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Introduction

• From the pioneering works of Dantzig, Edmonds, and others,
polyhedral (i.e. LP-based) methods have been successfully applied to
the solution of many combinatorial optimization problems.

• Basically, these methods consist of trying to formulate the problem
as a linear program and use the existing powerful methods of Linear
Programming to solve it.

• The effectiveness of these methods is based on a good
understanding of the polyhedron associated with the problem under
study.

• In this talk we will briefly introduce some of the concepts and proof
techniques of polyhedral theory, and will show how to apply it to the
construction of effective optimization algorithms for some routing
problems.
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Introduction

• Most routing problems can be formulated as

Min {cT x : x ∈ S},

where x= {x1, . . . , xn} is a vector of decision variables,
c= {c1, . . . , cn} ∈ Rn

+ is a vector of objective function coefficients
(costs), and S ⊂ Z n is a set of feasible solutions.

• Given such a problem, it is natural to define an associated
polyhedron

Conv(S),

the convex hull of the vectors in S.

• Usually, feasible solutions are associated with integer values of the
decision variables. In such cases, Conv(S) has integral vertices.
Since the objective function is linear, Min {cT x : x ∈ S} is equivalent to
Min {cT x : x ∈ Conv(S)}.
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Introduction

• It is well known that any polyhedron can be described by a set of
linear inequalities, i.e., there is a matrix A and a vector b such that
Conv(S) = {x ∈ Rn : Ax ≤ b}. Hence, at least theoretically, our
problem can be solved as a Linear Program.

• Unfortunately, complete linear descriptions of Conv(S) are not
known for any NP-hard problem. Only partial descriptions are known
buteven partial linear descriptions can provide the basis for powerful
algorithms.
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Introduction

• A problem which must be dealt with is that even a partial linear
description frequently contains an exponential number of inequalities.
Hence, in most cases, it will not be possible to solve an LP including all
the inequalities explicitly. For instance, in the TSP:

Ángel Corberán Lp-based methods Troyes 2018 7 / 115



Introduction

• An alternative is to start with a small subset of the known inequalities
and compute the optimal LP solution subject to these constraints.
Then, we check if any of the inequalities not in the current LP are
violated by the optimal LP solution. If one or more violated inequalities
are found, we add one or more of them to the current LP, solve it, and
so on. If the LP solution obtained at the end of this process is a feasible
solution of our original problem, then it is also optimal for that problem.
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Introduction

• The linear inequalities which are added to the LP at each iteration of
this process are called cutting planes (since they cut off the current LP
solution).

• The whole procedure is a cutting-plane algorithm and has its origin in
the celebrated work of Dantzig, Fulkerson, and Johnson (1954) on the
TSP.
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Introduction
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Introduction

• Note that the cutting-plane approach requires a method for
identifying inequalities that are valid for Conv(S) but violated by the
current LP solution. Since usually the known valid inequalities fall into
certain well-defined classes, for each known class we are faced with
the following

Separation Problem: Given a class of valid inequalities and a point
x̄ ∈ Rn, either find an inequality in this class which is violated by x̄ , or
prove that no such inequality exists.

• Note that we are looking for a hyperplane separating x̄ from
Conv(S). The separation problem can be solved by an exact or a
heuristic method. In the last case, the algorithm may fail to find a
violated inequality in the class, even if one exists.
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Introduction

Cutting-plane algorithm scheme

Step 1 (Initialization) Let (LP0) be a linear relaxation of Conv(S). Set
k = 0.

Step 2 (LP Solver) Solve (LPk ). Let xk be an optimal solution to (LPk ).

Step 3 (Separation) Solve the Separation Problem for xk and some
classes of valid inequalities for Conv(S).

Step 3.1 If xk ∈ S, the xk is optimal. Stop.

Step 3.2 If one or more valid inequalities violated by xk are
found, add them to (LPk ) to define (LPk+1). Set k := k + 1 and
go to Step 2.

Step 3.3 If no violated inequality is found, stop.
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Introduction

• If the algorithm ends at Step 3.1: Optimal solution.

•When it ends at Step 3.3 is because

we don ’t know all the inequalities describing Conv(S), or (and)

we don ’t know how to find those which are violated.

Then:

cT xk is a lower bound (in the Minimization case), and

we can use the strengthened LP into a branch and bound or

a branch and cut.
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Introduction

• The first cutting-plane algorithm was proposed by Miliotis (1978) for
the TSP.

• Grötschel, Jünger and Reinelt (1984) were the first authors using
branch and cut (for the solution of the Linear Ordering Problem), but
the name was introduced in Padberg and Rinaldi (1987) (for solving
the TSP)

Ángel Corberán Lp-based methods Troyes 2018 14 / 115



Outline

1 Introduction

2 Polyhedral Combinatorics applied to some routing problems
The Traveling Salesman Problem (TSP)
The Stacker Crane Problem (SCP)
The Orienteering Arc Routing Problem (OARP)
The Generalized Directed Arc Routing Problem (Close Enough
ARP)

3 Polyhedral Combinatorics (some theory)

Ángel Corberán Lp-based methods Troyes 2018 15 / 115



Routing Problems

Routing Problems

Node and arc routing problems are those related to the traversal of
some or all the nodes or arcs of a graph.

• Node routing problems: Traveling Salesman Problem (TSP),
Capacitated Vehicle Routing Problem (CVRP), ...

