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1 Introduction 

This article provides a description of the amplitude amplification quantum algorithm mechanism [1] in 

a very short computational way based on tensor products and provides a geometric presentation of the 

successive system states. To make the drawings simpler and therefore more effective, the paper 

alternates between general considerations to gives an idea of the scientific justification and a practical 

point of view including at the end numerical experiments. This presentation is at the crossroad of OR 

community and quantum one: the contribution is a former readable description dedicated to the OR 

community. Let us consider an unsorted finite set 𝐵 spanning a Hilbert space 𝐸 = 𝑆𝑝𝑎𝑛(𝐵) and a 

function  

𝑓:     𝐵 →  {0; 1} 

𝑥 →  𝑓(𝑥) 

referred to as an Oracle that characterizes the marked subsets of 𝐵 with 𝐸1 = 𝑠𝑝𝑎𝑛(𝑥 ∈ 𝐵/𝑓(𝑥) =

𝑖)and for example we have 𝐸 = 𝐸0 ⊕ 𝐸1. The problem consist in finding at least one 𝑥 ∈ 𝐸1 avoiding 

the costly enumeration of all element of 𝐵  one by one if no extra information is available on 𝐵 . 

Because search procedures are the corner stone in computer science of advanced data structures, the 

Grover's algorithm that provides a quadratic speed-up received a considerable of attention. An 

amplification procedure consists in considering first an initial |𝜓⟩ ∈ 𝐸  to return a state  |𝜓⟩ ∈ 𝐸1 

with a probability close to 1. Note that multiple marked elements by the Oracle do not change the 

Grover's principles but the number of amplifications has to be tuned (Grover, 1996) (Zalka, 1999). The 

Grover amplification efficiency lies on an expected number of calls to the Oracle. The Hadamard gate 

is an operation that maps the basis state 𝐵(|0⟩; |1⟩) into 𝐵(|𝑝⟩; |𝑚⟩) by a 𝜋/2 rotation on 𝑌 − 𝑎𝑥𝑒 

and a 2. 𝜋  rotation on 𝑋 − 𝑎𝑥𝑒   and creates an equal superposition of the two basis states with 

𝐻. |0⟩ =
1

√2
. (|0⟩ + |1⟩) = |𝑝⟩ , 𝐻. |1⟩ =

1

√2
. (|0⟩ − |1⟩) = |𝑚⟩ , 𝐻. |𝑝⟩ = |0⟩  and 𝐻. |𝑚⟩ = |1⟩ . Note 

that for convenience, we use the notation |𝑝⟩ for 𝐻. |0⟩ and |𝑚⟩ for 𝐻. |1⟩ but the common notation 

is |+⟩  and |−⟩.  The 𝑋 -gate is a symmetry around the 𝜋/4  axis leading to the following basic 

transformations : 𝑋. |0⟩ = |1⟩ , 𝑋. |1⟩ = |0⟩ , 𝐻. |𝑝⟩ = |𝑝⟩  and 𝐻. |𝑚⟩ = −|𝑚⟩ . The minus sign is 

used to define the opposite direction of one state |𝜓⟩ as stressed on figure 1 where −|1⟩ is the opposite 

direction to |1⟩ meaning that the phase of −|1⟩ is 𝜋. 
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2 Grover description for 𝒓 = |𝟏𝟎𝟏𝟎𝟎⟩ 

Figure 1 gives the Grover circuit for 𝑛 = 5 and 𝑟 = |10100⟩. We provide a geometric description 

where we alternate in computation with 𝑛  and the specific value 5  depending on formulae and 

comments on the figures. 
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Figure 1. Circuit de Grover pour 𝑛 = 5 et 𝑟 = |10100⟩ 

Step 0 and 1. Initialization 

Step 0. |𝜓0⟩ = |0⟩⊗5 ⊗ |1⟩ = |0⟩⊗5 ⊗ |1⟩ 

In the computational base with a amplitude of 
1

√25
 .In the basis 𝐵(|𝑝⟩⊗5

; |𝑚⟩), we have |𝑝⟩⊗5
 that is 

an eigenvector of 𝑋⊗𝑛   assigned to the eigenvalue 1 and |𝑚⟩ is an eigenvector of 𝑋 assigned to 

−1 which is the second eigenvalue of 𝑋. 

Step 1. Application of 𝐻⊗6. 

Assigns a similar amplitude to all states with half of states with positive amplitude and half with negative 

one in the computational base 𝐵(|0⟩; |1⟩) : |𝜓1⟩ = |𝑝⟩⊗5 ⊗ |𝑚⟩ 

Step 2. Oracle definition 

The first step of the Oracle consist in application of (𝐼𝑑 ⊗ 𝑋 ⊗ 𝐼𝑑 ⊗ 𝑋 ⊗ 𝑋 ⊗ 𝐼𝑑). Considering only 

the 5 -first qubits, this quantum state means that the base 𝐵(|𝑟⟩; |𝑝⟩⊗5)  has been switched into 

𝐵(|1⟩⊗5; |𝑝⟩⊗5) . The second step consists in application of 𝐶𝐶𝐶𝐶𝐶𝑋  that does not affect 

𝐵(|1⟩⊗5; |𝑝⟩⊗5) and only switches |𝑚⟩ in −|𝑚⟩. 

