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Practical relevance
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Relevance

- A lot of extensions

- Time windows
- Pick up and delivery
- Arc routing

- Integral part of many other problems

- Location-routing
- Inventory-routing
- School bus routing

- All rely on effective algorithms for the canonical CVRP



State of the art

- Use as many local search
(constructive) operators as
possible

- Either VNS or LNS
- Fitin a metaheuristic
framework
- This is your Unique
Selling Point
- But it really does not
matter all that much
- Beware of “Frankenstein”
algorithms
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Local search for the VRP

Operator Complexity Description

2-opt 0(n?) Swap 2 edges

3-opt o(n3) Swap 3 edges

Insert / Relocate o(n?) Relocate a customer

Swap 0(n?) Exchange two customers
Crossover o(n?) Exchange route ends
CROSS-exchange o(n*) Exchange any two customer

sequences

Power ~

1
Speed



Local search operators



State of the art

- Many algorithms with

more or less equivalent
performance ) _— m -

- Stuck at around 1000 ~ vlfw s og
customers ("very large o T
scale”) nse s

- Larger problems exist and sagrt 5 mgos
smaller problems should I TR R

be solved more efficiently

- Can we go further?



Heuristic performance
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Extra extra large scale vehicle routing — can we do it?




Some fresh ideas

1. Develop a small set of powerful, complementary local
search operators

2. Learn the properties of good solutions and use this
knowledge

3. Focus the power of the heuristic to make it efficient

10



Idea #1

A (simple yet efficient) heuristic based on
complementary local search operators



A fresh look at local search

- Two ways to solve VRPs in the literature
- “Multiple neighborhood search”

- Large Neighborhood Search (i.e.,, “multiple constructive
heuristics”)

- General sentiment: “it does not hurt to try”
(i.e, implement a lot of operators)

However
- There is an overhead for every operator
- Many operators have overlapping domains

- Powerful operators tend to be slow
(complexity based on searching the entire operator space)

n



Our heuristic: complementary local search operators

- One route: Lin Kernighan

- Two routes: CROSS exchange

- Many routes: Relocation Chain
Careful

- Each operator is very powerful

- Each operator is very complex

12



One route: Lin Kernighan

/ \ 1@ | 18 @ \ ‘@ 1 4

- Solves a TSP by edge exchanges (n-opt)

- Edge exchanges best restricted to nearest neighbors
- Routes in VRPs are generally smaller

- We can try more neighbors
- We can do steepest descent (instead of first-improving)

13



Two routes: CROSS exchange
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- Exchanges two sub-routes
- Complexity O(n*)
- Length of substrings best restricted
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Three routes: Relocation chain
C1T ?Cz
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- Chain of relocations
- Depth of chain best restricted
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Performance of neighborhoods

LS,

Average gap to BKSs
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Metaheuristic framework: guided local search

- ldea: penalize bad edges

c9(i,j) = c(i,j) + Ap(i,j)L

- Alternate penalization and local search

YT

Penalize Edge Local Search Penalize Edge Local Search

- Question: what is a “bad” edge?



Idea #2

Learn the properties of good solutions



What makes a solution good?
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Is there a relationship between solution characteristics,

instance characteristics, and solution quality?
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Can we tell whether a solution is good or not without looking

at the objective function value?



What makes a solution good?

Problem-specific information is rare (+ intuition)
TSP VRP

Quotes

- “[...] make use of any problem-specific information that you
have”

- “[...] the perturbation can incorporate as much problem-specific
information as the developer is willing to put into it

- “Exploiting problem-specific knowledge [...] are key ingredients
for leading optimization algorithms.”



