1

Notes de cours de l'ISIMA, deuxième année http://www.isima.fr/~leborgne

Convolution de fonctions

Gilles Leborgne

17 novembre 2017

[Paragraphe extrait du cours de distribution.]

Table des matières

2	Con	volution	1
	2.1	Notations \check{f} et $\tau_x \check{f}$	1
	2.2	Définition de la convolution	2
	2.3	Stabilité par convolution : $L^1(\mathbb{R}) * L^p(\mathbb{R}) \subset L^p(\mathbb{R})$ pour $1 \leq p \leq \infty$	3
	2.4	Dérivation et convolution	5
	2.5	Stabilité de $L^1_{loc}(\mathbb{R})$ par convolution "bornée"	5
	2.6	Régularisation par convolution	6
		2.6.1 Régularisation d'une fonction $L^1_{loc}(\mathbb{R})$	6
		2.6.2 Suite régularisante ou approximation de l'identité	6
		2.6.3 Régularisation C^{∞} d'une fonction $1_{[a,b]}$	7
	2.7	$\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$ pour $1 \leq p < \infty$	8
		2.7.1 Convergence L^p et convergence p.p. des régularisées	8
		2.7.2 $\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$ pour $1 \leq p < \infty$	9
	2.8	Lemme de Lebesgue	10
	2.9	Partition de l'unité	10
		$2.9.1$ $1_{\mathbb{R}}$ comme somme de régularisées (partition de l'unité de \mathbb{R})	10
		2.9.2 Partition de l'unité dans \mathbb{R}^n	11
	2.10	$L^p_{loc}(\mathbb{R})$ et résultat de "projection"	12

2 Convolution

2.1 Notations \check{f} et $\tau_x \check{f}$

Définition 2.1 Pour $f:\mathbb{R}\to\mathbb{R}$, on définit $\check{f}:\mathbb{R}\to\mathbb{R}$ par :

$$\check{f}(x) = f(-x). \tag{2.1}$$

Autrement dit $\check{f} = f \circ g$ où g(x) = -x.

(Le graphe de \check{f} est le symétrique du graphe de f par rapport à "l'axe des y".)

Définition 2.2 Pour $f: \mathbb{R} \to \mathbb{R}$, et $c \in \mathbb{R}$ on définit la translatée $\tau_c(f) = \text{not} e^{-r}$ de f par :

$$\tau_c f(x) = f(x - c). \tag{2.2}$$

Autrement dit $\tau_c f = f \circ h_c$ où $h_c(x) = x - c$.

(Le graphe de $\tau_c f$ est le translaté du graphe de f de c: en particulier $(\tau_c f)(c) = f(0)$.)

Exercice 2.3 Montrer que:

$$\widetilde{\tau_c f} = \tau_{-c} \widetilde{f}.$$
(2.3)

Autrement dit, les opérateurs et τ_c ne commutent pas pour $c \neq 0$: $(\check{\ } \circ \tau_c)(f) = (\tau_{-c} \circ \check{\ })(f)$.

Réponse.
$$\widetilde{\tau_c f}(x) = \tau_c f(-x) = f(-x-c) = \widecheck{f}(x+c) = \tau_{-c}\widecheck{f}(x)$$
.

Proposition 2.4 Pour $f: \mathbb{R} \to \mathbb{R}$ et pour $c \in \mathbb{R}$, on a :

$$\operatorname{supp} \check{f} = -\operatorname{supp} f, \qquad \operatorname{supp} (\tau_c f) = \operatorname{supp} f + c, \qquad \operatorname{supp} (\tau_c \check{f}) = -\operatorname{supp} f + c. \tag{2.4}$$

Immédiat sur un dessin. En particulier, si supp $f \subset [a,b]$ où $a \leq b$, alors :

$$\operatorname{supp}(\check{f}) \subset [-b, -a], \quad \operatorname{supp}(\tau_c f) \subset [a+c, b+c], \quad \operatorname{supp}(\tau_c \check{f}) \subset [-b+c, -a+c]. \tag{2.5}$$

Preuve. Pour \check{f} : on a $\{x : \check{f}(x) \neq 0\} = \{x : f(-x) \neq 0\} = \{-y : f(y) \neq 0\}$, d'où, en prenant l'adhérence, supp $\check{f} = -\text{supp}f$.

Pour $\tau_c f$: on a $\{x: \tau_c f(x) \neq 0\} = \{x: f(x-c) \neq 0\} = \{y+c: f(y) \neq 0\}$, d'où, en prenant l'adhérence, supp $\tau_c f = \text{supp} f + c$.

2.2Définition de la convolution

On rappelle que si $f,g:\mathbb{R}^n\to\mathbb{R}$ sont deux fonctions (mesurables), alors $f*g:\mathbb{R}^n\to\mathbb{R}$ est la fonction donnée formellement par :

$$(f * g)(x) = \int_{t \in \mathbb{R}^n} f(t)g(x - t) dt = \int_{t \in \mathbb{R}^n} f(t)\tau_x \check{g}(t) dt, \qquad (2.6)$$

intégrale qui dépend du paramètre x. En particulier, si $f,g\in L^2(\mathbb{R})$ alors pour chaque x on a $\tau_x\check{g}\in L^2(\mathbb{R})$ (car $\int_{t\in\mathbb{R}}|g(x-t)|^2\,dt=\int_{s\in\mathbb{R}}|g(s)|^2\,ds<\infty$), et donc :

$$(f * g)(x) = (f, \tau_x \check{g})_{L^2(\mathbb{R})}.$$

Dans la suite, pour simplifier la présentation, on considèrera essentiellement le cas $\mathbb{R}^n = \mathbb{R}$.

Exemple 2.5 Si $f \in L^1(\mathbb{R})$ et $g = 1_{\mathbb{R}}$, on a $(f * 1_{\mathbb{R}})(x) = \int_{\mathbb{R}} f(t) dt$ = constante, et donc l'application $f \to f * 1_{\mathbb{R}}$ est la fonction "aire sous la courbe f" (indépendante de x).

Exemple 2.6 Si $f \in L^1(\mathbb{R})$ et $g = \Pi_k = k \mathbb{1}_{\left[\frac{1}{2k}, \frac{1}{2k}\right]}$, on a $(f * g)(x) = k \int_{-\frac{1}{2k}}^{\frac{1}{2k}} f(x-t) dt = \text{la "valeur}$ moyenne de f à travers une fenêtre de largeur $\frac{1}{k}$ centrée en x". Dessin.

La "mesure" d'une fonction f à travers un appareil d'une certaine précision est une application de type $M_k: f \to M_k(f) = f * \Pi_k$, avec donc $M_k(f)(x)$ approximation d'autant meilleure que k est grand, i.e. que l'appareil est précis. L'appareil idéal (de précision parfaite) est $M_{\infty}: f \to M_{\infty}(f) = f(x)$, soit $M_{\infty} = \delta_0$, voir plus loin.

Proposition 2.7 Quand elle est définie, l'opération * est distributive et commutative :

$$g * f = f * g, f * (g_1 + \lambda g_2) = f * g_1 + \lambda f * g_2,$$
 (2.7)

d'où le nom de "produit" (commutatif) de convolution. Et on a :

$$\widetilde{f * g} = \widecheck{f} * \widecheck{g}, \quad \text{et} \quad \tau_a(f * g) = (\tau_a f) * g = f * (\tau_a g).$$
(2.8)

Et:

$$\begin{cases} (f \text{ et } g \text{ paires}) \text{ ou } (f \text{ et } g \text{ impaires}) \Rightarrow f * g \text{ paire}, \\ (f \text{ paire et } g \text{ impaire}) \text{ ou } (f \text{ impaire et } g \text{ paire}) \Rightarrow f * g \text{ impaire}. \end{cases}$$
(2.9)

Preuve. $(f*g)(x) = \int_{\mathbb{R}} f(t)g(x-t) dt = \int_{\mathbb{R}} f(x-u)g(u) du = (g*f)(x)$ donne la commutativité. Et la distributivité résulte de la distributivité de la multiplication de \mathbb{R} et de la linéarité de l'intégrale.

Puis
$$(f * \check{g})(x) = \int_{\mathbb{D}} f(-t)g(-x+t) dt = \int_{\mathbb{D}} f(u)g(-x-u) du = (f * g)(-x).$$

Puis
$$(\check{f} * \check{g})(x) = \int_{\mathbb{R}} f(-t)g(-x+t) dt = \int_{\mathbb{R}} f(u)g(-x-u) du = (f * g)(-x).$$

Puis $\tau_a(f * g)(x) = (f * g)(x-a) = \int_{\mathbb{R}} f(t)g(x-a-t) dt = \int_{\mathbb{R}} f(t)\tau_a g(x-t) dt = (f * \tau_a g)(x)$

Puis $(f * g)(-x) = \int_{\mathbb{R}} f(t)g(-x-t) dt$: si g est paire, alors $(f * g)(-x) = \int_{\mathbb{R}} f(t)g(x+t) dt = \int_{\mathbb{R}} f(-u)g(x-u) dt$, d'où si f est paire alors (f * g)(-x) = (f * g)(x), et si f est impaire alors (f * g)(-x) = -(f * g)(x); et f * g = g * f.

Proposition 2.8 Pour $f, g : \mathbb{R} \to \mathbb{R}$, la fonction convolée f * g vérifie (quand elle a un sens) :

$$\operatorname{supp}(f * g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g}. \tag{2.10}$$

Preuve. On a $(f * g)(x) = \int_{t \in \mathbb{R}} f(t)g(x-t) dt = \int_{t \in \text{supp} f \cap \text{supp} \tau_x \check{g}} f(t)\tau_x \check{g}(t) dt$. Cas simple: suppf = [a, b] et suppg = [c, d], avec $a \leq b$ et $c \leq d$, donc suppf + supp g = b

Cas simple : supp f = [a, b] et supp g = [c, d], avec $a \le b$ et $c \le d$, donc supp f + supp g = [a+c, b+d]. Et supp $\tau_x \check{g} = [-d+x, -c+x]$, donc supp $f \cap \text{supp } \tau_x \check{g} = [a, b] \cap [-d+x, -c+x]$, donne supp $f \cap \text{supp } \tau_x \check{g} = \emptyset$ ssi soit a > -c+x soit b < -d+x, i.e. ssi x < a+c ou x > b+d. Donc supp $f \cap \text{supp } \tau_x \check{g} = \emptyset$ dès que $x \notin [a+c, b+d]$, donc supp $f \cap \text{supp } f \cap \text{supp } f$.