• Arc routing problems: Chinese Postman Problem (CPP), Rural
Postman Problem (RPP), Capacitated Arc Routing Problem (CARP), ...
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Polyhedral Combinatorics applied to some routing
problems

In this Section we will present some results obtained with the
LP-based algorithms on some routing problems:

• The Traveling Salesman Problem

• The Stacker Crane Problem

• The Orienteering Arc Routing Problem

• The Generalized Directed Arc Routing Problem (Close Enough ARP)
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The Traveling Salesman Problem (TSP)
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The Traveling Salesman Problem

Definition
Given a collection of cities and the cost of travel between each pair of
them, the traveling salesman problem, or TSP for short, is to find the
cheapest way of visiting all of the cities and returning to your starting
point.

http://www.math.uwaterloo.ca/tsp/index.html

Applegate, Bixby, Chvátal, and Cook (The Traveling Salesman
Problem: A Computational Study, 2006)
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The Traveling Salesman Problem

TSP Records
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The Traveling Salesman Problem

In 2009 Robert Bosch created a TSP instance with 100,000 cities
giving a representation of the Leonardo da Vinci’s Mona Lisa as a
continuous line drawing.
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The Traveling Salesman Problem

The current best known results for the Mona Lisa TSP are

Tour: 5,757,191 (Y. Nagata, 2009)

Lower bound: 5,757,084 (Concorde, 2012) A truncated B&C, using an
artificial upper bound of 5,757,092. Bound obtained after 11.5 CPU
years.

Ángel Corberán Lp-based methods Troyes 2018 22 / 115



The Stacker Crane Problem (SCP)
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The Stacker Crane Problem

Definition
To find the optimal sequence of movements of a crane (or mechanical
arm) that has to move objects (for example containers) from a given
origin to a given destination.
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The Stacker Crane Problem

The Stacker Crane Problem (SCP) can be modeled as an Arc Routing
Problem, a Pickup and Delivery Problem, or an Asymmetric Traveling
Salesman Problem (ATSP).

Frederickson, Hecht, and Kim proposed the SCP in 1978. They
defined it as an arc routing problem on a mixed graph G = (V ,E ,A),
where each link (arc or edge) (i , j) has associated a nonnegative cost
cij .

The objective is to find a minimum cost tour traversing at least once all
the arcs in A.

They showed the SCP is NP-Hard and proposed a heuristic procedure,
called CRANE, which has a worst-case ratio of 9/5 and O(|V |3)
complexity.
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The Stacker Crane Problem
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The Stacker Crane Problem

Ángel Corberán Lp-based methods Troyes 2018 28 / 115



The Stacker Crane Problem

Ángel Corberán Lp-based methods Troyes 2018 29 / 115



The Stacker Crane Problem
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The Stacker Crane Problem
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The Stacker Crane Problem
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A formulation for the SCP

Graph G = (V ,A) is, in general, disconnected.
Let V1,V2, . . . ,Vp be the vertex sets of its p connected
components. We call them R-sets.

d+
i is the outdegree of vertex i .

d−i is the indegree of vertex i .

Let variables xij , xji represent the number of times edge e = (i , j)
is traversed from i to j and from j to i , respectively.

Ávila, C., Plana, and Sanchis (Networks, 2015)
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A formulation for the SCP

Then, the SCP can be formulated as follows:

Minimize
∑

(i,j)∈E

cij(xij + xji)

s.t.:

x(δ+(S)) ≥ 1, ∀S =
⋃
i∈Q

Vi , Q ⊂ {1,2, ....,p} (1)

x(δ+(i)) + d+(i) = x(δ−(i)) + d−(i), ∀i ∈ V (2)
xij , xji ≥ 0, ∀(i , j) ∈ E (3)
xij , xji integer , ∀(i , j) ∈ E (4)
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A branch-and-cut algorithm for the SCP

Initial LP
A connectivity constraint x(δ+(S)) ≥ 1, for each R-set
Symmetry equations x(δ+(i)) + d+(i) = x(δ−(i)) + d−(i), ∀i

The cutting plane uses separation algorithms for:
Connectivity constraints (Heuristics and exact algorithm)
K-C inequalities (Heuristic)
Path-Bridge Inequalities (Heuristic)
Asymmetric 2 Path-Bridge inequalities (Heuristic)

The branch-and-cut algorithm:
Coded in C++
Cplex 12.4
Time limit: 1 hour.
Run on a PC Intel Core i7 CPU 3.40 GHz, 16 GB RAM.
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Computational Results on SCP instances

First set of SCP instances

14 SCP (drayage) instances similar to the “crane 2” instances
proposed in Srour (2010) and Srour & van de Velde (2013) with the
following characteristics:

5 instances with n = 100 points selected from the 100× 100
square. 50 origins and 75 destinations.
2 instances with n = 100 points selected from the 106 × 106

square. 100 origins and 65 destinations.
5 instances with n = 300 points selected from the 500× 500
square. 150 origins and 200 destinations.
2 instances with n = 300 points selected from the 106 × 106

square. 300 origins and 200 destinations.
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Computational Results on SCP instances

First set: Drayage instances

Jobs Gap0 (%) # of opt. T(scs)

cranegen100_50_75 100 0.00 5/5 0,1
cranegen100_100_65 100 0.07 2/2 1,2
cranegen300_150_200 300 0.00 2/2 4,4
cranegen300_300_200 300 0.0001 5/5 20,8
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Computational Results on SCP instances

Second set of SCP instances

We have generated a new set of SCP instances defined on a grid:

A grid x × x is generated.
All the points (1,1), (1,2), . . . , (1, x), (2,1), . . . (x , x) are the
vertices of the graph.
n origins and n destinations are generated for the n jobs (required
arcs).
Non required arcs: all the arcs in the grid.
Arc costs are computed using the Manhattan distance.
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Computational Results on SCP instances

Second set of SCP instances

14 SCP instances with the following characteristics:

5 instances with n ∈ {10,50,100,200,300} jobs generated in a
grid 50× 50.
5 instances with n = 300 jobs of length at most 5 generated in a
grid 50× 50.
4 instances with n = 500 jobs of length at most 5 generated in a
grid 100× 100.
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Computational Results on SCP instances