Methodology

1 Random instance
Near-optimal solution (0) Non-optimal solution (N)
2

intersections 9 intersections 12
3 average width 5.4 average width 6.3
4 Train and predict O versus N
1
5 Extract rules
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Instance generation

Table 1: Instance parameters for the different instance classes

Class Customers Depot Demand Routes
1 20-50 Center [1,1] 3-6
2 20-50 Center  [1,10] 3-6
3 20-50 Edge [1,1] 3-6
4 20-50 Edge [1,10] 3-6
5 70-100 Center [1,1] 6-10
6 70-100  Center  [1,10] 6-10
7 70-100 Edge [1,1] 6-10
8 70-100 Edge [1,10] 6-10

21



Solution generation

“Near optimal” “Non optimal”

Own heuristic (see before) | H1: weak version of own heuristic
H2: Modified Clarke-Wright

Very powerful Rather weak

0.20% gap on Augerat A 2% and 4% gap
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Intermezzo

@EEARCH ARTICLE ScienceAsia 38 (2012): 307-318
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An improved Clarke and Wright savings algorithm for
the capacitated vehicle routing problem

Tantikorn Pichpibul®, Ruengsak Kawtummachai®*
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Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12121 Thailand
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ABSTRACT: In this paper, we have proposed an algorithm that has been improved from the classical Clarke and Wright
savings algorithm (CW) to solve the capacitated vehicle routing problem. The main concept of our proposed algorithm is to
hybridize the CW with tournament and roulette wheel selections to determine a new and efficient algorithm. The objective is
to find the feasible solutions (or routes) to minimize travelling distances and number of routes. We have tested the proposed
algorithm with 84 problem instances and the numerical results indicate that our algorithm outperforms CW and the optimal
solution is obtained in 81% of all tested instances (68 out of 84). The average deviation between our solution and the optimal
one is always very low (0.14%).

KEYWORDS: heuristics, optimization, tournament selection, roulette wheel selection

INTRODUCTION branch-and-bound algorithm®, a branch-and-cut algo-
rithm 7, and a branch-and-cut-and-price algorithm 1°.
The capacitated vehicle routing problem (CVRP) was  In these algorithms, CVRP instances involving more
initially introduced by Dantzig and Ramser' in their  than 100 customers can rarely be solved to optimality 23
article on a truck dispatching problem and, conse- due to a huge amount of computation time. Second,
ity herame ane of the moct imnertant and wideluy  a henectic alonrthm which ic an alonrthm that



Intermezzo

Clarke-Wright algorithm for the VRP

- Create a separate route per customer
- Connect routes according to the largest possible savings

- Repeat while routes can be connected

Saving
s(i,j) = d(D, i) + d(D,j) — d(i. )

“Improved” Clarke and Wright
Add some randomization (“GRASP”) — unbelievably effective
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Abstract

In their paper “An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem,”
published in ScienceAsia (38, 3, 307-318, 2012), Pichpibul and Kawtummachai developed a simple stochastic
extension of the well-known Clarke and Wright savings heuristic for the capacitated vehicle routing problem.
Notwithstanding the simplicity of the heuristic, which they call the “improved Clarke and Wright savings
algorithm” (ICW), the reported results are among the best heuristics ever developed for this problem. Through
a careful reimplementation, we demonstrate that the results published in the paper could not have been
produced by the ICW heuristic. Studying the reasons how this paper could have passed the peer review
process to be published in an ISI-ranked journal, we have to conclude that the necessary conditions for a 23
thorough examination of a typical paper in the field of optimization are generally lacking. We investigate how

$hic ram ke vmrnued and came 14 thoe canelitcian that dicalAacing cntires ~ade +a retraeamore chntild RonArae o



Methodology

1 Random instance
Near-optimal solution (0) Non-optimal solution (N)
2

intersections 9 intersections 12
3 average width 5.4 average width 6.3
4 Train and predict O versus N
1
5 Extract rules
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Solution metrics

S1- Average number of intersections per customer

IRI=1 IR|
>, > Iri,n)
=1 Jj=i+1
) N
S2 - Longest distance between two connected customers, per
route
max d(nf,n!
r.ezl?fe{1,~‘-7\f\—1} (75> Mia)
. R .
S3 - Average distance between depot to directly-connected
customers

% (d(0, ) + d(r,, D)
2IR]
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Solution metrics

S4 - Average distance between routes (their centers of gravity)

Z Z d(GHva’z)

MER r,eR\r

Rl (IRl = 1)
S5 - Average width per route
max d(Lg,,n;j) — min d(Lg,,n;
rek i€l i} (benm) = goin, )
R

