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1 Introduction 

The close-enough traveling salesman problem (CETSP) [8] is a variant of the traveling salesman 

problem (TSP) which is one of the most famous combinatorial optimization problems. Given 𝑁 

targets {𝑣1, 𝑣2, … , 𝑣𝑁}  and a depot 𝑝0  in the Euclidean plane, each target 𝑣𝑖  has a disc 

neighborhood of radius 𝑟𝑖. The objective of the CETSP is to find the shortest Hamiltonian cycle 

𝑇 = {𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑁 , 𝑝0}, which starts from and ends at the depot 𝑝0, passing through every 

point  𝑝𝑖 in the disc neighborhood of the target 𝑣𝑖.  

Unlike the TSP where the salesman needs to visit the exact positions of the targets, in the CETSP, 

it is sufficient to pass through any point in the disc neighbourhood of targets. This feature 

introduces continuous variables in the CETSP. As can be seen, the CETSP is a complex problem 

that combines the discret optimization of visiting sequence like TSP with the continuous 

optimization of exact visiting positions.  

At the same time, its characteristics may also lead to shorter trips than TSP in some specific 

applications, therefore, the CETSP has many practical applications in the real world, such as 

automated meter reading with radio frequency identification (RFID), wireless sensor network 

operations, and military and civilian missions with unmanned aerial vehicles (UAVs). 

The CETSP has attracted significant research interest over the past two decades. To the best of 

our knowledge, the CETSP was first introduced in [8]. Some exact algorithms [2][6] were 

proposed to obtain the optimal solutions, but not practical for solving large size instances. A three-

phase Steiner-zone heuristic was presented in [10]. [12] followed the idea of Steiner-zone and 

proposed a Variable Neighborhood Search (VNS) based heuristic approach. [3][4][5] proposed 

heuristic methods based on a discretization schema to explore the lower and upper bounds. Very 

recently, [7] presented a genetic algorithm combined with a very simple local search method and 

achieved excellent results, which proved the potential of memetic algorithm for the CETSP. 
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2 Proposed algorithm 

We propose a heuristic approach based on memetic algorithm to solve the CETSP. Memetic 

algorithm [9,11] is a hybrid evolutionary algorithm combining the genetic algorithm and local 

search, which has proven to be efficient and effective in many combinatorial optimization 

problems. 

The framework of the proposed algorithm is shown in Figure 1. For the moment, we only have a 

preliminary version which still needs to be improved. Our proposed algorithm follows the general 

schema of memetic algorithm. It maintains a population to represent a set of solutions. It explores 

the search spaces by generating iteratively offspring solutions through the crossover of parent 

solutions. Additionally, it employs the local search to improve the quality of the offspring 

solutions. The design of each component of the proposed algorithm will be described below. 

 

  

Figure 1: Framework of the proposed algorithm. 

2.1 Solution representation 

Considered in the Euclidean plane, the solution 𝑆 can be represented by a sequence of visiting 

points {𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑁 , 𝑝0}, where 𝑝𝑖 represents the exact visiting point whose coordinates are 

(𝑥𝑖, 𝑦𝑖), and 𝑝0 represents the depot. Clearly, the cost of the solution can be represented by the 

sum of Euclidean distance between the connected visiting points. The objective is to find the 

minimum cost of the solution. 

2.2 Genetic algorithm  

In the proposed algorithm, the genetic algorithm focuses on diversification rather than 

intensification, which entails exploring more promising search spaces. Therefore, it is only 

responsible for solving the standard TSP which means exploring visiting sequence with fixed 

positions of visiting points. It has the following important components. 
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Initialization: A random generation method is adopted to initialize the population.  

Selection: In each iteration, two parental solutions will be selected to perform crossover to 

produce one offspring. Due to the population management which will be described later, a good 

balance of intensity and diversity of solutions in the population will be maintained. Therefore, the 

two parents will be selected at random. 

Crossover: Crossover is one of the most important operators in genetic algorithm. It can guide 

the direction of the search. A good crossover should inherit good features from the parents and 

maintain some diversity, and incite offspring solution to explore more promising search spaces. 

In the current version of the proposed algorithm, the crossover described in [7] is adopted, which 

could be regard as a kind of multi-point crossover. 

