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Abstract

We consider a single-product make-to-stock manufacturing-remanufacturing system. Returned

products require remanufacturing before they can be sold. The manufacturing and remanufacturing

operations are executed by the same single server, where switching from one activity to another does

not involve time or cost and can be done at an arbitrary moment in time. Customer demand can

be ful�lled by either newly manufactured or remanufactured products. The times for manufacturing

and remanufacturing a product are exponentially distributed. Demand and used products arrive

via mutually independent Poisson processes. Disposal of products is not allowed and all used

products that are returned have to be accepted. Using Markov decision processes, we investigate the

optimal manufacture-remanufacture policy that minimizes holding, backorder, manufacturing and

remanufacturing costs per unit of time over an in�nite horizon. For a subset of system parameter

values we are able to completely characterize the optimal continuous-review dynamic preemptive

policy. We provide an e�cient algorithm based on quasi-birth-death processes to compute the optimal

policy parameter values. For other sets of system parameter values, we present some structural

properties and insights related to the optimal policy and the performance of some simple threshold

policies.
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1 Introduction

The reuse of products and materials is not a recent discovery. However, it is only during recent

decades that product recovery and reverse logistics have gained increasing importance as a pro�table

and sustainable strategy for companies around the world (see e.g. Dekker et al., 2004; Srivastava, 2007).

Reusing may be motivated by economical, legislative or environmental reasons. As stated in Thierry

et al. (1995), there are several options to recover a product. Via remanufacturing, a product is completely

recovered and its quality after remanufacturing is as good as that of a new product. Remanufacturing

complicates inventory control. Integrating this reverse �ow of used products a�ects both the materials

planning and the inventory control of the supply chain. Indeed, managers have to take into account the
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uncertain �ow of used products and they have to coordinate the remanufacturing stage with the regular

mode of procurement (Inderfurth and van der Laan, 2001).

Coordination between manufacturing and remanufacturing operations is a central issue (Van der

Laan et al., 1999). The company has to decide who takes care of each operation, when and how much

to manufacture or to remanufacture. In our model, we consider a single resource that can perform

manufacturing and remanufacturing operations. The server can switch at any time between these two

operations. As stated in Ferrer andWhybark (2000), shared resources increase the �exibility of the system

but also the complexity of the coordination. The study of Tang and Teunter (2006) is an example of

a concrete application of a hybrid manufacturing and remanufacturing system with a shared resource.

Their research was motivated by a company which manufactures and remanufactures car parts. New

and remanufactured parts are processed in the same facilities by the same workers. In their study, the

remanufactured products represent approximately 30% of the annual sales. Trebilcock (2002) discusses a

catalog retailer that has to prepare and ship around 65,000 products weekly. Around 15% of the products

come back to the retailer. In this case, managers can ask some workers for a few days to inspect, clean

and repack returned products. This type of situation (where workers switch between manufacturing and

remanufacturing to satisfy customer orders) may be modeled by a hybrid system as described in our

study.

In this paper, we consider a hybrid manufacturing-remanufacturing system. Manufacturing and

remanufacturing operations are executed by a single shared ressource. This situation can be found in

small companies or in dedicated specialized units within companies dealing with complex products (like

large medical systems and dedicated copiers), when both manufacturing and remanufacturing require

deep understanding of the product. Remanufactured and new products can equally well be used to

satisfy customer demand. The time to manufacturing and remanufacturing a product is exponentially

distributed. Demand and used products arrive via mutually independent Poisson processes. We consider

the situation where products are manufactured or remanufactured one by one. The objective is to

minimize discounted or average costs (holding, manufacturing, remanufacturing, backorder) over an

in�nite horizon. We do not include neither setup times and costs nor disposal option. These limits of

our model our discussed in Section 8.

More generally, our problem can be seen as a production-inventory control with two supply channels.

The �rst supply channel is completely controlled while the second supply channel is autonomous and

random. For example, car companies like Chrysler can get very easily low quality (often less expensive)

engines that are supplied by dealers in the context of take back programs or internet o�ers. However, it

is much more di�cult and uncertain to get high quality (often more expensive) engines.

To the best of our knowledge, the problem described in this paper has not been studied before. In

particular it is the �rst paper to investigate an hybrid system with a shared resource in a stochastic

environment. For the problem described above, we characterize the optimal manufacture-remanufacture

policy for certain sets of system parameter values and provide for these sets an e�cient method to

calculate the optimal values of the policy parameters. For other sets of system parameter values, we

provide insights into the optimal policy structure. We also present a sensitivity analysis for several

system parameters.

In Section 2, we review the literature and our contributions. In Section 3, a detailed description

and mathematical formulation of the problem is given. In Section 4, we derive several characteristics of

the optimal policy structure for di�erent sets of parameter values. In Section 5, we provide an e�cient
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method to calculate the optimal values of the policy parameters. In Section 6, we present some insights

into the optimal behavior of the system for sets of parameter values for which it is not possible to derive

the optimal policy structure. Based on these insights, we introduce in Section 7 some simple heuristics

that we compare with the optimal policy. In Section 8 we conclude the paper and indicate directions for

further research.