Second set: SCP instances defined on a grid
Jobs Grid Solved? Gap0 (%) Nodes T(scs)

cranegrid_r1 10 50× 50 yes 0,00 3 76,7
cranegrid_r2 50 50× 50 yes 0,00 0 0,4
cranegrid_r3 100 50× 50 yes 0,00 0 0,7
cranegrid_r4 200 50× 50 yes 0,00 0 0,9
cranegrid_r5 300 50× 50 yes 0,00 0 1,1
cranegrid_l1 300 50× 50 yes 0,00 0 1334,3
cranegrid_l2 300 50× 50 yes 0,00 0 6,1
cranegrid_l3 300 50× 50 no - 0 3600
cranegrid_l4 300 50× 50 yes 0,00 2 37,7
cranegrid_l5 300 50× 50 yes 0,00 0 36,7
cranegrid_l6 500 100× 100 yes 0,01 5 451,3
cranegrid_l7 500 100× 100 no - 102 3600
cranegrid_l8 500 100× 100 no 0,35 106 3600
cranegrid_l9 500 100× 100 yes 0,05 19 620,2
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Computational Results on DGRP instances

Let G = (V ,A) be a directed graph.
Let VR ⊆ V required vertices and AR ⊆ A required arcs.
Directed General Routing Problem: to find a minimum cost tour
visiting all the vertices in VR and traversing all the arcs in AR.

14× 5 DGRP instances proposed by Blais & Laporte (2003):

Randomly generated directed graphs with |V | = 5000 and
|A| = 50000.
Different proportions of required vertices and arcs. They are also
randomly determinated.
Arc costs randomly generated on [10,110].
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Computational Results on DGRP instances

Blais and Laporte (2003) instances
Blais & Laporte1 Our results

|V | |A| |VR| |AR| |VATSP | # opt. Time # opt. Time

5000 50000 1000 1000 2000 5/5 125.6 5/5 31.3
5000 50000 1000 1500 2500 5/5 193.6 5/5 51.8
5000 50000 1000 2000 3000 5/5 280.3 5/5 28.3
5000 50000 1000 2500 3500 4/5 374.9 5/5 21.9
5000 50000 1000 3000 4000 0/5 - 5/5 25.5
5000 50000 1500 1000 2500 5/5 183.1 5/5 37.3
5000 50000 2000 1000 3000 5/5 244.7 5/5 36.7
5000 50000 2500 1000 3500 5/5 314.5 5/5 57.4
5000 50000 3000 1000 4000 4/5 396.8 5/5 50.7
5000 50000 0 3000 3000 5/5 303.0 5/5 12.5
5000 50000 500 2500 3000 5/5 300.0 5/5 19.3
5000 50000 1500 1500 3000 5/5 269.2 5/5 32.5
5000 50000 2500 500 3000 5/5 226.1 5/5 57.8
5000 50000 3000 0 3000 4/5 273.9 5/5 347.2

1Sun Ultra Sparc Station 10 (resolution time limit: 5 min.)
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The Orienteering Arc Routing Problem (OARP)
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The Orienteering Arc Routing Problem

• In most routing problems, the objective is to service a given set of
customers, with minimum cost.

• In others, the objective is to select some customers with maximum
profit from a set of potential customers and to service them.

In Feillet, Dejax & Gendreau (2005) these problems are called routing
problems with profits and are classified as:

Prize-collecting problems: there is a lower bound on the total
prize collected and the objective is to minimize the total cost.

Profitable problems: the objective is to maximize the difference
between the collected profits and the routing costs.

Orienteering problems: there is an upper bound on the cost or
length of the route and the collected profits are maximized.
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The Orienteering Arc Routing Problem

• In Archetti, C., Plana, Sanchis and Speranza (2014, 2015, and 2016)
the Orienteering and the Team Orienteering Arc Routing Problem
have been studied.

• The study was motivated by a real life application related to carriers
making auctions on the web for transportation services.

• A transportation service is represented by an arc, and consists of
reaching a node with an empty truck, filling the truck with load,
traversing the arc and downloading the truck completely.

• The carrier has a set of regular customers which need to be served.

• The carrier has a vehicle or a fleet of vehicles with limited traveling
time.

• The carrier looks for additional customers to fully use the traveling
time of the vehicles.
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The Orienteering Arc Routing Problem

Given a set of regular customers (green arcs) and
given a set of potential customers (red arcs),

we want to select a subset of potential customers with maximum profit
that can also be serviced within the vehicle time limit.
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The Orienteering Arc Routing Problem

G = (V ,A) is a directed (strongly connected) graph. Vertex 1 is
the depot.

AR ⊆ A are the required arcs (its service is mandatory).

AP ⊆ A are the optional arcs (its service is not mandatory).

sij ≥ 0 is the profit associated with each optional arc (i , j) ∈ AP .

cij ≥ 0 is the traveling time associated with arc (i , j) ∈ A.

A vehicle is available with a time limit Tmax .
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The Orienteering Arc Routing Problem

The Orienteering Arc Routing Problem consists of:
finding a route starting and ending at the depot, such that

its cost or time is no greater than Tmax ,

all the arcs in AR are traversed at least once, and

the sum of the profits of the arcs in AP traversed is maximum.
We define the following variables:

For each (i , j) ∈ A

xij = number of times that the vehicle traverses arc (i , j).

For each (i , j) ∈ AP

yij =

{
1, if the vehicle services arc (i,j)

0, otherwise.

