives (Lie derivative of
(
1
1

)
tensor). But recall that here we only have Lie derivatives of

the vector �elds T⃗ and T⃗2 (no Lie derivative of order 2 tensors).
(For an initial approach, see https://arxiv.org/abs/2301.01056 .)

Because L(2)
v⃗ T⃗2 is not linear in v⃗, this gives a non-linear virtual power in v⃗, which in fact could be

expected: Not linear in v⃗, like any second order Taylor type approximation. It is linear in α.

12.3.3 Non linear �rst order approximation with Lie derivatives

Technically simpler than the second order approximation: Add to (12.27) a di�erential form α1 (a mea-

suring tool) imbedded in the �ow to measure some internal force T⃗1 subject to the �ow:

Pint(α, α1, v⃗, T⃗ , T⃗1) =

∫
Ω

α.Lv⃗T⃗ + Lv⃗α1.(Lv⃗T⃗1) dΩ. (12.37)

A �rst choice is α1 = α and T⃗1 = T⃗ . Recall: Lv⃗α1 = ∂α1

∂t + dα1.v⃗ + α.dv⃗.
Then choose α1 uniform and stationary, so Lv⃗α1 = α1.dv⃗, and

Pint(...) =
∫
Ω

α.(
∂T⃗

∂t
+ dT⃗ .v⃗ − dv⃗.T⃗ ) + α1.dv⃗.(

∂T⃗1
∂t

+ dT⃗1.v⃗ − dv⃗.T⃗1) dΩ. (12.38)

It is linear in α and α1, and we have a non linear dv⃗.dv⃗ term in v⃗.

The internal power has to vanish whenever dv⃗ = 0, true for all subset of Ω, hence the α.(∂T⃗∂t + dT⃗ .v⃗)

term vanishes, and, with τ := T⃗ ⊗ α and τ
1
:= T⃗1 ⊗ α1, we are left with

Pint(...) =
∫
Ω

−α.dv⃗.T⃗ + α1.dv⃗.(
DT⃗1
Dt
− dv⃗.T⃗1) dΩ

=

∫
Ω

−τ 0.. dv⃗ +
Dτ

1

Dt
0.. dv⃗ − τ1 0.. (dv⃗.dv⃗) dΩ.

(12.39)

Recall: Only Lie derivatives of the vector �elds T⃗ and T⃗1 are used (no Lie derivative of order 2 tensors).
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Part V

�Studying Mathematics I had hoped to penetrate the essence of truth...
... But all I was learning was cheap calculating tricks.�

Bertrand Russell (beginning of the 20th century)

Isn't this still too often the case in continuum mechanics? (�Studying Continuum Mechanics I had
hoped to penetrate the essence of truth... But all I was learning was cheap calculating tricks.�)

It is mainly due to the lack of basic math de�nitions:

What is a motion? A Eulerian variable? A Lagrangian variable?
Why domain and codomain of a function are rarely mentioned (hence errors and misunderstandings)?
What is a �canonical�, a �Cartesian�, a �Euclidean� basis?
What is a transposed (of what)?
What is pseudo-vector versus a vector?
What are covariant and contravariant vectors?
Why a linear function can't be identi�ed with a vector?
Why a endomorphism E → E can't be identi�ed with a bilinear form E × E → R?
What is the di�erence between a di�erential and a gradient?
What is the de�nition of Einstein's convention?
What is a tensor?
Why the in�nitesimal tensor ε is not a tensor?
What is the Lie derivative? And why is it �The natural derivative in continuum mechanics�?
What is a distribution?
What does ∂W

∂Fij
mean (derivation relative to components)?

...
(�This is the big advantage of not giving de�nitions: It allows you to say anything... and be sure that

you don't understand what you are talking about.� Quote from one of my teachers.)

Appendix

In this appendix, we give standard simple de�nitions and results, useful in mechanics, often scattered
in the existing literature, and sometimes di�cult to �nd. Hence no ambiguity will be possible; And we
avoid notations which are of no use and add to confusion (some notations can be nightmarish when not
understood, or misused, or made for calculus tricks, or come like a bull in a china-shop).

All the de�nitions apply to electromagnetism, chemistry, quantum mechanics, general relativity... and
continuum mechanics (solids, �uids, thermodynamics...): The same math apply to everyone.

A Classical and duality notations

A.1 Contravariant vector and basis

A.1.1 Contravariant vectors, covariant vectors

Let (E,+, .) =noted E be a �nite dimension real vector space (= a linear space on the �eld R).

De�nition A.1 An element x⃗ ∈ E is called a vector, or a �contravariant vector�.

A vector is a vector... So why is it also called a �contravariant vector�?
Historical answer: Because of the change of basis formula [x⃗]|new = P−1.[x⃗]|old, see (A.29), which

uses P−1, P being the transition matrix.

De�nition A.2 Let L(E;R) =noted E∗ be the space of linear scalar valued functions on E, called the
space of linear forms on E. An element ℓ ∈ E∗ (a linear form) is called a covariant vector.

So a covariant vector is the name given to a function E → R which is linear.

Why a linear form is called a �covariant vector�?
Historical answer: Because of the change of basis formula [ℓ]|new = [ℓ]|old.P , which uses P , see (A.29).
To remember: A covariant vector is a linear form ℓ that gives values to vectors v⃗: value ℓ(v⃗) ∈ R. So

a covariant vector (a linear form) is a measuring tool for vectors.
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88 A.2. Representation of a vector relative to a basis

A.1.2 Basis

Recall (de�nitions):
• n vectors e⃗1, ..., e⃗n ∈ E are linearly independent i� for all λ, ..., λn ∈ R the equality

∑n
i=1λie⃗i = 0⃗

implies λi = 0 for all i = 1, ..., n. (So n vectors e⃗1, ..., e⃗n ∈ E are linearly dependent i� there exists
i ∈ [1, n]N and λ1, ..., λi−1, λi+1, ...λn ∈ R s.t. e⃗i =

∑
j ̸=i λj e⃗j .)

• n vectors e⃗1, ..., e⃗n ∈ E span E i� : ∀x⃗ ∈ E, ∃λ1, ..., λn ∈ R s.t. x⃗ =
∑n
i=1λie⃗i.

• A basis in E is a set {e⃗1, ..., e⃗n} ⊂ E made of n linearly independent vectors which span E: In which
case the dimension of E is n.

A.1.3 Canonical basis

Consider the usual �eld R and the Cartesian product R× ...× R, n times. The canonical basis is

A⃗1 = (1, 0, ..., 0), ..., A⃗n = (0, ..., 0, 1), (A.1)

with 0 the addition identity element used n−1 times, and 1 the multiplication identity element used once.

Remark A.3 Consider the 3-D geometric space �we live in�, and the associated vector space R⃗3 of �bi-

point vectors�. There is no canonical basis in R⃗3: What would the identity element 1 mean? 1 metre?
1 foot? And there is no �intrinsic� preferred direction to de�ne e⃗1.

However R⃗3 is isomorphic to the mathematical Cartesian product R×R×R. But such an isomorphism

is not �canonical� (or �intrinsic� to R⃗3); For example an isomorphism J : R⃗3 → R×R×R is de�ned after

the choice of a basis (e⃗1, e⃗1, e⃗3) by some observer (English, French...) by J (e⃗i) = A⃗i.

A.1.4 Cartesian basis

(René Descartes 1596-1650.) Let n = 1, 2, 3, let Rn be the usual a�ne space (space of points), and let

R⃗n = (R⃗n,+, .) be the associated usual real vector space of bipoint vectors.
Let p ∈ Rn, and let (e⃗i(p)) be a basis at p (see e.g. the polar coordinate system, example 6.11).

A Cartesian basis in R⃗n is a basis independent of p (the same at all p), and then (e⃗i(p)) =
noted (e⃗i).

A Euclidean basis is a particular Cartesian basis described in � B.1.

A.2 Representation of a vector relative to a basis

There are to equivalent notation systems:
• the classical notation (non ambiguous), e.g. used by Arnold [3] and Germain [10], and
• the duality notation (can be ambiguous because of misuses), e.g. used by Marsden and Hughes [14].

Both classical and duality notation are equally good, but if you have any doubt, use the classical notations.

De�nition A.4 Let x⃗ ∈ E and let (e⃗i) be a basis in E. The components of x⃗ relative to the basis (e⃗i)
(in the basis (e⃗i)) are the n real numbers x1, ..., xn (classical notation) also named x1, ..., xn (duality
notation) such that

x⃗ = x1e⃗1 + ...+ xne⃗n︸ ︷︷ ︸
clas.

= x1e⃗1 + ...+ xne⃗n︸ ︷︷ ︸
dual

, i.e. [x⃗]|e⃗ =

 x1
...
xn

 =

 x1
...
xn

 , (A.2)

[x⃗]|e⃗ being the column matrix representing x⃗ relative to the basis (e⃗i). (Of course xi = xi for all i.) And
the column matrix [x⃗]|e⃗ is simply named [x⃗] if one chosen basis is imposed to all. With the sum sign:

x⃗ =

n∑
i=1

xie⃗i︸ ︷︷ ︸
clas.

=

n∑
i=1

xie⃗i︸ ︷︷ ︸
dual

(=

n∑
J=1

xJ e⃗J =

n∑
α=1

xαe⃗α). (A.3)

The index in a summation is a dummy index; And with the Einstein's convention (which uses the
duality notation) the sum sign

∑
can be omitted: x⃗ =

∑n
j=1x

j e⃗j =
noted xj e⃗j = xie⃗i = xJ e⃗J = xαe⃗α.

This omission was motivated by the di�culty of printing
∑n
j=1 in the early 20th century. We won't omit

the
∑

sign in the following, thanks to TEX-LATEX which makes writing it simple.
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89 A.3. Dual basis

Example A.5 In R⃗2, let x⃗ = 3e⃗1 + 4e⃗2 =
∑2
i=1 xie⃗i =

∑2
i=1 x

ie⃗i, so x1=x
1=3 and x2=x

2=4. And

[x⃗]|e⃗ = 3[e⃗1]|e⃗ + 4[e⃗2]|e⃗ =
∑2
i=1 xi[e⃗i]|e⃗ =

∑2
i=1 x

i[e⃗i]|e⃗. In particular, with δij = δij :=

{
= 1 if i=j

= 0 if i ̸=j

}
(Kronecker),

e⃗j =

n∑
i=1

δij e⃗i︸ ︷︷ ︸
clas.

=

n∑
i=1

δij e⃗i︸ ︷︷ ︸
dual

, i.e. [e⃗1]|e⃗ =


1
0
...
0

 , ..., [e⃗n]|e⃗ =


0
...
0
1

 , (A.4)

that is, the components of e⃗j in (e⃗i) are δij with classical notations, and δij with duality notations.

De�nition A.6 The basis ([e⃗j ]e⃗) is called the canonical basis of the vector space Mn1 of n ∗ 1 column
matrices. A column matrix [x⃗]|e⃗ is also called a �column vector�, or a pseudo-vector.

Remark A.7 NB: A �column vector� is not a �bi-point vector of our geometric space�, but just a matrix
(a collection of real numbers) relative to the choice of a basis. See the change of basis formula (A.29)
where the same vector is represented by two di�erent �column vectors� (two column matrices).

A.3 Dual basis

General usual notations: If E and F are vector spaces then (F(E;F ),+, .) =noted F(E;F ) is the usual
real vector space of functions with the internal addition (f, g)→ f+g de�ned by (f+g)(x) := f(x)+g(x)
and the external multiplication (λ, f)→ λ.f de�ned by (λ.f)(x) := λ(f(x)), for all f, g ∈ F(E;F ), x ∈ E,
λ ∈ R. And λ.f =noted λf for all f ∈ F(E;F ) and λ ∈ R.

A.3.1 Linear forms = �Covariant vectors�

De�nition A.8 E being a real vector space, the set E∗ := L(E;R) of linear real valued functions is
called the dual of E:

E∗ := L(E;R) = the dual of E. (A.5)

An element ℓ ∈ E∗ is called a linear form. A linear form ℓ in E∗ is also called a �covariant vector�.

NB: Co-variant refers to:
1- The action of a function ℓ on a vector u⃗ that gives the real ℓ(u⃗), the calculation of ℓ(u⃗) being called

a co-variant calculation, and
2- The change of coordinate formula [ℓ]new = [ℓ]|old.P , see (A.29) (covariant formula).

Property: E∗ is a vector space, sub-space of F(E;R) (trivial check).

Notation: If ℓ ∈ E∗ then

∀u⃗ ∈ E, ℓ(u⃗)
noted
= ℓ.u⃗. (A.6)

The dot in ℓ.u⃗ in (A.6) is �the distributivity dot� since linearity ℓ(u⃗ + λv⃗) = ℓ(u⃗) + λℓ(v⃗) follows the
distributivity rule: ℓ.(u⃗+ λv⃗) = ℓ.u⃗+ λℓ.v⃗.

Also written ℓ(u⃗) =noted ⟨ℓ, u⃗⟩E∗,E where ⟨., .⟩E∗,E is the duality bracket.
NB: The dot in ℓ.u⃗ is not an inner dot product (since ℓ /∈ E while u⃗ ∈ E).

Remark A.9 More precisely, E∗ as de�ned in (A.5) is the algebraic dual of E. If E is in�nite dimen-
sional, then we may need to de�ne a norm ||.||E for which E is a Banach space. E.g. E = L2(Ω) and
||f ||2L2(Ω) :=

∫
Ω
f(x⃗)2 dΩ. In that case E∗ is the name given to the set of continuous linear forms on E,

called the topological dual of E: It is essential in continuum mechanics.
(If E is �nite dimensional then all norms are equivalent and a linear form is continuous.)

Remark A.10 E∗ being a vector space, an element ℓ ∈ E∗ is indeed a vector. But E∗ has no existence
if E has not been speci�ed �rst! And ℓ ∈ E∗ can't be confused with a vector u⃗ ∈ E since there is no
natural canonical isomorphism between E and E∗ (no �intrinsic representation�), see � U.2. So if you
want to represent a ℓ ∈ E∗ by a vector then you need a tool which is observer dependent; E.g. you need
some inner dot product (observer dependent) if you apply the Riesz-representation theorem, or you need
to specify a basis (observer dependent) to represent ℓ with its matrix of components (in the dual basis).

Remark A.11 (continuing.) Misner�Thorne�Wheeler [16], box 2.1, insist: �Without it [the distinction
between covariance and contravariance, one cannot know whether a vector is meant or the very di�erent
object that is a linear form.�
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90 A.3. Dual basis

A.3.2 Covariant dual basis (= the functions that give components of a vector)

Notation: If u⃗1, ..., u⃗k are vectors in E, then let Vect{u⃗1, ..., u⃗k} be the vector space spanned by u⃗1, ..., u⃗k.
Let E be a �nite dimensional vector space, and let (e⃗i)i=1,...,n be a basis in E

De�nition A.12 Let i ∈ [1, n]N. The scalar projection onVect{e⃗i} parallel toVect{e⃗1, ..., e⃗i−1, e⃗i+1, ..., e⃗n}
is the linear form named πei ∈ E∗ with the classical notation, named ei ∈ E∗ with the duality notation,
de�ned by, for all i, j, {

clas. not. : πei(e⃗j) = δij , i.e. πei.e⃗j = δij ,

dual not. : ei(e⃗j) = δij , i.e. ei.e⃗j = δij .
(A.7)

(The dual basis (πei) = (ei) is intrinsic to the (e⃗i): The same for an English and a French observer...)

Thus, if x⃗ =
∑n
j=1xj e⃗j =

∑n
j=1x

j e⃗j (classical or duality notations), πei = ei being linear, we have

πei(x⃗) =
∑n
j=1xj πei(e⃗j) =

∑n
i=1xi δij = xj , so

πei.x⃗
clas.
= xi = ei.x⃗

dual
= xi = the i-th component of x⃗, (A.8)

i-th component relative to the basis (e⃗i), see �gure A.1.

Figure A.1: Parallel projections: πe1(x⃗) = x1 and πe2(x⃗) = x2 (dual not.: e1(x⃗) = x1 and e2(x⃗) = x2).

NB: Fundamental: There can't be any intrinsic (objective) notion of orthogonality in E because
orthogonality depends on the choice of an inner dot product (subjective). And πe1.x⃗ is not an inner
product because πei = ei ∈ E∗ and x⃗ ∈ E do not belong to a same vector space.

Proposition A.13 and de�nition . (πei)i=1,...,n = (ei)i=1,...,n =noted (πei) = (ei) is a basis in E∗,
called the (covariant) dual basis of the basis (e⃗i). Thus dimE∗ = n. And for all ℓ ∈ E∗ the reals
ℓi := ℓ.e⃗i are the components of ℓ in the basis dual basis:

ℓ
clas.
=

n∑
i=1

ℓiπei
dual
=

n∑
i=1

ℓie
i where ℓi = ℓ.e⃗i. (A.9)

Proof. If
∑n
i=1λiπei = 0, then 0 = (

∑n
i=1λiπei)(e⃗j) =

∑n
i=1λiπei(e⃗j) =

∑n
i=1λiδij = λj for all j, thus

(πei)i=1,...,n is a family of n independent vectors in E∗. Then let ℓ ∈ E∗ and m =
∑
i(ℓ.e⃗i)πei. Thus

m ∈ E∗ (since E∗ is a vector space), and m(e⃗j) =
∑
i(ℓ.e⃗i)(πei.e⃗j) =

∑
i(ℓ.e⃗i)δij = ℓ.e⃗j , for all j, thus

m = ℓ, thus ℓ =
∑
i(ℓ.e⃗i)πei, thus Vect{(πei)i=1,...,n} span E∗; Thus (πei)i=1,...,n is a basis in E∗; Thus

dimE∗ = n. (Use duality notations if you prefer.)

Example A.14 The size of a child is represented on a wall by a bipoint vector u⃗. An English observer
chooses the foot as unit of length and thus makes a vertical bipoint vector �one-foot long� which he
names a⃗. And then de�nes the linear form πa : Vect{u⃗} → R by πa .⃗a = 1. Thus πa is a measuring
instrument, and u⃗ = saa⃗ where sa = πa.u⃗ is the size of the child in foot.

A French observer chooses the metre as unit of length and thus makes a vertical bipoint vector �one-
metre long� which he names b⃗. And then de�nes the linear form πb : Vect{u⃗} → R by πb .⃗b = 1. Thus πb
is a measuring instrument, and u⃗ = sb⃗b where sb = πb.u⃗ is the size of the child in metre.

Exercice A.15 Let (⃗ai) and (⃗bi) be bases and let (πai) and (πbi) be the dual bases. Let λ ̸= 0. Prove:

If, ∀i = 1, ..., n, b⃗i = λa⃗i, then, ∀i = 1, ..., n, πbi =
1

λ
πai (i.e. bi = 1

λ a
i). (A.10)

Answer. πbi .⃗bj = δij = πai .⃗aj = πai.
b⃗j
λ

= 1
λ
πai .⃗bj for all j (since πai is linear).
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91 A.3. Dual basis

A.3.3 Example: aeronautical units

(Fundamental if you �y.) International aeronautical units: Horizontal length = nautical mile (NM),
altitude = English foot (ft).

Example A.16 O = the position of the control tower, and a plane p is located thanks to the bipoint
vector x⃗ =

−→Op. A tra�c controller chooses e⃗1 = the vector of length 1 NM oriented South (�rst runway),
e⃗2 = the vector of length 1 NM oriented Southwest (second runway), e⃗3 = the vertical vector of length
1 ft: His referential is R = (O, (e⃗1, e⃗2, e⃗3)). The dual basis is (πe1, πe2, πe3) de�ned by πei(e⃗j) = δij for

all i, j, cf. (A.7). He writes x⃗ =
∑n
i=1xie⃗i ∈ R⃗n, so that x1 = πe1(x⃗) = the distance to the south in NM,

x2 = πe2(x⃗) = the distance to the southwest in NM, x3 = πe3(x⃗) = the altitude in ft.
Here the basis (e⃗i) is not a Euclidean basis. This non Euclidean basis (e⃗i) is however vital if you �y:

A Euclidean basis is not essential to life... See next remark A.17.

Remark A.17 The metre is the international unit for NASA that launched the Mars Climate Orbiter
probe... But for the Mars Climate Orbiter landing procedure, NASA asked Lockheed Martin (who uses
the foot) to do the computation. Result? The probe burned in the Martian atmosphere because of λ ∼ 3
times too high a speed during the landing procedure: One metre is λ ∼ 3 times one foot, and someone
forgot it... NASA and Lockheed Martin used a Euclidean dot product... But not the same: One based
on a metre, and one based on the foot. Objectivity and covariance can be useful!

A.3.4 Matrix representation of a linear form

Let ℓ ∈ E∗. Let (e⃗i) be a basis. With the components ℓi of ℓ, cf. (A.9),

[ℓ]|πe
= ( ℓ1 ... ℓn )

noted
= [ℓ]|e⃗ (row matrix) (A.11)

is called the matrix of ℓ relative to (e⃗i). Thus, if x⃗ ∈ E and x⃗ =clas.∑n
i=1xie⃗i=

dual ∑n
i=1x

ie⃗i, then
ℓ.x⃗ = (

∑n
i=1ℓiπei).(

∑n
j=1xj e⃗j) =

∑n
i,j=1ℓixjπei.e⃗j =

∑n
i,j=1ℓixjδij =

∑n
i=1ℓixi = [ℓ]|πe

.[x⃗]|e⃗, so

ℓ.x⃗ = [ℓ]|πe
.[x⃗]|e⃗

clas.
=

n∑
i=1

ℓixi
dual
=

n∑
i=1

ℓix
i noted= [ℓ]|e⃗.[x⃗]|e⃗, (A.12)

with the usual matrix computation rule: A 1 ∗ n matrix times a n ∗ 1 matrix.
In particular for the dual basis (πei) = (ei) (classical and duality notations),

[πej ]|πe
= [ej ]|e = (0 ... 0 1︸︷︷︸

jth position

0 ... 0)
noted
= [πej ]|e⃗ = [ej ]|e⃗ (= row matrix [e⃗j ]

T
|e⃗). (A.13)

Remark A.18 Relative to a basis, a vector is represented by a column matrix, cf. (A.2), and a linear
form by a row matrix, cf. (A.11). This enables:
• The use of matrix calculation to compute ℓ.x⃗ = [ℓ]|e⃗.[x⃗]|e⃗, cf. (A.12), not to be confused with an

inner dot product calculation x⃗ • y⃗ := (x⃗, y⃗)g = [x⃗]T|e⃗.[g]πe
.[y⃗]|e⃗ relative to an inner dot product (·, ·)g in E.

• Not to confuse the �nature of objects�: Relative to a basis, a (contravariant) vector is a mathematical
object represented by a column matrix, while a linear form (covariant vector) is a mathematical object
represented by a row matrix. Cf. remark A.11.

A.3.5 Example: Thermodynamic

Consider the Cartesian space R⃗2 = {(T, P ) ∈ R × R} = {(temperature,pressure)}. There is no mean-

ingful inner dot product in this R⃗2: What would
√
T 2+P 2 mean (Pythagoras: Can you add Kelvin

degrees and pressure (kg.m−1
·s−2)? Thus, in thermodynamics, a (covariant) dual bases is fundamental

for calculations.
E.g.: After a choice of temperature and pressure units, consider the basis (E⃗1=(1, 0), E⃗2=(0, 1)) in R×

R =noted R⃗2; Let X⃗ = TE⃗1 + PE⃗2 =noted (T, P ) ∈ R⃗2, and let (πE1, πE2) = (E1, E2) =noted (dT, dP )
be the (covariant) dual basis. The �rst principle of thermodynamics tells that the density α of internal

energy is an exact di�erential form: ∃U ∈ C1(R⃗2;R) s.t. α = dU . So, at any X⃗0 = (T0, P0), the linear
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form α(X⃗0) = α1(X⃗0) dT + α2(X⃗0) dT ∈ (R2)∗ is given by α1 = ∂U
∂T and α2 = ∂U

∂P :

dU(X⃗0) =
∂U

∂T
(X⃗0) dT +

∂U

∂P
(X⃗0) dP so [dU(X⃗0)]|E⃗ =

(
∂U
∂T (X⃗0)

∂U
∂P (X⃗0)

)
(row matrix). (A.14)

With matrix computation, column matrices for vectors, row matrices for linear forms:

[E⃗1]|E⃗ =

(
1
0

)
, [E⃗2]|E⃗ =

(
0
1

)
, [X⃗0]|E⃗ =

(
T0
P0

)
, [δX⃗]|E⃗ =

(
δT
δP

)
, and (A.15)

[E1]|E⃗ = [dT ]|E⃗ = ( 1 0 ) , [E2]|E⃗ = [dP ]|E⃗ = ( 0 1 ) , [dU ]|E⃗ = ( ∂U∂T
∂U
∂P ) (A.16)

give

dU(X⃗0).δX⃗ =
(
∂U
∂T (X⃗0)

∂U
∂P (X⃗0)

)
.

(
δT
δP

)
=
∂U

∂T
(X⃗0)δT +

∂U

∂P
(X⃗0)δP. (A.17)

This is a �covariant calculation� (in particular no inner dot product has been used). And we have the

�rst order Taylor expansion in the vicinity of X⃗0 = (T0, P0), with δX = (δT, δP ):

U(X⃗0 + δX⃗) = U(X⃗0) + dU(X⃗0).δX⃗ + o(δX⃗)

= U(T0, P0) + δT
∂U

∂T
(T0, P0) + δP

∂U

∂T
(T0, P0) + o((δT, δP )).

(A.18)

A.4 Einstein convention

A.4.1 De�nition

When you work with components (after a choice of a basis), the goal is to visually di�erentiate a linear
form from a vector (to visually di�erentiate covariance from contravariance).

Framework: a �nite dimension vector space E, dimE = n, and duality notations.

Einstein Convention:
1. A basis in E (contravariant) is written with bottom indices: E.g., (e⃗i) is a basis in E.

2. A vector x⃗ ∈ E (contravariant) has its components relative to (e⃗i) (quanti�cation) written with top

indices: x⃗ =
∑n
i=1x

ie⃗i, and is represented by the column matrix [x⃗]|e⃗ =

 x1
...
xn

. (Classical notations:

x⃗ =
∑n
i=1xie⃗i, and column matrix of xi.)

3. The (covariant) dual basis of (e⃗i) (in E
∗ = L(E;R)) is written with top indices, so (ei) is the dual basis

of the basis (e⃗i). (Classical notations: (πei).)

4. A linear form ℓ ∈ E∗ (covariant vector) has its components relative to (ei) (quanti�cation) written with
bottom indices: ℓ =

∑n
i=1ℓie

i, and its matrix representation is the row matrix [ℓ]|e⃗ = ( ℓ1 ... ℓn ).

5. Optional: You can use �the repeated index convention�, i.e. omit the sum sign
∑

when there are repeated
indices at a di�erent position. E.g.

∑n
i=1x

ie⃗i =
noted xie⃗i,

∑n
i=1ℓie

i =noted ℓie
i,
∑n
i=1L

i
j e⃗i =

noted Lij e⃗i,∑n
i,j=1gijx

iyj =noted gijx
iyj , ... In fact, before computers and word processors, printing

∑n
i=1 was

not an easy task. With LATEX it's asy: In this manuscript the sum sign
∑

is not omitted (and some
confusions are avoided).

A.4.2 Do not mistake yourself

1. Einstein's convention is just meant not to confuse a linear function with a vector.

2. It only deals with quanti�cation relative to a basis.

3. Classical notations are as good as duality notations, even if you are told that classical notations cannot
detect obvious errors in component manipulations... But duality notations can be easily (and are often)
misused in classical mechanics (cf. the paradigmatic example of the vectorial dual basis treated at � F.8),
and mainly adds confusion to the confusion.

4. The convention does not admit shortcuts; E.g. with a metric: g(u⃗, v⃗) =
∑n
i,j=1giju

ivj shows the observer
dependence on a choice of a basis and on the chosen metric (with the gij); And even if gij = δij you
cannot write g(u⃗, v⃗) =

∑n
i,j=1u

ivj : You have to write g(u⃗, v⃗) =
∑n
i,j=1giju

ivj : Unmissable in physics
because you need to see the metric and bases in use.

5. Golden rule: Return to classical notations if in doubt. (Einstein's convention can add confusions, un-
truths, misinterpretations, absurdities, misuses...)
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93 A.5. Matrix and transposed matrix

A.5 Matrix and transposed matrix

The de�nitions can be found in any elementary books, e.g., Strang [21]. Recall:
• Mmn will be the space of m ∗ n matrices; It is a vector space (with the usual rules).
• Product: If M = [Mij ] i=1,...,m

j=1,...,n
∈Mmn and M = [Mij ] i=1,...,n

j=1,...,p
∈Mnp then their product is the m ∗ p

matrix M.N = [(M.N)ij ] i=1,...,m
j=1,...,p

∈Mmp where (M.N)ij =
∑n
k=1MikNkj .

• Transposed : IfM = [Mij ] i=1,...,m
j=1,...,n

∈Mmn then its transposed is the matrixMT = [(MT )ij ] i=1,...,n
j=1,...,m

∈
Mnm de�ned by

(MT )ij :=Mji (A.19)

(swapping rows and columns). E.g., M =

(
1 2
3 4

)
gives MT =

(
1 3
2 4

)
, and (MT )12=M21=3.

• M is symmetric i� MT =M (requires m=n).
• (M.N)T = NT .MT (because

∑
kMjkNki =

∑
k(N

T )ik(M
T )kj).

• M ∈Mnn is invertible i� ∃N ∈Mnn s.t. M.N = I, and then N =noted M−1.

Exercice A.19 Prove: If M is an n ∗ n invertible matrix then MT is invertible and (MT )−1 = (M−1)T

( =noted M−T ); And if M is symmetric, then M−1 is symmetric.

Answer. M.M−1 = I gives (M−1)T .MT = IT = I, thus MT is invertible and (MT )−1 = (M−1)T . Thus if

M = MT then M−1 = (M−1)T .

A.6 Change of basis formulas

E is a �nite dimension vector space, dimE = n, (e⃗old,i) and (e⃗new,i) are two bases in E, (πold,i) and (πnew,i)
are the associated dual bases in E∗, written (ei

old
) and (ei

new
) with duality notations.

A.6.1 Change of basis endomorphism and transition matrix

De�nition A.20 The change of basis endomorphism P ∈ L(E;E) from (e⃗old,i) to (e⃗new,i) is the endo-
morphism (= the linear map E → E) de�ned by, for all j ∈ [1, n]N,

P.e⃗old,j = e⃗new,j . (A.20)

Let

e⃗new,j
clas.
=

n∑
i=1

Pij e⃗old,i
dual
=

n∑
i=1

P ij e⃗old,i, i.e. [e⃗new,j ]|e⃗old =

 P1j

...
Pnj

 =

 P 1
j

...
Pnj

 , (A.21)

i.e. the Pij = P ij are the components of e⃗new,j in (e⃗old,i). And (A.20) gives P.e⃗old,j =
∑n
i=1Pij e⃗old,i, so

[P]|e⃗old =clas.[Pij ] =
dual [P ij ] is the matrix of the endomorphism P relative to the basis (e⃗old,i).

De�nition A.21 The matrix P =clas.[Pij ] =
dual [P ij ] is the transition matrix from (e⃗old,i) to (e⃗new,i).

You may �nd other �component type� notations:

e⃗new,j
clas.
=

n∑
i=1

(Pj)i e⃗old,i
dual
=

n∑
i=1

(Pj)
i e⃗old,i, i.e. [e⃗new,j ]|e⃗old =

 (Pj)1
...

(Pj)n

 =

 (Pj)
1

...
(Pj)

n

 . (A.22)

So Pij = P ij = (Pj)i = (Pj)
i are four notations for the i-th component of e⃗new,j = P.e⃗old,j in (e⃗old,i).

A.6.2 Inverse of the transition matrix

The inverse endomorphism Q := P−1 ∈ L(E;E) of P in (A.20) is given by, for all j ∈ [1, n]N,

e⃗old,j = Q.e⃗new,j (= P−1.e⃗new,j). (A.23)

So Q is change of basis endomorphism from (e⃗new,i) to (e⃗old,i), and Q := [Q]|e⃗new = [Qij ] is the transition
matrix from (e⃗new,i) to (e⃗old,i):

e⃗old,j =

n∑
i=1

Qij e⃗new,i, [e⃗old,j ]|e⃗new =

Q1j

...
Qnj

 . (A.24)

Use other notation if you prefer: Qij = (Qj)i = Qij = (Qj)
i
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Proposition A.22
Q = P−1. (A.25)

Proof. e⃗new,j = P.e⃗old,j =
∑n
i=1Pij e⃗old,i =

∑n
i=1Pij(

∑n
k=1Qkie⃗new,k) =

∑n
k=1(

∑n
i=1QkiPij)e⃗new,k =∑n

k=1(Q.P )kj e⃗new,k for all j, thus (Q.P )kj = δkj for all j, k. Hence Q.P = I, i.e. (A.25).

Exercice A.23 Prove

{
[P]|e⃗old = [P]|e⃗new = P,

[Q]|e⃗new = [Q]|e⃗old = Q,

}
, i.e.

{
P.e⃗new,j =

∑n
i,j=1Pij e⃗new,i (=

∑n
i,j=1P

i
j e⃗new,i =

∑n
i,j=1(Pj)

ie⃗new,i),

Q.e⃗old,j =
∑n
i,j=1Qij e⃗old,i (=

∑n
i,j=1Q

i
j e⃗old,i =

∑n
i,j=1(Qj)

ie⃗old,i).
(A.26)

Answer. Z = [Zij ] = [P]|e⃗
new

means P.e⃗new,j =
∑

i Zij e⃗new,i, i.e. e⃗new,j = Q.(
∑n

i=1Zij e⃗new,i) =∑n
i=1ZijQ.e⃗new,i =

∑n
i=1Zij(

∑n
k=1Qkie⃗new,k) =

∑n
k=1(

∑n
i=1QkiZij)e⃗new,k =

∑n
k=1(Q.Z)kj e⃗new,k for all j, thus

(Q.Z)kj = δkj for all j, k, thus Q.Z = I, thus Z = P . Idem for Q, thus (A.26).

Remark A.24 PT ̸= P−1 in general. E.g., (e⃗old,i) = (⃗ai) is a foot-built Euclidean basis, (e⃗new,i) = (⃗bi)

is a metre-built Euclidean basis, and b⃗i = λa⃗i for all i (the basis are �aligned�), so P = λI; Thus PT = λI
and P−1 = 1

λI ̸= PT , since λ = 1
0.3048 ̸= 1. Thus it is essential not to confuse PT and P−1, cf. e.g. the

Mars Climate Orbiter probe crash (remark A.17).

A.6.3 Change of dual basis

Proposition A.25 (πnew,i) = (ei
new

) and (πold,i) = (ei
old
) being the dual bases of (e⃗new,i) and (e⃗old,i), for

all i ∈ [1, n]N,

πnew,i
clas.
=

n∑
j=1

Qijπold,j = ei
new

dual
=

n∑
j=1

Qije
j
old
, (A.27)

and

[πnew,i]|e⃗old = (Qi1 ... Qin ) = [ei
new

]|e⃗old = (Qi1 ... Qin ) (the i-th row of Q). (A.28)

Proof. πnew,i(e⃗old,k)=
(A.24) πnew,i(

∑
j Qjke⃗new,j) =

∑
j Qjk πnew,i(e⃗new,j) =

∑
j Qjk δij = Qik, and∑

j Qijπold,j(e⃗old,k) =
∑
j Qijδjk = Qik, true for all i, k, thus πnew,i =

∑
j Qij , i.e. (A.27)

A.6.4 Change of coordinate system for vectors and linear forms

Proposition A.26 Let x⃗ ∈ E and ℓ ∈ E∗. Then

• [x⃗]|e⃗new = P−1.[x⃗]|e⃗old (contravariance formula for vectors: between column matrices),

• [ℓ]|e⃗new = [ℓ]|e⃗old .P (covariance formula for linear forms: between row matrices).
(A.29)

And the scalar value ℓ.x⃗ is computed indi�erently with one or the other basis (objective result):

ℓ.x⃗ = [ℓ]|e⃗old .[x⃗]|e⃗old = [ℓ]|e⃗new .[x⃗]|e⃗new . (A.30)

Proof. Let x⃗ =
∑
j xj e⃗old,j =

∑
i yie⃗new,i. We have x⃗ =

∑
j xj e⃗old,j =

∑
j xj(

∑n
i=1Qij e⃗new,i) =∑

ij Qijxj e⃗new,i, thus yi =
∑
j Qijxj for all i, thus (A.29)1.

And ℓ =
∑
jmjπnew,j =

∑
i ℓiπold,i=

(A.27)
∑
ij ℓiPijπnew,j gives mj =

∑
i ℓiPij for all j, thus (A.29)2.

Thus [ℓ]|e⃗new .[x⃗]|e⃗new = ([ℓ]|e⃗old .P ).(P
−1.[x⃗]|e⃗old) = [ℓ]|e⃗old .[x⃗]|e⃗old , hence (A.30).

Use duality notations if you prefer.

Notation: Let x⃗ ∈ E, x⃗ =
∑
j xj e⃗old,j =

∑
i yie⃗new,i. Hence (A.29) give yi =

∑n
j=1Qijxj , which tells:

yi is the function de�ned by yi(x1, ..., xn) =
∑n
j=1Qijxj , thus Qij =

∂yi
∂xj

(x1, ..., xn); Similarly with Pij ;

Which is written

Qij =
∂yi
∂xj

, and Pij =
∂xi
∂yj

. (A.31)

(Use duality notations if you prefer: Qij =
∂yi

∂xj and P ij =
∂xi

∂yj .)
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Exercice A.27 Check that (A.29) applies to e⃗new,j and πnew,i.

Answer. Let (E⃗i) be the canonical basis in Mn1 the space of n ∗ 1 matrices. Thus [e⃗new,j ]|e⃗new = E⃗j and

P.[e⃗new,j ]|e⃗new =(A.29) [e⃗new,j ]|e⃗old reads P.E⃗j = [e⃗new,j ]|e⃗old = column j of P : True.

[πnew,i]|e⃗
old

= E⃗T
i , thus [πnew,i]|e⃗

new
.Q=(A.29) [πnew,i]|e⃗

old
reads E⃗T

i .Q = [πnew,i]|e⃗
old

= row i of Q : True.

A.7 Bidual basis (and contravariance)

De�nition A.28 The dual of E∗ is E∗∗ := (E∗)∗ = L(E∗;R) and is named the bidual of E. E∗∗ is also
called the space of contravariant vectors. (the space of directional derivatives see � T.1).

Then let (e⃗i) be a basis in E, let (πei) be its dual basis (basis in E
∗). The dual basis (∂i) of (πei) is

called the bidual basis of (e⃗i). Duality notations: (∂i) is the dual basis of (e
i).

Thus, the linear forms ∂i ∈ E∗∗ = L(E∗;R) are characterized by, for all j,

∂i.πej = δij (= πej .e⃗i), so: ℓ =

n∑
i=1

ℓiπei i� ℓi = ∂i.ℓ (= ℓ.e⃗i). (A.32)

Indeed, ∂i(ℓ) = ∂i(
∑n
j=1ℓjπej) =

∑n
j=1ℓj∂i(πej) =

∑n
j=1ℓjδij = ℓi.

Duality notation: ∂i.e
j = δji = ej .e⃗i and ℓ =

∑n
i=1ℓie

i.

Remark A.29 The notation ∂i refers to the derivation in the direction e⃗i because ∂i(df(x⃗)) = df(x⃗).e⃗i;
And ∂i =

noted e⃗i in di�erential geometry. Indeed, with the natural canonical isomorphism J :{
E → E∗∗

u⃗ → J (u⃗)

}
given by J (u⃗).ℓ := ℓ.u⃗ for all ℓ ∈ E∗, see (U.9), we can identify u⃗ and J (u⃗) (observer

independent identi�cation), thus ∂i = J (e⃗i) =noted e⃗i; And (A.32) reads e⃗i.πej = δij and ℓi = e⃗i.ℓ.

A.8 Bilinear forms

A.8.1 De�nition

Let E and F be vector spaces.

De�nition A.30 • A bilinear form is a function β(·, ·) :

{
E × F → R
(u⃗, w⃗) → β(u⃗, w⃗)

}
satisfying:

β(u⃗1+λu⃗2, w⃗) = β(u⃗1, w⃗)+λβ(u⃗2, w⃗) (linearity for the �rst variable) and β(u⃗, w⃗1+λw⃗2) = β(u⃗, w⃗1)+
λβ(u⃗, w⃗2) (linearity for the second variable) for all u⃗, u⃗1, u⃗2 ∈ E, w⃗, w⃗1, w⃗2 ∈ F , λ ∈ R.
• L(E,F ;R) is the set of bilinear forms E × F → R.
• If (ℓ,m) ∈ E∗ × F ∗, then the bilinear form ℓ⊗m ∈ L(E,F ;R) de�ned by

(ℓ⊗m)(u⃗, w⃗) = ℓ(u⃗)m(w⃗) (= (ℓ.u⃗)(m.w⃗)), (A.33)

for all (u⃗, w⃗) ∈ E × F , is called an elementary bilinear form.

A.8.2 The transposed of a bilinear form (objective)

(Warning: Not to be confused with the subjective de�nition of a transposed of a linear map which depends
on choices of inner dot products, see e.g. (A.52).)

De�nition A.31 If β ∈ L(E,F ;R) then its transposed is the bilinear form βT ∈ L(F,E;R) de�ned by,
for all (w⃗, u⃗) ∈ F × E,

βT (w⃗, u⃗) = β(u⃗, w⃗). (A.34)

(This de�nition is observer independent, i.e. same de�nition for all observers; In particular the de�nition
of βT doesn't require a basis or an inner dot product.)
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A.8.3 Inner dot products, and metrics

De�nition A.32 Here F = E and β ∈ L(E,E;R).
• β is (semi-)positive i�, for all u⃗ ∈ E, β(u⃗, u⃗) ≥ 0.
• β is de�nite positive i�, for all u⃗ ̸= 0⃗, β(u⃗, u⃗) > 0.
• β is symmetric i� βT = β, i.e., for all u⃗, v⃗ ∈ E, β(u⃗, v⃗) = β(v⃗, u⃗).

De�nition A.33 • An �inner dot product� (or �scalar dot product�, or �scalar inner dot product�, or
�inner scalar product�, or �inner product�) in a vector space E is a bilinear form g ∈ L(E,E;R),

g
noted
= g(·, ·) noted= (·, ·)g

noted
= · •g ·, i.e. g(u⃗, w⃗) = (u⃗, w⃗)g

noted
= u⃗ •g w⃗, ∀u⃗, w⃗ ∈ E, (A.35)

which is symmetric and de�nite positive: g(u⃗, w⃗) = g(w⃗, v⃗) for all u⃗, w⃗, and g(u⃗, u⃗) > 0 for all u⃗ ̸= 0⃗.
• A �semi-inner dot product� is a symmetric and semi-positive bilinear form.

De�nition A.34 Let (·, ·)g be an inner dot product in E.
• Two vectors u⃗, w⃗ ∈ E are (·, ·)g-orthogonal i� (u⃗, w⃗)g = 0.
• The associated norm with (·, ·)g is the function ||.||g : E → R+ de�ned by, for all u⃗ ∈ E,

||u⃗||g =
√
(u⃗, u⃗)g. (A.36)

It is called a semi-norm i� (·, ·)g is a symmetric and semi-positive bilinear form.

Proposition A.35 (Cauchy�Schwarz inequality.) (·, ·)g being an inner dot product in E,

∀u⃗, w⃗ ∈ E, |(u⃗, w⃗)g| ≤ ||u⃗||g||w⃗||g. (A.37)

And |(u⃗, w⃗)g| = ||u⃗||g||w⃗||g i� u⃗ and w⃗ are parallel. And ||.||g is indeed a norm.

Proof. Let p(λ) = ||u⃗+λw⃗||2g = (u⃗+λw⃗, u⃗+λw⃗)g, so p(λ) = aλ2 + bλ + c where a = ||w⃗||2g, b = 2(u⃗, w⃗)g
and c = ||u⃗||2g. With p(λ) ≥ 0 (since(·, ·)g is positive), we get b2 − 4ac ≥ 0, thus (A.37); And p(λ) = 0
i� u⃗+λw⃗ = 0. Then ||u||g = 0 i� (u⃗, u⃗)g = 0 i� u⃗ = 0 since (·, ·)g is de�nite positive, and ||u⃗||g =√
(u⃗, u⃗)g ≥ 0, and ||λu⃗||g =

√
(λu⃗, λu⃗)g =

√
λ2(u⃗, u⃗)g = |λ| ||u⃗||g, and ||u⃗ + w⃗||2g = (u⃗ + w⃗, u⃗ + w⃗)g =

||u⃗||2g + 2(u⃗, w⃗)g + ||w⃗||2g ≤ ||u⃗||2g + 2||u⃗||g ||w⃗||g + ||w⃗||2g = (||u⃗||g + ||w⃗||g)2 thanks to Cauchy�Schwarz
inequality, thus ||u⃗+ w⃗||g ≤ ||u⃗||g + ||w⃗||g; Thus ||.||g is a norm.

De�nition A.36 (Metric.) 1- In Rn our usual a�ne geometric space, n = 1, 2 or 3, with R⃗n = the
usual associated vector space made of bipoint vectors. Let Ω ⊂ Rn be open in Rn. A metric in Ω is a C∞

function g :

{
Ω → L(R⃗n, R⃗n;R)

p → g(p)
noted
= gp

}
such that gp is an inner dot product in R⃗n at each p ∈ Ω. Particular

Case: If the gp is independent of p then a metric is simply called a inner dot product (e.g. a Euclidean
metric is called a Euclidean dot product).

2- In a di�erentiable manifold Ω, a metric is a C∞ (
0
2

)
tensor g s.t. g(p) is an inner dot product in the

tangent plane TpΩ at each p ∈ Ω. A Riemannian metric is a metric s.t. g(p) is a Euclidean dot product
in TpΩ at each p ∈ Ω.

A.8.4 Quanti�cation: Matrice [βij ] and tensorial representation

dimE = n, dimF = m, β ∈ L(E,F ;R), (⃗ai) is a basis in E which dual basis is (πai), (⃗bi) is a basis in F
which dual basis is (πbi). (With duality notations, (πai) = (ai) and (πbi) = (bi).)

De�nition A.37 The components of β ∈ L(E,F ;R) relative to the bases (⃗ai) and (⃗bi) are the nm reals

βij := β(⃗ai, b⃗j), and [β]|⃗a,⃗b = [βij ] i=1,...,n
j=1,...,m

noted
= [βij ] (A.38)

is the matrix of β relative to the bases (⃗ai) and (⃗bi). And if F = E and (⃗bi) = (⃗ai) then

[β]|⃗a,⃗a
noted
= [β]|⃗a. (A.39)
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Proposition A.38 A bilinear form β ∈ L(E,F ;R) is known as soon as the nm scalars βij = β(⃗ai, b⃗j)
are known:

β =

n∑
i=1

m∑
j=1

βijπai ⊗ πbj , and β(u⃗, w⃗) = [u⃗]|⃗a
T .[β]|⃗a,⃗b.[w⃗]|⃗b =

n∑
i,j=1

βijuiwj (A.40)

for all (u⃗, w⃗) ∈ E × F with u⃗ =
∑
i uia⃗i and w⃗ =

∑
i wi⃗bi.

And a basis in L(E,F ;R) is made of the nm functions πai ⊗ πbj , and dimL(E,F ;R) = nm.
(Duality notations: β =

∑n
i=1

∑m
j=1βija

i ⊗ bj and β(u⃗, w⃗) =
∑n
i,j=1βiju

iwj .)

Proof. β being bilinear, u⃗ =
∑n
i=1uia⃗i and w⃗ =

∑n
j=1wj b⃗j give β(u⃗, w⃗) =

∑n
i,j=1uiwjβ(⃗ai, b⃗j) =∑n

i,j=1uiβijwj = ([u⃗]|⃗a)
T .[β]|⃗a,⃗b.[w⃗]|⃗b. Thus if the βij are known then β is known.

And (πai ⊗ πbj)(⃗ak, b⃗ℓ) =(A.33) (πai .⃗ak)(πbj .⃗bℓ) = δikδjℓ (all the elements of the matrix [πai ⊗ πbj ]|⃗a,⃗b
are zero except the element at the intersection of row i and column j which is equal to 1).

Thus
∑n
i,j=1βij(πai⊗πbj)(u⃗, w⃗) =

∑n
i,j=1βijuiwj = β(u⃗, v⃗), for all u⃗, w⃗, thus β :=

∑n
i,j=1βij(πai⊗πbj),

thus the πai⊗πbj span L(E,F ;R). And
∑
ij λij(πai⊗πbj) = 0 implies 0 = (

∑
ij λij(πai⊗πbj))(⃗ak, b⃗ℓ) =∑

ij λij(πai⊗πbj)(⃗ak, b⃗ℓ) =
∑
ij λijδikδjℓ = λkℓ = 0 for all k, ℓ; Thus the πai⊗πbj are independent. Thus

(πai ⊗ πbj) is a basis in L(E,F ;R) and dim(L(E,F ;R)) = nm.

Example A.39 dimE = dimF = 2. [β]|⃗a,⃗b =

(
1 2
0 3

)
means β(⃗a1, b⃗1) = β11 = 1, β(⃗a1, b⃗2) = β12 = 2,

β(⃗a2, b⃗1) = β21 = 0, β(⃗a2, b⃗2) = β22 = 3. And β12 = [⃗a1]
T
|⃗a.[β]|⃗a,⃗b.[⃗b2]|⃗b = ( 1 0 ) .

(
1 2
0 3

)
.

(
0
1

)
= 2.

Exercice A.40 Let β ∈ L(E,E;R), let (⃗ai) and (⃗bi) be two bases in A, and let λ ∈ R∗. Prove:

if, ∀i ∈ [1, n]N, b⃗i = λa⃗i, then [β]|⃗b = λ2[β]|⃗a. (A.41)

(A change of unit, e.g. from foot to metre, has a true in�uence on the matrix of a bilinear form.)

Answer. b⃗i = λa⃗i give β(⃗bi, b⃗j) = β(λa⃗i, λa⃗j) = λ2β(⃗ai, a⃗j) (bilinearity), thus [β]|⃗b = λ2[β]|⃗a.

Exercice A.41 Prove
[βT ]⃗b,⃗a = ([β ]⃗a,⃗b)

T , written [βT ] = [β]T . (A.42)

Answer. Let[β]a⃗,⃗b = [βij ] i=1,...,n
j=1,...,m

and [βT ]⃗b,⃗a = [γij ] i=1,...,m
j=1,...,n

. We have γij = βT (⃗bi, a⃗j) = β(⃗aj , b⃗i) = βji, qed.

A.9 Linear maps

A.9.1 De�nition

Let E and F be vector spaces.

De�nition A.42 • A function L : E → F is linear i� L(u⃗1 + λu⃗2) = L(u⃗1) + λL(u⃗2) for all u⃗1, u⃗2 ∈ E
and all λ ∈ R (distributivity rule). And (distributivity notation):

L(u⃗)
noted
= L.u⃗, so L(u⃗1 + λu⃗2) = L.(u⃗1 + λu⃗2) = L.u⃗1 + λL.u⃗2. (A.43)

NB: This dot notation L(u⃗) =noted L.u⃗ is a linearity notation (distributivity type notation);
• It is an �outer� dot product between a (linear) function and a vector;
• It is not an �inner� dot product since L and u⃗ don't belong to a same space.
• It is not a matrix product (no quanti�cation with bases has been done yet).

De�nition A.43 L(E;F ) is the set of linear maps E → F (vector space, subspace of (F(E;F ),+, .)).
If F = E then a linear map L ∈ L(E;E) is called an endomorphism in E.
If F = R then a linear map E → R is called a linear form, and E∗ := L(E;R) is the dual of E.
Li(E;F ) is the space of invertible linear maps E → F , i.e. L ∈ Li(E;F ) i� ∃M ∈ Li(F ;E) s.t.

L ◦M = IF and M ◦ L = IE where IE and IF are the identity maps in E and F .
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98 A.9. Linear maps

Vocabulary: If E is a �nite dimension vector space, dimE = n, then, in algebra, the set (Li(E;E), ◦)
of invertible endomorphisms equipped with the composition rule is called GLn(E) = �the linear group�
(it is indeed a group, easy check). Particular case: The �linear group� of n ∗ n invertible matrices is
GLn(Mn) = (Li(Mn;Mn), .) = the set of invertible matrices equipped with the matrix product.

Exercice A.44 (Math exercise.) E = (E, ||.||E) and F = (F, ||.||F ) are Banach spaces, and Lic(E;F )
is the space of invertible linear continuous maps E → F with its usual norm ||L|| = sup||x⃗||E=1 ||L.x⃗||F .

Let Z :

{
Lic(E;F ) → Lic(E;F )

L → L−1

}
. Prove: dZ(L).M = −L−1 ◦M ◦ L−1, for all M ∈ Lic(E;F ) (and Z

is di�erentiable in any direction).

Answer. Consider limh→0
Z(L+hM)−Z(L)

h
= limh→0

(L+hM)−1−L−1

h
( =noted dZ(L).M if the limit exists). With

N = L−1.M we have L + hM = L(I + hN), and (I + hN) is invertible as soon as ||hN || < 1, i.e. h <
1

||N|| = 1
||L−1.M|| , its inverse being I − hN + h2N − ... (Neumann series); Thus I + hN = I − hN + o(h), and

(L + hM)−1 = (I + hN)−1.L−1 = (I − hN + o(h)).L−1 = L−1 − hN.L−1 + o(h). Thus (L+hM)−1−L−1

h
=

L−1−hN.L−1+o(h)−L−1

h
= −N.L−1 + o(1)−→h→0 −N.L−1.

A.9.2 Quanti�cation: Matrices [Lij ] = [Lij ]

dimE = n, dimF = m, L ∈ L(E;F ), (⃗ai) is a basis in E and (⃗bi) is a basis in F .

De�nition A.45 The components of a linear map L ∈ L(E;F ) relative to the bases (⃗ai) and (⃗bi) are
the nm reals named Lij (classical notation) = Lij (duality notation), which are the components of the

vectors L.⃗aj relative to the basis (⃗bi). That is:

L.⃗aj
clas.
=

m∑
i=1

Lij b⃗i
dual
= =

m∑
i=1

Lij b⃗i, i.e. [L.⃗aj ]|⃗b
clas.
=

 L1j

...
Lmj

 dual
=

 L1
j

...
Lmj

 . (A.44)

And

[L]|⃗a,⃗b
clas.
= [Lij ] i=1,...,m

j=1,...,n

dual
= [Lij ] i=1,...,m

j=1,...,n

noted
= [Lij ]

noted
= [Lij ] (A.45)

is the matrix of L relative to the bases (⃗ai) and (⃗bi); So [L.⃗aj ]|⃗b is the j-th column of [L]|⃗a,⃗b.

Particular case: If E = F , i.e. if L is an endomorphism in E, and if (⃗bi) = (⃗ai) then

[L]|⃗a,⃗a
noted
= [L]|⃗a. (A.46)

Example A.46 n = m = 2. [L]|⃗a,⃗b =

(
1 2
0 3

)
means L.⃗a1 = b⃗1 and L.⃗a2 = 2⃗b1 + 3⃗b2 (column reading).

Here L11=1, L12=2, L21=0, L22=3 (duality notations: L1
1=1, L1

2=2, L2
1=0, L2

2=3).

Let L ∈ L(E;F ). For all u⃗ ∈ E, u⃗ =
∑n
j=1uj a⃗j =

∑n
j=1u

j a⃗j , we get, thanks to linearity,

L.u⃗
clas.
=

m∑
i=1

n∑
j=1

Lijuj b⃗i
dual
=

m∑
i=1

n∑
j=1

Liju
j b⃗i, i.e. [L.u⃗]|⃗b = [L]|⃗a,⃗b.[u⃗]|⃗a . (A.47)

Shortened notation: [L.u⃗] = [L].[u⃗] when the bases are implicit.

Proposition A.47 A linear map L ∈ L(E;F ) is known as soon as the n vectors L.⃗a1, ..., L.⃗an are

known. And, for i, k = 1, ..., n and j = 1, ...,m, the linear maps Lij ∈ L(E;F ) de�ned by Lij .⃗ak = δjk b⃗i
(all the elements of the matrix [Lij ]|⃗a,⃗b vanish except the element at the intersection of row i and column j

which is equal to 1), constitute a basis ∈ L(E;F ). So, dim(L(E;F )) = nm.

(Duality notations: Lij =noted Lij , and Lij .⃗ak = δjk b⃗i.)

Proof. u⃗ ∈ E and u⃗ =
∑
k uj a⃗j give L.u⃗ =

∑
j ujL.⃗aj , since L is linear. Thus L is known i� the n

vectors L.⃗aj are known for all j = 1, ..., n; And
∑
ij LijLij .⃗ak =

∑
ij Lijδjk b⃗i =

∑
i Lik b⃗i = L.⃗ak, for

all k, thus
∑
ij LijLij = L, i.e. L =

∑
ij LijLij , thus the Lij span L(E;F ). And

∑m
i=1

∑n
j=1λijLij = 0

implies
∑m
i=1

∑n
j=1λijLij .⃗ak =

∑m
i=1

∑n
j=1λijδjk b⃗i =

∑m
i=1λik b⃗i = 0⃗ for all k, thus λik = 0 for all i, k

(because (⃗bi) is a basis). Thus the Lij are independent. Thus (Lij) i=1,...,n
j=1,...,m

is a basis in L(E;F ).
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99 A.10. Trace of an endomorphism

A.10 Trace of an endomorphism

The trace of a n ∗ n matrix [Lij ] is Tr([Lij ]) =
∑n
i=1Lii = sum of its diagonal elements.

E is a vector space, dimE = n, (⃗ai) is a basis in E.

De�nition A.48 The trace of an endomorphism L ∈ L(E;E), with L.⃗aj =
∑n
i=1Lij a⃗i =

∑n
i=1L

i
j a⃗i, is

the real

Tr(L) =

n∑
i=1

Lii = Tr([L]|⃗a) (=

n∑
i=1

Lii). (A.48)

And the trace operator is the linear map Tr :

{
L(E;E) → R

L → Tr(L)

}
.

Proposition A.49 The real Tr(L) is independent of any basis in E: If (⃗ai) and (⃗bi) are bases in E, then

Tr([L]|⃗a) = Tr([L]|⃗b) = Tr(L). (A.49)

If L,M ∈ L(E;E) then

Tr(L ◦M) = Tr(M ◦ L) =
n∑

i,j=1

LijMji = Tr([L]|⃗a.[M ]|⃗a). (A.50)

Proof. L.⃗aj =
∑
i Lij a⃗i and M.⃗aj =

∑
iMij a⃗i give (L ◦ M).⃗aj = L.(M.⃗aj) =

∑
kMkjL.⃗ak =∑

ikMkjLika⃗i =
∑
i(
∑
k LikMkj )⃗ai. Thus Tr(L ◦ M) =

∑
i(
∑
k LikMki) =

∑
ij LijMji =

Tr([L]|⃗a.[M ]|⃗a) =
∑
ij LjiMij = Tr(M◦L). And [L]|⃗b = P−1.[L]|⃗a.P where P is the transition matrix from

(⃗ai) to (⃗bi) (change of basis formula for endomorphisms see (A.103)), thus Tr([L]|⃗b) = Tr(P−1.[L]|⃗a.P ) =

Tr((P−1.[L]|⃗a).P ) = Tr(P.(P−1.[L]|⃗a)) = Tr((P.P−1).[L]|⃗a) = Tr([L]|⃗a).

Example A.50 If b⃗i = λa⃗i for all i (change of unit of measurement), Tr(L) =
∑
iMii =

∑
iNii. Trivial

check here: L.⃗bj =
∑
iNij b⃗i gives L.(λa⃗j) =

∑
iNij(λa⃗i), thus L.⃗aj =

∑
iNij a⃗i, thus N =M .

Exercice A.51 For L := w⃗ ⊗ ℓ (de�ned by (w⃗ ⊗ ℓ).u⃗ = (ℓ.u⃗)w⃗ for all u⃗), check:

Tr(w⃗ ⊗ ℓ) = ℓ.w⃗. (A.51)

Answer. w⃗ =
∑

i wia⃗i and ℓ =
∑

i ℓiπai give [w⃗ ⊗ ℓ) = [wiℓj ], thus Tr(w⃗ ⊗ ℓ) =
∑

i wiℓi =
∑

i ℓiwi = ℓ.w⃗.

Remark A.52 The �trace� of a bilinear form g : E × E → R (e.g. an inner dot product) de�ned by
Ta(g) =

∑
i gii, where (⃗ai) is a basis and g(⃗ai, a⃗j) = gij , is useless (not used) because it depends on the

choice of the basis (⃗ai): E.g. if b⃗i = λa⃗i then Tb(g) = λ2Ta(g) ̸= Ta(g) when λ ̸= ±1.

A.11 A transposed endomorphism: Depends on a chosen inner dot product

Not to be confused with the transposed of a matrix, cf. (A.19), and not to be confused with the transposed
of a bilinear form which is observer independent, cf. (A.34).

A.11.1 De�nition (requires an inner dot product: Not objective)

E is a �nite dimensional vector space, g(·, ·) = (·, ·)g = . •
g . is an inner dot product in E.

De�nition A.53 Let L ∈ L(E;E) (endomorphism). Its transposed relative to (·, ·)g, also called the
(·, ·)g-transposed, is the endomorphism LTg ∈ L(E;E) de�ned by

∀u⃗, w⃗ ∈ E, (LTg .w⃗, u⃗)g = (w⃗, L.u⃗)g, i.e. (LTg .w⃗) •
g u⃗ = w⃗ •

g (L.u⃗). (A.52)

(It depends on (·, ·)g, so L has an in�nite number of transposed, see e.g. exercise A.56.)
Isometric framework, so (·, ·)g is an imposed Euclidean dot product (English, French,...); Then

LTg =noted LT and (A.52) is written (LT .w⃗) • u⃗ = w⃗ • (L.u⃗).
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100 A.11. A transposed endomorphism: Depends on a chosen inner dot product

Exercice A.54 Prove: If (E, (·, ·)g) is an Hilbert space and if L ∈ L(E;E) is continuous, then LTg exists,
is unique, and is continuous (apply the Riesz representation theorem F.1).

(If E is �nite dimensional then see next � for a direct computation.)

Answer. Let w⃗ ∈ E, then let ℓw⃗g : u⃗ ∈ E → ℓw⃗g(u⃗) := (w⃗, L.u⃗)g ∈ R. ℓw⃗g is linear (trivial since L is linear and

(·, ·)g is bilinear) and continuous: |ℓw⃗g.u⃗| ≤ ||w⃗||g||L.u⃗||g ≤ ||w⃗||g||L|| ||u⃗||g gives ||ℓw⃗g||E∗ ≤ ||L|| ||w⃗||g < ∞. Let

ℓ⃗w⃗g ∈ E be the (·, ·)g-Riesz representation of ℓw⃗g ∈ E∗: So ℓw⃗g.u⃗ = (ℓ⃗w⃗g, u⃗)g for all u⃗ and ||ℓ⃗w⃗g||g = ||ℓw⃗g||E∗ .

Then de�ne LT
g : w⃗ ∈ E → LT

g (w⃗) := ℓ⃗w⃗g ∈ E; So (LT
g (w⃗), u⃗)g = (ℓ⃗w⃗g, u⃗)g = ℓw⃗g.u⃗ = (w⃗, L.u⃗)g, thus L

T
g is linear

(since (·, ·)g is bilinear) and continuous: ||LT
g .w⃗||g = ||ℓ⃗w⃗g||g = ||ℓw⃗g||E∗ ≤ ||L|| ||w⃗||g gives ||LT

g || ≤ ||L||L(E;E) <

∞. Uniqueness: if MT
g also satis�es (MT

g .w⃗, u⃗)g = (w⃗, L.u⃗)g then (MT
g .w⃗, u⃗)g = (LT

g .w⃗, u⃗)g, for all u⃗, w⃗, thus

MT
g = LT

g .

A.11.2 Quanti�cation with bases

(e⃗i) is a basis in E, [g]|e⃗ = [gij ] = g(e⃗i, e⃗j), [L]|e⃗ = [Lij ] and [LTg ]|e⃗ = [(LTg )ij ] (classical notation):

L.e⃗j =

n∑
i=1

Lij e⃗i, LTg .e⃗j =

n∑
i=1

(LTg )ij , i.e. [L]|e⃗ = [Lij ]
noted
= [L], [LTg ]|e⃗ = [(LTg )ij ]

noted
= [LTg ].

(A.53)
(A.52) gives [u⃗]T|e⃗.[g]|e⃗.[L

T
g .w⃗]|e⃗ = [L.u⃗]T|e⃗.[g]|e⃗.[w⃗]|e⃗, thus [u⃗]T|e⃗.[g]|e⃗.[L

T
g ]|e⃗.[w⃗]|e⃗ = [u⃗]T|e⃗.[L]

T
|e⃗.[g]|e⃗.[w⃗]|e⃗, for

all u⃗, w⃗, thus

[g]|e⃗.[L
T
g ]|e⃗ = [L]T|e⃗.[g]|e⃗, i.e.

n∑
k=1

gik(L
T
g )kj =

n∑
k=1

Lki gkj , (A.54)

so [LTg ]|e⃗ = [g]−1
|e⃗ .[L]

T
|e⃗.[g]|e⃗, written (the basis being implicit)

[LTg ] = [g]−1.[L]T .[g] , i.e. (LTg )ij =

n∑
k,ℓ=1

([g]−1)ikLℓkgℓj . (A.55)

Duality notations: L.e⃗j =
∑n
i=1L

i
j e⃗i, L

T
g .e⃗j =

∑n
i=1(L

T
g )
i
j , [L]|e⃗ = [Lij ], [L

T
g ]|e⃗ = [(LTg )

i
j ], and

n∑
k=1

gik(L
T
g )
k
j =

n∑
k=1

Lki gkj , i.e. (LTg )
i
j =

n∑
k,ℓ=1

([g]−1)ikL
ℓ
k gℓj . (A.56)

Particular case (e⃗i) is (·, ·)g-orthonormal: Then [g]|e⃗ = [δij ] and (LTg )ij = Lji.

Remark A.55 Warning: The last equation (A.56)2 is also written, only because it looks nice (!),

(LTg )
i
j =

n∑
k,ℓ=1

gikLℓk gℓj when ([g]e⃗)
−1 = [gij ]

−1 noted
= [gij ]. (A.57)

But it does not satisfy Einstein notation because it has nothing to do with covariance-contravariance
here. In fact gij is the short notation for (g♯)ij , see (F.34). And g♯ has nothing to do here...

So don't be fooled by the notation gij , de�ned by [gij ] := [gij ]
−1. Use classical notations to avoid

misuses and misinterpretations.

Exercice A.56 In R⃗2, let (e⃗1, e⃗2) be a basis. Let L ∈ L(R⃗2; R⃗2) be de�ned by [L]|e⃗ =

(
0 1
1 0

)
. Find

two inner dot products (·, ·)g and (·, ·)h in R⃗2 such that LTg ̸= LTh (a transposed endomorphism is not
unique, is not intrinsic to L, since it depends on a choice of an inner dot product by an observer).