Cas général : on a (f * g)(x) = 0 dès que $\operatorname{supp} f \cap \operatorname{supp} \tau_x \check{g} = \emptyset$. Et $\exists t \in \operatorname{supp} f \cap \operatorname{supp} \tau_x \check{g}$ ssi $\exists t \in \operatorname{supp} f$ et $t \in x - \operatorname{supp} g$, i.e. ssi $\exists t \in \operatorname{supp} f$ et $x \in t + \operatorname{supp} g$ ($\subset \operatorname{supp} f + \operatorname{supp} g$). Donc si $x \notin \operatorname{supp} f + \operatorname{supp} g$ alors $\operatorname{supp} f \cap \operatorname{supp} \tau_x \check{g} = \emptyset$ donc (f * g)(x) = 0. Donc $\{x : (f * g)(x) \neq 0\} \subset \operatorname{supp} f + \operatorname{supp} g$. D'où (2.10).

Remarque 2.9 Rappel : la somme de deux fermés n'est pas nécessairement un fermé : prendre $F = \mathbb{N}^* = \{n, n \in \mathbb{N}^*\}$ et $G = \{-k + \frac{1}{k}, k \in \mathbb{N}^*\}$ qui donne $F + G = \{n - k + \frac{1}{k}, k, n \in \mathbb{N}^*\}$. Ici $\mathbb{R} - F = \bigcup_{n \in \mathbb{N}^*}] - n, n+1 [$ et $\mathbb{R} - G = \bigcup_{k \in \mathbb{N}^*}] - k + \frac{1}{k}, -k+1 + \frac{1}{k-1} [$ sont des ouverts (union d'ouverts), donc F et G sont fermés, mais F + G contient la suite $(\frac{1}{k})_{k \in \mathbb{N}^*}$ qui converge vers G dans G, avec G et G n'est pas fermé.

Rappel : la somme d'un compact et d'un fermé est un fermé : soit K compact et G fermé, soit (z_n) une suite dans K+G qui converge vers z dans \mathbb{R} . Montrons que $z \in K+G$. On a $z_n = k_n + g_n$, et quitte à extraire une sous-suite, on a $k_n \to k$ dans K. Donc $g_n = z_n - k_n \in G$ converge vers z - k, avec G fermé, donc $g = \det^{def} z - k \in G$, donc $z = k + g \in K + G$, donc K + G est fermé.

2.3 Stabilité par convolution : $L^1(\mathbb{R}) * L^p(\mathbb{R}) \subset L^p(\mathbb{R})$ pour $1 \leq p \leq \infty$

Proposition 2.10 Si $f, g \in L^1(\mathbb{R})$ alors $|f| * |g| \in L^1(\mathbb{R})$ et $f * g \in L^1(\mathbb{R})$, avec :

$$||f * g||_1 \le ||f||_1 ||g||_1. \tag{2.11}$$

Preuve. On a, si ça a un sens :

$$||f * g||_{L^{1}} = \int_{x \in \mathbb{R}} |(f * g)(x)| dx = \int_{x \in \mathbb{R}} |\int_{t \in \mathbb{R}} f(x - t)g(t) dt| dx.$$

$$\leq \int_{x \in \mathbb{R}} (\int_{t \in \mathbb{R}} |f(x - t)| |g(t)| dt) dx = \int_{x \in \mathbb{R}} (|f| * |g|)(x) dx.$$
(2.12)

Comme f et g sont dans $L^1(\mathbb{R})$ la fonction $f \otimes g : (x,y) \to f(x)g(y)$ (fonction à variables séparées) est dans $L^1(\mathbb{R}^2)$. Et on peut appliquer Fubini :

$$\infty > ||f||_{L^1}||g||_{L^1} = \int_{(y,t)\in\mathbb{R}^2} |f(y)||g(t)||dtdy = \int_{(x,t)\in\mathbb{R}^2} |f(x-t)||g(t)||dtdx,$$

où on a utilisé le changement de variable $F:(y,t)\in\mathbb{R}^2\to F(y,t)=\begin{pmatrix}x=F_1(y,t)=y+t\\t=F_2(y,t)=t\end{pmatrix},$ difféomorphisme de \mathbb{R}^2 dans lui-même, de jacobien det $\begin{pmatrix}\frac{\partial F_1}{\partial y}&\frac{\partial F_1}{\partial t}\\\frac{\partial F_2}{\partial y}&\frac{\partial F_2}{\partial t}\end{pmatrix}(y,t)=\det\begin{pmatrix}1&1\\0&1\end{pmatrix}=1$ qui donne (dtdy)=|1|(dtdx)=(dtdx). D'où $||f*g||_{L^1}\leqslant ||f||_{L^1}||g||_{L^1}<\infty$, i.e. (2.11).

Exercice 2.11 Montrer (2.11) à l'aide du théorème d'intégration de Tonelli (cours d'intégration). **Réponse**. Rappel de Tonelli : si la fonction $h: \Omega_1 \times \Omega_2 \to \mathbb{R}$ satisfait aux deux hypothèses :

$$\int_{y \in \Omega_2} |h(x, y)| \, dy < \infty \quad \text{p.p. } x \quad \text{et} \quad \int_{x \in \Omega_1} \left(\int_{y \in \Omega_2} |h(x, y)| \, dy \right) dx < \infty \tag{2.13}$$

alors $h \in L^1(\Omega_1 \times \Omega_2)$, et alors on peut inverser l'ordre d'intégration (Fubini).

Ici on pose h(t,x) = |f(t)| |g(x-t)| et on vérifie les hypothèses : commençant par intégrer en x à t fixé, il vient, à t fixé :

$$\int_{x \in \mathbb{R}} |f(t)| |g(x-t)| dx = |f(t)| \left(\int_{x \in \mathbb{R}} |g(x-t)| dx\right) = |f(t)| \left(\int_{y \in \mathbb{R}} |g(y)| dy\right) \leqslant |f(t)| ||g||_{1} < \infty, \qquad (2.14)$$

puis:

$$\int_{t\in\mathbb{D}} |f(t)| ||g||_1 dt \le ||g||_1 \int_{t\in\mathbb{D}} |f(t)| dt \le ||g||_1 ||f||_1 < \infty.$$
(2.15)

D'où le résultat.

Exemple 2.12 $f(t) = g(t) = e^{-t} 1_{\mathbb{R}_+}(t)$. On a $\int_{\mathbb{R}} |f(t)| dt = \int_0^\infty e^{-t} dt = 1 < \infty$, et $f, g \in L^1(\mathbb{R})$. Et $(f * g)(x) = \int_{\mathbb{R}} e^{-t} 1_{\mathbb{R}_+}(t) e^{-(x-t)} 1_{\mathbb{R}_+}(x-t) dt = \int_{t=0}^x e^{-t} e^{-(x-t)} 1_{\mathbb{R}_+}(x) dt = \int_0^x e^{-x} 1_{\mathbb{R}_+}(x) dt = xe^{-x} 1_{\mathbb{R}_+}(x)$, intégrable sur \mathbb{R} , donc on a bien $f * g \in L^1(\mathbb{R})$.

Exercice 2.13 Montrer que si $f, g, h \in L^1(\mathbb{R})$ sont positives et $f \leq g$, alors $f * h \leq g * h$.

Réponse. On a
$$(f*h)(x) = \int_{\mathbb{R}} f(t)h(x-t) dt \leq \int_{\mathbb{R}} g(t)h(x-t) dt = (h*g)(x)$$
.

Remarque 2.14 L'inégalité (2.11) obtenue est une inégalité où à gauche on a de fait une intégrale double, cf. (2.12), alors qu'à droite on a un produit des deux intégrales simples.

En particulier, $||f * g||_1$ (calcul d'une intégrale double) n'a rien à voir avec le produit $||fg||_1$ (calcul d'une intégrale simple) qui en général n'a pas de sens pour f et g dans $L^1(\mathbb{R})$.

Par exemple, f et g données par $f(t)=g(t)=\frac{1}{\sqrt{t}}1_{]0,1]}$ sont dans $L^1(\mathbb{R})$ (car $\int_0^1 |\frac{1}{\sqrt{t}}| \, dt=[2\sqrt{t}]_0^1=2<\infty$), mais $(fg)(t)=\frac{1}{t}1_{]0,1]}$ n'est pas dans $L^1(\mathbb{R})$. Alors que f*g donnée par $(f*g)(x)=\int_t \frac{1}{\sqrt{|t|}}\frac{1}{\sqrt{|x-t|}} \, dt$ est dans $L^1(\mathbb{R})$: cette fonction est définie p.p., et plus précisément pour tout $x\in\mathbb{R}^*$, et n'est pas définie en x=0, mais ce n'est pas gênant puisque, ici, seul le caractère intégrable (au sens de Lebesgue) nous intéresse (notion de presque partout): autrement dit on a $L^1(\mathbb{R}^*)=L^1(\mathbb{R})$ car $\mathbb{R}^*=\mathbb{R}-\{0\}$ et l'ensemble singleton $\{0\}$ est négligeable pour la mesure de Lebesgue. En particulier, on a vu que $\int_{\mathbb{R}} |f*g|(x) \, dx \leqslant ||f||_1 ||g||_1 < \infty$.

On rappelle que $g \in L^p(\mathbb{R})$ ssi $|g|^p \in L^1$, et qu'alors $||g||_p = (||g|^p||_{L^1})^{\frac{1}{p}} = (\int_{\mathbb{R}} |g(x)|^p dx)^{\frac{1}{p}}$ est une norme dans $L^p(\mathbb{R})$, cf. cours intégrale de Lebesgue.

