Fonction exponentielle, résumé

Gilles Leborgne

9 janvier 2018

Le théorème de Cauchy-Lipschitz pour $f:(y,z)\in\mathbb{R}^2\to f(y,z)=z\in\mathbb{R}$ et l'équation différentielle u'(x) = f(x, u(x)) avec la condition initiale u(0) = 1 donne:

Définition 0.1 La fonction exponentielle est la fonction $u \in C^1(\mathbb{R}; \mathbb{R})$ qui vérifie u'(x) = u(x) et u(0) = 1. De plus $u \in C^{\infty}(\mathbb{R}^n)$ (avec $u^{(n+1)} = u$). On note $u(x) = \exp(x) = e^x$.

Et $g(x) = \exp(x) \exp(-x)$ vérifie g'(x) = 0 donc g(x) = constante = g(0) = 1, donc $\exp(-x)$ donc $\exp'' = \exp' = \exp > 0$ et exp est croissante concave. Donc l'inverse $\log : \mathbb{R}_+^* \to \mathbb{R}$ est croissante concave avec $\log(1) = 0$. Et g(x) = 1 donne $\exp(x)^{-1} = \exp(-x)$ dans \mathbb{R} .

Puis $h(x) = \frac{\exp(x+a)}{\exp(a)}$ vérifie h'(x) = h(x) et h(0) = 1, donc $h = \exp$, donc $\exp(a+b) = \exp(a) \exp(b)$ pour

 $a, b \in \mathbb{R}$ (d'où la notation e^x). Donc $\log(zy) = \log(z) + \log(y)$ pour $x, y \in \mathbb{R}_+^*$.

Développement en série, x_0 fixé : $\exp(x_0) = \sum_{n \in \mathbb{N}} \frac{\exp^n(0)}{n!} x_0^n = \sum_{n \in \mathbb{N}} \frac{x_0^n}{n!}$, série convergente car $\frac{\left|\frac{x_0^{n+1}}{(n+1)!}\right|}{\left|\frac{x_0^n}{n!}\right|} = \sum_{n \in \mathbb{N}} \frac{x_0^n}{n!}$ $\frac{|x_0|}{n+1} < 1$ pour $n \ge |x_0|$ (règle de d'Alembert). Vrai pour tout $x_0 \in \mathbb{R}$: le rayon de convergence de la série est ∞ . Notons:

$$\lambda_n(x) = \left(1 + \frac{x}{n}\right)^n, \text{ et } \mu_n(x) = \left(1 - \frac{x}{n}\right)^{-n} = \frac{1}{\lambda_n(-x)}.$$
 (0.1)

Proposition 0.2

- 1) $\forall n \in \mathbb{N}^*, \ \forall x \ge 0, \ \lambda_n(x) \le e^x$. Et 3) montrera : $\forall n \in \mathbb{N}^*, \ \forall x \ge -n, \ \lambda_n(x) \le e^x$.
- 2) $\forall n \in \mathbb{N}^*, \ \forall y \ge -1, \ 1 + ny \le (1 + y)^n$ (inégalité de Bernoulli). Donc $1 + x \le \lambda_n(x)$ pour $x \ge -n$.
- 3) $\forall x \in \mathbb{R}$, la suite $(\lambda_n(x))_{n>|x|}$ est croissante et converge vers e^x , la suite $(\mu_n(x))_{n>|x|}$ est décroissante et converge vers e^x (convergence simple des suites de fonctions $(\lambda_n)_{\mathbb{N}^*}$ et $(\mu_n)_{\mathbb{N}^*}$ vers exp).
 - 4) À $n \in \mathbb{N}^*$ fixé, $e^{-x} \longrightarrow_{x \to -\infty} 0$, alors que $\lambda_n(x) \longrightarrow_{x \to -\infty} \pm \infty$ (polynôme de degré $n \ge 1$).

Preuve. 1) $e^x = 1 + x + \frac{x^2}{2} + ... \ge 1 + x$ pour $x \ge 0$. Donc $e^{\frac{x}{n}} \ge 1 + \frac{x}{n}$ pour $x \ge 0$ et $n \in \mathbb{N}^*$. Et la fonction $y \to y^n$ est croissante pour $y \ge 0$, donc pour $x \ge 0$ et $n \in \mathbb{N}^*$ on a $e^x \ge (1 + \frac{x}{n})^n$.

- 2) C'est trivial pour n = 0, 1. Soit $n \ge 2$. Soit $g(y) = (1+y)^n (1+ny)$, donc $g'(y) = n(1+y)^{n-1} n$, donc $g''(y) = n(n-1)(1+y)^{n-2}$, donc $g''(y) \ge 0$ pour $y \ge -1$, donc g' croissante sur $[-1, \infty[$; et g'(y) = 0 pour y=0, donc g décroissante sur [-1,0], croissante sur $[0,\infty[$, donc $g(y)\geq g(0)=0$, donc $(1+y)^n\geq (1+ny)$ sur

[-1, ∞ [(prouve Bernoulli). Et $x = ny \in [-n, \infty[$ donne $(1 + \frac{x}{n})^n \ge (1 + x)$. 3) Soit $x_0 \in \mathbb{R}$. Pour $n > |x_0|$ on a $\frac{x_0}{n} > -1$, donc $1 + \frac{x_0}{n} > 0$, donc $\lambda_n(x_0) = \text{noté } \lambda_n > 0$. Et $\log(\lambda_n) = n \log(1 + \frac{x_0}{n})$ pour $n > |x_0|$. Posons $\varphi(a) = a \log(1 + \frac{x_0}{a})$ quand $a > |x_0|$.