Answer. Calculations with (A.54):

Choose (·, ·)g given by [g]|e⃗ =

(
1 0
0 1

)
= [I]. Thus [LT

g ]|e⃗ = [I].[L]|e⃗.[I] =

(
0 1
1 0

)
; So LT

g = L.

Choose (·, ·)h given by [h]|e⃗ =

(
1 0
0 2

)
. Thus [LT

h ]|e⃗ = [h]−1
|e⃗ .[L]|e⃗.[h]|e⃗ =

(
0 2
1
2

0

)
; So LT

h ̸= L.

Thus LT
h ̸= LT

g , e.g., e⃗2 = LT
g .e⃗1 ̸= LT

h .e⃗1 = 1
2
e⃗2.
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Exercice A.57 Prove: If L is invertible then LTg is invertible, and (LTg )
−1 = (L−1)Tg (written L−T

g ).

Answer. Suppose: ∃w⃗ ∈ E, w⃗ ̸= 0⃗, s.t. LT
g .w⃗ = 0. L being invertible, ∃!u⃗ ∈ E s.t. L.u⃗ = w⃗, with u⃗ ̸= 0⃗ since

w⃗ ̸= 0⃗ and L is linear; And LT
g .w⃗ = 0 gives LT

g .L.u⃗ = 0, thus (LT
g .L.u⃗, u⃗)g = 0, thus ||L.u⃗||2g = 0, thus L.u⃗ = 0, thus

u⃗ = 0 since L is linear bijective; Absurd. Thus Ker(LT
g ) = {0⃗}, thus LT

g is invertible since it is an endomorphism.

And (LT
g .(L

−1)Tg .u⃗, w⃗)g
(A.52)
= ((L−1)Tg .u⃗, L.w⃗)g

(A.52)
= (u⃗, (L−1).L.w⃗)g = (u⃗, w⃗)g = (LT

g .(L
T
g )

−1.u⃗, w⃗)g, true ∀u⃗, w⃗,
thus LT

g .(L
−1)Tg = LT

g .(L
T
g )

−1, thus (L−1)Tg = (LT
g )

−1 since LT
g is invertible.

Exercice A.58 Special case of proportional inner dot products (·, ·)a and (·, ·)b: ∃λ > 0 s.t. (·, ·)a =
λ2(·, ·)b. Prove: LTa = LTb : Two proportional inner dot products give the same transposed endomorphism.

Answer. (LT
b .w⃗, u⃗)b = (w⃗, L.u⃗)b = λ2(w⃗, L.u⃗)a = λ2(LT

a .w⃗, u⃗)a = (LT
a .w⃗, u⃗)b, for all u⃗, w⃗, so LT

b = LT
a .

Exercice A.59 Prove: Tr(LTg ) = Tr(L) (independent of g).

Answer. Tr(LT
g ) = Tr([LT

g ]|e⃗) = Tr([g]−1
|e⃗ .[L]T|e⃗.[g]|e⃗) = Tr([g]|e⃗.[g]

−1
|e⃗ .[L]T|e⃗) = Tr([L]T|e⃗) = Tr([L]|e⃗) = Tr(L).

A.11.3 Dangerous tensorial notation for endomorphisms

Recall: The transposed βT of a bilinear form β is objective, cf. (A.34): We don't need any tool like an

inner dot product to de�ne βT .
Not to be confused with: The transposed LTg =noted LT of a linear map L is subjective: It depends

on a choice of an inner dot products (·, ·)g by an observer.
E.g., a bilinear form β ∈ L(E,E;R) satis�es [βT ]|e⃗ = [β]|e⃗

T . But a linear endomorphism L ∈ L(E;E)

satis�es [LTg ]|e⃗ ̸= [L]|e⃗
T in general: E.g. take [L]|e⃗ =

(
0 1
1 0

)
and [g]|e⃗ =

(
1 0
0 2

)
and use (A.55).

Hence it is dangerous to represent an endomorphism in a basis with its �bilinear tensorial repre-
sentation� when dealing with the transposed: L ∈ L(E;E) is naturally canonically represented by the
bilinear form β(L) ∈ L(E∗, E;R) (and β(L) /∈ L(E,E;R)): With (ai) the dual basis of (⃗ai),

L.⃗aj =

n∑
i=1

Lij a⃗i gives β(L) =

n∑
i,j=1

Lij a⃗i ⊗ aj , thus β(L)
T (A.34)

=

n∑
i,j=1

Ljia
i ⊗ a⃗j . (A.58)

And, a (·, ·)g being chosen, LTg ∈ L(F ;E) is represented by the bilinear form β(LT
g ) ∈ L(E∗, E;R):

LTg .⃗aj =

n∑
i=1

(LTg )
i
j a⃗i gives β(LT

g ) =

n∑
i,j=1

(LTg )
i
j a⃗i ⊗ aj ; Thus β(LT

g ) ̸= β(L)
T (A.59)

because: 1- a⃗i ⊗ aj ̸= ai ⊗ a⃗j (!), and
2- (βL)

T is independent of any inner dot product, while LTg depends on a chosen inner dot product,

see (A.55): (LTg )
i
j =

∑n
k,ℓ=1([g]

−1)ikL
ℓ
k gℓj ̸= Lji in general, while (β(L)

T )ij = (β(L))
j
i (always).

3- (βL)
T ∈ L(E∗, E;R) is the tensorial representation of the adjoint L∗ ∈ L(E∗;E∗) of L, i.e. (βL)

T =
β(L∗), see (A.81).

So in continuum mechanics it is strongly advised not to use the tensorial notation for linear maps
when dealing with transposed.

A.11.4 Symmetric endomorphism (depends on a (·, ·)g)

De�nition A.60 An endomorphism L ∈ L(E;E) is (·, ·)g-symmetric i� LTg = L:

L (·, ·)g-symmetric ⇐⇒ LTg = L ⇐⇒ (L.u⃗, w⃗)g = (u⃗, L.w⃗)g, ∀u⃗, w⃗ ∈ E. (A.60)

Remark A.61 The symmetric character of an endomorphism L is not intrinsic to the endomorphism:
It depends on (·, ·)g; See exercise A.56 where L is (·, ·)g-symmetric while it is not (·, ·)h-symmetric.
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102 A.12. A transposed of a linear map: depends on chosen inner dot products

A.11.5 The general �at ♭ notation for an endomorphism (depends on a (·, ·)g)

De�nition A.62 Let (·, ·)g be an inner dot product in a vector space E, and let L ∈ L(E;E). Its
associated bilinear form L♭g ∈ L(E,E;R) is de�ned by, for all u⃗, w⃗ ∈ E,

L♭g(u⃗, w⃗) := (u⃗, L.w⃗)g. (A.61)

(The bilinearity of L♭g is trivialL
♭
g.) (The bilinear form L♭g is continuous as soon as L is: |L♭g(u⃗, v⃗)| ≤

||g|| ||L.u⃗|| ||v⃗|| ≤ (||g|| ||L||) ||u⃗|| ||v⃗||.) We have thus de�ned the (·, ·)g-dependent operator:

(.)♭g = Jg(.) :

{
L(E;E) → L(E,E;R)

L → Jg(L) := L♭g,
(A.62)

This operator transforms a contravariance into a covariance: Indeed, with the natural canonical isomor-
phism L(E;E) ≃ L(E∗, E;R), L is represented by a bilinear form L̃ ∈ L(E∗, E;R) (a

(
1
1

)
tensor) which

is transformed by (.)♭g into a bilinear form L♭g ∈ L(E,E;R) (a
(
0
2

)
tensor).

Quanti�cation: Let (e⃗i) be a basis in E, and [g]|e⃗ = [gij ], [L]|e⃗ = [Lij ] and [L♭g]|e⃗ = [(L♭g)ij ], i.e.

g =

n∑
i,j=1

gije
i ⊗ ej , Le⃗j =

n∑
i=1

Lij e⃗i, L♭g =

n∑
i,j=1

(L♭g)ije
i ⊗ ej . (A.63)

Then

[L♭g] = [g].[L] . (A.64)

Indeed: (L♭g)ij = L♭g(e⃗i, e⃗j)
(A.61)
= (e⃗i, L.e⃗j)g = (e⃗i,

∑
k

Lkj e⃗k)g =
∑
k

Lkjgik = ([g].[L])ij .

Exercice A.63 With the natural canonical isomorphism L ∈ L(E;E) ≃ TL ∈ L(E∗, E;R) given by
TL(ℓ, w⃗) = ℓ.L.w⃗, prove:

L♭g = g.TL ∈ L(E,E;R) ≃ L(E∗;E). (A.65)

(A change of variance, here from the
(
1
1

)
tensor TL ≃ L to the

(
0
2

)
tensor L♭g, is necessarily observer depen-

dent: There is no natural canonical isomorphism between a vector space E and its dual E∗, see � U.2.)

Answer. If L.e⃗j =
∑

i L
i
j e⃗i then TL =

∑
ij L

i
j e⃗i ⊗ ej , thus g =

∑
ij gije

i ⊗ ej gives g.TL =
∑

ijk gikL
k
j e⃗i ⊗ ej .

And L♭
g(e⃗i, e⃗j) =

(A.61) (e⃗i, L.e⃗j)g =
∑

k L
k
j(e⃗i, e⃗k)g =

∑
k L

k
jgik, thus L

♭
g =

∑
ijk gikL

k
j e⃗i ⊗ ej = g.TL.

A.12 A transposed of a linear map: depends on chosen inner dot products

This paragraph is needed to de�ne the transposed of a deformation gradient.

A.12.1 De�nition (depends on two inner dot products)

(E, (·, ·)g) and (F, (·, ·)h) are Hilbert spaces, and L ∈ L(E;F ) (supposed continuous when E and F are

in�nite dimensional). E.g., E = R⃗nt0 , F = R⃗nt , deformation gradient L = dΦt0t (P ) ∈ L(R⃗nt0 ; R⃗
n
t ), cf. (4.1),

(·, ·)g is the foot built Euclidean dot product chosen by the observer at t0 (measurements at t0), (·, ·)h is
the metre built Euclidean dot product chosen by the observer at t (measurements at t).

De�nition A.64 The transposed of L ∈ L(E;F ) relative to (·, ·)g and (·, ·)h is LTgh ∈ L(F ;E) de�ned
by, for all (u⃗, w⃗) ∈ E × F ,

(LTgh.w⃗, u⃗)g = (w⃗, L.u⃗)h, (A.66)

where we used the dot notation LTgh(w⃗) =
noted LTgh.w⃗ since LTgh is linear. This de�nes the map

(.)Tgh :

{
L(E;F ) → L(F ;E)

L → (.)Tgh(L) := LTgh
(A.67)

(So a linear map has an in�nite number of transposed (it depends on inner dot products.)

And if F = E and (·, ·)h = (·, ·)g then LTgh = LTg , see � A.11 (transposed of an endomorphism).
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103 A.12. A transposed of a linear map: depends on chosen inner dot products

A.12.2 Quanti�cation with bases

Let (⃗ai)i=1,...,n and (⃗bi)i=1,...,m be bases in E and F , let [g]|⃗a = [gij ] = [g(⃗ai, a⃗j)], [h]|⃗b = [hij ] = [h(⃗bi, b⃗j)],

and let (classical notation)

L.⃗aj =

m∑
i=1

Lij b⃗i, i.e. [L]|⃗a,⃗b = [Lij ]
noted
= [L],

LTgh .⃗bj =

n∑
i=1

(LTgh)ij a⃗i, i.e. [LTgh]|⃗b,⃗a = [(LTgh)ij ]
noted
= [LTgh].

(A.68)

(A.66) gives [u⃗]T|⃗a.[g]|⃗a.[L
T
gh.w⃗]|w⃗ = ([L.u⃗]|⃗b)

T .[h]|⃗b.[w⃗]|⃗b for all u⃗, w⃗, thus, [g]|⃗a.[L
T
gh]|⃗b,⃗a = ([L]|⃗a,⃗b)

T .[h]|⃗b
and [LTgh]|⃗b,⃗a = [g]−1

|⃗a .([L]|⃗a,⃗b)
T .[h]|⃗b. Shortened notation with implicit bases:

[g].[LT ] = [L]T .[h], i.e.

n∑
k=1

gik(L
T
gh)kj =

m∑
k=1

Lki hkj , (A.69)

i.e.

[LT ] = [g]−1.[L]T .[h] , i.e. (LTgh)ij =

n∑
k=1

m∑
ℓ=1

([g]−1)ikLℓkhℓj . (A.70)

Duality notations: L.e⃗j =
∑n
i=1L

i
j e⃗i, [L]|e⃗ = [Lij ], L

T
gh.e⃗j =

∑n
i=1(L

T
gh)

i
j , [L

T
gh]|e⃗ = [(LTgh)

i
j ], and

n∑
k=1

gik(L
T
gh)

k
j =

n∑
k=1

Lki hkj , i.e. (LTgh)
i
j =

n∑
k,ℓ=1

([g]−1)ikL
ℓ
k hℓj (

noted
=

n∑
k,ℓ=1

(gikLℓk hℓj). (A.71)

(Be careful with the notation ([g]−1)ik =noted gij , see remark A.55.)

Exercice A.65 Prove: If L is invertible then (LTgh)
−1 = (L−1)Thg.

Answer. (LT
gh.(L

−1)Thg.u⃗, w⃗)g = ((L−1)Thg.u⃗, L.w⃗)h = (u⃗, L−1.L.w⃗)g = (u⃗, w⃗)g = (LT
gh.(L

T
gh)

−1.u⃗, w⃗)g, true

∀u⃗, w⃗.

A.12.3 Deformation gradient symmetric: Absurd

The symmetry of a linear map L ∈ L(E;F ) is a nonsense if E ̸= F .

E.g.: The gradient of deformation F t0t (pt0) = dΦt0t (pt0) =
noted F ∈ L(R⃗nt0 ; R⃗

n
t ) cannot be symmetric

since FT ∈ L(R⃗nt ; R⃗nt0). Idem for the �rst Piola�Kirchho� tensor PKt0
t , which motivates the introduction

of the symmetric second Piola�Kirchho� tensor SKt0
t , see Marsden�Hughes [14] or � O.2.4.

A.12.4 Isometry

De�nition A.66 A linear map L ∈ L(E;F ) is an isometry relative to (·, ·)g and (·, ·)h i�

∀u⃗, w⃗ ∈ E, (L.u⃗, L.w⃗)h = (u⃗, w⃗)g, i.e. LTgh ◦ L = IE (identity in E). (A.72)

Thus, if L ∈ L(E;F ) is an isometry and (e⃗i) is a (·, ·)g-orthonormal basis, then (L.e⃗i) is a (·, ·)h-
orthonormal basis, since (L.e⃗i, L.e⃗j)h = (e⃗i, e⃗j)g = δij for all i, j.

In particular, an endomorphism L ∈ L(E;E) is a (·, ·)g-isometry i�

∀u⃗, w⃗ ∈ E, (L.u⃗, L.w⃗)g = (u⃗, w⃗)g, i.e. LTg ◦ L = IE . (A.73)

Exercice A.67 Let f⃗ : E → F . Prove:

if, ∀u⃗, w⃗, (f⃗(u⃗), f⃗(w⃗))h = (u⃗, w⃗)g then f⃗ is linear. (A.74)

Answer. Let (e⃗i) be a (·, ·)g-orthonormal basis; Thus (f⃗(e⃗i)) is a (·, ·)h-orthonormal basis (since f⃗ is an isometry).

Thus, if u⃗ =
∑n

i=1xie⃗i then f⃗(u⃗)
b.o.n.
=

n∑
i=1

(f⃗(u⃗), f⃗(e⃗i))hf⃗(e⃗i)
hyp.
=

n∑
i=1

(u⃗, e⃗i)g f⃗(e⃗i)
b.o.n.
=

n∑
i=1

xif⃗(e⃗i), thus f⃗(u⃗+λw⃗) =

n∑
i=1

(xi + λyi)f⃗(e⃗i) =
n∑

i=1

xif⃗(e⃗i) + λ
n∑

i=1

yif⃗(e⃗i) = f⃗(u⃗) + λf⃗(w⃗), thus f⃗ is linear.
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104 A.13. The adjoint of a linear map (objective)

Exercice A.68 Rn is an a�ne space, R⃗n is the usual associated vector space, and (·, ·)g is an inner dot

product in R⃗n. De�nition: A distance-preserving function f : p ∈ Rn → f(p) ∈ Rn is a function s.t.

||−−−−−→f(p)f(q)||g = ||−→pq||g, ∀p, q ∈ Rn. (A.75)

Prove: If f is a distance-preserving function, then f is a�ne.

Answer. Let O ∈ Rn (an origin) and f⃗ : x⃗ =
−→
Op ∈ R⃗n → f⃗(x⃗) :=

−−−−−−→
f(O)f(p) (vectorial associated function). Let

x⃗ =
−→
Op and y⃗ =

−→
Oq. Then the remarkable identity 2(f⃗(x⃗), f⃗(y⃗))g = ||f⃗(x⃗)||2g + ||f⃗(y⃗)||2g − ||f⃗(x⃗)−f⃗(y⃗)||2g gives

2(f⃗(x⃗), f⃗(y⃗))g = ||f⃗(x⃗)||2g+||f⃗(y⃗)||2g−||−−−−−→f(q)f(p)||2g = ||f⃗(x⃗)||2g+||f⃗(y⃗)||2g−||−→qp||2g = ||x⃗||2g+||y⃗||2g−||x⃗−y⃗||2g = 2(x⃗, y⃗)g,

thus f⃗ is an isometry, thus f⃗ is linear cf. (A.74), thus f is a�ne since f(p) = f(O) + f⃗(
−→
Op).

A.13 The adjoint of a linear map (objective)

(May produce misunderstandings, misuses, problematic mechanical interpretations, if not understood.)
A linear map L ∈ L(E;F ) has one and only one adjoint L∗ (intrinsic to L); Must not be confused

with the many transposed LT := LTgh which depend on inner dot products.

A.13.1 De�nition

E and F are vector spaces, and E∗ = L(E;R) and F ∗ = L(F ;R) are the dual spaces (of linear forms).

De�nition A.69 Let L ∈ L(E;F ); Its adjoint is the linear map L∗ ∈ L(F ∗;E∗) canonically de�ned by

L∗ :

{
F ∗ → E∗

m → L∗(m) := m ◦ L, written L∗.m = m.L
(A.76)

thanks to the linearity of m, L and L∗, i.e., for all (u⃗,m) ∈ E × F ∗,

L∗(m)(u⃗) := m(L(u⃗)), written (L∗.m).u⃗ = m.L.u⃗ (A.77)

thanks to the linearity of m, L and L∗.

(The linearity of L∗ is trivial. And ||L∗.m||E∗ = ||m.L||E∗ ≤ ||m||F∗ ||L||L(E;F ) gives ||L∗||L(F∗;E∗) ≤
||L||L(E;F ) <∞, thus L∗ is continuous when L is.)

A.13.2 Quanti�cation

E and F are �nite dimensional, dimE = n, dimF = m, and (⃗ai) and (⃗bi) are bases in E and F and (πai)
and (πbi) are the (covariant) dual bases. Let [L]|⃗a,⃗b =

noted [L], [L∗]|πb,πa
=noted [L∗], [m]|b =

noted [m]

and [u⃗]|⃗a =noted [u⃗] (the matrices relative to the chosen bases). (A.77) gives

∀(m, u⃗) ∈ F ∗ × E, [L∗].[m].[u⃗] = [m].[L].[u⃗], thus ∀m ∈ F ∗, [L∗].[m]T = ([L]T .[m]T (A.78)

(recall: m ∈ F ∗, thus [m] is a row matrix). Thus

[L∗] = [L]T (transposed matrix). (A.79)

(Full notation: [L∗]|πb,πa
= ([L]|⃗a,⃗b)

T : There is no inner dot products here.)

Details: L.⃗aj =
∑m
i=1Lij b⃗i, i.e. [L]|⃗a,⃗b = [Lij ] i=1,...,m

j=1,...,n
, and L∗.πbj =

∑n
i=1(L

∗)ijπai, i.e. [L
∗]|πb,πa

=

[(L∗)ij ] i=1,...,n
j=1,...,m

, (A.77) gives, for all (i, j) ∈ [1, n]N × [1,m]N,

(L∗.πbj).⃗ai = πbj .(L.⃗ai), thus (L∗)ij = Lji gives [L∗] = [L]T . (A.80)

Duality notations: L.⃗aj =
∑m
i=1L

i
j b⃗i, i.e. [L]|⃗a,⃗b = [Lij ] i=1,...,m

j=1,...,n
, and L∗.bj =

∑n
i=1(L

∗)i
jai, i.e.

[L∗]|b,a = [((L∗)i
j ] i=1,...,n

j=1,...,m
, thus, for all (i, j) ∈ [1, n]N × [1,m]N,

(L∗.bj).⃗ai = bj .(L.⃗ai), thus (L∗)i
j = Lji and [L∗] = [L]T . (A.81)

(Recall: If in doubt then don't use the duality notations! Use classical notations.)
NB: Reminder: The transposed bT of a bilinear b form is intrinsic to b, and the adjoint L∗ of a linear

map L is intrinsic to L; But a transposed LT of a linear form L is not intrinsic to the linear form (it
depends on chosen inner dot products):

Watch out for the (unfortunate) vocabulary �transposed�!
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A.13.3 Relation with the transposed when inner dot products are introduced

let L ∈ L(E;F ). We need inner dot products (·, ·)g and (·, ·)h in E and F to de�ne LT = LTgh. To

have a functional relation between L∗ and LTgh, we use the (·, ·)g-Riesz representation mapping R⃗g :{
E∗ → E

ℓ → R⃗g(ℓ) = ℓ⃗g

}
de�ned by ℓ.u⃗ = (ℓ⃗g, u⃗)g for all u⃗ ∈ E, see (F.3); Idem in F .

Let L ∈ L(E;F ) (continuous). For all u⃗ ∈ E and all m ∈ F ∗ we have

(L∗.m).u⃗
(A.77)
= m.(L.u⃗), thus (R⃗g(L

∗.m), u⃗)g = (R⃗h(m), L.u⃗)h, (A.82)

thus ((R⃗g ◦ L∗).m), u⃗)g = ((LTgh ◦ R⃗h).m, L.u⃗)g. Thus R⃗g ◦ L∗ = LTgh ◦ R⃗h, i.e.

LTgh = R⃗g ◦ L∗ ◦ (R⃗h)−1 i.e.
E

LTgh←− F

R⃗g ↑ ↑ R⃗h
E∗ ←−

L∗
F ∗

is a commutative diagram. (A.83)

Exercice A.70 From (A.83), recover (A.69), i.e. [LTgh] = [g]−1.[L]T .[h].

Answer. [LT
gh] =

(A.83) [R⃗g].[L
∗].[R⃗h]

−1 =(F.8) [g]−1.[L]T .[h].

A.14 Tensorial representation of a linear map (dangerous)

Consider the natural canonical isomorphism (between linear maps E → F and bilinear forms F ∗×E → R)

J̃ :

{
L(E;F ) → L(F ∗, E;R)

L → βL = J̃ (L)

}
where βL(m, u⃗) := m.(L.u⃗), ∀(m, u⃗) ∈ F ∗ × E, (A.84)

see � U.4. And βL is also named L for calculations purposes, see (A.87).

Quanti�cation: (⃗ai)i=1,...,n is a basis in E, (⃗bi)i=1,...,m is a basis in F which dual basis is (πbi), L ∈
L(E;F ). Then (A.84) gives

βL(πbi, a⃗i) = πbi.L.⃗ai. (A.85)

Thus, if L.⃗aj =
∑m
i=1Lij b⃗i, i.e. [L]⃗a,⃗b = [Lij ], then

βL =

m∑
i=1

n∑
j=1

Lij b⃗i ⊗ πaj , i.e. [βL ]⃗b,πa
= [L]⃗a,⃗b

noted
= [βL ]⃗a,⃗b. (A.86)

Indeed, (
∑
ij Lij b⃗i⊗πaj)(πbk, a⃗ℓ) =

∑
ij Lij (⃗bi⊗πaj)(πbk, a⃗ℓ) =

∑
ij Lij (⃗bi.πbk)(πaj .⃗aℓ) =

∑
ij Lijδkiδjℓ =

Lkℓ = πbk.L.⃗aℓ, so (A.85) gives (A.86).

Duality notations: L.⃗aj =
∑m
i=1L

i
j b⃗i and βL =

∑m
i=1

∑n
j=1L

i
j b⃗i ⊗ aj .

Contraction rule. If you write L =noted βL =
∑m
i=1

∑n
j=1Lij b⃗i ⊗ πaj , then the vector L.u⃗ ∈ F is

computed thanks to the �contraction rule�:

L.u⃗ = βL.u⃗ = (

m∑
i=1

n∑
j=1

Lij b⃗i ⊗ πaj).u⃗︸ ︷︷ ︸
contraction

:=

m∑
i=1

n∑
j=1

Lij b⃗i(πaj .u⃗) =

m∑
i=1

n∑
j=1

Lijuj b⃗i, (A.87)

which is the expected result.

Duality notations: L.u⃗ = (

m∑
i=1

n∑
j=1

Lij b⃗i ⊗ aj).u⃗︸ ︷︷ ︸
contraction

=

m∑
i=1

n∑
j=1

Lij b⃗i(a
j .u⃗) =

m∑
i=1

n∑
j=1

Liju
j b⃗i.

Remark A.71 Warning: The bilinear form βL should not be confused with the linear map L: The
domain of de�nition of βL is F ∗×E, and βL acts on the two objects ℓ (linear form) and u⃗ (vector) to get
a scalar result; While the domain of de�nition of L is E, and L acts one object u⃗ to get a vector result.
You can use the tensorial notation for L... only to calculate L.u⃗ as in (A.87) (contraction rule).
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A.15 Change of basis formulas for bilinear forms and linear maps

A.15.1 Notations

Let A and B be �nite dimension vector spaces, dimA = n, dimB = m. (E.g. application to the change

of basis formula for the deformation gradient A=R⃗nt0 → B=R⃗nt .)
Let (⃗aold,i) and (⃗anew,i) be two bases in A, and (⃗bold,i) and (⃗bnew,i) be two bases in B. Let PA and

PB be the change of basis endomorphisms from old to new bases, and PA := [PA]|⃗aold = [PAij ] and

PB := [PB ]|⃗bold = [PBij ] be the associated transition matrices, and QA = PA
−1 and QB = PB

−1. So:

a⃗new,j = PA .⃗aold,i =
n∑

i,j=1

PAij a⃗old,i, πanew,j =

n∑
i=1

QAijπaold,i,

b⃗new,j = PB .⃗bold,i =
m∑

i,j=1

PBij b⃗old,i, πbnew,j =

n∑
i,j=1

QBijπbold,i.

(A.88)

Dual not.: a⃗new,j =
∑n
i=1PA

i
j a⃗old,i, a

i
new

=
∑n
j=1QA

i
ja
j
old
, b⃗new,j =

∑n
i=1PB

i
j b⃗old,i, b

i
new

=
∑n
j=1QB

i
jb
j
old
.

A.15.2 Change of coordinate system for bilinear forms ∈ L(A,B;R)

Let g ∈ L(A,B;R), and, for all (i, j) ∈ [1, n]N × [1,m]N,

g(⃗aold,i, b⃗old,j) =Mij , g(⃗anew,i, b⃗new,j) = Nij , i.e.

 [g]|olds =M = [Mij ] i=1,...,n
j=1,...,m

,

[g]|news = N = [Nij ] i=1,...,n
j=1,...,m

.
(A.89)

Proposition A.72 Change of basis formula:

[g]|news = PA
T .[g]|olds.PB , i.e. N = PA

T .M.PB . (A.90)

In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P , and

[g]|new = PT .[g]old.P , i.e. N = PT .M.P. (A.91)

Proof. Nij = g(⃗anew,i, b⃗new,j) =
∑
kℓ PA

k
iPB

ℓ
jg(⃗aold,k, b⃗old,ℓ) =

∑
kℓ PA

k
iMkℓPB

ℓ
j =

∑
kℓ(PA

T )ikMkℓPB
ℓ
j .

Exercice A.73 Prove (objective result):

g(u⃗, w⃗) = [u⃗]T|⃗anew
.[g]|news.[w⃗]|⃗bnew

= [u⃗]T|⃗aold
.[g]|olds.[w⃗]|⃗bold

. (A.92)

Answer. [u⃗]T|⃗a
new

.[g]|news.[w⃗]|⃗b
new

= (PA
−1.[u⃗]|⃗a

old
)T .(PA

T .[g]|olds.PB).(PB
−1.[w⃗]|⃗b

old
).

A.15.3 Change of coordinate system for bilinear forms ∈ L(A∗, B∗;R)

Let z ∈ L(A∗, B∗;R), and, for all (i, j) ∈ [1, n]N × [1,m]N,

z(ai
old
, bj

old
) =M ij , z(ai

new
, bj

new
) = N ij , i.e.

 [z]|olds =M = [M ij ] i=1,...,n
j=1,...,m

,

[z]|news = N = [N ij ] i=1,...,n
j=1,...,m

.
(A.93)

Proposition A.74 Change of basis formula:

[z]|news = PA
−T .[z]|olds.PB

−1, i.e. N = PA
−T .M.PB

−1. (A.94)

In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P , and

[z]|new = P−T .[z]old.P
−1, i.e. N = P−T .M.P−1. (A.95)

Proof. Nij = z(ai
new
, bj

new
) =

∑
kℓQA

k
iQB

ℓ
jz(a

k
old
, bℓ

old
) =

∑
kℓQA

k
iM

kℓQB
ℓ
j =

∑
kℓ(QA

T )ikM
kℓQB

ℓ
j .
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A.15.4 Change of coordinate system for bilinear forms ∈ L(B∗, A;R)

(Toward linear maps L ∈ L(A;B) ≃ L(B∗, A;R) thanks to the natural canonical isomorphism.)
Let T ∈ L(B∗, A;R), and, for all (i, j) ∈ [1, n]N × [1,m]N,

T (bi
old
, a⃗old,j) =M i

j , T (bi
new
, a⃗new,j) = N i

j , i.e.

 [T ]|olds =M = [M i
j ] i=1,...,n

j=1,...,m
,

[T ]|news = N = [N i
j ] i=1,...,n

j=1,...,m
.

(A.96)

Proposition A.75 Change of basis formula:

[T ]|news = PB
−1.[T ]|olds.PA , i.e. N = QA.M.PB . (A.97)

In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P , and

[T ]|new = P−1.[T ]old.P , i.e. N = P−1.M.P. (A.98)

Proof. N i
j = T (bi

new
, a⃗new,j) =

∑
kℓQB

i
kPA

ℓ
jT (b

i
old
, a⃗old,j) =

∑
kℓQB

i
kM

i
jPA

ℓ
j

A.15.5 Change of coordinate system for tri-linear forms ∈ L(A∗, A,A;R)

(Toward d2u⃗: For a vector �eld u⃗ ∈ Γ(U) ≃ T 1
0 (U), u⃗(p) ∈ R⃗n, its di�erential satis�es du⃗(p) ∈

L(R⃗n; R⃗n) ≃ L(Rn∗, R⃗n;R), and d2u⃗(p) ∈ L(R⃗n;L(R⃗n; R⃗n)) ≃ L(Rn∗, R⃗n, R⃗n;R), see � T.1.3.)
Consider a tri-linear form T ∈ L(A∗, A,A;R), and [T ]|⃗aold = [M i

jk] and [T ]|⃗anew = [N i
jk], so where

M i
jk = T (ai

old
, a⃗old,j , a⃗old,k), N i

jk = T (ai
new
, a⃗new,j , a⃗new,k). (A.99)

Then

N i
jk =

n∑
λ,µ,ν=1

QiλP
µ
j P

ν
k M

λ
µν . (A.100)

Indeed
∑
λµνM

λ
µν a⃗old,λ ⊗ a

µ
old ⊗ aνold =

∑
λµνijkM

λ
µνQ

i
λP

µ
j P

ν
k a⃗new,i ⊗ a

j
new
⊗ ak

new
.

A.15.6 Change of coordinate system for linear maps ∈ L(A;B)

Notation of � A.15.1. Let L ∈ L(A;B) be a linear map, and let, for all j = 1, ..., n,
L.⃗aold,j =

m∑
i=1

Mij b⃗old,i =

m∑
i=1

M i
j b⃗old,i i.e. [L]|olds =M = [Mij ] = [M i

j ] i=1,...,m
j=1,...,n

,

L.⃗anew,j =

m∑
i=1

Nij b⃗new,i =

m∑
i=1

N i
j b⃗new,i i.e. [L]|news = N = [Nij ] = [N i

j ] i=1,...,m
j=1,...,n

,

(A.101)

with classical and duality notations.

Proposition A.76 Change of bases formula:

[L]|news = PB
−1.[L]|olds.PA , i.e. N = PB

−1.M.PA. (A.102)

Particular case L endomorphism: A = B, (⃗aold,i) = (⃗bold,i), (⃗anew,i) = (⃗bnew,i), PA = PB =noted P and

[L]|new = P−1.[L]|old.P , i.e. N = P−1.M.P. (A.103)

Proof. L.⃗anew,j =
∑
iN

i
j b⃗new,i =

∑
ikN

i
jPB

k
i⃗bold,k =

∑
k(PB .N)kj b⃗old,k and L.⃗anew,j =

L.(
∑
i PA

i
j a⃗old,i) =

∑
i PA

i
j

∑
kM

k
i⃗bold,k =

∑
k(M.PA)

k
j b⃗old,k, for all j, thus PB .N =M.PA.
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Exercice A.77 Prove:

ℓ.L.u⃗ = [ℓ]|⃗bnew
.[L]|news.[u⃗]|⃗anew = [ℓ]|⃗bold

.[L]|olds.[u⃗]|⃗aold (objective result). (A.104)

Answer. [ℓ]|⃗b
new

.[L]|news.[u⃗]|⃗a
new

= ([ℓ]|⃗b
old

.PB).(PB
−1.[L]|olds.PA).(PA

−1.[u⃗]|⃗a
old

).

Remark A.78 Bilinear forms in L(A,A;R) and endomorphisms in L(A;A) behave di�erently: The
formulas (A.91) and (A.103) should not be confused since P−1 ̸= PT in general. E.g., if an English
observer uses a Euclidean (old) basis (⃗ai) = (⃗aold,i) in foot, if a French observer uses a Euclidean (new)

basis (⃗bi) = (⃗anew,i) in metre, and if (simple case) b⃗i = λa⃗i for all i (change of unit), then

[L]|new = [L]|old, while [g]|new = λ2︸︷︷︸
>10

[g]|old. (A.105)

Quite di�erent results! I.e. P−1.[L]|old.P ̸= PT .[L]|old.P for a general change of basis. See the Mars
Climate Orbiter crash, remark A.17, where someone forgot that 1 foot ̸= 1 metre.

B Euclidean Frameworks

Time and space are decoupled (classical mechanics). Rn is the geometric a�ne space, n = 1, 2, 3, and R⃗n
is the associated usual vector space made of �bi-point vectors�.

B.1 Euclidean basis

Manufacturing of a Euclidean basis.
An observer chooses a unit of measure (foot, metre, a unit of length used by Euclid, the diameter a

of pipe...) and makes a �unit rod� of length 1 in this unit.
Postulate: The length of the rod does not depend on its direction in space.

• Space dimension n = 1: This rod models a vector e⃗1 which makes a basis (e⃗1) called the Euclidean
basis relative to the chosen unit of measure.

• Space dimension n ≥ 2:
- The observers makes three rods of length 3, 4 and 5, to build a triangle (A,B,C) with A, B and C

are the vertices and A not on the side on length 5.
- Pythagoras: 32 + 42 = 52 gives: The triangle (A,B,C) is said to have a right angle at A.

- Two vectors u⃗ and w⃗ in R⃗n are orthogonal i� the triangle (A,B,C) can be positioned such that A⃗B

and A⃗C are parallel to u⃗ and w⃗.
- A basis (e⃗i)i=1,...,n is Euclidean relative to the chosen unit of measurement i� the e⃗i are two to two

orthogonal and their length is 1 (relative to the chosen unit).

Example B.1 An English observer de�nes a Euclidean basis (⃗ai) using the foot. A French observer

de�nes a Euclidean basis (⃗bi) using the metre. We have

1 foot = µmetre, µ = 0.3048, and 1metre = λ foot, λ =
1

µ
≃ 3.28. (B.1)

(µ = 0, 3048 is the o�cial length in metre for the English foot.) E.g., the bases are �aligned� i�, for all i,

b⃗i = λa⃗i (change of measurement unit), (B.2)

thus the transition matrix from (⃗ai) to (⃗bi) is P = λI, thus PT = P , P−1 = 1
λI and PT .P = λ2I.

Remark B.2 The bases used in practice are not all Euclidean. E.g., see example A.16 if you �y.
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B.2 Euclidean dot product

De�nition B.3 An observer has built his Euclidean basis (e⃗i). The associated Euclidean dot product is

the bilinear form g(·, ·) = (·, ·)g ∈ L(R⃗n, R⃗n;R) de�ned by

g(e⃗i, e⃗j)
noted
= gij = δij , ∀i, j, i.e. [g]|e⃗ = I. (B.3)

I.e., with (πei) = (ei) the dual basis of (e⃗i) (with classical and duality notations),

(·, ·)g :=
n∑
i=1

πei ⊗ πei =
n∑
i=1

ei ⊗ ei. (B.4)

With Einstein's convention, (·, ·)g :=
∑n
i,j=1gije

i ⊗ ej : You have to write gij (although = δij here). E.g.

with the repeated index convention: (·, ·)g := gije
i ⊗ ej .

Thus, for all x⃗, y⃗ ∈ R⃗n, with x⃗ =
∑n
i=1xie⃗i and y⃗ =

∑n
i=1yie⃗i (classical notations),

(x⃗, y⃗)g =

n∑
i=1

xiyi = [x⃗]T|e⃗.[y⃗]|e⃗
noted
= x⃗ •

g y⃗. (B.5)

Duality notations: x⃗ =
∑n
i=1x

ie⃗i, y⃗ =
∑n
i=1y

ie⃗i and (x⃗, y⃗)g =
∑n
i=1x

iyi.
With Einstein's convention: (x⃗, y⃗)g :=

∑n
i,j=1gijx

iyj .

De�nition B.4 The associated norm is ||.||g :=
√
(·, ·)g, and the length of a vector x⃗ relative to the

chosen Euclidean unit of measurement is ||x⃗||g :=
√
(x⃗, x⃗)g =

√
x⃗ •
g x⃗.

Thus with a Euclidean basis (e⃗i) used to build (·, ·)g, if x⃗ =
∑n
i=1xie⃗i, then ||x⃗||g =

√∑n
i=1x

2
i is the

length of x⃗ relative to the chosen Euclidean unit of measure (Pythagoras).

Duality notations: ||x⃗||g =
√∑n

i=1(x
i)2. Einstein convention: ||x⃗||g =

√∑n
i,j=1gijx

ixj .

De�nition B.5 The angle θ(x⃗, y⃗) between two vectors x⃗, y⃗ ∈ R⃗n − {⃗0} is de�ned by

cos(θ(x⃗, y⃗)) = (
x⃗

||x⃗||g
,

y⃗

||y⃗||g
)g. (B.6)

(With a computer, this formula gives θ(x⃗, y⃗) = arccos(( x⃗
||x⃗||g ,

y⃗
||y⃗||g )g) in [0, π].)

B.3 Two Euclidean dot products are proportional

Consider two Euclidean bases in R⃗n: (⃗ai), e.g. built with the foot, and (⃗bi), e.g. built with the metre;
And let (·, ·)g and (·, ·)h be the associated Euclidean dot products.

Proposition B.6 If λ = ||⃗b1||g, then ||⃗bi||g = λ for all i = 1, ..., n and

(·, ·)g = λ2(·, ·)h, and ||.||g = λ||.||h. (B.7)

Proof. By de�nition of a Euclidean basis, the length of the rod that enabled to de�ne (⃗bi) is independent

of i, cf. � B.1, thus ||⃗bi||g = ||⃗b1||g for all i, and here ||⃗bi||g =noted λ. Thus ||⃗bi||2g = λ2 = λ2||⃗bi||2h for all i,

since ||⃗bi||2h = 1. And if i ̸= j then (⃗bi, b⃗j)g = 0 = (⃗bi, b⃗j)h since b⃗i and b⃗j form a right angle (Pythagoras),

cf. (B.4). Hence (⃗bi, b⃗j)g = λ2(⃗bi, b⃗j)h for all i, j, thus (x⃗, y⃗)g = λ2(x⃗, y⃗)h for all x⃗, y⃗ (bilinearity of inner
dot products, thus (B.7).

Example B.7 Continuation of example B.1: (·, ·)a =
∑n
i=1a

i ⊗ ai is the English Euclidean dot product
(foot), and (·, ·)b =

∑n
i=1b

i ⊗ bi is the French Euclidean dot product (metre). (B.7) and (B.1) give:

(·, ·)a = λ2(·, ·)b and ||.||a = λ||.||b, with λ ≃ 3.28 and λ2 ≃ 10.76. (B.8)

In particular, if w⃗ is s.t. ||w⃗||b = 1 (its length is 1 metre), then ||w⃗||a = λ (its length is λ ≃ 3.28 foot).
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B.4 Counterexample: Non existence of a Euclidean dot product)

1- Thermodynamic: Let T be the temperature and P the pressure, and consider the Cartesian vector
space {(T, P )} = {(temperature,pressure)} = R× R. There is no associated Euclidean dot product: An
associated norm would give ||(T, P )|| =

√
T 2 + P 2 ∈ R which is meaningless (incompatible dimensions).

See � A.3.5.

2- Polar coordinate system q⃗ = (r, θ) ∈ R × R: There is no Euclidean norm
√
r2 + θ2 for q⃗ that is

physically meaningful (incompatible dimensions), see example 6.11.

B.5 Euclidean transposed of a deformation gradient

Let n ∈ {1, 2, 3} and consider a linear map L ∈ L(R⃗nt0 ; R⃗
n
t ) (e.g., L = dΦt0t (P ) = F t0t (P )).

Let (·, ·)G be a Euclidean dot product in R⃗nt0 (used in the past by someone), and let (·, ·)g and (·, ·)h
be Euclidean dot products in R⃗nt (the actual space where the results are obtained by two observers, e.g.,
(·, ·)g built with a foot and (·, ·)h built with a metre). Let LTGg and L

T
Gh be the transposed of L relative to

the dot products: LTGg and L
T
Gh in L(R⃗nt ; R⃗nt0) are characterized by, cf. (A.66), for all (X⃗, y⃗) ∈ R⃗nt0 × R⃗nt ,

(LTGg.y⃗, X⃗)G = (L.X⃗, y⃗)g and (LTGh.y⃗, X⃗)G = (L.X⃗, y⃗)h. (B.9)

Corollary B.8
If (·, ·)g = λ2(·, ·)h then LTGg = λ2LTGh. (B.10)

NB: Do not forget λ2 (e.g. λ2 ≃ 10 if an English man works with a French man).

Proof. (LTGg.y⃗, X⃗)G
(B.9)
= (L.X⃗, y⃗)g

hyp.
= λ2(L.X⃗, y⃗)h

(B.9)
= λ2(LTGh.y⃗, X⃗)G for all X⃗ ∈ R⃗nt0 and all y⃗ ∈ R⃗nt ,

thus LTGg.y⃗ = λ2LTGh.y⃗ for all y⃗ ∈ R⃗nt , thus LTGg = λ2LTGh.

B.6 The Euclidean transposed for endomorphisms

Let n ∈ {1, 2, 3} and consider an endomorphism L ∈ L(R⃗nt ; R⃗nt ); E.g. L = dv⃗t(p) the di�erential of the

Eulerian velocity. Let (·, ·)g and (·, ·)h be dot products in R⃗n. Let LTg and LTh be the transposed of L

relative to (·, ·)g and (·, ·)h: LTg and LTh in L(R⃗nt ; R⃗nt ) are characterized by, cf. (A.52), for all x⃗, y⃗ ∈ R⃗nt ,

(LTg .y⃗, x⃗)g = (L.x⃗, y⃗)g, and (LTh .y⃗, x⃗)h = (L.x⃗, y⃗)h. (B.11)

Corollary B.9

If (·, ·)g = λ2(·, ·)h then LTg = LTh
noted
= LT (B.12)

(an endomorphism type relation). Thus we can speak of �the Euclidean transposed of an endomorphism�.

Proof. (LTg .y⃗, x⃗)g
(B.11)
= (L.x⃗, y⃗)g

hyp.
= λ2(L.x⃗, y⃗)h

(B.11)
= λ2(LTh .y⃗, x⃗)h

hyp
= (LTh .y⃗, x⃗)g for all x⃗, y⃗ ∈ R⃗n, thus

LTg .y⃗ = LTh .y⃗ for all y⃗ ∈ R⃗n, thus LTg = LTh .

B.7 Unit normal vector, unit normal form

The results in this � are not objective: We need a Euclidean dot product (need a unit of length: Foot?
Meter?) to get Euclidean orthogonality and a unit normal vector.

Framework: n = 2 or 3, (·, ·)g is a Euclidean dot product in R⃗n and, for all u⃗, w⃗ ∈ R⃗n,

(u⃗, w⃗)g
noted
= u⃗ •

g w⃗ (B.13)

(or =noted u⃗ • w⃗ when one chosen Euclidean dot product is imposed to all).
Ω is a regular open bounded set in Rn, and Γ := ∂Ω is its regular surface. If p ∈ Γ then TpΓ is the

tangent plane at p to Γ. Let (β⃗1(p), ..., β⃗n−1(p)) be a basis in TpΓ (e.g. obtained thanks to a coordinate
system describing Γ).
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B.7.1 Unit normal vector

Call n⃗g(p) the unit outward normal vector at p ∈ Γ at TpΓ relative to (·, ·)g; So n⃗g(p) •g β⃗i(p) = 0 for all
i = 1, ..., n−1, and ||n⃗g(p)||g = 1, i.e. n⃗g is de�ned on Γ by (up to its sign)

∀i = 1, ..., n−1, β⃗i •
g n⃗g = 0, and n⃗g •

g n⃗g = 1 (= ||n⃗g||2g), (B.14)

i.e., at any p ∈ Γ, n⃗g(p) is orthogonal to the hyperplane Vect{β⃗1(p), ..., β⃗n−1(p)} and n⃗g(p) is unitary.
So (β⃗1(p), ..., β⃗n−1(p), n⃗g(p)) is a basis at p in R⃗n, written in short (β⃗1, ..., β⃗n−1, n⃗g). Drawing.

Thus, if w⃗ ∈ R⃗n is a vector at p, w⃗ =
∑n−1
i=1 wiβ⃗i + wnn⃗g (classical notations) then

wn = w⃗ •g n⃗g = the normal component of w⃗ at p at Γ. (B.15)

(wn depends on (·, ·)g.) (Duality notations: w⃗ =
∑n−1
i=1 w

iβ⃗i + wnn⃗g and w
n = (w⃗, n⃗g)g.)

Exercice B.10 Let (⃗ai) be a basis in R⃗n, let gij = g(⃗ai, a⃗j) for all i, j, and let β⃗j =
∑n
i=1Bij a⃗i for

j = 1, ..., n−1. Compute the components ni of n⃗g =
∑n
i=1nia⃗i. Particular case (⃗ai) is (·, ·)g-orthonormal?

Answer. (B.14) gives [β⃗i]
T
|⃗a.[g]|⃗a.[n⃗g]|⃗a = 0 for i = 1, ..., n−1: We get n−1 linear equations. With one more

equation given by [n⃗g]
T
|⃗a.[g]|⃗a.[n⃗g]|⃗a = 1: We get n⃗g up to its sign.

E.g. if (⃗ai) is (·, ·)g-orthonormal, then
∑n

j=1Bijnj = 0 for j = 1, ..., n−1, with
∑n

i=1n
2
i = 1.

Exercice B.11 Let (⃗ai) be a Euclidean basis in foot, (⃗bi) a Euclidean basis in metre, (·, ·)a and (·, ·)b
the associated Euclidean dot products, so (·, ·)a = λ2(·, ·)b with λ ≃ 3.28, cf. (B.7). Let n⃗a(p) and n⃗b(p)
be the corresponding unit outward normal vectors, cf. (B.14). 1- Prove (up to the sign):

n⃗b = λn⃗a, and (w⃗, n⃗a)a = λ(w⃗, n⃗b)b ∀w⃗ ∈ R⃗n (B.16)

2- Then let n⃗a =
∑m
i=1naia⃗i and n⃗b =

∑m
i=1nbi⃗bi; Prove:

If, ∀i = 1, ..., n, b⃗i = λa⃗i then ∀i = 1, ..., n, nai = nbi. (B.17)

So the vectors n⃗a and n⃗b are di�erent (λ > 1), and their respective components are equal... relative to
di�erent bases! And of course 1 = ||n⃗a||2a =

∑n
i=1(nai)

2 =
∑n
i=1(nbi)

2 = ||n⃗b||2b = 1.

Answer. n⃗a(p) ∥ n⃗b(p), since the vectors are Euclidean and orthogonal to TpΓ cf. (B.14). And ||.||a = λ||.||b
cf. (B.8), thus ||n⃗b||b = 1 = ||n⃗a||a = λ||n⃗a||b = ||λn⃗a||b, so n⃗b = ±λn⃗a. And they both are outward vectors, so
n⃗b = +λn⃗a. Thus (w⃗, n⃗a)a = λ2(w⃗, n⃗a)b = λ2(w⃗, n⃗b

λ
)b = λ(w⃗, n⃗b)b.

And if b⃗i = λa⃗i (B.16) gives
∑n

i=1n
i
b⃗bi = λ

∑n
i=1n

i
aa⃗i =

∑n
i=1n

i
a(λa⃗i) =

∑n
i=1n

i
ab⃗i, then ni

a = ni
b.

B.7.2 Unit normal form n♭ associated to n⃗

For mathematicians: May produce misunderstandings and lack of mechanical interpretations. Don't
forget: n♭ is obtained only after n⃗ has been de�ned (thanks to a chosen inner dot product).

De�nition B.12 Let p ∈ Γ, let (·, ·)g be an inner dot product, and let n⃗g(p) be the outward unit normal.

The unit normal form n♭g(p) ∈ Rn∗ is the linear form de�ned by n♭g(p).w⃗ := (n⃗g(p), w⃗)g for all w⃗ ∈ R⃗n
vector at p :

n♭g.w⃗ := (n⃗g, w⃗)g. (B.18)

( =noted n⃗ • w⃗ if one chosen Euclidean dot product is imposed to all).

Quanti�cation: Let (e⃗i) be a basis in R⃗n; Then (B.18) gives [n♭g]|e⃗.[w⃗]|e⃗ = [n⃗g]
T
|e⃗.[g]|e⃗.[w⃗]|e⃗ simply

written [n♭].[w⃗] = [n⃗]T .[g].[w⃗] if the basis (e⃗i) is imposed. Hence, with the dual basis (ei) in Rn∗,

if n⃗ =

n∑
i=1

nie⃗i and n♭ =

n∑
i=1

nie
i then ni =

n∑
j=1

gijn
j , (B.19)

where we used the duality notation to justify the ♭ notation: The �top i� gives the �bottom i�.
Particular case (e⃗i) is a (·, ·)g-Euclidean basis, then ni = ni. As usual the apparent contradiction in

the position of the index i in the equation ni = ni is due to the implicit use of an inner dot product. Use
the Einstein convention to avoid this apparent contradiction: Write ni =

∑n
j=1gijn

j even if gij = δij .

Classical notations: Dual basis (πei), then n
♭ =

∑n
i=1(n

♭)iπei and (n♭)i =
∑n
j=1gijnj .
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B.8 Integration by parts (Green�Gauss�Ostrogradsky)

Ω is a regular bounded open set in Rn, Γ = ∂Ω, φ ∈ C1(Ω;R), (e⃗i) is a Euclidean basis and (·, ·)g
its associated Euclidean dot product, ∂φ

∂xi
(p) := dφ(p).e⃗i (usual notation), n⃗g(p) = n⃗(p) =

∑n
i=1ni(p)e⃗i

(classical notations) is the (·, ·)g-outward normal unit vector at p ∈ Γ. Then (Green), for i = 1, ..., n,∫
p∈Ω

∂φ

∂xi
(p) dΩ =

∫
p∈Γ

φ(p)ni(p) dΓ, in short

∫
Ω

∂φ

∂xi
dΩ =

∫
Γ

φni dΓ. (B.20)

Thus, for any v ∈ C1(Ω;R), with φv instead of φ in (B.20), we get the integration by parts formula
(Green formula): ∫

Ω

∂φ

∂xi
v dΩ = −

∫
Ω

φ
∂v

∂xi
dΩ+

∫
Γ

φvni dΓ. (B.21)

Thus, for any v⃗ ∈ C1(Ω; R⃗n) (vector �eld), with v⃗(p) =
∑n
i=1vi(p)e⃗i we get∫

Ω

∂φ

∂xi
vi dΩ = −

∫
Ω

φ
∂vi
∂xi

dΩ+

∫
Γ

φvini dΓ. (B.22)

Thus, with the gradient vector ⃗gradφ(p) =
∑n
i=1

∂φ
∂xi

e⃗i and with divv⃗ =
∑n
i=1

∂vi
∂xi

, we get the Gauss�
Ostrogradsky formula:

(

∫
Ω

dφ.v⃗ dΩ =)

∫
Ω

⃗gradφ • v⃗ dΩ = −
∫
Ω

φdivv⃗ dΩ+

∫
Γ

φv⃗ • n⃗ dΓ. (B.23)

(And
∫
Γ
φv⃗ • n⃗ dΓ is the �ux through Γ.)

Exercice B.13 Use the di�erential dφ instead of the gradient ⃗gradφ (which is the (·, ·)g-Riesz represen-
tation vector of dφ) to express (B.22). Is the use of n♭, cf (B.18), useful in that case?

Answer. d(φv⃗) = dφ.v⃗ + φdivv⃗, thus
∫
Ω
dφ.v⃗ dΩ = −

∫
Ω
φ divv⃗ dΩ +

∫
Γ
φv⃗ •g n⃗g dΓ. And v⃗ •g n⃗g = n♭

g.v⃗, so∫
Ω
dφ.v⃗ dΩ = −

∫
Ω
φdivv⃗ dΩ+

∫
Γ
φn♭

g.v⃗ dΓ. But n
♭
g depends on n⃗g (de�nition), so there is no reason that justi�es

the use of n♭
g (unless you want to look erudite).

B.9 Stokes theorem

B.9.1 The classic Stokes theorem

Consider a regular oriented 2-D surface Σ ⊂ R3 parametrized with r⃗ : (u, v) ∈ [a, b] × [c, d] → x⃗ =

r⃗(u, v) ∈ R⃗3; The unit oriented normal is n⃗(x⃗) :=
∂r⃗
∂u× ∂r⃗

∂v

|| ∂r⃗
∂u× ∂r⃗

∂v ||
(u, v) de�ned at x⃗ ∈ Σ = Im(r⃗). And Σ has

a boundary Γ positively parametrized with q⃗ : t ∈ [t1, t2] → q⃗(t) ∈ R⃗3: At any x⃗ ∈ Γ the vector n⃗ × q⃗ ′

points towards the surface.

Theorem B.14 If f⃗ ∈ C1(R⃗3; R⃗3) then∫
Γ

f⃗ • dℓ⃗ =

∫
Σ

⃗curlf⃗ • dΣ⃗ (=

∫
Σ

⃗curlf⃗ • n⃗ dΣ), (B.24)

i.e.
∫ t2
t=t1

f⃗(q⃗(t)) • q⃗ ′(t) dt =
∫ b
u=a

∫ d
v=c

⃗curlf⃗(r⃗(u, v)) • ( ∂r⃗∂u ×
∂r⃗
∂v )(u, v) dudv.

Proof. See any elementary course, e.g. https://perso.isima.fr/ leborgne//Isimath1ereannee/cousur.pdf.

B.9.2 Generalized Stokes theorem

The curl operator ⃗curl is a di�erential operator which acts on vectors to give vectors. From a covariant
point of view, it would be nice to �rst de�ne a �curl operator� curl as a (linear) function acting on vectors

(and eventually representing it with ⃗curl); Moreover this curl function should �kill the gradient�, i.e. should

satisfy curl ◦ d = 0 (in place of ⃗curl ◦ ⃗grad = 0). To do so Cartan developed the �exterior di�erential� dext
which acts on k-forms (= skew-symmetric covariant tensors), see [5]) and e.g. Marsden�Hughes [14]:

1. The set of C∞(Rn;R) functions is called Ω0 (the set of
(
0
0

)
tensors = functions); Then de�ne dextf := df

for all f ∈ Ω0, i.e. dext := d (so dext is the usual di�erential operator on Ω0).
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2. The set of C∞(Rn;Rn∗) 1-forms is called Ω1 (the set of
(
0
1

)
tensors = di�erential forms); In particular

if f ∈ Ω0 then the exact di�erential form dextf = df is in Ω1.

3. De�nition: A 2-form is a bilinear skew-symmetric
(
0
2

)
tensor (order two covariant), and the set of 2-forms

is called Ω2; So β ∈ Ω2 i� β is bilinear and β(u⃗, w⃗) = −β(w⃗, u⃗) for all u⃗, v⃗ ∈ Rn (a 1-form is meant to
�measure a length� and a 2-form is meant to �measure a surface�). And the wedge product α∧ β of two
1-forms α, β ∈ Ω1 is the 2-form α ∧ β ∈ Ω2 de�ned by α ∧ β = α ⊗ β − β ⊗ α (and ∧ is an exterior
product de�ned on Ω1 to give elements in Ω2: from �lengths� you get a �surface�).

4. De�ne the exterior di�erential dext : Ω1 → Ω2 s.t. dext(df) = 0 for all f ∈ Ω0, and dext(α ∧ β) =
dextα ∧ β − α ∧ dextβ for any α, β ∈ Ω1.

5. (Generalization.) For k ≥ 2 de�ne a k-form (also called a di�erential k-form) to be a skew-
symmetric

(
0
k

)
tensor (order k covariant), the set of k-forms being called Ωk (so α ∈ Ωk satis-

�es α(u⃗π(1), ..., u⃗π(k)) = sgn(π)α(u⃗1, ..., u⃗n) for all u⃗1, ..., u⃗n ∈ Rn and all permutations π). On

Ωk × Ωℓ de�ne the exterior wedge product α ∧ β ∈ Ωk+ℓ by α ∧ β(w1, ..., wk, wk+1, ..., wk+ℓ) :=
1
k!ℓ!

∑
π∈σ sgn(π)α(wπ1 , ..., wπk

)β(wπk+1
, ..., wπk+ℓ

) where σ is the set of permutations. Then de�ne

the exterior di�erential dext : Ωk → Ωk+1 s.t. dext(dextγ) = 0 for all γ ∈ Ωk−1, and dext(α ∧ β) =
dextα ∧ β + (−1)kα ∧ dextβ for any α ∈ Ωk and β ∈ Ωℓ.

6. dext =
noted d (creates confusions outside Cartan's framework and for non-mathematicians).

The generalized Stokes theorem (see e.g. Abraham�Marsden [1]) is:

Theorem B.15 If Σ is n dimensional, if Γ is positively oriented and if α ∈ Ωn−1 then∫
Σ

dextα =

∫
Γ

α, (B.25)

written
∫
Σ
dα =

∫
Γ
α.

C Rate of deformation tensor and spin tensor

Let Φ̃ : [t1, t2] × Obj → Rn be a regular motion, cf. (1.5), and let v⃗ : C → R⃗n be the Eulerian velocity

�eld, cf. (2.4), that is, v⃗(t, p) = ∂Φ
∂t (t, PObj ) when p = Φ̃(t, PObj ).

At t, choose a unit of measurement (foot, metre...) and build the associated Euclidean dot prod-

uct (·, ·)g in R⃗nt , cf. � B.2. (We loose the objectivity here). And the same (·, ·)g is used at all t.

C.1 The symmetric and antisymmetric parts of dv⃗

With the imposed chosen Euclidean dot product (·, ·)g in R⃗nt , we can consider the transposed endomor-

phism dv⃗t(p)
T
g =noted dv⃗t(p)

T ∈ L(R⃗nt ; R⃗nt ), which is de�ned by, for all w⃗1, w⃗2 ∈ R⃗nt vectors at p,

(dv⃗t(p)
T .w⃗1, w⃗2)g = (w⃗1, dv⃗t(p).w⃗2)g (C.1)

cf. � A.12. We have thus de�ned

dv⃗Tt :

{
Ωt → L(R⃗nt ; R⃗nt )
p → dv⃗Tt (p) := dv⃗t(p)

T
(C.2)

Other usual notations (de�nitions): dv⃗t(p)
T =noted dv⃗(t, p)T =noted dv⃗T (t, p).

De�nition C.1 The (Eulerian) rate of deformation tensor, or stretching tensor, is the (·, ·)g-symmetric
part of dv⃗:

D =
dv⃗ + dv⃗T

2
, i.e., ∀(t, p) ∈

⋃
t∈R

({t} × Ωt), D(t, p) =
dv⃗(t, p) + dv⃗(t, p)T

2
. (C.3)

The (Eulerian) spin tensor is the (·, ·)g-antisymmetric part of dv⃗:

Ω =
dv⃗ − dv⃗T

2
, i.e., ∀(t, p) ∈

⋃
t∈R

({t} × Ωt), Ω(t, p) =
dv⃗(t, p)− dv⃗(t, p)T

2
. (C.4)

(So dv⃗ = D +Ω.)

NB: The same notation is used for the set of points Ωt = Φt0t (Ωt0) ⊂ Rn and for the function �the spin

tensor� Ωt =
dv⃗t−dv⃗Tt

2 : The context removes ambiguities.
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C.2 Quanti�cation with a basis

With a basis (e⃗i) in R⃗nt , (C.1) gives

[g]|e⃗.[dv⃗
T ]|e⃗ = [dv⃗]T|e⃗.[g]|e⃗, and [dv⃗T ]|e⃗ = [g]−1

|e⃗ .[dv⃗]
T
|e⃗.[g]|e⃗. (C.5)

In particular, if (e⃗i) is a (·, ·)g-orthonormal basis, then [dv⃗T ]|e⃗ = [dv⃗]T|e⃗ (orthonormal basis case).

Thus for the endomorphisms D and Ω, with a Euclidean orthonormal basis, with D.e⃗j =
∑n
i=1Dij e⃗i and

Ω.e⃗j =
∑n
i=1Ωij e⃗i then Dij =

1
2 (

∂vi
∂xj

+
∂vj
∂xi

) and Ωij =
1
2 (

∂vi
∂xj
− ∂vj

∂xi
), that is,

[D]|e⃗ =
[dv⃗]|e⃗ + [dv⃗]T|e⃗

2
and [Ω]|e⃗ =

[dv⃗]|e⃗ − [dv⃗]T|e⃗

2
(Euclidean framework). (C.6)

Duality notations: D.e⃗j =
∑n
i=1Dij e⃗i, Dij = 1

2 (
∂vi

∂xj + ∂vj

∂xi ) and Ω.e⃗j =
∑n
i=1Ω

i
j e⃗i, Ω

i
j = 1

2 (
∂vi

∂xj − ∂vj

∂xi ),

where Dij = D
j
i and Ωij = −Ωji.

D Interpretation of the rate of deformation tensor

We are interested in the evolution of the deformation gradient F (t) := F t0pt0 (t) along the trajectory of a

particle PObj which was at pt0 at t0. So let A⃗ = a⃗(t0, pt0) and B⃗ = b⃗(t0, pt0) be vectors at t0 at pt0 ∈ Ωt0 ,
and consider their push-forwards by the �ow Φt0t (the transported vectors), i.e. the vectors de�ned at t
at p(t) = Φt0pt0 (t) by

a⃗(t, p(t)) := F (t).A⃗ and b⃗(t, p(t)) := F (t).B⃗. (D.1)

see (4.3) and �gure 4.1. Then consider the function

(⃗a, b⃗)g :

{
C → R

(t, pt) → (⃗a, b⃗)g(t, pt) := (⃗a(t, pt), b⃗(t, pt))g.
(D.2)

Proposition D.1 The rate of deformation tensor D = dv⃗+dv⃗T

2 gives half the evolution rate between two
vectors deformed by the �ow, that is, along trajectories,

D(⃗a, b⃗)g
Dt

= 2(D.⃗a, b⃗)g. (D.3)

Proof. f(t) := (⃗a(t, p(t)), b⃗(t, p(t)))g = (F (t).A⃗, F (t).B⃗)g gives (with (·, ·)g independent of t)

f ′(t) = (F ′(t).A⃗, F (t).B⃗)g + (F (t).A⃗, F ′(t).B⃗)g. (D.4)

Thus with F ′(t) =(3.33) dv⃗(t, p(t)).F (t) and a⃗(t, p(t)) = F (t).A⃗ and b⃗(t, p(t)) = F (t).B⃗,

f ′(t) = (dv⃗(t, p(t)).⃗a(t, p(t)), b⃗(t, p(t)))g + (⃗a(t, p(t)), dv⃗(t, p(t)).⃗b(t, p(t)))g

= ((dv⃗(t, p(t)) + dv⃗(t, p(t))T ).⃗a(t, p(t)), b⃗(t, p(t)))g,
(D.5)

i.e. (D.3), since f(t) = (⃗a, b⃗)g(t, p(t)) gives f
′(t) =

D(a⃗,⃗b)g
Dt (t, p(t)).

E Rigid body motions and the spin tensor

Choose a Euclidean dot product (·, ·)g (required to characterize a rigid body motion).
Simple de�nition: A rigid body motion is a motion whose Eulerian velocity satis�es dv⃗ + dv⃗T = 0,

i.e., D = 0 (Eulerian approach independent of any initial time t0 chosen by some observer).
But the usual classical introduction to rigid body motion relies on some initial time t0 (Lagrangian

approach). So, we start with the Lagrangian approach: Consider a motion Φ̃, �x a t0 ∈ R, consider the
associated Lagrangian motion Φt0 , and for a �xed t the associated motion Φt0t . The �rst order Taylor
expansion of Φt0t in the vicinity of a pt0 ∈ Ωt0 is, with dΦt0t (pt0) =

noted F t0t (pt0),

Φt0t (qt0) = Φt0t (pt0) + F t0t (pt0).
−−−→pt0qt0 + o(−−−→pt0qt0). (E.1)
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E.1 A�ne motions and rigid body motions

E.1.1 A�ne motions ...

De�nition E.1 Φt0 is an a�ne motion (understood �a�ne motion in space�) i� Φt0t is an �a�ne motion�,
i.e. i� Φt0t is a C1 di�eomorphism (in space), and (E.1) reads, for all pt0 , qt0 ∈ Ωt0 and all t ∈ [t1, t2],

Φt0t (qt0) = Φt0t (pt0) + F t0t (pt0).
−−−→pt0qt0 . (E.2)

Marsden�Hughes notations: Φ(Q) = Φ(P ) + F (P ).
−−→
PQ.