Ángel Corberán Lp-based methods Troyes 2018 50 / 115



The Orienteering Arc Routing Problem
Then, the OARP can be formulated as follows:

Maximize
∑

(i,j)∈AP

sijyij

∑
j∈V\{i}

xij =
∑

j∈V\{i}

xji ∀i∈V (1)

∑
i∈V\S, j∈S

xij ≥ 1 ∀S⊂V \{1} with AR(S) 6= ∅ (2)

∑
i∈V\S, j∈S

xij ≥ ya ∀S⊂V \{1}, ∀a ∈ AP(S) (2’)

xij ≥ 1 ∀(i, j)∈ AR (3)

xij ≥ yij ∀(i, j)∈AP (3’)∑
(i,j)∈A

cijxij ≤ Tmax (4)

xij ≥ 0 and integer ∀(i, j) ∈ A (5)

yij ∈ {0, 1} ∀(i, j) ∈ AP (6)
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A branch and cut for the OARP

Initial LP:

Maximize
∑

(i,j)∈AP

sijyij

∑
j∈V\{i}

xij =
∑

j∈V\{i}

xji ∀i∈V (1)

∑
i∈V\S, j∈S

xij ≥ 1 ∀S⊂V \{1} R-component (2)

xij ≥ 1 ∀(i, j)∈ AR (3)

xij ≥ yij ∀(i, j)∈AP (3’)∑
(i,j)∈A

cijxij ≤ Tmax (4)

xij ≥ 0 ∀(i, j) ∈ A (5)

yij ∈ [0, 1] ∀(i, j) ∈ AP (6)
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Cutting plane strategy

We use separation algorithms for the following inequalities:

1 Connectivity (heuristic).

2 Connectivity (exact).

3 KC and 2-PB (heuristic)
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Computational results on OARP instances

Run with a time limit of 1 hour.

OARP instances randomly generated in a 1000× 1000 square.
Each vertex is incident with 4 entering arcs and 4 leaving arcs.
p1 = 0.2,0.4,0.6,0.8 (probability of required or optional arc) and
p2 = 0,0.25,0.50,0.75 (the percentage of required arcs among
the “service” arcs).

The OARP instances have 1000 ≤ |V | ≤ 2000 and
7000 ≤ |A| ≤ 14000.
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Computational results on OARP instances

Set |AR | |AP | # opt Gap0 Gap % profit Nodes Time

1000_2_0 0 1436.7 4/5 0.1405 0.61 80.1 1507.6 1050.0
1000_2_2 368.0 1068.7 5/5 0.0021 83.8 396.6 225.8
1000_2_5 715.5 721.2 5/5 0.0042 81.2 343.0 174.5
1000_2_7 1072.5 364.2 5/5 0.0110 89.2 100.8 54.3

1000_4_0 0 2761.0 5/5 0.0009 80.0 397.0 372.7
1000_4_2 677.5 2083.5 5/5 0.0013 81.5 716.0 567.6
1000_4_5 1384.5 1376.5 5/5 0.0015 85.8 775.0 551.1
1000_4_7 2063.7 697.2 5/5 0.0049 90.1 395.6 263.5

1000_6_0 0 4198.5 5/5 0.0002 88.6 441.6 610.0
1000_6_2 1044.5 3154.0 5/5 0.0003 83.8 656.2 697.8
1000_6_5 2097.5 2101.0 5/5 0.0008 86.9 301.2 391.2
1000_6_7 3168.7 1029.7 5/5 0.0029 87.5 382.6 410.3

1000_8_0 0 5592.0 5/5 0.0001 83.4 211.8 583.2
1000_8_2 1420.2 4171.7 5/5 0.0002 94.2 481.2 603.7
1000_8_5 2782.5 2809.5 5/5 0.0005 91.2 973.8 1239.2
1000_8_7 4219.7 1372.2 5/5 0.0017 85.4 530.8 715.7

Average 1313.4 2183.6 79/80 0.0108 0.61 85.8 538.2 531.9

Table: Results on instances with 1000 vertices and 7000 arcs
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Computational results on OARP instances

Set |AR | |AP | # opt Gap0 Gap % profit Nodes Time

1500_2_0 0 2182.0 3/5 0.0049 0.006 88.4 965.6 913.6
1500_2_2 538.6 1643.4 5/5 0.0007 87.5 107.2 186.1
1500_2_5 1089.8 1092.2 5/5 0.0021 82.8 582.2 641.0
1500_2_7 1631.8 550.2 5/5 0.0070 88.0 272.2 297.2

1500_4_0 0 4186.2 5/5 0.0002 86.4 229.0 546.8
1500_4_2 1043.8 3142.4 5/5 0.0006 90.1 221.0 497.8
1500_4_5 2080.4 2105.8 5/5 0.0007 90.0 470.0 738.8
1500_4_7 3133.8 1052.4 5/5 0.0023 84.7 653.2 1009.0

1500_6_0 0 6269.6 4/5 0.0004 0.001 82.2 387.4 1095.4
1500_6_2 1573.4 4696.2 5/5 0.0001 90.7 321.8 769.7
1500_6_5 3114.0 3155.6 5/5 0.0003 88.6 789.8 1874.5
1500_6_7 4701.4 1568.2 4/5 0.0014 0.001 93.0 570.2 1029.7

1500_8_0 0 8411.6 5/5 0.0001 85.5 203.0 1810.5
1500_8_2 2114.6 6297.0 5/5 0.0001 86.7 215.8 724.1
1500_8_5 4195.6 4216.0 5/5 0.0001 81.8 177.4 1120.1
1500_8_7 6323.2 2088.4 5/5 0.0005 83.1 409.2 1818.6

Average 1971.3 3291.1 76/80 0.0014 0.003 85.7 423.4 947.6

Table: Results on instances with 1500 vertices and 10500 arcs
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Computational results on OARP instances

Set |AR | |AP | # opt Gap0 Gap % profit Nodes Time

2000_2_0 0 2893.0 2/5 0.0120 0.0158 86.3 422.0 870.2
2000_2_2 720.4 2172.6 4/5 0.0006 0.0008 84.7 318.8 909.0
2000_2_5 1467.4 1425.6 5/5 0.0009 85.1 374.4 820.5
2000_2_7 2173.6 719.4 5/5 0.0049 85.7 372.0 617.5