Mutation: Mutation is an important method to maintain the diversity of population. In the 

proposed algorithm, a random Swap operator is used as the mutation operator, which swaps the 

order of two random visiting points in the sequence. The operation is executed with a certain 

probability which is related to the number of stagnation iterations: 𝑝 = 𝑁𝑠𝑖/1000. 

Population management: To maintain the balance of intensity and diversity, population 

management needs to be carefully designed. First, we use a type of edit distance to define the 

distance or dissimilarity between two solutions: 𝑑𝑖𝑠𝑡 = (1 – 𝑁𝑐/𝑁) ∗ 100% , where 𝑁  is the 

number of given targets which is equal to the number of edges, 𝑁𝑐 represents the number of 

common edges of the two solutions. Then, we define the minimum distance between a solution 

and other solutions in the population as the distance of the solution from the population.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠) =
𝛼 ∗ 𝑟𝑎𝑛𝑘(𝑠, 𝑐𝑜𝑠𝑡) + 𝛽 ∗ 𝑟𝑎𝑛𝑘(𝑠, 𝑑𝑖𝑠𝑡)

𝑁𝑝𝑜𝑝
 

Finally, a fitness function is defined to evaluate the fitness score of solutions. The fitness function 

considers rank of both cost and distance in the population, where 𝛼  and 𝛽  are coefficients, 

function 𝑟𝑎𝑛𝑘(∗) returns the rank of solution 𝑠 in the population according to the cost or the 

distance, 𝑁𝑝𝑜𝑝 represents the number of individuals in the population. Note that the lower the 

fitness score, the better the fitness of the solution. The population will reduce to 𝑁𝑝𝑜𝑝 for every 

𝑁𝑝𝑜𝑝/2 iterations. 

Stopping criteria: The algorithm stops when the given threshold of stagnation iterations 𝑡ℎ𝑠𝑖 or 

the maximum number of iterations 𝑁𝑚𝑖 is reached. 

2.3 Local search 

Local search is the key component of the proposed algorithm. It will explore the search spaces 

intensively and do its best to find the best solution. We employ the variable neighborhoods descent 

(VND) as the local search schema, and design various search operators including sequence-only 

optimization (LKH solver), position-only optimization (greedy algorithm, SOCP) and joint 

optimization of sequence and position (Relocate, Swap). These operators are executed in the order 

shown in the Figure 1. The logic is that, we first alternatively perform the position-only 
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optimization and the sequence optimization (greedy algo - LKH solver – greedy algo). Note that 

the greedy algorithm will be executed twice because the first one optimizes the visiting positions 

of the offspring solution generated by the crossover, and it also can be regarded as a pre-

processing for the LKH solver. The second optimizes the visiting positions in the sequence given 

by the LKH solver. We then perform the joint optimization of sequence and position. Finally, we 

obtain the final solution with SOCP. The details of these operators are as follows.  

LKH solver: LKH solver is still the state-of-the-art among the TSP solver. We adopt it to solve 

the standard TSP by fixing the visiting positions. 

Second-order cone programming (SOCP): The SOCP model for the CETSP was first proposed 

in [10]. Given a visiting sequence, the SOCP model can be built to find the optimal exact visiting 

positions in polynomial time. Note that SOCP is still a time-consuming operation.  

Greedy algorithm: Considering the high cost of SOCP, we refer to the greedy algorithm proposed 

in [11] to replace SOCP before and after the LKH solver to optimize the visiting positions. The 

core idea is based on the geometric relationship between circles and points. For any three 

consecutive visiting points 𝐴, 𝑋, 𝐵, let 𝑂 be the center of the disc where 𝑋 is located, we can 

fix 𝐴 and 𝐵 to find the best position of 𝑋 satisfying the constraints. There are several cases: 

1. If both A and B are in the disc of 𝑂, any point in the line segment 𝐴𝐵 can be selected as 𝑋 

in theory. We directly choose 𝐴 for convenience. If only one of them is in the disc, we choose 

the one inside. 

2. If both of them are outside the disc 𝑂, there are two subcases. One is that the line segment 

𝐴𝐵 intersects the disc 𝑂, we take the only one intersection point or the midpoint of two 

intersection points as 𝑋. The other is a bit more complicated, in which the problem turns into 

a well-known mathematical problem – Alhazen’s problem [1]. In short, we need to find the 

𝑋  on the circumference of the disc 𝑂  such that the sum 𝐴𝑂 + 𝐵𝑂  is minimized. 