Proposition E.2 and de�nition. If Φt0 is an a�ne motion, then F t0t (pt0) is independent of pt0 , i.e.,
for all t ∈]t1, t2[ and pt0 , qt0 ∈ Ωt0 ,

F t0t (pt0) = F t0t (qt0)
noted
= F t0t . (E.3)

And then dF t0t (pt0) = 0, i.e. d2Φt0t (pt0) = 0. And for all t ∈]t1, t2[, Φt is an a�ne motion, i.e. for all
τ ∈]t1, t2[ and all pt, qt ∈ Ωt,

Φtτ (qt) = Φtτ (pt) + F tτ .
−−→ptqt. (E.4)

And Φ̃ is said to be an a�ne motion.

Proof. qt0 = pt0 + −−−→pt0qt0 gives Φt0t (qt0) = Φt0t (pt0 + −−−→pt0qt0) = Φt0t (pt0) + dΦt0t (pt0).
−−−→pt0qt0 , and, similarly,

Φt0t (pt0) = Φt0t (qt0 +
−−−→qt0pt0) = Φt0t (qt0) + dΦt0t (qt0).

−−−→qt0pt0 . Thus (addition) Φt0t (qt0) + Φt0t (pt0) = Φt0t (pt0) +
Φt0t (qt0) + (dΦt0t (pt0) − dΦ

t0
t (qt0)).

−−−→pt0qt0 , thus (dΦt0t (pt0) − dΦ
t0
t (qt0)).

−−−→pt0qt0 = 0, true for all pt0 , qt0 , thus
dΦt0t (pt0)− dΦ

t0
t (qt0) = 0, i.e. (E.3).

Thus d2Φt0t (pt0).u⃗t0 = limh→0
dΦ

t0
t (pt0+hu⃗t0

)−dΦt0
t (pt0 )

h = limh→0
dΦ

t0
t −dΦt0

t

h = 0 for all pt0 and all u⃗t0 ,

thus d2Φt0t (pt0) = 0 for all pt0 , thus d
2Φt0t = 0.

And (5.17) gives (Φtτ ◦ Φ
t0
t )(pt0) = Φt0τ (pt0), thus, with pt = Φt0t (pt0), we get dΦtτ (pt).dΦ

t0
t (pt0) =

dΦt0τ (pt0), thus dΦ
t
τ (pt) = dΦt0τ (pt0).dΦ

t0
t (pt0)

−1, and (E.2) gives

dΦtτ (pt) = dΦt0τ .dΦ
t0
t
−1 noted

= dΦtτ (independent of pt), (E.5)

thus (E.4).

Corollary E.3 With v⃗ the Eulerian velocity and V⃗ t0 the Lagrangian velocity: If Φ̃ is a�ne then, v⃗t is
a�ne for all t, and V⃗ t0t is a�ne for all t0, t, i.e., dv⃗t(pt) = dv⃗t for all pt ∈ Ωt (independent of pt), and

dV⃗ t0t (pt0) =
noted dV⃗ t0t for all pt0 ∈ Ωt0 (independent of pt0). So, for all pt, qt ∈ Ωt and pt0 , qt0 ∈ Ωt0 ,{

• v⃗t(qt) = v⃗t(pt) + dv⃗t.−−→ptqt,

• V⃗ t0t (qt0) = V⃗ t0t (pt0) + dV⃗ t0t .
−−−→pt0qt0 .

(E.6)

Proof. (E.2) gives Φt0(t, qt0) = Φt0(t, pt0) + F t0(t).−−−→pt0qt0 , and the derivation in time gives (E.6)2,

hence (E.6)1 thanks to dV⃗ t0t (pt0) = dv⃗t(pt).F
t0
t , cf. (3.27), and

−−−→pt0qt0 = (F t0t )−1.−−→ptqt, cf. (E.2).

Example E.4 In R2, with a basis (E⃗1, E⃗2) in R⃗nt0 and a basis (e⃗1, e⃗2) ∈ R⃗nt , then F
t0
t given by [F t0t ]|E⃗,e⃗ =(

1 + t 2t2

3t3 et

)
derives from the a�ne motion [

−−−−−−−−−−→
Φt0t (pt0)Φ

t0
t (qt0)]|e⃗ =

(
1 + t 2t2

3t3 et

)
.[−−−→pt0qt0 ]|E⃗ .

E.1.2 ... and rigid body motion

Let Φ := Φt0t and F := F t0t if non ambiguous. Recall: If P ∈ Ωt0 and p = Φ(P ) (∈ Ωt) then the transposed

of the linear map F (P ) ∈ L(R⃗nt0 ; R⃗
n
t ) relative to (·, ·)g is the linear map FT (p) ∈ L(R⃗nt ; R⃗nt0) de�ned by

FT (p) := F (P )T :

{
R⃗nt → R⃗nt0
w⃗p → FT (p).w⃗p s.t. (FT (p).w⃗p, U⃗P )g = (w⃗p, F (P ).U⃗P )g, ∀U⃗P ∈ R⃗nt0 .

(E.7)

Which de�nes the function FT : Ωt → L(R⃗nt ; R⃗nt0).
Particular case: For an a�ne motion F is independent of P , hence FT is independent of p.
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116 E.1. A�ne motions and rigid body motions

De�nition E.5 A rigid body motion is an a�ne motion Φ̃ such that angles and lengths are unchanged
by Φ: For all t0, t ∈ R, P ∈ Ωt0 , U⃗P , W⃗P ∈ R⃗nt0 , and with p = Φ(P ),

(F.U⃗P , F.W⃗P )g = (U⃗P , W⃗P )g, i.e. (FT .F.U⃗P , W⃗P )g = (U⃗P , W⃗P )g, i.e. FT .F = I . (E.8)

In other words, with the Cauchy strain tensor C ∈ L(R⃗nt0 ; R⃗
n
t0) de�ned by C = FT .F , the motion is

rigid i� it is a�ne and

C = I , i.e. F−1 = FT . (E.9)

Proposition E.6 If Φt0 is a rigid body motion, if (A⃗i) is a (·, ·)g-Euclidean basis in R⃗nt0 , if a⃗it(p) =

F t0t (P ).A⃗i for all i when p = Φt0t (P ), then a⃗it(p) =
noted a⃗it is independent of p, and (⃗ait) is a (·, ·)g-

Euclidean basis with the same orientation than (A⃗i), for all t.

Proof. Φt0t is a�ne, thus, for all t, P , F t0t (P ) = F t0t (independent of P ), thus a⃗i,t(p) = F t0t .A⃗i ∈ R⃗nt is in-

dependent of p, for all t. And (⃗ait, a⃗jt)g = (F t0t .A⃗i, F
t0
t .A⃗j)g = (F t0t

T
.F t0t .A⃗i, A⃗j)g =

solid(I.A⃗i, A⃗j)g =

(A⃗i, A⃗j)g = δij for all i, j, thus (⃗ait) is (·, ·)g-orthonormal basis. And det(⃗a1t, ..., a⃗nt) =

det(F t0t .A⃗1, ..., F
t0
t .A⃗n) = det(F t0t ) det(A⃗1, ..., A⃗n) = det(F t0t ) since (A⃗i) is a (·, ·)g- orthonormal basis.

And, Φt0 being regular, t → det(F t0t ) is continuous, does not vanish, with det(F t0t0 ) = det(I) = 1 > 0;

Thus det(F t0t ) > 0 for all t, thus det(⃗a1, ..., a⃗n) > 0: The bases have the same orientation.

Example E.7 In R2, a rigid body motion is given by F t0t =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
with θ a regular

function s.t. θ(t0) = 0.

Exercice E.8 Let Φ̃ be a rigid body motion. Prove

(FT )′(t) = (F ′(t))T , and FT .F ′ is antisymmetric: (F ′)T .F + FT .F ′ = 0. (E.10)

Answer. Let t ∈ R, F (t) := F t0
P (t), p(t) = Φt0

P (t), U⃗ , W⃗ ∈ R⃗n
t0 and w⃗(t, p(t)) = F (t).W⃗ .

Recall: FT is de�ned by FT (t) := (F (t))T , so (FT (t).w⃗(t, p(t)), U⃗)g = (w⃗(t, p(t)), F (t).U⃗)g. Thus
((FT )′(t).w⃗(t, p(t))+FT (t).Dw⃗

Dt
(t, p(t)), U⃗)g = (Dw⃗

Dt
(t, p(t)), F (t).U⃗)g +(w⃗(t, p(t)), F ′(t).U⃗)g, which simpli�es into

((FT )′(t).w⃗(t, p(t)), U⃗)g = (w⃗(t, p(t)), F ′(t).U⃗)g = ((F ′(t))T .w⃗(t, p(t)), U⃗)g, thus (F
T )′(t) = (F ′(t))T , for all t.

And (E.8) reads FT (t).F (t) = It0 , thus (F
T )′(t).F (t)+FT (t).F ′(t) = 0, thus (F ′)T (t).F (t)+FT (t).F ′(t) = 0,

thus FT (t).F ′(t) is antisymmetric, for all t.

E.1.3 Alternative de�nition of a rigid body motion: dv⃗ + dv⃗T = 0

The stretching tensor Dt = dv⃗t+dv⃗
T
t

2 and the spin tensor Ωt =
dv⃗t−dv⃗Tt

2 have been de�ned in (C.3)-(C.4).

Proposition E.9 (Here no initial time is required: Eulerian approach.) If Φ̃ is a rigid body motion,

cf. (E.8), then the endomorphism dv⃗t ∈ L(R⃗nt ; R⃗nt ) is antisymmetric at all t:

dv⃗t + dv⃗Tt = 0, i.e. dv⃗t = Ωt, i.e. Dt = 0. (E.11)

Conversely, if dv⃗t + dv⃗Tt = 0 at all t, then Φ̃ is a rigid body motion.
So the relation � dv⃗t + dv⃗Tt = 0 for all t � gives an equivalent de�nition to the de�nition E.5.

Proof. Let F (t) := F t0P (t) and V (t) := V⃗ t0P (t) = (Φt0P )
′(t) = v⃗(t, pt). (E.8) gives

(F.FT )′(t) = 0 = F ′(t).FT (t) + F (t).(FT )′(t)
(E.10)
= F ′(t).FT (t) + (F ′(t).FT (t))T = dV (t).F (t)−1 +

(dV (t).F (t)−1)T
(3.27)
= dv⃗(t, pt) + dv⃗(t, pt)

T . Thus (E.11).

Conversely, suppose dv⃗ + dv⃗T = 0. Then (D.3) gives
D(a⃗,⃗b)g
Dt = 0, thus (⃗a, b⃗)g(t, p(t)) = (⃗a, b⃗)g(t0, P )

when p(t) = Φt0t (P ), i.e. (F
t0
t (P ).A⃗, F t0t (P ).B⃗)g = (A⃗, B⃗)g, for all t, t0, P , A⃗, B⃗: Thus Φ̃ is a rigid body

motion, cf (E.8).
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117 E.2. Vector and pseudo-vector representations of a spin tensor Ω

E.2 Vector and pseudo-vector representations of a spin tensor Ω

We are dealing here with concepts that are sometimes misunderstood.
Framework: Rn = R3 with a Euclidean dot product (·, ·)g (so the following is not objective).

E.2.1 Reminder

• The determinant det|e⃗ associated with a basis (e⃗i) in R3 is the alternating multilinear form de�ned
by det|e⃗(e⃗1, e⃗2, e⃗3) = 1; The algebraic volume (or signed volume) limited by three vectors u⃗1, u⃗2, u⃗3 is
det|e⃗(u⃗1, u⃗2, u⃗3); And the (positive) volume is |det|e⃗(u⃗1, u⃗2, u⃗3)|, see � L.
• Let A and B be two observers (e.g. A=English and B=French), let (⃗ai) be a Euclidean basis chosen

by A (e.g. based on the foot), let (⃗bi) be a Euclidean basis chosen by B (e.g. based on the metre), see � B.1.

Let λ = ||⃗b1||a > 0 (change of unit of length coe�cient). The relation between the determinants is:

det
|⃗a

= ±λ3 det
|⃗b

with


+ if det

|⃗a
(⃗b1, b⃗2, b⃗3) > 0 (i.e. if the bases have the same orientation),

− if det
|⃗a

(⃗b1, b⃗2, b⃗3) < 0 (i.e. if the bases have opposite orientation).

(E.12)
In particular, if A and B use the same unit of length, then λ = 1 and det|⃗a = ±det|⃗b.

• With an imposed Euclidean dot product (·, ·)g: An endomorphism L is (·, ·)g-antisymmetric i�

∀u⃗, v⃗, (L.u⃗, v⃗)g + (u⃗, L.v⃗)g = 0, i.e. LT = −L. (E.13)

E.2.2 De�nition of the vector product (cross product)

Let (e⃗i) be a (·, ·)g-orthonormal basis, let u⃗, v⃗ ∈ R⃗3, and let ℓe⃗,u⃗,v⃗ ∈ L(R⃗3,R) be the linear form de�ned
by

ℓe⃗,u⃗,v⃗ :

 R⃗3 → R
z⃗ → ℓe⃗,u⃗,v⃗(z⃗) := det

|e⃗
(u⃗, v⃗, z⃗)

(E.14)

(the algebraic volume of the parallelepiped limited by u⃗, v⃗, z⃗ in the Euclidean chosen unit).

De�nition E.10 The vector product, or cross product, u⃗×eg v⃗ (written u⃗∧eg v⃗ in french) of two vectors

u⃗ and v⃗ is the (·, ·)g-Riesz representation vector u⃗ ×eg v⃗ ∈ R⃗3 of the linear form ℓe⃗,u⃗,v⃗: It is given by,
cf. (F.2):

∀z⃗ ∈ R⃗3, (u⃗×eg v⃗, z⃗)g = det
|e⃗

(u⃗, v⃗, z⃗) . (E.15)

NB: u⃗×eg v⃗ depends on (·, ·)g and on the orientation of (e⃗i).

We have thus de�ned the bilinear cross product operator

×eg :

{
R⃗3 × R⃗3 → R⃗3

(u⃗, v⃗) → ×eg(u⃗, v⃗) := u⃗×eg v⃗.
(E.16)

(The bilinearity is trivial thanks to the multilinearity of the determinant.)
And if a chosen (·, ·)g is imposed to all, then u⃗×eg v⃗ =noted u⃗×e v⃗.
Moreover if an orthonormal basis (e⃗i) is imposed to all observers then u⃗×e v⃗ =noted u⃗× v⃗.
NB: The cross product is not an objective operator! It depends on a chosen Euclidean dot product

and on a chosen Euclidean basis (its orientation).
Notation: Isometric framework + imposed Euclidean basis (orientation imposed): (E.15) is written

∀z⃗ ∈ R⃗3, (u⃗× v⃗) • z⃗ = det(u⃗, v⃗, z⃗). (E.17)

117



118 E.2. Vector and pseudo-vector representations of a spin tensor Ω

E.2.3 Calculation of the vector product

u⃗ =
∑3
i=1 uie⃗i, v⃗ =

∑3
i=1 vie⃗i and (E.15) give

(u⃗×eg v⃗, e⃗1)g = det
|e⃗

(u⃗, v⃗, e⃗1) = det

u1 v1 1
u2 v2 0
u3 v3 0

 = det

(
u2 v2
u3 v3

)
= u2v3 − u3v2. (E.18)

Similar calculation: (u⃗×eg v⃗, e⃗2)e = u3v1 − u1v3 and (u⃗×eg v⃗, e⃗3)e = u1v2 − u2v1, thus

[u⃗×eg v⃗]|e⃗ =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 , i.e. u⃗×eg v⃗ =

3∑
i=1

(ui+1vi+2 − ui+2vi+1) e⃗i (E.19)

with the generic notation w4 := w1 and w5 = w2 (indices modulo 3): In particular e⃗i ×eg e⃗i+1 = e⃗i+2.

Proposition E.11 1- u⃗×eg v⃗ = −v⃗ ×eg u⃗.
2- u⃗ ∥ v⃗ i� u⃗×eg v⃗ = 0.
3- u⃗×eg v⃗ is orthogonal to Vect{u⃗, v⃗} the linear space generated by u⃗ and v⃗.
4- u⃗ ×eg v⃗ depends on the unit of measurement and on the orientation of the (·, ·)g- orthonormal

basis (e⃗i): Consider two Euclidean dot products (·, ·)a and (·, ·)b, so (·, ·)a = λ2(·, ·)b for a λ > 0; Choose

a (·, ·)a-orthonormal basis (⃗ai) and a (·, ·)b-orthonormal basis (⃗bi); Then

u⃗×aa v⃗ = ±λu⃗×bb v⃗, (E.20)

with the + sign i� (⃗ai) and (⃗bi) have the same orientation.

Proof. 1- (u⃗×eg v⃗, z⃗)g = det|e⃗(u⃗, v⃗, z⃗) = −det|e⃗(v⃗, u⃗, z⃗) = −(v⃗ ×eg u⃗, z⃗)g, for all z⃗.
2- If u⃗ ∥ v⃗ then det|e⃗(u⃗, v⃗, z⃗) = 0 = (u⃗ ×eg v⃗, z⃗)e, so u⃗ ×eg v⃗ ⊥g z⃗, for all z⃗. And if u⃗ ×eg v⃗ = 0 then

(E.19) gives u⃗ ∥ v⃗.
3- If z⃗ ∈ Vect{u⃗, v⃗} then det|e⃗(u⃗, v⃗, z⃗) = 0, thus (u⃗×eg v⃗, z⃗)g = 0 thus u⃗×eg v⃗ ⊥g z⃗.

4- (u⃗×aa v⃗, z⃗)a
(E.15)
= det

|⃗a
(u⃗, v⃗, z⃗)

(E.12)
= ±λ3 det

|⃗b
(u⃗, v⃗, z⃗)

(E.15)
= ±λ3(u⃗×bb v⃗, z⃗)b = ±λ3

1

λ2
(u⃗×bb v⃗, z⃗)a, true

for all z⃗, thus (E.20).

Exercice E.12 Prove that u⃗×eg v⃗ is a contravariant vector.

Answer. It is a vector (Riesz representation vector) in R⃗3, so it is contravariant; Or calculation: It satis�es the

contravariance change of basis formula, see (F.18).

E.2.4 Antisymmetric endomorphism represented by a vector

Proposition E.13 Let (e⃗i) be a (·, ·)g-Euclidean basis. If an endomorphism Ω ∈ L(R⃗3; R⃗3) is (·, ·)g-
antisymmetric then there exists a unique vector ω⃗eg ∈ R⃗3 s.t., for all y⃗, z⃗ ∈ R⃗3,

(Ω.y⃗, z⃗)g = det
|e⃗

(ω⃗eg, y⃗, z⃗), (E.21)

i.e., there exists a unique vector ω⃗eg ∈ R⃗3 s.t., for all y⃗, z⃗ ∈ R⃗3,

Ω.y⃗ = ω⃗eg ×eg y⃗ , (E.22)

And

[Ω]|e⃗ =

 0 −c b
c 0 −a
−b a 0

 i� [ω⃗eg]|e⃗ =

 a
b
c

 . (E.23)

In particular Ω.ω⃗eg = 0⃗ (= ω⃗eg ×eg ω⃗eg), i.e. ω⃗eg is an eigenvector of Ω associated with the eigenvalue 0.
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119 E.2. Vector and pseudo-vector representations of a spin tensor Ω

Proof. Ω is antisymmetric, thus [Ω]|e⃗ is given as in (E.23). In particular [Ω.e⃗1]|e⃗ = [Ω]|e⃗.[e⃗1]|e⃗ =

 0
c
−b

.

Calculation of the components of ω⃗eg if it exists: Let ω⃗ = ω1e⃗1+ω2e⃗2+ω3e⃗3; thus [ω⃗×eg e⃗1]|e⃗ =

 0
ω3

−ω2

,

cf. (E.19), thus ω3 = c and ω2 = b; Idem with e⃗2 so that ω1 = a. Thus if it exists ω⃗ is unique. And ω⃗eg
given in (E.23) satis�es (E.22): It exists.

Proposition E.14 Let (·, ·)a and (·, ·)b be two Euclidean dot products (e.g. in foot and metre), let (⃗ai)

and (⃗bi) be Euclidean associated bases, let ||⃗b1||a = λ (change of unit coe�cient), so (·, ·)a = λ2(·, ·)b).

And ω⃗aa =noted ω⃗a and ω⃗bb =
noted ω⃗b. Suppose [Ω]|⃗a =

 0 −c b
c 0 −a
−b a 0

, thus [ω⃗a]|⃗a =

 a
b
c

, cf. (E.23).

Then (change of representation vector for Ω):

• If (⃗bi) and (⃗ai) have the same orientation, then ω⃗b = λω⃗a,

• If (⃗bi) and (⃗ai) have opposite orientation, then ω⃗b = −λω⃗a,
(E.24)

E.g., if b⃗i = λa⃗i for all i (change of unit, same orientation) then ω⃗b = λω⃗a, and if b⃗1 = −λa⃗1, b⃗2 = λa⃗2,

b⃗3 = λa⃗3 (change of unit, opposite orientation) then ω⃗b = −λω⃗a.
NB: The formula ω⃗b = ±λω⃗a is a change of vector formula, not a change of basis formula.

Proof. Apply (E.20).

Notation: If (·, ·)g is imposed, then ω⃗eg =
noted ω⃗e.

Interpretation of ω⃗e: Suppose [Ω]|e⃗ = α

 0 −1 0
1 0 0
0 0 0

. So Ω is the rotation with angle π
2 in the

horizontal plane composed with the dilation with ratio α. And [ω⃗e]|e⃗ = α

 0
0
1

, thus ω⃗e = α e⃗3 is

orthogonal to the horizontal plane, hence ω⃗e×e is a rotation around the z-axis composed with a dilation
which coe�cient is α.

Exercice E.15 Let Ω s.t. [Ω]|e⃗ =

 0 −c b
c 0 −a
−b a 0

 (see (E.23)). Find a direct (relative to (e⃗i)) or-

thonormal basis (⃗bi) s.t. [Ω]|⃗b =
√
a2+b2+c2

 0 −1 0
1 0 0
0 0 0

.

Answer. Let b⃗3 = ω⃗e
||ω⃗e||e , so [⃗b3]|e⃗ = 1√

a2+b2+c2

 a
b
c

. Then let b⃗1 be given by [⃗b1]|e⃗ = 1√
a2+b2

−b
a
0

, so

b⃗1 ⊥ b⃗3. Then let b⃗2 = b⃗3 ×e b⃗1, that is, [⃗b2]|e⃗ = 1√
a2+b2

1√
a2+b2+c2

 −ac
−bc

a2 + b2

. Thus (⃗bi) is a direct orthonormal

basis, and the transition matrix from (e⃗i) to (⃗bi) is P =
(
[⃗b1]|e⃗ [⃗b2]|e⃗ [⃗b3]|e⃗

)
. With [Ω]|⃗b = P−1.[Ω]|e⃗.P (change

of basis formula), where P−1 = PT (change of orthonormal basis).

With [Ω]|e⃗.[⃗b1]|e⃗ = 1√
b2+c2

 0 −c b
c 0 −a
−b a 0

 .

−b
a
0

 = 1√
b2+c2

 −ac
−bc

a2 + b2

 =
√
a2+b2+c2 [⃗b2]|e⃗ (expected),

[Ω]|e⃗.[⃗b2]|e⃗ = 1√
b2+c2

1√
a2+b2+c2

 0 −c b
c 0 −a
−b a 0

 .

 −ac
−bc

a2 + b2

 = 1√
b2+c2

1√
a2+b2+c2

 bc2 + b(a2 + b2)
−ac2 − a(a2 + b2)

abc− abc

 =

−
√
a2+b2+c2 [⃗b1]|e⃗ (expected), and [Ω]|e⃗.[⃗b3]|e⃗ = [⃗0] (expected since b⃗3 ∥ ω⃗e). Thus [Ω]|e⃗.P =√

a2+b2+c2
(
[⃗b2]|e⃗ −[⃗b1]|e⃗ [⃗0]|e⃗

)
. And (P−1.[Ω]|e⃗.P )ij = (PT .[Ω]|e⃗.P )ij = [⃗bi]

T
|e⃗.[Ω]|e⃗.[⃗bj ]|e⃗ gives the result.
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E.2.5 Curl

De�nition E.16 If v⃗ is a C1 vector �eld, if (e⃗i) is a Euclidean basis in R⃗3, and if v⃗ =
∑3
i=1 v

ie⃗i, then

the curl (or rotational) of v⃗ relative to (e⃗i) is the vector �eld ⃗curlev⃗ = ⃗curlev⃗ given by

⃗curlev⃗ =

3∑
i=1

(
∂vi+2

∂xi+1
− ∂vi+1

∂xi+2
) e⃗i, i.e. [ ⃗curlev⃗]|e⃗ =

 ∂v3
∂x2
− ∂v2

∂x3
∂v1
∂x3
− ∂v3

∂x1
∂v2
∂x1
− ∂v1

∂x2

 . (E.25)

And ⃗curlev⃗ =noted ∇⃗ ×e v⃗ (notation due to the matrix product

 ∂
∂x1
∂
∂x2
∂
∂x2

×
 v1
v2
v3

).

Proposition E.17 Let Ω(t, pt) =
dv⃗(t,pt)−dv⃗(t,pt)T

2 and ω⃗e(t, pt) be its associated vector relative to the
Euclidean basis (e⃗i), cf. (E.22). Then

ω⃗e =
1

2
⃗curlev⃗. (E.26)

Proof. (C.6) gives [Ω]|e⃗ = 1
2

 0 ∂v1
∂x2
− ∂v2

∂x1

∂v1
∂x3
− ∂v3

∂x1

· 0 ∂v2
∂x3
− ∂v3

∂x2

· · 0

, with [Ω]|e⃗ antisymmetric. Thus (E.23),

(E.19) and (E.25) gives (E.26).

E.3 Pseudo-vector, and pseudo-cross product

Framework: M31 the space of 3 ∗ 1 matrices: We leave the framework of the vectors in R⃗3 to enter the
matrix world.

E.3.1 De�nition

De�nition E.18 A column matrix is also called a pseudo-vector or a column vector.

De�nition E.19 The pseudo-cross product
⟲
× :M31 ×M31 →M31 is de�ned byx1

x2
x3

 ⟲
×

 y1
y2
y3

 :=

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 noted
= [x⃗]

⟲
×[y⃗], (E.27)

notation used when [x⃗] :=

x1
x2
x3

 and [y⃗] :=

 y1
y2
y3

. So the pseudo-cross product of two pseudo-vectors

is a pseudo-vector (is a matrix).

E.3.2 Antisymmetric matrix represented by a pseudo-vector

Recall. An antisymmetric matrix A = [Aij ] ∈Mnn is s.t. Aji = −Aij for all i, j.

De�nition E.20 Consider an antisymmetric matrix A = [Aij ] =

 0 −c b
c 0 −a
−b a 0

 ∈M33. The pseudo-

vecteur
⟲
ω associated to A is the column matrix

⟲
ω :=

 a
b
c

 ∈M31.

So, with (E.27),

A.[y⃗] =
⟲
ω

⟲
×[y⃗] , i.e. A.

 y1
y2
y3

 =
⟲
ω

⟲
×

 y1
y2
y3

 , for all matrix [y⃗] =

 y1
y2
y3

 . (E.28)
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E.3.3 Pseudo-vector representations of an antisymmetric endomorphism

Let R3 be our usual a�ne space, R⃗3 its associated vector space, (·, ·)g a Euclidean dot product, and
(e⃗i) a (·, ·)g-Euclidean associated basis. Let Ω be a (·, ·)g-antisymmetric endomorphism, so ΩT = −Ω,
cf. (E.13). Thus [Ω]|e⃗ is an antisymmetric matrix. Call

⟲
ω the associated pseudo-vector, i.e., cf. (E.28),

for all y⃗ ∈ R⃗3,

[Ω]|e⃗.[y⃗]|e⃗ =
⟲
ω

⟲
×[y⃗]|e⃗. (E.29)

This formula is widely used in mechanics, and unfortunately sometimes noted Ω.y⃗ = ω⃗ × y⃗:

Be careful: (E.29) is not a vectorial formula; This is just a formula for matrix calculations which
gives false result if a change of basis is considered; E.g., with (⃗a1, a⃗2, a⃗3) be a (·, ·)g-Euclidean basis, and

(⃗b1, b⃗2, b⃗3) = (−a⃗1, a⃗2, a⃗3). So (⃗bi) is also a (·, ·)g-Euclidean basis, but with a di�erent orientation.

1- Vector approach: Let P be the transition matrix from (⃗ai) to (⃗bi), so P =

−1 0 0
0 1 0
0 0 1

. Let

[Ω]|⃗a =

 0 −c b
c 0 −a
−b a 0

. Thus, Ω being an endomorphism, the change of basis formula gives

[Ω]|⃗b = P−1.[Ω]|⃗a.P =

−1 0 0
0 1 0
0 0 1

 .

 0 −c b
c 0 −a
−b a 0

 .

−1 0 0
0 1 0
0 0 1

 =

 0 c −b
−c 0 −a
b a 0

 . (E.30)

Thus the vectors ω⃗a and ω⃗b are given by (E.23):

[ω⃗a]|⃗a =

 a
b
c

 , [ω⃗b]|⃗b =

 a
−b
−c

 , i.e.

{
ω⃗a = aa⃗1 + ba⃗2 + ca⃗3,

ω⃗b = a⃗b1 − b⃗b2 − c⃗b3,

}
thus ω⃗b = −ω⃗a . (E.31)

Or simply apply (E.24).

2- Matrix approach (E.28) gives [Ω]|⃗a.[y⃗] =
⟲
ωa

⟲
×[y⃗] and [Ω]|⃗b.[y⃗] =

⟲
ωb

⟲
×[y⃗], with

⟲
ωa =

 a
b
c

 and
⟲
ωb =

 a
−b
−c

 , so
⟲
ωa ̸= −

⟲
ωb . (E.32)

And
⟲
ω does not represent a single vector either, since it does not satisfy the vector change of basis formula

⟲
ωb ̸= P−1.

⟲
ωa. Thus

⟲
ω is not a vector (is not tensorial): It is just a matrix (called a �pseudo-vector�).

E.4 Examples

E.4.1 Rectilinear motion

Let Φ̃ : [t1, t2]×Obj → Rn be a C1 motion. Let t0 ∈]t1, t2[ and PObj ∈ Obj .

De�nition E.21 The motion of PObj is rectilinear i�, for all t0, t ∈ [t1, t2],

Φ̃PObj (t)− Φ̃PObj (t0)

t−t0
∥ Φ̃PObj ′(t0), (E.33)

i.e. ∀t0, t ∈ R, ∃αt0,t ∈ R,
Φ̃PObj

(t)−Φ̃PObj
(t0)

t−t0 = αt0,tΦ̃PObj
′(t0). (E.g., Φ̃PObj (t) = O + (t−t0)2e⃗1.)

The motion of PObj is rectilinear uniform i�, for all t0, t ∈ [t1, t2], with p(t) = Φ̃(t, PObj ),

Φ̃PObj (t) = Φ̃PObj (t0) + (t−t0) Φ̃PObj ′(t0), i.e. p(t) = p(t0) + (t−t0) V⃗ t0(t0, p(t0)) (E.34)

(the trajectory is traveled at constant velocity).
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E.4.2 Circular motion

Φ̃ : [t0, T ] × Obj → R2 is a motion, Φt0 is the associated motion, P = Φ̃(t0, PObj ). Let (E⃗1, E⃗2) be a

Euclidean basis. The motion Φt0P is a circular motion i�, for all t,
−−−−−→
OΦt0P (t) = x(t)E⃗1 + y(t)E⃗2 with{

x(t) = a+R cos(θ(t))

y(t) = b+R sin(θ(t))
(E.35)

for some R > 0 (called the radius), some a, b ∈ R, and some function θ : R→ R. And
(
a
b

)
= OC ∈ R2

is the center of the circle and θ(t) is the angle at t. And the particle PObj (s.t. Φ̃(t0, PObj ) = P ) stays on
the circle with center OC and radius R.

The circular motion is uniforme i�, for all t, θ′′(t) = 0, that is, ∃ω0 ∈ R, ∀t ∈ [t1, t2], θ(t) = ω0t.

Notation: φ⃗t0P (t) =
−−−−−−→
OCΦt0P (t), i.e.

φ⃗t0P (t) = R cos(θ(t)E⃗1 +R sin(θ(t))E⃗2, so [φ⃗t0P (t)]|E⃗ =

(
R cos(θ(t))
R sin(θ(t))

)
. (E.36)

Thus the Lagrangian velocity of a circular motion is

V⃗ t0P (t) = (Φt0P )
′(t) = (φ⃗t0P )

′(t), so [V⃗ t0P (t)]|E⃗ = Rθ′(t)

(
− sin(θ(t))
cos(θ(t))

)
(E.37)

(orthogonal to the radius vector V⃗ t0P (t) is to φ⃗t0P (t)). And the Lagrangian acceleration Γ⃗ t0P (t) is given by

[Γ⃗ t0P (t)]|E⃗ = Rθ′′(t)

(
− sin(θ(t))
cos(θ(t))

)
+R(θ′(t))2

(
− cos(θ(t))
− sin(θ(t))

)
. (E.38)

Then consider the orthonormal basis (e⃗r(t), e⃗θ(t)) given by

[e⃗r(t)]|E⃗ = [
φ⃗t0P (t)

||φ⃗t0P (t)||
]|E⃗ =

(
cos(θ(t))
sin(θ(t))

)
, and [e⃗θ(t)]|E⃗ =

(
− sin(θ(t))
cos(θ(t))

)
. (E.39)

We get
V⃗ t0P = Rθ′ e⃗θ and Γ⃗ t0P = R

(
θ′′ e⃗θ − (θ′)2 e⃗r

)
. (E.40)

Immersed in R3, the vertical line being given by E⃗3:

V⃗ t0P (t) = ω⃗(t)× φ⃗t0P (t), where ω⃗(t) = ω(t)e⃗3 and ω(t) = θ′(t). (E.41)

So

Γ⃗ t0 =
dω⃗

dt
× φ⃗t0P + ω⃗ × V⃗ t0P = R

(dω
dt

e⃗θ − ω2 e⃗r
)
. (E.42)

E.4.3 Motion of a planet (centripetal acceleration)

Illustration: Obj is e.g. a planet from the solar system. (e⃗1, e⃗2, e⃗3) is a Euclidean basis (e.g. �xed relative to
stars an (e⃗1, e⃗2) de�ne the ecliptic plane), (·, ·)g is the associated Euclidean dot product, ||.|| the Euclidean
associated norm, O an origin in R3 (e.g. the center of the Sun), R = (O, (e⃗i)), Φ̃ : [t0, T ]×Obj → R3 is a

motion in R, cf. (1.5), Φt0 =noted Φ and φ⃗ t0 :=
−−→OΦP =noted φ⃗ are the associated motions, cf. (3.1)-(3.4).

So the Lagrangian velocities and accelerations are given by

V⃗P (t) =
dΦP
dt

(t) =
dφ⃗P
dt

(t), and A⃗P (t) =
d2ΦP
dt2

(t) =
d2φ⃗P
dt2

(t). (E.43)

De�nition E.22 The motion of a particle PObj is a centripetal acceleration motion i� the particle is not

static and, at all time, its acceleration vector A⃗(t) points to a �xed point F (focus).

We choose a focus F to be the origin of the referential: O := F . So, for all t,
−−−−→OΦP (t) ∥ A⃗P (t):

−−−−→OΦP (t)× A⃗P (t) = 0⃗, i.e. φ⃗P (t)× A⃗P (t) = 0⃗. (E.44)
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Remark E.23 A rectilinear motion is a centripetal acceleration motion, but such a motion is usually
excluded in the de�nition E.22.

Example E.24 The motion of a planet from the solar system is a centripetal acceleration motion: An
elliptical motion with one focus is at the center of the Sun.

Example E.25 The second Newton's law of motion
∑
f⃗ = mγ⃗ (Galilean referential) gives: If at all time∑

f⃗ is directed to a unique point F , then the motion is a centripetal acceleration motion.

De�nition E.26 The areolar velocity at t is the vector

Z⃗(t) =
1

2
φ⃗P (t)× V⃗P (t). (E.45)

Proposition E.27 If Φ is a centripetal acceleration motion, then the areolar velocity is contant, that is,
dZ⃗
dt (t) = 0⃗ pour tout t, so

Z⃗(t) = Z⃗(t0), ∀t. (E.46)

That is, the position vectors sweep equal areas in equal times. And Z⃗(t0) = 0⃗ i� Φ is a rectilinear motion.

If Z⃗(t0) ̸= 0⃗ then :

- φ⃗P (t) and V⃗P (t) are orthogonal to Z⃗(t0) at all time t,

- The motion of the particle PObj takes place in the a�ne plane orthogonal to Z⃗(t0) passing through O.

- V⃗P (t) never vanishes.

Proof. (E.45) and (E.44) give 2dZ⃗dt (t) =
dφ⃗P
dt (t)×V⃗P (t)+φ⃗(t)× dV⃗P

dt (t) = V⃗P (t)×V⃗P (t)+φ⃗(t)×A⃗P (t) = 0⃗+0⃗.

Thus Z⃗ is constant, Z⃗(t) = Z⃗(t0) for all t. In particular, if Z⃗(t0) ̸= 0⃗ then Z⃗(t) ̸= 0⃗ pour tout t, and

• Z⃗(t) = 1
2 φ⃗P (t) × V⃗P (t) gives that φ⃗P (t) et V⃗P (t) are orthogonal to Z⃗(t0) for all t, thus A⃗P (t) is

orthogonal to Z⃗(t0), cf. (E.44).

• The Taylor expansion reads φ⃗P (t) = φ⃗P (t0)+V⃗P (t0)(t−t0)+
∫ t
τ=t0

A⃗P (τ)(t−τ)2 dτ , with V⃗P (t0) ⊥ Z⃗(t0)
and A⃗P (τ) ⊥ Z⃗(t0) for all τ , thus φ⃗P (t) − φ⃗P (t0) ⊥ Z⃗(t0) for all τ , that is

−−−→Op(t) − −−→OP =
−−−→
Pp(t) ⊥ Z⃗(t0)

for all τ , Thus p(t) belongs to the a�ne plane containing P orthogonal to Z⃗(t0), for all t. And
−−→OP =

φ⃗P (t0) ⊥ Z⃗(t0), thus O belong to the same plane.

• Z⃗(t) = Z⃗(t0) ̸= 0⃗ implies V⃗P (t) ̸= 0⃗ for all t, and (E.45) gives: (φ⃗P (t), V⃗P (t), Z⃗(t0)) is a positively-

oriented basis. Since φ⃗P and V⃗P are continuous and do not vanish, since Z⃗(t0) ̸= 0⃗, we get: PObj �turns

around Z⃗(t0)� and its velocity never vanishes.

If Z⃗(t) = 0⃗ then φ⃗P (t) ∥ V⃗P (t) for all t, cf. (E.45), so V⃗P (t) = f(t)φ⃗P (t) where f is some scalar function.

And V⃗P (t) = φ⃗P
′(t) gives φ⃗P

′(t) = f(t)φ⃗P (t), thus φ⃗P (t) = φ⃗P (t0)e
F (t) where F is a primitive of f s.t.

F (t0) = 0, thus φ⃗P (t) ∥ φ⃗P (t0), so
−−−−→OΦP (t) ∥

−−−−−→OΦP (t0), for all t: The motion is rectilinear.

Interpretation. (Non rectilinear motion.) The area swept by φ⃗P (t) is, at �rst order, the area of the
triangle whose sides are φ⃗P (t) and φ⃗P (t+ τ) (�anglular sector�). So, with τ close to 0, let

S⃗t(τ) =
1

2
φ⃗P (t)× φ⃗P (t+ τ), and St(τ) = ||S⃗t(τ)||, (E.47)

the vectorial and scalar areas. With φ⃗P (t+τ) = φ⃗P (t) + V⃗P (t)τ + o(τ) (Taylor) we get

S⃗t(τ) =
1

2
φ⃗P (t)× (V⃗P (t)τ + o(τ)), (E.48)

Since S⃗t(0) = 0 we get S⃗t(τ)−S⃗(0)
τ = 1

2 φ⃗P (t)× V⃗P (t) + o(1), then

dS⃗t
dτ

(0) =
1

2
φ⃗P (t)× V⃗P (t) = Z⃗(t) = Z⃗(t0), (E.49)

thanks to (E.46), thus

dS⃗t
dτ

(0) =
dS⃗t0
dτ

(0), ∀t ∈ [t0, T ], (E.50)
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that is, the rate of variation of S⃗t is constant. And with ||S⃗t(∆τ)||2 = (S⃗t(∆τ), S⃗t(∆τ)) we get

d||S⃗t||2

dτ
(∆τ) = 2(

dS⃗t
dτ

(∆τ), S⃗t(∆τ)), (E.51)

so, since S⃗t(0) = 0,

d||S⃗t||2

dτ
(0) = 0. (E.52)

So the function t→ ||S⃗t(0)||2 = St(0)
2 is constant, thus t→ St(0) est constant, and

dSt

dτ (0) is constant.

Exercice E.28 Give a parametrization of the swept area, and redo the calculations.

Answer. Let
r(t) = ||φ⃗P (t)||, θ(t) = ̂p(t)OP (angle), (E.53)

then

φ⃗P (t) =

 r(t) cos(θ(t))
r(t) sin(θ(t))

0

 . (E.54)

Thus

V⃗P (t) =

 r′(t) cos(θ(t)− r(t))θ′(t) sin(θ(t))
r′(t) sin(θ(t) + r(t))θ′(t) cos(θ(t))

0

 . (E.55)

With (E.45) we get

Z⃗(t) =
1

2

 0
0

r2(t)θ′(t)

 , with r2(t)θ′(t) = r2(t0)θ
′(t0) (constant), (E.56)

cf. (E.46). A parametrization of the swept area is then

A⃗ :

{
[0, 1]× [t0, T ] → R3

(ρ, t) → A⃗(ρ, t)

}
, A⃗(ρ, t) =

 ρ r(t) cos(θ(t))
ρ r(t) sin(θ(t))

0

 . (E.57)

Therefore, the tangent associated vectors are

∂A⃗
∂ρ

(ρ, t) =

 r(t) cos(θ(t))
r(t) sin(θ(t))

0

 ,
∂A⃗
∂t

(ρ, t) =

 ρr′(t) cos(θ(t)− ρr(t))θ′(t) sin(θ(t))
ρr′(t) sin(θ(t) + ρr(t))θ′(t) cos(θ(t))

0

 , (E.58)

hence the vectorial and scalare element areas are

dσ⃗ = (
∂A⃗
∂ρ

× ∂A⃗
∂t

)dρdt =

 0
0

ρr2θ′ dρdt

 , dσ = ρr2θ′ dρdθ. (E.59)

Therefore the area between t0 and t is

A(t) = A(t0) +

∫ 1

ρ=0

∫ t

τ=t0

ρr2(τ)θ′(τ) dρdτ =
1

2

∫ t

τ=t0

r(τ)2θ′(τ) dτ. (E.60)

Hence
A′(t) = r(t)2θ′(t) = r(t0)

2θ′(t0) (= constant = ||Z⃗(t0)||), (E.61)

cf. (E.56).

Exercice E.29 Prove the Binet formulas (non rectilinear central motion):

VP (t)
2 = Z2

0

( 1

r2
+ (

d 1
r

dθ
)2
)
(t), Γ⃗P (t) = −

Z2
0

r2

(1
r
+
d2 1

r

dθ2

)
(t) e⃗r(t), (E.62)

for the energy and the acceleration.
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Answer. Proposition E.27 tells that Φ is a planar motion. With (E.53) and e⃗r(t) =

(
cos(θ(t))
sin(θ(t))

)
we have

φ⃗(t) = r(t)e⃗r(t) (in the plane). Let e⃗θ(t) =

(
− sin(θ(t))
cos(θ(t))

)
, thus

V⃗ (t) =
dr

dt
(t)e⃗r(t) + r(t)

de⃗r
dt

(t) = r′(t)e⃗r(t) + r(t)θ′(t)e⃗θ(t).

And e⃗r(t) ⊥ e⃗θ(t) gives
V 2(t) = (r′(t))2 + (r(t)θ′(t))2.

Since θ′(t) ̸= 0 for all t (non rectilinear central motion) Let s(θ(t)) = r(t). Let us suppose that θ is C1, thus
θ′ > 0 or θ′ < 0, and θ : t → θ(t) de�nes a change of variable. And

r′(t) = s′(θ(t))θ′(t).

And (E.61) and θ′(t) = Z0
r2(t)

give

V 2(t(θ)) = (s′(θ))2
Z2

0

r4(t)
+ r2(t)

Z2
0

r4(t)
= Z2

0 (
(s′(θ))2

s4(θ)
+

1

s2(θ)
) = Z2

0 [

(
d 1

s

dθ
(θ)

)2

+
1

s2(θ)
].

Thus r(t) = s(θ) and dr
dθ

:= ds
dθ

give the �rst Binet formula. Then

Γ⃗(t) = r′′(t)e⃗r(t) + r′(t)
de⃗r
dt

(t) + (r′(t)θ′(t) + r(t)θ′′(t))e⃗θ(t) + r(t)θ′(t)
de⃗θ
dt

(t),

with
de⃗r
dt

∥ e⃗θ, and
de⃗θ
dt

(t) = −θ′(t)e⃗r(t), and e⃗θ ⊥ Γ⃗ (central motion), we get

Γ⃗(t) = (r′′(t)− r(t)(θ′(t))2)e⃗r(t).

And

r′(t) = s′(θ)θ′(t) = s′(θ)
Z0

r2(t)
= Z0

s′(θ)

s2(θ)
= −Z0

d 1
s

dθ
(θ),

thus

r′′(t) = −Z0

d2 1
s

dθ2
(θ) θ′(t) = − Z2

0

r2(t)

d2 1
s

dθ2
(θ),

which is the second Binet formula.

E.5 Screw theory (= torsors, distributors)

See https://perso.isima.fr/leborgne/IsimathMeca/torseur.pdf

F Riesz representation theorem

F.1 The Riesz representation theorem

Framework: (E, (·, ·)g) is Hilbert space (a vector space with an inner dot product (·, ·)g) such that, with

the associated norm de�ned by||x⃗||g :=
√

(x⃗, x⃗)g, (E, ||.||g) is a complete space (a Banach space). E.g.,

E = R⃗n with a Euclidean dot product, L2(Ω) with its inner dot product (f, g)L2 =
∫
Ω
fg dΩ...

And E∗ = L(E;R) is the space of linear and continuous forms on E (the space of linear �measuring
tools�) equipped with its usual norm ||ℓ||E∗ := sup

||x⃗||g=1

|ℓ.x⃗|.

• We have the easy statement:

∀v⃗ ∈ E (vector), ∃!vg ∈ E∗ (linear continuous form) s.t. vg.x⃗ = (v⃗, x⃗)g, ∀x⃗ ∈ E, (F.1)

moreover ||vg||E∗ = ||v⃗||g.
Indeed: De�ne vg : E → R by vg(x⃗) = (v⃗, x⃗)g for all x⃗ ∈ E; The de�nition domain of vg is E and

vg is trivially linear; And the Cauchy�Schwarz inequality gives |vg(x⃗)| = |(v⃗, x⃗)g| ≤ ||v⃗||g ||x⃗||g for all
x⃗ ∈ E, thus ||vg||E∗ ≤ ||v⃗||g < ∞, thus vg is continuous; And |vg(v⃗)| = |(v⃗, v⃗)g| = ||v⃗||g ||v⃗||g, thus
||vg||E∗ ≥ ||v⃗||g, thus ||vg||E∗ = ||v⃗||g. And uniqueness: Another wg satisfying wg.x⃗ = (v⃗, x⃗)g gives
(wg − vg).x⃗ = 0 for all x⃗, thus wg − vg = 0.

• The Riesz representation theorem concerns the converse: A �measuring tool� ℓ ∈ E∗ can represent
with he help of (·, ·)g by a vector ℓ⃗g ∈ E:
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126 F.2. The (·, ·)g-Riesz representation operator

Theorem F.1 (Riesz representation theorem, and de�nition) (E, (·, ·)g) being a Hilbert space,

∀ℓ ∈ E∗ (linear continuous form), ∃!ℓ⃗g ∈ E (vector) s.t. ℓ.x⃗ = (ℓ⃗g, x⃗)g, ∀x⃗ ∈ E, (F.2)

and moreover ||ℓ⃗g||g = ||ℓ||E∗ . And ℓ⃗g is called the (·, ·)g-Riesz representation vector of ℓ.
(Usual notation in �nite dimension: vg.x⃗ = v⃗ •

g x⃗, or simply v.x⃗ = v⃗ • x⃗ if a chosen (·, ·)g is imposed
to all observers: Isometric framework.)

Proof. Easy in �nite dimension: With a basis (e⃗i), if [ℓ]|e⃗ = ( ℓ1 . . . ℓn ) (row matrix since ℓ is a linear

form) then (F.2) gives [ℓ]|e⃗.[x⃗]|e⃗ = [ℓ⃗g]
T
e⃗ .[g]|e⃗.[x⃗]|e⃗, thus [ℓ⃗g]e⃗ = [g]−1

|e⃗ .[ℓ]
T
|e⃗ (column matrix), thus ℓ⃗g. Then

|ℓ.x⃗| = |(ℓ⃗g, x⃗)g| ≤ ||ℓ⃗g||g||x⃗||g, with |ℓ.ℓ⃗g| = |(ℓ⃗g, ℓ⃗g)g| = ||ℓ⃗g||g||ℓ⃗g||g, thus ||ℓ||E∗ = ||ℓ⃗g||g.
General case, in�nite dimension (e.g. E = L2(Ω) and the �nite element method). Let ℓ ∈ E∗. ℓ being

linear and continuous, its kernel Kerℓ = ℓ−1({0}) is a closed sub-vector space in E. If ℓ = 0 then

ℓ⃗g = 0⃗ (trivial). Suppose ℓ ̸= 0, thus Kerℓ ⊊ E. Thus if z⃗ /∈ Kerℓ then ∃!z⃗0 ∈ Kerℓ (called the (·, ·)g-
orthogonal projection of z⃗ on Kerℓ), given by: ∀y⃗0 ∈ Kerℓ, (z⃗ − z⃗0, y⃗0)g = 0, so z⃗ − z⃗0 ⊥g Kerℓ. Then
let n⃗ := z⃗−z⃗0

||z⃗−z⃗0||g , so n⃗ ∈ (Kerℓ)⊥ (and unitary); Moreover dim(Kerℓ)⊥ = 1 (= dimR = dimension of

the codomain of ℓ, see next exercise F.2), so (Kerℓ)⊥ = Vect{n⃗}. And E = Kerℓ ⊕ (Kerℓ)⊥ since both
vector spaces are closed (an orthogonal is always closed in a Hilbert space), thus any x⃗ ∈ E satis�es
x⃗ = x⃗0 + (x⃗ − x⃗0) = x⃗0 + λn⃗ ∈ Kerℓ ⊕ (Kerℓ)⊥ where (x⃗, n⃗)g = 0 + λ1 and ℓ(x⃗) = 0 + λℓ(n⃗), thus

ℓ(x⃗) = (x⃗, n⃗)gℓ(n⃗) = (x⃗, ℓ(n⃗)n⃗)g (bilinearity of (·, ·)g); Thus ℓ⃗g := ℓ(n⃗)n⃗ satis�es (F.2). And if ℓ⃗g1 and

ℓ⃗g2 satisfy (F.2) then (ℓ⃗g1 − ℓ⃗g2, x⃗)g = 0 for all x⃗ ∈ E, thus ℓ⃗g1 − ℓ⃗g2 = 0. Thus ℓ⃗g is unique. And

||ℓ||E∗ := sup||x⃗||g=1 |ℓ(x⃗)| = sup||x⃗||g=1 |(ℓ⃗g, x⃗)g|=
Cauchy
Schwarz ||ℓ⃗g||g.

Exercice F.2 Prove: If ℓ ∈ E∗−{0} then dim(Kerℓ)⊥ = 1 (= dim(Im(ℓ)) = dimR).

Answer. Consider the restriction ℓ|Kerℓ⊥ :

{
(Kerℓ)⊥ → R

x⃗ → ℓ|Kerℓ⊥ .x⃗ := ℓ.x⃗

}
. It is linear (since ℓ is), it is onto

since ℓ is linear and ℓ ̸= 0. And it is one to one since ℓ|Kerℓ⊥(x⃗) = 0 = ℓ(x⃗) gives x⃗ ∈ (Kerℓ)⊥
⋂

Kerℓ = {0⃗} thus

x⃗ = 0; Thus ℓ|Kerℓ⊥ is (linear) bijective, thus dim(Kerℓ)⊥ = dim(R) = 1.

F.2 The (·, ·)g-Riesz representation operator

The Riesz representation theorem F.1 gives the (·, ·)g-Riesz representation operator

R⃗g :

{
E∗ → E

ℓ → R⃗g(ℓ) := ℓ⃗g,

}
where (R⃗g(ℓ)︸ ︷︷ ︸

ℓ⃗g

, v⃗)g = ℓ.v⃗, ∀v⃗ ∈ E. (F.3)

Proposition F.3 R⃗g is an isomorphism between Banach spaces. And R⃗g is a change of variance tool:

R⃗g transforms a � covariant ℓ � into a � contravariant ℓ⃗g � thanks to the tool (·, ·)g. (F.4)

Proof. Linearity: (R⃗g(ℓ+ λm), x⃗)g = (ℓ+ λm).x⃗ = ℓ.x⃗+ λm.x⃗ = (R⃗g(ℓ), x⃗)g + λ(R⃗g(m), x⃗)g = (R⃗g(ℓ) +

λR⃗g(m), x⃗)g, for all x⃗, gives R⃗g(ℓ + λm) = R⃗g(ℓ) + λR⃗g(m). Bijectivity thanks to (F.1) and (F.2), and

||ℓ⃗g||g = ||ℓ||E∗ thanks to the Riesz representation theorem: Isomorphism between Banach spaces.

NB (fundamental): R⃗g is not objective since it requires a man made tool (an inner dot product e.g.
English or French) to be de�ned. In fact, an isomorphism E ↔ E∗ can never be objective, see � U.2.

With G the set of inner dot products in E, we have thus de�ned the Riesz representation mapping

R⃗ :

{
G × E∗ → E

(g, ℓ) → R⃗(g, ℓ) := ℓ⃗g = R⃗g(ℓ) = ℓ⃗(g).
(F.5)

So R⃗ has two inputs: A choice (·, ·)g by an observer for the �rst slot, a linear form for the second slot.
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127 F.3. Quanti�cation with a basis

F.3 Quanti�cation with a basis

Here E is �nite dimensional, dimE = n, ℓ ∈ E∗ (a linear form), (·, ·)g is an inner dot product, (e⃗i) is a
basis, (ei) is the dual basis (duality notations). Let

gij = g(e⃗i, e⃗j), ℓ =

n∑
j=1

ℓje
j , ℓ⃗g =

n∑
i=1

(ℓ⃗g)
ie⃗i, R⃗g.e

j =

n∑
i=1

Rijg e⃗i, i.e.,

[g]|e⃗ = [gij ], [ℓ]|e = ( ℓ1 ... ℓn ) (row), [ℓ⃗g]|e⃗ =

 (ℓ⃗g)
1

...
(ℓ⃗g)

n

 (column), [R⃗]|e,e⃗ = [Rij ].

(F.6)

Then (F.2) gives [ℓ]|e⃗.[x⃗]|e⃗ = [ℓ⃗g]
T
|e⃗.[g]|e⃗.[x⃗]|e⃗ for all x⃗, thus [ℓ]|e⃗ = [ℓ⃗g]

T
|e⃗.[g]|e⃗, thus [ℓ]

T
|e⃗ = [g]|e⃗.[ℓ⃗g]|e⃗ (since

[g]|e⃗ = [g]T|e⃗), thus

[ℓ⃗g] = [g]−1.[ℓ]T , i.e. (ℓ⃗g)
i =

n∑
j=1

([g]−1)ijℓj , ∀i. (F.7)

And R⃗g.ℓ=
(F.3) ℓ⃗g gives [R⃗g]|e,e⃗.[ℓ]

T
|e⃗ = [ℓ⃗g]e⃗, thus

[R⃗g] = [g]−1 , i.e. Rijg = ([g]−1)ij , ∀i, j, thus (ℓ⃗g)
i =

n∑
j=1

Rijℓj , ∀i. (F.8)

Remark F.4 If a chosen inner dot product (·, ·)g is imposed (e.g. Euclidean foot based) and if duality

notations are used, then a usual notation for ℓ⃗g is ℓ♯, because the bottom index i in ℓi has been raised

by R⃗g to give ℓig =
noted ℓi. Then (F.2) and (F.8) read, with ℓ♯ := ℓ⃗g =

∑
i ℓ
ie⃗i,

ℓ.x⃗ = ℓ♯ • x⃗ and

 ℓ1
...
ℓn

 = [R⃗g].

 ℓ1
...
ℓn

 , (F.9)

We won't use this ℓ♯ notation (we deal with objectivity: No isometric framework imposed).

F.4 Change of Riesz representation vector, and Euclidean case

Let ℓ ∈ E∗, let (·, ·)g and (·, ·)h be two inner dot products, let ℓ⃗g := R⃗g(ℓ) and ℓ⃗h := R⃗h(ℓ), so, ∀x⃗ ∈ E,

(ℓ⃗g, x⃗)g = ℓ.x⃗ = (ℓ⃗h, x⃗)h. (F.10)

Proposition F.5 For any basis (e⃗i) in E, we have the change of Riesz representation vector formula:

[h].[ℓ⃗h] = [g].[ℓ⃗g], i.e. [ℓ⃗h] = [h]−1.[g].[ℓ⃗g], (F.11)

short notation for [h]|e⃗.[ℓ⃗h]|e⃗ = [g]|e⃗.[ℓ⃗g]|e⃗, i.e. [ℓ⃗h]|e⃗ = [h]−1
|e⃗ .[g]|e⃗.[ℓ⃗g]|e⃗.

NB: (F.11) is a �change of vector� formula: one basis, two vectors; It is not a �change of basis� formula
(one vector and two sets of components). In particular (for the Euclidean case):

If (·, ·)g = λ2(·, ·)h then ℓ⃗h = λ2ℓ⃗g. (F.12)

Conversely, if ℓ⃗h = λ2ℓ⃗g for all linear forms ℓ ∈ E∗, then (·, ·)g = λ2(·, ·)h.
So, a linear form ℓ cannot be identi�ed with a Riesz representation vector (which one: ℓ⃗g? ℓ⃗h?).

Proof. (F.10) gives [x⃗]T|e⃗.[g]|e⃗.[ℓ⃗g]|e⃗ = [x⃗]T|e⃗.[h]|e⃗.[ℓ⃗h]|e⃗ for all x⃗, hence [g]|e⃗.[ℓ⃗g]|e⃗ = [h]|e⃗.[ℓ⃗h]|e⃗, i.e. (F.11).

In particular λ2(·, ·)h = (·, ·)g give λ2(ℓ⃗g, x⃗)h = (ℓ⃗g, x⃗)g =
(F.10)(ℓ⃗h, x⃗)h for all x⃗, hence λ2ℓ⃗g = ℓ⃗h.

Converse: λ2ℓ⃗g = ℓ⃗h for all ℓ gives λ2(ℓ⃗g, x⃗)h = (ℓ⃗h, x⃗)h
(F.10)
= (ℓ⃗g, x⃗)g, for all x⃗ and for all ℓ⃗g (because

R⃗g is an isomorphism cf. prop. (F.3)), thus λ2(·, ·)h = (·, ·)g.
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Example F.6 If (·, ·)g and (·, ·)h are the Euclidean dot products made with the foot and the metre then,
with (F.10),

(·, ·)g = λ2(·, ·)h =⇒ ℓ⃗h = λ2ℓ⃗g, with λ2 > 10 : (F.13)

A linear form ℓ is represented by quite di�erent vectors by an English observer (ℓ⃗g �small�) and by a French

observer (ℓ⃗h �big�)! So a Riesz representation vector is (very) subjective, and certainly not �canonical� (a
word that you may �nd in books where... nothing is de�ned... nor justi�ed...).

Example F.7 Aviation: If you do want to use a Riesz representation vector to represent a ℓ ∈ Rn∗,
it is vital to know which Euclidean dot product is in use, cf. the Mars Climate Orbiter probe crash
(remark A.17). Recall: The foot is the international unit of altitude for aviation.

F.5 Riesz representation vector and gradients

If f ∈ C1(Rn;R) and p ∈ Rn, the di�erential of f at p is the linear form df(p) ∈ Rn∗ de�ned by, for all

w⃗ ∈ R⃗n,

df(p).w⃗ := lim
h→0

f(p+ hw⃗)− f(p)
h

. (F.14)

See (T.6) (de�nition independent of any inner dot product or basis).

If you choose an inner dot product (·, ·)g then you can de�ne the gradient ⃗gradgf(p): It is the (·, ·)g-
Riesz representation vector of df(p):

⃗gradgf(p) := R⃗g(df(p)), i.e. df(p).w⃗ = ( ⃗gradgf(p), w⃗)g, ∀w⃗ ∈ R⃗n. (F.15)

E.g. (F.13) gives

⃗gradhf(p) = λ2 ⃗gradgf(p) with λ2 > 10 (English vs French) : (F.16)

The gradient is very dependent on the observer (a gradient is subjective, the di�erential is objective).

Remark F.8 We already had this observer dependence in the 1-D case f : x ∈ R→ f(x) ∈ R:
Question: What does f ′(x) = 3 mean? Answer:

11- For one observer, it means f ′(x) = limh→0
f(x+h)−f(x)

h ... where in the departure space the observer
has chosen a basis vector a⃗ of length 1 for him (e.g. 1 foot, 1 Fahrenheit...) which he calls a⃗ = 1; So, with

no abusive notations, his derivative f ′(x) is in fact f ′a(x) := df(x).⃗a = limh→0
f(x+ha⃗)−f(x)

h .

12- For another observer, it means f ′(x) = limh→0
f(x+h)−f(x)

h ... where in the departure space the

observer has chosen a basis vector b⃗ of length 1 for him (e.g. 1 metre, 1 Celsius...), and he write b⃗ = 1;

So, with no abusive notations, his derivative f ′(x) is in fact f ′b(x) := df(x).⃗b = limh→0
f(x+h⃗b)−f(x)

h .

13- If b⃗ = λa⃗, then

lim
h→0

f(x+h⃗b)− f(x)
h

= lim
h→0

f(x+hλa⃗)− f(x)
h

= λ lim
h→0

f(x+hλa⃗)− f(x)
hλ

= λ lim
k→0

f(x+ka⃗)− f(x)
k

.

E.g. with foot and metre,

f ′b(x) = λf ′a(x), with λ ≃ 3.28, so f ′b(x) ̸= f ′a(x). (F.17)

In other words, f ′(x) =
opposite side
adjacent side depends on the length of the adjacent side: In foot? metre?...

Exercice F.9 We have f ′b(x) =
(F.17) λf ′a(x) and

⃗gradbf(x) =
(F.16) λ2 ⃗gradaf(x). Why?

Answer. Because (F.17) does not use the Riesz representation theorem. Details: (⃗a) and (⃗b) are two bases

in R⃗, associated inner dot products (·, ·)a and (·, ·)b, and b⃗ = λa⃗; thus (·, ·)a = λ2(·, ·)b. And f ′
b(x) = λf ′

a(x)

gives ( ⃗gradfb(x), b⃗)b =
(F.15) df(x).⃗b = f ′

b(x) = λf ′
a(x) = λdf(x).⃗a =(F.15) λ( ⃗gradfa(x), a⃗)a = ( ⃗gradfb(x), λa⃗)b =

λ2( ⃗gradfa(x), a⃗)b, so ⃗gradfb(x) = λ2 ⃗gradfa(x) as expected.

Exercice F.10 With ||.||g = λ||.||h we have ||ℓ⃗h||g = λ||ℓ⃗h||h. Does it contradict the Riesz representation
theorem which gives ||ℓ|| = ||ℓ⃗g||?

Answer. No, because ||ℓ|| := supx⃗
|ℓ.x⃗|

||x⃗||Rn
depends on the norm ||.||Rn chosen; Here ||.||Rn is either ||.||g or ||.||h.

And if ||ℓ||g := supx⃗
|ℓ.x⃗|
||x⃗||g (you have chosen the ||.||Rn := ||.||g), then ||ℓ||h = supv⃗∈R⃗n

|ℓ.v⃗|
||v⃗||h

= supv⃗∈R⃗n
|ℓ.v⃗|

1
λ
||v⃗||g

=

λ supv⃗∈R⃗n
|ℓ.v⃗|
||v⃗||g = λ||ℓ||g. Don't forget: ||ℓ|| = sup(...) depends on the choice of a norm: ||.||g? ||.||h?
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129 F.6. A Riesz representation vector is contravariant

F.6 A Riesz representation vector is contravariant

ℓ⃗g is a vector in E, cf. (F.2), so it is contravariant. To be convinced:

Exercice F.11 Check:

[ℓ⃗g]|new = P−1.[ℓ⃗g]|old (contravariance formula). (F.18)

Answer. Consider two bases (e⃗old,i) and (e⃗new,i) in E. With the change of basis formulas [x⃗]|new = P−1.[x⃗]|old
and [g]|new = PT .[g]|old.P , (F.2) gives, for all x⃗,

[x⃗]T|old.[g]|old.[ℓ⃗g]|old = ℓ.x⃗ = [x⃗]T|new.[g]|new.[ℓ⃗g]|new

= ([x⃗]T|old.P
−T ).(PT .[g]|old.P ).[ℓ⃗g]|new = [x⃗]T|old.[g]|old.(P.[ℓ⃗g]|new),

(F.19)

thus [ℓ⃗g]|old = P.[ℓ⃗g]|new since [g] is invertible (an inner dot product is positive de�nite), thus (F.18).

Remark F.12 • Dont forget: A representation vector ℓ⃗g is not intrinsic to the linear form ℓ because it
depends on a (·, ·)g (depends on a observer: foot? metre?). More generally, there is no natural canonical
isomorphism between E and E∗, see � U.2: It is impossible to identify a linear form with a vector.
• ℓ⃗g is not compatible with the use of push-forwards and pull-backs, cf. � 7.2.

• ℓ⃗g is not compatible with the use of Lie derivatives, cf. (9.54).

F.7 What is a vector versus a (·, ·)g-vector?

1- Originally, a vector was a bipoint vector x⃗ =
−−→
AB in R⃗3 used to represent a �material object�. E.g.

the height of a child is represented on a wall by a vertical bipoint vector x⃗ starting from A the ground
up to B a pencil line. The vector x⃗ is objective: Any observer uses this same vector to get the height of
the child... And then they use �their subjective unit� (foot, metre...) to give a value.

2- Then (mid 19th century), the concept of vector space was introduced: It is a quadruplet (E,+,K, .)
where + is an inner law, (E,+) is a group, K is a �eld, . is a external law on E (called a scalar
multiplication) compatible with + (see any math book).

3- And the de�nition of scalar inner dot product (·, ·)g (in a vector space) was introduced.

4- We can then get non �material� vectors (�subjectively built vectors�). E.g.: start with our usual

vector space R⃗n of bi-point vectors, and consider its dual Rn∗ := L(R⃗n;R). For a given ℓ ∈ Rn∗ (a
given measuring device), consider two observers: An English observer with his foot built Euclidean dot
product (·, ·)g, and a French observer with with his metre built Euclidean dot product (·, ·)h. These

observers build their own arti�cial (man made) Riesz representation vectors ℓ⃗g = R⃗g(ℓ) and ℓ⃗h = R⃗h(ℓ),

cf (F.13); They remark that ℓ⃗g ̸= ℓ⃗h: Their man made vectors are di�erent (subjective).