Proposition 2.15 Soit $p \in [1, \infty]$. Soit $f \in L^1(\mathbb{R})$ et $g \in L^p(\mathbb{R})$. Alors $f * g \in L^p(\mathbb{R})$, autrement dit $L^1(\mathbb{R}) * L^p(\mathbb{R}) \subset L^p(\mathbb{R})$, et on a :

$$||f * g||_{p} \le ||f||_{1}||g||_{p}. \tag{2.16}$$

Preuve. Le cas p = 1 vient d'être traité, et le cas $p = \infty$ est immédiat car alors $|(f * g)(x)| \le ||g||_{\infty} \int_{\mathbb{R}} |f(t)| dt$. Supposons donc 1 .

On va utiliser l'inégalité de Hölder : soit q l'exposant conjugué de p, donné par $\frac{1}{p} + \frac{1}{q} = 1$; quand $\alpha \in L^q$ et $\beta \in L^p$ alors $\alpha\beta \in L^1(\mathbb{R})$ et $||\alpha\beta||_1 \le ||\alpha||_q ||\beta||_p$ (voir cours d'intégration). On a :

$$\int_{t \in \mathbb{R}} |f|(t)|g|(x-t) dt = \int_{t \in \mathbb{R}} |f|^{\frac{1}{q}}(t)|f|^{\frac{1}{p}}(t)|g|(x-t) dt$$
 (2.17)

On pose $\alpha = |f|^{\frac{1}{q}} \in L^q(\mathbb{R})$, donc $\alpha^q = |f| \in L^1(\mathbb{R})$.

À x fixé, on pose $\beta_x(t) = |f(t)|^{\frac{1}{p}}||g|(x-t)$, donc $\beta_x(t)^p = |f(t)||g|^p(x-t)$. Et $\int_{t\in\mathbb{R}}\beta_x(t)^p\,dt = \int_{t\in\mathbb{R}}|f|(t)|g|^p(x-t)\,dt = (|f|*|g|^p)(x)$ est bien défini car $|f|\in L^1(\mathbb{R}),\,|g|^p\in L^1(\mathbb{R}),$ cf. (2.11). Donc $\beta_x\in L^p(\mathbb{R})$. Donc (Hölder) :

$$\int_{t\in\mathbb{R}} |f|^{\frac{1}{q}}(t)|f|^{\frac{1}{p}}(t)|g|(x-t) dt \leq \left(\int_{t\in\mathbb{R}} |f|(t) dt\right)^{\frac{1}{q}} \left(\int_{t\in\mathbb{R}} |f|(t)|g|^{p}(x-t) dt\right)^{\frac{1}{p}}$$

$$= ||f||_{\frac{1}{q}}^{\frac{1}{q}}(|f| * |g|^{p})(x)^{\frac{1}{p}}.$$
(2.18)

Donc, avec (2.17):

$$|(|f|*|g|)|^{p}(x) \leq ||f||_{1}^{\frac{p}{q}} |(|f|*|g|^{p})(x)|. \tag{2.19}$$

D'où $|(f*g)|^p$ est dans $L^1(\mathbb{R})$ avec :

$$|||f * g|^p||_1 \le ||f||_1^{\frac{p}{q}} ||f||_1 ||g|^p||_1.$$
 (2.20)

Comme $1 + \frac{p}{q} = p$, on a (2.16). (Démonstration similaire dans \mathbb{R}^n .)

Dérivation et convolution

Proposition 2.16 Si $f \in L^1(\mathbb{R})$, si $g \in L^p(\mathbb{R})$ pour un $p \in [1, \infty]$, si g est dérivable dans \mathbb{R} , et si $g' \in L^{\infty}(\mathbb{R})$ (i.e. g' est bornée), alors f * g est dérivable dans \mathbb{R} et :

$$(f * g)' = f * g'. (2.21)$$

Preuve. Les hypothèses indiquent que f * g et f * g' ont un sens. (2.21) signifie $\frac{d}{dx} \left(\int_{t \in \mathbb{R}} f(t)g(x-t) \, dt \right) = \int_{t \in \mathbb{R}} \frac{\partial}{\partial x} \left(f(t)g(x-t) \right) \, dt$. C'est vrai grâce au théorème de convergence dominée : l'intégrant h(x,t) = f(t)g(x-t) est dérivable en x (car g l'est), de dérivée $\frac{\partial h}{\partial x}(x,t) = f(t)g'(x-t)$, et $|\frac{\partial h}{\partial x}(x,t)| \le ||g'||_{\infty}|f(t)|$, avec $||g'||_{\infty}|f| \in L^1(\mathbb{R})$ fonction dominante intégrable intégrable intégrandes de xintégrable indépendante de x.

Stabilité de $L^1_{loc}(\mathbb{R})$ par convolution "bornée"

Le résultat suivant sera généralisé à la convolution des distributions.

Proposition 2.17 Soit $f, g \in L^1_{loc}(\mathbb{R})$.

1- Si supp g est compact, alors $f * g \in L^1_{loc}(\mathbb{R})$. 2- Si supp f et suppg sont tous deux limités à gauche (ou tous deux limités à droite), alors $f * g \in L^1_{loc}(\mathbb{R}).$

3- Les hypothèses $f \in L^1_{loc}(\mathbb{R})$ et $g \in L^1(\mathbb{R})$ sont insuffisantes.

 $\textbf{Preuve.} \text{ Pour tout } \alpha < \beta \text{ on veut } f * g \in L^1([\alpha,\beta]), \text{ i.e. } \int_{x=\alpha}^{\beta} \left(\int_{t=a}^{b} \left| g(t) f(x-t) \right| dt \right) dx < \infty. \text{ On a : } t \in L^1([\alpha,\beta]), \text{ i.e. } \int_{x=a}^{\beta} \left(\int_{t=a}^{b} \left| g(t) f(x-t) \right| dt \right) dx < \infty. \text{ On a : } t \in L^1([\alpha,\beta]), \text{ i.e. } \int_{x=a}^{\beta} \left(\int_{t=a}^{b} \left| g(t) f(x-t) \right| dt \right) dx < \infty. \text{ On a : } t \in L^1([\alpha,\beta]), \text{ i.e. } \int_{x=a}^{\beta} \left(\int_{t=a}^{b} \left| g(t) f(x-t) \right| dt \right) dx < \infty. \text{ On a : } t \in L^1([\alpha,\beta]), \text{ i.e. } \int_{x=a}^{\beta} \left(\int_{t=a}^{b} \left| g(t) f(x-t) \right| dt \right) dx < \infty. \text{ On a : } t \in L^1([\alpha,\beta]), \text{ i.e. } t$

$$\int_{x=\alpha}^{\beta} |(f * g)(x)| \, dx \le \int_{x=\alpha}^{\beta} \left(\int_{t=a}^{b} |g(t)f(x-t)| \, dt \right) dx \tag{2.22}$$

1- g à support compact, donc il existe $a, b \in \mathbb{R}$ t.q. $\operatorname{supp}(g) \subset [a, b]$ et $g \in L^1(\mathbb{R})$. Pour inverser l'ordre des intégrations dans (2.22), appliquons le théorème de Fubini-Tonelli.

For the destintegrations data (2.22), appropriate theorems de Fubini-Tonem. À t fixé, $\int_{x=\alpha}^{\beta} |g(t)f(x-t)| dx = |g(t)| \int_{x=\alpha}^{\beta} |f(x-t)| dx = |g(t)| \int_{x=\alpha-t}^{\beta-t} |f(y)| dy < \infty$ car $f \in L^1_{loc}(\mathbb{R})$. Et pour $t \in [a,b]$ on a $\alpha-t \geqslant \alpha-b$ et $\beta-t \leqslant \beta-a$, donc $\int_{x=\alpha-t}^{\beta-t} |f(y)| dy \leqslant \int_{x=\alpha-b}^{\beta-a} |f(y)| dy$. Donc $\int_{t=a}^{b} \int_{x=a}^{\beta} |g(t)f(x-t)| dxdt \leqslant \int_{t=a}^{b} |g(t)| \int_{x=\alpha-b}^{\beta-a} |f(y)| dydt = \int_{t=a}^{b} |g(t)| dt \int_{x=\alpha-b}^{\beta-a} |f(y)| dy < \int_{x=\alpha-b}^{\beta-a} |f(y)| dydt = \int_{t=a}^{\beta-a} |g(t)| dt \int_{x=a-b}^{\beta-a} |f(y)| dydt = \int_{t=a}^{\beta-a} |f(y)| dydt = \int_{t=a}^$

$$\begin{split} \int_{x=\alpha}^{\beta} |(f*g)(x)| \, dx &\leqslant \int_{t=a}^{b} |g(t)| (\int_{x=\alpha}^{\beta} |f(x-t)| \, dx) \, dt = \int_{t=a}^{b} |g(t)| \int_{y=\alpha-t}^{\beta-t} |f(y)| \, dy \, dt \\ &\leqslant \int_{t=a}^{b} |g(t)| \int_{y=\alpha-b}^{\beta-a} |f(y)| \, dy \, dt \leqslant ||g||_{L^{1}} \int_{y=\alpha-b}^{\beta-a} |f(y)| \, dy < \infty. \end{split}$$

Vrai pour tout α, β , donc f * g est $L^1_{loc}(\mathbb{R})$.

2- Supports limités à gauche : il existe $a, b \in \mathbb{R}$ t.q. supp $f \subset [a, \infty[$ et supp $g \subset [b, \infty[$. Donc, pour $x \in \mathbb{R}$, on a supp $\tau_x \check{g} \subset]-\infty, -b+x]$. Donc supp $f \cap \text{supp} \tau_x \check{g} \subset [a, -b+x]$, et avec Fubini on a :

$$\int_{x=\alpha}^{\beta} |(f * g)(x)| dx \leq \int_{x=\alpha}^{\beta} \int_{t=a}^{-b+x} |f(t)\tau_{x}\check{g}(t)| dt dx \leq \int_{x=\alpha}^{\beta} \int_{t=a}^{-b+\beta} |f(t)g(x-t)| dt dx$$

$$= \int_{t=a}^{-b+\beta} \int_{x=\alpha}^{\beta} |f(t)g(x-t)| dx dt = \int_{t=a}^{-b+\beta} \int_{y=\alpha-t}^{\beta-t} |f(t)g(y)| dy dt$$

$$\leq \int_{t=a}^{-b+\beta} \int_{y=\alpha+b-\beta}^{\beta-a} |f(t)g(y)| dy dt \leq \int_{t=a}^{-b+\beta} |(f(t)| dt \int_{y=\alpha+b-\beta}^{\beta-a} |g(y)| dy,$$

fini car f et g sont $L^1_{loc}(\mathbb{R})$. Idem pour supports limités à droite.