Considering the complexity of the problem, we take a binary search algorithm to obtain an 

approximate solution. 

Relocate and Swap: The above operators only consider the visiting sequence or the visiting 

position. The operators Relocate and Swap take into account both sequence and position. Relocate 

can remove a point from the sequence and insert it into a better position. Swap can exchange the 

visiting order of two disconnected points. These two operators take the best-improvement search 

strategy in a k-nearest-neighbors for every point, which means they take the best one after trying 

every move in the k-nearest-neighbors until no improvement can be found. The k-nearest-

neighbors of a point are dynamically updated by the average of the historical positions of each 

point. An important feature is that these two operators will take the position into account. They 

recalculate the exact position of point according to the principles of the greedy algorithm 

introduced earlier. One difference is that, since the binary search algorithm employed in the case 

of Alhazen’s problem is still a high complexity operation for the best-improvement search strategy, 

we propose another alternative strategy. Geometric method can prove that, for the optimal 𝑋∗, 

the straight line 𝑂𝑋∗  is the bisector of ∠𝐴𝑋∗𝐵 . Here we use the midline of ∠𝐴𝑂𝐵  to 
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approximate the bisector of angle, and take the intersection point with the circumference of the 

disc 𝑂 as 𝑋. Obviously, the straight line 𝑂𝑋 is also the midline of ∠𝐴𝑋𝐵. This strategy may 

lose some precision, but it greatly improves computational efficiency, so it is acceptable. 

3 Computational results 

The proposed algorithm was evaluated on the benchmark given by [10], which contains 62 

instances with different sizes from 30 to 1000 targets. There are three groups of instances: 

instances with varied overlap ratios (G1), instances with fixed overlap ratios (2%, 10% and 30%) 

(G2_0.02, G2_0.1 and G2_0.3), and instances with arbitrary radii (G3). The best-known solutions 

(BKS) are from all algorithms in the literature including GA [7] (the state-of-the-art algorithm) 

and are used as references to assess the effectiveness of the proposed algorithm. 

In our preliminary experiments, the population size 𝑁𝑝𝑜𝑝  was set to 20; the threshold of 

stagnation iterations 𝑡ℎ𝑠𝑖 was set to 500 and the maximum number of iterations 𝑁𝑚𝑖 was set to 

10000. The stopping criteria is comparable to the refence algorithm GA [7]. We ran 20 times for 

every instance and recorded the best results. Table 1 shows the summary of our preliminary results 

compared to those of GA [7] and BKS on the different groups of benchmark instances. The 

column #instances indicates the number of instances in the corresponding group, and the column 

#optima shows the number of instances whose optimal solutions are known. The columns #wins 

#ties #losses respectively denote that the number of instances where our proposed algorithm 

achieve better, same and worse values compared to the references. In addition, in order to confirm 

the statistical difference of the results, the Wilcoxon signed-rank test with a confidence level of 

0.05 is performed and the p-value is shown in the table. 

It is obvious that the proposed algorithm provides comparable or better results than the BKS and 

GA [7]. The results show that the proposed algorithm reaches all 23 known optimal values and 

refreshes 30 values of the BKS in the 39 remaining instances. The p-value (<<0.05) indicates that 

the proposed algorithm statistically performs better than reference algorithms.  

Table 1: Summary of computational results compared with BKS and GA [7]. 

group #instances #optima 
Ours vs BKS Ours vs GA[7] 

#wins #ties #losses p-value #wins #ties #losses p-value 

G1 27 9 13 14 0 - 13 14 0 - 

G2_0.02 7 0 6 1 0 - 6 1 0 - 

G2_0.1 7 4 3 4 0 - 6 1 0 - 

G2_0.3 7 7 0 7 0 - 0 7 0 - 

G3 14 3 8 6 0 - 8 6 0 - 

total 62 23 30 32 0 1.92E-06 33 29 0 5.71E-07 
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4 Conclusions 

We propose a heuristic approach based on memetic algorithm to solve the close-enough traveling 

salesman problem. The designed VND local search method, especially the operators Relocate and 

Swap, greatly improved computing efficiency and play an important role. The preliminary 

experimental results have shown its effectiveness. However, it takes a long time for some 

instances, and some components still need to be refined. In future work, we will continue to 

optimize the algorithm and conduct more experiments to analyze the functions of components.  
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