5- Then, with di�erential geometry, a vector v⃗ has been rede�ned: It is a �tangent vector�, which
means that there exists a C1 curve c : s ∈ [a, b] → c(s) ∈ E such that v⃗ is de�ned at a p = c(s) ∈ Im(c)
by v⃗(p) := c⃗ ′(s). Advantage: This de�nition of a tangent vector is applicable to �tangent vectors to a
surface� i.e. tangent vectors to a manifold, see e.g. � 9.1.1,2-. Then it is shown that v⃗ is equivalent to
∂
∂v⃗ = the directional derivative in the direction v⃗ (natural canonical isomorphism E ≃ E∗∗ see � U.3).

For other equivalent de�nitions of vectors, see e.g. Abraham�Marsden [1].

F.8 The �(·, ·)g-dual vectorial bases� of one basis (and warnings)

Framework: E is a �nite dimensional vector space, dimE = n (e.g. E = R⃗3). An observer chooses

an inner dot product (·, ·)g (e.g., in R⃗3, a foot-built Euclidean dot product, hence the results will be
subjective). And (e⃗i) is some basis in E.

F.8.1 A basis and its many associated �dual vectorial basis�

De�nition F.13 Let (e⃗i) be a basis in E. Its (·, ·)g-dual vectorial basis (or (·, ·)g-vectorial dual basis, or
(·, ·)g-dual basis) is the basis (e⃗ig) in E de�ned by

∀j = 1, ..., n, (e⃗ig, e⃗j)g = δij , i.e. e⃗ig •
g e⃗j = δij . (F.20)

NB: A vectorial dual basis is not unique: It depends on the chosen inner dot product, see e.g. (F.24).

129



130 F.8. The �(·, ·)g-dual vectorial bases� of one basis (and warnings)

De�nition F.14 (Equivalent de�nition.) Let (πei) be the (covariant) dual basis of the basis (e⃗i):
The πei are the linear forms de�ned by πei.e⃗j = δij for all j, cf. (A.7). (The πei ∈ E∗ are objective, i.e.
the same for all observers). The (·, ·)g-dual vectorial basis of the basis (e⃗i) is the basis (e⃗ig) in E made
of the (·, ·)g-Riesz representative vectors of the πei:

e⃗ig := R⃗g(πei) , so de�ned by e⃗ig •
g v⃗ = πei.v⃗, ∀v⃗ ∈ E. (F.21)

where R⃗g is the (·, ·)g-Riesz operator, see (F.3).
Duality notations: with (ei) the dual basis,

e⃗ig := R⃗g(e
i), i.e. (e⃗ig, v⃗)g = ei.v⃗, ∀v⃗ ∈ E. (F.22)

The position of the index i is down on the left and up on the right, because R⃗g changes the variance type.

NB: Pay attention to the notations: e⃗ig is a contravariant vector: e⃗ig ∈ E. So if you use the Einstein
convention then the index i in e⃗ig must be a bottom index.

Exercice F.15 Prove that the vectors e⃗ig satisfy the contravariant change of basis formula

[e⃗ig]|new = P−1.[e⃗ig]|old (the e⃗jg are �contravariant vectors�). (F.23)

Answer. • First answer: e⃗ig is a vector in E, thus it is contravariant.
• Second answer: Apply (F.18) since e⃗ig is a Riesz-representation vector.

• Third answer = direct computation: Consider two bases (⃗ai) and (⃗bi), and the transition matrix P from

(⃗ai) to (⃗bi). (F.20) and the change of basis formulas give [e⃗j ]
T
|⃗a.[g]|⃗a.[e⃗ig]|⃗a = (e⃗ig, e⃗j)g = [e⃗j ]

T
|⃗b.[g]|⃗b.[e⃗ig]|⃗b =

(P−1.[e⃗j ]|⃗a)
T .(PT .[g]|⃗a.P ).[e⃗ig]|⃗b = [e⃗j ]

T
|⃗a.[g]|⃗a.P.[e⃗ig]|⃗b, for all i, j, thus [e⃗ig]|⃗a = P.[e⃗ig]|⃗b, for all i, i.e. (F.23).

Exercice F.16 Choose one basis (e⃗i) in E. Consider two inner dot products (·, ·)a and (·, ·)b (e.g., a
foot and a metre built Euclidean dot products). Call (e⃗ia) and (e⃗ib) the (·, ·)a and (·, ·)b-dual vectorial
bases of the basis (e⃗i). Prove:

(·, ·)a = λ2(·, ·)b =⇒ e⃗ib = λ2e⃗ia, ∀i. (F.24)

E.g., λ2 > 10 with foot and metre built Euclidean bases: e⃗ib is much bigger than e⃗ia : A vectorial dual
basis is not intrinsic to (e⃗i) (not objective).

Answer. (F.20) gives (e⃗ib, e⃗j)b = δij = (e⃗ia, e⃗j)a = λ2(e⃗ia, e⃗j)b, thus (e⃗ib − λ2e⃗ia, e⃗j)b = δij , for all i, j.

Example F.17 If (e⃗i) is a (·, ·)g-orthonormal basis we trivially get e⃗ig = e⃗i for all i, i.e., (e⃗ig) = (e⃗i).This
particular case is not compatible with joint work by an English (foot) and a French (metre) observer.

F.8.2 Components of e⃗jg in the basis (e⃗i)

Proposition F.18 The components of e⃗jg in the basis (e⃗i) are the R
ij
g : for any j ∈ [1, n]N,

e⃗jg =

n∑
i=1

Rijg e⃗i, i.e. e⃗jg =

n∑
i=1

P ij e⃗i where P ij = Rijg , i.e. [e⃗jg]|e⃗ = [R⃗g]|e⃗.[e⃗j ]|e⃗ (F.25)

(the j-th column of [g]|e⃗
−1 = [R⃗g]|e⃗). And [P ] = [P ij ] = [Rijg ] is the transition matrix form (e⃗i) to (e⃗ig).

(Recall e⃗jg = R⃗g(e
i): Change of variance, thus the position of the index.)

Use classic notations if you prefer: e⃗jg =
∑
i Pij e⃗i =

∑
iRg,ij e⃗i.

Thus the matrix of g(·, ·) in the basis (e⃗ig) is the inverse of the matrix of g(·, ·) in the basis (e⃗i):

[g(e⃗ig, e⃗jg)] = [g]|e⃗ig = [g]|e⃗i
−1 = ([g(e⃗i, e⃗j)])

−1. (F.26)

Proof. First proof of (F.25) (straight forward calculation): (F.20) gives

∀i, j, [e⃗j ]
T
|e⃗.[g]|e⃗.[e⃗ig]|e⃗ = δij = [e⃗j ]

T
|e⃗.[e⃗i]|e⃗, thus [g]|e⃗.[e⃗ig]|e⃗ = [e⃗i]|e⃗, ∀i. (F.27)

Second proof of (F.25): Apply (F.8) (generic Riesz representation result) to get (F.25).
Then, with [g]|e⃗ symmetric, g(e⃗ig, e⃗jg) = [e⃗ig]

T
|e⃗.[g]|e⃗.[e⃗jg]|e⃗ = [e⃗i]

T
|e⃗.[g]|e⃗

−1.[g]|e⃗.[g]|e⃗
−1.[e⃗j ]|e⃗ =

[e⃗i]
T
|e⃗.[g]|e⃗

−1.[e⃗j ]|e⃗ = ([g]|e⃗
−1)ij , thus (F.26).
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131 F.8. The �(·, ·)g-dual vectorial bases� of one basis (and warnings)

Example F.19 R⃗2, [g]|e⃗ =

(
1 0
0 2

)
, thus [g]−1

|e⃗ =

(
1 0
0 1

2

)
. Thus e⃗1g = e⃗1 and e⃗2g =

1
2 e⃗2.

Remark F.20 Warning, cf remark A.55: When ([g]−1
|e⃗ )ij =

noted gij (instead of Rij) then (F.25) reads

e⃗jg =

n∑
i=1

gij e⃗i, (F.28)

where the Einstein convention is not satis�ed. The Einstein convention is satis�ed with e⃗jg =∑n
i=1(Pj)

ie⃗i. (And P = [(Pj)
i] = [P ij ] is the transition matrix from (e⃗i) to (e⃗ig)). So in (F.28) gij

is also another name for (Pj)
i = P ij :

gij := (Pj)
i = P ij . (F.29)

We insist: M = [g]|e⃗ = [Mij ] is a matrix, and its inverse is the matrix M−1 = [Mij ]
−1 = |Nij ]: A

matrix is just a collection of scalars, it is not tensorial (has nothing to do with the Einstein convention),
and its inverse is also a collection of scalars, and you don't change this fact by calling M−1 = [M ij ].

And because (Pj)
i equals ([g]−1

|e⃗ )ij =
noted gij , some people rename e⃗jg as e⃗

j ... to get e⃗ j =
∑n
i=1g

ij e⃗i...

to have the illusion to satisfy Einstein's convention, which is false: They confuse covariance and contravari-
ance... and add confusion to the confusion...

NB: Recall: If in trouble with a notation which comes as a surprise (the notation gij here), use classic
notations: Then no misuse of Einstein's convention and no possible misinterpretation.

F.8.3 Multiple admissible notations for the components of e⃗jg

Let P ∈ L(E;E) be the change of basis endomorphism from (e⃗i) to (e⃗ig): de�ned by P.e⃗j = e⃗jg. And
let P = [P]|e⃗ = the transition matrix from (e⃗i) to (e⃗ig). We have multiple admissible (non confusing)
notations for the components of e⃗jg relative to the basis (e⃗i):

e⃗jg = P.e⃗j =
n∑
j=1

Pij e⃗i =

n∑
j=1

(Pj)ie⃗i︸ ︷︷ ︸
clas.

=

n∑
j=1

(Pj)
ie⃗i =

n∑
j=1

P ij e⃗i︸ ︷︷ ︸
dual

, (F.30)

i.e. the i-th component of the vector e⃗jg has the names Pij = (Pj)i = (Pj)
i = P ij or P

i
j , i.e. P = [P]|e⃗ =

[Pij ] = [(Pj)i] = [(Pj)
i] = [P ij ] (four di�erent notations for the same matrix), i.e.

∀j, [e⃗jg]|e⃗ = P.[e⃗j ]|e⃗ =

 P1j

...
Pnj

 =

 (Pj)1
...

(Pj)n

 =

 P 1
j

...
Pnj

 =

 (Pj)
1

...
(Pj)

n

 (F.31)

= the j-th column of P . You can choose any notation, depending on your current need or mood...

F.8.4 (Huge) di�erences between �the (covariant) dual basis� and �a dual vectorial basis�

1. A basis (e⃗i) has an in�nite number of vectorial dual bases (e⃗ig), as many as the number of inner
dot products (·, ·)g (observer dependents), see (F.25). And two observers with two di�erent inner
dot product get two di�erent dual vectorial bases.

2. While a basis (e⃗i) has a unique intrinsic (covariant) dual basis (πei)
noted
= (ei), cf. (A.7): Two

observers who consider the same basis (e⃗i) have the same (covariant) dual basis.

3. If you �y, it is vital to use the dual basis (πei) = (ei): It is possibly fatal if you confuse foot and
metre at takeo� and at landing (if you survived takeo�) because of the choice of di�erent Euclidean
dot product (·, ·)g or (·, ·)h; See e.g. the Mars Climate Orbiter crash, remark A.17.

4. Einstein's convention can help... only if it is properly applied.
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132 G.1. Goal

F.8.5 About the notation gij = shorthand notation for (g♯)ij

De�nition F.21 g(·, ·) = (·, ·)g being an inner dot product in E, the Riesz associated inner dot product
g♯(·, ·) = (·, ·)g♯ in E∗ is the bilinear form in L(E∗, E∗;R) de�ned by, for all ℓ,m ∈ E∗,

(ℓ,m)g♯ := (ℓ⃗g, m⃗g)g, where ℓ⃗g = R⃗g(ℓ) and m⃗g = R⃗g(m) (F.32)

(the (·, ·)g-Riesz representation vectors). (g♯(·, ·) is indeed an inner dot product in E∗: easy check.)

Quanti�cation: With (e⃗i) a basis in E and (ei) its dual basis (duality notations). (F.32) gives:

(g♯)ij := g♯(ei, ej)
(F.32)
= g(e⃗ig, e⃗jg), thus [g♯]|e

(F.25)
= = [g]−1

|e⃗ , i.e. [(g♯)ij ] = [gij ]
−1 . (F.33)

And

shorthand notation: [(g♯)ij ]
noted
= [gij ] . (F.34)

Classical notations: [g♯]|e = [(g♯)ij ] = [g♯(πei, πej)] = [g(e⃗ig, e⃗jg)] = [gij ]
−1 = ([g]|e⃗)

−1.

Exercice F.22 How do we compute g♯(ℓ,m) with matrix computations?

Answer. ℓ =
∑n

i=1ℓie
i and m =

∑n
j=1mje

j give g♯(ℓ,m) =
∑n

i,j=1ℓimjg
♯(ei, ej) =

∑n
i,j=1ℓi(g

♯)ijmj =

[ℓ]|e⃗.[g
♯]|e⃗.[m]T|e⃗ = [ℓ]|e⃗.[g]

−1
|e⃗ .[m]T|e⃗ (a linear form is represented by a row matrix,).

Exercice F.23 (F.32) tells that the
(
2
0

)
tensor g♯ ∈ L(E∗, E∗;R) was created from the

(
0
2

)
tensor g =

(·, ·)g ∈ L(E,E;R) using twice the (·, ·)g-Riesz representation theorem.
1- Show that if you use the (·, ·)g-Riesz representation theorem just once you get the

(
1
1

)
tensor

g♮ ∈ L(E∗, E;R) ≃ L(E;E) which is the identity endomorphism:

g♮ = I. (F.35)

2- Reciprocal: What is the
(
0
2

)
tensor g♭ ∈ L(E,E;R) that you create from the identity I ∈ L(E;E)

when using the (·, ·)g-Riesz representation theorem once?

3- Summary: Ĩ = g♮ gives (Ĩ)♭ = g♭ = g and (Ĩ)♯ = g♯

Answer. 1- g♮ ∈ L(E∗, E;R) is de�ned by g♮(ℓ, w⃗) = (ℓ⃗g, w⃗)g for all (ℓ, w⃗) ∈ E∗ ×E, where ℓ⃗g is the (·, ·)g-Riesz
representation vector of ℓ. Thus g♮(ℓ, w⃗) = ℓ.w⃗ = ℓ.I.w⃗, for all (ℓ, w⃗) ∈ E∗×E, hence g♮ ∈ L(E∗, E;R) is naturally
canonically associated with the identity I ∈ L(E;E).

2- The identity operator I ∈ L(E;E) (observer independent) is naturally canonically associated with the
(
1
1

)
tensor Ĩ ∈ L(E∗, E;R) de�ned by Ĩ(ℓ, w⃗) = ℓ.I.w⃗ = ℓ.w⃗ for all (ℓ, w⃗) ∈ E∗ × E, thus Ĩ = g♮.

G Cauchy�Green deformation tensor C = F T .F

Framework: Φ̃ :

{
[t0, T ]×Obj → Rn

(t, PObj ) → Φ̃(t, PObj )

}
is a motion of Obj , Ωτ = Φ̃(τ, PObj ) is the con�g-

uration of Obj at any τ . Then Φt0(t, pt0) := Φ̃(t, PObj ) when pt0 = Φ̃(t0, pt0), and if t is �xed

then Φt0t (pt0) := Φt0(t, pt0) and Φ := Φt0t :

{
Ωt0 → Ωt

pt0 → pt = Φ(pt0)

}
. And F (P ) := dΦ(P ) :

R⃗nt0 → R⃗nt

W⃗ → w⃗ = F (pt0).W⃗ := lim
h→0

Φ(pt0+hW⃗ )− Φ(pt0)

h

 (deformation gradient at pt0 between t0 and t).

G.1 Goal

Construction of C (summary of Cauchy's approach):

1- At t0, consider two vectors W⃗1 and W⃗2 at a point P ∈ Ωt0 .

2- At t, they have been distorted by the motion to become the vectors F.W⃗1 and F.W⃗2 at p = Φ(P ).
3- Then choose a Euclidean dot product (·, ·)g =noted · • ·, the same at all t (to simplify);

4- Then, by de�nition of the transposed, (F.W⃗1) • (F.W⃗2) = (FT .F.W⃗1) • W⃗2: You have got the
Cauchy strain tensor C := FT .F ;

5- Then (F.W⃗1) • (F.W⃗2)− W⃗1 • W⃗2 = ((C−I).W⃗1) • W⃗2 gives a measure of the deformation with W⃗2

as a reference, value used to build a �rst order constitutive law for the stress (Cauchy).
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133 G.2. Transposed FT : Inner dot products required

G.2 Transposed F T : Inner dot products required

We �rst recall the functional de�nition of FT ; Then we get the usual matrix representation of FT relative
to observers (quanti�cation).

G.2.1 De�nition of the function FT

At t0, a past observer chose an inner dot product (·, ·)G in R⃗nt0 , and at t the present observer chooses an

inner dot product (·, ·)g in R⃗nt . Let P ∈ Ωt0 and p = Φ(P ) (∈ Ωt). The transposed of the linear map

F (P ) ∈ L(R⃗nt0 ; R⃗
n
t ) relative to (·, ·)G and (·, ·)g is the linear map F (P )TGg ∈ L(R⃗nt ; R⃗nt0) de�ned by, for all

U⃗P ∈ R⃗nt0 vector at P and w⃗p ∈ R⃗nt vector at p,

(F (P )TGg.w⃗p, U⃗P )G = (F (P ).U⃗P , w⃗p)g, written (FT .w⃗) •
G
U⃗ = w⃗ •

g (F.U⃗) , (G.1)

see (A.66). Don't forget that FT := F (P )TGg depends on (·, ·)G, (·, ·)g, a P ∈ Ωt0 , t0 and t. Recall: F

stands for F t0t , so F (P )
T
Gg stands for F

t0
t (P )TGg.

So F (P )TGg : R⃗nt → R⃗nt0 acts on vectors de�ned at p, which de�nes

FTGg :

Ωt → L(R⃗nt ; R⃗nt0)

p → FTGg(p) := F (P )TGg where P = Φ−1(p).
(G.2)

Hence (G.1) reads (FTGg(p).w⃗p, U⃗P )G = (F (P ).U⃗P , w⃗p)g, written in short (FT .w⃗) •
G
U⃗ = w⃗ •

g (F.U⃗). Don't

forget that FT := FTGg(p) depends on (·, ·)G and (·, ·)g and p ∈ Ωt.

Recall: F stands for F t0t , so F
T
Gg(p) stands for (F

t0
t )TGg(p) (= F t0t (P )TGg).

Exercice G.1 1. With the ambiguous notation FT .z⃗.W⃗ = z⃗.F.W⃗ = F.W⃗ .z⃗ = W⃗ .FT .z⃗, which dots are
inner dot products?

2. With ambiguous notations, what does F.W⃗1.F.W⃗2 = W⃗1.F
T .F.W⃗2 mean?

Answer. 1. No choice: (W⃗ , z⃗) ∈ R⃗n
t0 × R⃗n

t , and meaning (FT .z⃗) •
G
W⃗ = z⃗ •g (F.W⃗ ) = (F.W⃗ ) •g z⃗ = W⃗ •

G
(FT .z⃗).

2. No choice: W⃗1, W⃗2 ∈ R⃗n
t0 , and meaning (F.W⃗1) •g (F.W⃗2) = W⃗1 •

G
(FT .F.W⃗2).

Remark G.2 On a surface Ω (a manifold), (G.1) is de�ned for all (U⃗P , w⃗p) ∈ TPΩt0 × TpΩt.

G.2.2 Quanti�cation with bases (matrix representation)

Classical notations: (⃗ai) is a basis in R⃗nt0 , and (⃗bi) is a basis in R⃗nt . Marsden�Hughes duality notations:

(E⃗I) is a basis in R⃗nt0 and (e⃗i) is a basis in R⃗nt . And the reference to the points P and p is omitted to
lighten the writings (use the full notation of � G.2.1 if in doubt). Let

Gij = (⃗ai, a⃗j)G, gij = (⃗bi, b⃗j)g, F.⃗aj =

n∑
i=1

Fij b⃗i, F
T .⃗bj =

n∑
i=1

(FT )ij a⃗j , (G.3)

and [G]|⃗a := [Gij ]
not.
= [G], [g]|⃗b := [gij ]

not.
= [g], [F ]|⃗a,⃗b = [Fij ]

not.
= [F ], [FT ]|⃗b,⃗a = [(FT )ij ]

not.
= [FT ].

(G.1) gives [U⃗ ]T .[G].[FT .w⃗] = [F.U⃗ ]T .[G].[w⃗], thus [U⃗ ]T .[G].[FT ].[w⃗] = [U⃗ ]T .[F ]T .[g].[w⃗], for all U⃗ , w⃗,
thus

[G].[FT ] = [F ]T .[g], i.e. [FT ] = [G]−1.[F ]T .[g] . (G.4)

(More precisely: [G]|⃗a.[F
T ]|⃗b,⃗a = [F ]|⃗a,⃗b

T .[g]⃗b, i.e. [F
T ]|⃗b,⃗a = [G]|⃗a

−1.([F ]|⃗a,⃗b)
T .[g]⃗b.) So:

n∑
k=1

Gik(F
T )kj =

n∑
k=1

Fkigkj , i.e. (FT )ij =

n∑
k,ℓ=1

([G]−1)ikFℓkgℓj (G.5)

Remark G.3 If (⃗ai) and (⃗bi) are (·, ·)G and (·, ·)g-orthonormal bases, then [G] = I = [g], thus [C] =
[F ]T .[F ]. But recall: If work with coordinate systems then the bases are usually the coordinate system
bases which are not orthonormal in general, i.e. [G]−1 ̸= I and [g]−1 ̸= I in general.
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134 G.3. Cauchy�Green deformation tensor C

Exercice G.4 Detail the obtaining of (G.5) (classical notation), then use Marsden duality notations to
express (G.5).

Answer. Classical notations: (FT .⃗bj , a⃗i)G = (⃗bj , F.⃗ai)g and (G.3) gives (
∑n

k=1(F
T )kj a⃗k, a⃗i)G =

(⃗bj ,
∑n

k=1Fki⃗bk)g, thus
∑n

k=1(F
T )kj (⃗ak, a⃗i)G =

∑n
k=1Fki(⃗bj , b⃗k)g with Fki = ([F ]T )ik, thus (G.5).

Marsden duality notations: Basis (E⃗I) at P at t0, basis (e⃗i) at p at t, GIJ = G(E⃗I , E⃗j), gij = g(e⃗i, e⃗j),
F.E⃗J =

∑n
i=1F

i
J e⃗i, F

T .e⃗j =
∑n

I=1(F
T )I jE⃗I , thus:

n∑
K=1

GIK(FT )Kj =

n∑
k=1

F k
Igkj , i.e. (FT )I j =

n∑
K,k=1

GIKF k
Kgkj where [GIJ ] := [GIJ ]

−1.

G.2.3 Remark: F ∗

(F ∗ doesn't seem to be very useful in mechanics, apart from making simple things di�cult... or playing
with components and pseudo-duality notations...).

For mathematicians (no �magic tricks�):

De�nition G.5 The adjoint of the linear map F ∈ L(R⃗nt0 ; R⃗
n
t ) (acting on vectors) is the linear map

F ∗ ∈ L(R⃗n∗t ; R⃗n∗t0 ) (acting on functions) canonically de�ned by, for all m ∈ R⃗n∗t ,

F ∗(m) := m ◦ F, written F ∗.m = m.F (∈ R⃗n∗t0 ). (G.6)

So, for all (m, W⃗ ) ∈ R⃗n∗t × R⃗nt0 ,

(F ∗.m).W⃗ = m.F.W⃗ (∈ R). (G.7)

Quanti�cation (matrix representation): We use (G.3), and (πai) and (πbi) the (covariant) dual bases

of (⃗ai) and (⃗bi). Let (F
∗)ij be the components of F ∗ relative to these dual bases:

F ∗.πbj =

n∑
I=1

(F ∗)ijπai, i.e. [F ∗]|πb,πa
= [(F ∗)ij ]. (G.8)

(G.7) gives (F ∗.πbj).⃗ai = πbj .F.⃗ai, thus

∀i, j, (F ∗)ij = Fji , i.e. [F ∗]|πb,πa
= ([F ]|⃗a,⃗b)

T , in short [F ∗] = [F ]T . (G.9)

Marsden duality notations: F ∗.ej =
∑n
I=1(F

∗)I
jEI gives (F ∗)I

j = F jI for all I, j.

Interpretation of F ∗. As usual in classical mechanics, we use Euclidean dot products, here (·, ·)G in R⃗nt0
and (·, ·)g in R⃗nt . Then we use the (·, ·)G-Riesz representation vector R⃗G(F

∗.m) ∈ R⃗nt0 of F ∗.m ∈ R⃗n∗t0 ,
and the (·, ·)g-Riesz representation vector R⃗g(m) ∈ R⃗nt of m ∈ R⃗n∗t ; So, for all m ∈ R⃗n∗t and W⃗ ∈ R⃗nt0 ,

(F ∗.m).W⃗ = R⃗G(F
∗.m) •

G
W⃗ , and m.(F.W⃗ ) = R⃗g(m) •

g F.W⃗ = (FT .R⃗g(m)) •
G
W⃗ . (G.10)

Thus (G.7) gives R⃗G(F
∗.m) = FT .R⃗g(m), thus

R⃗G.F
∗ = FT .R⃗g, i.e. F ∗ = R⃗G

−1.FT .R⃗g. (G.11)

Remark G.6 The de�nition of F ∗ is intrinsic to F (objective), while the de�nition of FT is not intrinsic
to F (not objective) since it needs inner dot products (observer choices) to be de�ned.

G.3 Cauchy�Green deformation tensor C

G.3.1 De�nition of C

Consider vectors W⃗i ∈ R⃗nt0 at P , i = 1, 2, and their push forwards w⃗i at p = Φ(P ), i.e.

w⃗i = F.W⃗i, (G.12)

short notation for w⃗i(p) = F (P ).W⃗i(P ). With chosen inner dot products (·, ·)G in R⃗nt0 and (·, ·)g in R⃗nt ,
we get

(w⃗1, w⃗2)g = (F.W⃗1, F.W⃗2)g = (FT .F︸ ︷︷ ︸
C

.W⃗1, W⃗2)G. (G.13)

More precisely: (w⃗1p, w⃗2p)g = (F (P ).W⃗1P , F (P ).W⃗2P )g =
(G.2) (FTGg(p).F (P ).W⃗1P , W⃗2P )G.
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135 G.3. Cauchy�Green deformation tensor C

De�nition G.7 The (right) Cauchy�Green deformation tensor at P ∈ Ωt0 relative to (·, ·)G, (·, ·)g, t0
and t is the endomorphism Ct0t,Gg(P ) =

noted CGg(P ) ∈ L(R⃗nt0 ; R⃗
n
t0) de�ned by

CGg(P ) := FTGg(p) ◦ F (P ), in short C := FT .F . (G.14)

(More precisely: Ct0t,Gg(P ) := F t0t (P )TGg ◦ F
t0
t (P ).)

So

FT ◦ F︸ ︷︷ ︸
=not. C

: W⃗ ∈ R⃗nt0
F−→ F (W⃗ ) ∈ R⃗nt

FT−→ FT (F (W⃗ ))︸ ︷︷ ︸
=not. C(W⃗ )

∈ R⃗nt0 . (G.15)

(Recall: F and FT are linear, thus C = FT ◦ F is linear and written C = FT .F .)

And (G.13) tells that C is characterized by, for all W⃗1, W⃗2 ∈ R⃗nt0 ,

w⃗1 •g w⃗2 = (C.W⃗1) •
G
W⃗2 = (F.W⃗1) •

g (F.W⃗2) . (G.16)

Moreover C is a (·, ·)G-symmetric endomorphism in R⃗nt0 , i.e., for all W⃗1, W⃗2 ∈ R⃗nt0 ,

(C.W⃗1, W⃗2)G = (W⃗1, C.W⃗2)G, i.e. (C.W⃗1) •
G
W⃗2 = W⃗1 •

G
(C.W⃗2). (G.17)

Indeed: (C.W⃗1, W⃗2)G = (FT .F.W⃗1, W⃗2)G = (F.W⃗1, F.W⃗2)g = (W⃗1, F
T .F.W⃗2)G = (W⃗1, C.W⃗2)G.

G.3.2 Quanti�cation

(G.14) gives [C] = [FT ].[F ], with [FT ] =(G.4)[G]−1.[F ]T .[g], thus

[C] = [G]−1.[F ]T .[g].[F ] , (G.18)

short notation for [CGg]|⃗a = [G]−1
|⃗a .([F ]|⃗a,⃗b)

T .[g]|⃗b.[F ]|⃗a,⃗b.

Exercice G.8 Use classical notation, then duality notations, to express (G.18) with components.

Answer. Classical notations:

F.⃗aj =

n∑
i=1

Fij b⃗i and C.⃗aj =

n∑
i=1

Cij a⃗i, i.e. [F ]|⃗a,⃗b = [Fij ] and [C]|⃗a = [Cij ]. (G.19)

Hence (⃗ai, C.⃗aj)G = (F.⃗ai, F.⃗aj)g, thus (⃗ai,
∑

k Ckj a⃗k)G = (
∑

k Fki⃗bk,
∑

ℓ Fℓj b⃗ℓ)g, thus
∑

k Ckj (⃗ai, a⃗k)G =∑
kℓ Fki(⃗bk, b⃗ℓ)gFℓj , i.e.

n∑
k=1

GikCkj =

n∑
k,ℓ=1

Fki gkℓFℓj =

n∑
k,ℓ=1

([F ]T )ik gkℓFℓj , so [G].[C] = [F ]T .[g].[F ], (G.20)

so Cij =
∑n

k,ℓ,m=1([G]−1)imFkm gkℓFℓj =
∑n

k,ℓ,m=1([G]−1)im([F ]T )mk gkℓFℓj . Duality notations:

F.E⃗J =

n∑
i=1

F i
J e⃗i and C.E⃗J =

n∑
I=1

CI
J E⃗I , i.e. [F ]|E⃗,e⃗ = [F i

J ] and [C]|E⃗ = [CI
J ], and

n∑
K=1

GIKCK
J =

n∑
k,ℓ=1

F k
I gkℓF

ℓ
J , and CI

J =

n∑
k,ℓ,M=1

GIMF k
M gkℓF

ℓ
J when [GIJ ] := [GIJ ]

−1.

(G.21)

Exercice G.9 (·, ·)G is a Euclidean dot product in foot, (·, ·)g is a Euclidean dot product in metre, so

(·, ·)g = µ2(·, ·)G with µ = 0.3048; And (⃗ai) is a (·, ·)G-orthonormal basis, and (⃗bi) := (⃗ai). Prove:

[C] = µ2[F ]T .[F ]. (G.22)

Answer. [C]|⃗a =(G.18) [G]−1
|⃗a .[F ]T|⃗a,⃗a.[g]|⃗a.[F ]|⃗a,⃗a gives [C]|⃗a = I.[F ]T|⃗a,⃗a.µ

2I.[F ]|⃗a,⃗a. Shorten notation = (G.22).
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136 G.4. Time Taylor expansion of C

G.4 Time Taylor expansion of C

Here we use a unique inner dot product (·, ·)G = (·, ·)g at all time (to compare �comparable values� in
the vicinity of t0). And we use an orthonormal basis (⃗ai) to lighten the notations, thus [G]|⃗a = I = [g]|⃗a
and (G.18) gives [C]|⃗a = [F ]T|⃗a.[F ]|⃗a, written [C] = [F ]T .[F ].

A time Taylor expansion implicitly imposes �along a trajectory of a �xed particle�.
So P is �xed, F t0(t, P ) := F t0t (P ) and F t0P (t) := F t0(t, P ), and F t0P (t) =noted F (t).

And Ct0(t, P ) := Ct0t (P ) and C
t0
P (t) := Ct0(t, P ), and Ct0P (t) =

noted C(t) = F (t)T .F (t).
And here [C(t)] = [F (t)]T .[F (t)].

And V⃗ t0t (P ) =noted V⃗ (t) and A⃗t0t (P ) =
noted A⃗(t) are the Lagrangian velocities and accelerations.

We have Φ(t+h) = Φ(t)+ h V⃗ (t)+ h2

2 A⃗(t)+ o(h2), thus F (t+h) = F (t)+ h dV⃗ (t)+ h2

2 dA⃗(t)+ o(h2),
thus

[C(t+h)] = [F (t+h)]T .[F (t+h)] = [F ]T (t+h).[F (t+h)]

=
(
[F ]T + h d[V⃗ ]T +

h2

2
d[A⃗]T + o(h2)]

)(
[F + h d[V⃗ ] +

h2

2
d[A⃗] + o(h2)]

)
(t)

=
(
[C] + h ([FT ].[dV⃗ ]+[dV⃗ ]T .[F ]) +

h2

2
([F ]T .[dA⃗]+2[dV⃗ ]T .[dV⃗ ]+[dA⃗]T .[F ]) + o(h2)

)
(t).

(G.23)
Together with

[C(t+h)] = [C(t)] + h [C ′(t)] +
h2

2
[C ′′(t)]o(h2). (G.24)

thus
[C ′] = [FT ].[dV⃗ ]+[dV⃗ ]T .[F ] and [C ′′] = [F ]T .[dA⃗]+2[dV⃗ ]T .[dV⃗ ]+[dA⃗]T .[F ]. (G.25)

In particular [C ′(t0)] = [dV⃗ (t0)]+[dV⃗ (t0)]
T , so

[C(t0+h)] = I + h ([dV⃗ ]+[dV⃗ ]T )(t0) +
h2

2
([dA⃗]+2[dV⃗ ]T .[dV⃗ ]+[dA⃗]T )(t0) + o(h2). (G.26)

Abusively written C(t0+h) = I + (dV⃗ + dV⃗ T )(t0) +
h2

2 (dA⃗ + 2dV⃗ T .dV⃗ + dA⃗T )(t0) + o(h2), but don't
forget it is a matrix meaning.

With Eulerian variables and v⃗(t, p) and γ⃗(t, p) the Eulerian velocities and accelerations at t at p =

Φt0t (t, P ) : We have dV⃗ t0(t, P ) = dv⃗(t, p(t)).F (t) and dA⃗t0(t, P ) = dγ⃗(t, p(t)).F (t), thus

Ct0P (t+h) = Ct0P (t) + h (FT (t).(dv⃗ + dv⃗T )(t, p(t)).F (t))

+
h2

2
(FT (t).(dγ⃗ + 2dv⃗T .dv⃗ + dγ⃗T )(t, p(t)).F (t)) + o(h2).

(G.27)

abusive notation of [Ct0P (t+h)] = ... (matrices).

Remark G.10 F ′′ = dA⃗ is easy to interpret, but C ′′ = FT .dA⃗ + 2dV⃗ T .dV⃗ + dA⃗T .F = (FT .dA⃗ +

dV⃗ T .dV⃗ ) + (FT .dA⃗+ dV⃗ T .dV⃗ )T is not that easy to interpret (and in not linear in V⃗ ).
We already had a problem with the composition of �ows: The formula F t0t2 = F t1t2 .F

t0
t1 is simple

(determinism), but the formula Ct0t2 = (F t0t2 )
T .F t0t2 = (F t0t1 )

T .(F t1t2 )
T .F t1t2 .F

t0
t1 = (F t0t1 )

T .Ct1t2 .F
t0
t1 is �not that

simple� ( ̸= Ct1t2 .C
t0
t1). (Indeed, to consider C instead of F amounts to consider the �motion squared�, cf.

(C.W⃗ , W⃗ )g = ||F.W⃗ ||2g.)
Since C ′(t0) = dV⃗ (t0) + dV⃗ (t0)

T this may have little consequences for linear approximation near t0,
but ultimately not small consequences for second-order approximations (and large deformations) if C ′′ is
used to make constitutive laws. The consideration of Lie derivatives may be an interesting alternative.

G.5 Remark: C♭

For mathematicians: May produce errors, misuses, covariance-contravariance confusion, see next � G.5.2.
For the general ♭ notation see � A.11.5.
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137 G.5. Remark: C♭

G.5.1 De�nition of C♭...

De�nition G.11 At P ∈ Ωt0 , the bilinear form C♭Gg(P ) =
noted C♭ ∈ L(R⃗nt0 , R⃗

n
t0 ;R) associated with the

linear map CGg(P ) =
noted C(P ) =noted C ∈ L(R⃗nt0 ; R⃗

n
t0) is de�ned by, for all W⃗1, W⃗2 ∈ R⃗nt0 vectors at P ,

C♭(W⃗1, W⃗2) := (W⃗1, C.W⃗2)G (= (F.W⃗1, F.W⃗2)g). (G.28)

NB: using (·, ·)G we have changed the variance of C (a
(
1
1

)
tensor) to build C♭ (a

(
0
2

)
tensor).

C♭ is a bilinear symmetric form (trivial) and is a metric in R⃗nt0 (trivial F being a di�eomorphism),
but not a Euclidean one (it is if C = I i.e. for rigid body motions).

Quanti�cation: (G.28) gives [W⃗2]
T .[C♭].[W⃗1] = [W⃗2]

T .[G].[C].[W⃗1] for all W⃗1, W⃗2 since C♭ and (·, ·)G
are symmetric, thus

[C♭] = [G].[C] (= [F ]T .[g].[F ]). (G.29)

More precisely: [C♭]|E⃗ = [G]|E⃗ .[C]|E⃗ = ([F ]|E⃗,e⃗)
T .[g]|e⃗.[F ]|E⃗,e⃗.

Classical notations: C♭ =
∑
ij Cijπai ⊗ πaj and C.⃗aj =

∑
i Cij a⃗i and G =

∑
ij Gijπai ⊗ πaj give

(C♭)ij =
∑
k

GikCkj (=
∑
kℓ

FkigkℓFℓj). (G.30)

Duality notations: C♭ =
∑
IJ CIJE

I ⊗ EJ and C.E⃗j =
∑
I C

I
J E⃗i and G =

∑
IJ GIJE

I ⊗ EJ give

CIJ =
∑
K

CKJGKI (=
∑
kℓ

F kIgkℓF
ℓ
J), (G.31)

which justi�es the �at notation: The top index I in [C] = [CIJ ] has been transformed into a bottom
index in [C♭] = [CIJ ] (the use of an inner dot product changes the variance).

G.5.2 ... and remarks about C♭... and Jaumann

C♭ can also be de�ned only with (·, ·)g by, for all W⃗1, W⃗2 ∈ R⃗nt0 ,

C♭g(W⃗1, W⃗2) := (F.W⃗1, F.W⃗2)g, (G.32)

i.e., C♭ := C♭g := g∗ the pull-back of the metric (·, ·)g by Φ, see (8.9).

• However C♭ = C♭g is useless in itself: C♭ is not a Euclidean dot product (it is a metric de�ned at

each P by C♭g(P )(W⃗1, W⃗2) := (F (P ).W⃗1, F (P ).W⃗2)g for all W⃗1, W⃗2 ∈ R⃗nt0 vectors at P ). C
♭ is only useful

to characterize a deformation if the value C♭(W⃗1, W⃗2) can be compared with the initial value (W⃗1, W⃗2)G,

i.e. if a Euclidean dot product (·, ·)G was introduced in R⃗nt0 : This is why C
♭ is classically de�ned from C,

cf. (G.28).
• There is no objective �trace� for a

(
0
2

)
tensor like C♭, while Tr(C) is objective (endomorphism).

• The Lie derivatives of a second order tensor depends on the type of the tensor, and the Lie derivative
of the

(
1
1

)
tensor like C gives the Jaumann derivative, which is usually preferred to the Lie derivative of

the
(
0
2

)
tensor like C♭ which is the lower convected Lie derivative, see next remark G.12.

• So the introduction and use of C♭ in mechanics mostly complicate things unnecessarily, and interferes
with basic understandings like the distinction between covariance and contravariance.

Remark G.12 Interpretation issue with Jaumann (and the use of C♭ should be avoided in mechanics).

With D(dv⃗)
Dt =(2.26) = d(Dv⃗Dt )−dv⃗.dv⃗ = dγ⃗−dv⃗.dv⃗ and with orthonormal bases, 2D = D(dv⃗)

Dt + D(dv⃗)T

Dt =
dγ⃗ + dγ⃗T − dv⃗.dv⃗ − dv⃗T .dv⃗T (matrix meaning), thus, with (G.27) (matrix meaning),

C ′′(t) = F (t)T .(2
DD
Dt

+ dv⃗.dv⃗ + dv⃗T .dv⃗T + 2dv⃗T .dv⃗)(t, p(t)).F (t)

= 2F (t)T .(
DD
Dt

+D.dv⃗ + dv⃗T .D)(t, p(t)).F (t).
(G.33)

The DD
Dt + D.dv⃗ + dv⃗T .D term looks like a lower-convected Lie derivative, but with dv⃗T instead of dv⃗∗,

cf. (9.61); So you may �nd (G.33) abusively written: C ′′ = 2FT .Lv⃗D.F , or (C♭)′′ = 2FT .Lv⃗D♭g.F where

D♭g :=
dv⃗♭g+(dv⃗♭g)

T

2 . But you get disappointing results (values) using the lower convected Lie derivative
(Jaumann is usually preferred).
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138 G.6. Stretch ratio and deformed angle

G.6 Stretch ratio and deformed angle

Here (·, ·)g = (·, ·)G, i.e. at t0 and t we use the same Euclidean dot product, to be able to compare the
lengths relative to the same unit of measurement. (If (·, ·)g ̸= (·, ·)G then use (·, ·)g = µ2(·, ·)G.)

G.6.1 Stretch ratio

The stretch ratio at P ∈ R⃗nt0 between t0 and t for a W⃗P ∈ R⃗nt0 is de�ned by

λ(W⃗P ) :=
||w⃗p||G
||W⃗P ||G

=
||FP .W⃗P ||G
||W⃗P ||G

(= ||FP .(
W⃗P

||W⃗P ||G
)||G) (G.34)

where w⃗p = FP .W⃗P is the deformed vector by the motion at p = Φ(P ). I.e., in short

∀W⃗ ∈ R⃗nt0 s.t. ||W⃗ || = 1, λ(W⃗ ) := ||F.W⃗ ||. (G.35)

(You may �nd: λ(dX⃗) = ||F.dX⃗|| with dX⃗ a unit vector(!); This notation should be avoided, see � 4.3.)

G.6.2 Deformed angle

Recall: The angle θt0 =
̂

(W⃗1, W⃗2) between two vectors W⃗1 and W⃗2 in R⃗nt0−{⃗0} at P ∈ Ωt0 is de�ned by

cos(θt0) =
W⃗1

||W⃗1||G
•
G

W⃗2

||W⃗2||G
(= (

W⃗1

||W⃗1||G
,

W⃗2

||W⃗2||G
)G). (G.36)

Andhe deformed angle θt between the deformed vectors w⃗i = F.W⃗i at p = Φt0t (P ), with (·, ·)g = (·, ·)G,

cos(θt) := ̂(w⃗1, w⃗2) =
w⃗1

||w⃗1||G
•
G

w⃗2

||w⃗2||G
=

(C.W⃗1) •
G
W⃗2

||w⃗1||G ||w⃗2||G
. (G.37)

G.7 Decompositions of C

G.7.1 Spherical and deviatoric tensors

De�nition G.13 The deformation spheric tensor is

Csph =
1

n
Tr(C) I, (G.38)

with Tr(C) = the trace of the endomorphism C (there is no �trace� for the
(
0
2

)
tensor C♭).

De�nition G.14 The deviatoric tensor is

Cdev = C − Csph. (G.39)

So Tr(Cdev) = 0 and C = Csph + Cdev.

G.7.2 Rigid motion

The deformation is rigid i�, for all t0, t,

(F t0t )T .F t0t = I, i.e. Ct0t = I, written C = I = FT .F. (G.40)

After a rigid body motion, lengths and angles are left unchanged.

G.7.3 Diagonalization of C

Proposition G.15 C = FT .F being symmetric positive, C is diagonalizable, its eigenvalues are positive,
and R⃗nt0 has an orthonormal basis made of eigenvectors of C.

Proof. (C(P ).W⃗1, W⃗2)G = (F (P ).W⃗1, F (P ).W⃗2)g = (W⃗1, C(P ).W⃗2)G, thus C is (·, ·)G-symmetric.

(C.W⃗1, W⃗1)G = (F.W⃗1, F.W⃗1)g = ||F.W⃗1||2g > 0 when W⃗1 ̸= 0⃗, since F invertible (Φt0t is supposed to
be a di�eomorphism). Thus C est (·, ·)G-symmetric de�nite positive real endomorphism.

De�nition G.16 Let λi be the eigenvalues of C. Then the
√
λi are called the principal stretches. And

the associated eigenvectors give the principal directions.
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139 G.7. Decompositions of C

G.7.4 Mohr circle

This � deals with general properties of 3 ∗ 3 symmetric positive endomorphism, like Ct0t (P ).

Consider R⃗3 with a Euclidean dot product (·, ·)R3 and a (·, ·)R3-orthonormal basis (⃗ai).

Let M : R⃗3 → R⃗3 be a symmetric positive endomorphism. Thus M is diagonalizable in a (·, ·)R3-

orthonormal basis (e⃗1, e⃗2, e⃗3), that is, ∃λ1, λ2, λ3 ∈ R, ∃e⃗1, e⃗2, e⃗3 ∈ R⃗3 s.t.

M.e⃗i = λie⃗i and (e⃗i, e⃗j)R3 = δij , so [M]|e⃗ = diag(λ1, λ2, λ3) =

λ1 0 0
0 λ2 0
0 0 λ3

 . (G.41)

And the orthonormal basis (e⃗1, e⃗2, e⃗3) is ordered s.t. λ1 ≥ λ2 ≥ λ3 (> 0).
Let S be the unit sphere in R3, that is the set {(x, y, z) : x2 + y2 + z2 = 1}. Its imageM(S) byM

is the ellipsoid {(x, y, z) : x
2

λ2
1
+ y2

λ2
2
+ z2

λ2
3
= 1}. Then consider n⃗ =

∑
i nie⃗i s.t. ||n⃗||R3 = 1:

[n⃗]|e⃗ =

n1
n2
n3

 with n21 + n22 + n23 = 1. (G.42)

Thus its image A⃗ =M.n⃗ ∈M(S) satis�es

A⃗ =M.n⃗, [A⃗]|e⃗ =

λ1n1
λ2n2
λ3n3

 . (G.43)

Then de�ne
An = (A⃗, n⃗)R3 , A⃗⊥ = A⃗−Ann⃗, A⊥ := ||A⃗⊥||. (G.44)

So A⃗ = Ann⃗+ A⃗⊥ ∈ Vect{n⃗}⊗Vect{n⃗}⊥. (Remark: A⃗⊥ is not orthonormal to the ellipsoidM(S), but
is orthonormal to the initial sphere S.)

Mohr Circle purpose: To �nd a relation:

A⊥ = f(An), (G.45)

relation between �the normal force An� (to the initial sphere) and the �tangent forceA⊥� (to the initial
sphere).

(G.42), (G.43) and An = (M.n⃗, n⃗)R3 give
n21 + n22 + n23 = 1,

λ1n
2
1 + λ2n

2
2 + λ3n

2
3 = An

λ21n
2
1 + λ22n

2
2 + λ23n

2
3 = ||A⃗||2 = A2

n +A2
⊥.

(G.46)

This is linear system with the unknowns n21, n
2
2, n

2
3. The solution is

n21 =
A2

⊥ + (An − λ2)(An − λ3)
(λ1 − λ2)(λ1 − λ3)

,

n22 =
A2

⊥ + (An − λ3)(An − λ1)
(λ2 − λ3)(λ2 − λ1)

,

n23 =
A2

⊥ + (An − λ1)(An − λ2)
(λ3 − λ1)(λ3 − λ2)

.

(G.47)

The n2i being non negative, and with λ1 > λ2 > λ3 ≥ 0, we get
A2

⊥ + (An − λ2)(An − λ3) ≥ 0,

A2
⊥ + (An − λ3)(An − λ1) ≤ 0,

A2
⊥ + (An − λ1)(An − λ2) ≥ 0.

(G.48)

Then let x = An and y = A⊥, and consider, for some a, b ∈ R, the equation

y2 + (x− a)(x− b) = 0, so (x− a+b

2
)2 + y2 =

(a−b)2

4
.

This is the equation of a circle centered at (a+b2 , 0) with radius |a−b|
2 .
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140 G.8. Green�Lagrange deformation tensor E

Thus (G.48)2 tells that An and A⊥ are inside the circle centered at (λ1+λ3

2 , 0) with radius λ1−λ3

2 ,
and (G.48)1,3 tell that An and A⊥ are outside the other circles (adjacent and included in the �rst,
drawing).

Exercice G.17 What happens if λ1 = λ2 = λ3 > 0?

Answer. Then



n2
1 + n2

2 + n2
3 = 1,

n2
1 + n2

2 + n2
3 =

An

λ1
,

n2
1 + n2

2 + n2
3 =

A2
n +A2

⊥
λ2
1

.


Thus An = λ1 and A2

n +A2
⊥ = λ2

1, thus A⊥ = 0. Here C = λ1I,

and we deal with a dilation: A⊥ = 0.

Exercice G.18 What happens if λ1 = λ2 > λ3 > 0?

Answer. Then


n2
1 + n2

2 + n2
3 = 1,

λ1(1− n2
3) + λ3n

2
3 = An,

λ2
1(1− n2

3) + λ2
3n

2
3 = A2

n +A2
⊥.

 Thus An = λ1 − (λ1 − λ3)n
2
3 ∈ [λ3, λ1], and A⊥ = ±(λ2

1 −

(λ2
1 − λ2

3)n
2
3 −A2

n)
1
2 , with A2

n +A2
⊥ a point on the circle with radius λ2

1(1− n2
3) + λ2

3n
2
3.

G.8 Green�Lagrange deformation tensor E

(G.13) gives (w⃗1, w⃗2)g = (F.W⃗1, F.W⃗2)g = (C.W⃗ , W⃗ )G at p = Φ(P ), thus

(w⃗1, w⃗2)g − (W⃗1, W⃗2)G = ((C − I).W⃗1, W⃗2)G. (G.49)

De�nition G.19 The Green�Lagrange tensor (or Green�Saint Venant tensor) at P relative to t0 and t

is the endomorphism Et0t (P ) ∈ L(R⃗nt0 ; R⃗
n
t0) de�ned by

Et0t (P ) :=
Ct0t (P )− It0

2
, in short E =

C − I
2

(=
FT .F − I

2
). (G.50)

(In particular E = 0 for rigid body motions.) And Et0t : Ωt0 → L(R⃗nt0 ; R⃗
n
t0) is the Green�Lagrange tensor

relative to t0 and t.

The 1
2 is introduced because (C., .) = (F., F.) corresponds to the �motion squared�, see the following

linearization.

And we get the time Taylor expansion of Et0P (t) =
1
2 (C

t0
P (t)− It0) with p(t) = Φt0P (t) and (G.27):

Et0P (t+h) = F t0P (t)T .
(
h
dv⃗ + dv⃗T

2
+
h2

2
(
dγ⃗ + dγ⃗T

2
+ dv⃗T .dv⃗)

)
(t, p(t)).F t0P (t) + o(h2)

= F t0P (t)T .
(
hD + h2 (

DD
Dt

+D.dv⃗ + dv⃗T .D)
)
(t, p(t)).F t0P (t) + o(h2).

(G.51)

G.9 Small deformations (linearization): The in�nitesimal strain tensor ε

G.9.1 Landau notations big-O and little-o

Reminder. Let f, g : R→ R and x0 ∈ R.

• f = O(g) near x0 ⇐⇒ ∃C > 0, ∃η > 0, ∀x s.t. |x− x0| < η, |f(x)| < C|g(x)|. (G.52)

and f is said to be �comparable with g� near x0. If |g| > 0 then it reads |f(x)|
|g(x)| < C.

And |f(x)|
|xn| < C near x=0 means f = O(xn) near x0=0.

• f = o(g) near x0 ⇐⇒ ∀ε > 0, ∃η > 0, ∀x s.t. |x− x0| < η, |f(x)| < ε|g(x). (G.53)

and f is said to be �negligible compared with g near x0�. If |g| > 0 then it reads |f(x)|
|g(x)| −→x→x0 0.

And |f(x)|
|xn| −→x→0 0 means f = o(xn) near x0=0.
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141 G.9. Small deformations (linearization): The in�nitesimal strain tensor ε

G.9.2 De�nition of the in�nitesimal strain tensor ε

The motion is supposed to be C2. Along a trajectory, with F t0P (t0) = I we have, near t0,

F t0P (t0+h) = I +O(h), (G.54)

thus F t0P (t0+h).W⃗ = W⃗ +O(h) for all W⃗ ∈ R⃗nt0 , i.e., near t0, with (·, ·)g = (·, ·)G,

||w⃗ − W⃗ || = O(h) when w⃗ = F t0P (t0+h).W⃗ . (G.55)

Full notation: ||F t0P (t).W⃗P − W⃗P ||g = O(t−t0) near t0. (More precisely ||F t0P (t).W⃗P −St0t .W⃗P ||g = O(t−t0)
with Marsden shifter St0t , to avoid using any ubiquity gift.)

De�nition G.20 With the same inner dot product (·, ·)g used at all time: If (e⃗i) is a (·, ·)g-orthonormal
basis, the same at all time, then the in�nitesimal strain tensor at P is the matrix de�ned by

[ε(P )]|e⃗ =
[F (P )]|e⃗ + [F (P )]T|e⃗

2
− [I], (G.56)

written

ε :=
F + FT

2
− I (matrix meaning). (G.57)

(And more precisely, at P ∈ Ωt0 and between t0 and t, [εt0
t
(P )]|e⃗ =

[F
t0
t (P )]|e⃗+[F

t0
t (P )]T|e⃗

2 − [I].)

So ε.W⃗ = F.W⃗+FT .W⃗
2 − .W⃗ means [ε]|e⃗.[W⃗ ]|e⃗ =

[F ]|e⃗.[W⃗ ]|e⃗+[F ]T|e⃗.[W⃗ ]|e⃗
2 − [W⃗ ]|e⃗.

Remark G.21 ε in (G.57) cannot be a tensor (cannot be a function) since F t0t (P ) : R⃗nt0 → R⃗nt and

F t0t (P )T : R⃗nt → R⃗nt0 and It0 : R⃗nt0 → R⃗nt0 don't have the same de�nition domain.
So ε is not a function, is not a tensor: It is a matrix... But is called �the in�nitesimal strain tensor�...

Proposition G.22 The Green�Lagrange tensor E = FT .F−I
2 ∈ L(R⃗nt0 ; R⃗

n
t0) satis�es near t0:

E = ε+ o(t−t0) (=
F + FT

2
− I + o(t−t0)) (matrix meaning), (G.58)

which means [E] = [ε] + o(t−t0) = [F ]+[FT ]
2 − [I] + o(t−t0)).

And �for small deformations� we write E ≃ ε, i.e. E ≃ F+FT

2 − I.
Interpretation: (G.58) is a linearization of E, since we keep the linear part of the �quadratic� E =

1
2 (F

T .F − I) given by (E.W⃗ , U⃗)g =
1
2

(
(F.W⃗ , F.U⃗)g − (W⃗ , U⃗)g

)
for all U⃗ , W⃗ ∈ R⃗nt0 (�motion squared� cf.

the (F ·, F ·)g term).

Proof. A (·, ·)g-orthonormal basis being chosen, [FT ] =(G.4)[F ]T , thus [C] = [F ]T .[F ], thus

2[E] = [C]− [I] = [F ]T .[F ]− [I] = ([F ]T − [I).([F ]− [I) + [F ]T + [F ]− 2[I]. (G.59)

Then, near t0 and with h = t−t0, (G.54) gives ([F ]T − [I]).([F ] − I]) = O(h)O(h) = O(h2), thus
2[E] = [F ]T + [F ]− 2[I] +O(h), thus (G.58).

G.9.3 The classic approach is weird

The classic approach is weird: It applies the small displacement hypothesis to the Green�Lagrange tensor

E = FT .F−I
2 which is then linearized to get ε = F+FT

2 − I, that is, cf. (G.58):

Starting with F , the classical approach �squares the motion� to get E, then...
linearizes E ... to get back to F ... with a spurious FT ...(!)
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142 H.1. De�nition

H Finger tensor F.F T (left Cauchy�Green tensor)

Finger's approach is consistent with the foundations of relativity (Galileo classical relativity or Einstein
general relativity): We can only do measurements at the current time t, and we can refer to the past.

There is a lot of misunderstandings, as was the case for the Cauchy�Green deformation tensor C, due
to the lack of precise de�nitions: De�nition domain? Value domain? Points at stake (p or P )? Euclidean
dot product (English? French?)? Covariance? Contravariance?...

H.1 De�nition

Let Φ̃ be motion, t0 ∈ R, Φt0 the associated motion, P ∈ Ωt0 , t ∈ R, and F t0t (P ) := dΦt0t (P ) ∈ L(R⃗nt0 ; R⃗
n
t ).

And let (·, ·)G and (·, ·)g be Euclidean dot products in R⃗nt0 and R⃗nt .

De�nition H.1 The Finger tensor bt0
t
(pt), or left Cauchy�Green deformation tensor, at t at pt relative

to t0 is the endomorphism ∈ L(R⃗nt ; R⃗nt ) de�ned by, with P = Φt0t
−1

(pt),

bt0
t
(pt) := F t0t (P ).(F t0t )TGg(pt) written in short b = F.FT , (H.1)

i.e. is de�ned by (bt0
t
(pt).w⃗1, w⃗2)g = (F t0t (P )T .w⃗1, F

t0
t (P )T .w⃗2)G = ((F t0t )T (pt).w⃗1, (F

t0
t )T (pt).w⃗2)G, for

all w⃗1, w⃗2 vectors at pt ∈ Ωt, written in short

(b.w⃗1, w⃗2)g = (FT .w⃗1, F
T .w⃗2)G. (H.2)

(To compare with C = FT .F and (C.W⃗1, W⃗2)G = (F.W⃗1, F.W⃗2)g.)

And the Finger tensor relative to t0 is

bt0 :


C =

⋃
t

({t} × Ωt) → L(R⃗nt ; R⃗nt )

(t, pt) → bt0(t, pt) := bt0
t
(pt).

(H.3)

NB: bt0 looks like a Eulerian function, but isn't, since it depends on a t0.
Other de�nition found:

Bt0t := bt0
t
◦ (Φt0t )−1, i.e. Bt0t (P ) := bt0

t
(pt) = F t0t (P ).F t0t (P )T , written B = F.FT . (H.4)

Pay attention: Bt0t (P ) ∈ L(R⃗nt ; R⃗nt ) is an endomorphism at t at pt, not at t0 at P : E.g., Bt0t (P ).w⃗t(pt) =

bt0
t
(pt).w⃗t(pt) is meaningful, while Bt0t (P ).W⃗t0(P ) is absurd.

Remark H.2 For mathematicians. The push-forward by Φ := Φt0t of the Cauchy�Green deformation
tensor C = FT .F is Φ∗(C) = F.C.F−1 = F.FT = b, cf. (8.15): It is the Finger tensor. So the endomor-

phism C in R⃗nt0 is the pull-back of the endomorphism b in R⃗nt . (However a push-forward and a pull-back

don't depend on any inner dot product while the transposed FT does...).

H.2 b−1

With pull-backs (towards the virtual power principle at t). With pt = Φt0t (P ) and W⃗i(P ) =
(F t0t (P ))−1.w⃗i(pt):

(W⃗1, W⃗2)G = (F−1.w⃗1, F
−1.w⃗2)G = (F−T .F−1.w⃗1, w⃗2)g = (b−1.w⃗1, w⃗2)g. (H.5)

So b−1 := (bt0
t
)−1 is useful:

(bt0
t
)−1 :

{
Ωt → L(R⃗nt ; R⃗nt )
pt → (bt0

t
)−1(pt) = F t0t (P )−T .F t0t (P )−1 = Ht0

t (pt)
T .Ht0

t (pt)
(H.6)

with pt = Φt0t (P ) and H
t0
t (pt) = (F t0t (P ))−1 cf. (4.43). Thus we can de�ne

(bt0)−1 :


⋃
t

({t} × Ωt) → L(R⃗nt ; R⃗nt )

(t, pt) → (bt0)−1(t, pt) := (bt0
t
)−1(pt).

(H.7)

Remark: (bt0)−1 looks like a Eulerian function, but isn't, since it depends on t0.
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143 H.3. Time derivatives of b−1

In short:
b−1 = HT .H, to compare with C = FT .F, (H.8)

and with w⃗ = F.W⃗ ,
b−1.w⃗ = HT .W⃗ , to compare with C.W⃗ = FT .w⃗, (H.9)

and with W⃗i = F−1.w⃗i, i.e. w⃗i = F.W⃗i,

(b−1.w⃗1, w⃗2)g = (W⃗1, W⃗2)G, to compare with (C.W⃗1, W⃗2)G = (w⃗1, w⃗2)g. (H.10)

Remark H.3 For mathematicians. pt = Φt0t (P ), b(pt) = F (P ).F (P )T and C(P ) = F (P )T .F (P ) give

b(pt).F (P ) = F (P ).C(P ), (H.11)

written b = F.C.F−1. Thus b−1 = F.C−1.F−1, so

Φt0∗t b−1 = F−1.b−1.F = F−1.F−T = (FT .F )−1 = C−1, (H.12)

i.e. the pull-back of b−1 is C−1, i.e. b−1 is the push-forward of C−1.

H.3 Time derivatives of b−1

With (H.7) let (bt0)−1 =noted b−1 = HT .H. Thus, along a trajectory, and with (4.47), we get

Db−1

Dt
=
DHT

Dt
.H +HT .

DH

Dt
= −dv⃗T .HT .H −HT .H.dv⃗

= − b−1.dv⃗ − dv⃗T .b−1.

(H.13)

Exercice H.4 Prove (H.13) with (H.10).

Answer. (H.10) gives D
Dt

(b−1.w⃗1, w⃗2)g = 0 = (
Db−1

Dt
.w⃗1, w⃗2)g + (b−1.Dw⃗1

Dt
, w⃗2)g + (b−1.w⃗1,

Dw⃗2
Dt

)g, and

w⃗i(t, p(t)) = F t0(t, P ).W⃗ t0(P ) gives Dw⃗i
Dt

= dv⃗.w⃗i, thus (
Db−1

Dt
.w⃗1, w⃗2)g +(b−1.dv⃗.w⃗1, w⃗2)g +(b−1.w⃗1, dv⃗.w⃗2)g = 0,

thus (H.13).

Exercice H.5 Prove (H.13) with FT .b−1.F = It0 .

Answer. b−1 = (F.FT )−1 = F−T .F−1 gives FT .b−1.F = It0 , thus (FT )′.b−1.F + FT .
Db−1

Dt
.F + FT .b−1.F ′ = 0,

thus FT .dv⃗T .b−1.F + FT .
Db−1

Dt
.F + FT .b−1.dv⃗.F = 0, thus (H.13).

H.4 Euler�Almansi tensor a

Euler�Almansi approach is consistent with the foundations of relativity (Galileo relativity or Einstein
general relativity): We can only do measurements at the current time t, and we can refer to the past.

At t in Ωt, consider the Finger tensor b = F.FT and its inverse b−1 = F−T .FT = HT .H cf. (H.8).

De�nition H.6 Euler�Almansi tenor at pt ∈ Ωt is the endomorphism at0
t
(pt) ∈ L(R⃗nt ; R⃗nt ) de�ned by

at0
t
(pt) =

1

2
(It − bt0t (pt)

−1) =
1

2
(It −H(pt)

T .H(pt)), (H.14)

written

a =
1

2
(I − b−1) =

1

2
(I −HT .H), (H.15)

to compare with the Green�Lagrange tensor E = 1
2 (C − I) =

1
2 (F

T .F − I) ∈ L(R⃗nt0 ; R⃗
n
t0).

Remark: at0 looks like a Eulerian function, but isn't, since it depends on t0.

(H.10) gives (w⃗i = F.W⃗i)

(w⃗1, w⃗2)g − (W⃗1, W⃗2)G = 2(a.w⃗1, w⃗2)g, (H.16)

to compare with (w⃗1, w⃗2)g − (W⃗1, W⃗2)G = 2(E.W⃗1, W⃗2)G. (This also gives (a.w⃗1, w⃗2)g = (E.W⃗1, W⃗2)G.)
And (H.15) gives

FT .a.F = E, i.e. a = F−T .E.F−1, (H.17)

standing for F t0t (P )T .at0
t
(p).F t0t (P ) = Et0t (P ) when p = Φt0t (P ).

Remark H.7 at0
t
is not the push-forward of Et0t by Φt0t (the push-forward is F.E.F−1).
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144 H.5. Time Taylor expansion for a

H.5 Time Taylor expansion for a

(H.13) gives
Da

Dt
=
b−1.dv⃗ + dv⃗T .b−1

2
. (H.18)

H.6 Almansi modi�ed In�nitesimal strain tensor ε̃

Same Euclidean framework as in � G.9.2, and matrix meaning again.
We have I − b−1 = I − HT .H = −(I − HT ).(I − H) + 2I − HT − H where H stands for Ht0

t (pt).

Thus, for small displacement we get I − b−1 = 2I −HT −H +O(h), so

a(t, p(t)) = ε̃(t, p(t)) +O(h) where ε̃ := I − H +HT

2
. (H.19)

And, with t = t0 + h we have F t0(t, P ) = I + (t−t0) dv⃗(t, P ) + o(t−t0), cf. (4.37), thus we have
Ht0(t, p(t)) = F t0(t, P )−1 = I − (t−t0) dv⃗(t, P ) + o(t−t0) when p(t) = Φt0(t, P ). Thus

F t0(t, P )− I = I −Ht0(t, p(t)) +O(t−t0). (H.20)

Therefore, for small displacements (|t− t0| << 1):

a(t, p(t)) ≃ ε̃(t, p(t)) ≃ εt0(t, P ) (matrix meaning). (H.21)

I Polar decompositions of F (�isometric objectivity�)

Regular motion Φ̃ : (t, PObj ) ∈ [t0, T ]×Obj → pt = Φ̃(t, PObj ) ∈ Rn, Ωt = Φ̃(t,Obj ), associated Lagrangian

motion Φt0t : (t, pt0) ∈ [t0, T ]×Ωt0 → pt = Φt0(t, pt0) := Φ̃(t, PObj ) ∈ Rn when pt0 = Φ̃(t0, PObj ), deformation

gradient F t0t (pt0) := dΦt0t (pt0) =
noted F ∈ L(R⃗nt0 ; R⃗

n
t ).

The covariant objectivity is abandoned here, due to the need for inner dot products (·, ·)G and (·, ·)g
in R⃗nt0 and R⃗nt to de�ne FT ∈ L(R⃗nt ; R⃗nt0) and build C = FT .F ∈ L(R⃗nt0 ; R⃗

n
t0).