3- On prend
$$f(t) = e^{-t} \text{ sur } \mathbb{R} \text{ et } g(t) = e^{-t} 1_{\mathbb{R}_+}(t) \text{ donc } g \in L^1(\mathbb{R}); \text{ alors } (f * g)(x) = \int_{\mathbb{R}} g(t) f(x-t) \, dt = \int_0^\infty e^{-t} e^{-(x-t)} \, dt = \int_0^\infty e^{-x} \, dt = \infty.$$

2.6 Régularisation par convolution

2.6.1 Régularisation d'une fonction $L^1_{loc}(\mathbb{R})$

On rappelle que si Ω est un ouvert dans \mathbb{R}^n , $\mathcal{D}(\Omega) = \{ f \in C^{\infty}(\mathbb{R}) : \text{supp} f \text{ compact} \}.$

Proposition 2.18 Si $f \in L^1_{loc}(\mathbb{R})$, si $\varphi \in \mathcal{D}(\mathbb{R})$, alors $f * \varphi \in C^{\infty}(\mathbb{R})$. Si de plus supp f est compact alors $f * \varphi \in \mathcal{D}(\mathbb{R})$.

Preuve. $(f*\varphi)(x) = \int_{t\in\mathbb{R}} f(t)\varphi(x-t) dt$ est une intégrale qui dépend du paramètre x. Appliquons le théorème de convergence dominée : notons $h(x,t) = f(t)\varphi(x-t)$. À t fixé, l'intégrant h(t,x) est C^k en x puisque φ l'est, de dérivée k-ième en x vérifiant $|\frac{\partial^k h}{\partial x^k}(t,x)| = |f(t)| |\varphi^{(k)}(x-t)| \le C_k |f(t)|$ où $C_k = ||\varphi^{(k)}||_{\infty}$.

1- Cas $f \in L^1(\mathbb{R})$ (plus simple à rédiger) : $|\frac{\partial^k h}{\partial x^k}(t,x)|$ est bornée indépendamment de x par la fonction $C_k f \in L^1(\mathbb{R})$, d'où $f * \varphi$ est C^k pour tout k (et on peut dériver sous le signe somme).

2- Cas $f \in L^1_{loc}(\mathbb{R})$. Ici $f \notin L^1(\mathbb{R})$. Soit $x_0 \in \mathbb{R}$. Montrons que $f * \varphi$ est C^{∞} en x_0 . Comme φ est à support compact, $\exists a, b \in \mathbb{R}$ t.q. $\operatorname{supp}(\varphi) \subset [a, b]$, donc, pour $x \in \mathbb{R}$, $\operatorname{supp}(\tau_x \check{\varphi}) \subset [-b + x, -a + x]$. Donc pour tout $x \in]x_0 - 1, x_0 + 1[$ (voisinage ouvert de x_0):

$$\operatorname{supp}(\tau_x \check{\varphi}) \subset [-b + x_0 - 1, -a + x_0 + 1] \stackrel{\text{not } \acute{e}}{=} K.$$

Donc pour tout $x \in]x_0-1, x_0+1[$, avec $C_k = ||\varphi^{(k)}||_{\infty}$:

$$h(x,t) = f(t)\varphi(x-t)1_K(t), \qquad \left|\frac{\partial^k h}{\partial x^k}(t,x)\right| \leqslant C_k|f(t)1_K(t)|,$$

majoration indépendante de $x \in]x_0-1, x_0+1[$, et avec $f1_K \in L^1(\mathbb{R})$ car $f \in L^1_{loc}(\mathbb{R})$ et K est compact. D'où $f * \varphi \in C^k(]x_0-1, x_0+1[)$, en particulier en x_0 , ce pour tout x_0 et tout k.

Et si supp f est borné, alors supp $(f * \varphi)$ est borné, cf. (2.10), donc $f * \varphi \in \mathcal{D}(\mathbb{R})$.

Exercice 2.19 Montrer que si $f \in L^1_{loc}(\mathbb{R})$, si $g \in C^{\infty}(\mathbb{R})$, si supp f et supp g sont tous deux limités à gauche (ou tous deux limités à droite), alors $f * g \in C^{\infty}(\mathbb{R})$.

2.6.2 Suite régularisante ou approximation de l'identité

Définition 2.20 Une fonction intégrable f est dite de masse unité ssi $\int f(x) dx = 1$ (souvent défini avec l'hypothèse supplémentaire $f \ge 0$).

Définition 2.21 On appelle suite régularisante une suite $(\varphi_k)_{\mathbb{N}^*}$ de $\mathcal{D}(\mathbb{R})$ telle que :

$$\begin{cases} \varphi_k(x) \geqslant 0, & \forall x \in \mathbb{R}, \\ \operatorname{supp}(\varphi_k) \subset \left[-\frac{1}{k}, \frac{1}{k} \right], \\ \int_{\mathbb{R}} \varphi_k(x) \, dx = 1 \qquad \text{(masse unit\'e)}. \end{cases}$$
 (2.23)

Définition similaire dans \mathbb{R}^n où $\left[-\frac{1}{k}, \frac{1}{k}\right]$ est remplacé par la boule de centre 0 et de rayon $\frac{1}{k}$. (On verra que $(\varphi_k)_{\mathbb{N}^*}$ approxime la masse de Dirac au sens des distributions, et la masse de Dirac est l'identité du produit de convolution, d'où le nom "approximation de l'identité".)

Soit ζ la fonction de $\mathcal{D}(\mathbb{R})$ définie par :

$$\zeta(x) = \begin{cases} \exp(-\frac{1}{1-x^2}), & \forall x \in]-1, 1[, \\ 0, & \forall x \notin]-1, 1[. \end{cases}$$
 (2.24)

On pose:

$$\gamma_1(x) = \frac{\zeta(x)}{||\zeta||_{L^1}}, \quad \text{puis} \quad \gamma_k(x) = k \gamma_1(kx), \quad k \geqslant 1.$$
(2.25)

Proposition 2.22 La suite $(\gamma_k)_{k \in \mathbb{N}^*}$ est une suite régularisante.

Preuve. Comme $\zeta \geqslant 0$, on a $\gamma_1 \geqslant 0$.

Comme $\zeta \geqslant 0$ et ζ non identiquement nulle, on a $||\zeta||_{L^1} = \int_{\mathbb{R}} |\zeta(x)| dx = \int_{\mathbb{R}} \zeta(x) dx > 0$.

Donc $\int_{\mathbb{R}} \gamma_1(x) dx = \frac{1}{||\zeta||_{L^1}} \int_{\mathbb{R}} \zeta(x) dx = \frac{1}{||\zeta||_{L^1}} ||\zeta||_{L^1} = 1.$ Donc $\int_{\mathbb{R}} \gamma_k(x) dx = \int_{\mathbb{R}} k \gamma_1(kx) dx = \int_{\mathbb{R}} \gamma_1(y) dy = 1.$ Comme $\gamma_1 > 0$ et $k \ge 0$ on a $\gamma_k \ge 0$.

Et $\gamma_1(x) \neq 0$ ssi $k \in]-1, 1[$. Donc $\gamma_k(x) \neq 0$ ssi $kx \in]-1, 1[$. D'où supp $(\gamma_k) = [-\frac{1}{k}, \frac{1}{k}]$.

Régularisation C^{∞} d'une fonction $1_{[a,b]}$

Proposition 2.23 Soit a < b. Soit (φ_k) une suite régularisante. Dès que k est assez grand, à savoir dès que $\frac{1}{k} \leqslant \frac{b-a}{2}$, la fonction $1_{[a,b]} * \varphi_k \in \mathcal{D}(\mathbb{R})$ vérifie, pour $x \in \mathbb{R}$:

$$\begin{cases}
0 \leqslant (1_{[a,b]} * \varphi_k)(x) \leqslant 1, \\
(1_{[a,b]} * \varphi_k)(x) = 1 \text{ pour } x \in [a + \frac{1}{k}, b - \frac{1}{k}], \\
\sup(1_{[a,b]} * \varphi_k) = [a - \frac{1}{k}, b + \frac{1}{k}].
\end{cases} (2.26)$$

(Et on conserve ce résultat si on ouvre l'intervalle]a, b[.)

Cas particulier $(\varphi_k) = (\gamma_k)$ donnée en (2.25): de plus $\varphi(a) = \varphi(b) = \frac{1}{2}$.

Dans \mathbb{R}^n : la fonction $1_K * \varphi_k$ est également dans $\mathcal{D}(\mathbb{R}^n)$, avec $0 \leqslant \varphi \leqslant 1$, avec $\operatorname{supp}(\varphi) \subset K + B(\vec{0}, \frac{1}{k})$, et avec $\varphi = 1$ sur $K - B(\vec{0}, \frac{1}{k})$, où $B(\vec{0}, \frac{1}{k})$ est la boule unité de centre $\vec{0}$ et rayon $\frac{1}{k}$.

Preuve. On a $\varphi = 1_{[a,b]} * \varphi_k \in \mathcal{D}(\mathbb{R})$, cf. prop. 2.18. On a $\operatorname{supp} \tau_x(\widecheck{1_{[a,b]}}) = [x-b,x-a]$ et $\operatorname{supp} \varphi_k = 0$ $\left[-\frac{1}{k},\frac{1}{k}\right]$, donc:

$$\varphi(x) = \int_{t \in \mathbb{R}} \varphi_k(t) \tau_x(\widetilde{1_{[a,b]}})(t) dt = \int_{t \in [x-b,x-a] \cap [-\frac{1}{k},\frac{1}{k}]} \varphi_k(t) dt, \qquad (2.27)$$

et la fonction φ_k est positive d'intégrale $\int_{\mathbb{R}} \varphi_k = 1$. D'où $0 \leqslant \varphi \leqslant 1$.

