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Université de Bordeaux, INRIA2

Palaiseau, France
{valentin.gilbert, julien.rodriguez}@cea.fr

Abstract. Quantum Annealers (QA) such as D-Wave systems constitute a
noisy implementation of the Adiabatic Quantum Computing process (AQC)
and are used to find the ground state of an Ising problem. Qubit intercon-
nections of a quantum chip are usually limited, and finding a good mapping
of the Ising problem onto the quantum chip can be challenging. In fact, even
defining what is a high-quality embedding is not trivial. After presenting a
short review of existing embedding methods, we propose different experiments
that could identify important criteria to consider while mapping problems
on Quantum Annealers.

1 Introduction

AQC applied to optimization problems is a computational process introduced in [5] for
optimization perspectives. This process describes the state evolution of conservative sys-
tems with a linear interpolation of two time-independent Hamiltonians HM and HC:
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)
HM+

t

T
HC (1)

It is seen that when t=0,H(t)=HM and when t=T where T is the ideal annealing
time, H(t)=HC. The adiabatic theorem tells that if a quantum state is prepared into
the initial ground state |ψ0⟩ of the HamiltonianHM and if t varies slowly enough from
0 to T , the quantum state |ψt⟩ will stay close to a ground state of H(t). The initial
state |ψ0⟩ has to be easily prepared and must be a ground state of the Hamiltonian
HM . Additionally, HM and HC must not commute.
Quantum annealers, such as D-Wave systems [1], implement a noisy adiabatic evolu-
tion and are designed to minimize the Ising cost functionHC(s) taking an input vector
s=(s1,s2,...,sn) with si∈{+1,−1} where hi and Jij represent qubits auto-coupling
and coupling strength:

HC(s)=−
n∑

i=0

hisi−
n∑

i,j=1

Jijsisj (2)

The topology of D-Wave quantum annealers is sparse. Hence, An efficient method
is required to find an adequate mapping of qubits to embed problems on these chips
(limiting the number of variable duplications).
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2 Embedding Ising Problems on D-Wave Systems

Consider a source graph Gs=(Vs,Es), which models an Ising problem to be mapped
onto a target graphGt=(Vt,Et), which models the target quantum chip. The problem
of mapping an Ising problem onto a quantum chip can be defined as follow :

Given a source graph Gs=(Vs,Es) and a target graph Gt=(Vt,Et), the goal
is to find a mapping function : ϕ :Vs−→Vt×Vt such that :
1. each vertex v∈Vs is mapped onto a connected subgraph ϕ(v) of Vs.
2. each connected subgraph must be vertex disjoint ϕ(v)∩ϕ(v′) = ∅, with
v≠v′.

3. each edge e∈Es is mapped onto at least one edge in Et : ∀(u,v)∈Es,∃u′∈
ϕ(u),∃v′∈ϕ(v), such that (u′,v′)∈Et.

Considering quantum annealers such as D-Wave systems, the graph Gt is very sparse
and strongly limits the size and density of the source graph Gs that can be embedded
into these chips. Polynomial algorithms used to decide if Gs can be embedded into
Gt exist but do not report on the mapping function. In the theory of graph minors,
Robertson and Seymour [10] have shown that for fixed Gs, there exists a polynomial
algorithm to find its embedding on Gt. However, Gs is not fixed in our case, and the
existing algorithm still has an exponential running time in the size of Gs.

3 Previous Work

Several attempts have been made to design efficient methods to find mappings of
Ising problems on QA. These attempts can be divided into two categories.
The first approach is to look for the embedding of complete graphs with near-optimal
embedding, considering the structure of the target graph. The first work was proposed
by V. Choi [3], which provides an optimal embedding of complete graphs on triangular
layouts (TRIAD scheme). This preliminary work was completed by C. Klymko et
al. [6], who proposed a minor embedding method tailored to find clique embedding
on lattices composed of regularly dispatched fully connected bipartite subgraphs. This
method considers inoperable qubits (the target graph usually contains a few disabled
qubits) and generates valid embeddings derived from the initial near-optimal clique
embedding.
The second approach considers embedding algorithms of unknown structured input
graphs on partially-known or unknown target graphs. An initial and generic heuristic
was presented in [2] and is implemented in [4]. This algorithm is composed of two
steps: the first one consists in finding an initial mapping for each logical qubit allowing
overlapping (i.e., a vertex v∈Vt may map more than one vertex ϕ(v) in Vs). The
second step is a refinement where the mapping is iteratively improved by removing a
vertex mapping ϕ(v) and looking for a better mapping for this vertex, minimizing the
overall number of physical vertices. The quality of the mapping of a vertex is computed
with a cost function. An output graph without any overlapping is considered valid.
The refinement phase ends when no improvements have been made during a specific
number of tries. Several other heuristics have been reusing this algorithm with the
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addition of pre-processing phases as for Layout-Aware Minor Embedding [8,9], Spring-
based MinorMiner (SPMM) and Clique-Based MinorMiner (CLMM) [14]. Another
heuristic named Probabilistic-Swap-Shift-Annealing (PSSA) based on the simulated
annealing algorithm was proposed in [12] and enhanced in [11]. This algorithm seems
to be efficient, especially when the target graph Gt has a structure of a King’s graph.
All the previous methods build chains of logical qubits. However, chains usually break
at their extremities when the chain strength is insufficient. A recent method proposed
an embedding based on chains of cliques [7], which reduced chain break frequency
and lowered the required couplings energy.