Recall: (F t0t )TGg(pt) =
noted FT is de�ned by (FT .w⃗, U⃗)G = (F.U⃗ , w⃗)g for all (U⃗ , w⃗) ∈ R⃗nt0 × R⃗nt , and

Ct0t,Gg(pt0) := (F t0t )TGg(pt) ◦ F
t0
t (pt0) =

noted C = FT .F is a (·, ·)G-symmetric endomorphism in R⃗nt0 since

(C.X⃗, Y⃗ )G = (FT .F.X⃗, Y⃗ )G = (F.X⃗, F.Y⃗ )g = (X⃗, FT .F.Y⃗ )G = (X⃗, C.Y⃗ )G for all X⃗, Y⃗ ∈ R⃗nt0 .

I.1 F = R.U (right polar decomposition)

C being (·, ·)G-symmetric, ∃α1, ..., αn ∈ R (the eigenvalues), ∃c⃗1, ..., c⃗n ∈ R⃗nt0 (associated eigenvectors),
s.t.

∀i ∈ [1, n]N, C.⃗ci = αic⃗i, and (c⃗i) is a (·, ·)G-orthonormal basis in R⃗nt0 , (I.1)

i.e. (c⃗i, c⃗j)G = δij for all i, j ∈ [1, n]N.

So, with (E⃗i) a (·, ·)G-orthonormal basis in R⃗nt0 , [C]c⃗ = D := diag(α1, ..., αn) is the diagonal matrix

of eigenvalues, and with P = [Pij ] the transition matrix from (E⃗i) to (c⃗i) (i.e. c⃗j =
∑
i PijE⃗i for all j),

(I.1) reads
[C]E⃗ .P = P.D and PT .P = I, so D = P−1.[C]E⃗ .P and P−1 = PT . (I.2)

And F being regular, 0 < ||F.⃗ci||2g = (F.⃗ci, F.⃗ci)g = (C.⃗ci, c⃗i)G = αi||⃗ci||2G, thus αi > 0, for all i.

De�nition I.1 With (I.1), the right stretch tensor U ∈ L(R⃗nt0 ; R⃗
n
t0) is the endomorphism de�ned by

∀i ∈ [1, n]N, U.⃗ci =
√
αi c⃗i, (I.3)

the
√
αi being called the principal stretches. (Full notation: U := U t0t,Gg(pt0).)

So [U ]|⃗c = diag(
√
α1, ...,

√
αn) =

√
D, and (I.3) reads

[U ]|E⃗ .P = P.
√
D, so

√
D = P.[U ]|E⃗ .P

−1. (I.4)

And U is (·, ·)G-symmetric since (UT .⃗ci, c⃗j)G = (c⃗i, U.⃗cj)G = (c⃗i,
√
αj c⃗j)G =

√
αjδij =

√
αiδij =

(
√
αic⃗i, c⃗j)G = (U.⃗ci, c⃗j)G for all i, j. And (U ◦U).⃗cj = U(U.⃗cj) = U(

√
αj c⃗j) =

√
αjU(c⃗j) =

√
αj
√
αj c⃗i =

αj .⃗cj = C.⃗cj for all j, hence

C = U ◦ U noted
= U.U

noted
= U2, and U

noted
=
√
C. (I.5)
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145 I.2. F = S.R0.U (shifted right polar decomposition)

De�nition I.2 The orthogonal transformation R ∈ L(R⃗nt0 ; R⃗
n
t ) is the linear map de�ned by

R := F ◦ U−1 noted
= F.U−1. (I.6)

(Full notation: Rt0t,Gg(pt0) = F t0t (pt0) ◦ (U
t0
t (pt0)Gg)

−1.) And

F = R ◦ U noted
= R.U is called the right polar decomposition of F . (I.7)

Proposition I.3 1-
RT ◦R = I, i.e. R−1 = RT , (I.8)

written RT .R = I, i.e. R sends a (·, ·)G-orthonormal basis in R⃗nt0 to a (·, ·)g-orthonormal basis in R⃗nt .
2- The right polar decomposition F = R◦U is unique: If F = R2 ◦U2 with U2 ∈ L(R⃗nt0 ; R⃗

n
t0) symmetric

de�nite positive and R2 ∈ L(R⃗nt0 ; R⃗
n
t ) s.t. R

−1
2 = RT2 , then U2 = U and R2 = R.

Proof. 1- RT ◦R=(I.6) U−T ◦FT ◦F ◦U−1 = U−1 ◦C ◦U−1 = U−1 ◦ (U ◦U) ◦U−1 = I identity in R⃗nt0 .
Thus (R.E⃗i, R.E⃗j)g = (RT .R.E⃗i, E⃗j)G = (E⃗i, E⃗j)G = δij for all i, j: (R.E⃗i) is a (·, ·)g-orthonormal basis.

2- U2 being symmetric de�nite positive, call
√
βi its eigenvalues (all positive) and (d⃗i) a (·, ·)G-

orthonormal basis made of associated eigenvectors. We have C = (UT2 .R
T
2 ).(R2.U2) = U2.(R

T
2 .R2).U2 =

U2.I.U2 = U2
2 , thus C.d⃗j = U2

2 .d⃗i = βid⃗i, thus the βi are eigenvalues of C and the d⃗i are associated

eigenvectors. Thus, even if it means reordering (βi), βi = αi and d⃗i ∈ Ker(C − αiI), for all i, and

U.d⃗i =
(I.3) √αid⃗i = U2.d⃗i for all i, thus U2 = U . Thus R2 = F.U−1

2 = F.U−1 = R.

I.2 F = S.R0.U (shifted right polar decomposition)

We need to be more precise if the gift of ubiquity is prohibited: Because we work with the a�ne space Rn,
we can consider the Marsden's shifter, with pt = Φt0t (pt0),

S := St0t (pt0) :

{
Tpt0(Ωt0) → Tpt(Ωt)

(pt0 , w⃗t0,pt0 ) → (pt, w⃗t,pt) where w⃗t,pt := w⃗t0,pt0 .
(I.9)

Shorten (misleading) notation:

S := St0t (pt0) :

{
R⃗nt0 → R⃗nt
W⃗ → w⃗ = S.W⃗ = W⃗ .

(I.10)

NB: 1- S is not �the identity� unless you have time and space ubiquity gift, since w⃗t0,pt0 is de�ned at t0
at pt0 while w⃗t,pt = S.w⃗t0,pt0 is de�ned at t at pt, and t ̸= t0 and pt ̸= pt0 in general;

2- S is not a topological identity since it changes the norms in general: You consider ||w⃗t0,pt0 ||G in R⃗nt0
and ||S.w⃗t0,pt0 (t, pt)||g = ||w⃗t0,pt0 ||g in R⃗nt .

Notation: Let R0 ∈ L(R⃗nt0 ; R⃗
n
t0) be the endomorphism de�ned by

R0 := S−1 ◦R noted
= S−1.R, so R = S.R0 (= S ◦R0). (I.11)

(Full notations: (R0)
t0
t,Gg(pt0) := (St0t (pt0))

−1(Rt0t,Gg(pt0)) ∈ L(Tpt0(Ωt0);Tpt0(Ωt0)).) Thus

F = S ◦R0 ◦ U written F = S.R0.U . (I.12)

Proposition I.4 If (·, ·)g = (·, ·)G (same inner dot product in R⃗nt0 and R⃗nt ) then

ST .S = I, i.e. S−1 = ST . (I.13)

And the endomorphism R0 = S−1.R ∈ L(R⃗nt0 ; R⃗
n
t0) is a change of (·, ·)G-orthonormal basis:

RT0 .R0 = I, i.e. R−1
0 = RT0 . (I.14)
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146 I.3. F = V.R (left polar decomposition)

Proof. (ST .S.U⃗ , W⃗ )G
transposed

= (S.U⃗ , S.W⃗ )g
(I.9)
= (U⃗ , W⃗ )g = (U⃗ , W⃗ )G (here (·, ·)g = (·, ·)G), for all U⃗ , W⃗ ∈

R⃗nt0 , thus S
T .S = I, thus S−1 = ST .

Thus I = S.ST and R0 = ST .R, thus (RT0 .R0.U⃗ , W⃗ )G = (R0.U⃗ , R0.W⃗ )G = (ST .R.U⃗ , ST .R.W⃗ )G =

(S.ST .R.U⃗ , R.W⃗ )g = (R.U⃗ , R.W⃗ )g =
(I.8) (U⃗ , W⃗ )G, for all U⃗ , W⃗ ∈ R⃗nt0 , thus R

T
0 .R0 = I.

Interpretation of (I.12): F is composed of: The pure deformation U (endomorphism in R⃗nt0), the change
of orthonormal basis with R0 (endomorphism in R⃗nt0), and the shift operator S : Tpt0(Ωt0)→ Tpt(Ωt) (from
past to present time and position).

I.3 F = V.R (left polar decomposition)

Same steps than for the right polar decomposition.
Let bt0

t
(pt) := F t0t (pt0) ◦ (F

t0
t )T (pt) ∈ L(R⃗nt ; R⃗nt ) (the Finger tensor), written b = F.FT . The endo-

morphism b being symmetric de�nite positive: ∃β1, ..., βn ∈ R∗
+ (the eigenvalues) and ∃z⃗1, ..., z⃗n ∈ R⃗nt

(associated eigenvectors) s.t.

∀i ∈ [1, n]N, b.z⃗i = βiz⃗i, and (z⃗i) is a (·, ·)g-orthonormal basis in R⃗nt . (I.15)

The left stretch tensor V ∈ L(R⃗nt ; R⃗nt ) is the endomorphism de�ned by,

∀i ∈ [1, n]N, V.z⃗i =
√
βiz⃗i, and V

noted
=

√
b. (I.16)

(Full notation: V t0t,Gg(pt) =
√
bt0
t
(pt)Gg.) Then de�ne the linear map Rℓ ∈ L(R⃗nt0 ; R⃗

n
t ) by

Rℓ := V −1.F, (I.17)

so that
F = V.Rℓ , called the left polar decomposition of F . (I.18)

Proposition I.5 1- b = V.V =noted V 2, V is symmetric de�nite positive, R−1
ℓ = RTℓ . And the left polar

decomposition F = V.Rℓ is unique.
2- Rℓ = R and V = R.U.R−1 (so U and V are similar), thus U and V have the same eigenvalues

(square root of those of C): αi = βi and, with (I.1), z⃗i = R.⃗ci is an associated eigenvector of b, for all i.

Proof. 1- �Copy� the proof of prop. I.3 with F−1 and b−1 = (F−1)T .(F−1) instead of F and C = FT .F .

2- F = V.Rℓ = Rℓ.(R
−1
ℓ .V.Rℓ) with R−1

ℓ .V.Rℓ symmetric (since (R−1
ℓ .V.Rℓ)

T = RTℓ .V
T .R−T

ℓ =

R−1
ℓ .V.Rℓ) and de�nite positive (since (R−1

ℓ .V.Rℓ.y⃗i, y⃗j)g = (R−1
ℓ .V.Rℓ.y⃗i, R

−T
ℓ .y⃗j)g = (V.Rℓ.y⃗i, R.y⃗j)g =

(V.z⃗i, z⃗j)g = βi where the y⃗i := R−1
ℓ z⃗i make a basis). Thus F = R.U = Rℓ.(R

−1
ℓ .V.Rℓ) gives R = Rℓ

(uniqueness of the right polar decomposition). Hence R.U = V.R (so V and U are similar), hence V and
U have the same eigenvalues and if c⃗i is an eigenvector of U then R.⃗ci is an eigenvector of V : Indeed
V.(R.⃗ci) = R.U.⃗ci = R.(αic⃗i) = αi(R.⃗ci) for all i.

J Linear elasticity: A Classical �tensorial� approach

J.1 De�nition of elasticity

(See Ciarlet [8].) Motion Φ̃ : [t1, t2] × Obj → Rn, Ωt := Φ̃(t,Obj ) ⊂ Rn for all t ∈ [t1, t2], t0 ∈ [t1, t2],
associated motion Φt0 : (t, P ) ∈ [t1, t2] × Ωt0 → Φt0(t, P ) ∈ Rn, Φt0t (P ) := Φt0(t, P ), F t0t := dΦt0t
(deformation gradient), and an imposed Euclidean dot product (·, ·)g =noted . • ..

De�nition J.1 A material is elastic i�, at any t ∈ [t1, t2] and p ∈ Ωt, the Cauchy stress vector T⃗t(p) at t
and p only depends on the deformation gradient F t0t (P ) := dΦt0t (P ) when p = Φt0t (P ) for any t0 ∈ [t1, t2]

and P ∈ Ωt0 . I.e. there exists a mapping T̂ : Ωt0 ×Mnn → R⃗n (constitutive equation) s.t.

T⃗t(p) = T̂ (P, F t0t (P )) when p = Φt0t (P ). (J.1)
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147 J.2. Classical approach (�isometric objectivity�), and an issue

J.2 Classical approach (�isometric objectivity�), and an issue

Recall: With F (P ) := F t0t (P ) ∈ L(R⃗nt0 ; R⃗
n
t ), the transposed F (P )

T
g =noted FTg (p) =noted FT ∈ L(R⃗nt ; R⃗nt0)

relative to (·, ·)g is de�ned by (FT .w⃗, U⃗)g := (w⃗, F.U⃗)g for all (U⃗ , w⃗) ∈ R⃗nt0 × R⃗nt . And the in�nitesimal
strain �tensor� (which is not a tensor but a matrix) is de�ned relative to a (·, ·)g-Euclidean basis (e⃗i) (the
same at all time) by

[ε]|e⃗ =
[F ]|e⃗ + [F ]T|e⃗

2
− I, written ε =

F + FT

2
− I. (J.2)

And then the homogeneous isotropic elasticity constitutive law reads with λ, µ the Lamé coe�cients and
σ the Cauchy stress �tensor�:

σ = λTr(ε)I + 2µε =
(
λTr(F )−(λ+2µ)

)
I + µ(F + FT ), (J.3)

matrix equation which stands for

σ = λTr([ε]|e⃗)I + 2µ[ε]|e⃗ =
(
λTr([F ]|e⃗)−(λ+2µ)

)
I + µ([F ]|e⃗ + [F ]T|e⃗). (J.4)

(Recall: F is not an endomorphism, so Tr(F ) is meaningless: It is Tr([F ]|e⃗) which is meant in (J.3)).

Remark J.2 We can also �rst start with the matrix expression σ
init

= λTr(F ) + µ(F − 2I) where we
see the expected dependence on F = dΦ (meaning: σ

init
= λTr([F ]|e⃗)+µ([F ]|e⃗− 2I); Then in a Galilean

Euclidean framework the stress �tensor� is symmetric, and we write σ =
σ
init

+σT

init

2 to get (J.3).

Remark J.3 Issue (recall): Adding F and FT (and I) to make 2ε (in (J.2)) is a mathematical nonsense

since they don't have the same domain or codomain: F : R⃗nt0 → R⃗nt while FT : R⃗nt → R⃗nt0 (and I is some
identity operator so codomain = domain). Thus ε can't be a function: It is the matrix in (J.3) (obtained

with some Euclidean basis). So Tr(ε) := Tr([ε]|e⃗) =
Tr([F ]|e⃗)+Tr([FT ]|e⃗)

2 − n = Tr([F ]|e⃗) − n (trace of a
matrix). Idem

σ.n⃗ = λTr(ε)n⃗+ 2µε.n⃗ means σ.[n⃗]|e⃗ = λTr([ε]|e⃗)[n⃗]|e⃗ + 2µ[ε]|e⃗.[n⃗]|e⃗ (J.5)

with n⃗ the (·, ·)g-normal unit out of Ωt (not out of Ωt0 ...). So, despite the eventual claims, neither ε nor
σ are tensors (they don't have any functional meaning).

Remark J.4 You may read: �For small displacements the Eulerian variable p = pt and the Lagrangian
variable P = pt0 can be confused�: pt ≃ pt0 (so Ωt0 and Ωt are �almost equal�). Which means that you
use the zero-th order Taylor expansions pt = Φt0pt0 (t) = pt0 +o(1). But you cannot then use the �rst order

Taylor expansion (in time) in following calculations (you cannot use velocities)...

J.3 A functional formulation (�isometric objectivity�)

Can the constitutive law (J.3) be modi�ed into a functional expression? Yes:

1. Consider the �right polar decomposition� F = R.U where U ∈ L(R⃗nt0 ; R⃗
n
t0), cf. (I.6). The Green

Lagrange tensor E = C−I
2 (endomorphism in R⃗nt0) then reads, with (I.8),

E =
U2−It0

2
=

(U−It0)2 + 2(U − It0)
2

. (J.6)

Then, with U − It0 = O(h) (small deformation approximation), we get the modi�ed in�nitesimal strain
tensor at pt0 ∈ Ωt0

ε̃ = U−It0 ∈ L(R⃗nt0 ; R⃗
n
t0), (J.7)

endomorphism in R⃗nt0 . (Full notation ε̃
t0
t,Gg

(pt0) = U t0t,Gg(pt0)−It0(pt0).) Thus, for all W⃗ ∈ R⃗nt0 ,

ε̃.W⃗ = U.W⃗ − W⃗ = R−1.w⃗ − W⃗ ∈ R⃗nt0 , when w⃗ = F.W⃗ (push-forward). (J.8)

Interpretation: From w⃗ = F.W⃗ = R.U.W⃗ ∈ R⃗nt (the deformed by the motion), �rst remove the �shifted

rotation� to get R−1.w⃗ = U.W⃗ ∈ R⃗nt0 , then remove the initial W⃗ to obtain R−1.w⃗ − W⃗ = ε̃.W⃗ ∈ R⃗nt0 .
In particular ||̃ε.W⃗ ||G = ||(U−It0).W⃗ ||G measures the relative elongation undergone by W⃗ .
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148 J.3. A functional formulation (�isometric objectivity�)

2. Then you get a constitutive law with the stress �tensor� Σ̃(Φ) =noted Σ̃ ∈ L(R⃗nt0 ; R⃗
n
t0) functionally

well de�ned:

Σ̃ = λTr(ε̃)It0 + 2µε̃ = λTr(U−It0)It0 + 2µ(U−It0). (J.9)

(The trace Tr(ε̃) is well de�ned since ε̃ is an endomorphism.) And, at pt0 ∈ Ωt0 , for any W⃗ ∈ R⃗nt0 ,

Σ̃.W⃗ = λTr(ε̃)W⃗ + 2µε̃.W⃗ = λTr(U−It0)W⃗ + 2µ(U.W⃗−W⃗ ) ∈ R⃗nt0 . (J.10)

3. Then �rotate and shift� with R to get into R⃗nt at pt,

R.Σ̃.W⃗ = λTr(ε̃)R.W⃗ + 2µR.̃ε.W⃗ = λTr(U−It0)R.W⃗ + 2µR.(U−It0).W⃗

= λTr(U−It0)R.W⃗ + 2µ(F −R).W⃗ ,

= λTr(U−It0)R.W⃗ + 2µ(w⃗ −R.W⃗ ), where w⃗ = F.W⃗ = R.U.W⃗ .

(J.11)

You have de�ned the two point �tensor� (functionally well de�ned)

R.Σ̃ = λTr(ε̃)R+ 2µR.̃ε ∈ L(R⃗nt0 ; R⃗
n
t ). (J.12)

4. You get the constitutive law for the stress �tensor� (well de�ned symmetric endomorphism) in R⃗nt :

(σ̃(Φ) =) σ̃ = R ◦ Σ̃ ◦R−1 noted
= R.Σ̃.R−1 ∈ L(R⃗nt ; R⃗nt ). (J.13)

So, for any w⃗ ∈ Ωt,
σ̃.w⃗ = R.Σ̃.R−1.w⃗ ∈ R⃗nt . (J.14)

Interpretation of (J.13)-(J.14): Shift and rigid rotate backward by applying R−1, apply the elastic

stress law with Σ̃ which corresponds to a rotation free motion, then shift and rigid rotate forward by
applying R.

Detailed expression for (J.13)-(J.14): With Tr(R.̃ε.R−1) = Tr(ε̃) (see exercise J.6), we get, at (t, pt),

σ̃ = λTr(ε̃) It + 2µR.̃ε.R−1 = λTr(U−It0) It + 2µR.(U−It0).R−1

= λTr(U−It0) It + 2µ(F.R−1−It).
(J.15)

And for any w⃗ ∈ R⃗nt , and with w⃗ = R.W⃗ , you get

σ̃.w⃗ = λTr(ε̃) w⃗ + 2µR.̃ε.W⃗ = λTr(U−It0) w⃗ + 2µR.(U−It0).W⃗
= λTr(U−It0) w⃗ + 2µ(R.U.R−1.w⃗−w⃗).

(J.16)

To compare with the classical �functionally meaningless� (J.5).

Remark J.5 Doing so, you avoid the use of the Piola�Kirchho� tensors.

Exercice J.6 Prove: Tr(R.̃ε.R−1) = Tr(ε̃) =
∑
i(αi−1). (NB: ε̃ is an endomorphism in R⃗nt0 while

R.̃ε.R−1 is an endomorphism in R⃗nt .)

Answer. det|e⃗(R.̃ε.R−1 − λIt) = det|e⃗(R.(ε̃−λIt0).R
−1) = det|E⃗,e⃗(R). det|E⃗(ε̃−λI).det|e⃗,E⃗(R

−1) = det|E⃗(ε̃−λI)

for all Euclidean bases (E⃗i) and (e⃗i) in R⃗n
t0 and R⃗n

t . (With L = ε̃ and components, Tr(R.L.R−1) =∑
i(R.L.R−1)ii =

∑
ijk R

i
jL

j
k(R

−1)ki =
∑

jk(R
−1.R)kjL

j
k =

∑
jk δ

k
jL

j
k =

∑
j L

j
j = Tr(L).)

Exercice J.7 Elongation in R2 along the �rst axis : origin O, same Euclidean basis (E⃗1, E⃗2) and Eu-

clidean dot product at all time, ξ > 0, t ≥ t0, L,H > 0, P ∈ [0, L] × [0, H], [
−−→
OP ]|E⃗ =

(
X0

Y0

)
, and

[
−−−−−→
OΦt0t (P )]|E⃗ =

(
X0 + ξ(t−t0)X0

Y0

)
=

(
X0(κ+1)

Y0

)
=

(
x
y

)
= [
−→
Op]|E⃗ , where κ = ξ(t−t0) > 0 for t > t0.

1- Give F , C, U =
√
C and R = F.U−1. Relation with the classical expression ?

2- Spring
−−→
OP =

−−→
Oct0(s) = X0E⃗1+Y0E⃗2+sW⃗ , i.e. [

−−→
OP ]|E⃗ = [

−−→
Oct0 ]|E⃗ =

(
X0+sW1

Y0+sW2

)
|E⃗

with s ∈ [0, L]

and W⃗ = W1E⃗1 +W2E⃗2. Give the deformed spring, i.e. give p = ct(s) = Φt0t (ct0(s)), and c⃗t
′, and the

stretch ratio.
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149 J.4. Second functional formulation: With the Finger tensor

Answer. 1- [F ] = [dΦ] =

(
κ+1 0
0 1

)
, same Euclidean dot product and basis at all time, thus [FT ] = [F ]T = [F ],

then [C] = [FT ].[F ] = [F ]2 =

(
(κ+1)2 0

0 1

)
, thus [U ] = [F ] =

(
κ+1 0
0 1

)
, thus [R] = [I]. All the matrices are

given relative to the basis (E⃗i), thus F,C,U,R (e.g., C.E⃗1 = (κ+1)2E⃗1 and C.E⃗2 = E⃗2).
Since R = I and [ε] = [̃ε], (J.15) gives the usual result [σ] = λTr([ε])I + 2µ[ε], cf (J.3) (matrix meaning).

2-
−−−−→
Oct(s) =

−−−−−−−−→
OΦt0

t (ct0(s)) =

(
(X0+sW1)(κ+1)

Y0+sW2

)
|E⃗
, thus c⃗t

′(s) =

(
W1(κ+1)

W2

)
|E⃗
, stretch ration

W2
1 (κ+1)2+W2

2

W2
1 +W2

2

at (t, pt).

Exercice J.8 Simple shear in R2 : [
−−−−−→
OΦt0t (P )]|E⃗ =

(
X + ξ(t−t0)Y

Y

)
=noted

(
X + κY

Y

)
=

(
x
y

)
=

[
−→
Op]|E⃗ . Same questions, and moreover give the eigenvalues of C.

Answer. 1- [F ] =

(
1 κ
0 1

)
, [C] =

(
1 0
κ 1

)
.

(
1 κ
0 1

)
=

(
1 κ
κ κ2+1

)
. Eigenvalues: det(C − λI) = λ2 −

(2+κ2)λ+1. Discriminant ∆ = (2+κ2)2 − 4 = κ2(κ2+4). Eigenvalues α± = 1
2
(2+κ2 ±κ

√
κ2+4). (We check that

α± > 0.) Eigenvectors v⃗±(main directions of deformations) given by (1−α±)x+κy = 0, i.e., y = 1
2
(κ±

√
κ2+4)x,

thus, e.g., v⃗± =

(
2

κ±
√
κ2+4

)
. (We check that v⃗+ ⊥ v⃗−.) With P the transition matrix from (E⃗1, E⃗2) to

(
v⃗+

||v⃗+|| ,
v⃗−

||v⃗−|| ) and D = diag(α+, α−) we get C = P.D.P−1 (with P−1 = PT since here (
v⃗+

||v⃗+|| ,
v⃗−

||v⃗−|| ) is an

orthonormal basis), thus U = P.
√
D.P−1 (we check that UT = U and U2 = C). And R = F.U−1.

2-
−−−−→
Oct(s) =

−−−−−−−−→
OΦt0

t (ct0(s)) =

(
(X0+sW1) + κ(Y0+sW2)

Y0+sW2

)
, thus [⃗ct

′(s)] =

(
W1 + κW2

W2

)
. Stretch ratio

(W1+κW2)
2+W2

2

W2
1 +W2

2
at (t, pt).

J.4 Second functional formulation: With the Finger tensor

The above approach uses the push-forward, i.e. uses F (you arrive with your memory). You may prefer
to use the pull-back, i.e. use F−1 (you remember the past which is Cauchy's point of view): Then you
use F−1 = R−1.V −1 the right polar decomposition of F−1, and you consider the �tensor�

˜̃ε
t
= V −1−It ∈ L(R⃗nt ; R⃗nt ), (J.17)

and
σ
t
= λTr(˜̃ε

t
)It + 2µ˜̃ε

t
, and σ

t
.n⃗t = λTr(˜̃ε

t
) n⃗t + 2µ˜̃ε

t
.n⃗t. (J.18)

(Quantities functionally well de�ned).

K Displacement

K.1 The displacement vector U⃗
In Rn, let pt = Φt0t (pt0). Then the bi-point vector

U⃗ t0t (pt0) = Φt0t (pt0)− It0(pt0) = pt − pt0 = −−→pt0pt (K.1)

is called the displacement vector at pt0 relative to t0 and t. This de�nes the map

U⃗ t0t :

{
Ωt0 → R⃗n

pt0 → U⃗
t0
t (pt0) := pt − pt0 = −−→pt0pt when pt = Φt0t (pt0).

(K.2)

Thus we have de�ned

U⃗ t0 :

{
[t0, T ]× Ωt0 → R⃗n

(t, pt0) → U⃗ t0(t, pt0) := U⃗
t0
t (pt0),

and U⃗ t0pt0 :

{
[t0, T ] → R⃗n

t → U⃗ t0pt0 (t) := U⃗
t0
t (pt0).

(K.3)

Remark K.1 U⃗ t0t (pt0) doesn't de�ne a vector �eld (it is not tensorial), because U⃗ t0t (pt0) = pt−pt0 = −−→pt0pt
is a bi-point vector which is neither in R⃗nt0 nor in R⃗nt since pt0 ∈ Ωt0 and pt ∈ Ωt (it requires time and
space ubiquity gift). In particular, it makes no sense on a non-plane surface (manifold). More at � K.5.
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150 K.2. The di�erential of the displacement vector

Remark K.2 For elastic solids in Rn, the function U⃗ t0 is often considered to be the unknown; But the
�real� unknown is the motion Φt0 . And it is sometimes confused with the extension of a 1-D spring. But
see �gure 4.1: ||w⃗t0(pt0)|| represents the initial length and ||w⃗t0∗(t, pt)|| represents the current length of
the spring, and the di�erence ||w⃗t0∗(t, pt)|| − ||w⃗t0(pt0)|| can be very small (≪ 1) while the length of the

displacement vector ||U⃗ t0t || = pt − pt0 can be very long (≫ 1).

K.2 The di�erential of the displacement vector

The di�erential of U⃗ t0t at pt0 is (matrix meaning)

dU⃗ t0t (pt0) = dΦt0t (pt0)− It0 = F t0t (pt0)− It0 , written dU⃗ = F − I, (K.4)

which means [dU⃗ t0t (pt0)] = [dΦt0t (pt0)]− [It0 ] relative to some basis. It doesn't de�ned a function, because

F t0t (pt0) : R⃗nt0 → R⃗nt while It0 : R⃗nt0 → R⃗nt0 . Idem, with W⃗ ∈ R⃗nt0 , matrix meaning

dU⃗ .W⃗ = F.W⃗ − W⃗ : means [dU⃗ t0t (pt0)].[W⃗ ] = [F t0t (pt0)].[W⃗ ]− [W⃗ ]. (K.5)

K.3 Deformation �tensor� ε (matrix), bis

(K.4) gives (matrix meaning)

F t0t (pt0) = It0 + dU⃗ t0t (pt0), written F = I + dU⃗ . (K.6)

Therefore, Cauchy�Green deformation tensor C = FT .F reads, in short, (matrix meaning)

C = I + dU⃗ + dU⃗T + dU⃗T .dU⃗ (matrix meaning), (K.7)

i.e. [Ct0t (pt0)] = [It0 ] + [dU⃗ t0t (pt0)] + [dU⃗ t0t (pt0)]
T + [dU⃗ t0t (pt0)]

T .[dU⃗ t0t (pt0)].
Thus the Green�Lagrange deformation tensor E = C−I

2 , cf. (G.50), reads, in short, (matrix meaning)

E =
dU⃗ + dU⃗T

2
+

1

2
dU⃗T .dU⃗ (matrix meaning). (K.8)

Thus the deformation tensor ε, cf. (G.57), reads (matrix meaning)

ε = E − 1

2
(dU⃗)T .dU⃗ , (K.9)

with ε the �linear part� of E (small displacements: we only used the �rst order derivative dΦt0t ).

K.4 Small displacement hypothesis, bis

(Usual introduction.) Let pt = Φt0t (pt0), i = 1, 2, W⃗i ∈ R⃗nt0 , w⃗i(pt) = F t0t (pt0).W⃗i(pt0) ∈ R⃗nt (the push-

forwards), written w⃗i = F.W⃗i. Then de�ne (matrix meaning)

∆⃗i := w⃗i − W⃗i = dU .W⃗i, and ||∆⃗||∞ = max(||∆⃗1||Rn , ||∆⃗2||Rn). (K.10)

Then the small displacement hypothesis reads (matrix meaning):

||∆⃗||∞ = o(||W⃗ ||∞). (K.11)

Thus w⃗i = W⃗i + ∆⃗i (with ∆⃗i �small�) and the hypothesis (·, ·)g = (·, ·)G (same inner dot product at t0
and t) give

(w⃗1, w⃗2)G − (W⃗1, W⃗2)G = (∆⃗1, W⃗2)G + (∆⃗2, W⃗1)G + (∆⃗1, ∆⃗2)G.

So (K.9) gives 2(E.W⃗1, W⃗2)G = 2(ε.W⃗1, W⃗2)G + (dU⃗T .dU⃗ .W⃗1, W⃗2)G, And (K.11) gives

(E.W⃗1, W⃗2)G = (ε.W⃗1, W⃗2)G +O(||∆⃗||2∞), (K.12)

so Et0t is approximated by εt0
t
, that is, Et0t ≃ εt0t = F+FT

2 − I = dU⃗+dU⃗T

2 (matrix meaning).
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151 K.5. Displacement vector with di�erential geometry

K.5 Displacement vector with di�erential geometry

K.5.1 The shifter

We give the steps, see Marsden�Hughes [14].

• A�ne case Rn (continuum mechanics). Recall (I.9): With p = Φt0t (P ), the shifter is:

S̃t0t :

{
Ωt0 × R⃗nt0 → Ωt × R⃗nt

(P, Z⃗P ) → S̃t0t (P, Z⃗P ) = (p, St0t (Z⃗P )) with St0t (Z⃗P ) = Z⃗P .
(K.13)

(The vector is unchanged but the time and the application point have changed: A real observer has no
ubiquity gift). So:

St0t ∈ L(R⃗nt0 ; R⃗
n
t ) and [St0t ]|e⃗ = I identity matrix, (K.14)

the matrix equality being possible after the choice of a unique basis at t0 and at t. And (simpli�ed

notation) S̃t0t (P, Z⃗P ) =
noted St0t (Z⃗P ). Then the deformation tensor ε at P can be de�ned by

εt0
t
(P ).Z⃗(P ) =

(St0t )
−1(F t0t (P ).Z⃗(P )) + F t0t (P )T .(St0t (P ).Z⃗(P ))

2
− Z⃗(P ), (K.15)

in short: ε.Z⃗ =
(S

t0
t )−1(F.Z⃗)+FT .(S

t0
t .Z⃗)

2 − Z⃗).

• In a manifold: Ω is a manifold (like a surface in R3 from which we cannot take o�). Let TPΩt0
be the tangent space à P (the �ber at P ), and TpΩt be the tangent space à p (the �ber at p). In
general TPΩt0 ̸= TpΩt (e.g. on the sphere �the Earth�). The bundle (the union of �bers) at t0 is TΩt0 =⋃
P∈Ωt0

({P} × TPΩt0), and the bundle at t is TΩt =
⋃
p∈Ωt

({p} × TpΩt). Then the shifter

S̃t0t :

{
TΩt0 → TΩt

(P, Z⃗P ) → S̃t0t (P, Z⃗P ) = (p, St0t (Z⃗P )),
(K.16)

where St0t (Z⃗P ) is de�ned such that it distorts Z⃗P �as little as possible� along geodesics.

E.g., on a sphere along a path which is a geodesic, if θt0 is the angle between Z⃗P and the tangent

vector to the geodesic at P , then θt0 is also the angle between St0t (Z⃗P ) and the tangent vector to the

geodesic at p, and St0t (Z⃗P ) has the same length than Z⃗P (at constant speed in a car you think the geodesic

is a straight line, although St0t (Z⃗P ) ̸= Z⃗P : the Earth is not �at).

K.5.2 The displacement vector

(A�ne space framework, Ωt0 open set in Rn.) Let P ∈ Ωt0 , W⃗P ∈ R⃗nt0 , p = Φt0t (P ) ∈ Ωt, and dΦt0t =

F t0t ∈ L(R⃗nt0 ; R⃗
n
t ). De�ne

δ
˜⃗U t0t :

Ωt0 × R⃗nt0 → Ωt × L(R⃗nt0 ; R⃗
n
t )

(P, Z⃗P ) → δ
˜⃗U t0t (P, Z⃗P ) = (p, δU⃗ t0t (Z⃗P )) with δU⃗ t0t (Z⃗P ) = (F t0t − S

t0
t ).Z⃗P .

(K.17)

Then δ
˜⃗U t0t = F t0t − S

t0
t : P ∈ Ωt0 → δ

˜⃗U t0t (P ) = F t0t (P )− St0t (P ) ∈ L(R⃗nt0 ; R⃗
n
t ) is a two-point tensor. And

Ct0t = (F t0t )T .F t0t = (δU t0t + St0t )
T .(δU t0t + St0t )

= I + (St0t )
T .δU t0t + (δU t0t )T .St0t + (δU t0t )T .δU t0t ,

(K.18)

since (St0t )
T .St0t = I identity in TΩt0 : Indeed, ((St0t )

T .St0t .A⃗, B⃗)Rn = (St0t .A⃗, S
t0
t .B⃗)Rn = (A⃗, B⃗)Rn ,

cf. (K.13), for all A⃗, B⃗. Then the Green�Lagrange tensor is de�ned on Ωt0 by

Et0t =
1

2
(Ct0t − It0) =

(St0t )
T .δU t0t + St0t .(δU

t0
t )T

2
+

1

2
(δU t0t )T .δU t0t , (K.19)

to compare with (G.50).
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152 L.1. Alternating multilinear form

L Determinants

L.1 Alternating multilinear form

Let E be a vector space, and let L(E, ..., E;R) =noted L(En;R) be the set of multilinear forms, i.e.
m ∈ L(En;R) i�

m(..., x⃗+ λy⃗, ...) = m(..., x⃗, ...) + λm(..., y⃗, ...) (L.1)

for all x⃗, y⃗ ∈ E, all λ ∈ R, and any �slot�.
E.g., m(λ1x⃗1, ..., λnx⃗n) = (

∏
i=1,...,n λi) m(x⃗1, ..., x⃗n), for all λ1, ..., λn ∈ R and all x⃗1, ..., x⃗n ∈ E.

In particular a 1-alternating multilinear function is a linear form, also called a 1-form. And the set of
1-forms is Ω1(E) = E∗. Suppose n ≥ 2.

De�nition L.1 Aℓ :

{
En → R

(v⃗1, ..., v⃗n) → Aℓ(v⃗1, ..., v⃗n)

}
∈ L(En;R) is a n-alternating multilinear form i�,

for all u⃗, v⃗ ∈ E,
Aℓ(..., u⃗, ..., v⃗, ...) = −Aℓ(..., v⃗, ..., u⃗, ...), (L.2)

the other elements being unchanged. The set of n-alternating multilinear forms is

Ωn(E) = {Aℓ ∈ L(En;R) : Aℓ is alternating}. (L.3)

If Aℓ,Bℓ ∈ Ωn(E) and λ ∈ R then Aℓ + λBℓ ∈ Ωn(E) thanks to the linearity for each variable. Thus
Ωn(E) is a vector space, sub-space of L(En;R).

L.2 Leibniz formula

Particular case dimE=n. Let Aℓ ∈ Ωn(E) (a n-alternating multilinear form). Recall (see e.g. Cartan [5]):
1- A permutation σ : [1, n]N → [1, n]N is a bijective map (i.e. one-to-one and onto); Let Sn be the set

of permutations of [1, n]N.
2- A transposition τ : [1, n]N → [1, n]N is a permutation that exchanges two elements, that is, ∃i, j s.t.

τ(..., i, ..., j, ...) = (..., j, ..., i, ...), the other elements being unchanged.
3- A permutation is a composition of transpositions (theorem left as an exercise, see Cartan). And a

permutation is even i� the number of transpositions is even, and a permutation is odd i� the number of
transpositions is odd. The parity (even or odd character) of a permutation is an invariant.

4- The signature ε(σ) = ±1 of a permutation σ is +1 if σ is even, and is −1 if σ is odd.

Proposition L.2 (Leibniz formula) Let Aℓ ∈ Ωn(E). Let (e⃗i)i=1,...,n =noted (e⃗i) be a basis in E. For
all vectors v⃗1, ..., v⃗n ∈ E, with v⃗j =

∑n
i=1v

i
j e⃗i for all j,

Aℓ(v⃗1, ..., v⃗n) = c
∑
σ∈Sn

ε(σ)

n∏
j=1

v
σ(j)
j = c

∑
τ∈Sn

ε(τ)

n∏
i=1

viτ(i) (with c := Aℓ(e⃗1, ..., e⃗n)). (L.4)

Thus if c = Aℓ(e⃗1, ..., e⃗n) is known, then Aℓ is known. Thus

dim(Ωn(E)) = 1. (L.5)

(Classic not.: v⃗j =
∑n
i=1vij e⃗i, Aℓ(v⃗1, ..., v⃗n) = c

∑
σ∈Sn

ε(σ)
∏n
i=1 vσ(i),i = c

∑
τ∈Sn

ε(τ)
∏n
i=1 vi,τ(i).)

Proof. Let F := F([1, n]N; [1, n]N) =noted [1, n]
[1,n]N
N be the set of functions i :

{
[1, n]N → [1, n]N

k → ik = i(k)

}
.

Aℓ being multilinear, Aℓ(v⃗1, ..., v⃗n) =
∑n
j1=1 v

j1
1 Aℓ(e⃗j1 , v⃗2, ..., v⃗n) (�the �rst column� development). By

recurrence we get Aℓ(v⃗1, ..., v⃗n) =
∑n
j1,...,jn=1 v

j1
1 ...v

jn
n Aℓ(e⃗j1 , ..., e⃗jn) =

∑
j∈F

∏n
k=1 v

j(k)
k Aℓ(e⃗j(1), ..., e⃗j(n)).

And Aℓ(e⃗i1 , ..., e⃗in) ̸= 0 i� i : k ∈ {1, ..., n} → i(k) = ik ∈ {1, ..., n} is one-to-one (thus bijective). Thus
Aℓ(v⃗1, ..., v⃗n) =

∑
σ∈Sn

∏n
i=1 v

σ(i)
i Aℓ(e⃗σ(1), ..., e⃗σ(n)) =

∑
σ∈Sn

ε(σ)
∏n
i=1 v

σ(i)
i Aℓ(e⃗1, ..., e⃗n), which is the

�rst equality in (L.4). Then
∑
σ∈Sn

ε(σ)
∏n
i=1 v

σ(i)
i =

∑
σ∈Sn

ε(σ)
∏n
i=1 v

σ(σ−1(i))
σ−1(i) since σ is bijectif, thus∑

σ∈Sn
ε(σ)

∏n
i=1 v

σ(i)
i =

∑
τ∈Sn

ε(τ−1)
∏n
i=1 v

i
τ(i), thus the second equality in (L.4) since ε(τ)−1 = ε(τ).

(See Cartan [5].)
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153 L.3. Determinant of vectors

L.3 Determinant of vectors

De�nition L.3 (e⃗i)i=1,...,n being a basis in E, the determinant relative to (e⃗i) is the alternating multi-
linear form det|e⃗ ∈ Ωn(E) de�ned by

det
|e⃗

(e⃗1, ..., e⃗n) = 1. (L.6)

And the determinant relative to (e⃗i) of n vectors v⃗i is , with v⃗j =
∑n
i=1v

i
j e⃗i for all j, and with prop. L.2

(here c = 1),

det
|e⃗

(v⃗1, ..., v⃗n) =
∑
σ∈Sn

ε(σ)

n∏
j=1

v
σ(j)
j =

∑
τ∈Sn

ε(τ)

n∏
i=1

viτ(i) (L.7)

In particular,

Ωn(E) = Vect{det
|e⃗
} (the 1-D vector space spanned by det|e⃗). (L.8)

And any Aℓ ∈ Ωn(E) reads
Aℓ = Aℓ(e⃗1, ..., e⃗n) det

|e⃗
. (L.9)

And if (⃗bi) is another basis then

det
|⃗b

= cdet
|e⃗

where c = det
|⃗b
(e⃗1, ..., e⃗n). (L.10)

Exercice L.4 Change of measuring unit: If (⃗ai) is a basis and b⃗j = λa⃗j for all j, prove

∀j = 1, ..., n, b⃗j = λa⃗j =⇒ det
|⃗a

= λn det
|⃗b

(L.11)

(gives the relation between volumes relative to a change of measuring unit in the Euclidean case).

Answer. det
|⃗a

(⃗b1, ..., b⃗n) = det
|⃗a

(λa⃗1, ..., λa⃗n)
multi
=

linear
λn det

|⃗a
(⃗a1, ..., a⃗n)

(L.6)
= λn (L.6)

= λn det
|⃗b

(⃗b1, ..., b⃗n).

Proposition L.5 det|e⃗(v⃗1, ..., v⃗n) ̸= 0 i� (v⃗1, ..., v⃗n) is a basis; Or equivalently, det|e⃗(v⃗1, ..., v⃗n) = 0 i�
v⃗1, ..., v⃗n are linearly dependent.

Proof. If
∑n
i=1civ⃗i = 0 and one of the ci ̸= 0 and then a v⃗i is a linear combination of the others thus

det|e⃗(v⃗1, ..., v⃗n) = 0 (since det|e⃗ is alternate); Thus det|e⃗(v⃗1, ..., v⃗n) ̸= 0 ⇒ the v⃗i are independent. And if
the v⃗i are independent then (v⃗1, ..., v⃗n) is a basis, thus det|v⃗(v⃗1, ..., v⃗n) = 1 ̸= 0, with det|v⃗ = cdet|e⃗, thus
det|e⃗(v⃗1, ..., v⃗n) ̸= 0.

Exercice L.6 In R2. Let v⃗1 =
∑2
i=1 v

i
1e⃗i and v⃗2 =

∑2
j=1 v

j
2e⃗j (duality notations). Prove:

det
|e⃗

(v⃗1, v⃗2) = v11v
2
2 − v21v12 . (L.12)

Answer. Development relative to the �rst column: det|e⃗(v⃗1, v⃗2) = det|e⃗(v
1
1 e⃗1 + v21 e⃗2, v⃗2) = v11 det|e⃗(e⃗1, v⃗2) +

v21 det|e⃗(e⃗2, v⃗2). Then det|e⃗(v⃗1, v⃗2) = 0 + v11v
2
2 det(e⃗1, e⃗2) + v21v

1
2 det(e⃗2, e⃗1) + 0 = v11v

2
2 − v21v

1
2 .

Exercice L.7 In R3, with v⃗j =
∑3
i=1 v

i
j e⃗i, prove:

det(v⃗1, v⃗2, v⃗3) =

3∑
i,j,k=1

εijkv
i
1v
j
2v
k
3 , (L.13)

where εijk = 1
2 (j−i)(k−j)(k−i), i.e. εijk = 1 if (i, j, k) = (1, 2, 3), (3, 1, 2) or (2, 3, 1) (even signature),

εijk = −1 if (i, j, k) = (3, 2, 1), (1, 3, 2) and (2, 1, 3) (odd signature), and εijk = 0 otherwise.

Answer. Development relative to the �rst then second then third column (as in exercise L.6).

Result = v11v
2
2v

3
3 + v12v

2
3v

3
1 + v13v

2
1v

3
2 − v31v

2
2v

1
3 − v32v

2
3v

1
1 − v33v

2
1v

1
2 .
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L.4 Determinant of a matrix

Let M = [Mij ] i=1,...,n
j=1,...,n

∈Mnn(a n ∗n real matrix). Let (E⃗i) be the canonical basis inMn1 (space of n ∗ 1

matrices). Let v⃗j ∈ Mn1 and call Mij its components: v⃗j =
∑n
i=1MijE⃗i. So [v⃗1]|E⃗ = M.[E⃗1]|E⃗ . And

[v⃗1]|E⃗ =noted v⃗1 because the canonical basis will be systematically used inMn1.

So M = ( v⃗1, ..., v⃗n ) =
(
M.E⃗1, ...,M.E⃗n

)
= [Mij ].

De�nition L.8 The determinant of the matrix M = ( v⃗1, ..., v⃗n ) = [Mij ] is

det(M) := det
|E⃗

(v⃗1, ..., v⃗n) (= det
|E⃗

(
M.E⃗1, ...,M.E⃗n

)
= det([Mij ])). (L.14)

Proposition L.9 • det(I) = 1.
• If M,N ∈Mnn then det(M.N) = (detM)(detN).
• If M ∈Mnn then det(MT ) = det(M).

Proof. • det(I) := det|E⃗(E⃗1, ..., E⃗n) = 1.

• De�ne a, b : En → R by a(v⃗1, ..., v⃗n) := det|E⃗(M.v⃗1, ...,M.v⃗n) and b(v⃗1, ..., v⃗n) :=

det|E⃗(M.N.v⃗1, ...,M.N.v⃗n). They are alternated forms (since the matrix product is linear) in Ω1(E). Thus

b = λa for a λ ∈ R since dim(Ωn(E)) = 1. Thus det(M.N) = b(E⃗1, ..., E⃗n) = λa(E⃗1, ..., E⃗n) = λ det(M),
and in particular det(N) = det(I.N) = λ det(I) = λ.

• det[Mij ] = det
|E⃗

(v⃗1, ..., v⃗n)
(L.7)
=

∑
σ∈Sn

ε(σ)

n∏
i=1

v
σ(i)
i =

∑
τ∈Sn

ε(τ)

n∏
i=1

viτ(i) = det[Mji].

Exercice L.10 Let g(·, ·) be an inner dot product, (e⃗i) be a basis, gij = g(e⃗i, e⃗j). Prove det([gij ]) > 0.

Answer. [g]|e⃗ is symmetric def. > 0, [g]|e⃗ = PT .D.P , det([g]|e⃗) = det(P )2
∏n

i=1(λi) > 0.

L.5 Volume

De�nition L.11 Let (e⃗i) be a Euclidean basis. Consider a parallelepiped in Rn which sides are given by
the vectors v⃗1, ..., v⃗n; Its algebraic volume and its volume relative to (e⃗i) are

algebraic volume = det
|e⃗

(v⃗1, ..., v⃗n), and volume =
∣∣det

|e⃗
(v⃗1, ..., v⃗n)

∣∣. (L.15)

If n = 2 then volume is also called an area. If n = 1 then volume is also called a length.

Notation. Let (e⃗i) be a Cartesian basis and (ei) = (dxi) be the dual basis. Then, cf. Cartan [6],

det
|e⃗

noted
= e1 × ...× en = dx1 × ...× dxn. (L.16)

And, for integration, the volume element (non negative) uses a Euclidean basis (e⃗i) and is

dΩ(x⃗) = |det
|e⃗
| = |dx1 × ...× dxn| noted= dx1...dxn. (L.17)

And the volume of a regular domain Ω is

0 ≤ |Ω| :=
∫
Ω

dΩ =

∫
x⃗∈Ω

dx1...dxn. (L.18)

(cf. Riemann approach: any regular volume Ω can be approximated with cubes as small as wished.)

Exercice L.12 Let Ψ :

{
[a1, b1]× ...× [an, bn] → Ω

q⃗ = (q1, ..., qn) → x⃗ = (x1 = Ψ1(q⃗), ..., xn = Ψn(q⃗))

}
be a parametric

description of a domain Ω. Prove

dΩ(x⃗) = |JΨ(q⃗)| dq1...dqn, and |Ω| =
∫
q⃗

|JΨ(q⃗)| dq1...dqn, (L.19)

where JΨ(q⃗) = det|e⃗[dΨ(q⃗)]|e⃗ = det[ ∂Ψ∂qi (q⃗)] = det|e⃗(p⃗1, ...p⃗n) is the Jacobian matrix of Ψ at q⃗ = the

volume at x⃗ = Ψ(q⃗) relative to e⃗i) limited by the tangent vectors p⃗i(x⃗) =
∂Ψ
∂qi

(q⃗).
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155 L.6. Determinant of an endomorphism

Answer. Polar coordinates for illustration purpose (immediate generalization): Consider the disk Ω parametrized

with the polar coordinate system Ψ :

{
]0, R]× [0, 2π] → R2

q⃗ = (ρ, θ) → x⃗ = (x = ρ cos θ, y = ρ sin θ)

}
where a Euclidean ba-

sis (e⃗1, e⃗2) is used in R2 (so x⃗ = ρ cos θe⃗1 + ρ sin θe⃗2). The associated polar basis at x⃗ = Ψ(q⃗) is (p⃗1(x⃗) =

∂Ψ
∂ρ

(ρ, θ), p⃗2(x⃗) = ∂Ψ
∂θ

(ρ, θ)), so [p⃗1(x⃗)]|e⃗ =

(
cos θ
sin θ

)
and [p⃗2(x⃗)]|e⃗ =

(
−ρ sin θ
ρ cos θ

)
. Thus det|e⃗(p⃗1(x⃗), p⃗2(x⃗)) = ρ

(> 0 here), thus dΩ = |ρ| dρdθ = ρ dρdθ. Thus the volume is |Ω| =
∫
x⃗∈Ω

dΩ =
∫ R

ρ=0

∫ 2π

θ=0
ρ dρdθ = πR2.

Exercice L.13 What is the �volume element� on a regular surface Σ in R3, called the �surface element�?

Answer. Let Ψ :

{
[a1, b2]× [a2, b2] → R3

(u, v) → x⃗ = Ψ(u, v) = x1(u, v)e⃗1 + ...+ x3(u, v)e⃗3

}
be a regular parametrization

of the geometric surface Σ = Im(Ψ), where (e⃗1, e⃗2, e⃗3) is a Euclidean basis in R3. Thus t⃗1(x⃗) = ∂Ψ
∂u

(u, v) and

t⃗2(x⃗) =
∂Ψ
∂v

(u, v) are the tangent vectors at Σ at x⃗ = Ψ(u, v). Hence a normal unit vector is n⃗(x⃗) = t⃗1(x⃗)×t⃗2(x⃗)

||⃗t1(x⃗)×t⃗2(x⃗)||
,

thus det|e⃗(⃗t1, t⃗2, n⃗) = ||⃗t1(x⃗)×t⃗2(x⃗)|| is the area of the parallelogram which sides are given by t⃗1 and t⃗2 (volume with

height 1). Thus the surface element at x⃗ = Ψ(u, v) is dΣ(x⃗) = ||⃗t1(x⃗)× t⃗2(x⃗)|| dudv = || ∂Ψ
∂u

(u, v)× ∂Ψ
∂v

(u, v)|| dudv.
Thus |Σ| =

∫
x⃗∈Σ

dΣ(x⃗) =
∫ b1
u=a1

∫ b2
v=a2

|| ∂Ψ
∂u

(u, v)× ∂Ψ
∂v

(u, v)|| dudv.

L.6 Determinant of an endomorphism

L.6.1 De�nition and basic properties

De�nition L.14 The determinant of an endomorphism L ∈ L(E;E) relative to a basis (e⃗i) in E is

d̃et
|e⃗

(L) := det
|e⃗

(L.e⃗1, ..., L.e⃗n)
noted
= det

|e⃗
(L.e⃗1, ..., L.e⃗n). (L.20)

the last notation if the context is not ambiguous. This de�ne d̃et|e⃗ : L(E;E)→ R.

Proposition L.15 Let L ∈ L(E;E).

1- If L = I the identity, then d̃et|e⃗(I) = 1, for all basis (e⃗i).
2- For all v⃗1, ..., v⃗n ∈ E,

det
|e⃗

(L.v⃗1, ..., L.v⃗n) = d̃et
|e⃗

(L) det
|e⃗

(v⃗1, ..., v⃗n). (L.21)

3- If L.e⃗j =
∑n
i=1Lij e⃗i, then

d̃et
|e⃗

(L) = det([L]|e⃗) (= det([Lij ])). (L.22)

4- For all M ∈ L(E;E), and with M ◦ L =noted M.L (thanks to linearity),

d̃et
|e⃗

(M.L) = d̃et
|e⃗

(M) d̃et
|e⃗

(L) = d̃et
|e⃗

(L.M). (L.23)

5- L is invertible i� d̃et|e⃗(L) ̸= 0.
6- If L is invertible then

d̃et
|e⃗

(L−1) =
1

d̃et|e⃗(L)
. (L.24)

7- If (·, ·)g is an inner dot product in E and LTg is the (·, ·)g transposed of L (i.e., (LTg w⃗, u⃗)g = (w⃗, L.u⃗)g
for all u⃗, w⃗ ∈ E) then

d̃et
|e⃗

(LTg ) = d̃et
|e⃗

(L). (L.25)

8- If (e⃗i) and (⃗bi) are two (·, ·)g-orthonormal bases in R⃗nt , then det|⃗b = ±det|e⃗.

Proof. 1- d̃et|e⃗(I)=
(L.20) det|e⃗(I.e⃗1, ..., I.e⃗n)=

(L.6) det|e⃗(e⃗1, ..., e⃗n) = 1, true for all basis.
2- Let m : (v⃗1, ..., v⃗n)→ m(v⃗1, ..., v⃗n) := det|e⃗(L.v⃗1, ..., L.v⃗n): It is a multilinear alternated form, since

L is linear; Thus m=(L.9)m(e⃗1, ..., e⃗n) det|e⃗; With m(e⃗1, ..., e⃗n)=
(L.20) d̃et|e⃗(L), thus (L.21).

3- Apply (L.14) with M = [L]|e⃗ to get (L.22).

4- det|e⃗((M.L).e⃗1, ..., (M.L).e⃗n) = det|e⃗(M.(L.e⃗1), ...,M.(L.e⃗n))=
(L.21) d̃et|e⃗(M) det|e⃗(L.e⃗1, ..., L.e⃗n).
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156 L.7. Determinant of a linear map

5- If L is invertible, then 1 = d̃et|e⃗(I) = d̃et|e⃗(L.L
−1) = d̃et|e⃗(L) d̃et|e⃗(L

−1), thus d̃et|e⃗(L) ̸= 0.

If d̃et|e⃗(L) ̸= 0 then det|e⃗(L.e⃗1, ..., L.e⃗n) ̸= 0, thus (L.e⃗1, ..., L.e⃗n) is a basis, thus L is invertible.

6- (L.23) gives 1 = d̃et|e⃗(I) = d̃et|e⃗(L
−1.L) = d̃et|e⃗(L). d̃et|e⃗(L

−1), thus (L.24).
7- [g]|e⃗.[L

T
g ]|e⃗ = ([L]|e⃗)

T .[g]|e⃗ gives det([g]|e⃗) det([L
T
g ]|e⃗) = det(([L]|e⃗)

T ) det([g]|e⃗),

8- Let P be the change of basis endomorphism from (e⃗i) to (⃗bi), and P = [P]|e⃗ (the transition

matrix from (e⃗i) to (⃗bi)). Both basis being (·, ·)g-orthonormal, PT .P = I, thus det(P )2 = 1, thus

det(P ) = ±1 = d̃et|e⃗(P). And det|e⃗(⃗b1, ..., b⃗n) = det|e⃗(P.e⃗1, ...,P.e⃗n) = d̃et|e⃗(P) det|e⃗(e⃗1, ..., e⃗n) =

d̃et|e⃗(P) det|⃗b(⃗b1, ..., b⃗n), thus det|e⃗ = d̃et|e⃗(P) det|⃗b = ±det|⃗b.

De�nition L.16 Two (·, ·)g-orthonormal bases (e⃗i) and (⃗bi) have the same orientation i� det|⃗b = +det|e⃗.

Exercice L.17 Prove d̃et|e⃗(λL) = λn d̃et|e⃗(L).

Answer. d̃et
|e⃗

(λL) = det
|e⃗

(λL.e⃗1, ..., λL.e⃗n) = λn det
|e⃗

(L.e⃗1, ..., L.e⃗n) = λn d̃et
|e⃗

(L).

L.6.2 The determinant of an endomorphism is objective

Proposition L.18 Let (⃗ai) and (⃗bi) be bases in E. The determinant of an endomorphism L ∈ L(E;E)
is objective (observer independent, here basis independent):

(det([L]|⃗a) =) d̃et
|⃗a

(L) = d̃et
|⃗b
(L) (= det([L]|⃗b)). (L.26)

NB: But the determinant of n vectors is not objective, cf. (L.10) (compare the change of basis formula
for vectors [w⃗]|⃗b = P−1.[w⃗]|⃗a with the change of basis formula for endomorphisms [L]|⃗b = P−1.[L]|⃗a.P ).

Proof. Let P be the transition matrix from (⃗ai) to (⃗bi). Hence [L]|⃗b = P−1.[L]|⃗a.P and (L.23)-(L.24)

give det([L]|⃗b) = det(P−1) det([L]|⃗a) det(P ) = det([L]|⃗a).

Exercice L.19 Let (⃗ai) and (⃗bi) be bases in E, and de�ne P ∈ L(E;E) by P .⃗aj = b⃗j for all j (the
change of basis endomorphism). Prove

det
|⃗a

(⃗b1, ..., b⃗n) = d̃et
|⃗a

(P), thus det
|⃗a

= d̃et
|⃗a

(P) det
|⃗b
, i.e. det

|⃗b
=

det|⃗a

d̃et|⃗a(P)
, (L.27)

Answer. det
|⃗a

(⃗b1, ..., b⃗n) = det
|⃗a

(P .⃗a1, ...,P .⃗an)
(L.21)
= d̃et

|⃗a
(P) det

|⃗a
(⃗a1, ..., a⃗n) = d̃et

|⃗a
(P) = d̃et

|⃗a
(P) det

|⃗b
(⃗b1, ..., b⃗n), thus

det|⃗a = d̃et|⃗a(P) det|⃗b.

L.7 Determinant of a linear map

(Needed for the deformation gradient F t0t (P ) = dΦt0t (P ) : R⃗nt0 → R⃗nt .)
Let A and B be vector spaces, dimA = dimB = n, and (⃗ai) and (⃗bi) be bases in A and B.

L.7.1 De�nition and �rst properties

De�nition L.20 The determinant of a linear map L ∈ L(A;B) relative to the bases (⃗ai) and (⃗bi) is

d̃et
|⃗a,⃗b

(L) := det
|⃗b
(L.⃗a1, ..., L.⃗an). (L.28)

(And d̃et|⃗a,⃗b(L) =
noted det(L) if the bases are implicit.)

Thus, with L.⃗aj =
∑n
i=1Lij b⃗i, i.e. [L]|⃗a,⃗b = [Lij ], and with (L.14):

d̃et
|⃗a,⃗b

(L) = det([Lij ]). (L.29)
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157 L.7. Determinant of a linear map

Proposition L.21 Let u⃗1, ..., u⃗n ∈ A. Then

det
|⃗b
(L.u⃗1, ..., L.u⃗n) = d̃et

|⃗a,⃗b
(L) det

|⃗a
(u⃗1, ..., u⃗n). (L.30)

Proof. m : (u⃗1, ..., u⃗n) ∈ An → m(u⃗1, ..., u⃗n) := det|⃗b(L.u⃗1, ..., L.u⃗n) ∈ R is a multilinear alternated form

since L is linear; And m(⃗a1, ..., a⃗n) = det|⃗b(L.⃗a1, ..., L.⃗an)=
(L.28) d̃et|⃗a,⃗b(L) = d̃et|⃗a,⃗b(L) det|⃗a(⃗a1, ..., a⃗n).

Thus m = d̃et|⃗a,⃗b(L) det|⃗a, cf. (L.10), thus (L.30).

Corollary L.22 Let A,B,C be vector spaces such that dimA = dimB = dimC = n. Let (⃗ai), (⃗bi), (c⃗i)
be bases in A,B,C. Let L : A → B and M : B → C be linear. Then, with M ◦ L =noted M.L (thanks
to linearity),

d̃et
|⃗a,⃗c

(M.L) = d̃et
|⃗a,⃗b

(L) d̃et
|⃗b,⃗c

(M). (L.31)

Proof. d̃et
|⃗a,⃗c

(M.L) = det
|⃗c
(M.L.⃗a1), ...,M.L.⃗an)) = d̃et

|⃗b,⃗c
(M) det

|⃗b
(L.⃗a1, ..., L.⃗an) = d̃et

|⃗b,⃗c
(M) d̃et

|⃗a,⃗b
(L).

L.7.2 Jacobian of a motion, and dilatation

F := F t0t (pt0) := dΦt0t (pt0) : R⃗nt0 → R⃗nt is the deformation gradient at pt0 ∈ Ωt0 relative to t0 and t,

cf. (4.1). Let (E⃗i) be a Euclidean basis in R⃗nt0 and (e⃗i) be a Euclidean basis in R⃗nt for all t ≥ t0. Let Fij

be the components of F relative to these bases, so F.E⃗j =
∑n
i=1Fij e⃗i for all j and [F ]|E⃗,e⃗ = [Fij ].

De�nition L.23 The �volume dilatation rate� at pt0 relative to the Euclidean bases (E⃗i) and (e⃗i) is

J|E⃗,e⃗(Φ
t0
t )(pt0) := d̃et

|E⃗,e⃗
(F ) (= det

|e⃗
(F.E⃗1, ..., F.E⃗n) = det([Fij ])), (L.32)

often written J|E⃗,e⃗ := det([F ]|E⃗,e⃗) (or simply J = det(F ) when everything is implicit).

So, at t0 at pt0 , (E⃗1, ..., E⃗n) is a unit parallelepiped which volume is 1 (relative to the unit of measure-

ment chosen in R⃗nt0), and, at t at pt = Φt0t (pt0), J|E⃗,e⃗(Φ
t0
t )(pt0) = det|e⃗(F.E⃗1, ..., F.E⃗n) is the volume of the

parallelepiped (pt, F.E⃗1, ..., F.E⃗n) at pt = Φt0t (pt0) (relative to the unit of measurement chosen in R⃗nt ).

Interpretation: With t2 > t1 ≥ t0, and [e⃗i) is the basis at t1 and t2:
• Dilatation if J|E⃗,e⃗(Φ

t0
t2)(pt0) > J|E⃗,e⃗(Φ

t0
t1)(pt0) (volume increase),

• contraction if J|E⃗,e⃗(Φ
t0
t2)(pt0) < J|E⃗,e⃗(Φ

t0
t1)(pt0) (volume decrease), and

• incompressibility if J|E⃗,e⃗(Φ
t0
t2)(pt0) = J|E⃗,e⃗(Φ

t0
t1)(pt0) for all t (volume conservation).

In particular, if (e⃗i) = (E⃗i) then J|e⃗,e⃗(Φ
t0
t0)(pt0) = 1, and if t > t0, then

• Dilatation if J|e⃗,e⃗(Φ
t0
t )(pt0) > 1 (volume increase),

• contraction if J|e⃗,e⃗(Φ
t0
t )(pt0) < 1 (volume decrease), and

• incompressibility if J|e⃗,e⃗(Φ
t0
t )(pt0) = 1 for all t (volume conservation).

Exercice L.24 Let (E⃗i) be a Euclidean basis in R⃗nt0 , and let (⃗ai) and (⃗bi) be two Euclidean bases in R⃗nt
for the same Euclidean dot product (·, ·)g. Prove:

J|E⃗,⃗a(Φ
t0
t (P )) = ±J|E⃗,⃗b(Φ

t0
t (P )). (L.33)

Answer. P being the transition matrix from (⃗ai) to (⃗bi), det(P ) = ±1 here. And (4.26) gives [F ]|E⃗,⃗a = P.[F ]|E⃗,⃗b,

thus det([F ]|E⃗,⃗a) = ±det([F ]|E⃗,⃗b), thus det|⃗a(F.E⃗1, ..., F.E⃗n) = ±det|⃗b(F.E⃗1, ..., F.E⃗n).
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L.7.3 Determinant of the transposed

Let (A, (·, ·)g) and (B, (·, ·)h) be �nite dimensional Hilbert spaces. Let L ∈ L(A;B) (a linear map).
Recall: The transposed LTgh ∈ L(B;A) is de�ned by, for all u⃗ ∈ A and all w⃗ ∈ B, cf. (A.66)

(LTgh.w⃗, u⃗)g := (w⃗, L.u⃗)h. (L.34)

Let (⃗ai) be a basis in A and (⃗bi) be a basis in B. Then

d̃et([LTgh]|⃗b,⃗a) = det([L]|⃗a,⃗b)
det([(·, ·)g]|⃗a)
det([(·, ·)h]|⃗b)

. (L.35)

Indeed, (L.34) gives [(·, ·)g]|⃗a.[LTgh]|⃗b,⃗a = ([L]|⃗a,⃗b)
T .[(·, ·)h]|⃗b.