2000_4_0 0 5537.6 3/5 0.0002 0.0004 91.5 325.3 1959.9
2000_4_2 1382 4155.6 5/5 0.0004 88.4 693.2 2180.1
2000_4_5 2789.4 2748.2 4/5 0.0006 0.0010 86.7 587.0 1705.5
2000_4_7 4147.4 1390.2 5/5 0.0016 84.3 611.8 1764.2

2000_6_0 0 8345.4 4/5 0.0003 0.0002 81.6 272.5 2947.6
2000_6_2 2065.8 6279.6 5/5 0.0001 77.7 166.4 898.7
2000_6_5 4139.2 4206.2 4/5 0.0002 0.0004 86.9 238.3 975.2
2000_6_7 6302 2043.4 5/5 0.0007 84.8 183.8 1984.0

2000_8_0 0 11182.6 2/5 0.0003 0.0004 88.1 212.5 3163.4
2000_8_2 2785.8 8396.8 5/5 0.0000 79.7 232.6 1506.9
2000_8_5 5608.6 5574.0 4/5 0.0002 0.0006 91.0 189.3 2548.3
2000_8_7 8395.2 2787.4 2/5 0.0013 0.0015 85.2 551.5 3209.0

Average 2623.6 4366.1 64/80 0.0015 0.0018 85.5 359.0 1878.4

Table: Results on instances with 2000 vertices and 14000 arcs
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The Generalized Directed Arc Routing Problem
(Close Enough ARP)
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The Generalized Directed Arc Routing Problem (Close
Enough ARP)

• In most arc routing problems, the service to a given customer is
usually modeled as the traversal of a given arc (or edge) of the graph.

• For example, consider the meter reading problem (gas, electricity,
water): to read the meter, the house has to be visited and the
corresponding street has to be traversed.
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The Generalized Directed Arc Routing Problem (Close
Enough ARP)
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The Generalized Directed Arc Routing Problem (Close
Enough ARP)

Then, the objective is to traverse a given set of (required) arcs at
minimum cost
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The Generalized Directed Arc Routing Problem (Close
Enough ARP)

Now suppose that:

Each meter has a RFID (Radio Frequency IDentification) tag.
A RFID reader can read the data of any meter located closer than
a given distance r .

Ángel Corberán Lp-based methods Troyes 2018 62 / 115



The Generalized Directed Arc Routing Problem (Close
Enough ARP)

Now, the service (meter reading) is not modeled as the traversal
of a given street,

The service is modeled as the traversal of a close-enough street
(to the customer).
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The Generalized Directed Arc Routing Problem
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The Generalized Directed Arc Routing Problem
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The Generalized Directed Arc Routing Problem

Drexl (2007): Defines the problem as a generalization of the
Directed Rural Postman Problem (DRPP) in his PhD Thesis.

Shuttleworth, Golden, Smith & Wasil (2008): Define the problem
from the perspective of its practical application. “Advances in
Meter Readings: Heuristic Solution of the Close-Enough
Traveling Salesman problem over a Street Network”.

Hà, Bostel, Langevin y Rousseau (2013): Formulation,
branch-and-cut and very good results on instances with more than
500 vertices and 1500 arcs.
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The Generalized Directed Arc Routing Problem

Figure: Real life instance with 150000 customers and 18 zones
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The Generalized Directed Arc Routing Problem

Shuttleworth et al. (2008) propose several heuristics, obtaining:

In a single zone: 24% improvement if r = 500 feet,
18% improvement if r = 350 feet.

Global improvement: 15% in length and 20% in time (r = 500).
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The Generalized Directed Arc Routing Problem

Let G = (V ,A) be a directed (strongly connected) graph. Vertex 1
is the depot.

There is a cost cij > 0 for each arc (i , j) ∈ A.

There is a family H =
{

H1, ...,HL
}

, of “customers”, each Hc ⊆ A

H1 =
{

ai1 , . . . ,aim1

}
H2 =

{
aj1 , . . . ,ajm2

}
. . . HL =

{
ak1 , . . . ,akmk

}
The Generalized Directed Rural Postman Problem consists of

finding a route starting and ending at the depot, such that

it traverses at least one arc in each set Hc ,

the length of the route is minimum.
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The Generalized Directed Arc Routing Problem

The GDRPP generalizes

The Directed Rural Postman Problem (DRPP) when Hc = {aij} for
each required arc (i , j)

The Windy Rural Postman Problem (WRPP) when Hc = {aij ,aji}
for each required edge (i , j)

The Generalized Arc Routing Problem (GARP) when the Hc are
disjoint sets (Fernández, 2013, undirected case)
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The Generalized Directed Arc Routing Problem

Notation

AR = H1 ∪ · · · ∪ HL are the arcs that can service a customer

Given S ⊂ V , A(S) = {(i , j) ∈ A| i , j ∈ S}

Given S1,S2 ⊂ V , (S1 : S2) = {(i , j) ∈ A| i ∈ S1, j ∈ S2}

δ+(S) =
(
S : V \S

)
, δ−(S) =

(
V \S : S

)
δ(S) = δ+(S) ∪ δ−(S)

Ávila, C. Plana, and Sanchis (Transportation Science, 2016)
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The Generalized Directed Arc Routing Problem

We define the following variables:

For each (i , j) ∈ A,

xij = number of times that arc (i , j) is traversed .

