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1 Introduction
While finding exact solutions to NP-hard problems is difficult, many approximation algorithms
exist. A huge amount of research has been carried out on hybrid quantum classical algorithms,
where quantum measurements are used together with a classical optimization loop to obtain
a solution.

The Quantum Approximate Optimization Algorithm (QAOA) [1] is one of the most com-
monly used hybrid algorithms. It scales linearly with problem size. This means that a graph of
n nodes would require an n-qubit quantum computer (QC). Current QCs are relatively small
and to tackle real-life problems, it is important to improve how the algorithms scale.

Taking this into consideration, an algorithm to encode an n-node MaxCut problem on a
QC using ⌈log n⌉ qubits was developed [2]. This encoding allows us to represent much larger
problems using a fairly small number of qubits. The number of CNOT gates required for the
QAOA ansatz is p|E|, where p is the depth of the algorithm and |E| is the number of edges in
the graph. In our algorithm the number of CNOTs is equal to |V |−1, |V | being the number of
vertices. Generally, and especially at higher densities, it is easy to see that p|E| ≫ |V |. Thus
our circuit is much shallower than that of QAOA.

In this work, we study the performance of the MaxCut algorithm and show ways in which we
can extend this algorithm to a plethora of problems. The algorithms are tested on a quantum
simulator with graph sizes of over a hundred nodes and on real QCs up to a graph size of 256.

2 A qubit-efficient algorithm
The MaxCut problem is defined as follows : Given a weighted graph G(V, E, w), find x ∈

{1, −1}|V | that maximizes
∑

ij wij
(1 − xi)(1 + xj)

4 ∀{(i, j) ∈ E}, where wij are the weights on
the edges.

The MaxCut can be represented using the graph Laplacian matrix. The graph Laplacian is
defined as follows :

Lij =


degree(i) if i = j

−1 if i ̸= j and (i, j) ∈ E

0 otherwise
(1)

The MaxCut is given by the following equation :

C = 1
4xT Lx (2)



where L is the Laplacian matrix and x ∈ {1, −1}|V | is the bi-partition vector.
The quantum analog of equation (2) is

C(θ1...θn) = 2n−2 ⟨Ψ(θ1...θn)| L |Ψ(θ1...θn)⟩ (3)

where |Ψ⟩ is the parameterized ansatz, n is the size of the graph, and θi are the parameters
to be optimized. 2n−2 is the normalization constant. Here |Ψ⟩ is a N = ⌈log n⌉ qubit state
and ⟨Ψ(θ1...θn)| L |Ψ(θ1...θn)⟩ is the expectation value or energy of the state with parameters
θ1...θn. The Laplacian acts as our problem Hamiltonian.

FIG. 1: Diagrammatic representation of the hybrid quantum-classical algorithm.

3 Approaches
One way to solve other problems using the alogrithm is to directly or indirectly convert them
to the MaxCut problem. The inter-convertibility of NP hard problems was shown by Karp [3].
We test the Minimum Partition and the Maximum Clique problems using this method.

A second way to do this would be to use the Quadratic Unconstrained Binary Optimization
(QUBO) matrix [4] of the specific problem instead of the graph Laplacian.

To obtain the QUBO matrix the objective function must be of the following form:

P =
∑

i

aix
2
i +

∑
ij

aijxixj (4)

It can be rewritten as:

P =
(
x1 x2 ... xn

) 
a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann




x1
x2
...
xn

 (5)

P = xT Qx (6)

Q =


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

 (7)



Q is the required QUBO matrix.
We test the Maximum Weighted Independent Set Problem using this method.

4 Sample Results

Table 1 shows the results for the MaxCut problem and Table 2 shows the results of the Minimum
Partition problem on a QC (IBM Quantum’s ibmq_mumbai) and using a quantum simulator.
In all cases the classical optimizer used is the genetic algorithm.

The MaxCut instance generated is a random graph using the networkx package of Python.
The instance shown has a graph density of 0.5 and a random seed of 0. The Minimum Partition
instances consist of random integers between 1 and 100. The Goemans-Williamson algorithm
is used as a benchmark.

Note that these results are only representative and the complete work [5] includes tests on
many more instances of different problem sizes.

Instance Solution GW Range % Diff.
Size=128, Density=0.4 1538 1796 - 1864 82.5 - 85.6
Size=128, Density=0.5 2022 2186 - 2271 89.0 - 92.5
Size=256, Density=0.5 8079 8701 - 8880 90.9 - 92.8

TAB. 1: 128 and 256-Node MaxCut results using QC.

Problem : Minimum Partition
Definition : Given a set S = {w : w ∈ Z+}, find A ⊆ S that minimizes |

∑
wi∈A

wi −
∑

wi /∈A

wi|.

Approach used : Reformulation

Size Normalized Results Simulator(%) Normalized Results QC(%)
32 99.3 92.5
64 90.7 92.5
128 98.9 –

TAB. 2: Results of Minimum Partition Problem Normalized using optimal value obtained from an
Integer Linear Program. The simulator data is based on 100 runs for the problem of size 32, 10 runs
for size 64 and 4 runs for size 128. For all cases the QC runs are based on a single run.

Problem : Maximum Weighted Independent Set (MWIS)
Definition : Given a graph G(V, E) with node weights wi, find x ∈ {0, 1}|V | that maximizes∑

i wixi such that xi + xj ≤ 1 ∀ (i, j) ∈ E.
Approach used : QUBO

FIG. 2: MWIS problem for 32, 64 and 128-node graphs using a quantum simulator. Each instance
was run on a quantum simulator with GA 50 times for graph sizes of 32 and 64 and 10 times for graph
size of 128.



Figure 2 shows the results of the MWIS problem on a quantum simulator. The optimal
solution was obtained using CPLEX solver and was used to normalise the data.

Table 3 shows results of the MWIS problem using a quantum computer.

Size Solution Optimal Solution % Diff.
32 96.56 140.95 68.5
64 149.42 231.18 64.6
128 321.69 491.67 65.4

TAB. 3: MWIS results using QC.
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