L.8 Dilatation rate

A unique Euclidean basis (e⃗i) at all time is chosen, and (·, ·)g is the associated inner dot product.

L.8.1 ∂Jt0

∂t (t, pt0) = J t0(t, pt0) divv⃗(t, pt)

The Eulerian velocity is v⃗(t, pt) =
∂Φ̃
∂t (t, PObj ) at pt = Φ̃(t, PObj ). The Lagrangian velocity is V⃗ (t, pt0) =

∂Φt0

∂t (t, pt0) at pt = Φ̃(t, PObj ) (so with pt = Φt0(t, pt0)). The deformation gradient along the motion of a

particle is F t0(t, pt0) := dΦt0t (t, pt0) = F t0pt0 (t). The Jacobian �along the motion of a particle� is

J t0pt0 (t) := J t0(t, pt0) := J t0t (pt0) = det
|e⃗

(F t0t (pt0)), (L.36)

Lemma L.25 ∂Jt0

∂t (t, pt0) satis�es, with pt = Φt0t (pt0),

∂J t0

∂t
(t, pt0) = J t0(t, pt0) divv⃗(t, pt) (L.37)

(value to be considered at t at pt). In particular, Φ̃ is incompressible i� divv⃗(t, pt) = 0.

Proof. Let O be a origin in Rn. Let
−−−→
OΦt0 =

∑n
i=1Φ

ie⃗i, V⃗
t0 =

∑n
i=1V

ie⃗i, v⃗ =
∑n
i=1v

ie⃗i, F
t0 .E⃗j =

dΦt0 .E⃗j =
∑n
i=1

∂Φi

∂Xj e⃗i. Let [F
t0 ]|E⃗,e⃗ =

noted F , J t0 =noted J and [dΦi]|E⃗ =
(
∂Φi

∂X1 ... ∂Φi

∂Xn

)
=noted dΦi

(row matrix). Thus J = detF = det

 dΦ1

...
dΦn

, thus (a determinant is multilinear)

∂J

∂t
= det


∂(dΦ1)

∂t
dΦ2

...
dΦn

+ . . .+ det


dΦ1

...
dΦn−1

∂(dΦn)

∂t
)

 .

With Φt0 C2, thus
∂(dΦi)

∂t
(t, pt0)

Swhartz
= d(

∂Φi

∂t
)(t, pt0) = dV i(t, pt0) = dvi(t, pt).F (t, pt0), cf. (3.27). Thus

det


∂(dΦ1)

∂t
dΦ2

...
dΦn

 = det


n∑
i=1

∂v1

∂xi
dΦi

dΦ2

...
dΦn

 det is
=

alternating
det


∂v1

∂x1
dΦ1

dΦ2

...
dΦn

 =
∂v1

∂x1
det


dΦ1

dΦ2

...
dΦn

 =
∂v1

∂x1
J

Idem for the other terms, thus

∂J

∂t
(t, pt0) =

∂v1

∂x1
(t, pt) J(t, pt0) + . . .+

∂vn

∂xn
(t, pt) J(t, pt0) = divv⃗(t, pt) J(t, pt0),

i.e. (L.37).

De�nition L.26 divv⃗(t, pt) is the dilatation rate.
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159 L.9. ∂J/∂F = J F−T

L.8.2 Leibniz formula

Proposition L.27 (Leibniz formula) Under regularity assumptions (e.g. hypotheses of the Lebesgue
theorem to be able to di�erentiate under

∫
) we have

d

dt

(∫
pt∈Ωt

f(t, pt) dΩt

)
=

∫
pt∈Ωt

(Df
Dt

+ f divv⃗
)
(t, pt) dΩt

=

∫
pt∈Ωt

(∂f
∂t

+ df.v⃗ + f div(v⃗)
)
(t, pt) dΩt

=

∫
pt∈Ωt

(∂f
∂t

+ div(fv⃗)
)
(t, pt) dΩt.

(L.38)

Proof. Let

Z(t) :=

∫
p∈Ωt

f(t, p) dΩt =

∫
P∈Ωt0

f(t,Φt0(t, P )) J t0(t, P ) dΩt0 .

(The Jacobian is positive for a regular motion.) Then (derivation under
∫
)

Z ′(t) =

∫
P∈Ωt0

Df

Dt
(t, pt) J

t0(t, P ) + f(t, pt)
∂J t0

∂t
(t, P ) dΩt0

=

∫
P∈Ωt0

(
Df

Dt
(t, pt) + f(t, pt) divv⃗(t, pt))J

t0(t, P ) dΩt0 ,

thanks to (L.37). And div(fv⃗) = df.v⃗ + f divv⃗ gives (L.38).

Corollary L.28 With (u⃗, w⃗)g =
noted u⃗ • w⃗ (in the given Euclidean framework),

d

dt

∫
Ωt

f(t, pt) dΩt =

∫
Ωt

∂f

∂t
(t, pt) dΩt +

∫
∂Ωt

(fv⃗ • n⃗)(t, pt) dΓt, (L.39)

sum of the temporal variation within Ωt and the �ux through the surface ∂Ωt.

Proof. Apply (L.38)3.

L.9 ∂J/∂F = J F−T

L.9.1 Meaning of ∂ det
∂Mij

?

LetMnn = {M = [Mij ] ∈ Rn2} be the set of n ∗ n matrices, and consider the function

Z := det :

{
Mnn → R

M = [Mij ] → Z(M) := det(M) = det([Mij ]).
(L.40)

Question: What does ∂Z
∂Mij

(M) mean?

Answer: It is the �standard meaning� of a directional derivative ∂f
∂xi

(x⃗) = df(x⃗).e⃗i... where here

f = Z, thus x⃗ =noted M is a matrix (a vector in Mnn), and (e⃗i) is the canonical basis (mij) in Mnn

(all the elements of the matrix mij vanish but the element at intersection of line i and column j which
equals 1). So:

∂Z

∂Mij
(M) := dZ(M).mij = lim

h→0

Z(M + hmij)− Z(M)

h
(∈ R). (L.41)

L.9.2 Calculation of ∂ det
∂Mij

Proposition L.29

∀i, j, ∂Z

∂Mij
(M) = Z(M) (M−T )ij , written

∂Z

∂M
= ZM−T . (L.42)
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160 L.9. ∂J/∂F = J F−T

Proof. ∂Z
∂Mij

(M) := limh→0
det(M+hmij)−det(M)

h ; The development of the determinant det(M + hmij)

relative to the column j gives
det(M + h[mij ]) = det(M) + h cij (L.43)

where cij is the (i, j)-th cofactor of M ; Thus ∂Z
∂Mij

(M) = limh→0
Z(M+hmij)−Z(M)

h = cij ; And since

M−1 = 1
det(M) [cij ]

T , i.e. [cij ] = det(M)M−T , we get ∂Z
∂Mij

(M) = det(M)(M−T )ij , i.e. (L.42).

L.9.3 ∂J/∂F = J F−T usually written [ ∂J∂Fij
] = J F−T

Setting of � L.8: With F := dΦ(pt0) we have F.E⃗j =
∑n
i=1Fij e⃗i where Fij =

∂Φi

∂Xj
(pt0), and

Ĵ|E⃗,e⃗
noted
= Ĵ :


L(R⃗nt0 ; R⃗

n
t ) → R

F → Ĵ(F ) := det([Fij ]) (= det([
∂Φi
∂Xj

(pt0)] = d̃et
|E⃗,e⃗

(dΦ(pt0))),
(L.44)

so, Ĵ(F ) = J(Φ) is the Jacobian of Φ at pt0 relative to (E⃗i) and (e⃗i). Thus (L.42) gives:

Corollary L.30

∀i, j, ∂Ĵ

∂Fij
(F ) = Ĵ(F ) ([F ]−T )ij , written

∂J

∂F
= J F−T . (L.45)

L.9.4 Interpretation of ∂J
∂Fij

?

The �rst derivations into play are along the directions E⃗j at t0 because Fij = ∂Φi

∂Xj
:= dΦi.E⃗j , when

Φ =
∑
iΦie⃗i, so F.E⃗j = Fij e⃗i.

Question: What does ∂J
∂Fij

mean ? That is, derivative of J in which direction ?

Answer: 1- �Identify� F ∈ L(R⃗nt0 ; R⃗
n
t ) with the tensor F̃ ∈ L(R⃗n∗t , R⃗nt0 ;R) given by F̃ (ℓ, U⃗) = ℓ.(F.U⃗);

So, if F.E⃗j =
∑n
i=1Fij e⃗i then F̃ =

∑n
i,j=1Fij e⃗i⊗πEj , where e⃗i is a basis in R⃗nt and (πEi) is the covariant

dual basis of (E⃗i) basis in R⃗nt0 .

2- De�ne the function Jac :

L(R⃗
n∗
t , R⃗nt0 ;R) → R

F̃ → Jac(F̃ ) := J(F ) = det
E⃗,e⃗

(F )

.

3- Then it is meaningful to di�erentiate Jac along the direction e⃗i ⊗ πEj ∈ L(R⃗n∗t , R⃗nt0 ;R) to get

∂Jac

∂Fij
(F̃ ) = lim

h→0

Jac(F̃ + he⃗i ⊗ πEj)− Jac(F̃ )

h

noted
=

∂J

∂Fij
(F ). (L.46)

(Duality notation: ∂Jac
∂F i

J
(F̃ ) = limh→0

Jac(F̃+he⃗i⊗EJ )−Jac(F̃ )
h .)

Question: This is a derivation in both directions e⃗i in R⃗nt (present at pt) and πEj in R⃗nt0 (past at pt0
and dual basis vector); So, what does this derivative mean?

Answer: ?

M Transport of volumes and areas

Here Rn = R3 the usual a�ne space, t0, t ∈ R, Φ := Φt0t : R × Ωt0 → Ωt is a regular motion, and

FP = dΦ(P ). We need a (·, ·)g be a Euclidean dot product in R⃗n, the same at all time. And (E⃗i) and (e⃗i)

are (·, ·)g-Euclidean bases in R⃗nt0 and R⃗nt .
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161 M.1. Transport of volumes

M.1 Transport of volumes

M.1.1 Transformed parallelepiped

The Jacobian of Φ at P relative to the chosen Euclidean bases is

JP = J(P ) := det
|E⃗,e⃗

(F t0t (P )) (= det
|e⃗

(F t0t (P ).E⃗1, ..., F
t0
t (P ).E⃗n))), (M.1)

cf. (L.32); The motion being regular, JP > 0. And if (U⃗1P , ..., U⃗nP ) is a parallelepiped at t0 at P , if

u⃗ip = FP .U⃗iP , then (u⃗1p, ..., u⃗np) is a parallelepiped at t at p = Φ(P ) which algebraic volume is

det
|e⃗

(u⃗1p, ..., u⃗np) = JP det
|E⃗

(U⃗1P , ..., U⃗nP ). (M.2)

M.1.2 Transformed volumes

Riemann integrals and (M.2) give the change of variable formula: For any regular function f : Ωt → R,∫
p∈Ωt

f(p) dΩt =

∫
P∈Ωt0

f(Φ(P )) |J(P )| dΩt0 . (M.3)

Here JP > 0 (regular motion), hence∫
p∈Ωt

f(p) dΩt =

∫
P∈Ωt0

f(Φ(P )) J(P ) dΩt0 . (M.4)

In particular, |Ωt| =
∫
p∈Ωt

dΩt =
∫
P∈Ωt0

J(P ) dΩt0 .

M.2 Transformed surface

M.2.1 Transformed parallelogram and its area

Consider vectors U⃗1P , U⃗2P ∈ R⃗nt0 at t0 at P , and, Φ being a di�eomorphism, the two independent vectors

u⃗1p = FP .U⃗1P and u⃗2p = FP .U⃗2P at t at p = Φ(P ). The areas of the associated quadrilaterals are

||U⃗1P × U⃗2P ||g and ||u⃗1p× u⃗2p)||g, and the unit normal vectors to the quadrilaterals are (up to the sign)

N⃗P =
U⃗1P × U⃗2P

||U⃗1P × U⃗2P ||g
, and n⃗p =

u⃗1p × u⃗2p
||u⃗1p × u⃗2p||g

. (M.5)

Proposition M.1

u⃗1p × u⃗2p = JP F
−T
P .

(
U⃗1P × U⃗2P

)
, in short u⃗1 × u⃗2 = J F−T .

(
U⃗1 × U⃗2

)
, (M.6)

and

n⃗p =
F−T
P .N⃗P

||F−T
P .N⃗P ||g

( ̸= FP .N⃗P in general), in short n⃗ =
F−T .N⃗

||F−T .N⃗ ||g
. (M.7)

Proof. Let W⃗P ∈ R⃗nt0 , and w⃗p = FP .W⃗P . The volume of the parallelepiped (u⃗1p, u⃗2p, w⃗p) is

(u⃗1p × u⃗2p, w⃗p)g = det
|e⃗

(u⃗1p, u⃗2p, w⃗p) = JP det
|E⃗

(U⃗1P , U⃗2P , W⃗P ) = JP (U⃗1P × U⃗2P , W⃗P )g

= JP (U⃗1P × U⃗2P , F
−1
P .w⃗p)g = JP (F−T

P .(U⃗1P × U⃗2P ), w⃗p)g,

for all w⃗p, thus (M.6), thus
u⃗1p×u⃗2p

||u⃗1p×u⃗2p||g =
JP F

−T
P .(U⃗1P×U⃗2P )

JP ||F−T
P .(U⃗1P×U⃗2P )||g

(here JP > 0), thus (M.7).
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162 M.2. Transformed surface

M.2.2 Deformation of a surface

A parametrized surface Ψt0 in Ωt0 and the associated geometric surface St0 are de�ned by

Ψt0 :

{
[a, b]× [c, d] → Ωt0

(u, v) → P = Ψt0(u, v)

}
and St0 = Im(Ψt0) ⊂ Ωt0 . (M.8)

Consider the basis (E⃗1 = (1, 0), E⃗2 = (0, 1)) in the space R× R ⊃ [a, b]× [c, d] = {(u, v)} of parameters,
and suppose that Ψt0 is regular. Thus the tangent vectors at P = Ψt0(u, v) ∈ St0 given by

T⃗1P := dΨt0(u, v).E⃗1
noted
=

∂Ψt0
∂u

(u, v),

T⃗2P := dΨt0(u, v).E⃗2
noted
=

∂Ψt0
∂v

(u, v),

(M.9)

are independent: T⃗1P × T⃗2P ̸= 0⃗.
Call Ψt := Φt0t ◦Ψt0 = Φ ◦Ψt0 and St the transformed parametric and geometric surfaces:

Ψt := Φ ◦Ψt0 :

{
[a, b]× [c, d] → Ωt0

(u, v) → p = Ψt(u, v) = Φ(Ψt0(u, v)) (= Φ(P ))

}
and St = Φ(St0). (M.10)

The tangent vectors at St at p = Φt0t (P ) at t:
t⃗1p := dΨt(u, v).E⃗1 =

∂Ψt
∂u

(u, v) = dΦt0t (P ).
∂Ψt0
∂u

(u, v), i.e. t⃗1p = FP .T⃗1P ,

t⃗2p := dΨt(u, v).E⃗2 =
∂Ψt
∂v

(u, v) = dΦt0t (P ).
∂Ψt0
∂v

(u, v), i.e. t⃗2p = FP .T⃗2P ,

(M.11)

are independent since Φt0t is a di�eomorphism and Ψt0 is regular.

M.2.3 Euclidean dot product and unit normal vectors

Relative to (·, ·)g, the scalar area elements dΣP at P at St0 relative to Ψt0 , and dσp at p at St relative
to Ψt, are 

dΣP := ||∂Ψt0
∂u

(u, v)× ∂Ψt0
∂v

(u, v)||g du dv (= ||T⃗1P × T⃗2P ||g du dv),

dσp := ||
∂Ψt
∂u

(u, v)× ∂Ψt
∂v

(u, v)||g du dv (= ||⃗t1p × t⃗2p||g du dv).
(M.12)

And the areas of St0 and St are
|St0 | =

∫
P∈St0

dΣP =

∫ b

u=a

∫ d

v=c

||∂Ψt0
∂u

(u, v)× ∂Ψt0
∂v

(u, v)||g du dv,

|St| =
∫
p∈St

dσp =

∫ b

u=a

∫ d

v=c

||∂Ψt
∂u

(u, v)× ∂Ψt
∂v

(u, v)||g du dv.
(M.13)

And the unit normal vectors N⃗P at St0 at P at t0 and n⃗p at St at p at t are (up to the sign)
N⃗P =

∂Ψt0

∂u (u, v)× ∂Ψt0

∂v (u, v)

||∂Ψt0

∂u (u, v)× ∂Ψt0

∂v (u, v)||g
(=

T⃗1P × T⃗2P
||T⃗1P × T⃗2P ||g

)

n⃗p =
∂Ψt

∂u (u, v)× ∂Ψt

∂v (u, v)

||∂Ψt

∂u (u, v)× ∂Ψt

∂v (u, v)||g
(=

t⃗1p × t⃗2p
||⃗t1p × t⃗2p||g

).

(M.14)

And the vectorial area elements dΣ⃗P at P at St0 and dσ⃗p at p at St are
dΣ⃗P := N⃗P dΣP =

∂Ψt0
∂u

(u, v)× ∂Ψt0
∂v

(u, v) du dv (= T⃗1P × T⃗2P du dv)

dσ⃗p := n⃗p dσp =
∂Ψt
∂u

(u, v)× ∂Ψt
∂v

(u, v) du dv (= t⃗1p × t⃗2p du dv).
(M.15)

(And the �ux through a surface is
∫
Γ
f⃗ • n⃗ dσ =noted

∫
Γ
f⃗ • dσ⃗.)

162



163 M.2. Transformed surface

M.2.4 Relations between area elements

t⃗1p × t⃗2p = JP F
−T
P .(T⃗1P × T⃗2P ), cf. (M.6), gives

∂Ψt
∂u

(u, v)× ∂Ψt
∂v

(u, v) = JP F
−T
P .(

∂Ψt0
∂u

(u, v)× ∂Ψt0
∂v

(u, v)). (M.16)

And

n⃗ dσp = dσ⃗p = JP F
−T
P .dΣ⃗P = JP F

−T
P .N⃗P dΣP , and dσp = JP ||F−T

P .N⃗P ||g dΣP . (M.17)

(Check with (M.7).)

M.2.5 Piola identity...

Reminder: The divergence (in continuum mechanics) of a 3 ∗ 3 matrix function M = [M i
j ] is: divM :=

∑n
j=1

∂M1
j

∂Xj∑n
j=1

∂M2
j

∂Xj∑n
j=1

∂M3
j

∂Xj

 (=


∂M1

1

∂X1 +
∂M1

2

∂X2 +
∂M1

3

∂X3

∂M2
1

∂X1 +
∂M2

2

∂X2 +
∂M2

3

∂X3

∂M3
1

∂X1 +
∂M3

2

∂X2 +
∂M3

3

∂X3

), cf. (T.66). Its matrix of cofactors Cof(M) is given by

Cof(M)ij =M i+1
j+1M

i+2
j+2 −M

i+1
j+2M

i+2
j+1, and (detM)M−1 = Cof(M)T .

Application: det([F (P )]|E⃗,e⃗) ([F (P )]|E⃗,e⃗)
−T = Cof([F (P )]|E⃗,e⃗)); Written in short det(F (P ))F (P )−T =

Cof(F (P )) (matrix meaning); So, in Ωt0 ,

JF−T = Cof(F ) (matrix meaning). (M.18)

Proposition M.2 (Piola identity)

div(JF−T ) = 0, i.e. ∀i, ∀P,
n∑
j=1

∂Cof(F )ij
∂Xj

(P ) = 0 or

n∑
J=1

∂Cof(F )iJ
∂XJ

(P ) = 0. (M.19)

Also sometimes ambiguously written
∑n
j=1

∂
∂Xj

(J ∂Xi

∂xj
) = 0 or

∑n
J=1

∂
∂XJ (Jac(

∂Xi

∂xJ )) = 0...

Proof. Cof(F )ij = F i+1
j+1F

i+2
j+2 − F

i+1
j+2F

i+2
j+1 = ∂φi+1

∂Xj+1
∂φi+2

∂Xj+2 − ∂φi+1

∂Xj+2
∂φi+2

∂Xj+1 . Thus

∂Cof(F )ij
∂Xj

=
∂2φi+1

∂Xj∂Xj+1

∂φi+2

∂Xj+2
+
∂φi+1

∂Xj+1

∂2φi+2

∂Xj∂Xj+2
− ∂2φi+1

∂Xj∂Xj+2

∂φi+2

∂Xj+1
− ∂φi+1

∂Xj+2

∂2φi+2

∂Xj∂Xj+1
.

And summation: The terms cancel out two by two.

M.2.6 ... and Piola transformation

Goal: for a u⃗ : Ωt → R⃗nt , �nd U⃗Piola : Ωt0 → R⃗nt0 s.t., for all ωt = Φt0t (ωt0) (with ωt0 open subset in Ωt0),∫
∂ωt0

U⃗Piola • N⃗ dΣ =

∫
∂ωt

u⃗ • n⃗ dσ, (M.20)

i.e. ∫
ωt0

divU⃗Piola dΩt0 =

∫
ωt

divu⃗ dΩt, (M.21)

i.e., with (M.4), for all P ∈ Ωt0 ,

divU⃗Piola(P ) = J(P ) divu⃗(Φ(P )). (M.22)

Proposition M.3 With p = Φ(P ),

U⃗Piola(P ) = J(P )F (P )−1.u⃗(p), (M.23)

i.e., U⃗Piola := J Φ∗(u⃗), i.e. = J times the pull-back of u⃗ by Φ. Hence∫
p∈∂ωt

u⃗(p) • n⃗(p) dσ =

∫
P∈∂ωt0

(
J(P )F (P )−1.u⃗(Φ(P ))

)
• N⃗(P ) dΣ. (M.24)
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164 M.2. Transformed surface

Proof. d(u⃗ ◦ Φ)(P ) = du⃗(p).F (P ), thus

div((JF−1).(u⃗ ◦ Φt0t ))(P )
(T.62)
= d̃ivP (JF

−1)(P ).u⃗(Φt0t (P )) + J(P )F (P )−1 0.. (du⃗(p).F (P ))

= div(JF−T )(P ) • u⃗(p) + J(P )(F (P ).F (P )−1) 0.. du⃗(p)
(M.19)
= 0 + J(P )It 0.. du⃗(p) = J(P )divu⃗(p),

thus U⃗Piola(P ) := J(P )F (P )−1.u⃗(p) satis�es (M.22). (Check with components if you prefer.)

De�nition M.4 The Piola transform is the map (between vector �elds in Ωt and Ωt0){
TΩt → TΩt0

u⃗ → U⃗Piola, U⃗Piola(P ) := J(P )F (P )−1.u⃗(p) when p = Φt0t (P ).
(M.25)

N Conservation of mass

Let ρ(t, p) = ρt(p) be the (Eulerian) mass density at t at p ∈ Ωt, supposed to be > 0; The mass m(ωt) of
a subset ωt ⊂ Ωt is

m(ωt) =

∫
p∈ωt

ρt(p) dωt. (N.1)

Conservation of mass principle (no loss nor production of particles): For all ωt0 ⊂ Ωt0 and all t,

m(ωt) = m(ωt0), i.e.

∫
p∈ωt

ρt(p) dωt =

∫
P∈ωt0

ρt0(P ) dωt0 . (N.2)

Proposition N.1 If (N.2) then, with J t0t (P ) = det(dΦt0t (P )) (positive Jacobian the motion being sup-
posed regular) and p = Φt0t (P ),

ρt(p) =
ρt0(P )

J t0t (P )
. (N.3)

Proof. The change of variable formula gives∫
p∈ωt

ρt(p) dωt =

∫
P∈ωt0

ρt(Φ
t0
t (P )) J

t0
t (P ) dωt0 ,

thus (N.2) gives ρt(Φ
t0
t (P ))J

t0
t (P ) = ρt0(P ).

Proposition N.2 v⃗ = v⃗(t, pt) being the Eulerian velocity at (t, pt) ∈ R× Ωt, (N.2) gives

Dρ

Dt
+ ρdivv⃗ = 0, i.e.

∂ρ

∂t
+ div(ρ v⃗) = 0. (N.4)

Thus, for all ωt ⊂ Ωt, ∫
ωt

∂ρ

∂t
dωt = −

∫
∂ωt

ρv⃗.n⃗ dσt. (N.5)

Proof. (N.2) gives d
dt (

∫
p(t)∈ωt

ρ(t, p(t)) dωt) = 0, and Leibniz formula (L.38) applied for all ωt gives (N.4).

Then the Green formula
∫
Ωt

div(ρ v⃗) dΩt =
∫
∂Ωt

ρv⃗.n⃗ dσt gives (N.5).

Exercice N.3 Use (N.3) to prove (N.4).

Answer. J(t, P )ρ(t,Φ(t, P )) = ρt0(P ) give, with pt = Φ(t, P ),

∂J

∂t
(t, P ) ρ(t, pt) + J(t, P )

(
∂ρ

∂t
(t, pt) + dρ(t, pt).dΦ(t, P )

)
= 0.

Thus ∂J
∂t

(t, P ) = J(t, P ) divv⃗(t, p), cf. (L.37), gives (N.4).
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O Work and power

O.1 De�nitions

O.1.1 Work along a trajectory

Let α be a di�erential form (unmissable in thermodynamics, e.g. α = dU the internal energy density,
α = δW the elementary work, α = δQ the elementary heat...).

And consider a regular curve c : t ∈ [t0, T ]→ c(t) ∈ Rn and let v⃗(t, c(t)) := c⃗ ′(t).

De�nition O.1 The work of the di�erential form α along the curve c is∫
c

α :=

∫ T

t=t0

α(t, c(t)).⃗c ′(t) dt
noted
=

∫ T

t=t0

α.dc⃗

=

∫ T

t=t0

α(t, c(t)).v⃗(t, c(t)) dt
noted
=

∫ T

t=t0

α.v⃗ dt.

(O.1)

E.g., W t0
T (α, c) =

∫
c
δW = work along c of the di�erential form α = δW .

E.g. (work of a Lie derivative):
∫
c
Lw⃗α =

∫ T
t=t0
Lw⃗α.v⃗ dt =

∫ T
t=t0

(∂α∂t + dα.w⃗ + α.dw⃗).v⃗ dt.

Remark O.2 : If α is a stationary and exact di�erential form, i.e. ∃U ∈ C1 s.t. α(t, p) = dU(p), then∫
c

dU = U(c(T ))− U(c(t0))
noted
= ∆U, (O.2)

because
∫
c
dU =

∫ T
t=t0

dU(c(t)).⃗c ′(t) dt =
∫ T
t=t0

d(U◦c)
dt (t) dt = [U ◦ c]Tt0 = U(c(T ))− U(c(t0)); I.e. the work

is independent of the trajectory joining c(t0) and c(T ).

Representation with an Euclidean dot product (·, ·)g =noted . •
g .: the linear forms αt(p) ∈ Rn∗ can

be represented with its (·, ·)g-Riesz representation vector f⃗t(p) ∈ R⃗n (observer dependent), hence

(

∫
c

α =)

∫ T

t=t0

α.dc⃗ =

∫ T

t=t0

f⃗ •
g dc⃗ (=

∫ T

t=t0

f⃗ •
g v⃗ dt). (O.3)

In particular if f⃗ = ⃗gradgφ (i.e. if α = dφ, and f⃗ is said to derive from a potential φ) then
∫ T
t=t0

dφ.v⃗ dt =∫ T
t=t0

f⃗ •
g v⃗ dt = ∆φ is independent of the trajectory joining c(t0) and c(T ).

O.1.2 Work

Consider an object Obj , a motion Φ̃ : (t, PObj ) ∈ [t0, T ] × Obj → p(t) = Φ̃(t, PObj ) = Φ̃PObj (t) ∈ Rn, the
trajectories cPObj=Φ̃PObj : t ∈ [t0, T ]→ p(t) = Φ̃PObj (t) ∈ Rn, the Eulerian velocities v⃗(t, p(t)) = cPObj

′(t).

De�nition O.3 The work of α along Φ̃ is the sum of the works of α along all the trajectories: With
pt0 = Φ̃(t0, PObj ), pt = Φ̃(t, PObj ) = Φ̃PObj (t) = Φt0pt0 (t) and Ωt = Φ̃(t,Obj ), it is

W t0
T (Φ̃) =

∑
PObj∈Obj

∫
Φ̃PObj

α :=

∫
pt0∈Ωt0

(∫ T

t=t0

α(t,Φt0pt0 (t)).v⃗(t,Φ
t0
pt0

(t)) dt
)
dΩt0 , (O.4)

written =
∫
pt0∈Ωt0

(
∫ T
t=t0

α.v⃗ dt) dΩt0 (with
∑
pt0∈Ωt0

for a �nite number of particles instead of
∫
pt0∈Ωt0

).

O.1.3 The associated power density

De�nition: The power density of a di�erential form α relative to a Eulerian velocity �eld v⃗ is the Eulerian
function

ψ := α.v⃗ :


C =

⋃
t∈[t0,T ]

({t} × Ωt) → R

(t, p) → ψ(t, p) = α(t, p).v⃗(t, p).

(O.5)

And the power at t is, with ψt(p) := ψ(t, p),

Pt(v⃗t) :=
∫
p∈Ωt

ψt(p) dΩ =

∫
p∈Ωt

αt(p).v⃗t(p) dΩ
noted
=

∫
Ωt

α.v⃗ dΩ. (O.6)

E.g. with a di�erential form Lw⃗α (a Lie derivative of a di�erential form): Pt(v⃗t) =
∫
Ωt
Lw⃗α.v⃗ dΩ =∫

Ωt
(∂α∂t + dα.w⃗ + α.dw⃗).v⃗ dΩ =

∫
Ωt
(∂α∂t (t, p) + dαt(p).w⃗t(p) + αt(p).dw⃗t(p)).v⃗t(p) dΩ.
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166 O.2. Piola�Kirchho� tensors

Particular case: If αt is an exact di�erential form, i.e. ∃Ut s.t. αt = dUt, then

Pt(v⃗t) =
∫
Ωt

dUt.v⃗t dΩ = −
∫
Ωt

Ut divv⃗t dΩ+

∫
Γ

Ut v⃗t • n⃗t dΩ. (O.7)

With a Euclidean dot product (·, ·)g and with the (·, ·)g-Riesz representation vector f⃗t of αt we get

Pt(v⃗t) =
∫
p∈Ωt

f⃗t(p) • v⃗t(p) dΩ, (O.8)

and if f⃗t = ⃗gradUt then Pt(v⃗t) = −
∫
Ωt
Ut divv⃗t dΩ+

∫
Γ
Ut v⃗t • n⃗t dΩ.

O.2 Piola�Kirchho� tensors

O.2.1 Classical presentation

At all time, a unique Euclidean basis (e⃗i) and associated Euclidean dot product . • . are imposed.
Usual (�rst order) hypothesis for the internal stress in a material: The power density is of the type

ψ = σ : dv⃗ (subjective quantity), (O.9)

which means:

If [σ]|e⃗ = [σij ] and v⃗ =

n∑
i=1

vie⃗i then ψ =

n∑
i,j=1

σij
∂vi
∂xj

. (O.10)

So the power at t is

Pt(v⃗t) =
∫
p∈Ωt

ψ(t, p) dΩt =

∫
p∈Ωt

σ
t
(p) : dv⃗t(p) dΩt. (O.11)

O.2.2 Objective internal power for the stress

Recall: If v⃗ is a (regular) Eulerian velocity �eld, then dv⃗t(p) is an endomorphism at each t and p.
First order hypothesis for the internal stress in a material: There exists an endomorphism τ s.t. the

power density is given by

ψ = τ 0.. dv⃗ (objective quantity = Tr(τ .dv⃗)), (O.12)

And the power at t is

Pt(v⃗t) =
∫
p∈Ωt

τ
t
(p) 0.. dv⃗t(p) dΩt. (O.13)

Quanti�cation with a basis (e⃗i) at t: With [τ ]|e⃗ = [τij ] and [dv⃗]|e⃗ = [vi|j ], i.e. τ .e⃗j =
∑n
i=1τij e⃗i,

v⃗ =
∑n
i=1vie⃗i and dv⃗.e⃗j =

∑n
i=1vi|j e⃗i,

ψ =

n∑
i,j=1

τijvj|i and Pt(v⃗t) =
n∑

i,j=1

∫
p∈Ωt

τij(p)vj|i(p) dΩt (objective quantity). (O.14)

(Duality notations : [τ ]|e⃗ = [τ i|j ], [dv⃗]|e⃗ = [vi|j ], and ψ =
∑n
i,j=1τ

i
jv
j
|i.)

(Cartesian basis: vi|j =
∂vi
∂xj

= vi|j =
∂vi

∂xj .)

(With chosen Euclidean dot product (·, ·)g and (·, ·)g-Euclidean basis (e⃗i): σ := [τ ]T|e⃗ gives

ψ = σ : [dv⃗]|e⃗ =

n∑
i,j=1

σijvi|j .) (O.15)

O.2.3 The �rst Piola�Kirchho� tensor

The Piola�Kirchho� approach consists in transforming Eulerian quantities into Lagrangian quantities
to refer to the initial con�guration, with the help of a Euclidean dot product. t0 and t are �xed,
Φt0t =noted Φ, dΦt0t = F t0t =noted F , V⃗ t0t =noted V (Lagrangian velocity). Recall: V⃗ t0t (P ) = v⃗t(Φ

t0
t (P ))
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167 O.2. Piola�Kirchho� tensors

gives dV⃗ t0t (P ) = dv⃗t(p).F (P ) when p = Φt0(t, P ), written dV⃗ (P ) = dv⃗(p).F (P ). Thus (O.13) gives (the
Jacobian J t0t (P ) =

noted J(P ) being positive for a regular motion)

Pt(v⃗t) =
∫
P∈Ωt0

τ
t
(Φ(P )) 0..

(
dV⃗ (P ).F (P )−1

)
J(P ) dΩt0

=

∫
P∈Ωt0

(
J(P )F (P )−1.τ

t
(Φ(P ))

)
0.. dV⃗ (P ) dΩt0 (objective).

(O.16)

Quanti�cation: Choose a basis and a Euclidean dot product (·, ·)g to get

Pt(v⃗t) =
∫
P∈Ωt0

(J(P ) τ
t
(p)T .F (P )−T︸ ︷︷ ︸
PK(P )

) : dV⃗ (P ) dΩt0 (subjective). (O.17)

De�nition O.4 Relative to t0 and t and a Euclidean dot product, and with τ
t
(p)T =noted σ

t
(p), the

�rst Piola�Kirchho� tensor at P ∈ Ωt0 is the linear map PKt0
t,g(P ) =

noted PK(P ) ∈ L(R⃗nt0 ; R⃗
n
t ) de�ned by

PK(P ) = J(P )σ
t
(Φ(P )).F (P )−T , written PK = J σ.F−T . (O.18)

So

Pt(v⃗t) =
∫
Ωt0

PK(P ) : dV⃗t(P ) dΩt0 . (O.19)

Remark O.5 Looking at (O.16), we can also de�ne Πt0t (P ) = J t0t (P )F
t0
t (P )−1.τ

t
(Φt0t (P )) (ob-

jective) which can be called �the objective Piola�Kirchho� tensor�. And we have Pt(v⃗t) =∫
Ωt0

Πt0t (P ) 0.. dV⃗
t0
t (P ) dΩt0 (objective); And then introduce a Euclidean dot product to use the trans-

posed to de�ne PKt0
t (P ) = Πt0t (P )

T (subjective).

O.2.4 The second Piola�Kirchho� tensor

PK(pt0) is not symmetric: It can't be since PK(pt0) ∈ L(R⃗nt0 ; R⃗
n
t ) is not an endomorphism. To get a

symmetric tensor, the second Piola�Kirchho� tensor is de�ned:

De�nition O.6 The second Piola�Kirchho� tensor is the endomorphism SK(P ) ∈ L(R⃗nt0 ; R⃗
n
t0) de�ned

by, in short,
SK = F−1.PK = JF−1.σ.F−T . (O.20)

In particular, if σ
t
(p) ∈ L(R⃗nt ; R⃗nt ) is (·, ·)g-symmetric then SK(P ) ∈ L(R⃗nt0 ; R⃗

n
t0) is symmetric.

Thus, with the pull-back of the endomorphism dv⃗t ∈ L(R⃗nt , R⃗nt ),

(Φ∗dv⃗t)(P ) = F (P )−1.dv⃗t(pt).F (P ), (O.21)

and with dv⃗t(pt) = dV⃗ (P ).F (P )−1 and σ
t
(p) symmetric (so SK is symmetric),

Pt(v⃗t) =
∫
Ωt0

PK : dV⃗ dΩt0 =

∫
Ωt0

(F.SK) : dV⃗ dΩt0 =

∫
Ωt0

([F ].[SK]) : [dV⃗ ]T dΩt0

=

∫
Ωt0

SK : (dV⃗ T .F ) dΩt0 =

∫
Ωt0

SK : (
FT .dV⃗ + dV⃗ T .F

2
) dΩt0 .

(O.22)

Remark O.7 It is a �chosen time derivative� of SK(t) = J(t)F (t)−1.σ(t).F (t)−T that leads to some kind
of Lie derivative as explain in books in continuum mechanics, see footnote page 26.
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O.3 Classical hyper-elasticity and the notation ∂W/∂F

O.3.1 Notation ∂W/∂F

A and B are �nite dimensional spaces, dimA = n, dimB = m, and Ŵ ∈ C1(L(A;B);R), so

Ŵ :

{
L(A;B) → R

L → Ŵ (L)

}
, and dŴ :

{
L(A;B) → L(L(A;B);R)

L → dŴ (L)

}
(O.23)

is given by dŴ (L)(M)
linearity

=
notation

dŴ (L).M = lim
h→0

Ŵ (L+ hM)− Ŵ (L)

h
for all M ∈ L(A;B). Notation

when L is the name of the variable:

dŴ (L)
noted
=

∂Ŵ

∂L
(L), so dŴ (L).M

noted
=

∂Ŵ

∂L
(L).M. (O.24)

Example O.8 A = B = R⃗n, and Ŵ (L) := Tr(L) (the trace of an endomorphism L ∈ L(R⃗n; R⃗n)). Here
dTr(L)(M) = limh→0

Tr(L+hM)−Tr(L)
h = Tr(M) since the trace is linear: ∂Tr

∂L (L) := dTr(L) = Tr.

Example O.9 A = R⃗nt0 , B = R⃗nt , L = F = dΦt0t (pt0). Then dŴ (F ).M =noted ∂Ŵ
∂F (F ).M ∈ R is the

derivative of Ŵ at F ∈ L(R⃗nt0 ; R⃗
n
t ) in a direction M ∈ L(R⃗nt0 ; R⃗

n
t ).

O.3.2 Expression with bases (quanti�cation) and the notation ∂W/∂Lij

Let (⃗ai) ∈ An and (⃗bi) ∈ Bm be bases in A and B, and let (πai) ∈ (A∗)n be the dual basis of (⃗ai). Then

consider the basis (Lij) i=1,...,m
j=1,...,n

=noted (⃗bi⊗πaj) in L(A;B) (made of the linear maps Lij : A→ B de�ned

by Lij .⃗aℓ = δjℓ⃗bi for all i = 1, ...,m and j, ℓ = 1, ..., n).

The derivation of Ŵ at a L ∈ L(A;B) in the direction of a basis vector Lij is, cf. (T.14),

∂Lij
(L) =

∂Ŵ

∂Lij
(L) = dŴ (L).Lij

noted
=

∂Ŵ

∂Lij
(L) (= lim

h→0

Ŵ (L+ hLij)− Ŵ (L)

h
) (O.25)

notation used when the Lij are the components of L, i.e. L =
∑m
i=1

∑n
j=1LijLij (i.e. L.⃗aj =

∑m
i=1Lij b⃗i

for all j, i.e. [L]|⃗a,⃗b = [Lij ]). So, the Jacobian matrix of Ŵ at L relative to (Lij) is

[dŴ (L)]|Lij
= [

∂Ŵ

∂Lij
(L)] i=1,...,m

j=1,...,n

noted
= [dŴ (L)]|⃗a,⃗b = [dŴ (L)ij ]. (O.26)

So, dŴ (L) being linear, if M =
∑
ijMijLij then (linearity)

dŴ (L).M =
∑
ij

Mij dŴ (L).Lij = [M ]|⃗a,⃗b : [dŴ (L)]|⃗a,⃗b =
∑
ij

Mij
∂Ŵ

∂Lij
(L) (O.27)

(= [dŴ (L)]|⃗a,⃗b : [M ]|⃗a,⃗b) with the double matrix contraction.

Duality notations: ai := πai, Lij =noted b⃗i⊗aj (because L(E;E) ≃ L(E∗, E;R)), [M ]|⃗a,⃗b = [M i
j ], i.e.

M.⃗aj =
∑
jM

i
j b⃗i for all j, written M =

∑
ijM

i
j b⃗i⊗aj ; dŴ (L).Lij =noted ∂Ŵ

∂Li
j
(L), so [dŴ (L)]|⃗bi⊗aj =

[ ∂Ŵ∂Li
j
(L)], and

dŴ (L).M =
∑
ij

∂Ŵ

∂Lij
(L)M i

j . (O.28)

NB: dŴ (L) ∈ L(L(R⃗n; R⃗m);R) and M = L(R⃗n; R⃗m) are di�erent kinds of mathematical objects,

hence [M ]|⃗a,⃗b : [dŴ (L)]|⃗a,⃗b is nothing but a �term to term product� called �double matrix contraction�.

Example O.10 Continuing example O.8 with (⃗bi) = (⃗ai): Then Ŵ (L) = Tr(L) gives dŴ (L).M =

Tr(M) =
∑
iMii, thus

∂Ŵ
∂Lij

(L) = δij for all i, j, thus [dŴ (L)]|e⃗ = [I] = [ ∂Tr∂Lij
(L)] (identity matrix), and

we recover dTr(L)(M) = [ ∂Tr∂Lij
(L)] : [M ] = [I] : [M ] =

∑n
i=1Mii = Tr(M).
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Remark O.11 Continuing example O.9: The meaning of the derivation ∂Ŵ
∂Fij

= ∂Ŵ
∂F i

J
is intriguing:

∂Ŵ
∂Fij

(F ) = dŴ (F ).Lij = dŴ (F ).(e⃗i ⊗ πEj) is a derivation �at the same time� in the directions e⃗i (at

(t, p)) and πEj (dual basis of (E⃗i) at (t0, P )). Duality notation: ∂Ŵ
∂F i

J
(F ) = dŴ (F ).(e⃗i ⊗ EJ).

O.3.3 Motions and ω-lemma

Generalization of (O.23): With UA open subset in a a�ne space which associated vector space is A, let

Ŵ :

{
UA × L(A;B) → R

(P,L) → Ŵ (P,L)

}
, and ŴP (L) := Ŵ (P,L) (at any �xed P ∈ UA). (O.29)

And let (usual notation) dŴP (L) =
noted ∂2Ŵ (P,L) =noted ∂Ŵ

∂L (P,L): So, for all M ∈ L(A;B),

∂Ŵ

∂L
(P,L).M = lim

h→0

Ŵ (P,L+ hM)− Ŵ (P,L)

h
(= d(ŴP )(L).M = ∂2Ŵ (P,L).M). (O.30)

Then consider a motion Φ := Φt0t : Ωt0 → Ωt, and F := dΦ : P ∈ Ωt0 → dΦ(P ) ∈ L(R⃗nt0 ; R⃗
n
t ); And de�ne

f :

{
C1(Ωt0 ; Ωt) → C0(Ωt0 ;R)

Φ → f(Φ) := Ŵ (., dΦ(.))

}
, so f(Φ)(P ) = Ŵ (P, dΦ(P )) = ŴP (dΦ(P )). (O.31)

So f is a function of Φ which only depends on its �rst (covariant) gradient F = dΦ. (Toward: �The power
of a motion Φ at P only depends on the deformation gradient�.)

So df :

{
C1(Ωt0 ; Ωt) → L(C1(Ωt0 ; Ωt);C

0(Ωt0 ;R)
Φ → df(Φ)

}
, and

df(Φ) :

{
C1(Ωt0 ; Ωt) → C0(Ωt0 ;R)

Ψ → df(Φ).Ψ

}
, with (df(Φ).Ψ)(P ) = df(Φ(P )).Ψ(P ). (O.32)

Lemma O.12 (ω-lemma) If f and Ŵ are C1 then, for all Φ,Ψ ∈ C1(Ωt0 ; Ωt),

df(Φ).Ψ =
∂Ŵ

∂F
(., dΦ).dΨ = ∂2Ŵ (., dΦ).dΨ, (O.33)

i.e. (df(Φ).Ψ)(P ) = ∂Ŵ
∂F (P, dΦ(P )).dΨ(P ) , for all P ∈ Ωt0 .

Proof. df(Φ)(Ψ) = limh→0
f(Φ+hΨ)−f(Φ)

h ∈ C0(Ωt0 ; Ωt), i.e., for any P ∈ Ωt0 we have df(Φ)(Ψ)(P ) =

limh→0
f(Φ+hΨ)(P )−f(Φ)(P )

h = limh→0
ŴP (dΦ(P )+h dΨ(P ))−ŴP (dΦ(P ))

h = dW⃗P (dΦ(P )).dΨ(P ), i.e. (O.33)

Quanti�cation: With bases (E⃗i) and (e⃗i) in R⃗nt0 and R⃗nt and dΨ.E⃗j =
∑n
i=1

∂Ψi

∂Xj
e⃗i, we get

df(Φ).Ψ =

n∑
i,j=1

∂Ŵ

∂Fij
(., dΦ)

∂Ψi
∂Xj

(.)
noted
= [

∂Ŵ

∂Fij
(., dΦ)] : [

∂Ψi
∂Xj

(.)]
noted
= [

∂Ŵ

∂F
] : [dΨ], (O.34)

Marsden duality notations: df(Φ).Ψ =

n∑
i,J=1

∂Ŵ

∂F iJ

∂Ψi

∂XJ
= [

∂Ŵ

∂F iJ
] : [

∂Ψi

∂XJ
] = [

∂Ŵ

∂F
] : [dΨ].

O.3.4 Application to classical hyper-elasticity: PK = ∂W/∂F

(e⃗i) = (E⃗I) is Euclidean basis and (·, ·)g is its associated Euclidean dot product, the sames at all times t.
Let σ

t
(p) be the Cauchy stress tensor at t at p = Φ(P ). Let PK = PK(Φ) be the �rst Piola�Kirchho�

tensor, i.e. PK(Φ)(P ) = det(dΦ(P ))σ
t
(Φ(P )).dΦ(P )−T , cf. (O.18).

De�nition O.13 If there exists a function P̂K such that (�rst order hypothesis)

PK(Φ)(P ) = P̂K(P, dΦ(P )) (O.35)

then P̂K is called a constitutive function (PK only depends on dΦ = F the �rst order derivative of Φ).
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170 P.1. Introduction: Cauchy's hypothesis

De�nition O.14 The material is hyper-elastic i� ∃Ŵ :

{
Ωt0 × L(R⃗nt0 ; R⃗

n
t ) → R

(P,L) → Ŵ (P,L)

}
s.t.

(PK(Φ) =) P̂K(., dΦ) =
∂Ŵ

∂F
(., dΦ), written PK =

∂W

∂F
, (O.36)

that is, P̂K(P, F (P )) = ∂Ŵ
∂F (P, F (P )) for all P ∈ Ωt0 , where F = dΦ.

Quanti�cation (Marsden notations): (EI) dual basis of (E⃗I), F.E⃗J =
∑n
i=1F

i
J e⃗i, PK.E⃗J =∑n

i=1PK
i
J e⃗i, and [PK(.,Φ)] = [PKi

J(.,Φ)] = [ ∂Ŵ
∂F i

J
(., F )]: For any (virtual) motion Ψ : Ωt0 → Ωt,

P̂K(., dΦ).dΨ =
∑
iJ

∂Ŵ

∂F iJ
(., F )

∂Ψi

∂XJ
= [P̂K(., F )] : [dΨ], (O.37)

which means, P̂K(dΦ)(dΨ)(P ) =
∑
iJ

∂Ŵ
∂F i

J
(P, F t0t (P )) ∂Ψ

i

∂XJ (P ) for all P ∈ Ωt0 .

Exercice O.15 With C = FT .F = C(F ), and with F =
∑
iK F

i
K e⃗i ⊗ EK , prove

∂C

∂F iJ
(F ) =

∑
K

F iK(E⃗J ⊗ EK + E⃗K ⊗ EJ) (= dC(F ).(e⃗i ⊗ EJ)), (O.38)

and
∂
√
C

∂F
=

1

2

(√
C
)−1

.
∂C

∂F
, i.e. 2

√
C.d(
√
C) = dC. (O.39)

Answer. Euclidean basis, thus (e⃗i ⊗ EJ)T = E⃗J ⊗ ej , and FT =
∑

Ik F
k
I E⃗I ⊗ ek. Thus

C(F + he⃗i ⊗ EJ) = (F + he⃗i ⊗ EJ)T .(F + he⃗i ⊗ EJ) = (FT + hE⃗J ⊗ ei).(F + he⃗i ⊗ EJ)

= FT .F + h (E⃗J ⊗ ei).F + hFT .(e⃗i ⊗ EJ) + h2 (E⃗J ⊗ ei).(e⃗i ⊗ EJ)

= C(F ) + h (
∑
K

F i
KE⃗J ⊗ EK +

∑
K

F i
KE⃗K ⊗ EJ) + h2 E⃗J ⊗ EJ .

(O.40)

Thus (O.38). And dC(F ) is linear, hence dC(F ).L =
∑

iJ Li
J dC(F ).e⃗i ⊗ EJ .

With
√
f : x⃗ →

√
f(x⃗) :=

√
f(x⃗) we have f(x⃗+hz⃗k)−f(x⃗)

h
= (

√
f(x⃗ + hz⃗k) +

√
f(x⃗)).

√
f(x⃗+hz⃗k)−

√
f(x⃗)

h
, thus

h → 0 gives df(x⃗).z⃗k = 2
√
f(x⃗).d

√
f(x⃗).z⃗k, thus df(x⃗) = 2

√
f(x⃗).d

√
f(x⃗).

In particular, f = C and x⃗ = F give dC(F ) = 2
√
C(F ).d

√
C(F ), thus (O.39).

O.3.5 Corollary (hyper-elasticity): SK = ∂W/∂C

For the second Piola�Kirchho� tensor SK = F−1.PK: We get the existence of a function W̃ :{
Ωt0 × L(R⃗nt0 ; R⃗

n
t0) → R

(P,L) → W̃ (P,L)

}
s.t. (constitutive function), with C = FT .F ,

ŜKt0
t (., C) =

∂W̃

∂C
(., C). (O.41)

See Marsden and Hughes [14] for details and the thermodynamical hypotheses required.

P Balance of momentum

P.1 Introduction: Cauchy's hypothesis

See the introduction of [7]. Summary: formerly expansion-contraction normal forces and bending forces
were considered. Cauchy proposed reducing these forces to a single force (not generally perpendicular
to the surface on which it is applied) which can be deduced from tensions exerted on three orthogonal
planes.

So take 3 orthonormal planes 1,2,3 at one points, with unit normals n⃗1, n⃗2, n⃗3 and three forces T⃗1, T⃗2, T⃗3
exerted on the planes, and the tension is obtained with a �tensor� σ s.t. σ.n⃗i = T⃗i, i = 1, 2, 3.

Later Cauchy's hypothesis was transformed into the master balance law (to satisfy newton's principle∑
f⃗ = mγ⃗) and its consequence called Cauchy's theorem (which is in fact Cauchy's hypothesis).
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P.2 Framework

Φ̃ : [t0, T ] × Obj → Rn is a regular motion, Ωt = Φ̃(t,Obj ), Γt = ∂Ωt (the boundary), v⃗ is the Eulerian
velocity �eld, ωt is a regular sub domain in Ωt and ∂ωt is its boundary.

An observer chooses a Euclidean basis (e⃗i) (e.g. made with the foot or the metre) and call (·, ·)g the
associated Euclidean dot product. And n⃗(t, p) = n⃗t(p) is the outer unit normal at t at p ∈ ∂ωt.

All the functions are assumed to be regular enough to validate the following calculations.

Let ρ :


⋃

t∈[t0,T ]

({t} × Ωt) → R

(t, pt) → ρ(t, pt)

 (a mass density), let f⃗ :


⋃

t∈[t0,T ]

({t} × Ωt) → R⃗n

(t, pt) → f⃗(t, pt)

 (a

body force density), and let T⃗ :


⋃

t∈[t0,T ]

({t} × ∂ωt × R⃗nt ) → R⃗n

(t, pt, n⃗(pt)) → T⃗ (t, pt, n⃗(pt))

 (a surface force density)

de�ned for any regular subset ωt ⊂ Ωt.

P.3 Master balance law

De�nition P.1 The balance of momentum is satis�ed by ρ, f⃗ and T⃗ i�, for all regular open subset ωt
in Ωt,

d

dt
(

∫
ωt

ρv⃗ dΩt) =

∫
ωt

f⃗ dΩt +

∫
∂ωt

T⃗ dΓt (master balance law). (P.1)

(It is in fact a linearity hypothesis, see theorem P.2.) Equivalent to, with (L.38),∫
ωt

D(ρv⃗)

Dt
+ ρv⃗ divv⃗ dΩt =

∫
ωt

f⃗ dΩt +

∫
∂ωt

T⃗ dΓt. (P.2)

With the conservation of mass hypothesis, cf. (N.4), we then have∫
ωt

ρ
Dv⃗

Dt
dΩt =

∫
ωt

f⃗ dΩt +

∫
∂ωt

T⃗ dΓt, (P.3)

with Dv⃗
Dt = γ⃗ = the Eulerian acceleration.

P.4 Cauchy theorem T⃗ = σ.n⃗ (stress tensor σ)

Theorem P.2 (Cauchy �rst law: Cauchy stress tensor) If the master balance law (P.1) is satis-

�ed, then T⃗ is linear in n⃗, that is, there exists a Eulerian tensor σ ∈ T 1
1 (Ωt), called the Cauchy stress

tensor, s.t. on all ∂ωt, in short
T⃗ = σ.n⃗, (P.4)

where n⃗ is the unit outward normal to ∂ωt (i.e., T⃗ (t, pt) = σ(t, pt).n⃗(t, pt) for all t and pt ∈ ∂ωt).

(Remark: This result is based on Cauchy's hypothesis that a �tension� T⃗ on a surface depends on the

unit normal n⃗ to the surface, see [7], and thus
∫
Γ
T⃗ dΓ =

∫
Ω
divσ dΩ. Hence the �tension� T⃗ is obtained

from a tensor σ, i.e., with a basis, 3 functions T1, T2, T3 are obtained from 9 functions σij .)

The proof is based on:

Lemma P.3 Let φ :

{
Ω → R
p → φ(p)

}
∈ C1(Ω;R) and ψ :

{
Ω× R⃗3 → R
(p, w⃗) → ψ(p, w⃗)

}
∈ C1(Ω, R⃗3;R). If

∀ω ⊂ Ω, ω open,

∫
p∈ω

φ(p) dΩ =

∫
p∈∂ω

ψ(p, n⃗(p)) dΓ, (P.5)

(this hypothesis imposes that
∫
ω
φ only depends on

∫
∂ω

and on n⃗, and not on the curvature or on higher
derivatives on Γ) then φ is linear in n⃗ and is a divergence:

∃k⃗ ∈ C1(Ω; R⃗3) s.t. ψ = (k⃗, n⃗)g, and φ = divk⃗. (P.6)

(Thus under the hypothesis (P.5) the scalar function φ is obtained from a vector function k⃗, i.e., with a
basis, φ is obtained from 3 functions k1, k2, k3.)
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172 P.4. Cauchy theorem T⃗ = σ.n⃗ (stress tensor σ)

Proof. (Lemma P.3.) Standard proof: Let p ∈ Ω ⊂ R3. Consider the tetrahedral de�ned by its vertices
p, p+ (h1, 0, 0), p+ (0, h2, 0) and p+ (0, 0, h3), with hi > 0 for all i. (On each face of a tetrahedron, the

unit normal vector is uniform.) Let Σ1 the side which outer unit normal is −E⃗1: It area is σ1 = 1
2h2h3

(square triangle). Idem for Σ2 and Σ3. Let Σ be the fourth side: its area is σ = 1
2

√
h22h

2
3 + h23h

2
1 + h21h

2
2

and its outer unit normal is n⃗ = 1
2σ (h2h3, h3h1, h1h2) (see exercise P.5), that is n⃗ = (n1, n2, n3) with

ni =
σi

σ pour i = 1, 2, 3. The volume of the tetrahedral is 1
6h1h2h3 =noted ℓ3. Let M := supp∈Ω |φ(p)|;

We have M <∞, since φ is continuous in Ω. Then (P.5) give

Mℓ3 ≥ |
∫
∂ωt

ψ(p, n⃗(p)) dΓ|, so

∫
∂ωt

ψ(p, n⃗(p)) dΓ = O(ℓ3). (P.7)

And ψ being continuous, the mean value theorem applied on Σi gives: There exists pi ∈ Σi s.t.∫
Σi

ψ(p, n⃗(p)) dΓ = σiψ(pi, n⃗i).

Thus ∫
∂ωt

ψ(p, n⃗(p)) dΓ =
(
σ1ψ(p1,−E⃗1) + σ2ψ(t, p2,−E⃗2) + σ3ψ(p3,−E⃗3) + σψ(p4, n⃗)

)
.

Then, Ψ being continous, (P.7) gives

σ1ψ(p1,−E⃗1) + σ2ψ(p2,−E⃗2) + σ3ψ(p3,−E⃗3) + σψ(p4, n⃗) = O(ℓ3). (P.8)

We �atten the tetrahedron on the yz face by taking h2 = h3 =noted h and h1 = h2; Thus σ1 = 1
2h

2,

σ2 = o(h2), σ3 = o(h2), σ ∼ σ1, ℓ3 = 1
6h

4, with n⃗ ∼ −n⃗1 = E⃗1 and pi ∼ p; Then

ψ(p,−E⃗1) + ψ(p,+E⃗1) = 0. (P.9)

Idem with xz and xy. And for a �xed tetrahedron with h1, h2, h3 given, consider the smaller tetrahedron
with εh1, εh2, εh3. Then as ε→ 0 (P.8) with (P.9) give

ψ(p, n⃗) = − σi
σ
ψ(p,−E⃗1)−

σ2
σ
ψ(p,−E⃗2)−

σ3
σ
ψ(p,−E⃗3) =

3∑
i=1

niψ(p, E⃗i),

since ni =
σi

σ pour i = 1, 2, 3. The same steps can be done for any (inclined) tetrahedron (or apply a
change of variable to get back to the above tetrahedron). Thus ψp is a linear map in n⃗p, that is, there
exists a linear form αp s.t. ψp(n⃗p) = αp.n⃗p for any p ∈ ∂ω. And the Riesz representation theorem gives:

∃k⃗p s.t. αp.n⃗p = (k⃗p, n⃗p)g =
noted k⃗p • n⃗p.

Proof. (Theorem.) With φ⃗ = ρDv⃗Dt − f⃗ =
∑n
i=1φ

ie⃗i, apply Lemma P.3 to the φi, cf. (P.3).

Corollary P.4 With divσ :=
∑n
i=1(

∑n
j=1

∂σij

∂xj
)e⃗i (de�nition of �the matrix divergence� see (T.66)), f⃗ + divσ = ρ

Dv⃗

Dt
in Ωt,

σ.n⃗ = T⃗ on Γt

(P.10)

(matrix meaning). (With duality notations, divσ :=
∑n
i=1(

∑n
j=1

∂σi
j

∂xj )e⃗i.)

Proof. Apply the divergence Formula to (P.3).

Exercice P.5 Consider a triangle T in R3 which vertices are A = (h1, 0, 0), B = (0, h2, 0), C = (0, 0, h3).
Prove that n⃗ = (h2h3, h3h1, h1h2) is orthogonal to T and that σ = 1

2

√
h22h

2
3 + h23h

2
1 + h21h

2
2 is its area.

Answer. Consider the parametric surface r⃗(t, u) = A+ tA⃗B + uA⃗C for t, u ∈ [0, 1] describing the triangle. Thus

n⃗ = ∂r⃗
∂t

× ∂r⃗
∂u

= A⃗B × A⃗C =

−h1

h2

0

 ×

−h1

0
h3

 =

h2h3

h3h1

h1h2

 is orthonormal. And dσ = || ∂r⃗
∂t

× ∂r⃗
∂u

||dudt =√
h2
2h

2
3 + h2

3h
2
1 + h2

1h
2
2dudt. Thus σ =

∫ 1

t=0

∫ 1

u=0
dσ =

√
h2
2h

2
3 + h2

3h
2
1 + h2

1h
2
2 is twice the aera of the triangle.
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Q Balance of moment of momentum

De�nition Q.1 The balance of moment of momentum is satis�ed by ρ, f⃗ and T⃗ i� for all regular
sub-open set ωt ⊂ Ωt

d

dt

∫
ωt

ρ
−−→OM × v⃗ dΩt =

∫
ωt

ρ
−−→OM × f⃗ dΩt +

∫
∂ωt

−−→OM × T⃗ dΓt, (Q.1)

equality called the master balance of moment of momentum law. (This excludes e.g. Cosserat continua
materials.)

Theorem Q.2 (Cauchy second law.) If the master balance law (so T⃗ = σ.n⃗) and the master balance of
moment of momentum law are satis�ed then σ is symmetric.

Proof. Standard proof: Let x⃗ =
−−→OM =

∑
i xiE⃗i, and T⃗ =

∑
i TiE⃗i = σ.n⃗ =

∑
ij σijnjE⃗i. Then

(�rst component) (x⃗× T⃗ )1 = x2T3 − x3T2 = x2(σ31n1 + σ32n2 + σ33n3)− x3(σ21n1 + σ22n2 + σ23n3) =

(x2σ31−x3σ21)n1+(x2σ32−x3σ22)n2+(x2σ33−x3σ23)n3. Thus
∫
∂ωt

(x⃗× T⃗ )1 dΓt =
∫
ωt

∂(x2σ31−x3σ21)
∂x1

+
∂(x2σ32−x3σ22)

∂x2
+ ∂(x2σ33−x3σ23)

∂x3
dΩt =

∫
ωt
x2(divσ)3 + x3(divσ)2 + σ32 − σ23 dωt.

(P.10) gives ρDv⃗Dt − f⃗ = divσ, thus x⃗× (ργ⃗ − f⃗) = x⃗× divσ, so the �rst component of x⃗× (ργ⃗ − f⃗) is
x2(divσ)3−x3(divσ)2, cf. (P.10). Thus (Q.1) gives

∫
ωt
σ32−σ23 dωt = 0. True for all ωt, thus σ32−σ23 = 0.

Idem for the other components: σ is symmetric.

R Uniform tensors in Lrs(E)

Uniform tensors enable to de�ne without ambiguity the �objective contraction rules�. Uniform tensors
are scalar valued multilinear functions acting on both vectors and linear forms.

NB: In classical mechanics courses, what is called a �tensor� generally not a tensor but a matrix.
E.g. you may encounter the expression �Euclidean tensor� which means: The matrix representation of
�something� with respect to a Euclidean basis (based on the foot, metre,...) chosen by some observer.
(An �Euclidean tensor� is a non-sense, e.g. can you de�ne a �Euclidean vector�?)

R.1 Tensorial product and multilinear forms

Let A1, ..., An be n �nite dimension vector spaces. And A∗
i = L(Ai;R) the set of linear forms.

R.1.1 Tensorial product of functions

Let f1 : A1 → R, ..., fn : An → R be n functions. Their tensorial product is the function f1 ⊗ ... ⊗ fn :
A1 × ...×An → R de�ned by (separate variable function)

(f1 ⊗ ...⊗ fn)(x⃗1, ..., x⃗n) = f1(x⃗1)...fn(x⃗n). (R.1)

(E.g., n = 2 and A1 = A2 = R and (cos⊗ sin)(x, y) = cos(x) sin(y).)

R.1.2 Tensorial product of linear forms: multilinear forms

Let L(A1, ..., An;R) be the set of R-multilinear forms on the Cartesian product A1× ...×An, that is, the
set of the functions M : A1 × ...×An → R s.t., for all i = 1, ..., n, all x⃗i, y⃗i ∈ Ai and all λ ∈ R,

M(..., x⃗i + λy⃗i, ...) =M(..., x⃗i, ...) + λ M(..., y⃗i, ...), (R.2)

the other variables being unchanged.
De�nition: An elementary tensor is multilinear form M = ℓ1 ⊗ ....⊗ ℓn, with ℓi ∈ A∗

i for all i; So

∀(x⃗i)i∈N∗ ∈
n∏
i=1

Ai, (ℓ1 ⊗ ...⊗ ℓn)(x⃗1, ..., x⃗n) = (ℓ1.x⃗1)...(ℓn.x⃗n) ∈ R. (R.3)

(The dot in ℓi.x⃗i is not an inner dot product: It is the duality �outer product� ℓi.x⃗i := ℓi(x⃗i), cf. (A.43).)
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R.2 Uniform tensors in L0
s(E)

Let E be a real vector space, with dim(E) = n ∈ N∗. In this section we consider the �rst overlay on E
made of multilinear forms M on E, called the uniform tensors of type 0 s or of type

(
0
s

)
.

E.g., M ∈ L0
1(E) a linear form, M ∈ L0

2(E) an inner dot product, M ∈ L0
n(E) a determinant...

Notations for quanti�cation purposes: (e⃗i) is a basis in E, (πei) is its (covariant) dual basis (basis in
E∗ = L(E;R)), (∂i) is its bidual basis (basis in E∗∗ = L(E∗;R)).

R.2.1 De�nition of type
(
0
s

)
uniform tensors

L0
0(E) := R, and if s ∈ N∗ then

L0
s(E) := L(E × ...× E︸ ︷︷ ︸

s times

;R) (R.4)

is called the set of uniform tensors of type
(
0
s

)
on E.

R.2.2 Example: Type
(
0
1

)
uniform tensor = linear forms

A type
(
0
1

)
uniform tensor is an element of L0

1(E) = L(E;R) = E∗: It is a linear form ℓ ∈ L0
1(E) = E∗.

Quanti�cation: With ℓi := ℓ(e⃗i) we have, cf. (A.11),

ℓ =

n∑
i=1

ℓiπei, and [ℓ]|πe
= ( ℓ1 ... ℓn )

noted
= [ℓ]|e⃗ (R.5)

(row matrix for a linear form). Duality notations: (ei) is the covariant dual basis and ℓ =
∑n
i=1ℓie

i.

Thus, if v⃗ ∈ E, v⃗ =
∑n
i=1vie⃗i, then v⃗ is represented by [v⃗]|e⃗ =

 v1
...
vn

 (column matrix for a vector),

and the matrix calculation rules give

ℓ(v⃗) = [ℓ]|e⃗.[v⃗]|e⃗ = ( ℓ1 ... ℓn ) .

 v1
...
vn

 =

n∑
i=1

ℓivi
noted
= ℓ.v⃗. (R.6)

Duality notations: v⃗ =
∑n
i=1v

ie⃗i and ℓ(v⃗) =
∑n
i=1ℓiv

i, and Einstein's convention is satis�ed.