For each (i , j) ∈ AR,

yij =

{
1, if arc (i,j) is serviced (chosen to do the service) ,

0, otherwise.
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GDARP Problem formulation

Minimize
∑

(i,j)∈A

cijxij

x
(
δ+(i)

)
= x

(
δ−(i)

)
∀i∈V (10)

x
(
δ−(S)

)
≥ 1 ∀S⊂V \{1},∃Hc ⊂ AR(S) (12)

x
(
δ−(S)

)
≥ ya ∀S⊂V \{1}, ∀a ∈ AR(S) (13)

xij ≥ yij ∀(i, j)∈AR , (14)

y (Hc) ≥ 1 ∀Hc (15)

xij ≥ 0 and integer ∀(i, j) ∈ A (16)

yij ∈ {0, 1} ∀(i, j) ∈ AR (17)
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GDRPP polyhedron

We define GDRPP(G) as the convex hull of all the vectors
(x , y) ∈ R|A|+|AR | satisfying inequalities (10) to (17).

GDRPP(G) is an unbounded polyhedron if G is strongly
connected.

dim(GDRPP(G)) = |A|+ |AR| − |V |+ 1 iff |Hc | ≥ 2,∀Hc ∈ H.

The following inequalities are facet-defining under mild conditions:

Trivial inequalities xij ≤ 0, yij ≤ 0, yij ≤ 1.

Traversing inequalities xij ≥ yij .

Service inequalities
∑

(i,j)∈Hc

yij ≥ 1.
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Connectivity constraints

Connectivity constraints (2) can be improved.

x
(
δ−(S)

)
≥ ya

∀S⊂V \{1}, ∀a ∈ AR(S)
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Connectivity constraints

Connectivity constraints: If there is a set Hc ⊆ A(S) ∪ δ(S),

x
(
δ−(S)

)
≥ 1 is valid

and facet-defining.
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Connectivity constraints

Connectivity constraints: (2)

If there is NO set Hc ⊆ A(S) ∪ δ(S), the inequality

x
(
δ−(S)

)
≥ 1

��
��

��
���PPPPPPPPP

is not valid
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Connectivity constraints

Connectivity constraints: (2)

If there is NO set Hc ⊆ A(S) ∪ δ(S), the inequality

x
(
δ−(S)

)
≥ 1

��
��

��
���PPPPPPPPP

is not valid

x
(
δ−(S)

)
≥ ya is valid

but not violated
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Connectivity constraints

Connectivity constraints: (2b)

However, these other Connectivity constraints (2b) are also valid and
violated:

x
(
δ−(S)

)
≥ 1− y(Hc ∩ A(V \S))

They define facets of GDRPP(G).
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Connectivity inequalities

Connectivity inequalities (summary):

x
(
δ−(S)

)
≥ ya when there is NO a subset Hc ⊆ A(S) ∪ δ(S).

x
(
δ−(S)

)
≥ 1 when there is a Hc ⊆ A(S) ∪ δ(S).

New connectivity inequalities:

x
(
δ−(S)

)
≥ 1− y(Hc ∩ A(V \S))
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Parity inequalities

x (δ(S)) ≥ 2ya1 − 1+

+2ya2 − 1+

+1− 2y(Hc3 \ δ(S))+

+1

Required arcs as well as whole subsets Hc are allowed in δ(S).
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K-C Inequalities

f (x) ≥ 2
(

1− 2y(Hc \ (M0 : M4))
)

+

+2
(

1− 2y(Hc′ \ (M0 : M4))
)

+

+2− 2y(Hc1 \ A(M1))+

+2− 2y(Hc2 \ A(M2))+

+2− 2y(Hc3 \ A(M3))+

Required arcs outside subsets Mi i = 1, ...,K are allowed.
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Dominance inequalities

Dominance inequalities (Ha et al., 2013):

(based on those proposed by Gendreau, Laporte and Semet, 1997, for
the Covering Tour Problem)

Let a1,a2 ∈ AR such that{
H ∈ H : a1 ∈ H

}
⊆
{

H ∈ H : a2 ∈ H
}

.

Then ya1 + ya2 ≤ 1.

Dominance inequalities are not valid inequalities for the GDRPP.
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A branch-and-cut algorithm

Initial LP

Symmetry equations (1): x(δ+(i)) = x(δ−(i)), ∀i ∈ V

One connectivity constraint (2b) x(δ−(Hc)) ≥ 1, for each Hc ∈ H

Traversing inequalities (3): xij ≥ yij , ∀(i , j) ∈ AR

Service inequalities (4): y(Hc) ≥ 1, for each Hc ∈ H

Dominance inequalities ya1 + ya2 ≤ 1

Trivial inequalities xij ≥ 0, 0 ≤ yij ≤ 1
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A branch-and-cut algorithm

Separation algorithms for connectivity inequalities :

Let (y∗, x∗) be the fractional solution at any iteration of the
cutting-plane procedure.

Heuristic algorithm: Check the connected components induced in
G by the arcs a with y∗a > ε (ε = 0, 0.25, 0.5, 0.75)
Exact algorithm
“Reduced” exact algorithm
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A branch-and-cut algorithm

Separation algorithms for parity inequalities :

Let (y∗, x∗) be the fractional solution at any iteration of the
cutting-plane procedure.
Check the connected components G(S) induced by the arcs a with
y∗a > ε such that y∗

(
δ(S)

)
is odd

x (δ(S)) ≥ 2ya1 − 1+

+2ya2 − 1+

+1− 2y(Hc3 \ δ(S))+

+1
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A branch-and-cut algorithm

We use separation algorithms for K-C inequalities :

Let (y∗, x∗) be the fractional solution at any iteration of the
cutting-plane procedure.

Heuristic algorithm based on the one for K-C constraints in the
General Routing Problem in C., Letchford & Sanchis (2000).
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A branch-and-cut algorithm

Heuristic to obtain feasible solutions:

Let (y∗, x∗) be the fractional solution at any iteration of the
cutting-plane procedure.