4 High-Quality Embedding

The characteristics defining a high-quality embedding are still poorly understood.
Current embedding methods attempt to minimize the final number of physical qubits.
However, several other factors may impact the quality of the embedding. We propose
three questions and related experiments to understand better the important criteria
to consider while embedding problems on quantum annealers.
What is the best structure for a logical qubit ? Evaluating the best possible
structure for a logical qubit could guide the embedding heuristic. The error prop-
agation on a logical chain usually starts at its boundaries [13]. For small chains,
especially when the majority vote is crucial, replacing chains with cliques or cycles
could be interesting, as in [7]. Error propagation could also be studied for logical
qubit structures like trees. An experimental sampling of the same problem with
different logical qubit structures, letting the coupling strength Jij constant for each
implementation, could help to identify such preferred structures.
Is there a maximum chain length that should not be exceeded ? Setting
large negative values for each Jij coupler inside a logical qubit theoretically maintains
the problem structure. However, Jij coupling strength is limited for D-Wave devices
(e.g., −1<Jij < 1 for Advantage6.1 annealer) and is automatically rescaled when
the problem is mapped to the quantum chip. Maintaining ferromagnetic coupling
on large chains of physical qubits can be hard without setting large chain strengths.
Experimental bounds considering the maximum length of the chain could be deter-
mined. This bound should depend on the initial distribution of hi and Jij weights
and the precision of the quantum annealer.
Does the chain’s distribution impact solution finding ? Studying the distribu-
tion of chains on the target topology (i.e., sparsity versus concentration; uniform chain
length versus other chain length distributions) could give insight into the optimal
allocation and duplication of variables. This study could be done by embedding the
same problem with the same amount of qubit duplications, playing on their sparsity
and chain length distributions.
These three experiments’ results will help design the global objective function to
maximize while searching for a high-quality embedding.
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5 Conclusion

Evaluating the quality of an embedding is crucial to enhance the mapping of problems
on quantum annealers. The embedding strongly impacts the ability to solve a problem
that does not match the quantum chip topology. We propose several experiments that
may identify criteria used to evaluate the quality of an embedding. This work is a first
step to propose a quality-driven embedding method for quantum annealing-based
processors.

References

1. D-wave systems, d-wave ocean sdk, (2022) release 6.0.1.
2. J. Cai, W. G. Macready, and A. Roy. A practical heuristic for finding graph minors.

arXiv preprint arXiv:1406.2741, 2014.
3. V. Choi. Minor-embedding in adiabatic quantum computation: Ii. minor-universal

graph design. Quantum Information Processing, 10(3):343–353, 2011.
4. A. R. et al. Minorminer. https://github.com/dwavesystems/minorminer, 2023.
5. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum

adiabatic evolution algorithm applied to random instances of an NP-complete problem.
Science, 292(5516):472–475, Apr. 2001.

6. C. Klymko, B. D. Sullivan, and T. S. Humble. Adiabatic quantum programming: minor
embedding with hard faults. Quantum information processing, 13:709–729, 2014.

7. E. Pelofske. 4-clique network minor embedding for quantum annealers. arXiv preprint
arXiv:2301.08807, 2023.

8. J. P. Pinilla. Embera. https://github.com/joseppinilla/embera, 2020.
9. J. P. Pinilla and S. J. E. Wilton. Layout-aware embedding for quantum annealing

processors. In Lecture Notes in Computer Science, pages 121–139. Springer International
Publishing, 2019.

10. N. Robertson and P. Seymour. Graph minors .XIII. the disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, Jan. 1995.

11. Y. Sugie, Y. Yoshida, N. Mertig, T. Takemoto, H. Teramoto, A. Nakamura, I. Takigawa,
S. ichi Minato, M. Yamaoka, and T. Komatsuzaki. Minor-embedding heuristics for
large-scale annealing processors with sparse hardware graphs of up to 102, 400 nodes.
Soft Computing, 25(3):1731–1749, Jan. 2021.

12. Y. Sugie, Y. Yoshida, N. Mertig, T. Takemoto, H. Teramoto, A. Nakamura, I. Takigawa,
S.-I. Minato, M. Yamaoka, and T. Komatsuzaki. Graph minors from simulated
annealing for annealing machines with sparse connectivity. In Theory and Practice
of Natural Computing, pages 111–123. Springer International Publishing, 2018.
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