Et si $x - b > \frac{1}{k}$ ou si $x - a < -\frac{1}{k}$, alors $\varphi(x) = \int_{\emptyset} \dots = 0$, d'où supp $(\varphi) \in [a - \frac{1}{k}, b + \frac{1}{k}]$. Et si $x - b < -\frac{1}{k}$ et si $x - a > \frac{1}{k}$, alors $[x - b, x - a] \subset [-\frac{1}{k}, \frac{1}{k}]$, donc $\varphi(x) = 1$. Cas particulier $(\varphi_k) = (\gamma_k)$: on a $\varphi(a) = \int_{u \in [a - b, 0] \cap [-\frac{1}{k}, \frac{1}{k}]} \gamma_k(u) du = \int_{u \in [\frac{-1}{k}, 0]} \gamma_k(u) du = \frac{1}{2}$, dès que $\frac{1}{k} < b - a$, car γ_k est paire et $\int_{u \in [\frac{-1}{k}, \frac{1}{k}]} \gamma_k(u) du = 1$. Idem: $\varphi(b) = \frac{1}{2}$.

Exercice dans \mathbb{R}^n .

Exercice 2.24 Donner une fonction $f \in \mathcal{D}(\mathbb{R})$ telle que $f = \exp \sup [-1, 1]$ et $0 \le f \le \exp \sup \mathbb{R}$, où exp: $x \to e^x \in C^{\infty}(\mathbb{R})$ est la fonction exponentielle.

Réponse. On "tronque de manière régulière" la fonction exp : on pose $g=1_{[-2,2]}*\varphi_1$. Avec (2.26) on a $g \in \mathcal{D}(\mathbb{R})$ et g(x) = 1 sur [-1,1] et $0 \leq g(x) \leq 1$. Cette fonction g est notre fonction de "troncature régulière". On pose $f(x) = \exp(x)g(x)$: la fonction f convient, car produit de deux fonctions $C^{\infty}(\mathbb{R})$, donc est $C^{\infty}(\mathbb{R})$, et suppg est borné, et trivialement supp $f \subset \text{supp}g$, donc $f \in \mathcal{D}(\mathbb{R})$.

Corollaire 2.25 Soit $a < b \in \mathbb{R}$, soit $c < d \in \mathbb{R}$. Si $[c,d] \subset]a,b[$ alors il existe une fonction $\varphi \in \mathcal{D}([a,b[)])$ qui vaut 1 sur [c,d], et telle que $0 \leqslant \varphi \leqslant 1$. (Dessin).

Dans \mathbb{R}^n : si Ω est un ouvert de \mathbb{R}^n et K un compact tel que $K \subset \Omega$, alors il existe une fonction $\varphi \in \mathcal{D}(\Omega)$ qui vaut 1 sur K et telle que $0 \leq \varphi \leq 1$.

Preuve. Soit (γ_k) une suite régularisante. Soit $\varepsilon = \frac{1}{2}\min(c-a,b-d)$ (dessin), soit $e = c-\varepsilon$ et $f = d+\varepsilon$. Soit k t.q. $\frac{1}{k} \leqslant \frac{f-e}{2}$ et $\frac{1}{k} < \varepsilon$. La fonction $\varphi = 1_{[e,f]} * \varphi_k$ convient, cf. proposition précédente.

Dans \mathbb{R}^n : soit $K = \operatorname{supp} \varphi$ et soit $\varepsilon = d(K, \mathbb{R}^n - \Omega) > 0$ la distance de K à $\mathbb{R}^n - \Omega$. Soit $K_{\varepsilon} = K + \overline{B}(0, \frac{\varepsilon}{2})...$ on continue comme précédemment avec la fonction $\varphi = 1_{K_{\varepsilon}} * \gamma_k$.

Corollaire 2.26 Soit (φ_k) une suite régularisante. Soit $x_0 \in \mathbb{R}$.

1- Soit $f \in C^{\infty}(\mathbb{R})$. Alors pour $r \in \mathbb{R}_{+}^{*}$ et $k \in \mathbb{N}^{*}$ t.q. $\frac{1}{k} < r$, la fonction produit :

$$f_{r,k} \stackrel{\text{def}}{=} f(1_{|x_0 - r, x_0 + r|} * \varphi_k),$$
 (2.28)

est dans $\mathcal{D}(\mathbb{R})$ et est égale à f dans un voisinage de x_0 . Plus précisément on a $f_{r,k}=f$ sur $]x_0-r+\frac{1}{k}, x_0+r-\frac{1}{k}[\text{ avec supp}f_{r,k}\subset]x_0-r-\frac{1}{k}, x_0+r+\frac{1}{k}[.$

De plus, si f est bornée, alors $||f - f_{r,k}||_{\infty}^{\kappa} \leq ||f||_{\infty}^{\kappa}$.

2- Plus généralement, soit $\varepsilon > 0$, et soit $f \in C^{\infty}([x_0 - \varepsilon, x_0 + \varepsilon])$. Alors pour $r \in \mathbb{R}$ et $k \in \mathbb{N}^*$ t.q. $0 < r < \frac{\varepsilon}{2} \text{ et } \frac{1}{k} < r, \text{ on a } f_{r,k} \in \mathcal{D}(\mathbb{R}) \text{ et } f_{r,k} = f \text{ dans un voisinage de } x_0. \text{ Plus précisément on a } f_{r,k} = f \text{ sur }]x_0 - r + \frac{1}{k}, x_0 + r - \frac{1}{k} [\text{ avec supp} f_{r,k} \subset]x_0 - r - \frac{1}{k}, x_0 + r + \frac{1}{k} [.$ $3 - \text{ De plus, si } f \text{ est bornée, alors } ||f_{r,k}||_{L^{\infty}(]x_0 - \varepsilon, x_0 + \varepsilon[)} \leq ||f||_{L^{\infty}(]x_0 - \varepsilon, x_0 + \varepsilon[)}.$

Ainsi que $||f - f_{r,k}||_{L^{\infty}([x_0 - \varepsilon, x_0 + \varepsilon])} \le ||f||_{L^{\infty}([x_0 - \varepsilon, x_0 + \varepsilon])}$

Preuve. 1- Soit $\psi_{r,k} = 1_{]x_0 - r, x_0 + r[} * \varphi_k$. On a $\psi_{r,k} \in C^{\infty}(\mathbb{R})$, donc $f_{r,k} \in C^{\infty}(\mathbb{R})$. Soit $I_- =]x_0 - r + \frac{1}{k}, x_0 + r - \frac{1}{k}[$ et soit $I_+ =]x_0 - r - \frac{1}{k}, x_0 + r + \frac{1}{k}[$. On a $\psi_{r,k} = 1$ dans I_- , donc $f_{r,k} = f$ dans I_- et $\psi_{r,k} = 0$ dans I_+ , donc $f_{r,k} = 0$ dans I_+ . D'où 2-.

3- Et
$$0 \le 1_{]x_0 - r, x_0 + r[} * \varphi_k \le 1$$
, donc $0 \le |f_{r,k}(x)| \le |f(x)|$ et $|f(x) - f_{r,k}(x)| \le |f(x)|$.

Exercice 2.27 Soit f en escalier avec supp f borné. Soit $(\varphi_k)_{\mathbb{N}^*}$ une suite régularisante. Alors pour k assez grand on a $f * \varphi_k \in \mathcal{D}(\mathbb{R})$ avec $||f * \varphi_k||_{\infty} \leq ||f||_{\infty}$ et $||f - f * \varphi_k||_{\infty} \leq ||f||_{\infty}$.

Réponse. Ici $\exists n \in \mathbb{N}^*, \ \exists a_1, ..., a_n, c_1, ..., c_n \in \mathbb{R}$ avec $a_1 < ... < a_n, \ f = \sum_{i=1}^{n-1} c_i 1_{[a_i, a_{i+1}]}$. On prend $\frac{1}{k} \leq \min_i(\frac{a_{i+1}-a_i}{2})$. Et $f * \varphi_k$ vérifie les propriétés demandées (démarche de la prop. 2.23).

$\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$ pour $1 \leq p < \infty$

Convergence L^p et convergence p.p. des régularisées

Proposition 2.28 Soit $g = 1_{[a,b]}$ avec $a, b \in \mathbb{R}$, a < b. Soit $(\varphi_k)_{k \in \mathbb{N}}$ une suite régularisante. 1- Pour $1 \leq p < \infty$ on a la convergence dans $L^p(\mathbb{R})$:

$$\varphi_k * 1_{[a,b]} \xrightarrow[k \to \infty]{} 1_{[a,b]} \quad dans \ L^p(\mathbb{R}),$$
 (2.29)

i.e. $||1_{[a,b]} - \varphi_k * 1_{[a,b]}||_{L^1(\mathbb{R})} \xrightarrow[k \to \infty]{} 0.$

Pour $p = \infty$ (cas L^{∞}) c'est faux.

2- Pour $1 \leq p \leq \infty$ on a la convergence simple presque partout :

$$\varphi_k * 1_{[a,b]} \xrightarrow[k \to \infty]{} 1_{[a,b]}$$
 presque partout. (2.30)

3- On conserve ces résultats pour $g = \sum_{i=1}^n c_i 1_{[a_i,b_i]} \in L^p(\mathbb{R})$ fonction en escalier.

Preuve. 1- Cas p = 1. On a $1_{[a,b]} = \varphi_k * 1_{[a,b]}$ sauf sur $K = [a - \frac{1}{k}, a + \frac{1}{k}] \bigcup [b - \frac{1}{k}, b + \frac{1}{k}]$ (pour $k > \frac{1}{2(b-a)}$) ensemble de longueur $|K| = \frac{4}{k}$ sur lequel $|1_{[a,b]}(x) - (\varphi_k * 1_{[a,b]})(x)| \leq 1$. Donc

$$||1_{[a,b]} - \varphi_k * 1_{[a,b]}||_{L^1(\mathbb{R})} \leqslant \int_K dx = \frac{4}{k} \underset{k \to \infty}{\longrightarrow} 0.$$

Cas $1 . Calcul similaire avec <math>|(1_{[a,b]}(x) - \varphi_k * 1_{[a,b]}(x))^p| \le 1$, et même conclusion. Cas $p = \infty$. Comme $\varphi_k * g \in C^0(\mathbb{R})$, on a $||\varphi_k * \varphi||_{\infty} = \sup_{x \in \mathbb{R}} |(\varphi_k * \varphi)(x)|$. Prenons la suite régularisante $\varphi_k = \gamma_k$, cf. (2.25). Soit $k > \frac{1}{2(b-a)}$. On a $(\varphi_k * 1_{[a,b]})(b) = \frac{1}{2}$, cf. (2.27). Donc $|1_{[a,b]}(b) - (\varphi_k * 1_{[a,b]})(b)| = \frac{1}{2}$, donc $||1_{[a,b]} - \varphi_k * 1_{[a,b]}||_{\infty}$ ne tend pas vers 0 quand $k \to \infty$. On ne converge pas dans $L^{\infty}(\mathbb{R})$.