Donc $\varphi'(a) = \log(1 + \frac{x_0}{a}) + a \frac{-\frac{x_0}{a^2}}{1 + \frac{x_0}{a}} = \log(1 + \frac{x_0}{a}) + \frac{-\frac{x_0}{a}}{1 + \frac{x_0}{a}} = \log(1 + \frac{x_0}{a}) - 1 + \frac{1}{1 + \frac{x_0}{a}} = \frac{\operatorname{not}\acute{e}}{v}(z), \text{ où } z = 1 + \frac{x_0}{a} \in [0, 2[$ et $\psi(z) = \log(z) - 1 + \frac{1}{z}$. On a $\psi'(z) = \frac{1}{z} - \frac{1}{z^2} = \frac{1}{z^2}(z - 1),$ donc ψ décroissante sur [0, 1] et croissante sur [1, 2[. Donc $\psi(x) \geq \psi(1) = 0$ sur [0, 2[: ψ est positive sur [0, 2[. Donc φ' est positive sur [1, 2[. Donc φ' croissante sur $]|x_0|, \infty[$. Donc $\varphi(a) \le \varphi(b)$ pour $b > a > |x_0|$. Et la fonction log est croissante, donc $\lambda_n \le \lambda_{n+1}$ pour $n > |x_0|$: la suite $(\lambda_n)_{n>|x_0|} = (\lambda_n(x_0))_{n>|x_0|}$ est positive et croissante. Donc la suite $(\mu_n(x_0))_{n>|x_0|}$ donnée par $\mu_n(x_0) = \frac{1}{\lambda_n(-x_0)}$ est positive décroissante pour $n > |x_0|$.

Et $\mu_n(x_0) - \lambda_n(x_0) = \left(1 - \frac{x_0}{n}\right)^{-n} \left(1 - \left(1 - \frac{x_0}{n}\right)^n \left(1 + \frac{x_0}{n}\right)^n\right) = \left(1 - \frac{x_0}{n}\right)^{-n} \left(1 - \left(1 - \left(\frac{x_0}{n}\right)^2\right)^n\right)$, donc, pour $n > |x_0|$ on a $\mu_n(x_0) - \lambda_n(x_0) \ge 0$ ainsi que $\mu_n(x_0) - \lambda_n(x_0) \le \mu_n(x_0) \frac{x_0^2}{n}$ (Bernoulli pour $y = \left(\frac{x_0}{n}\right)^2$). Donc $\mu_n(x_0) - \lambda_n(x_0) \longrightarrow_{n \to 0} 0$. Donc les suites $(\lambda_n(x_0))_{n>|x_0|}$ et $(\mu_n(x_0))_{n>|x_0|}$ sont adjacentes, avec l'une croissante et l'autre décroissante : elles convergent vers un réel noté $\widetilde{\exp}(x_0)$.

Vérifions que $\exp'(x) = \exp(x)$, donc que $\exp = \exp(\operatorname{car} \exp(0) = 1)$. (Intuitivement : on a $\lambda_n'(x) = (1 + \frac{x}{n})^{n-1} = (1 + \frac{x}{n})^n (1 + \frac{x}{n})^{-1}$ est $\simeq \lambda_n(x)$ quand $n \simeq \infty$...). Pour cela montrons : $h \exp(x) \le \exp(x + h) - \exp(x) \le h \exp(x + h)$ pour h > 0, h petit. On a $\lambda_n'(x) = (1 + \frac{x}{n})^n (1 + \frac{x}{n})^{-1} = (1 + \frac{x}{n})^{-1} = (1 + \frac{x}{n})^n (1 + \frac{x}{n})^{-1} = (1 + \frac{x}{n})^{-1} =$

Tour tells montrolle λ suppose λ and λ and λ and λ and λ and λ and λ are the constants and λ and λ are the constants and voisinage de λ pour |x| < n. Donc le théorème des accroissements finis donne λ and λ and λ are the constants and λ are the constants λ are the constants λ and λ are the constants λ are the constants λ and λ are the constants λ a $\lambda_n(x+h)$ pour n>|x[et h>0, h petit. Donc, x fixé et $n\to\infty$ donnent $\widetilde{\exp}(x)\leq \frac{\widetilde{\exp}(x+h)-\widetilde{\exp}(x)}{h}\leq \widetilde{\exp}(x+h)$ au voisinage de x, comme annoncé.

Donc $(1+h)\widetilde{\exp}(x) \leq \widetilde{\exp}(x+h) \leq \frac{\widetilde{\exp}(x)}{1-h}$ pour |h| < 1. Donc $\widetilde{\exp}$ est continue en x et $\widetilde{\exp}$ est dérivable en x de dérivée elle-même; et trivialement $\widetilde{\exp}(0) = 1$. Donc $\widetilde{\exp}$ est la fonction exponentielle.

Pour un autre point de vue / présentation, voir Perrin :

https://www.math.u-psud.fr/~perrin/CAPES/analyse/fonctions/definition-exponentielle.pdf