• MapReduce approach on one hadoop cluster for conception of new efficient optimization methods: application to the shortest path problem
    • Published at Engineering Applications of Artificial Intelligence, Volume 41, May 2015, Pages 151-165. See it online
  • Authors   |   Instances   |   Results

    • Authors:
      • photo of sabeur
      • Sabeur Aridhi

        Tel: +39 04 61 28 39 92
        Email: sabeur.aridhi@isima.fr
        Web page: http://fc.isima.fr/~aridhi/

        DISI, Department of Information Engineering and Computer Science, University of Trento
        Via Sommarive 9, 38123 Trento, Italy
      • photo of philippe
      • Philippe Lacomme

        Tel. : 04 73 40 75 85
        Email : placomme@isima.fr
        Web page: http://www.isima.fr/~lacomme/

        LIMOS - UMR CNRS 6158
        Universite Blaise Pascal
        Campus des Cezeaux, 63173 Aubiere CEDEX
      • photo of ren
      • Libo Ren

        Tel. : 04 73 40 76 62
        Email : ren@isima.fr
        Web page: http://fc.isima.fr/~ren/

        LIMOS - UMR CNRS 6158
        Universite d'Auvergne
        Campus des Cezeaux, 63173 Aubiere CEDEX
      • photo of benjamin
      • Benjamin Vincent

        Tel. : 04 73 40 77 72
        Email : benjamin.vincent@isima.fr

        LIMOS - UMR CNRS 6158
        Universite Blaise Pascal
        Campus des Cezeaux, 63173 Aubiere CEDEX
    • Instances:
    • Main characteristics
    •    - based on large-scale real-road networks using OpenStreetMap data;
         - 15 instances between french cities.
    • Data source
    • French real-road networks (OpenStreetMap data):
      Http://download.geofabrik.de/europe/france.html
    • Subgraph download web service for French real-road networks (converted graph):
      Local server     Require a key
    • Subgraph format
    • Instances
    • Table. 1: Set of instances
        Origin Destination
      Instance City GPS position City GPS position
      1 Clermont-Ferrand 45.779796 3.086371 Montluçon 46.340765 2.606664
      2 Paris 48.858955 2.352934 Nice 43.70415 7.266376
      3 Paris 48.858955 2.352934 Bordeaux 44.840899 -0.579729
      4 Clermont-Ferrand 45.779796 3.086371 Bordeaux 44.840899 -0.579729
      5 Lille 50.63569 3.062081 Toulouse 43.599787 1.431127
      6 Brest 48.389888 -4.484496 Grenoble 45.180585 5.742559
      7 Bayonne 43.494433 -1.482217 Brive-la-Gaillarde 45.15989 1.533916
      8 Bordeaux 44.840899 -0.579729 Nancy 48.687334 6.179438
      9 Grenoble 45.180585 5.742559 Bordeaux 44.840899 -0.579729
      10 Reims 49.258759 4.030817 Montpellier 43.603765 3.877974
      11 Reims 49.258759 4.030817 Dijon 47.322709 5.041509
      12 Dijon 47.322709 5.041509 Lyon 45.749438 4.841852
      13 Montpellier 43.603765 3.877974 Marseille 43.297323 5.369897
      14 Perpignan 42.70133 2.894547 Reims 49.258759 4.030817
      15 Rennes 48.113563 -1.66617 Strasbourg 48.582786 7.751825

      All of the instances are based on the graph of road networks of France using OpenStreetMap data.
      Download the OSM file   

    • Results:
    • All experiments have been achieved on a hadoop cluster of 8 nodes corresponding to a set of homogenous computers connected through local area networks. Each computer is based on an AMD Opteron 2.3 GHz CPU under Linux (CentOS 64-bit). The number of cores used is set to 1 for all tests. The computational experiments have been achieved using hadoop 0.23.9.