2- Soit $x \in \mathbb{R} - \{a,b\}$, et $d(x) = \min(d(x,a),d(x,b)) > 0$, faire un dessin. Soit $k > \frac{1}{d(x)}$. On a $(\varphi_k * 1_{[a,b]})(x) = 1_{[a,b]}(x)$, cf. proposition 2.23, donc $|\varphi_k * 1_{[a,b]})(x) - 1_{[a,b]}(x)| \longrightarrow_{k \to \infty} 0$. D'où (2.30).

3- Une fonction en escalier est une somme finie de fonctions indicatrices d'intervalles. 4 Corollaire 2.29 Soit $(\varphi_k)_{k\in\mathbb{N}}$ une suite régularisante. On a :

si
$$f \in L^p(\mathbb{R}), \ 1 \leq p < \infty, \quad alors \quad \varphi_k * f \underset{k \to \infty}{\longrightarrow} f \quad dans \ L^p(\mathbb{R}).$$
 (2.31)

2-

si
$$f \in L^p(\mathbb{R}), \ 1 \leq p < \infty$$
 alors $\varphi_k * f \xrightarrow[k \to \infty]{} f$ presque partout, (2.32)

où ici on suppose de plus que $\{f=\infty\}$ ensemble fini de points (exemple $L^1(\mathbb{R})$ et $f(x)=|x|^{-\frac{1}{2}}$).

Preuve. 1) Soit $f \in L^p(\mathbb{R})$. Donc il existe une suite croissante $(g_n)_{\mathbb{N}^*}$ de fonctions en escaliers qui converge vers f dans $L^p(\mathbb{R})$. Soit $\varepsilon > 0$. Soit N_{ε} t.q. $||f - g_{N_{\varepsilon}}||_{L^p} < \varepsilon$. Et soit K_{ε} t.q., pour tout $k \geqslant K_{\varepsilon}, ||g_{N_{\varepsilon}} - \varphi_k * g_{N_{\varepsilon}}||_{L^p} < \varepsilon$, cf. (2.29). On a :

$$||f - \varphi_k * f||_{L^p} \le ||f - g_{N_{\varepsilon}}||_{L^p} + ||g_{N_{\varepsilon}} - \varphi_k * g_{N_{\varepsilon}}||_{L^p} + ||\varphi_k * g_{N_{\varepsilon}} - \varphi_k * f||_{L^p},$$

et (2.16):

$$||\varphi_k * f - \varphi_k * g_{N_{\varepsilon}}||_{L^p} = ||\varphi_k * (f - g_{N_{\varepsilon}})||_{L^p} \leq ||\varphi_k||_{L^1} ||f - g_{N_{\varepsilon}}||_{L^p} = ||f - g_{N_{\varepsilon}}||_{L^p} < \varepsilon,$$

puisque $||\varphi_k||_{L^1}=1$. Donc pour $k\geqslant K_\varepsilon$ on a $||f-\varphi_k*f||_{L^p}<\varepsilon+\varepsilon+\varepsilon=3\varepsilon$, d'où (2.31). 2) Soit $(g_n)_{\mathbb{N}^*}$ une suite de fonctions en escaliers qui converge p.p. vers f. Soit $x\in\mathbb{R}^n$. On a :

$$|f - \varphi_k * f|(x) = |f - g_n|(x) + |g_n - \varphi_k * g_n|(x) + |\varphi_k * (g_n - f)|(x)$$

Si f est bornée alors $||f - g_n||_{\infty} \longrightarrow_{n \to \infty} 0$, et donc :

$$|(\varphi_k * (g_n - f))(x)| \leqslant \int_{t \in \mathbb{R}} |\varphi_k(t)(g_n - f)(x - t)| dt \leqslant ||f - g_n||_{\infty} \int_{\mathbb{R}} |\varphi_k(t)| dt \underset{n \to \infty}{\longrightarrow} 0,$$

puisque $||\varphi_k||_{L^1} = 1$. D'où (2.32) (démarche similaire à la précédente).

Cas $f \in L^p(\mathbb{R})$ et $\{f=\infty\}$ ensemble fini : soit $x \notin \{f=\infty\}$ et $d_x = d(x, \{f=\infty\})$. Alors f est bornée dans le voisinage $]x - \frac{d_x}{2}, x + \frac{d_x}{2}[$ de x et on applique le résultat précédent avec $k > \frac{1}{d_x}$.

$\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$ pour $1 \leq p < \infty$

On rappelle que $\mathcal{D}(\mathbb{R})$ est l'ensemble des fonctions $C^{\infty}(\mathbb{R})$ qui sont à support compact dans \mathbb{R} . Les résultats sont présentés dans \mathbb{R} , et restent valables dans \mathbb{R}^n .

Et le cas $p=\infty$ est à exclure : l'espace $\mathcal{D}(\mathbb{R})$ n'est pas dense dans $L^{\infty}(\mathbb{R})$: la fonction $f=1_{\mathbb{R}}$ (constante) vérifie $||f-\varphi||_{\infty} \ge 1$ quelle que soit la fonction $\varphi \in \mathcal{D}(\mathbb{R})$, car $\varphi(x) = 0$ à l'extérieur du support borné de φ .

Théorème 2.30 Pour $1 \leq p < \infty$, $\mathcal{D}(\mathbb{R})$ est dense dans $L^p(\mathbb{R})$:

$$\forall f \in L^p(\mathbb{R}), \ \forall \varepsilon > 0, \ \exists \varphi \in \mathcal{D}(\mathbb{R}), \ ||f - \varphi||_{L^p} < \varepsilon. \tag{2.33}$$

Autrement dit, toute fonction $f \in L^p(\mathbb{R})$ peut être approchée "aussi près que souhaité dans $L^p(\mathbb{R})$ " par une fonction de $\mathcal{D}(\mathbb{R})$.

En particulier, si $(\varphi_k)_{k\in\mathbb{N}}$ est une suite régularisante, notant $\psi_k = \varphi_k * (f1_{[-k,k]})$ (régularisée de la fonction tronquée $f1_{[-k,k]}$, alors la suite $(\psi_k)_{k\in\mathbb{N}}$ * converge vers f dans $L^p(\mathbb{R})$.

Preuve. (Par troncature et régularisation.) Soit $f \in L^p(\mathbb{R})$, soit $\theta_k = 1_{[-k,k]}$. Considérons $f\theta_k$ (la fonction f tronquée). On a $|f\theta_k| \leq |f|$ sur \mathbb{R} et $f \in L^p(\mathbb{R})$, donc $f\theta_k \in L^p(\mathbb{R})$. On a supp $(f\theta_k) \subset$ [-k,k]

Soit $(\varphi_k)_{\mathbb{N}}$ une suite régularisante et soit $\psi_k = \varphi_k * (f\theta_k)$ (la tronquée régularisée). On a $\psi_k \in \mathcal{D}(\mathbb{R})$, cf. prop. 2.18, avec $\operatorname{supp}(\psi_k) \subset \overline{\operatorname{supp}\varphi_k + \operatorname{supp}(f\theta_k)} \subset [-k - \frac{1}{k}, k + \frac{1}{k}]$ cf. (2.10).

Montrons que $\psi_k \to f$ dans $L^p(\mathbb{R})$. On a :

$$f - \psi_k = f - \varphi_k * (f\theta_k) = (f - \varphi_k * f) + (\varphi_k * f - \varphi_k * (f\theta_k)).$$

On a $\varphi_k * f \to f$ dans $L^p(\mathbb{R})$, cf. (2.31), et on a :

$$||\varphi_k * (f - f\theta_k)||_{L^p} \le ||\varphi_k||_{L^1} ||f - f\theta_k||_{L^p} = ||f - f\theta_k||_{L^p} = \int_{x \notin [-k - \frac{1}{k}, k + \frac{1}{k}]} |f(x)|^p dx,$$

car $||\varphi_k||_{L^1}=1$, et le membre de droite est le reste de l'intégrale convergente, donc tend vers 0quand $k \to \infty$. Donc $||f - \psi_k||_{L^p} \longrightarrow_{k \to \infty} 0$.

2.8 Lemme de Lebesgue

Un résultat de convergence qu'on n'obtient pas avec le théorème de convergence dominée, et qui utilise la densité de $\mathcal{D}(\mathbb{R})$ dans $L^1(\mathbb{R})$:

Lemme 2.31 Si $f \in L^1(\mathbb{R})$ alors $\lim_{t \to \infty} \int_{x \in \mathbb{R}} f(x) \sin(tx) dx = 0$. Interprétation : dès que la fonction sinus "oscille assez vite" (i.e. t "assez grand") l'intégrale (valeur moyenne) est proche de 0 (dessin).

Preuve. (Ici, à x fixé, $g_x(t) = f(x)\sin(tx)$ ne converge pas quand $t \to \infty$: passer à la limite sous le signe \int n'a pas de sens.)

1- Pour
$$f = 1_{[a,b]}$$
, où $a < b$, on a $\int_a^b \sin(tx) \, dx = \left[-\frac{\cos(tx)}{t} \right]_{x=a}^b = \frac{\cos(ta) - \cos(tb)}{t} \xrightarrow[t \to \infty]{} 0$.

2- Donc pour g en escalier on a $\int_{x\in\mathbb{R}} g(x)\sin(tx)\,dx \underset{t\to\infty}{\longrightarrow} 0$, comme somme finie d'intégrales convergeant vers 0. Donc $\forall \varepsilon>0, \ \exists T_\varepsilon>0, \ \forall t>T_\varepsilon, \ \int_{x\in\mathbb{R}} g(x)\sin(tx)\,dx<\varepsilon$.