S6 - Average span in radian per route

max rad(nf, n7)
I’ER I716{17*"7|r‘}

IR
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Solution metrics

S7 - Average compactness per route, measured by width

I

>3 (dLe, )"

reRr i=1

N
S8 - Average compactness per route, measured by radian

I

> > rad(Gr, n;)

reR =1

N
S9 - Average depth per route
~max d(n7,D)
r€RI€{17-~~7‘r‘}
IRl
S10 - Standard deviation of the number of customers per route
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Solution metrics

* Hintersections
* Longest Edge
* First Edges

* Inter-Route Distance

e fiCustomers

Metrics

- Properties of solutions that might influence quality

- Some creativity is required

26



Solution metrics

* Depth
* Width
* Angle Variation

* Compactness

Metrics

- Properties of solutions that might influence quality

- Some creativity is required
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Normalization is necessary

Near-optimal solution Non-optimal solution
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Instance characteristics

17 - Number of customers

12 - Minimum number of routes

I3 - Degree of capacity utilisation

14 - Average distance between each pair of customers

I5 - Standard deviation of the pairwise distance between
customers

16 - Average distance from customers to the depot

|7 - Standard deviation of the distance from customers to the
depot

I8 - Standard deviation of the radians of customers towards
the depot

28



Methodology

1 Random instance
Near-optimal solution (0) Non-optimal solution (N)
2

intersections 9 intersections 12
3 average width 5.4 average width 6.3
4 Train and predict O versus N
1
5 Extract rules
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Data mining techniques

Support Vector Machines (SVM)
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Table 2: Prediction accuracies with linear SVYM for each dataset

2% gap 4% gap

#data points  H1 H2 H1 H2

Class 1 10.000 65% 62% 76% 64%
Class 2 10.000 67% 61% 77% 63%
Class 3 10.000 67% 68% 76% 75%
Class 4 10.000 66% 65% 74%  71%

20-50 cust.

Class 5 2.000 81% 81% 89% 89%
Class 6 2.000 80% 80% 89% 89%
Class 7 2.000 85% 85% 90% 91%
Class 8 2.000 81% 82% 88% 89%

70-100 cust.

31



What causes the prediction accuracy

Table 3: Solution metrics with an individual prediction accuracy of
higher than 55% per instance class (largest per class in bold)

2% gap 4% gap
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Class 1 58 57 56 56 56 59 57 61
Class 2 57 57 57 56 56 56 62
Class 3 58 60 60 57 61 56 65 59 64 60
Class & 57 58 58 56 59 56 62 57 62 61
Class 5 62 67 68 67 67 60 71 78 77 719 76 59
Class 6 57 62 65 66 68 70 60 67 74 73 74 75
Class 7 66 57 60 79 65 75 65 71 66 84 72 80 72
Class 8 64 72 61 70 66 68 58 79 67 77 72

Most effect: S1 (intersections), S3 (edges from depot), S5
(width), S6 (width in radian), S7 (compactness), S8
(compactness by radian)

32



Metaheuristic framework: guided local search

- ldea: penalize bad edges

c9(i,j) = c(i,j) + Ap(i,j)L

- Alternate penalization and local search

YT

Penalize Edge Local Search Penalize Edge Local Search

- Question: what is a “bad” edge?

33



Idea #3

Focus the power of the heuristic to make it
efficient



Badness of an edge
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Penalization criterion

Average gap to BKSs

0 60 120
Computation time in seconds
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Linearizing the performance

- Try to relocate next to
each customer: O(n?)

- Try to relocate next to
closest a customers:
O(a x n)

Heuristic pruning
Can we restrict a without hurting performance?

36



Heuristic pruning

SN, S SR S
Ny i S /

Lin Kernighan (one route)

- Already very efficient
- Restrict to 10 nearest neighbors

- Restrict to 4-opt

37



Heuristic pruning

I

o—&

CROSS exchange (two routes)
- Start from most penalized
edge

- Restrict to 30 nearest
neighbors

- Restrict size of subroute to
100

38



Heuristic pruning

Relocation chain (>two
routes)

T ? T T ! T - Start from most penalized
L' '>(, o edge

i & V - Restrict to 30 nearest
neighbors

J—s=—s
[:}7 H L
05

- Restrict size of chain to 2
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Effect of pruning tightness

Average gap to BKSs

1

1.02 4

1.01 +

Computation time in minutes, per instance
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Closeness of customers in high-quality solutions