• First a subset A′ ⊆ AR of arcs with a large value of y∗a and forming a
feasible solution of the Set Covering Problem is selected.

• Then, a DGRP instance in graph G with required arcs A′ and the
depot as a required vertex is solved.
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A branch-and-cut algorithm

Cplex 12.4 with zero-half cuts .

Time limit: 2 hours.

Run on a PC Intel Core i7 CPU 3.40 GHz, 16 GB RAM.

5 × 8 GDRPP instances from Ha et al. (2013)

|V | vertices randomly generated in a unit square.
|A| arcs randomly generated trying to imitate real networks.
|A| × t customers randomly positioned in the square, where
t = 0.5,1,5,10.
|V | = 500 and |A| = 1500 (for r = 150) or |V | = 500 and
|A| = 1000 (for r = 200)
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Computational results on GDARP instances

Table: Comparison with Ha et al. results

Ha et al.(1) Our Results
#of #of Gap0

|V | |A| |H| opt Time opt Time impr.

ce200-0.5 500 1000 500 3 4155,6 5 245,7 2,54
ce200-1 500 1000 1000 4 2447,8 5 88,6 2,11
ce200-5 500 1000 5000 5 315,1 5 28,3 0,87
ce200-10 500 1000 10000 5 82,3 5 20,3 0,79

ce150-0.5 500 1500 750 0 7202,9 5 830,5 2,04
ce150-1 500 1500 1500 2 4499,9 5 1235,5 1,43
ce150-5 500 1500 7500 5 154,5 5 49,2 0,47
ce150-10 500 1500 15000 5 205,9 5 50,1 0,26

(1) CPU at 2.4GHz with 6GB RAM.
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Computational results on GDARP instances

Table: Cuts added

|V | |A| |H| Conn. Parity K-C Z-H

ce200-0.5 500 1000 500 9892,0 1311,6 2,8 175,0
ce200-1 500 1000 1000 4985,0 997,8 24,0 165,6
ce200-5 500 1000 5000 1093,0 668,0 6,8 121,8
ce200-10 500 1000 10000 429,8 583,4 3,0 124,8

ce150-0.5 500 1500 750 8118,2 2405,2 39,4 413,4
ce150-1 500 1500 1500 4871,8 1897,0 23,2 371,8
ce150-5 500 1500 7500 403,4 745,8 6,2 166,6
ce150-10 500 1500 15000 412,2 734,6 3,6 173,6
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Computational results on mixed GDARP instances

5 × 8 GDRPP instances proposed by Hà et al. (2013) from two Mixed
RPP instances:

MB537 with |V | = 500, |E | = 364, |A| = 476
MB547 with |V | = 500, |E | = 351, |A| = 681
Now, r is defined as the average cost of all the arcs.
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Computational results on mixed GDARP instances

Table: Comparison with Ha et al. results (mixed graph instances)

Ha et al.(1) Our Results
#of #of Gap0

|V | |A| |H| opt Time opt Time impr.

MB0537-0.5 500 1204 400 0 7200,7 5 456,3 0,16
MB0537-1 500 1204 800 0 7201,5 5 368,5 0,20
MB0537-5 500 1204 4000 3 3937,8 5 223,8 0,19
MB0537-10 500 1204 8000 5 2418,3 5 233,4 0,18

MB0547-0.5 500 1383 520 0 7201,1 4 2854,3 1,17
MB0547-1 500 1383 1040 0 7202,2 5 1515,2 0,78
MB0547-5 500 1383 5200 4 1639,9 5 232,1 0,19
MB0547-10 500 1383 10400 5 756,2 5 131,5 0,18

(1) CPU at 2.4GHz with 6GB RAM.
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Computational results on undirected GDARP
instances

12× 3 instances generated from RPP instances:

UR500 with 298 6 |V | 6 499, 597 6 |A| 6 1526 and 1 6 |H| 6 99.
UR750 with 452 6 |V | 6 749, 915 6 |A| 6 2314 and
1 6 |H| 6 140.
UR1000 with 605 6 |V | 6 1000, 2289 6 |A| 6 3083 and
1 6 |H| 6 204.
Each R-connected component of the original graph defines a
“customer” (in this way, the Hc are connected and disjoint subsets,
GARP instances).
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Computational results (undirected graph instances)

|V | |A| |H| Gap0 (%) Gap (%) Solved Nodes Time (s)
UR500 446.0 2257.8 35.3 0.24 0.00 12/12 320.2 790.0
UR750 665.7 3396.8 55.7 0.32 1.18 10/12 1590.0 3247.0
UR1000 882.2 4580.8 74.8 3.58 4.34 2/12 1262.0 6016.3
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Outline

1 Introduction

2 Polyhedral Combinatorics applied to some routing problems
The Traveling Salesman Problem (TSP)
The Stacker Crane Problem (SCP)
The Orienteering Arc Routing Problem (OARP)
The Generalized Directed Arc Routing Problem (Close Enough
ARP)

3 Polyhedral Combinatorics (some theory)
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Polyhedral Combinatorics

• A polyhedron P is a set of the form {x ∈ Rn : Ax ≤ b}

• A polyhedron P is of dimension k , dim(P) = k , if the maximum
number of affinely independent points in P is k + 1. It is
full-dimensional if dim(P) = n.

• Let A={i : aix = bi ,∀x ∈ P} and (A=,b=) the associated rows of
(A,b). Then dim(P) = n − rank((A=,b=).
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Polyhedral Combinatorics

• Vectors x1, . . . , xk ∈ Rn are linearly independent if the unique
solution to

∑
i αix i = 0 is αi = 0, ∀i .

• Vectors x1, . . . , xk ∈ Rn are affinely independent if the unique
solution to

∑
i αix i = 0 and

∑
i αi = 0 is αi = 0,∀i .

• Linear independence implies affine independence but not viceversa.