3- Soit $f \in \mathcal{D}(\mathbb{R})$ (donc en particulier continue). Donc, pour $\varepsilon > 0$, $\exists g$ en escalier t.q. $||f-g||_{L^1} < \varepsilon$. Le 2- indique qu'il existe T_{ε} t.q. pour tout $t \geqslant T_{\varepsilon}$ on a $|\int_{x \in \mathbb{R}} g(x) \sin(tx) \, dx| < \varepsilon$. D'où, pour tout $t > T_{\varepsilon}$:

$$\left| \int_{x \in \mathbb{R}} f(x) \sin(tx) \, dx \right| \leqslant \int_{x \in \mathbb{R}} |f(x) - g(x)| \, dx + \left| \int_{x \in \mathbb{R}} g(x) \sin(tx) \, dx \right|$$
$$\leqslant \left| |f - g| \right|_{L^{1}} + \varepsilon \leqslant 2\varepsilon.$$

4- Puis $\mathcal{D}(\mathbb{R})$ est dense dans $L^1(\mathbb{R})$, d'où le résultat en reprenant la démarche du 3-.

2.9 Partition de l'unité

2.9.1 $1_{\mathbb{R}}$ comme somme de régularisées (partition de l'unité de \mathbb{R})

On rappelle que $\tau_c \varphi : x \to \tau_c \varphi(x) = \varphi(x-c)$.

Proposition 2.32 (Partition de l'unité de \mathbb{R} .) Soit $(\gamma_n)_{\mathbb{N}}$ la suite régularisante paire donnée par (2.25). Soit $a,b\in\mathbb{R}$ t.q. a< b, et on fixe $n\in\mathbb{N}$ t.q. $\frac{1}{n}<\frac{b-a}{2}.$ On pose :

$$\varphi = \gamma_n * 1_{[a,b]}, \tag{2.34}$$

la régularisée de $1_{[a,b]}$. En particulier $\varphi = 1$ sur $\left[a + \frac{1}{n}, b - \frac{1}{n}\right]$ et $\operatorname{supp} \varphi = \left[a - \frac{1}{n}, b + \frac{1}{n}\right]$. Soit d = b - a (distance de a à b = largeur de l'intervalle [a,b]). On a:

$$\begin{cases}
\varphi + \tau_d \varphi = 1 \quad \text{sur} \quad \left[a + \frac{1}{n}, b + d - \frac{1}{n}\right], & \text{et} \quad \text{supp}(\varphi + \tau_d \varphi) = \left[a - \frac{1}{n}, b + d + \frac{1}{n}\right], \\
\tau_{-d} \varphi + \varphi = 1 \quad \text{sur} \quad \left[a - d + \frac{1}{n}, b - \frac{1}{n}\right], & \text{et} \quad \text{supp}(\tau_{-d} \varphi + \varphi) = \left[a - d - \frac{1}{n}, b + \frac{1}{n}\right],
\end{cases} (2.35)$$

Faire un dessin. Et de même, pour tout $k,\ell \in \mathbb{N}$ où $k < \ell$:

$$\tau_{kd}\varphi + \tau_{(k+1)d}\varphi + \dots + \tau_{(\ell-1)d}\varphi + \tau_{\ell d}\varphi = 1 \qquad sur \qquad \left[a + kd + \frac{1}{n}, b + \ell d - \frac{1}{n}\right],\tag{2.36}$$

et de support $[a+kd-\frac{1}{n},b+\ell d+\frac{1}{n}]$. Et donc :

$$\sum_{l=\mathbb{Z}} \tau_{kd} \varphi = 1_{\mathbb{R}},\tag{2.37}$$

formule de partition de l'unité de \mathbb{R} (la fonction constante $1_{\mathbb{R}}$).

11 2.9. Partition de l'unité

Preuve. On reprend le calcul (2.27), avec supp $(\tau_d 1_{[a,b]}) = \text{supp}(1_{[a+d,b+d]})$. En particulier :

$$\varphi(x) = \int_{t \in [x-b,x-a]} \gamma_n(t) dt, \qquad \tau_d \varphi(x) = \varphi(x-d) = \int_{t \in [x-b-d,x-a-d]} \gamma_n(t) dt.$$

Et d > 0, donc:

$$\varphi(x) + \tau_d \varphi(x) = \int_{J_x} \gamma_n(t) dt, \qquad J_x = \left[x - b - d, x - a \right] \bigcap \left[-\frac{1}{n}, \frac{1}{n} \right].$$

1- Si $x-a \leqslant -\frac{1}{n}$, soit $x \leqslant a-\frac{1}{n}$, alors $\varphi(x) + \tau_d \varphi(x) = 0$. 1'- Si $x-b-d \geqslant \frac{1}{n}$, soit $x \geqslant b+d+\frac{1}{n}$, alors $\varphi(x) + \tau_d \varphi(x) = 0$. 2- Si $\left[-\frac{1}{n}, \frac{1}{n}\right] \subset \left[x-b-d, x-a\right]$, soit $-\frac{1}{n} \geqslant x-b-d$ et $\frac{1}{n} \leqslant x-a$, soit $x \in \left[a+\frac{1}{n}, b+d-\frac{1}{n}\right]$ alors $\varphi(x) + \tau_d \varphi(x) = 1$

3- Et dans les autres cas $0 \le \varphi(x) + \tau_d \varphi(x) \le 1$.

D'où $(2.35)_1$. Puis de même $(2.35)_2$. D'où (2.36) par récurrence, d'où (2.37). 4

2.9.2Partition de l'unité dans \mathbb{R}^n

Soit Ω un ouvert dans \mathbb{R}^n .

Lemme 2.33 Soit K un compact contenu dans une réunion finie d'ouverts $\bigcup_{j=1}^m \Omega_j$. Alors il existe des compacts $K_j \subset \Omega_j$ tels que $K \subset \bigcup_{j=1}^m \mathring{K_j}$.

Preuve. Pour $x \in K$, soit $j_x \in [1, m]_{\mathbb{N}}$ t.q. $x \in \Omega_{j_x}$, et soit r_{j_x} t.q. $B(x, 2r_{j_x}) \subset \Omega_{j_x}$. Comme $K \subset \bigcup_{x \in K} B(x, r_{j_x})$ et K compact, il existe un sous recouvrement fini $K \subset \bigcup_{k=1}^{\ell} B(x_k, r_{j_{x_k}})$. On pose $K_j = \bigcup_{\substack{k=1,\ldots,\ell\\x_k \in \Omega_j}} \overline{B(x_k,r_{j_{x_k}})}$, réunion finie de compacts donc compact, et $K \subset \bigcup_{j=1}^m \mathring{K_j}$, avec $K_j \subset \bigcup_{\substack{k=1,\ldots,\ell\\x_1\in\Omega_j}} B(x_k, 2r_{j_{x_k}}) \subset \Omega_j.$

Lemme 2.34 Soit Ω un ouvert et soit un compact $K \subset \Omega$. Soit $f \in C^0(\Omega)$ t.q. $f_{|K} = 1$. Alors fest strictement positive dans un voisinage ouvert de $K: \exists \varepsilon > 0, \ \forall x \in K + B(0, \varepsilon), \ f(x) > 0.$

Exercice 2.35 Montrer à l'aide des suites que si K est compact dans Ω ouvert, alors il existe $\varepsilon > 0$ t.q. $K + B(0, \varepsilon) \subset \Omega$ (donc que K est à plus d'une distance ε du bord de Ω).

Réponse. Sinon, pour tout ε , en particulier $\varepsilon = \frac{1}{m}$, on a $(K+B(0,\frac{1}{m})) \cap (\mathbb{R}^n - \Omega) \neq \emptyset$. Donc il existe $x_m \in K$ et $z_m \in B(0,\frac{1}{m})$ t.q. $x_m + z_m \in (\mathbb{R}^n - \Omega)$. On a construit une suite $(z_m)_{m \in \mathbb{N}^*}$ dans \mathbb{R}^n qui converge vers 0. Et on a construit une suite $(x_m)_{m\in\mathbb{N}^*}$ dans K, et comme K est compact, la suite $(x_m)_{m\in\mathbb{N}^*}$ a une sous-suite convergente $(x_{m_k})_{k\in\mathbb{N}^*}$ dans K; notons $x_{\infty}=\lim_{k\to\infty}x_{m_k}\in K$. Donc la suite $(x_{m_k}+z_{m_k})_{\mathbb{N}^*}$ converge vers $x_{\infty}+0=x_{\infty}$; et $(x_{m_k}+z_{m_k})_{\mathbb{N}^*}$ est une suite dans le fermé $(\mathbb{R}^n-\Omega)$ (complémentaire d'un ouvert), donc sa limite $x_{\infty}\in\mathbb{R}^n-\Omega$. Avec $x_{\infty}\in\Omega$: absurde.

En particulier
$$x_{\infty} \in \Omega$$
 (car $K \subset \Omega$).

Preuve. D'après le lemme précédent, il existe r > 0 t.q le compact $K + \overline{B(0,r)} = {}^{\text{not\'e}} K_r$ est tout entier dans Ω . Soit $N \in \mathbb{N}^*$ t.q. $\frac{1}{N} < r$. Supposons le lemme faux, i.e. $\forall \varepsilon = \frac{1}{n}$ où n > N, $\exists x_n \in K + B(0,\frac{1}{n}) \text{ t.q. } f(x_n) = 0.$ On a construit une suite $(x_n)_{n>N}$ telle que $f(x_n) = 0$ pour tout n. Et $(x_n)_{\mathbb{N}^*}$ appartient au compact K_r , donc on peut extraire une sous suite convergente dans K_r , soit $x_\infty \in K_r$ la limite. Mieux, $x_\infty \in K$ car K est fermé : sinon $x_\infty \in \mathbb{R}^n - K$ ouvert, donc $\exists \varepsilon > 0$ t.q. $B(x_{\infty}, \varepsilon) \subset \mathbb{R}^n - K$, donc $d(x_{\infty}, K) \geq \varepsilon$, absurde par construction de la suite (x_n) . Et comme f est continue et $x_n \to x_\infty$, on a $f(x_\infty) = 0$. Et comme $x_\infty \in K$ on a $f(x_\infty) = 1$. Absurde car $x_{\infty} \in K \subset \Omega$: donc le lemme est vrai.