So : 𝐶𝐶𝐶𝐶𝐶𝑋. (|𝑝⟩⊗5 ⊗ |𝑚⟩) = (|𝑝⟩⊗5 −
2 

√2𝑛
|1⟩⊗5) ⊗ |𝑚⟩ 

The last step of the Oracle consist in application of (𝐼𝑑 ⊗ 𝑋 ⊗ 𝐼𝑑 ⊗ 𝑋 ⊗ 𝑋) that switches: 

(𝐼𝑑 ⊗ 𝑋 ⊗ 𝐼𝑑 ⊗ 𝑋 ⊗ 𝑋). (−|1⟩⊗5) = −|10100⟩ 

And  (𝐼𝑑 ⊗ 𝑋 ⊗ 𝐼𝑑 ⊗ 𝑋 ⊗ 𝑋). |𝑝⟩⊗5 = |𝑝⟩⊗5 meaning that the base 𝐵(|1⟩⊗5; |𝑝⟩⊗5) turns back 

into 𝐵(−|10100⟩; |𝑝⟩⊗5) 
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Figure 3. |𝜓4⟩ = |𝑝⟩⊗5 −
2

√25
. |10100⟩ at 

the end of Oracle 

Step 3. Amplification 

Step 3.1. Performing 𝐻⊗5  permits to switch 

from 𝐵(−|10100⟩; |𝑝⟩⊗5)  to basis 

𝐵( −|𝑚𝑝𝑚𝑝𝑝⟩ ; |0⟩⊗5).  

 

Step 3.2. Performing 𝑋⊗5  permits to switch 

from 𝐵( −|𝑚𝑝𝑚𝑝𝑝⟩ ; |0⟩⊗5)  to 

𝐵(−|𝑚𝑝𝑚𝑝𝑝⟩; |1⟩⊗5). 
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Figure 4. (
1

23 − 1) . |1⟩⊗5 −

2

√25
. |𝑚𝑝𝑚𝑝𝑝⟩ 

Step 3.3. Performing 𝐶𝐶 … 𝐶𝑍 

The geometric construction of |𝜓6⟩ =

|1⟩⊗5 −
2

√25
. |𝑚𝑝𝑚𝑝𝑝⟩ makes it clear that the 

𝐶𝐶𝐶 … 𝐶𝑍  application should define a new 

state where |𝜓7⟩ should be closest to |1⟩⊗5. 

Performing 𝐶𝐶𝐶𝐶𝑍 gives:  

|𝜓7⟩ = (
1

23
− 1) . |1⟩⊗5 −

2

√25
. |𝑚𝑝𝑚𝑝𝑝⟩ 

The quantum state is highlighted on figure 4. 
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Figure 5. |𝜓9⟩ = (
1

23 − 1) |𝑝⟩⊗5 −

2

√25
. |10100⟩ 

Step 3.4. Performing 𝑋⊗5 

The 𝑋⊗5 gate application at this point of the 

algorithm gives a |𝜓8⟩  spanned by |0⟩⊗5 

and |𝑝𝑚𝑝𝑚𝑚⟩ : |𝜓8⟩ = (
1

23 − 1) . |0⟩⊗5 −

2

√25
. |𝑚𝑝𝑚𝑝𝑝⟩ 

 

Step 3.5. Performing 𝐻⊗5 
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The 𝐻⊗5  gate application at this point of the algorithm make a turn back to the initial bases 

𝐵(|10100⟩; |𝑝⟩⊗5)  : |𝜓9⟩ = (
1

23 − 1) |𝑝⟩⊗5 −
2

√2𝑛
. |10100⟩  The state |𝜓⟩  is defined by 

(

1

24 − 1

−
2

√25

 ) in 𝐵(|𝑝⟩⊗5;  |10100⟩) as stressed on the figure 8, in the plane 𝑃|𝑝⟩⊗𝑛; |10100⟩. 

3 Conclusion 

In this paper we investigate a description of the Grover's algorithm using geometric considerations only 

and a tensorial computations. We introduce the Grover algorithm in a new way considering geometric 

considerations only to illustrate how the successive quantum states are computed and how the planes 

are spanned by the different basis vectors. 
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Appendix: successive states for |𝟎𝟎𝟏⟩ 

 Quantum State 

Step 0. |𝜓0⟩ = |000⟩ 

Step 1.Application of 𝐻⊗3 |𝜓1⟩ = |𝑝𝑝𝑝⟩ 

 Oracle 

Step 2.1. Application of 𝑋⊗2 ⊗ 𝐼𝑑 |𝜓2⟩ = |𝑝𝑝𝑝⟩ 

Step 2.2. Application of 𝐶𝑍(𝑞1, 𝑞2; 𝑞3) 
|𝜓3⟩ = |𝑝𝑝𝑝⟩ −

1

√2
. |111⟩ 

Step 2.3. Application of 𝑋⊗2 ⊗ 𝐼𝑑 
|𝜓4⟩ = |𝑝𝑝𝑝⟩ −

1

√2
. |001⟩ 

 Amplification 

Step 3.1. Application of 𝐻⊗3 
|𝜓5⟩ = |000⟩ −

1

√2
. |𝑝𝑝𝑚⟩ 

Step 3.2. Application of 𝑋⊗3 
|𝜓6⟩ = |111⟩ +

1

√2
. |𝑝𝑝𝑚⟩ 

Step 3.3. Application of 𝐶𝑍(𝑞1, 𝑞2; 𝑞3) 
|𝜓7⟩ =

1

√2
. |𝑝𝑝𝑚⟩ −

1

2
. |111⟩ 

Step 3.4. Application of 𝑋⊗3 
|𝜓8⟩ = −

1

√2
. |𝑝𝑝𝑚⟩ −

1

2
. |000⟩ 

Step 3.5. Application of 𝐻⊗3 
|𝜓9⟩ = −

1

√2
. |001⟩ −

1

2
. |𝑝𝑝𝑝⟩ 

 