      Table 2. Comparison of results with 2 iterations
        D=15 D=30 D=50 D=100 D=150 D=200 Solutions download
      Ins. Opt. Val. Gap Val. Gap Val. Gap Val. Gap Val. Gap Val. Gap
      1 87.1 96.8 11.11 92.3 5.95 87.1 0.00 87.1 0.00 87.1 0.00 87.1 0.00
      2 841.2 - - - - 934.7 11.12 908.7 8.02 854.7 1.60 850.5 1.09
      3 537.4 574.3 6.87 557.7 3.78 549.5 2.25 542.4 0.93 542.0 0.85 537.4 0.00
      4 355.6 381.6 7.31 375.1 5.49 369.6 3.95 361.5 1.67 355.6 0.00 358.0 0.68
      5 883.8 954.4 7.99 933.2 5.59 926.4 4.82 912.9 3.29 913.1 3.31 908.7 2.82
      6 948.2 1032.0 8.84 1007.5 6.25 989.6 4.37 971.8 2.48 970.3 2.33 965.1 1.78
      7 349.6 377.0 7.85 372.4 6.55 361.8 3.51 356.1 1.88 352.4 0.81 349.6 0.00
      8 750.1 814.3 8.56 792.5 5.65 782.7 4.35 774.0 3.19 761.6 1.53 750.9 0.11
      9 611.7 704.4 15.14 682.2 11.52 639.7 4.57 658.5 7.64 632.3 3.36 630.8 3.12
      10 737.1 852.5 15.65 828.2 12.35 806.6 9.42 793.0 7.58 774.4 5.06 763.5 3.57
      11 264.2 282.6 6.95 273.1 3.36 272.2 3.00 268.2 1.50 264.2 0.00 264.2 0.00
      12 192.6 206.8 7.36 199.0 3.31 197.8 2.72 198.0 2.81 192.6 0.00 192.6 0.00
      13 152.4 - - 167.7 10.01 163.1 7.01 160.9 5.53 152.4 0.00 152.4 0.00
      14 872.3 974.4 11.70 941.3 7.91 921.0 5.59 893.7 2.45 900.1 3.19 878.8 0.74
      15 763.3 830.8 8.84 824.2 7.97 807.9 5.84 785.7 2.94 784.9 2.82 784.4 2.76
      AVG. Gap 9.55  6.84  4.83  3.46  1.66  1.11  
      Table 3. Comparison of computational time (with 2 iterations)
        D=15 D=50 D=100 D=200
      Ins. T(s) TD(s) T(s) TD(s) T(s) TD(s) T(s) TD(s) T(s) TD(s)
      1 383 0.19 49 0.14 54 0.10 48 0.10 60 0.10
      2 391 7.77 127 3.10 62 1.19 58 0.60 92 1.34
      3 388 4.80 106 2.19 61 0.67 59 0.87 78 1.06
      4 386 2.76 75 0.16 52 0.24 58 0.63 72 0.73
      5 389 5.55 138 3.17 73 1.08 65 0.93 91 1.66
      6 388 5.41 149 0.92 75 1.13 74 0.96 92 1.69
      7 384 0.91 73 0.18 52 0.32 53 0.56 73 1.03
      8 389 6.28 121 0.90 65 0.59 56 0.68 78 1.47
      9 388 4.66 102 3.30 55 0.61 55 0.58 75 0.88
      10 389 5.60 110 0.60 56 0.70 56 0.64 80 1.45
      11 385 1.74 61 0.25 50 0.16 55 0.28 63 0.50
      12 384 0.73 54 0.09 52 0.60 58 0.46 67 0.46
      13 384 0.54 47 0.08 52 0.29 59 0.47 59 0.47
      14 389 5.60 119 0.62 69 0.56 59 0.88 62 1.73
      15 389 5.80 122 1.03 61 0.73 63 0.74 72 2.62
      AVG. 387.0 4.15 96.9 1.12 59.3 0.60 58.4 0.63 74.3 1.15
      Table 4. Ratio between computation times
        D=15 D=50 D=100 D=200
      Ins. T(s) T(s) Ratio T(s) Ratio T(s) Ratio T(s) Ratio
      1 383 49 7.8 54 7.1 48 8.0 60 6.4
      2 391 127 3.1 62 6.3 58 6.7 92 4.2
      3 388 106 3.7 61 6.4 59 6.6 78 5.0
      4 386 75 5.1 52 7.4 58 6.7 72 5.4
      5 389 138 2.8 73 5.3 65 6.0 91 4.3
      6 388 149 2.6 75 5.2 74 5.2 92 4.2