Proposition 2.36 (Partition de l'unité.) Soit K un compact de \mathbb{R}^n dont on considère un recouvrement fini $\bigcup_{j=1}^{m} \Omega_j \supset K$, les Ω_j étant des ouverts de \mathbb{R}^n .

Il existe alors m fonctions $\chi_j \in \mathcal{D}(\Omega_j)$ telles que $0 \leq \chi_j \leq 1$ pour tout j = 1, ..., m et :

$$\chi_1(x) + ... + \chi_m(x) = 1$$
 dans un voisinage ouvert de K. (2.38)

.

Preuve. On applique le lemme 2.33 : soit m compacts $K_j \subset \Omega_j$ t.q. $K \subset \bigcup_{j=1}^m \mathring{K_j}$.

Soit alors $\psi_j \in \mathcal{D}(\Omega_j)$ une fonction qui vaut 1 sur K_j (une telle fonction existe d'après le corollaire 2.25). En particulier $\sum_{i=1}^m \psi_i$ est une fonction C^{∞} strictement positive dans un voisinage ouvert de de K. On pose dans \mathbb{R}^n :

$$\chi_j(x) = \frac{\psi_j(x)}{\sum_{i=1}^m \psi_i(x)}.$$
 (2.39)

On vérifie immédiatement que les χ_j conviennent.

2.10 $L^p_{loc}(\mathbb{R})$ et résultat de "projection"

Lemme 2.37 Soit $1 \leq p \leq \infty$, et soit $f \in L^p_{loc}(\mathbb{R})$. On suppose :

hypothèse:
$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \quad \int_{\mathbb{R}} f(x)\varphi(x) dx = 0.$$
 (2.40)

Alors, avec q le conjugué de p défini par $\frac{1}{p} + \frac{1}{q} = 1$ quand 1 :

$$conclusion: \begin{cases} p=1: & \forall \psi \in L^{\infty}(\mathbb{R}) \ t.q. \ \text{supp} \psi \ compact, } & \int_{\mathbb{R}} f(x)\psi(x) \, dx = 0, \\ p \in]1, \infty[: & \forall \psi \in L^{q}(\mathbb{R}) \ t.q. \ \text{supp} \psi \ compact, } & \int_{\mathbb{R}} f(x)\psi(x) \, dx = 0, \end{cases}$$
 (2.41)
$$p=\infty: \quad \forall \psi \in L^{1}(\mathbb{R}) \ t.q. \ \text{supp} \psi \ compact, } & \int_{\mathbb{R}} f(x)\psi(x) \, dx = 0.$$

Preuve. Cas p=1. Soit ψ en escalier avec supp ψ borné, i.e. $\exists k \in \mathbb{N}, \exists a_1,...,a_k,c_1,...,c_k \in \mathbb{R}, a_1 < a_2 < ... < a_k, \psi = \sum_{i=1}^{k-1} c_i 1_{[a_i,a_{i+1}]}$. Soit (γ_n) une suite régularisante et soit $\psi_n = \det^{\text{def}} \psi * \gamma_n$. On a $\psi_n \in \mathcal{D}(\mathbb{R})$ et $\psi_n(x) \xrightarrow{n \to \infty} \psi(x)$ p.p., avec $||\psi - \psi_n||_{\infty} \leq ||\psi||_{\infty}$, cf. exercice 2.27. Donc:

$$\int_{\mathbb{R}} f(x)(\psi(x) - \psi_n(x)) dx = \int_{\mathbb{R}} f(x) 1_{[a_1, a_k]}(x) (\psi(x) - \psi_n(x)) dx \underset{n \to \infty}{\longrightarrow} 0,$$

grâce au théorème de convergence dominée : notant $g(n,x)=(f1_{[a_1,a_k]})(x)(\psi(x)-\psi_n(x))$ l'intégrant, à x fixé $\psi(x)-\psi_n(x)\to 0$ p.p. donne $g(n,x)\to 0$, avec $|g(n,x)|\leqslant ||\psi||_{\infty}|(f1_{[a_1,a_k]})(x)|$ majoration indépendante de n par une fonction intégrable. Donc $(2.41)_1$ est vraie pour les fonctions en escalier.

Soit $\psi \in L^{\infty}(\mathbb{R})$ à support borné. Soit $(e_n)_{\mathbb{N}}$ une suite de fonctions en escalier qui converge p.p. vers ψ , avec $(e_n(x))_{\mathbb{N}}$ croissante positive si $\psi(x) \ge 0$ et $(e_n(x))_{\mathbb{N}}$ décroissante négative si $\psi(x) \le 0$ (voir cours d'intégration). Donc on a $||e_n||_{\infty} \le ||\varphi||_{\infty} < \infty$ pour tout n.

Comme $\exists a > 0$ t.q. $\operatorname{supp} \psi \subset [-a, a]$, quitte à remplacer les e_n par $e_n 1_{[-a,a]}$, on peut considérer les (e_n) toutes à support dans [-a, a]. Et on a :

$$\int_{\mathbb{R}} f(x)(\psi(x) - e_n(x)) dx = \int_{\mathbb{R}} f(x) 1_{[-a,a]}(x)(\psi(x) - e_n(x)) dx \underset{n \to \infty}{\longrightarrow} 0,$$

grâce au théorème de convergence dominée : à x fixé $\psi(x)-e_n(x)\to 0$ p.p., et $|f(x)(\psi(x)-e_n(x))|\leqslant ||\psi||_{\infty}||f1_{[-a,a]}||_{L^1(\mathbb{R})}$ majoration indépendante de n par une fonction intégrable. Donc $(2.41)_1$ est vraie pour les fonctions bornées à support borné.

Cas $p \in]1, \infty[$. Soit q t.q. $\frac{1}{p} + \frac{1}{q} = 1$.

Cas ψ en escalier avec supp ψ borné : même suite (ψ_n) que précédemment : ici $f1_{[a_1,a_k]} \in L^p(\mathbb{R})$ et $\psi, \psi_n \in L^q(\mathbb{R})$ pour tout n (trivial). Et Hölder : $|\int_{\mathbb{R}} f(x)1_{[a_1,a_k]}(x)(\psi(x)-\psi_n(x))dx| \leq ||f1_{[a_1,a_k]}||_{L^p}||\psi-\psi_n||_{L^q} \to 0$.

Soit $\psi \in L^{\infty}(\mathbb{R})$ à support borné. Même suite (e_n) que précédemment. Et Hölder.

Cas $f \in L^{\infty}(\mathbb{R})$. Cas ψ en escalier avec supp ψ borné : même suite (ψ_n) que précédemment : ici $f1_{[a_1,a_k]} \in L^{\infty}(\mathbb{R})$ et $\psi,\psi_n \in L^1(\mathbb{R})$ pour tout n (trivial). Et : $|\int_{\mathbb{R}} f(x)1_{[a_1,a_k]}(x)(\psi(x)-\psi_n(x))\,dx| \leq ||f1_{[a_1,a_k]}||_{\infty}||\psi-\psi_n||_{L^1} \to 0$.

Soit $\psi \in L^1(\mathbb{R})$ à support borné. Même suite (e_n) que précédemment...

Proposition 2.38 Soit $1 \leq p \leq \infty$, et soit $f \in L^p_{loc}(\mathbb{R})$. On a :

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \quad \int_{\mathbb{R}} f(x)\varphi(x) \, dx = 0 \qquad \Longleftrightarrow \qquad f = 0 \text{ p.p.}.$$
 (2.42)

Preuve. \Leftarrow : trivial. C'est \Rightarrow qu'il s'agit d'établir. Avec le lemme 2.37:

Cas p=1: on prend $\psi(x)=0$ quand $x\notin]-k,k[$ et quand f(x)=0, et sinon $\psi(x)=1$ si f(x)>0 et $\psi(x)=-1$ si f(x)<0. Donc $\psi\in L^\infty(\mathbb{R})$ à support borné et $0=\int_{\mathbb{R}}f(x)\psi(x)\,dx=\int_{\mathbb{R}}|f(x)1_{]-k,k[}(x)|\,dx$. Comme $|f1_{]-k,k[}|\geqslant 0$, on déduit $|f1_{]-k,k[}|=0$ p.p., voir cours d'intégration, donc $f1_{]-k,k[}=0$ donc f=0 sur]-k,k[, vrai pour tout k.

Cas $p \in]1, \infty[$: on prend $\psi(x) = 0$ quand $x \notin]-k, k[$ et quand f(x) = 0, et sinon $\psi(x) = f(x)^{p-1}$ si f(x) > 0 et $\psi(x) = -|f(x)|^{p-1}$ si f(x) < 0. Soit q le conjugué de p donné par $\frac{1}{p} + \frac{1}{q} = 1$. On a $|\psi(x)|^q = |f(x)|^{q(p-1)} = |f(x)|$ pour $x \in]-k, k[$ et 0 ailleurs. Donc $\psi \in L^q(\mathbb{R})$. Avec $f1_{[-k,k]} \in L^p(\mathbb{R})$. Donc $(f1_{[-k,k]})\psi \in L^1(\mathbb{R})$ avec $(f1_{[-k,k]})\psi = |f|^p 1_{[-k,k]} \geqslant 0$ d'intégrale nulle, donc f = 0 sur [-k,k], vrai pour tout k.

Cas $p = \infty$: dual du cas p = 1. On prend $\psi(x) = 0$ quand $x \notin]-k, k[$ et quand f(x) = 0, et sinon $\psi(x) = 1$ si f(x) > 0 et $\psi(x) = -1$ si f(x) < 0. Comme [-k, k] est borné et ψ borné, $\psi \in L^1(\mathbb{R})$. Donc $\int_{\mathbb{R}} f1_{[-k,k]}\psi = 0$, avec $f1_{[-k,k]}\psi = |f|1_{[-k,k]} \geqslant 0$, donc $|f|1_{[-k,k]} = 0$ p.p., donc f = 0 sur [-k, k], vrai pour tout k.