R.2.3 Example: Type
(
0
2

)
uniform tensor

A type
(
0
2

)
uniform tensor is an element of L0

2(E) = L(E,E;R): It is a bilinear form T ∈ L(E,E;R).

Quanti�cation: Let Tij := T (e⃗i, e⃗j). Then, with v⃗ =
∑n
i=1vie⃗i and w⃗ =

∑n
i=1wie⃗i,

T (v⃗, w⃗) =

n∑
i,j=1

Tijviwj = [v⃗]T|e⃗.[T ]|e⃗.[w⃗]|e⃗, i.e. T =

n∑
i,j=1

Tijπei ⊗ πej . (R.7)

Duality notations: T (v⃗, w⃗) =
∑n
i,j=1Tijv

iwj , and Einstein's convention is satis�ed.

An elementary uniform tensor in L0
2(E) is a tensor T = ℓ ⊗ m, where ℓ,m ∈ E∗. And so, for all

v⃗, w⃗ ∈ E,
(ℓ⊗m)(v⃗, w⃗) = (ℓ.v⃗)(m.w⃗). (R.8)

R.2.4 Example: Determinant

The determinant is a alternating
(
0
n

)
uniform tensor, cf. (L.2).

R.3 Uniform tensors in Lr
s(E)

In this section we consider an over-overlay on E: The multilinear forms acting on both vectors (∈ E) and
functions ∈ E∗ (linear forms).
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175 R.3. Uniform tensors in Lr
s(E)

R.3.1 De�nition of type
(
r
s

)
uniform tensors

Let r, s ∈ N s.t. r + s ≥ 1. The set of multilinear forms

Lrs(E) := L(E∗ × ...× E∗︸ ︷︷ ︸
r times

, E × ...× E︸ ︷︷ ︸
s times

;R) (R.9)

is called the set of uniform tensors of type
(
r
s

)
on E.

The case r = 0 has been considered at � R.2.
When r ≥ 1, a tensor T ∈ Lrs(E) is a functional: Its domain of de�nition contains a set of functions

(the set E∗ = L(E;R)).

R.3.2 Example: Type
(
1
0

)
uniform tensor: Identi�ed with a vector

A uniform
(
1
0

)
tensor is a element T ∈ L1

0(E) = L(E∗;R) = L(L(E;R);R) = E∗∗. With the natural
canonical isomorphism

J :

{
E → E∗∗ = L1

0(E)

w⃗ → J (w⃗) = w, de�ned by w(ℓ) := ℓ(w⃗), ∀ℓ ∈ E∗,
(R.10)

cf. (U.9) and prop. U.5,

w
noted
= w⃗, so w.ℓ

noted
= w⃗.ℓ (= ℓ.w⃗). (R.11)

So a
(
1
0

)
type uniform tensor w is identi�ed (natural canonical) to the vector w⃗ = J−1(w).

Interpretation: E∗∗ is the set of directional derivatives. Indeed, if E is an a�ne space, if E is the
associated vector space, if p ∈ E , and if f is a di�erentiable function at p, then w.df(p)=(R.10) df(p).w⃗ is
the directional derivative along w⃗.

Remark: In di�erential geometry, w.df is written w⃗(f), so w⃗(f)(p) := df(p).w⃗, the de�nition of a
vector being a directional derivative.

Quanti�cation: For all i, j,

∂i.πej = δij = πej .e⃗i, thus ∂i = J (e⃗i)
noted
= e⃗i. (R.12)

Duality notations: ∂i.e
j = δji = ej .e⃗i. E.g., if f is a C1 function then df(p) =

∑n
i=1f|i(p)πei (=∑n

i=1f|i(p) e
i) and

∂i(df(p)) = df(p).e⃗i = f|i(p)
noted
= ∂i(f)(p)

noted
= e⃗i(f)(p). (R.13)

R.3.3 Example: Type
(
1
1

)
uniform tensor

An elementary uniform tensor in L1
1(E) is a tensor T = u ⊗ β, where u ∈ E∗∗ and β ∈ E∗. And, with

u⃗ = J−1(u) ∈ E, cf. (R.10), we also write T = u⃗⊗ β. Thus, for all ℓ ∈ E∗ and w⃗ ∈ E

(u⊗ β)(ℓ, w⃗) = u(ℓ)β(w⃗) = ℓ(u⃗)β(w⃗)
noted
= u⃗(ℓ)β(w⃗)

noted
= (u⃗⊗ β)(ℓ, w⃗). (R.14)

Quanti�cation: Let T (πei, e⃗j). So

T =

n∑
i,j=1

Tij e⃗i ⊗ πej , and [T ]|e⃗ = [Tij ], (R.15)

[T ]|e⃗ = [Tij ] being the matrix of T relative to the basis (e⃗i). Duality notations: T (ei, e⃗j) = T ij , [T ]|e⃗ =
[T ij ], T =

∑n
i,j=1T

i
j e⃗i ⊗ ej , and Einstein's convention is satis�ed.

Thus with ℓ ∈ E∗, ℓ =
∑n
i=1ℓie

i ∈ E∗, and w⃗ ∈ E, w⃗ =
∑n
i=1w

ie⃗i ∈ E, (R.15) gives

T (ℓ, w⃗) =

n∑
i,j=1

Tij e⃗i(ℓ)πej(w⃗) =

n∑
i,j=1

Tijℓiwj = [ℓ]|e⃗.[T ]|e⃗.[w⃗]|e⃗ (R.16)

([ℓ]|e⃗ is a row matrix). Duality notations: T (ℓ, w⃗) =
∑n
i,j=1T

i
jℓiw

j and Einstein convention is satis�ed.
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176 R.4. Exterior tensorial products

R.3.4 Example: Type
(
1
2

)
uniform tensor

The same steps are applied to any tensor. E.g., if T ∈ L1
2(E), then with duality notations, T ijk =

T (ei, e⃗j , e⃗k) and

T =

n∑
i,j,k=1

T ijke⃗i ⊗ ej ⊗ ek, and T (ℓ, u⃗, w⃗) =

n∑
i,j,k=1

T ijkℓiu
jwk. (R.17)

R.4 Exterior tensorial products

Let T1 ∈ Lr1s1(E) and T2 ∈ Lr2s2(E). Their tensorial product is the tensor T1 ⊗ T2 ∈ Lr1+r2s1+s2(E) de�ned by

(T1 ⊗ T2)(ℓ1,1, ..., ℓ2,1, ..., u⃗1,1, ..., u⃗2,1, ...) := T1(ℓ1,1, ..., u⃗1,1, ...)T2(ℓ2,1, ..., u⃗2,1, ...). (R.18)

Particular case: with λ ∈ L0
0(E) = R and T ∈ Lrs(E),

λ⊗ T = T ⊗ λ := λT ∈ Lrs(E). (R.19)

Example R.1 let T1, T2 ∈ L1
1(E). Quanti�cation: Let T1 =

∑n
i,j=1(T1)

i
j e⃗i ⊗ ej and let T2 =∑n

k,m=1(T2)
k
me⃗k ⊗ em; Then T1 ⊗ T2 =

∑n
i,j,k,m=1(T1)

i
k(T2)

j
me⃗i ⊗ e⃗j ⊗ ek ⊗ em ∈ L2

2(E).

Remark R.2 Alternative de�nition: T1⊗̃T2 :=
∑n
i,j,k,m=1(T1)

i
j(T2)

k
me⃗i ⊗ ej ⊗ e⃗k ⊗ em ∈

L(E∗, E,E∗, E;R). And we get back to the previous de�nition thanks to the natural canonical

isomorphism J̃ : L(E∗, E,E∗, E;R) → L(E∗, E∗, E,E;R) = L2
2(E) de�ned by J̃(T̃ ) = T where

T (ℓ,m, v⃗, w⃗) = T̃ (ℓ, v⃗,m, w⃗).

R.5 Contractions

R.5.1 Contraction of a linear form with a vector

Let ℓ ∈ L0
1(E) = E∗ and w⃗ ∈ E. Their contraction is the value

ℓ(w⃗)
linearity

= ℓ.w⃗
noted
= w⃗.ℓ. (R.20)

And with a basis (e⃗i) and its dual basis (πei), ℓ =
∑n
i=1ℓiπei and w⃗ =

∑n
i=1wie⃗i give

ℓ.w⃗ =

n∑
i=1

ℓiwi = [ℓ]|e⃗.[w⃗]|e⃗ =

n∑
i=1

wiℓi = w⃗.ℓ = Tr(w⃗ ⊗ ℓ), (R.21)

where Tr is the objective trace operator Tr : L(E;E) ≃ L1
1(E) → R (de�ned by Tr(e⃗i ⊗ πej) = δij).

Duality notations: ℓ.w⃗ =
∑n
i=1ℓiw

i, and Einstein convention is satis�ed.

Exercice R.3 Use the change of coordinate formulas to prove that the computation ℓ.w⃗ in (R.21) gives
a result independent of the basis.

Answer. Let P be the change of basis matrix. So [w⃗]new = P−1.[w⃗]old and [ℓ]new = [ℓ]old.P , cf. (A.29), thus

[ℓ]new.[w⃗]new = ([ℓ]old.P ).(P−1.[w⃗]old) = [ℓ]old.(P.P
−1).[w⃗]old = [ℓ]old[w⃗]old (= ℓ.w⃗).

R.5.2 Contraction of a
(
1
1

)
tensor and a vector

Let ℓ ∈ E∗ and u⃗ ∈ E. The contraction of the elementary tensor w⃗ ⊗ ℓ ∈ L1
1(E) with u⃗ is de�ned by:

(w⃗ ⊗ ℓ).u⃗︸︷︷︸
contraction

= (ℓ.u⃗)w⃗. (R.22)

Thus, if (e⃗i) is a basis in E and (πei) is the dual basis, and T =
∑n
i,j=1Tij e⃗i ⊗ πej ∈ L1

1(E) and

u⃗ =
∑n
j=1uj e⃗j ∈ E, then

T =

n∑
i,j=1

Tij e⃗i ⊗ ej =⇒ T.u⃗ =

n∑
i,j=1

Tiju
j
j e⃗i (R.23)

because πej(u⃗) = uj . Duality notations: T.u⃗ =
∑n
i,j=1T

i
ju
j e⃗i.
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177 R.5. Contractions

Then, with the natural canonical isomorphism (L1
1(E) =) L(E,E∗;R) ≃ L(E;E), see (U.7), any

endomorphism L ∈ L(E;E) de�ned by L.e⃗j =
∑n
i=1Lij e⃗i can be written, for calculation purpose,

L̃ =

n∑
i,j=1

Lij e⃗i ⊗ πej
noted
= L, which means L.u⃗

(R.22)
=

n∑
i=1

Lijuj e⃗i (R.24)

when u⃗ =
∑
i uj e⃗j , since πej(u⃗) = uj . Duality notations: L =

∑n
i,j=1L

i
j e⃗i ⊗ ej .

R.5.3 Contractions of uniform tensors

More generally, the contraction of two tensors, if meaningful, is de�ned thanks to (R.20): Let T1 ∈ Lr1s1(E),
T2 ∈ Lr2s2(E), ℓ ∈ E∗ and u⃗ ∈ E.

De�nition R.4 The objective contraction of T1 ⊗ ℓ ∈ Lr2s2+1(E) and u⃗ ⊗ T2 ∈ Lr2+1
s2 (E) is the tensor

(T1 ⊗ ℓ).(u⃗⊗ T2) ∈ Lr1+r2s1+s2 given by

(T1 ⊗ ℓ).(u⃗︸︷︷︸
contraction

⊗T2) := (ℓ.u⃗)T1 ⊗ T2. (R.25)

In particular (T1 ⊗ ℓ).u⃗ = (ℓ.u⃗)T1 (as in (R.22)), and ℓ.(u⃗⊗ T2) = (ℓ.u⃗)T2.
And the objective contraction of T1⊗ u⃗ ∈ Lr2+1

s2 (E) and ℓ⊗T2 ∈ Lr2s2+1(E) is the tensor (T1⊗ u⃗).(ℓ⊗
T2) ∈ Lr1+r2s1+s2 given by

(T1 ⊗ u⃗).(ℓ⊗ T2) = (u⃗.ℓ)T1 ⊗ T2 (= (ℓ.u⃗)T1 ⊗ T2). (R.26)

Quanti�cation with a basis (e⃗i), examples to avoid cumbersome notations:

Example R.5 Let T ∈ L1
1(E) = L1

0+1(E), T =
∑n
i,j=1T

i
j e⃗i ⊗ ej . With w⃗ ∈ E ∼ E∗∗ = L1

0(E),

w⃗ =
∑n
j=1w

j e⃗j , (R.25) gives T.w⃗ ∈ L1
0(E) ∼ E and

T.w⃗ =

n∑
i,j=1

T ijw
j e⃗i, i.e. [T.w⃗]|e⃗ = [T ]|e⃗.[w⃗]|e⃗ (column matrix). (R.27)

(Einstein's convention is satis�ed.) Indeed, T.w⃗ =
∑n
i,j,k=1T

i
jw

k(e⃗i ⊗ ej).e⃗k =
∑n
i,j,k=1T

i
jw

ke⃗i(e
j .e⃗k) =∑n

i,j,k=1T
i
jw

ke⃗i(δ
j
k) =

∑n
i,j=1T

i
jw

j e⃗i. With ℓ ∈ E∗ = L0
1(E), ℓ =

∑n
i=1ℓie

i, (R.25) gives ℓ.T ∈ L0
1(E) =

E∗ and

ℓ.T =

n∑
i,j=1

ℓiT
i
j e
j , i.e. [ℓ.T ]|e⃗ = [ℓ]|e⃗.[T ]|e⃗ (row matrix). (R.28)

(Einstein's convention is satis�ed.) Indeed ℓ.T = (
∑n
i=1ℓie

i).(
∑n
j,k=1T

k
j e⃗k⊗ej) =

∑n
i,j,k=1ℓiT

k
j (e

i.e⃗k)e
j =∑n

i,j=1ℓiT
i
j e
j .

Example R.6 Let S, T ∈ L1
1(E), S =

∑n
i,k=1S

i
ke⃗i ⊗ ek and T =

∑n
j,k=1T

k
j e⃗k ⊗ ej . Then

S.T =

n∑
i,j,k=1

SikT
k
j e⃗i ⊗ ej , i.e. [S.T ]|e⃗ = [S]|e⃗.[T ]|e⃗ (R.29)

(Einstein's convention is satis�ed.) Indeed S.T = (
∑n
i,k=1S

i
ke⃗i ⊗ ek).(

∑n
j,m=1 T

m
j e⃗m ⊗ ej) =∑n

i,j,k,m=1S
i
kT

m
j e⃗i(e

k.e⃗m)⊗ ej =
∑n
i,j,k=1S

i
kT

k
j e⃗i ⊗ ej .

Example R.7 Let T ∈ L1
2(E), T =

∑n
i,j,k=1T

i
jke⃗i ⊗ ej ⊗ ek, and u⃗, w⃗ ∈ E ∼ L1

0(E), w⃗ =
∑n
i=1w

ie⃗i and

u⃗ =
∑n
i=1u

ie⃗i. Then

T.w⃗ =

n∑
i,j,k=1

T ijkw
ke⃗i ⊗ ej ∈ L1

1(E), and (T.w⃗).u⃗ =

n∑
i,j,k=1

T ijkw
kuj e⃗i

noted
= T (u⃗, w⃗). (R.30)

(Einstein's convention is satis�ed.) So [T.w⃗]|e⃗ = [
∑n
k=1T

i
jkw

k] i=1,...,n
j=1,...,n

. And with ℓ ∈ E∗, ℓ =
∑n
i=1ℓie

i,

((T.w⃗).u⃗).ℓ =

n∑
i,j,k=1

T ijkw
kujℓi = T (ℓ, u⃗, w⃗) = ℓ.T (u⃗, w⃗) = ℓ.(T.w⃗).u⃗. (R.31)
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178 R.5. Contractions

R.5.4 Objective double contractions of uniform tensors

De�nition R.8 Let S, T ∈ L1
1(E). And let (e⃗i) be a basis in E, (ei) its dual basis, S =

∑n
i,j=1S

i
j e⃗i ⊗ ej

and T =
∑n
i,j=1T

i
j e⃗i ⊗ ej . The double objective contraction S 0.. T of S and T is de�ned by

S 0.. T = Tr(S.T ) =

n∑
i,j=1

SijT
j
i (=

n∑
i,j=1

T ijS
j
i = T 0.. S). (R.32)

(Einstein convention is satis�ed.)

Proposition R.9 S 0.. T de�ned in (R.32) is an invariant: It is the trace Tr(LS ◦ LT ) of the endo-
morphisms LS , LT ∈ L(E;E) naturally canonically associated to S and T (given by ℓ.LS .u⃗ := S(ℓ, u⃗)
and ℓ.LT .u⃗ := T (ℓ, u⃗) for all (u⃗, ℓ) ∈ E × E∗). So the real value

∑n
i,j=1S

i
jT

j
i has the same real value

regardless of the chosen basis (e⃗i). (Which is not the case of the term to term matrix multiplication
S : T =

∑n
i,j=1S

i
jT

i
j , see next � R.5.5 and example R.13.)

Proof. Let (⃗ai) and (⃗bi) be two bases and P = [P ij ] be the transition matrix from (⃗ai) to (⃗bi),

i.e., b⃗j =
∑n
i=1P

i
j a⃗i for all j. Let Q = [Qij ] := P−1. Then bi =

∑n
i=1Q

i
ja
i. Let S =∑

ij(Sa)
i
j a⃗i ⊗ aj =

∑
ij(Sb)

i
j b⃗i ⊗ bj . So [(Sb)

i
j ] = P−1.[(Sa)

i
j ].P (change of basis formula for

(
1
1

)
tensors identi�ed with endomorphisms), i.e. (Sb)

i
j =

∑
kmQ

i
k(Sa)

k
mP

m
j for all i, j. Idem with T .

Thus
∑
i,j(Sb)

i
j(Tb)

j
i =

∑
i,j,k,m,α,β Q

i
k(Sa)

k
mP

m
j Q

j
α(Ta)

α
βP

β
i =

∑
i,j,k,m,α,β(Sa)

k
m(Ta)

α
βP

β
i Q

i
kP

m
j Q

j
α =∑

k,m,α,β(Sa)
k
m(Ta)

α
βδ
β
k δ

m
α =

∑
k,m(Sa)

k
m(Ta)

m
k .

De�nition R.10 More generally, the objective double contractions S 0.. T of uniform tensors, is obtained
by applying the objective simple contraction twice consecutively, when applicable.

E.g., T1 ⊗ ℓ1,1 ⊗ ℓ1,2 and u⃗2,1 ⊗ u⃗2,2 ⊗ T2 give

(T1 ⊗ ℓ1,1 ⊗ ℓ1,2).(u⃗2,1︸ ︷︷ ︸
�rst

⊗u⃗2,2 ⊗ T2) = (ℓ1,2.u⃗2,1)(T1 ⊗ ℓ1,1)⊗ (u⃗2,2︸ ︷︷ ︸
second

⊗T2)

= (ℓ1,2.u⃗2,1)(ℓ1,1.u⃗2,2)T1 ⊗ T2.
(R.33)

Example R.11 Let S ∈ L1
2(E), T ∈ L2

1(E), S =
∑n
i,j,k=1S

i
jke⃗i⊗ej⊗ej , T =

∑n
α,β,γ=1 T

αβ
γ e⃗α⊗ e⃗β⊗eγ .

Then

S.T =

n∑
i,j,k,β,γ=1

SijkT
kβ
γ e⃗i ⊗ ej ⊗ e⃗β ⊗ eγ , and S 0.. T =

n∑
i,j,k,γ=1

SijkT
kj
γ e⃗i ⊗ eγ . (R.34)

(Einstein's convention is satis�ed.)

Exercice R.12 If S ∈ L(E,F ;R), T ∈ L(F,G;R) and U ∈ L(G,E;R) then prove

S 0.. (T.U) = (S.T ) 0.. U = (U.S) 0.. T (circular permutation). (R.35)

Answer. If S =
∑

Si
j a⃗i ⊗ bj , T =

∑
T i
j b⃗i ⊗ cj and U =

∑
U i

j c⃗i ⊗ aj , then T.U =
∑

T i
kU

k
j b⃗i ⊗ aj , thus

S 0.. (T.U) =
∑

Si
mTm

k Uk
i , and S.T =

∑
Si
kT

k
j a⃗i ⊗ cj , so (S.T ) 0.. U =

∑
Si
kT

k
mUm

i . And the second equality

thanks to the symmetry of 0.. , i.e. (S.T ) 0.. U = U 0.. (S.T ) = (U.S) 0.. T with the previous calculation.

We de�ne in the same way the triple objective contraction (apply the simple contraction three times
consecutively). E.g., with (R.34) we get

S 0... T =

n∑
i,j,k=1

SijkT
kj
i. (R.36)

(Einstein's convention is satis�ed.)
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R.5.5 Non objective double contraction: Double matrix contraction

The engineers often use the double matrix contraction of second order tensors de�ned by (term to term
multiplication): If S = [Sij ] = [Sij ] and T = [Tij ] = [T ij ] then

S : T :=

n∑
i,j=1

SijTij =

n∑
i,j=1

SijT
i
j
noted
= Tr(S.TT ). (R.37)

Einstein's convention is not satis�ed, and the result is observer dependent for associated endomorphism:

Example R.13 Let (e⃗i) be a basis, let S ∈ L(E;E) given by [S]e⃗ =

(
0 4
2 0

)
(so S.e⃗1 = 2e⃗2 and

S.e⃗2 = 4e⃗1). Then the double matrix contraction (R.37) gives

S : S = [S]e⃗ : [S]e⃗ = 4 ∗ 4 + 2 ∗ 2 = 20. (R.38)

Change of basis: let b⃗1 = e⃗1 and b⃗2 = 2e⃗2. The transition matrix from (e⃗i) to (⃗bi) is P =

(
1 0
0 2

)
. Thus

[S ]⃗b = P−1.[S]e⃗.P =

(
1 0
0 1

2

)
.

(
0 8
2 0

)
=

(
0 8
1 0

)
. Thus

S : S = [S ]⃗b : [S ]⃗b = 8 ∗ 8 + 1 ∗ 1 = 65 ̸= 20. (R.39)

To be compared with the double objective contraction: [S]e⃗ 0.. [S]e⃗ = 4∗2+2∗4 = 16 = [S ]⃗b 0
.. [S ]⃗b = S 0.. S

(observer independent result = objective result).
So it is absurd to use S : S (double matrix contraction) if you need objectivity: Recall that the foot is

the international vertical unit in aviation, and thus the use of the double objective contraction is vital,
while the use of the double matrix contraction can be fatal (really). Also see the Mars climate orbiter
probe crash.

Exercice R.14 Let S ∈ L0
2(E) (e.g. a metric), let (⃗ai) be a Euclidean basis in foot, and let (⃗bi) = (λa⃗i)

be the related euclidean basis in metre (change of unit). Give [S]|⃗a : [S]|⃗a and [S]|⃗b : [S]|⃗b and compare.

(The simple and double objective contractions are impossible here since S and T are not compatible.)

Answer. Let S =
∑n

i,j=1Sa,ija
i ⊗ aj =

∑n
i,j=1Sb,ijb

i ⊗ bj . Since (⃗bi) = (λa⃗i) we have bi = 1
λ
ai. Thus∑n

i,j=1Sa,ija
i ⊗ aj =

∑n
i,j=1Sa,ijλ

2bi ⊗ bj , thus λ2Sa,ij = Sb,ij . Thus

[S]|⃗b : [S]|⃗b =

n∑
i,j=1

(Sb,ij)
2 = λ4

n∑
i,j=1

(Sa,ij)
2 = λ4[S]|⃗a : [S]|⃗a, (R.40)

with λ4 ≥ 100: Quite a di�erence isn't it?

R.6 Kronecker (contraction) tensor, trace

De�nition R.15 The Kronecker tensor is the
(
1
1

)
uniform tensor δ ∈ L1

1(E) de�ned by

∀(ℓ, u⃗) ∈ E∗ × E, δ(ℓ, u⃗) := ℓ.u⃗. (R.41)

And the Kronecker symbols relative to a basis (e⃗i) are the reals de�ned by, calling (πei) the dual basis,

δij := δ(πei, e⃗j) =

{
1 if i = j,

0 if i ̸= j,

}
i.e. δ :=

n∑
i=1

πei ⊗ ei, [δ] = [δj ] = [I] (R.42)

(identity matrix whatever the basis). Duality notations: δij := δ(ei, e⃗j), δ :=
∑n
i=1 e⃗i ⊗ ei and [δ] = [δij ].

De�nition R.16 The trace of a
(
1
1

)
uniform tensor T ∈ L1

1(E) is

T̃r(T ) = δ 0.. T (= Tr(LT )) (R.43)

(with the natural canonical isomorphism T ∈ L1
1(E) ≃ LT ∈ L(E;E) given by T (ℓ, v⃗) := ℓ.LT .v⃗).

Thus T̃r(T ) =
∑n
i=1T

i
i.

In particular T̃r(δ) = n, and T̃r(v⃗ ⊗ ℓ) =
∑
i v
iℓi = ℓ.v⃗ when v⃗ =

∑
i v
ie⃗i and ℓ =

∑
j ℓje

j .
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S Tensors in T r
s (U)

S.1 Fundamental counter-example (derivation), and modules

Let A and B be any sets, and let F(A;B) be the set of functions A → B. The �plus� inner operation
and the �dot� outer operation are de�ned by, for all f, g ∈ F(A;B), all λ ∈ R and all p ∈ A,{

(f + g)(p) := f(p) + g(p), and

(λ.f)(p) := λ f(p), λ.f
noted
= λf.

(S.1)

(F(A;B),+, .,R) is thus a vector space on the �eld R (see any elementary course) called F(A;B).
But the �eld R is �too small� to de�ne a tensor which can be seen as �a linear tool that satis�es the

change of coordinate system rules�:

Example S.1 Fundamental counter-example: Derivation. Let U be an open set in Rn. The
derivation d : w⃗ ∈ C1(U ; R⃗n)→ dw⃗ ∈ C0(U ;L(R⃗n; R⃗n)) is R-linear: In particular d(λw⃗) = λ(dw⃗) for all
λ ∈ R...

...but d doesn't satisfy the change of coordinate system rules, see (T.36).
So a derivation it not a tensor (it is a �spray�, see Abraham�Marsden [1]).
In fact, one requirement for T to be a tensor is, e.g. with T = w⃗ a vector �eld: For all φ ∈ C∞(U ;R),

and all w⃗ ∈ Γ(U) (C∞-vector �eld),
T (φw⃗) = φT (w⃗). (S.2)

While
d(φw⃗) ̸= φd(w⃗), because d(φw⃗) = φdw⃗ + dφ.w⃗. (S.3)

Thus the elementary R-linearity requirement �T.(λw⃗) = λ(T.w⃗) for all λ ∈ R is not su�cient to charac-
terize a tensor: The R-linearity has to be replaced by the C∞(U ;R)-linearity, cf. (S.2).

Thus we will have to replace a real vector space (V,+, .,R) over the �eld R with the �module�
(V,+, ., C∞(U ;R)) over the ring C∞(U ;R), which mainly amounts to consider (S.1) for all λ = φ ∈
C∞(U ;R). Remark: The use of a module is very similar to the use of a vector space, but for the use of
the inverse: all real λ ̸= 0 has a multiplicative inverse in R (namely 1

λ ), but a function f ∈ C
∞(U ;R) s.t.

�f ̸= 0 and f vanishes at one point� doesn't have a multiplicative inverse in C∞(U ;R).

S.2 Field of functions and vector �elds

U is an open set in the a�ne space , its associated space being E which is R⃗, R⃗2 or R⃗3. The de�nition
of tensors is done at a �xed time t (concerns the space variables in classical mechanics). The approach is
�rst qualitative, then quantitative with a basis (e⃗i(p)) and its dual basis (πei(p)) = (ei(p)), at any p ∈ E .

S.2.1 Framework of classical mechanics

E is the a�ne space R, R2 or R3 made of points p, and E = R⃗n is the usual associated vector space R⃗, R⃗2

or R⃗3 made of bipoint vectors w⃗ = −→pq =noted q− p, and we then write q = p+ w⃗, which means: If O ∈ E
(an origin) then

−→
Oq =

−→
Op + w⃗ (which is Chasles' relation −→pq =

−→
pO +

−→
Oq), relation independent of the

choice of O, and hence the vectors w⃗ in E are called �free vectors� (congruence relation: u⃗Rw⃗ i� u⃗ = w⃗,

i.e. −−→p1q1R−−→p2q2 i� −−→p1q1 = −−→p2q2, i.e. −−→p1q1R−−→p2q2 i�
−−→
p1O +

−−→
Oq1 =

−−→
p2O +

−−→
Oq2, i.e. −−→p1q1R−−→p2q2 i� −−→p1p2 = −−→q1q2).

S.2.2 Vector �elds

Let w⃗ :

{
U → E

p → w⃗(p)

}
be a vector valued function. The associated �eld is

˜⃗w :

{
U → U × E

p → ˜⃗w(p) = (p; w⃗(p)).
(S.4)

So Im ˜⃗w = {(p; w⃗(p)) : p ∈ U} is the graph of w⃗, and the de�nition of ˜⃗w tells that the vector w⃗(p) has to

be drawn at p called the base point (�rst component of ˜⃗w(p)); and ˜⃗w(p) is called a vector at p. Usual
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181 S.3. Di�erential forms

rules: ˜⃗u(p) + ˜⃗w(p) = (p, u⃗(p) + w⃗(p)), and λ˜⃗u(p) = (p, λu⃗(p)) (S.5)

(usual rules for �vectors at p�). To lighten the notations, ˜⃗w(p) =noted w⃗(p) (but don't forget it is a pointed
vector). Notations:

Γ(U) = T 1
0 (U) := the set of vector �elds on U = the set of

(
1
0

)
tensors on U. (S.6)

More precisely, we will use the de�nition of vector �elds (see e.g. Abraham�Marsden [1]): A vector
�eld is built from tangent vectors to curves. It makes sense on non planar surfaces, and more generally
on di�erential manifolds.

Example S.2 Discrete case: n �force vectors� f⃗i(pi) applied at n points pi ∈ R3 give the discrete vector

�eld
˜⃗
f : pi ∈ {p1, ..., pn} ⊂ R3 → ˜⃗

f(pi) = (pi, f⃗i(pi)) ∈ R3 × R⃗3 where pi is �the point of application�

of f⃗i(pi), and
˜⃗
f(pi) = (pi, f⃗i) is a pointed vector. Essential in mechanics.

S.2.3 Field of functions

Let f :

{
U → R
p → f(p)

}
be a scalar valued function. The associated �eld is

f̃ :

{
U → U × R

p → f̃(p) := (p; f(p)),
(S.7)

and the �rst component p of the couple f̃(p) = (p; f(p)) is called the base point. So Imf̃ = {(p; f(p)) :
p ∈ U} is the graph of f . De�nition:

T 0
0 (U) := {�eld of functions} = the set of

(
0
0

)
tensors on U, (S.8)

or the set of tensors of order 0 on U . Abusive short notations (to lighten the writings):

f̃(p)
noted
= f(p), and T 0

0 (U)
noted
= C∞(U ;R), (S.9)

but keep the base point in mind (no ubiquity gift).

In T 0
0 (U), the internal sum is de�ned by, for all f̃ , g̃ ∈ T 0

0 (U) with f̃(p) = (p; f(p)) and g̃(p) = (p; g(p)),

(f̃ + g̃)(p) := (p; (f + g)(p)) (= (p; f(p) + g(p))), (S.10)

and the external multiplication on the ring C∞(U ;R) is de�ned by, for all φ ∈ C∞(U ;R),

(φf̃)(p) := (p; (φf)(p)) (= (p;φ(p)f(p))) (S.11)

(the base point p remains unchanged). Thus (T 0
0 (U),+, .) is a module over the ring C∞(U ;R).

S.3 Di�erential forms

The basic concept is that of vector �elds. A �rst over-layer is made of di�erential forms (which �measure
vector �elds�):

De�nition S.3 Let α

{
U → E∗

p → α(p)

}
(so α(p) is a linear form at p). The associated di�erential form

(also called a 1-form) is �the �eld of linear forms� de�ned by

α̃ :

{
U → U × E∗

p → α̃(p) = (p;α(p)) ( = �a pointed linear form at p�).
(S.12)

And p is called the base point, and Imα̃ = {(p;α(p)) : p ∈ U} is the graph of α.

181



182 S.4. Tensors

Thus, if α̃ ∈ Ω1(U) (di�erential form) and ˜⃗w ∈ Γ(U) (vector �eld), then α̃. ˜⃗w ∈ T 0
0 (U) (�eld of scalar

valued functions) satis�es

α̃. ˜⃗w :

{
U → U × R

p → (α̃. ˜⃗w)(p) = (p; (α.w⃗)(p)) = (p;α(p).w⃗(p)) ∈ U × R.
(S.13)

Short notation:

α̃(p)
noted
= α(p), instead of α̃(p) = (p;α(p)), (S.14)

but keep the base point in mind. And

Ω1(U) = T 0
1 (U) := the set of di�erential forms on U = the set of

(
0
1

)
tensors on U. (S.15)

S.4 Tensors

A second over-layer is introduced with the tensors with are �functions de�ned on vector �elds and on
di�erential forms� (which �measure vector �elds and di�erential forms�).

Let r, s ∈ N, r+s ≥ 1, and let T :

{
U → Lrs(E)

p → T (p)

}
(so T (p) is a uniform

(
r
s

)
tensor for each p,

cf. (R.3.1)). And consider the associated function

T̃ :

{
U → U × Lrs(E)

p → T̃ (p) = (p;T (p))
(S.16)

Abusive short notation:

T̃ (p)
noted
= T (p) instead of T̃ (p) = (p;T (p)), (S.17)

but keep the base point in mind.

De�nition S.4 (Abraham�Marsden [1].) T̃ is a tensor of type
(
r
s

)
i� T is C∞(U ;R)-multilinear (not only

R-multilinear), i.e., for all f ∈ C∞(U ;R), all z1, z2 vector �eld or di�erentiable form where applicable,
and all p ∈ U ,{

T (p)(..., z1(p) + z2(p), ...) = T (p)(..., z1(p), ...) + T (p)(..., z2(p), ...), and

T (p)(..., f(p)z1(p), ...) = f(p)T (p)(..., z1(p), ...),
(S.18)

written in short {
T (..., z1 + z2, ...) = T (..., z1, ...) + T (..., z2, ...), and

T (..., fz1, ...) = f T (..., z1, ...).
(S.19)

And
T rs (U) := the set of

(
r
s

)
type tensors on U. (S.20)

(Recall: T 0
0 (U) := C∞(U ;R) the set of function �elds, cf. (S.7).)

Remark S.5 De�nition in di�erential geometry lessons: A tensor is a section of a certain bundle over a
manifold. For classical mechanics, de�nition S.4 gives an equivalent de�nition.

S.5 First Examples

S.5.1 Type
(
0
1

)
tensor = di�erential forms

If T ∈ T 0
1 (U) then T (p) ∈ E∗, so T = α ∈ Ω1(U) is a di�erential form: T 0

1 (U) ⊂ Ω1(U).
Converse: Does a di�erential form α ∈ Ω1(U) de�nes a

(
0
1

)
type tensor on U? Yes: We have to

check (S.18), which is trivial. So α ∈ T 0
1 (U), so Ω1(U) ⊂ T 0

1 (U).
Thus

T 0
1 (U) = Ω1(U). (S.21)
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)
tensor, identi�cation with �elds of endomorphisms

S.5.2 Type
(
1
0

)
tensor (identi�ed to a vector �eld)

Let T ∈ T 0
1 (U), so T (p) ∈ L1

0(E) = L(E∗;R) = E∗∗ for all p ∈ U . Thus, thanks to the natural canonical
isomorphism E∗∗ ≃ E, T (p) can be identi�ed to a vector, thus T 0

1 (U) ⊂ Γ(U).
Converse: Does a vector �eld w⃗ ∈ Γ(U) de�nes a

(
1
0

)
type tensor on U? Yes: We have to check (S.18),

which is trivial. So Γ(U) ⊂ T 1
0 (U).

Thus
T 1
0 (U) ≃ Γ(U). (S.22)

S.5.3 A metric is a
(
0
2

)
tensor

Let T ∈ T 0
2 (U), so T (p) ∈ L0

2(E) for all p ∈ U , and T (u⃗, w⃗) ∈ T 0
0 (U) for all u⃗, w⃗ ∈ Γ(U).

De�nition S.6 A metric g on U is a
(
0
2

)
type tensor on U such that, for all p ∈ E, g(p) =noted gp is an

inner dot product on E.

S.6
(
1
1

)
tensor, identi�cation with �elds of endomorphisms

Let T ∈ T 1
1 (U), so T (p) ∈ L1

1(E) for all p ∈ U , and T (α, w⃗) ∈ T 0
0 (U) for all α ∈ Ω1(U) and w⃗ ∈ Γ(U) (so

T (p)(α(p), w⃗(p)) ∈ R for all p).

The associated �eld of endomorphisms on U is L̃T :

{
U → U × L(E;E)

p → L̃T (p) = (p, LT (p))

}
where LT (p) is

identi�ed with T (p) thanks to the natural canonical isomorphism L(E;E) ≃ L(E∗, E;R) = L1
1(E) given

by
∀ℓ ∈ E∗, ∀w⃗ ∈ E, ℓ.(LT (p).w⃗) = T (p)(ℓ, w⃗). (S.23)

S.7 Unstationary tensor

Let t ∈ [t1, t2] ⊂ R. Let (Tt)t∈[t1,t2] be a family of
(
r
s

)
tensors, cf. (S.16). Then T : t→ T (t) := Tt is called

an unstationary tensor. And the set of unstationary tensors is also noted T rs (U). E.g., a Eulerian velocity
�eld is a

(
1
0

)
unstationary vector �eld.

T Di�erential, its eventual gradients, divergences

T.1 Di�erential

The de�nition of the di�erential of a function is observer independent: All observers have the same
de�nition (qualitative: no man made tool required, like a basis or an inner dot product).

T.1.1 Framework

Classical Framework: E are F a�ne spaces associated with vector spaces E and F , and ||.||E and ||.||F
are norms in E and F such that (E, ||.||E) and (F, ||.||F ) are complete (we need limit �that stay in the

space� as h → 0). U is an open set in E , and Φ :

{
U → F
p → pF = Φ(p)

}
is a function. If applicable, E

and/or F can be replaced by E and/or F . Reminder:

De�nition T.1 At p ∈ U the function Φ is continuous i� Φ(q)−→
q→p

Φ(p) relative to the considered norms,

i.e., ||Φ(q)− Φ(p)||F −→||q−p||E→0 0, also written (Landau notation): Near p,

Φ(q) = Φ(p) + o(1), (T.1)

called �the zero-th order Taylor expansion of Φ near p�. Which means:

∀ε > 0, ∃η > 0, s.t. ∀q ∈ E satisfying ||q − p||E < η, ||Φ(q)− Φ(p)||F < ε. (T.2)

And C0(U ;F) is the set of functions that are continuous at all p ∈ U .
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184 T.1. Di�erential

T.1.2 Directional derivative and di�erential (observer independent)

Let p ∈ U , u⃗ ∈ E, and let f : R→ F de�ned by

f(h) := Φ(p+ hu⃗). (T.3)

(In a manifold: f(h) := Φ(c(h)) where c is a C1 curve s.t. c(0) = p and c′(0) = u⃗.)

De�nition T.2 The function Φ is di�erentiable at p in the direction u⃗ i� f is derivable at 0, i.e. i� the

limit f ′(0) = limh→0
Φ(p+hu⃗)−Φ(p)

h =noted dΦ(p)(u⃗) exists in F , i.e. i�, near p,

Φ(p+ hu⃗) = Φ(p) + h dΦ(p)(u⃗) + o(h), (T.4)

equation called the �rst order Taylor expansion of Φ at p in the direction u⃗ (it is the �rst order Taylor
expansion of f near p).

Then dΦ(p)(u⃗) is called the directional derivative of Φ at p in the direction u⃗.
And if, for all u⃗ ∈ E, dΦ(p)(u⃗) exists (in F ) then Φ is called Gâteaux di�erentiable at p.

Exercice T.3 Prove: If Φ is Gâteaux di�erentiable at p then dΦ(p) is homogeneous, i.e., dΦ(p)(λu⃗) =
λ dΦ(p)(u⃗) for all u⃗ ∈ E and all λ ∈ R.

Answer. limh→0
Φ(p+h(λu⃗))−Φ(p)

h
= λ limh→0

Φ(p+λhu⃗)−Φ(p)
λh

= λ limk→0
Φ(p+ku⃗)−Φ(p)

k
.

De�nition T.4 If Φ is Gateaux di�erentiable and if moreover dΦ(p) is linear and continuous at p, then
Φ is said to be di�erentiable at p (or Fréchet di�erentiable at p).

In that case (T.4) reads
Φ(q) = Φ(p) + h dΦ(p).−→pq + o(||−→pq||E), (T.5)

since dΦ(p)(u⃗) =noted dΦ(p).u⃗ for all u⃗ ∈ E (linearity of Φ(p)).
And the a�ne function affp : q → affp(q) := Φ(p) + dΦ(p).−→pq is the a�ne approximation of Φ at p.

(So, the graph of affp is the tangent plane of Φ at p.)

De�nition T.5 Φ : U → F is di�erentiable in U i� Φ is di�erentiable at all p ∈ U . Then its di�erential
is the map

dΦ :

{
U → L(E;F )

p → dΦ(p).
(T.6)

And C1(U ;F) is the set of di�erentiable functions ψ such that dΦ ∈ C0(U ;L(E;F )).
And C2(U ;F) is the set of di�erentiable functions ψ such that dΦ ∈ C1(U ;L(E;F )).
... And Ck(U ;F) is the set of di�erentiable functions ψ such that dΦ ∈ Ck−1(U ;L(E;F ))....

Proposition T.6 The di�erentiation (or derivation) operator d :

{
C1(U ;F) → C0(U ;L(E;F ))

Φ → dΦ

}
is

R-linear (�a derivation is linear�).

Proof. d(Φ + λΨ)(p).u⃗ = limh→0
(Φ+λΨ)(p+hu⃗)−(Φ+λΨ)(p)

h = limh→0
Φ(p+hu⃗)−Φ(p)+λΨ(p+hu⃗)−λΨ(p)

h =

limh→0
Φ(p+hu⃗)−Φ(p)

h + λ limh→0
Ψ(p+hu⃗)−Ψ(p)

h = dΦ(p).u⃗ + λdΨ(p).u⃗ = (dΦ(p) + λdΨ(p)).u⃗ for all p
and u⃗, thus d(Φ + λΨ) = dΦ+ λdΨ for all λ ∈ R and Φ,Ψ ∈ C1(U ;F).

Exercice T.7 Prove: if f ∈ C1(U ;R) (scalar values) and Φ ∈ C1(U ;F) then, for all u⃗ ∈ E,

d(fΦ).u⃗ = (df.u⃗)Φ + f(dΦ.u⃗) (T.7)

(also written d(fΦ) = Φ⊗ df + f dΦ for a use with contraction rules).

Answer.

d(fΦ)(p).u⃗ = lim
h→0

f(p+hu⃗)Φ(p+hu⃗)− f(p)Φ(p)

h

= lim
h→0

f(p+hu⃗)Φ(p+hu⃗)− f(p)Φ(p+hu⃗)

h
+

f(p)Φ(p+hu⃗)− f(p)Φ(p)

h

= lim
h→0

f(p+hu⃗)− f(p)

h
(Φ(p) + o(1)) + lim

h→0
f(p)

Φ(p+hu⃗)− Φ(p)

h

= (df(p).u⃗)Φ(p) + f(p)(dΦ(p).u⃗).

(T.8)

184



185 T.2. A basis and the j-th partial derivative (subjective)

Remark T.8 In di�erential geometry, the tangent map is

TΦ :

{
U × E → F × F
(p, u⃗) → TΦ(p, u⃗) = (Φ(p), dΦ(p).u⃗).

(T.9)

The two points p (input) and Φ(p) (output) are the base points, and the two vectors u⃗ (input) and
dΦ(p).u⃗ (output) are the initial vector and its push-forward by Φ.

T.1.3 Notation for the second order Di�erential

Let Φ ∈ C2(U ;F); Thus dΦ ∈ C1(U ;L(E;F )), thus d(dΦ) ∈ C0(U ;L(E;L(E;F ))); So, for p ∈ U and u⃗ ∈
E, we have d(dΦ)(p).u⃗ = limh→0

dΦ(p+hu⃗)−dΦ(p)
h ∈ L(E;F ), and, with v⃗ ∈ E we have (d(dΦ)(p).u⃗).v⃗ ∈ F .

The bilinear map d2Φ(p) ∈ L(E,E;F ) is de�ned by

d2Φ(p)(u⃗, v⃗) = (d(dΦ)(p).u⃗).v⃗, (T.10)

thanks to the natural canonical isomorphism L ∈ L(E;L(E;F )) ↔ TL ∈ L(E,E;F ) given by
TL(u⃗1, u⃗2) := (L.u⃗1).u⃗2 for all u⃗1, u⃗2 ∈ E; Thus L =noted TL, thus d(dΦ) =

noted d2Φ(p) ∈ L(E,E;F ).
This gives the usual second order Taylor expansion of Φ (supposed C2) near p in the direction u⃗:

Φ(p+ hu⃗) = Φ(p) + h dΦ(p).u⃗+
h2

2
d2Φ(p)(u⃗, u⃗) + o(h2) (T.11)

(=the second order Taylor expansion of f : h→ f(h) = Φ(p+ hu⃗) near h = 0, cf. (T.3)).
And Schwarz's theorem tells: If Φ is C2 then d2Φ(p) is symmetric, i.e. d2Φ(p)(u⃗, v⃗) = d2Φ(p)(v⃗, u⃗).

T.2 A basis and the j-th partial derivative (subjective)

De�nition T.9 Let Φ ∈ C1(U ;F), u⃗ ∈ Γ(U) (a vector �eld), p ∈ U . The derivative of Φ at p along u⃗ is
de�ned by

∂u⃗Φ(p) := dΦ(p).u⃗(p)
noted
=

∂Φ

∂u⃗
(p) (= lim

h→0

Φ(p+ hu⃗(p))− Φ(p)

h
∈ F ). (T.12)

This de�nes the directional derivative operator along u⃗:

∂u⃗ :

{
C1(U ;F) → C0(U ;F )

Φ → ∂u⃗(Φ) := dΦ.u⃗, so ∂u⃗(Φ)(p) := dΦ(p).u⃗(p).
(T.13)

(And ∂u⃗(Φ) =
noted u⃗(Φ) in di�erential geometry thanks to E ≃ E∗∗ which gives ∂u⃗ ≃ u⃗.)

In particular, if (e⃗i(p)) is a basis at p, then the j-th partial derivative of Φ at p is

∂e⃗jΦ(p) := dΦ(p).e⃗j(p) =
∂Φ

∂e⃗j
(p)

noted
= ∂jΦ(p)

noted
= Φ|j(p) (= lim

h→0

Φ(p+ he⃗j(p))− Φ(p)

h
), (T.14)

and the j-th directional derivative operator is

∂e⃗j = ∂j =
∂

∂e⃗j
:


C1(U ;F) → C0(U ;F )

Φ → ∂jΦ := dΦ.e⃗j = ∂e⃗jΦ =
∂Φ

∂e⃗j
= Φ|j .

(T.15)

Moreover if U is an open set in the vector space E, if p =noted x⃗ =
∑n
i=1xie⃗i ∈ E, if (e⃗i) is a Cartesian

basis in E, then for any we have the usual notation:

∂e⃗jΦ(x⃗)
noted
=

∂Φ

∂xj
(x⃗), i.e. ∂e⃗jΦ

noted
=

∂Φ

∂xj
. (T.16)

Warning: This notation ∂
∂xj

is ambiguous since it depends on the name of a component.
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T.3 Application 1: Scalar valued functions

T.3.1 Di�erential of a scalar valued function (objective)

Here Φ
noted
= f :

{
U → R
p → f(p)

}
is a C1 scalar valued function, so df ∈ Ω1(U)∩C0(U ;E∗) (a C0 di�erential

form). So df(p) ∈ E∗ for all p ∈ U , and df(p).u⃗ = limh→0
f(p+hu⃗)−f(p)

h ∈ R for all u⃗ ∈ E.

Exercice T.10 Prove: If f, g ∈ C1(U ;R) then (derivative of a product)

d(fg) = (df)g + f(dg), (T.17)

i.e., d(fg).w⃗ = (df.w⃗)g + f(dg.w⃗) for all w⃗ ∈ Γ(U).

Answer. limh→0
f(p+hw⃗)g(p+hw⃗)−f(p)g(p)

h
= limh→0

f(p+hw⃗)g(p+hw⃗)−f(p)g(p+hw⃗)
h

+ limh→0
f(p)g(p+hw⃗)−f(p)g(p)

h
=

limh→0
f(p+hw⃗)−f(p)

h
(g(p) + o(1)) + limh→0 f(p)

g(p+hw⃗)−g(p)
h

, calculation that only requires the �rst order (a�ne)

approximation of f and g: We get the same result as with the a�ne functions f(x) = a0+a1x and g(x) = b0+b1x,

which give (fg)(x) = a0b0 + (a0b1+a1b0)x + a1b1x
2, and then (fg)′(x) = a0b1+a1b0 + 2a1b1x, which is indeed

equal to (f ′g + fg′)(x) = a1(b0+b1x) + (a0+a1x)b1.

T.3.2 Quanti�cation ...

If (e⃗i(p)) is a basis at p, then

df(p).e⃗j(p)
(T.15)
= ∂e⃗jf(p)

noted
= ∂jf(p)

noted
= f|j(p). (T.18)

Thus, with (πei(p)) the dual basis of the basis (e⃗i(p)),

df(p) =

n∑
j=1

f|j(p)πej(p) and [df(p)]|e⃗ = ( f|1(p) ... f|n(p) ) (row matrix). (T.19)

Duality notations: πei = ei, u⃗ =
∑n
j=1u

j e⃗j , df =
∑n
j=1f|j e

j , df.u⃗ =
∑n
j=1f|ju

j .

Interpretation. In E = Rn, call cpi : h ∈ [−ε, ε] → cpi(h) = p + he⃗i(p) ∈ R⃗n the i-th coordinate line
at p: Hence c′pi(0) = e⃗i(p) is the tangent vector at p = cpi(0) to Im(cpi). Thus (f ◦ cpi)′(0) = df(p).e⃗i(p)

is the tangent vector at p to the image f ◦ cpi =noted f(cpi) or the i-th coordinate line at p.

Exercice T.11 Prove: (fg)|j = f|j g + f g|j when f, g : U → R are C1 scalar valued functions.

Answer. Apply (T.8): here d(fg) = g df + f dg, i.e. d(fg).e⃗j = (df.e⃗j) g + f (dg.e⃗j) for all j.

T.3.3 ... and the notation ∂f
∂xi

....

O is an origin in E , (e⃗i) is a Cartesian basis in E, (πei) =
noted (dxi) is the (covariant) dual basis,

p =noted −→Op = x⃗ =
∑n
i=1xie⃗i. Then (unmissable in thermodynamics)

∂if
noted
=

∂f

∂xj
, so df =

n∑
j=1

∂f

∂xj
dxj , (T.20)

i.e. df(x⃗) =
∑
j
∂f
∂xj

(x⃗) dxj , i.e. df(x⃗).u⃗ =
∑
j
∂f
∂xj

(x⃗)uj for all u⃗ =
∑
j uj e⃗j ∈ E. And ∂if(p) = df(p).e⃗i is

the derivative along the i-th Cartesian coordinate line at x⃗.
(Duality notations: df =

∑
j
∂f
∂xj dx

j and df(x⃗).u⃗ =
∑
j
∂f
∂xj (x⃗)u

j .)

T.3.4 ... is subjective

An English observer chooses a Euclidean basis (⃗ai) made with the foot, writes x⃗ =
∑
i xia⃗i and uses ∂f

∂xi
.

A French observer chooses a Euclidean basis (⃗bi) made with the metre, writes x⃗ =
∑
i xi⃗bi and uses ∂f

∂xi
.

But the English ∂f
∂xi

is not equal to the French ∂f
∂xi

.
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Indeed, if x⃗ =
∑
i xa,ia⃗i =

∑
i xb,i⃗bi, then

∂f
∂xa,i

(p) = df(p).⃗ai while
∂f
∂xb,i

(p) = df(x⃗).⃗bi, and e.g.

if b⃗i = λa⃗i, ∀i, then
∂f

∂xb,i
= λ

∂f

∂xa,i
(change of unit formula), (T.21)

since df(p).⃗bj = df(p).(λa⃗j) = λ df(p).⃗aj (linearity of df(x⃗)). (Duality notations: ∂f

∂xj
b

= λ ∂f

∂xj
a
.)

More generally, with P the transition matrix from (⃗ai(p)) to (⃗bi(p)), we have [df(p)]|⃗b = [df(p)]|⃗a.P (p)

(change of basis formula for linear forms):

[df ]|⃗b = [df ]|⃗a.P, i.e.
∂f

∂xb,j
=

n∑
i=1

∂f

∂xa,i
Pij written

∂f

∂xb,j
=

n∑
i=1

∂f

∂xa,i

∂xa,i
∂xb,j

. (T.22)

(Duality notations: ∂f

∂xj
b

=
∑n
i=1

∂f
∂xi

a
P ij , written

∂f

∂xj
b

=
∑n
i=1

∂f
∂xi

a

∂xi
a

∂xj
b

.)

Remark T.12 Why this last notation Pij =noted ∂xa,i

∂xb,j
?

Answer : [x⃗]|⃗a = P.[x⃗]|⃗b, tells that [x⃗]|⃗a is a function of [x⃗]|⃗b, so is written [x⃗]|⃗a([x⃗]|⃗b) = P.[x⃗]|⃗b, sox1
a(x

1
b , ..., x

n
b )

...
x1
a(x

1
b , ..., x

n
b )

 =


∑n

j=1P
1
j x

j
b

...∑n
j=1P

n
j xj

b

 , thus
∂xi

a

∂xj
b

(x1
b , ..., x

n
b ) = P i

j , ∀i, j. (T.23)

More details: With an origin O ∈ E and x⃗ =
−→
Op, de�ne fa, fb ∈ C1(Mn1;R) by fa([x⃗]|⃗a) := f(p) and fb([x⃗]|⃗b) :=

f(p). Thus fb([x⃗]|⃗b) = fa([x⃗]|⃗a) = (fa ◦ [x⃗]|⃗a)([x⃗]|⃗b), hence (T.22) should be written (with no abusive notations):

∂fb
∂xi

b

([x⃗]|⃗b) =

n∑
j=1

∂fa

∂xj
a

([x⃗]|⃗a)
∂xj

a

∂xi
b

([x⃗]|⃗b). (T.24)

Question: Why did we need to introduce fa and fb (and not just keep f)? Answer: Because x⃗ ∈ Rn while
[x⃗]|⃗a, [x⃗]|⃗b ∈ Mn1 and [x⃗]|⃗a ̸= [x⃗]|⃗b: A vector x⃗ can't be reduced to a matrix of components (which one?).

T.3.5 Gradient (subjective: requires some inner dot product)

Let f ∈ C1(U ;R) (a C1 scalar valued function). Choose (subjective) an inner dot product (·, ·)g in E.

De�nition T.13 The (·, ·)g-conjugate gradient ⃗gradgf(p) =
noted ∇⃗gf(p) of f at p ∈ U relative to (·, ·)g

is the vector in E de�ned by

∀u⃗ ∈ E, df(p).u⃗ = ( ⃗gradgf(p), u⃗)g = ⃗gradgf(p) •g u⃗
noted
= ∇⃗gf(p) •g u⃗. (T.25)

If an inner dot product (·, ·)g is imposed then ⃗gradgf =noted ⃗gradf = ∇⃗f is called the gradient of f .

So ⃗gradgf(p)
(F.3)
= R⃗g(df(p)) is the (·, ·)g-Riesz representation vector in E of the linear form df(p) ∈ E∗.

Fundamental: An English observer with his foot, his Euclidean basis (⃗ai) and associated Euclidean dot

product (·, ·)a, and a French observer with his metre, his Euclidean basis (⃗bi) and associated Euclidean

dot product (·, ·)b: They do not have the same gradient. E.g. if (⃗bi) = (λa⃗i) then

⃗gradbf
(F.13)
= λ2 ⃗gradaf with λ2 > 10. (T.26)

⃗gradbf is quite di�erent from ⃗gradaf isn't it? And to forget this fact leads to accidents like the crash of
the Mars Climate Orbiter probe, cf. remark A.17.

Subjective �rst order Taylor expansion: If an inner dot product (·, ·)g exists and is used, then the
�rst order Taylor expansion (T.4) gives

f(p+ hu⃗) = f(p) + h ( ⃗gradgf(p), u⃗)g + o(h) (= f(p) + h ⃗gradgf(p) •
g u⃗+ o(h)). (T.27)

Fundamental once again (we insist):
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188 T.4. Application 2: Coordinate system basis and Christo�el symbols

• An inner dot product does not always exist (as a meaningful tool), see � B.4 (thermodynamics),
thus, for a C1 function, a gradient does not always exists (contrary to a di�erential).

• df(p) is a linear form (covariant) while ⃗gradgf(p) is a vector (contravariant). In particular the
change of basis formulas di�er, cf. (A.29):

[df ]|new = [df ]|old.P, while [ ⃗gradgf ]|new = P−1.[ ⃗gradgf ]|old. (T.28)

• df cannot be identi�ed with ⃗gradf (with one?) (Recall: there is no natural canonical isomorphims
between E and E∗.) Vocabulary: The di�erential df is also called the �covariant gradient of f �, while the

vector ⃗gradgf is called the �contravariant gradient of f relative to (·, ·)g�.

Isometric Euclidean framework: If one Euclidean dot product is imposed to all observers (foot?

metre?) then ⃗gradgf =noted ⃗gradf = ∇⃗f and (T.25) is written df.u⃗ = ⃗gradf • u⃗ = ∇⃗f • u⃗.

Exercice T.14 Cartesian basis (e⃗i) and (·, ·)g given by [g][e⃗ =

(
1 0
0 2

)
. Give [ ⃗gradgf ]|e⃗.

Answer. [df ]|e⃗ = ( ∂f
∂x1

∂f
∂x2

) (row matrix), thus (T.25) gives [ ⃗gradgf ]|e⃗ =

( ∂f
∂x1

1
2

∂f
∂x2

)
(column matrix ̸= [df ]T ).

T.4 Application 2: Coordinate system basis and Christo�el symbols

(Needed when dealing with covariance.)

T.4.1 Coordinate system, and coordinate system basis

(A⃗i) is the canonical basis of the Cartesian vector space R× ...×R (n times), Upar =]a1, b1[×...×]an, bn[
is an non empty open set called the set of parameters, q⃗ =

∑
i qiA⃗i = (q1, ..., qn) ∈ Upar.

O is an origin in the a�ne geometric space Rn, (⃗ai) is a Cartesian basis in R⃗n, x⃗ =
−→
Op ∈ R⃗n for

all p ∈ Rn, U = {x⃗ ∈ R⃗n} is an open set, and Ψ : q⃗ ∈ Upar → x⃗ ∈ U is a C2-di�eomorphism called a
coordinate system.

Ψ being a di�eomorphism, at any x⃗ = Ψ(q⃗) ∈ U , the basis (e⃗i(x⃗)) de�ned by, for all i,

e⃗i(x⃗) := dΨ(q⃗).A⃗i, (T.29)

is called the coordinate system basis at x⃗. Its dual basis at x⃗ is made of the linear forms
πei(x⃗) =

noted dqi(x⃗) ∈ Rn∗ de�ned by, for all i, j,

dqi(x⃗).e⃗j(x⃗) = δij (= ei(x⃗).e⃗j(x⃗)). (T.30)

Duality notations: ei(x⃗) =noted dqi(x⃗), thus dqi(x⃗).e⃗j(x⃗) = δij for all i, j.

Remark T.15 Pay attention to the notations that could contradict themselves: In Upar the dual basis

(πAi) of the Cartesian basis (A⃗i) is a uniform basis (independent of q⃗)... and is (almost) never written (dqi),
because the notation dqi is used for the dual basis cf. (T.30). Historical notations...

E.g., cf. the polar coordinate system at � 6.6.2: q⃗ = rA⃗1 + θA⃗2 =noted (r, θ) = (q1, q2), and e⃗i(x⃗) :=

dψ(q⃗).A⃗i at x⃗ = Ψ(q⃗) is the polar basis, and (dq1(x⃗), dq2(x⃗)) = (dr(x⃗), dθ(x⃗)) is the dual basis at x⃗.

T.4.2 Parametric expression of a di�erential

A function f :

{
U → R
x⃗ → f(x⃗)

}
can be studied with g := f ◦Ψ :

{
Upar → R
q⃗ → g(q⃗) := f(x⃗) when x⃗ = Ψ(q⃗)

}
thanks to Ψ (di�eomorphism). In particular, if f is C1,

dg(q⃗) = df(x⃗).dΨ(q⃗) when x⃗ = Ψ(q⃗) (T.31)

so for all j,

∂(f ◦Ψ)

∂qj
(q⃗) =

∂g

∂qj
(q⃗) := dg(q⃗).A⃗j = df(x⃗).dΨ(q⃗).A⃗j = df(x⃗).e⃗j(x⃗)

noted
=

∂f

∂qj
(x⃗) ... (T.32)

... Warning (notations!): f is a function of x⃗, not of q⃗ (!), and the notations ∂f
∂qj

(x⃗) means := ∂(f◦Ψ)
∂qj

(q⃗)

when x⃗ = Ψ(q⃗), and nothing else. Historical notations...
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189 T.4. Application 2: Coordinate system basis and Christo�el symbols

Thus with (dqj(x⃗)) the dual basis of the coordinate basis (e⃗i(x⃗)) = (A⃗i∗(x⃗)) at x⃗,

df(x⃗) =

n∑
j=1

∂f

∂qj
(x⃗) dqj(x⃗). (T.33)

(Check: (
∑n
j=1

∂f
∂qj

(x⃗) dqj(x⃗)).e⃗i(x⃗) =
∑n
j=1

∂f
∂qj

(x⃗) (dqj(x⃗).e⃗i(x⃗) =
∂f
∂qj

(x⃗) =(T.32) df(x⃗).e⃗j(x⃗).)

Duality notations: df(x⃗) =
∑
j
∂f
∂qj (x⃗) dq

j(x⃗).

T.4.3 Christo�el symbols

We use duality notations for readability.

De�nition T.16 In a coordinate system basis (e⃗i(x⃗)) in E, the Christo�el symbol γijk(x⃗) ∈ R are the

components of the vector de⃗k(p).e⃗j(p), i.e. de⃗k(x⃗).e⃗j(x⃗) =
∑n
k=1γ

i
jk(x⃗)e⃗i(x⃗): In U ,

de⃗k.e⃗j =

n∑
i=1

γijke⃗i , or de⃗j .e⃗i =

n∑
k=1

γkij e⃗k. (T.34)

So, with (ei(x⃗)) the dual basis of (e⃗i(x⃗)), γ
i
jk := ei.de⃗k.e⃗j , and, for calculations with contractions,

de⃗k =noted ∑
ij γ

i
jke⃗i ⊗ ej (or de⃗j =

∑n
k=1γ

k
ij e⃗k ⊗ ei).

(The Christo�el symbols vanish if (e⃗i) is Cartesian.)

(Di�erential geometry in manifolds: The γijk = ei.∇e⃗j e⃗k are the component of the connection ∇,
the usual connection in a surface in Rn being the Riemannian connection, in which case ∇e⃗j e⃗k is the
orthogonal projection of de⃗k.e⃗j on the surface relative to a Euclidean dot product. E.g. in Rn the usual

connection ∇ is nothing but the di�erential d: It is not the gradient ∇⃗...! In facts, [ ⃗gradφ]|e⃗ = [∇φ]T|e⃗ =
[dφ]T|e⃗ once an inner dot product and a basis have been chosen (hence confusions in mechanics).

Exercice T.17 Polar coordinate system, see remark 6.12, de⃗2.e⃗2 = −re⃗1, thus γ122 = −r and γ222 = 0.

Exercice T.18 Prove: If (e⃗i(x⃗)) is the coordinate system basis of a C2 coordinate system, then:

∀i, j, de⃗i.e⃗j = de⃗j .e⃗i (=
∂2Ψ

∂qi∂qj
), and ∀i, j, k, γkji = γkij (symmetry for lower indices). (T.35)

Answer. e⃗i(x⃗) = (e⃗i ◦ Ψ)(q⃗) = dΨ(q⃗).A⃗i gives de⃗i(x⃗).e⃗i(x⃗) = de⃗i(Ψ(q⃗)).dΨ(q⃗).A⃗j = d(dΨ(q⃗).A⃗i).A⃗j =
∂ ∂Ψ

∂qi

∂qj
=

∂ ∂Ψ
∂qj

∂qi
(Schwarz theorem since Ψ is C2) = de⃗j(x⃗).e⃗i(x⃗) =

∂2Ψ
∂qj∂qi

(q⃗), thus
∑n

k=1γ
k
ij e⃗k =

∑n
k=1γ

k
jie⃗k.

Exercice T.19 Consider two coordinate system bases (⃗ai(x⃗)) and (⃗bi(x⃗)) at x⃗, P (x⃗) = [P ij (x⃗)] the

transition matrix from (⃗ai(x⃗)) to (⃗bi(x⃗)), and Q = P−1. Using the generic notation de⃗k.e⃗j =
∑n
i=1γ

i
jk,ee⃗i,

prove the change of basis formula for the Christo�el symbols:

γijk,b =

n∑
λ,µ,ν=1

QiλP
µ
j P

ν
k γ

λ
µν,a +

n∑
λ,µ=1

QiλP
µ
j (dP

λ
k .⃗aµ) (=

n∑
λ,µ,ν=1

QiλP
µ
j P

ν
k γ

λ
µν,a +

n∑
λ=1

Qiλ(dP
λ
k .⃗bj)).

(T.36)
(Because of the term

∑
µν Q

i
λP

µ
j (dP

λ
k .⃗aµ), a derivation is not a tensor.)

Answer. b⃗k(x⃗) =
∑

ν P
ν
k (x⃗)⃗aν(x⃗) gives d⃗bk .⃗bj =

∑
ν(dP

ν
k .⃗bj )⃗aν +

∑
ν P

ν
k (da⃗ν .⃗bj) =

∑
µν P

µ
j (dP

ν
k .⃗aµ)⃗aν +∑

µν P
ν
k P

µ
j (da⃗ν .⃗aµ); And bi =

∑
λ Qi

λa
λ, thus

γi
jk,b = bi.d⃗bk .⃗bj =

∑
λµν

Qi
λP

µ
j (dP

ν
k .⃗aµ)a

λ .⃗aν +
∑
λµν

Qi
λP

µ
j P

ν
k a

λ.(da⃗ν .⃗aµ) =
∑
λµ

Qi
λP

µ
j (dP

λ
k .⃗aµ) +

∑
λµν

Qi
λP

µ
j P

ν
k γ

λ
µν,a,

thus (T.36).
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T.5 Application 3: Di�erential of a vector �eld

Here F = E = R⃗n, Φ =noted w⃗ ∈ Γ(U) is a vector �eld. Thus dw⃗(p) ∈ L(E;E) and dw⃗.u⃗ is a vector �eld

in E for all u⃗ ∈ Γ(U), given by (dw⃗.u⃗)(p) = dw⃗(p).u⃗(p) = limh→0
w⃗(p+hu⃗(p))−w⃗(p)

h ∈ E.