140 1

120 |

100 +

80 t

60 +

Closeness

40 |

20 |

190209 214 303 322 439 501 766 783 801856 876 895 957 9791001
Instance size

Memory issues

Only distances between close neighbors need to be loaded
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Our algorithm

1. Construct an initial solution (Clarke-Wright)
2. Repeat until stopping criterion
21 Repeat (GLS)
211 Penalize worst edge w

flw,c,d,---)

largest value of “badness”™ b =
T+p

212 Apply LS starting from w using c?(.) as evaluation function

2.2 Global optimization: apply LS on all routes that where
changed by GLS, using ¢(.) as evaluation function

)



Our algorithm

1. Construct an initial solution (Clarke-Wright)

2. Repeat until stopping criterion
21 Repeat (GLS)
211 Penalize worst edge w

flw,c,d,---)

largest value of “badness”™ b =
T+p

212 Apply LS starting from w using c?(.) as evaluation function

2.2 Global optimization: apply LS on all routes that where
changed by GLS, using ¢(.) as evaluation function

Important note
Completely deterministic

)
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Comparison to other algorithms
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Comparison to other algorithms
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Comparison to other algorithms
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Results on XXL instances

Instance GVNS AGS (short runtime) AGS (long runtime)
Value Gap Time Value Gap Time Value Gap Time
W (7,798) 4,559,986 7.37 345 4,294,216 1.12 7.8 4,246,802 0.00 39.0
E(9,516) 4,757,566 4.17 83.9 4,639,775 1.59 9.5 4,567,080 0.00 47.5
S (8,454) 3,333,696 3.97 56.2 3,276,189 2.18 8.5 3,206,380 0.00 425
M (10,217) 3,170,932 435 77.6 3,064,272  0.84 10.2 3,038,828 0,00 51.0
R3 (3,000) 186,220 1.87 4.8 183,184 0.21 3.0 182,808 0.00 15.0
R6 (6,000) 352,702 1.49 24.4 348,225 0.20 6.0 347,533 0.00 30.0
R9 (9,000) 517,443 1.05 57.7 512,530 0.09 9.0 512,051 0.00 45.0
R12 (12,000) 680,833 112 108.4 674,732 0.22 12.0 673,260 0.00 60.0
Average 3.17 55.8 0.80 8.3 0.00 413
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30.000 customers
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An unexpected benchmark

from: Keld Helsgaun <keld@ruc.dk>
[.]

My aim was to see how close, given plenty of time, my LKH-3
solver could get to the best solutions found by your
extremely fast VRP solver. Now, after more than a month of
computation, LKH-3 has been able to find tours that are from
0.4 to 11 percent shorter than yours. | attach a table with the
results together with the solutions found.

[...]
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An unexpected benchmark

from: Keld Helsgaun <keld@ruc.dk>
[.]

My aim was to see how close, given plenty of time, my LKH-3
solver could get to the best solutions found by your
extremely fast VRP solver. Now, after more than a month of
computation, LKH-3 has been able to find tours that are from
0.4 to 1.1 percent shorter than yours. | attach a table with the
results together with the solutions found.

[...]

47



An unexpected benchmark

Results for Belgium instances (CVRP)
Keld Helsgaun, February 16, 2018

Instance n m BKS LKH-3  Gap (%)

L1 3000 203 195239 194381  -0439
L2 4000 46 114833 113484  -1.175
Al 6000 343 483606 481338  -0.469
A2 7000 120 299398 297478  -0.641
Gl 10000 485 476489 474164  -0.488
G2 11000 110 267935 265763  -0.811
B1 15000 512 512089 509457  -0.514
B2 16000 182 360760 357382  -0.936
Fl1 20000 684 7321847 7300772  -0.288
F2 30000 256 4526789 4499422  -0.605
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Conclusions



Conclusions

Designing heuristics the modern way

- Use powerful complementary local search heuristics

- Make them efficient using knowledge on the properties of
good solutions

- Make them even more efficient using heavy pruning
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Conclusions

Designing heuristics the modern way

- Use powerful complementary local search heuristics

- Make them efficient using knowledge on the properties of
good solutions

- Make them even more efficient using heavy pruning

Challenge
Works for VRP, what about other problems?
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