      7 384 73 5.3 52 7.4 53 7.2 73 5.3
      8 389 121 3.2 65 6.0 56 7.0 78 5.0
      9 388 102 3.8 55 7.0 55 7.0 75 5.2
      10 389 110 3.5 56 6.9 56 6.9 80 4.9
      11 385 61 6.3 50 7.7 55 7.0 63 6.1
      12 384 54 7.1 52 7.4 58 6.6 67 5.7
      13 384 47 8.2 52 7.4 59 6.5 59 6.5
      14 389 119 3.3 69 5.6 59 6.6 62 6.3
      15 389 122 3.2 61 6.4 63 6.2 72 5.4
      AVG. 387.0 96.9 4.6 59.3 6.6 58.4 6.7 74.3 5.3
      Table 5. Impact of slave nodes number on the computation time (with 2 iterations)
        D=15 D=50 D=100 D=200
      Ins. 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns
      1 84 49 54 55 54 49 51 48 48 60 60 59
      2 613 127 76 247 62 55 177 58 58 194 92 92
      3 457 106 65 181 61 55 129 59 60 132 78 78
      4 281 75 52 122 52 52 97 58 56 80 72 68
      5 689 138 76 277 73 58 192 65 63 179 91 88
      6 746 149 87 318 75 56 250 74 62 244 92 90
      7 274 73 51 119 52 49 88 53 53 81 73 72
      8 573 121 69 228 65 51 160 56 54 159 78 81
      9 444 102 108 171 55 51 119 55 55 114 75 75
      10 530 110 65 203 56 49 142 56 56 152 80 80
      11 216 61 49 87 50 51 65 55 51 68 63 64
      12 179 54 51 81 52 55 62 58 58 68 67 66
      13 137 47 48 66 52 51 60 59 59 59 59 58
      14 614 119 76 234 69 53 167 59 53 125 62 64
      15 601 122 73 221 61 51 160 63 64 146 72 74
      AVG. 429.2 96.9 66.7 174.0 59.3 52.4 127.9 58.4 56.7 124.1 74.3 73.9
      Table 6. Impact of the number of iteration on the quality of solutions (gap with the optimal)
        D=15 D=50 D=100 D=200
      Ins. 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns 1-ns 4-ns 8-ns
      1 22.75 11.11 11.24 5.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      2 - - - 10.01 11.12 8.67 7.82 8.02 6.71 3.76 1.09 0.01
      3 18.52 6.87 6.50 7.35 2.25 1.83 3.80 0.93 0.93 2.22 0.01 0.01
      4 17.42 7.31 5.49 7.11 3.95 3.58 4.03 1.67 1.67 2.02 0.68 0.00
      5 17.90 7.99 7.65 8.78 4.82 4.41 5.87 3.29 3.16 4.50 2.82 1.76
      6 22.65 8.84 8.18 9.20 4.37 3.63 5.52 2.48 2.45 3.76 1.78 1.31
      7 22.55 7.85 6.76 6.94 3.51 2.36 5.33 1.88 0.74 1.53 0.00 0.00
      8 18.63 8.56 7.46 9.97 4.35 4.35 6.27 3.19 3.19 4.22 0.11 0.11
      9 24.87 15.14 12.76 10.30 4.57 3.36 10.28 7.64 2.52 5.57 3.12 0.10
      10 29.14 15.65 14.34 14.68 9.42 3.31 10.53 7.58 3.10 5.30 3.57 2.84
      11 18.32 6.95 6.39 5.26 3.01 3.01 1.96 1.50 1.51 0.20 0.00 0.00
      12 19.81 7.36 7.03 6.39 2.72 2.72 3.60 2.81 0.51 0.00 0.00 0.00
      13 - - - 10.57 7.01 3.94 5.53 5.53 0.00 0.00 0.00 0.00
      14 22.70 11.70 9.63 13.41 5.59 4.61 7.84 2.45 0.89 4.13 0.74 0.04
      15 14.75 8.84 8.19 8.90 5.84 4.90 5.24 2.94 2.27 4.23 2.76 2.07
      AVG. 20.77 9.55 8.59 8.99 4.83 3.64 5.57 3.46 1.98 2.76 1.11 0.55
    • Number of visitors : 237