Quanti�cation: (e⃗i(p)) is a basis at p in E. Call wi(p) ∈ R the components of w⃗(p), i.e. w⃗(p) =∑n
i=1wi(p)e⃗i(p). And call wi|j(p) the components of dw⃗(p) (endomorphism in E):

w⃗ =

n∑
i=1

wie⃗i, dw⃗.e⃗j =

n∑
i=1

wi|j e⃗i, [dw⃗]|e⃗ = [wi|j ] (Jacobian matrix). (T.37)

And tensorial notations for calculations with contractions: (πei(p)) being the dual basis,

dw⃗ =

n∑
i,j=1

wi|j e⃗i ⊗ πej . (T.38)

Duality notations: w⃗ =
∑n
i=1w

ie⃗i, dw⃗.e⃗j =
∑n
i,j=1w

i
|j e⃗i, [dw⃗]|e⃗ = [wi|j ], and dw⃗ =

∑n
i,j=1w

i
|j e⃗i ⊗ e

j .

In a Cartesian basis: Here (e⃗i) is uniform, so w⃗(p) =
∑n
i=1wi(p)e⃗i gives dw⃗(p).e⃗j =

∑n
i=1(dwi(p).e⃗j)e⃗i,

thus (T.37) gives

wi|j =
∂wi
∂xj

(p)
noted
= wi,j , so [dw⃗]|e⃗ = [

∂wi
∂xj

]. (T.39)

Duality notations: wi|j =
∂wi

∂xj and [dw⃗]|e⃗ = [∂w
i

∂xj ].

In a coordinate system basis: With the coordinate system described in � T.4 and the duality notations
for readability (and usage). w⃗(p) =

∑n
i=1w

i(p)e⃗i(p) gives, for all j,

dw⃗.e⃗j =

n∑
i=1

(dwi.e⃗j)e⃗i +

n∑
i=1

wi(de⃗i.e⃗j) (=

n∑
i=1

wi|j e⃗i). (T.40)

(Tensorial notations to be used with contractions: dw⃗ =
∑
i e⃗i ⊗ dwi +

∑
i w

i de⃗i =
∑
ij w

i
|j e⃗i ⊗ e

j .)

And
∑
i w

i(de⃗i.e⃗j) =
(T.34)

∑
ik w

iγkjie⃗k =
∑
ik w

kγijke⃗i, thus, for all i, j,

wi|j =
∂wi

∂qj
+

n∑
k=1

wkγijk where
∂wi

∂qj
:= dwi.e⃗j . (T.41)

(∂w
i

∂qj := dwi.e⃗j is the derivation along the j-th coordinate line of the scalar valued function wi).

(In particular, if w⃗ = e⃗ℓ =
∑
i δ
i
ℓe⃗i, we recover de⃗ℓ.e⃗j =

∑
i 0e⃗i +

∑
ik δ

k
ℓ γ

i
jke⃗i =

∑
i γ

i
jℓe⃗i, cf. (T.34).)

Exercice T.20 dw⃗(p) being an endomorphism, with exercise T.19, w⃗ =
∑
i u

ia⃗i =
∑
i v
i⃗bi andQ = P−1,

check (calculations):

[dw⃗]|⃗b = P−1.[dw⃗]|⃗a.P, i.e. vi|j =

n∑
k,ℓ=1

Qiku
k
|ℓP

ℓ
j . (T.42)

Answer. [w⃗]|⃗b = Q.[w⃗]|⃗a, i.e. v
i =

∑
k Q

i
ku

k for all i, thus dvi .⃗bj =
∑

λ(dQ
i
λ .⃗bj)u

λ +
∑

λ Qi
λ(du

λ .⃗bj), thus

vi|j
(T.34)
= dvi .⃗bj +

∑
k

vkγi
jk,b

(T.36)
=

∑
λµ

uλPµ
j (dQ

i
λ .⃗aµ) +

∑
λµ

Qi
λP

µ
j (du

λ .⃗aµ) +
∑

kωλµν

(Qk
ωu

ω)Qi
λP

µ
j P

ν
k γ

λ
µν,a +

∑
kλµν

(Qk
λu

λ)Qi
νP

µ
j (dP

ν
k .⃗aµ)

And Qk
ωP

λ
k = δλω gives (dQk

ω .⃗aµ)P
λ
k +Qk

ω(dP
λ
k .⃗aµ) = 0, thus the fourth term reads∑

kλµν

uλQi
νP

µ
j Q

k
λ(dP

ν
k .⃗aµ) = −

∑
kλµν

uλQi
νP

µ
j P

ν
k (dQ

k
λ .⃗aµ) = −

∑
λµ

uλPµ
j (dQ

i
λ .⃗aµ),

which cancels the �rst term: Thus vi|j =
∑

λµ Qi
λP

µ
j (du

λ .⃗aµ)+
∑

λµν u
νQi

λP
µ
j γ

λ
µν =

∑
λµ Qi

λu
i
|jP

µ
j , i.e. (T.42).
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T.6 Application 4: Di�erential of a di�erential form

Here F = R, Φ =noted ℓ ∈ Ω1(U) (di�erential form) supposed C1, p ∈ U , so ℓ(p) ∈ E∗. Its di�erential at p

in a direction u⃗ is dℓ(p).u⃗ = limh→0
ℓ(p+hu⃗)−ℓ(p)

h ∈ E∗. And (dℓ(p).u⃗).v⃗ = limh→0
ℓ(p+hu⃗).v⃗−ℓ(p).v⃗

h ∈ R
for all u⃗, v⃗ ∈ E.

Quanti�cation: (πei(p) its the dual basis.
Call ℓi(p) ∈ R the components of ℓ(p), i.e. ℓ(p) =

∑n
i=1ℓi(p)πei(p). And call ℓi|j(p) the components

of dℓ(p) ∈ L(E;E∗):

ℓ =

n∑
i=1

ℓiπei, dℓ.e⃗j =

n∑
i=1

ℓi|jπei, [dℓ]|e⃗ = [ℓi|j ]. (T.43)

Tensorial notations, to be used with contractions: dℓ =
∑n
i,j=1ℓi|jπei ⊗ πej .

Duality notations: ℓ =
∑
i ℓie

i, dℓ.e⃗j =
∑n
i=1ℓi|je

i, [dℓ]|e⃗ = [ℓi|j ], and dℓ =
∑n
i,j=1ℓi|je

i ⊗ ej .

In a Cartesian basis: Here (e⃗i) is uniform, so

ℓi|j =
∂ℓi
∂xj

(p)
noted
= ℓi,j , so [dℓ]|e⃗ = [

∂ℓi
∂xj

]. (T.44)

Duality notations: ℓi|j = dℓi.e⃗j =
∂ℓi
∂xj and [dℓ]|e⃗ = [ ∂ℓi∂xj ].

In a coordinate system basis: With duality notations and Christo�el symbols:

dei.e⃗j = −
n∑
k=1

γijke
k . (T.45)

Indeed, ei.e⃗k = δik gives (dei.e⃗j).e⃗k + ei.(de⃗k.e⃗j) = 0, thus (dei.e⃗j).e⃗k = −ei.
∑
ℓ γ

ℓ
jke⃗ℓ = −γijk. Thus

ℓi|j =
∂ℓi
∂qj
−

n∑
k=1

ℓkγ
k
ji where

∂ℓi
∂qj

(p) := dℓi(p).e⃗i(p). (T.46)

Indeed, ℓ =
∑
i ℓie

i gives dℓ.e⃗j =
∑
i(dℓi.e⃗j)e

i +
∑
i ℓi(de

i.e⃗j) =
∑
i(dℓi.e⃗j)e

i −
∑
ik ℓiγ

i
jke

k.

T.7 Application 5: Di�erential of a 1 1 tensor

Consider a C1
(
1
1

)
tensor τ :

{
U → L(E∗, E;R)
p → τ(p)

}
. Its di�erential dτ :

{
U → L(E;L(E∗, E;R))
p → dτ(p)

}
is

de�ned by dτ(p).u⃗ = limh→0
τ(p+hu⃗)−τ(p)

h ∈ L(E∗, E;R), so (dτ(p).u⃗)(ℓ, v⃗) = limh→0
τ(p+hu⃗)(ℓ,v⃗)−τ(p)(ℓ,v⃗)

h
(∈ R), for all u⃗, v⃗ ∈ E and ℓ ∈ E∗.

Quanti�cation (duality notations): Basis (e⃗i(p)) in E at p, dual basis (ei(p)), call τ ij(p) the components

of τ(p), call τ ij|k(p) the components of dτ(p):

τ =
∑
ij

τij e⃗i ⊗ ej , dτ .e⃗k =

n∑
i,j=1

τ ij|ke⃗i ⊗ e
j , or dτ =

n∑
i,j,k=1

τ ij|ke⃗i ⊗ e
j ⊗ ek. (T.47)

(Classical notations: τ =
∑
ij τij e⃗i ⊗ πej , dτ.e⃗k =

∑
ij τij|ke⃗i ⊗ πej , and dτ =

∑
ijk τij|ke⃗i ⊗ πej ⊗ πek.)

Cartesian basis: dτ(p).e⃗k =
∑
ij(dτ

i
j(p).e⃗k)e⃗i ⊗ ej =

∑
ijk

∂τ i
j

∂xk (p)e⃗i ⊗ ej ⊗ ek gives

τ ij|k =
∂τ ij
∂xk

noted
= τ ij,k (:= dτ ij .e⃗k). (T.48)

Coordinate system basis: τ(p) =
∑n
i,j=1τ

i
j(p)e⃗i(p)⊗ ej(p) gives, for all k,

dτ.e⃗k =
∑
ij(dτ

i
j .e⃗k)e⃗i ⊗ ej +

∑
ij τ

i
j(de⃗i.e⃗k)⊗ ej +

∑
ij τ

i
j e⃗i ⊗ (dej .e⃗k)

=
∑
ij(dτ

i
j .e⃗k)e⃗i ⊗ ej +

∑
ijℓ τ

i
jγ
ℓ
kie⃗ℓ ⊗ ej −

∑
ijℓ τ

i
jγ
j
kℓe⃗i ⊗ eℓ

=
∑
ij(dτ

i
j .e⃗k)e⃗i ⊗ ej +

∑
ijℓ τ

ℓ
j γ

i
kℓe⃗i ⊗ ej −

∑
ijℓ τ

i
ℓγ
ℓ
kj e⃗i ⊗ ej

(T.49)
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thus

τ ij|k =
∂τ ij
∂qk

+

n∑
ℓ=1

τ ℓj γ
i
kℓ −

n∑
ℓ=1

τ iℓγ
ℓ
kj where

∂τ ij
∂qk

:= dτ ij .e⃗k. (T.50)

(We have the + sign from vector �elds, cf. (T.41), and the − sign from di�erential forms, cf. (T.46).)

Exercice T.21 If u⃗ ∈ E, ℓ ∈ E∗ then for the elementary
(
1
1

)
tensor τ = u⃗⊗ ℓ prove:

d(u⃗⊗ ℓ).e⃗k = (du⃗.e⃗k)⊗ ℓ+ u⃗⊗ (dℓ.e⃗k), and (u⃗⊗ ℓ)ij|k = ui|kℓj + uiℓj|k, (T.51)

when u⃗ =
∑
i u

ie⃗i, ℓ =
∑
j ℓje

j , du⃗.e⃗k =
∑
i u

i
|ke⃗i, dℓ.e⃗k =

∑
j ℓj|ke

j .

Answer. τ = u⃗ ⊗ ℓ =
∑

ij τ
i
j e⃗i ⊗ ej . where τ i

j = uiℓj , and dτ.e⃗k =
∑n

i,j=1τ
i
j|ke⃗i ⊗ ej where τ i

j|k = (uiℓj)|k =

ui
|kℓj + uiℓj|k = (u⃗⊗ ℓ)ij|k. Thus (similar to the derivation of a product):

d(u⃗⊗ ℓ)(p).e⃗k(p) = lim
h→0

(u⃗⊗ ℓ)(p+he⃗k(p))− (u⃗⊗ ℓ)(p)

h
= lim

h→0

u⃗(p+he⃗k(p))⊗ ℓ(p+he⃗k(p))− u⃗(p)⊗ ℓ(p)

h

= lim
h→0

u⃗(p+he⃗k(p))⊗ ℓ(p+he⃗k(p))− u⃗(p+he⃗k(p))⊗ ℓ(p)

h
+ lim

h→0

u⃗(p+he⃗k(p))⊗ ℓ(p)− u⃗(p)⊗ ℓ(p)

h

= lim
h→0

(u⃗(p+he⃗k(p))⊗ (
ℓ(p+he⃗k(p))− ℓ(p)

h
) + lim

h→0
(
u⃗(p+he⃗k(p))− u⃗(p)

h
)⊗ ℓ(p)

= u⃗(p)⊗ (dℓ(p).e⃗k(p)) + (du⃗(p).e⃗k(p))⊗ ℓ(p),

thus (T.51)1. Which gives d(u⃗⊗ ℓ).e⃗k = (
∑

i u
ie⃗i)⊗ (

∑
j ℓj|ke

j) + (
∑

i u
i
|ke⃗i)⊗ (

∑
j ℓje

j), thus (T.51)2.

T.8 Divergence of a vector �eld: Invariant

Γ(U) is the set of C1 vector �elds in U , and Tr : L(E;E)→ R is the trace operator.

De�nition T.22 The divergence operator is

div := Tr ◦ d :

{
Γ(U) → C0(U ;R)

w⃗ → divw⃗ := Tr(dw⃗),
(T.52)

so divw⃗(p) = Tr(dw⃗(p)) is the trace of the endomorphism dw⃗(p).

Tr and d are linear, hence div = Tr ◦ d is R-linear (composed of two R-linear maps).

Proposition T.23 The divergence of a vector �eld is objective (is an invariant): Same value for all
observers (objective quantity) intrinsic to w⃗.

Proof. The di�erential and the trace are objective. (Computation: w⃗ =
∑
i u

ia⃗i =
∑
i v
i⃗bi gives

vi|j =
∑
kℓQ

i
ku

k
|ℓP

ℓ
j , see (T.42), thus

∑
i v
i
|i =

∑
ikℓ P

ℓ
i Q

i
ku

k
|ℓ =

∑
kℓ δ

ℓ
ku

k
|ℓ =

∑
k u

k
|k.)

Quanti�cation: w⃗ ∈ Γ(U), (e⃗i) is a basis, w⃗ =
∑n
i=1wie⃗i with classical notations, and wi|j(p) are the

components of the vector dw⃗(p).e⃗j(p) in the basis (e⃗i(p)). Thus

divw⃗ =

n∑
i=1

wi|i . (T.53)

Duality notations: w⃗ =
∑n
i=1w

ie⃗i, dw⃗.e⃗j =
∑n
i=1w

i
|j e⃗i, [dw⃗]|e⃗ = [wi|j ], divw⃗ =

∑n
i=1w

i
|i.

Cartesian basis (e⃗i) (classical notations): dwi.e⃗j =
noted ∂wi

∂xj
and

wi|j =
∂wi
∂xi

, thus divw⃗ =

n∑
i=1

∂wi
∂xi

. (T.54)

(Duality notations: divw⃗ =
∑n
i=1

∂wi

∂xi .)

Coordinate system basis (e⃗i) (duality notations): With the Christo�el symbols, cf. (T.34), (T.41)
gives

wi|i =
∂wi

∂qi
+

n∑
i=1

wkγiik, thus divw⃗ =

n∑
i=1

∂wi

∂qi
+

n∑
i,k=1

wkγiik. (T.55)
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193 T.9. Objective divergence for 1 1 tensors

Exercice T.24 Prove:
div(fw⃗) = df.w⃗ + f divw⃗. (T.56)

Answer. d(fw⃗) = w⃗ ⊗ df + f dw⃗ gives Tr(d(fw⃗)) = Tr(w⃗ ⊗ df) + Tr(f dw⃗) = df.w⃗ + f Tr(dw⃗). Use a coordinate

system if you prefer.

Remark T.25 If α =
∑n
i=1αie

i is a di�erential form, then dα =
∑n
i=1αi|je

i⊗ ej where αi|j := e⃗i.dα.e⃗j .
Here it is impossible to de�ne an objective trace of dα like

∑n
i=1αi|i: The result depends on the choice of

the basis (the Einstein convention is not satis�ed, and e.g. with a Euclidean basis the result depends on
the choice of unit of length: Foot? Meter?). Thus the objective (or intrinsic) divergence of a di�erential
form is a nonsense. E.g. the trace of an inner dot product (·, ·)g is a nonsense.

T.9 Objective divergence for 1 1 tensors

To create an objective divergence for a second order
(
1
1

)
tensor τ ∈ T 1

1 (U), in (T.47) we have to contract

an admissible index with the �di�erential index k�. So, no choice: Contract i and k to get d̃ivτ :=∑n
i,j=1τ

i
j|ie

j . Let us start with:

De�nition T.26 Let u⃗ ∈ Γ(U) and ℓ ∈ Ω1(U) be C1. The objective divergence of the elementary
(
1
1

)
tensor u⃗⊗ ℓ ∈ T 1

1 (U) is the di�erential form d̃iv(u⃗⊗ ℓ) ∈ Ω1(U) de�ned by

d̃iv(u⃗⊗ ℓ) = (divu⃗)ℓ+ dℓ.u⃗, meaning d̃iv(u⃗⊗ ℓ).w⃗ := (divu⃗)(ℓ.w⃗) + (dℓ.w⃗).u⃗ (T.57)

for all w⃗ ∈ E. (No basis and no inner dot product needed.)

And the objective divergence operator d̃iv :

{
T 1
1 (U) → Ω1(U)

τ → d̃ivτ

}
is the linear map de�ned on ele-

mentary tensors with (T.57).

Quanti�cation: If (e⃗i) is a Cartesian basis, (e
i) its dual basis, u⃗ =

∑
i u

ie⃗i, w⃗ =
∑
i w

ie⃗i, ℓ =
∑
j ℓje

j ,

then u⃗⊗ ℓ =
∑
ij u

iℓj e⃗i ⊗ ej and divu⃗ =
∑
i
∂ui

∂xi and dℓ =
∑
ij
∂ℓj
∂xi e

i ⊗ ej , thus dℓ.w⃗ =
∑
j
∂ℓj
∂xiw

jei, thus

d̃iv(u⃗⊗ ℓ).w⃗ = (divu⃗)(ℓ.w⃗) + (dℓ.w⃗).u⃗ =
∑
i
∂ui

∂xi

∑
j ℓjw

j +
∑
ij
∂ℓj
∂xiw

jui, thus

d̃iv(u⃗⊗ ℓ) =
n∑

i,j=1

(
∂ui

∂xi
ℓj +

∂ℓj
∂xi

ui)ej (= (divu⃗)ℓ+ dℓ.u⃗). (T.58)

Thus for the elementary tensor τ = u⃗ ⊗ ℓ =
∑
ij u

iℓj e⃗i ⊗ ej =
∑
ij τ

i
j e⃗i ⊗ ej , where τ ij = uiℓj , we get

dτ.e⃗k =
∑
ijk

∂τ i
j

∂xk e⃗i ⊗ ej and d̃iv(τ) =
∑
ij

∂τ i
j

∂xi e
i, with

∂τ i
j

∂xk = ∂ui

∂xk ℓj + ui
∂ℓj
∂xk , so

∂τ i
j

∂xi = ∂ui

∂xi ℓj + ui
∂ℓj
∂xi .

Thus, by linearity of d̃iv, for all tensors τ ∈ T 1
1 (U), we have with (T.48):

d̃ivτ =

n∑
i,j=1

∂τ ij
∂xi

ej , i.e. [d̃ivτ ]|e⃗ =
(∑

i
∂τ i

1

∂xi ...
∑
i
∂τ i

n

∂xi

)
(T.59)

(row matrix since d̃ivτ is a di�erential form). I.e., we have contracted i and k in dτ =
∑
ijk

∂τ i
j

∂xk e⃗i⊗ej⊗ek.
And in a coordinate system basis, with (T.47):

d̃ivτ =

n∑
i,j=1

τ ij|ie
j , i.e. [d̃ivτ ]|e⃗ =

(∑
i τ
i
1|i ...

∑
i τ
i
n|i

)
. (T.60)

(Classical notations: d̃ivτ :=
∑n
i,j=1τij|iπej , i.e. [d̃ivτ ]|e⃗ = (

∑
i τi1|i ...

∑
i τin|i ).)

Exercice T.27 Prove: If f ∈ C1(U ;R) and τ =
∑n
i,j=1τ

i
j e⃗i ⊗ ej ∈ T 1

1 (U) ∩ C1 then

d̃iv(fτ) = df.τ + f d̃ivτ . (T.61)

Answer. fτ =
∑

ij fτ
i
j e⃗i ⊗ ej gives d(fτ) =

∑
ijk(fτ

i
j )|ke⃗i ⊗ ej ⊗ ek =

∑
ijk(f|kτ

i
j + fτ i

j|k)e⃗i ⊗ ej ⊗ ek, thus

d̃iv(fτ) =
∑

ij(f|iτ
i
j + fτ i

j|i)e
j ; And df.τ + f d̃ivτ =

∑
ij f|iτ

i
je

j + f
∑

ij τ
i
j|ie

j ; Thus (T.61).
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194 T.10. Euclidean framework and �classic divergence� of a tensor (subjective)

Exercice T.28 Prove: If τ ∈ T 1
1 (U) and w⃗ ∈ Γ(U) then

div(τ .w⃗) = d̃iv(τ).w⃗ + τ 0.. dw⃗ . (T.62)

Answer. τ =
∑

ij τ
i
j e⃗i ⊗ ej and w⃗ =

∑
i w

ie⃗i give τ .w⃗ =
∑

ij τ
i
jw

j e⃗i, thus div(τ .w⃗) =
∑

ij τ
i
j|iw

j + τ i
jw

j
|i.

Exercice T.29 If τ ∈ T 1
1 (U) check with component calculations (since d̃iv(τ) ∈ T 0

1 (U) is objective):

[d̃iv(τ)]|b = [d̃iv(τ)]|a.P (covariance formula), (T.63)

where P is the transition matrix from a basis (⃗ai) to a basis (⃗bi).

Answer. Let τ =
∑

ij σ
i
j a⃗i ⊗ aj =

∑
ij τ

i
j b⃗i ⊗ bj , so τ i

j =
∑

λµ Qi
λσ

λ
µP

µ
j .

1- Cartesian bases:
∑

i τ
i
j|i =

∑
i dτ

i
j .⃗bi =

∑
i d(

∑
λµ Qi

λσ
λ
µP

µ
j ).(

∑
ν P

ν
i .⃗aν) =

∑
iλµν Q

i
λP

µ
j P

ν
i (dσ

λ
µ .⃗aν) =∑

λµν δ
ν
λP

µ
j (dσ

λ
µ .⃗aν) =

∑
λµ Pµ

j (dσ
λ
µ .⃗aλ) =

∑
µ(
∑

λ σλ
µ|λ)P

µ
j as desired.

2- Coordinate system bases:
∑

i τ
i
j|i =

∑
i dτ

i
j .e⃗i +

∑
iℓ τ

ℓ
j γ

i
iℓ,b −

∑
iℓ τ

i
ℓγ

ℓ
ij,b (with j �xed); With∑

i

(dτ i
j .⃗bi) =

∑
iλµ

Qi
λ (dσλ

µ .⃗bi)P
µ
j +

∑
iλµ

(dQi
λ .⃗bi)σ

λ
µ Pµ

j +
∑
iλµ

Qi
λ σλ

µ (dPµ
j .⃗bi)

=
∑
iλµν

Qi
λP

µ
j P

ν
i (dσ

λ
µ .⃗aν) +

∑
iλµν

σλ
µ Pµ

j P
ν
i (dQ

i
λ .⃗aν) +

∑
iλµν

σλ
µ Qi

λP
ν
i (dP

µ
j .⃗aν)

=
∑
λµ

Pµ
j (dσ

λ
µ .⃗aλ)−

∑
iλµν

σλ
µ Pµ

j Q
i
λ(dP

ν
i .⃗aν) +

∑
λµ

σλ
µ (dPµ

j .⃗aλ)

since P ν
i Q

i
λ = δνλ gives P ν

i (dQ
i
λ .⃗aν)−Qi

λ(dP
ν
i .⃗aν). And, with (T.36),∑

iℓ

τ ℓ
j γ

i
iℓ,b =

∑
iℓ

(
∑
λµ

Qℓ
λσ

λ
µP

µ
j )(

∑
αβω

Qi
αP

β
i P

ω
ℓ γα

βω,a +
∑
αβ

Qi
αP

β
i (dP

α
ℓ .⃗aβ))

=
∑
λµα

σλ
µP

µ
j γ

α
αλ,a +

∑
ℓλµα

σλ
µQ

ℓ
λP

µ
j (dP

α
ℓ .⃗aα),

(T.64)

and
−
∑
iℓ

τ i
ℓγ

ℓ
ij,b = −

∑
iℓ

(
∑
λµ

Qi
λσ

λ
µP

µ
ℓ )(

∑
αβω

Pα
i P β

j Q
ℓ
ωγ

ω
αβ,a +

∑
αω

Pα
i Qℓ

ω(dP
ω
j .⃗aα))

= −
∑
λµβ

σλ
µP

β
j γ

µ
λβ,a −

∑
λµ

σλ
µ(dP

µ
j .⃗aλ).

(T.65)

Thus
∑

i τ
i
j|i =

∑
λµ Pµ

j (dσ
λ
µ .⃗aλ) +

∑
λµα σλ

µP
µ
j γ

α
αλ,a −

∑
λµβ σλ

µP
β
j γ

µ
λβ,a =

∑
λµ Pµ

j σ
λ
µ|λ as desired.

T.9.1 Divergence of a 2 0 tensor

Let τ ∈ T 2
0 (U) and τ =

∑n
i,j=1τ

ij e⃗i⊗e⃗j , thus dτ =
∑n
i,j,k=1τ

ij
|ke⃗i⊗e⃗j⊗e

k; Then two objective divergences

may be de�ned: by contracting k with i, or k with j. (The Einstein convention is then satis�ed.)

T.9.2 Divergence of a 0 2 tensor

Let τ =
∑n
i,j=1τije

i ⊗ ej ∈ T 0
2 (U). Thus dτ =

∑n
i,j,k=1τij|ke

i ⊗ ej ⊗ ek, and there are no indices to
contract to satisfy Einstein convention: There is no objective divergence of 0 2 tensors.

T.10 Euclidean framework and �classic divergence� of a tensor (subjective)

Let σ ∈ T 1
1 (U) be a

(
1
1

)
C1 tensor (so at any point in U naturally canonically identi�ed with an endomor-

phism). An observer chooses a Euclidean basis (e⃗i) and call (·, ·)g the associated Euclidean dot product.
Let [σ]|e⃗ = [σij ].

De�nition T.30 The usual divergence diveσ in continuum mechanics is the column matrix (it is not a
vector)

diveσ :=


∑n
j=1

∂σ1j

∂xj

...∑n
j=1

∂σnj

∂xj

 = [d̃ivσ]Te⃗
noted
= divσ. (T.66)

So: Take the divergences of the �row vectors� of [σ]|e = [σij ] to make the �column vector� [diveσ].
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195 U.1. The adjoint of a linear map

Proposition T.31 If u⃗ ∈ T 1
0 (U) (a vector �eld), then

[div(σ.u⃗)]|e⃗ = diveσ
T .[u⃗]|e⃗ + [σ]T|e⃗ : [du⃗]|e⃗. (T.67)

Proof. (T.62) gives div(σ.u⃗) = d̃iv(σ).u⃗+ σ 0.. du⃗, thus (T.67). Or direct calculation.

More general de�nition of divergence in classical mechanics : Let σ be a C1 tensor of order 2 of any
kind. Then the divergence diveσ of σ relative to the basis (e⃗i), is the column matrix (it is not a vector)

diveσ =


∑n
j=1

∂σ1j

∂xj

...∑n
j=1

∂σnj

∂xj

 , written diveσ =
∑
ij

∂σij
∂xj

E⃗i, (T.68)

where (E⃗i) is the canonical basis inMn1 the space of n ∗ 1 column vectors.

Exercice T.32 Prove that the �so called vector� divσ de�ned by

divσ =
∑
ij

∂σij
∂xj

e⃗i (T.69)

is not a vector of any kind.

Answer. We have to prove that: If (⃗ai) and (⃗bi) are bases, if P is the transition matrix from (⃗ai) to (⃗bi), then

neither [divσ]|⃗b ̸= P−1.[divσ]|⃗a nor [divσ]T|⃗b = [divσ]T|⃗a.P, (T.70)

i.e. the divergence as de�ned in (T.69) is neither contravariant nor covariant (does not satisfy any change of basis
formula). (Compare with (T.63))

Consider the simple case b⃗i = λa⃗i, for all i, λ > 1: Transition matrix P = λI, and P−1 = 1
λ
I.

For a
(
1
1

)
tensor: σ =

∑
ij(σb)

i
j b⃗i ⊗ bj =

∑
ij(σa)

i
j a⃗i ⊗ aj , [σ]|⃗b = P−1.[σ]|⃗a.P = 1

λ
.[σ]|⃗a.λ = [σ]|⃗a, i.e.

(σa)
i
j = (σb)

i
j for all i, j. Thus (T.69) gives divbσ =

∑
ij(d(σb)

i
j .⃗bj )⃗bi =

∑
ij(d(σa)

i
j .(λa⃗j))(λa⃗i) = λ2divaσ. Thus

[divbσ]|⃗b ̸= P−1.[divbσ]|⃗a and [divbσ]
T
|⃗b ̸= [divaσ]

T
|⃗a.P .

For a
(
0
2

)
tensor: σ =

∑
ij σb,ijb

i ⊗ bj =
∑

ij σa,ija
i ⊗ aj , and [σ]|⃗b = PT .[σ]|⃗a.P = λ2[σ]|⃗a, i.e. σb,ij = λ2σa,ij

for all i, j. Thus (T.69) gives divbσ =
∑

ij(dσb,ij .⃗bj )⃗bi = λ2 ∑
ij(dσa,ij .(λa⃗j))(λa⃗i) = λ4divaσ. Thus [divbσ]|⃗b ̸=

P−1.[divbσ]|⃗a and [divbσ]
T
|⃗b ̸= [divaσ]

T
|⃗a.P .

For a
(
2
0

)
tensor: σ =

∑
ij σ

ij
b b⃗i ⊗ b⃗j =

∑
ij σ

ij
a a⃗i ⊗ a⃗j , and [σ]|⃗b = P−T .[σ]|⃗a.P

−1 = 1
λ2 [σ]|⃗a, i.e. σ

ij
b = 1

λ2 σ
ij
a

for all i, j. Thus (T.69) gives divbσ =
∑

ij(dσ
ij
b .⃗bj )⃗bi = 1

λ2

∑
ij(dσ

ij
a .(λa⃗j))(λa⃗i) = divaσ. Thus [divbσ]|⃗b ̸=

P−1.[divbσ]|⃗a and [divbσ]
T
|⃗b ̸= [divaσ]

T
|⃗a.P .

U Natural canonical isomorphisms

U.1 The adjoint of a linear map

Setting of � A.13: E and F are vector spaces, E∗ = L(E;R) and F ∗ = L(F ;R) are their dual spaces,
and the adjoint of a linear map P ∈ L(E;F ) is the linear map P∗ ∈ L(F ∗;E∗) canonically de�ned by

∀ℓ ∈ F ∗, P∗(ℓ) := ℓ ◦ P, written P∗.ℓ = ℓ.P (U.1)

(dot notations P∗(ℓ) =noted P∗.ℓ and ℓ◦P =noted ℓ.P since ℓ and P∗ are linear), i.e., for all (ℓ, u⃗) ∈ F ∗×E,

P∗(ℓ)(u⃗) = ℓ(P(u⃗)), written (P∗.ℓ).u⃗ = ℓ.P.u⃗. (U.2)

Interpretation: If P is the push-forward of vector �elds, then P∗ is the pull-back of di�erential forms,
see remark 7.5. In particular, it will be interpreted with P ∈ Li(E;F ) (linear and invertible = a change
of observer).
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196 U.2. An isomorphism E ≃ E∗ is never natural (never objective)

U.2 An isomorphism E ≃ E∗ is never natural (never objective)

Two observers A and B consider a linear map L ∈ L(E;E∗); Let P ∈ L(E;E) be the change of observer
endomorphism. Willing to work together, A and B (�naturally�) consider the diagram

E
L−→ E∗ ← considered by observer A

P ↓ ↑ P∗

E −→
L

E∗ ← considered by observer B
(U.3)

De�nition U.1 (Spivak [19].) A linear map L ∈ L(E;E∗) is natural i� the diagram (U.3) commutes
for all P ∈ L(E;E):

L ∈ L(E;E∗) is natural ⇐⇒ ∀P ∈ L(E;E), P∗ ◦ L ◦ P = L. (U.4)

(In that case, if A computes L.u⃗ with the top line of the diagram, if B computes with the bottom line of
the diagram, then they can easily check their results since here L.u⃗ = (P∗ ◦ L ◦ P).u⃗.)

Question: Does there exist an endomorphism L such that the diagram (U.3) commutes for all change
of observers? That is, do we have

∃?L ∈ L(E;E), ∀P ∈ Li(E;E), P∗ ◦ L ◦ P = L ? (U.5)

Answer: Always no (if L ̸= 0):

Theorem U.2 A (non-zero) linear map L ∈ L(E;E∗) is not natural: If L ∈ L(E;E∗)− {0}, then

∃P ∈ Li(E;E) s.t. L ̸= P∗ ◦ L ◦ P. (U.6)

Proof. (Spivak [19].) It su�ces to prove this proposition for E = R⃗. Let L ∈ L(R⃗; (R⃗)∗), L ̸= 0.

Let (⃗a1) be a basis in R⃗ (chosen by A). Let (⃗b1) be a basis in R⃗ (chosen by B).

Consider P ∈ Li(R⃗; R⃗) de�ned by P (⃗a1) = b⃗1 (change of observer), and let λ ∈ R s.t. b⃗1 = λa⃗1. Then

(U.1) gives P∗(ℓ)(⃗a1) := ℓ(P (⃗a1)) = ℓ(⃗b1) = ℓ(λa⃗1) = λℓ(⃗a1), thus P∗(ℓ) = λℓ for all ℓ ∈ (R⃗)∗.
Thus P∗(L(P (⃗a1))) = P∗(L(λa⃗1)) = λP∗(L(⃗a1)) = λ2L(⃗a1) ̸= L(⃗a1) when λ

2 ̸= 1. E.g., P = 2I gives
L ̸= P∗ ◦ L ◦ P (= 4L), thus (U.6): A (non-zero) linear map E → E∗ cannot be natural.

Example U.3 Consider E s.t. dimE = 1, and consider the linear map L ∈ L(E;E∗) which sends a
basis (⃗a1) onto its dual basis (πa1), so L is de�ned by L.⃗a1 := πa1.

Question: If (⃗b1) is another basis, λ ̸= ±1 and b⃗1 = λa⃗1 (change of unit of measurement), does

L.⃗b1 = πb1, i.e. does L also sends (⃗b1) onto its dual basis?

Answer: No. Indeed, b⃗1 = λa⃗1 gives πb1 = 1
λπa1, thus L.⃗b1 = λL.⃗a1 = λπa1 = λ2πb1 ̸= πb1 since

λ2 ̸= 1. In words: L is not natural, cf. (U.6).

A di�erent presentation: Let LA and LB be de�ned by LA .⃗aj = πaj and LB .⃗bj = πbj for all j. And

suppose that b⃗j = λa⃗j for all j. Then, LA .⃗bj = λLA .⃗aj = λπaj = λ2πbj = λ2LB .⃗bj ̸= LB .⃗bj when λ
2 ̸= 1,

that is, LA ̸= LB when λ2 ̸= 1: An operator that sends a basis onto its dual basis is not natural.

Example U.4 Let (·, ·)g be an inner dot product in E = R⃗n. Let R⃗g ∈ L(E∗;E) be the Riesz rep-

resentation map, that is, de�ned by R⃗g(ℓ) = ℓ⃗g where ℓ⃗g is de�ned by (ℓ⃗g, v⃗)g = ℓ.v⃗ for all v⃗ ∈ R⃗n,
cf (F.3).

Question: Is R⃗g natural?

Answer: No: Consider the diagram
( E∗ R⃗g−→ E
P∗ ↓ ↑ P

E∗ −→
R⃗g

E

)
with P = λI, λ ̸= ±1. Then P∗ = λI, and

P.R⃗g.P∗.ℓ = λ2R⃗g.ℓ ̸= R⃗g.ℓ gives P.R⃗g.P∗ ̸= R⃗g: So R⃗g is not natural, cf. (U.6). (You may prefer to

consider the diagram (U.3) with L = R⃗−1
g .)

A di�erent presentation: Consider two distinct Euclidean dot products (·, ·)g and (·, ·)h (e.g., built with
a foot and built with a metre). So (·, ·)h = λ2(·, ·)g with λ2 ̸= 1. Let R⃗g, R⃗h ∈ L(Rn∗;Rn) be the Riesz
operators relative to (·, ·)g and (·, ·)h, that is R⃗g.ℓ = ℓ⃗g and R⃗h.ℓ = ℓ⃗h are given by ℓ.v⃗ = (ℓ⃗g, v⃗)g = (ℓ⃗h, v⃗)h
for all v⃗ ∈ R⃗n. We have ℓ⃗h = λ2ℓ⃗g, cf. (F.12), thus R⃗h = λ2R⃗g ̸= R⃗g since λ

2 ̸= 1: A Riesz representation
operator is not natural (it is observer dependent).

196



197 U.3. Natural canonical isomorphism E ≃ E∗∗

U.3 Natural canonical isomorphism E ≃ E∗∗

Two observers A and B consider the same linear map L ∈ L(E;E∗∗) (where E∗∗ = (E∗)∗ = L(E∗;R)).
Willing to work together, they (�naturally�) consider the diagram

E
L−→ E∗∗ ← considered by observer A

P ↓ ↓ P∗∗

E −→
L

E∗∗ ← considered by observer B
(U.7)

where P ∈ L(E;E) is a linear di�eomorphism, P∗ ∈ L(E∗;E∗) its adjoint, given by P∗(ℓ) = ℓ ◦ P
cf. (U.1), and P∗∗ ∈ Li(E∗∗;E∗∗) the adjoint of P∗, thus given by P∗∗(u) = u ◦ P∗ for all u ∈ E∗∗

cf. (U.1), i.e. P∗∗ is given by, for all (ℓ, u) ∈ E∗ × E∗∗,

(P∗∗(u))(ℓ) = u(ℓ ◦ P), i.e. (P∗∗.u).ℓ = u.(ℓ.P). (U.8)

Question: Does there exist a linear map L ∈ L(E;E∗∗) that is natural?
Answer: Yes (particular case of the next proposition):

Proposition U.5 The canonical isomorphism

JE :

{
E → E∗∗

u⃗ → u = JE(u⃗) de�ned by JE(u⃗)(ℓ) := ℓ.u⃗, ∀ℓ ∈ E∗,
(U.9)

is natural, that is, F being another �nite dimensional vector space, the diagram

E
JE−→ E∗∗

P ↓ ↓ P∗∗

F −→
JF

F ∗∗
written

E
J−→ E∗∗

P ↓ ↓ P∗∗

F −→
J

F ∗∗
(U.10)

commutes for all P ∈ L(E;F ), i.e.

∀P ∈ L(E;F ), P∗∗ ◦ JE = JF ◦ P, and we write E ≃ E∗∗. (U.11)

Thus we can use the unambiguous notation (observer independent)

J (u⃗) noted
= u⃗, and J (u⃗).ℓ noted

= u⃗.ℓ (= ℓ.u⃗). (U.12)

(And u = J (u⃗) is the derivation operator in the direction u⃗.)

Proof. (Spivak [19].) It is trivial that JE is linear and bijective (E is �nite dimensional): It is an

isomorphism. Then (P∗∗ ◦ JE(u⃗))(ℓ)
(U.8)
= JE(u⃗)(ℓ.P)

(U.9)
= (ℓ ◦ P)(u⃗) = ℓ(P(u⃗)) (U.9)= JF (P(u⃗))(ℓ), for all

ℓ ∈ F ∗ and all u⃗ ∈ E, thus P∗∗ ◦ JE(u⃗) = JF (P(u⃗)), for all u⃗ ∈ E, thus P∗∗ ◦ JE = JF ◦ P.

Proposition U.6 (Characterization of JE .) JE sends any basis (⃗ai) onto its bidual basis. (Expected,
since JE(u⃗) is the directional derivative in the direction u⃗, whatever u⃗.)

Proof. Let (⃗ai) be a basis and (πai) be its dual basis (de�ned by πai .⃗aj = δij for all i, j). Then (U.9)
gives JE (⃗aj).πai = πai .⃗aj = δij for all i, j, thus (JE (⃗aj)) is the dual basis of (πai), i.e., is the bidual basis
of (⃗ai); True for all basis: JE (⃗bj).πbi = πbi .⃗bj = δij for all i, j.

U.4 Natural canonical isomorphisms L(E;F ) ≃ L(F ∗, E;R) ≃ L(E∗;F ∗)

E,F,A,B are �nite dimensional vector spaces. Consider the canonical isomorphism

JEF :

{
L(E;F ) → L(F ∗, E;R)

L → L̃ = JEF (L) where L̃(ℓ, u⃗) := ℓ.L.u⃗, ∀(ℓ, u⃗) ∈ F ∗ × E.
(U.13)
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Let P1 ∈ Li(E;A) and P2 ∈ L(F ;B), and consider the diagram

L(E;F )
JEF−→ L(F ∗, E;R)

IP ↓ ↓ ĨP
L(A;B) −→

JAB
L(B∗, A;R)

(U.14)

where
IP(L) = P2.L.P−1

1 and ĨP(L̃)(b, a⃗) = L̃(b.P2,P−1
1 .⃗a) ∀(b, a⃗) ∈ B∗ ×A. (U.15)

(IP and ĨP are the push-forwards for linear maps L ∈ L(E;F ) and for bilinear forms L̃ ∈ L(F ∗, E;R).)

Proposition U.7 The canonical isomorphism JEF is natural, that is, the diagram (U.14) commutes for
all P1 ∈ Li(E,A) and all P2 ∈ L(F,B):

ĨP ◦ JEF = JAB ◦ IP , and L(E;F )
natural≃ L(F ∗, E;R). (U.16)

Thus L(E∗;F ∗)
natural≃ L(E;F ).

Proof. JAB(IP(L))(b, a⃗)
(U.13)
= b.IP(L).⃗a

(U.15)
= b.(P2.L.P−1

1 ).⃗a= (b.P2).L.(P−1
1 .⃗a)

(U.13)
= JEF (L)(b.P2,P−1

1 .⃗a)
(U.15)
= ĨP(JEF (L))(b, a⃗), true for all L ∈ L(E;F ), b ∈ B∗, a⃗ ∈ A, thus (U.16).

Thus L(E∗;F ∗)
(U.16)
≃ L((F ∗)∗, E∗;R)

(U.11)
≃ L(F,E∗;R)

(U.16)
≃ L(E∗∗;F )

(U.11)
≃ L(E;F ).

Consider the canonical isomorphism (de�nes the transposed of a bilinear map)

KEF :

{
L(E,F ;R) → L(F,E;R)

T → KEF (T )

}
, KEF (T )(u⃗, v⃗) := T (v⃗, u⃗), ∀(u⃗, v⃗) ∈ E × F, (U.17)

and ZAB ∈ L(E,F ;R)→ L(A,B;R) de�ned by ZAB(T )(⃗a, b⃗) := T (P−1
1 .⃗a,P−1

2 .⃗b) for all (⃗a, b⃗) ∈ A×B.

Proposition U.8 The canonical isomorphism KEF is natural: For all (P1,P2) ∈ Li(E;A)×L(F ;B), the

diagram

L(E,F ;R) KEF−→ L(F,E;R)
ZAB ↓ ↓ ZBA
L(A,B;R) −→

KAB
L(B,A;R)

commutes: L(E,F ;R) natural≃ L(F,E;R).

Proof. KEF (ZAB(T ))(⃗b, a⃗) = ZAB(T )(⃗a, b⃗) = T (P−1
2 .⃗b,P−1

1 .⃗a) and ZBA(KEF (T ))(⃗a, b⃗) = KEF (T )(P−1
1 .⃗a,P−1

2 .⃗b) =

T (P−1
2 .⃗b,P−1

1 .⃗a), thus KAB ◦ ZAB = ZBA ◦ KEF .

U.5 Natural canonical isomorphisms L(E;L(E;F )) ≃ L(E,E;F ) ≃ L(F ∗, E, E;R)
For application to the second order derivative d(du⃗) ≃ d2u⃗ and, with u⃗ ∈ T 1

0 (U), the notation du⃗ ∈ T 1
1 (U),

then d2u⃗ ∈ T 1
2 (U), ..., dku⃗ ∈ T 1

k (U), ...
Consider the canonical isomorphism

J12E :

{
L(E;L(E;F )) → L(E,E;F )

T1 → T2 = J12E(T1)

}
, J12E(T1)(u⃗1, u⃗2) := T1(u⃗1).u⃗2 ∈ F, ∀u⃗1, u⃗2 ∈ E,

(U.18)
and the canonical isomorphism

J23E :

{
L(E,E;F ) → L(F ∗, E,E;R)

T2 → J23E(T2) = T3

}
, T3(ℓ, u⃗, v⃗) := ℓ.T2(u⃗1, u⃗2), ∀u⃗1, u⃗2 ∈ E, ∀ℓ ∈ F ∗. (U.19)

Proposition U.9 J12 and J23 are natural. Thus J23 ◦ J12 is natural.
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199 V.1. De�nitions

Proof. 1- We have to prove that the following diagram commutes:

L(E;L(E;F ))
J12E−→ L(E,E;F )

ZAB ↓ ↓ YAB

L(A;L(A;B))
J12A−→ L(A,A;B)

where
ZAB(T1)(⃗a1).⃗a2 := T1(P−1

1 .⃗a1).(P−1
1 .⃗a2),

YAB(T2)(⃗a1, a⃗2) = T2(P−1
1 .⃗a1,P−1

1 .⃗a2),
(U.20)

(the �push-forwards) for all a⃗1, a⃗2 ∈ A and LAB ∈ L(A;B).
Let T1 ∈ L(E;L(E;F )). We have
J12A(ZAB(T1))(⃗a1).⃗a2 = ZAB(T1)(⃗a1).⃗a2 = T1(P−1

1 .⃗a1).(P−1
1 .⃗a2), and

YAB(J12E(T1))(⃗a1, a⃗2) = J12E(T1)(P−1
1 .⃗a1,P−1

1 .⃗a2) = T1(P−1
1 .⃗a1).(P−1

1 .⃗a2),
thus J12A ◦ ZAB = YAB ◦ J12E , thus J12 is natural.
2- We have to prove that the following diagram commutes:

L(E,E;F )
J23E−→ L(F ∗, E,E;R)

ZAB ↓ ↓ YAB

L(A,A;B)
J23A−→ L(B∗, A,A;R)

where
ℓB .ZAB(T2)(⃗a1, a⃗2) := (ℓB .P2).T2(P−1

1 .⃗a1,P−1
1 .⃗a2),

YAB(T3)(ℓB , a⃗1, a⃗2) = T3(ℓB .P2,P−1
1 .⃗a1,P−1

1 .⃗a2),

(U.21)
(the �push-forwards) for all a⃗1, a⃗2 ∈ A and ℓB ∈ B∗.

Let T2 ∈ L(E,E;F ). We have
J23A(ℓB , ZAB(T2)(⃗a1, a⃗2)) = ℓB .ZAB(T2)(⃗a1, a⃗2) = (ℓB .P2).T2(P−1

1 .⃗a1,P−1
1 .⃗a2), and

YAB(J23A(T2))(ℓB , a⃗1, a⃗2) = J23A(T2)(ℓB .P2,P−1
1 .⃗a1,P−1

1 .⃗a2) = ℓB .P2.T2(P−1
1 .⃗a1,P−1

1 .⃗a2)
thus J23A ◦ ZAB = YAB ◦ J23E , thus J23 is natural.

V Distribution in brief: A covariant concept

For a full description, see the books of Laurent Schwartz.

V.1 De�nitions

Usual notations with Ω an open set in Rn: Let p ∈ [1,∞[ (e.g. p = 2 for �nite energy functions), and let

Lp(Ω) := {f : Ω→ R :

∫
Ω

|f(x)|p dΩ <∞} and ||f ||p = (

∫
Ω

|f(x)|p dΩ)
1
p , (V.1)

the space of functions f such that |f |p is Lebesgue integrable, with ||.||p its usual norm. (Lp(Ω), ||.||p) is
a Banach space (a complete normed space). And let

L∞(Ω) := {f : Ω→ R : sup
x∈Ω

(|f(x)|) <∞}, and ||f ||∞ = sup
x∈Ω

(|f(x)|), (V.2)

the space of Lebesgue measurable bounded functions, with ||.||∞ its usual norm. (L∞(Ω), ||.||L∞) is a
Banach space (a complete normed space).

De�nition V.1 If f ∈ F(Ω;R), then its support is the set

supp(f) := {x ∈ Ω : f(x) ̸= 0} = the closure of {x ∈ Ω : f(x) ̸= 0}. (V.3)

The closure in the de�nition of supp(f) is required: E.g., if Ω =]0, 2π[ and f(x) = sinx, then {f ̸=
0} := {x ∈ Ω : f(x) ̸= 0} =]0, π[∪]π, 2π[. Here π /∈ {f ̸= 0}, but π is a point of interest since sin varies in
its vicinity: f ′(π) = −1 ̸= 0. So {f ̸= 0} is �too small�, and it is its closure supp(f) := {f ̸= 0} = [0, 2π]
that is needed: supp(f) = the set where it is interesting to study f .

Schwartz notation:

D(Ω) := C∞
c (Ω;R) = {φ ∈ C∞(Ω;R) s.t. supp(φ) is compact in Ω}. (V.4)

E.g., Ω = R, φ(x) := e
− 1

1−x2 if x ∈]−1, 1[ and φ(x) := 0 elsewhere: φ ∈ D(R) with supp(φ) = [−1, 1].

Result: D(Ω) is a vector space which is dense in (Lp(Ω), ||.||Lp) for any p ∈ [1,∞[.
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200 V.2. Derivation of a distribution

De�nition V.2 A distribution in Ω is a linear D(Ω)-continuous4 function

T :

{
D(Ω) → R

φ → T (φ)
noted
= ⟨T, φ⟩

(V.5)

The space of distribution in Ω is named D′(Ω) (the dual of D(Ω)).
The notation ⟨T, φ⟩D′(Ω),D(Ω) = ⟨T, φ⟩ is the �duality bracket� = the �covariance�contravariance

bracket� between a continuous linear form T ∈ D′(Ω) and a vector φ ∈ D(Ω).

De�nition V.3 Let f ∈ Lp(Ω). The regular distribution Tf ∈ D′(Ω) associated to f is de�ned by

Tf (φ) :=

∫
Ω

f(x)φ(x) dΩ, ∀φ ∈ D(Ω). (V.6)

So Tf is a measuring instrument with density dmf (x) = f(x) dΩ, i.e. Tf (φ) :=
∫
Ω
φ(x) dmf (x).

De�nition V.4 Let x0 ∈ Rn. The Dirac measure at x0 is the distribution T
noted
= δx0 ∈ D′(R) de�ned

by, for all φ ∈ D(R),
δx0

(φ) = φ(x0), i.e. ⟨δx0
, φ⟩ = φ(x0). (V.7)

And δx0 is not a regular distribution (δx0 is not a density measure): There is no integrable function f
such that Tf = δx0

. Interpretation: δx0
corresponds to an ideal measuring device: The precision is perfect

at x0 (gives the exact value φ(x0) at x0). In real life δx0
is the ideal approximation of Tfn where fn is

e.g. given by fn(x) = n1[x0,x0+
1
n ] (drawing): For all φ ∈ D(Ω), Tfn(φ)−→n→∞ δx0

(φ) = φ(x0).

Generalization of the de�nition: In (V.5) D(Ω) = C∞
c (Ω;R) is replaced by C∞

c (Ω; R⃗n). So if you

consider a basis (e⃗i) then φ⃗ ∈ C∞
c (Ω; R⃗n) reads φ⃗ =

∑n
i=1φ

ie⃗i with φ
i ∈ D(Ω) for all i.

Example V.5 Power: Let α : Ω → T 0
1 (Ω) be a di�erential form. Then the distribution Pα de�ned by

Pα(v⃗) =
∫
Ω
α.v⃗ dΩ gives the virtual power associated to α relative to the vector �eld v⃗.

V.2 Derivation of a distribution

Let O be a point in Rn (an origin). If p ∈ Rn and if (e⃗i) is a basis in R⃗n, let x⃗ =
−→
Op =

∑n
i=1xie⃗i.

De�nition V.6 The derivative ∂T
∂xi

of a distribution T ∈ D′(Ω) is the distribution in D′(Ω) de�ned by,
for all φ ∈ D(Ω),

∂T

∂xi
(φ) := −T ( ∂φ

∂xi
), i.e. ⟨ ∂T

∂xi
, φ⟩ := −⟨T, ∂φ

∂xi
⟩. (V.8)

( ∂T∂xi
is indeed a distribution: Easy check.)

Example V.7 If T = Tf is a regular distribution with f ∈ C1(Ω), then
∂(Tf )
∂xi

= T( ∂f
∂xi

). Indeed, for all

φ ∈ D(Ω), ∂(Tf )
∂xi

(φ) = −Tf ( ∂φ∂xi
) = −

∫
Ω
f(x) ∂φ∂xi

dΩ = +
∫
Ω

∂f
∂xi

φ(x) dΩ +
∫
Γ
0 dΓ, since φ vanishes on

Γ = ∂Ω (the support of φ is compact in Ω), thus
∂(Tf )
∂xi

(φ) = T( ∂f
∂xi

)(φ) for all φ ∈ D(Ω).

Example V.8 Consider the Heaviside function (the unit step function) H0 := 1R+
and the associated

distribution T = TH0 . Then ⟨(TH0)
′, φ⟩ := −⟨TH0 , φ

′⟩ = −
∫
Ω
H0(x)φ

′(x) dx = −
∫∞
0
φ′(x) dx = φ(0) =

⟨δ0, φ⟩ for any φ ∈ D(R), thus (TH0)
′ = δ0. Written H0

′ = δ0 in D′(Ω), which is not in a equality between
functions, because H0 is not derivable at 0 as a function, and δ0 is not a function; It is equality between
distributions: The notation H0

′ can only be used to compute H0
′(φ) (= ⟨H0

′, φ⟩ := −⟨H0, φ
′⟩).

4The D(Ω)-continuity of T is de�ned by: 1- A sequence (φn)N∗ in D(Ω) converges in D(Ω) towards a function φ ∈ D(Ω)

i� there exists a compact K ⊂ Ω s.t. supp(φn) ⊂ K for all n, and || ∂kφ
∂xi1

...∂xik
− ∂kφn

∂xi1
...∂xik

||∞ −→n→∞ 0 for all k ∈ N

and all ij ; 2- T is continuous at φ ∈ D(Ω) i� T (φn) −→
n→∞

T (φ) for any sequence (φn)N ∈ D(Ω)N −→
n→∞

φ in D(Ω).
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201 V.3. Hilbert space H1(Ω)

V.3 Hilbert space H1(Ω)

V.3.1 Motivation

Consider the hat function Λ(x)


= x+ 1 if x ∈ [−1, 0],
= 1− x if x ∈ [0, 1],

= 0 otherwise

 (drawing). When applying the �nite element

method, it is well-known that, if you use integrals (if you use the virtual power principle which makes
you compute average values), then you can consider the derivative of the hat function Λ as if it was the
usual derivative, i.e. at the points where the usual computation of Λ′ is meaningful, that is,

Λ′(x)


= 1 if x ∈]− 1, 0[,

= −1 if x ∈]0, 1[,
= 0 if x ∈ R− {−1, 0, 1}

(V.9)

(drawing).

Problem: Λ′ is not de�ned at −1, 0, 1 (the function Λ is not derivable at −1, 0, 1);
Question: So does (V.9) and the �usual� computation I =

∫
R Λ′(x)φ(x) dx gives the good result? (This

is not a trivial question: E.g., with H0 = 1R+
instead of Λ, we would get the absurd result H ′

0 = 0,
absurd since H ′

0 = δ0.)

Answer: Yes in the distribution meaning, i.e.:
1- Consider TΛ the regular distribution associated to Λ, cf. (V.6);

2- Then consider (TΛ)
′, cf. (V.8): We get ⟨(TΛ)′, φ⟩

(V.8)
= −⟨TΛ, φ′⟩ = −

∫
R
Λ(x)φ′(x) dx =

−
∫ 0

−1

Λ(x)φ′(x) dx−
∫ 1

0

Λ(x)φ′(x) dx = +

∫ 0

−1

1]−1,0[(x)φ(x) dx+

∫ 1

0

1]0,1[φ(x) dx, for any φ ∈ D(R);

3- Thus (TΛ)
′ = Tf where f = 1]−1,0[ + 1]0,1[, that is (TΛ)

′ is the regular distribution Tf .

4- Then Tf = (TΛ)
′ =noted Λ′ when used within the distribution framework, i.e. when used with

φ ∈ D(R) and the Lebesgue integral
∫
Ω
Λ′(x)φ(x) dx := −

∫
Ω
Λ(x)φ′(x) dx: Ok for �nite element methods.

V.3.2 De�nition of L2(Ω) and its dual

The space C0(Ω;R) is too small in many applications, e.g. to consider step functions; Hence consider
L2(Ω) := {f : Ω→ R :

∫
Ω
|f(x)|2 dΩ <∞} (the space of �nite energy functions) with its usual inner dot

product and norm de�ned by

(u, v)L2 =

∫
Ω

u(x)v(x) dΩ and ||v||2 = ||v||L2 =
√

(v, v)L2 = (

∫
Ω

v(x)2 dΩ)
1
2 . (V.10)

(L2(Ω), (·, ·)L2) is a Hilbert space (Riesz-Fisher theorem).
The dual space of L2(Ω) is the space

L2(Ω)
′
= L(L2(Ω);R) := {ℓ : L2(Ω)→ R linear and continuous}, (V.11)

i.e. the space of linear forms ℓ : L2(Ω)→ R s.t. ℓ is linear and ∃C > 0, ∀v ∈ H1(Ω), |ℓ(v)| ≤ C||v||L2 .

L2(Ω)
′
equipped with tbe norm ||ℓ||L2(Ω)′ := sup

||v||L2(Ω)=1

|ℓ(v)| is a Banach space.

Duality bracket: If ℓ ∈ L2(Ω)
′
then ℓ(v) =noted ⟨ℓ, v⟩L2′,L2 for all v ∈ L2(Ω).

And thanks to the (·, ·)L2-Riesz representation theorem, a ℓ ∈ L2(Ω)
′
being linear and continuous,

ℓ ∈ L2(Ω)
′
can be represented by function f ∈ L2(Ω): ∃f ∈ L2(Ω), ∀v ∈ L2(Ω),

(ℓ(v) =) ⟨ℓ, v⟩ = (f, v)L2 (=

∫
Ω

f(p)v(p) dΩ). (V.12)

NB: L2(Ω) is called the �pivot space�.

Idem with ℓ ∈ L2(Ω)
n′
: ∃f⃗ ∈ L2(Ω)

n
, ∀v⃗ ∈ L2(Ω)

n
, ⟨ℓ, v⃗⟩ = (f⃗ , v⃗)L2 =

∫
Ω
f⃗(p) • v⃗(p) dΩ, an inner dot

product in R⃗n being a priori given.
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V.3.3 De�nition of H1(Ω) and its dual

The space C1(Ω;R) is too small in many applications (e.g., for the Λ function above). We need a larger
space where the functions are �derivable is a weaker sense�: The distribution sense. Consider a Cartesian
basis (e⃗i) in R⃗n.

De�nition V.9 The Sobolev space H1(Ω) is the subspace of L2(Ω) restricted to functions whose gener-
alized derivatives are in L2(Ω):

H1(Ω) = {v ∈ L2(Ω) : [ ⃗gradv]|e⃗ ∈ L2(Ω)
n} := {v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω), ∀i = 1, ..., n}. (V.13)

Usual shortened notation: H1(Ω) = {v ∈ L2(Ω) : ⃗gradv ∈ L2(Ω)
n}.

So to check that v ∈ H1(Ω), even if ∂v
∂xi

does not exists in the classic way (see the above hat function Λ),

you have to: 1- Consider its associated regular distribution Tv, 2- Compute ∂Tv

∂xi
in D′(Ω), 3- If, for all i,

there exists fi ∈ L2(Ω) s.t. ∂Tv

∂xi
= Tfi , then v ∈ H1(Ω). 4- Then Tfi =

∂Tv

∂xi
is noted ∂v

∂xi
when used with

φ ∈ D(Ω) and the Lebesgue integral:
∫
Ω

∂v
∂xi

(x)φ(x) dx :=
∫
Ω
v(x) ∂φ∂xi

(x) dx.

Then de�ne, for all u, v ∈ H1(Ω),

(u, v)H1 = (u, v)L2 + ( ⃗gradu, ⃗gradv)L2 , and ||v||H1 = (v, v)
1
2

H1 , (V.14)

where ( ⃗gradu, ⃗gradv)L2 :=
∑n
i=1(

∂u
∂xi

, ∂v∂xi
)L2 . Thus (H1(Ω), (·, ·)H1) is a Hilbert space (Riesz�Fisher).

The dual space of H1(Ω) is

H1(Ω)
′
:= L(H1(Ω);R) := {ℓ : H1(Ω)→ R linear and continuous} (V.15)

i.e. the space of linear forms ℓ : H1(Ω)→ R s.t. ℓ is linear and ∃C > 0, ∀v ∈ H1(Ω), |ℓ(v)| ≤ C||v||H1 .

And (duality bracket) if ℓ ∈ H1(Ω)
′
then ℓ(v) =noted ⟨ℓ, v⟩H1′,H1 =noted ⟨ℓ, v⟩ for all v ∈ H1(Ω).

Theorem V.10 ℓ ∈ H1(Ω)
′
i� ∃(f, u⃗) ∈ L2(Ω)×L2(Ω)

n
, ∀ψ ∈ H1(Ω),

ℓ(ψ) = (f, ψ)L2 + (u⃗, ⃗gradψ)L2 . (V.16)

Proof. From Brézis [4] (application of the Riesz representation theorem). The space Z = L2(Ω)×L2(Ω)
3

with its inner dot product ((f, u⃗), (g, v⃗))Z := (f, g)L2 + (u⃗, v⃗)L2 is a Hilbert space. Let T : H1(Ω) → Z

be de�ned by T (ψ) = (ψ, ⃗gradψ); T is linear and ||T (ψ)||Z = ||ψ||H1 , thus T (ψ) = 0 imply
ψ = 0, so T is one-to-one, thus T−1 : ImT → H1(Ω) is well de�ned. And T−1 continuous since

T−1(ψ, ⃗gradψ) = ψ. (Remark: ImT is not closed in Z.) Let ℓ ∈ H1(Ω)
′
, then de�ne L : Im(T ) → R

by ⟨L, (ψ, ⃗gradψ)⟩Z′,Z = ⟨ℓ, T−1(ψ, ⃗gradψ)⟩H1′,H1 : so L = ℓ ◦ T−1 is linear continuous since ℓ and T−1

are, and ⟨L, (ψ, ⃗gradψ)⟩Z′,Z = ⟨ℓ, ψ⟩H1′,H1 ; With Hahn�Banach theorem, extend L : Im(T ) → R to
LZ : Z → R linear continuous. Apply Riesz representation theorem: ∃(f, u⃗) ∈ Z s.t. ⟨LZ , (ψ, w⃗)⟩Z′,Z =
((f, u⃗), (ψ, w⃗))Z = (f, ψ)L2 + (u⃗, w⃗)L2 for all (ψ, w⃗) ∈ Z, in particular for all (ψ, w⃗) ∈ ImT , thus

⟨ℓ, ψ⟩H1′,H1 = (f, ψ)L2 + (u⃗, ⃗gradψ)L2 for all ψ ∈ H1(Ω).

NB: For Neumann boundary value problems then (V.16) gives, if u⃗ ∈ H1(Ω),

⟨ℓ, ψ⟩(H1)′,H1 =

∫
Ω

f(x)ψ(x) dx−
∫
Ω

divu⃗(x)ψ(x) dx+

∫
Γ

u⃗(x) • n⃗(x)ψ(x) dx. (V.17)

V.3.4 Subspace H1
0 (Ω) and its dual space H−1(Ω)

De�nition:

H1
0 (Ω) := D(Ω)

H1

the closure of D(Ω) in H1(Ω). (V.18)

So H1
0 (Ω) is closed in H1(Ω), hence (H1

0 (Ω), (·, ·)H1) is a Hilbert space. If the boundary Γ = ∂Ω of Ω is
bounded and regular then

H1
0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0} . (V.19)

(See Brézis [4].) The dual space of (H1
0 (Ω), ||.||H1) is the space

(H1
0 (Ω))

′ := L(H1
0 (Ω);R) := {ℓ : H1

0 (Ω)→ R linear and continuous} noted= H−1(Ω), (V.20)

i.e. space of linear forms ℓ : H1
0 (Ω) → R s.t. ∃C > 0, ∀ψ ∈ H1

0 (Ω), |ℓ(ψ)| ≤ C||ψ||H1 . And then
ℓ(ψ) =noted ⟨ℓ, ψ⟩H−1,H1

0
(duality bracket).
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Theorem V.11 ℓ ∈ H−1(Ω) = (H1
0 (Ω))

′ i� ∃(f, g⃗) ∈ L2(Ω)× L2(Ω)
n
s.t.

ℓ = f − divg⃗ (∈ D′(Ω)), (V.21)

i.e., for all ψ ∈ H1
0 (Ω),

⟨ℓ, ψ⟩H−1,H1
0
=

∫
Ω

fψ dΩ+

∫
Ω

dψ.⃗g dΩ. (V.22)

And if Ω is bounded then we can choose f = 0, and moreover if g⃗ ∈ H1(Ω)
n
then

⟨ℓ, ψ⟩H−1,H1
0
= −

∫
Ω

divg⃗(x)ψ(x) dx. (V.23)

(In fact we only need g⃗ ∈ Hdiv(Ω) = {g⃗ ∈ L2(Ω)
n
: divg⃗ ∈ L2(Ω)}.)

Proof. Apply (V.16) here with ψ ∈ D(Ω) or ψ ∈ H1
0 (Ω), so with ψ|Γ = 0 (for the integration by parts).

W Basics of thermodynamics

See https://perso.isima.fr/leborgne/IsimathMeca/Thermo.pdf
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