• Vectors x1, . . . , xk ∈ Rn are affinely independent if and only if
x2 − x1, . . . , xk − x1 are linearly independent.

• If 0 /∈ aff (P), i.e., if P is contained in a hyperplane
{x ∈ Rn : ax = a0}, with a0 6= 0, then dim(P) is the maximum number
of linearly independent points in P minus 1 (linear independence and
affine independence are in this case equivalent).
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Polyhedral Combinatorics

• The inequality (π, π0) is a valid inequality for P if πx ≤ π0, ∀x ∈ P.

• If (π, π0) is a valid inequality for P, F = {x ∈ P : πx = π0} is called a
face of P.

• A face is said to be a proper face if F 6= ∅ and F 6= P.

• A face F is said to be a facet of P if dim(F ) = dim(P)− 1.

• Facets are all we need to describe polyhedra.
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Polyhedral Combinatorics

Ángel Corberán Lp-based methods Troyes 2018 100 / 115



Polyhedral Combinatorics
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Polyhedral Combinatorics
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Polyhedral Combinatorics

• There are two basic methods to prove that a given inequality πx ≤ π0
is facet-defining of P.

• In both cases, one first has to check that πx ≤ π0 is valid and that P
is not contained in {x : πx = π0}.

• The 1st (direct) method consists of finding k = dim(P) affinely
independent vectors x1, . . . , xk satisfying πx i = π0,∀i .

• The 2nd (indirect) method consists of assuming the existence of a
(stronger) valid inequality dx ≤ d0 with
{x ∈ P : πx = π0} ⊆ {x ∈ P : dx = d0} and prove they both are
equivalent.
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TSP polyhedron

• Let Kn = (V ,E) be the complete graph on n vertices and let TSP(Kn)
be the convex hull of all the TSP tours.

• TSP(Kn) is a polytope (a bounded polyhedron).

• Lemma: If |V | = 2k + 1, there are k edge-disjoint tours T1, . . . ,Tk
such that E = ∪Ti . If |V | = 2k , there are k − 1 edge-disjoint tours
T1, . . . ,Tk−1 and an edge-disjoint matching M such that E = M ∪ (∪Ti).

Consider, for instance, |V | = 5:

Ángel Corberán Lp-based methods Troyes 2018 104 / 115



TSP polyhedron

Theorem: dim(TSP(Kn)) = |E | − |V |.

Assume n = 6. We have to prove that dim(TSP(K6)) = 15 - 6 = 9.

The subgraph K5 induced by the 5 first vertices of G is the union of 2
tours T1 and T2 of length 5 (= n-1).

Ángel Corberán Lp-based methods Troyes 2018 105 / 115



TSP polyhedron
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TSP polyhedron

Matrix 1− I is non-singular. Therefore, the whole matrix is also
non-singular and the 10 rows (tours) are linearly (and affinely)
independents, so dim(TSP(K6))=10-1=9.
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RPP polyhedron

The Rural Postman Problem (RPP) is a generalization of the Chinese
Postman Problem that consists of, given G = (V ,E) and ER ⊆ E ,
finding a minimum length tour traversing at least once every edge in
ER (required edges).

Usually GR = (V ,ER) is non connected. Let V1, . . . ,Vp the sets of
vertices of its connected components (R-sets).

Proposed by Orloff (1974). It is NP-hard (Lenstra & Rinnooy Kan,
1976)
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RPP polyhedron

Equivalent augmentation problem: Add to GR a set of edges with total
minimum cost such that the resulting graph is connected and even.
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RPP polyhedron

Tour for the RPP: a connected and even graph

A tour for the RPP minus ER is a semitour for the RPP
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RPP polyhedron

We define xe as the number of copies of e to be added to GR to obtain
a connected and even graph.

Then, the RPP can be formulated as follows:

Minimize
∑
e∈E

cexe

x(δ(S)) ≥ 2, ∀S ⊂ V : δR(S) = ∅ (5)
x(δ(i)) ≡ |δR(i)|, ∀i ∈ V (6)

xe ≥ 0, ∀e ∈ E (7)
xe integer , ∀e ∈ E (8)
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RPP polyhedron

Let RPP(G) be the convex hull of all the semitours for the RPP in
G = (V ,E). RPP(G) is a polyhedron.

Theorem: dim(RPP(G)) = |E | iff G is connected.

If G is connected, there is at least a tour (and therefore a semitour) for
the RPP: x .

From x , we construct |E | different semitours as follows:

For each edge e, consider the vector x + 2ze , where ze ∈ R|E | is the
unit vector with a 1 in position e.

Obviously, these 1 + |E | vectors are affinely independent and, hence,
RPP(G) is full-dimensional.
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RPP polyhedron

Theorem: Connectivity inequalities define facets of RPP(G) iff G(S)
and G(V \ S) are connected.

If G(S) and G(V \ S) are connected, it is possible to build an RPP tour
x in G(S) and another tour x ′ in G(V \ S) such that jointly traverse at
least once all the required edges.

Assume δ(S) = {e1, . . . ,ek}. Given e1, we construct a tour y1 by
adding two copies of e1 to x + x ′. Repeat this for e2, . . . ,ek to obtain k
tours for the RPP, y1, . . . , yk , all of them satisfying y(δ(S)) = 2.

By substracting xR to y1, . . . , yk , we obtain k semitours x1, . . . , xk , all
of them satisfying x(δ(S)) = 2. From xk , for example, we construct
|E | − k more vectors xk + 2ze, ∀e ∈ E \ δ(S), which are semitours
satisfying x(δ(S)) = 2.
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RPP polyhedron

The incidence matrix of these k + |E | − k semitours is non-singular
and, therefore, the |E | semitours are linearly (and affinely)
independent.
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And this is, if not all, enough for today.

Thanks for your attention !
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