2 Literature review

There is a vast literature on inventory control with product returns (see e.g. Fleischmann et al., 1997,

2002; Pokharel and Mutha, 2009; Ilgin and Gupta, 2010). Hybrid manufacturing and remanufacturing

systems have received growing attention in recent years (see e.g. Van der Laan et al., 1999; Teunter et al.,

2004).

In a deterministic environment, only a few authors consider a shared capacity for manufacturing

and remanufacturing. The �rst deterministic model involving product returns is introduced by Schrady

(1967). He considers an EOQ setting with constant demand and returns rates, in�nite manufacturing

and remanufacturing rates, di�erent holding costs for recoverable and serviceable items and di�erent

�xed costs. For the class of (1, R) policies that alternates a manufacturing lot and a �xed number R of

remanufacturing lots, he is able to derive EOQ formulae. Several papers consider variants of Schrady's

model. Nahmias and Rivera (1979) considers a variant with a �nite recovery rate. Teunter (2001)

includes a disposal option for returned products. Teunter (2004) investigates (1, R) policies and (P, 1)

policies where the server alternates between manufacturing P lots and remanufacturing 1 lot. He obtains

optimal lot-sizes for both manufacturing and recovery operations. These formulae are valid for both �nite

and in�nite manufacturing and remanufacturing rates. Tang and Teunter (2006) study the multi-product

economic lot scheduling problem with returns. Like previous papers, manufacturing and remanufacturing

operations are performed on the same shared production line. Due to the complexity of this multi-product

problem, the authors restrict their study to common cycling policies with one manufacturing lot and one

remanufacturing lot in each cycle. The problem is formulated as a mixed-integer problem.

In a periodic review setting, several authors present models with stochastic demand and returns

but they do not consider a shared capacity for manufacturing and remanufacturing. Simpson (1978)

considers a system where returns are held in a separate bu�er until they are remanufactured or disposed

of. He characterizes the optimal policy for the case with zero manufacturing and remanufacturing lead

times. Inderfurth (1997) consider positive and identical manufacturing and remanufacturing leadtimes.

He also shows that the optimal policy may have a very complex structure when lead times are di�erent.

Li et al. (2010) include �xed manufacturing costs and �xed disposal costs. Zhou et al. (2011) investigates

a situation where returns can have di�erent quality levels. DeCroix (2006) extends the results of

Inderfurth (1997) to a multi-stage series system where products are remanufactured at the upstream

stage. Fleischmann and Kuik (2003) study the optimal policy structure for a single stock point with

a stochastic demand that is either positive or negative in each period. They show the average-cost

optimality of an (s, S) policy. Teunter and Vlachos (2002) study the necessity of a disposal option for a

hybrid manufacturing and remanufacturing system with constant lead times over a �nite time horizon.

By using simulation, their results show that a disposal option leads to an important cost reduction

only if the demand rate is low, the recovery rate is high and remanufacturing is almost as expensive
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as manufacturing. The authors also notice that it is more di�cult to �nd the optimal policy when

considering a disposal option for product returns.

As far as we know, Heyman (1977) is the �rst who investigates a continuous-time inventory control

model with product returns. He assumes zero lead times, linear costs and a disposal option. Heyman

(1977) shows that the optimal disposal policy is a threshold policy and derives an explicit formula for

this threshold. The author also indicates that introducing a remanufacturing lead time requires a new

variable (the remanufacturable inventory) resulting in a very complex model. Gayon (2006) considers a

variant of Heyman (1977) where the manufacturing leadtime is exponentially distributed and there is no

disposal option. He proves the optimality of a base-stock policy to control the serviceable inventory and

derives an exact formula for the optimal base-stock level. Muckstadt and Isaac (1981) introduce a hybrid

system with non-zero lead times for both procurement and remanufacturing. The authors investigate

a simple (s,Q)-rule for the procurement policy and returns are remanufactured as long as returned

products are available. Since an exact analysis is di�cult, an approximation is given for the steady-

states distribution of the system. Fleischmann et al. (2002) consider an inventory system with Poisson

demand and returns, �xed procurement leadtime and zero remanufacturing processing time. They show

that the optimal policy to minimize the total average cost is an (s,Q)-policy. Van der Laan et al. (1999)

investigate an inventory system where manufacturing and remanufacturing occur simultaneously. They

consider constant leadtimes, stochastic demands and returns, �xed set-up costs per batch and linear

holding costs for the remanufacturable and serviceable inventories. They compare systems without

remanufacturing with push and pull controlled hybrid systems with remanufacturing. Ching et al.

(2007) suggest a new approach to analyze a hybrid system with remanufacturing under continuous-

review with Markovian assumptions. The serviceable inventory is controlled by an (s, S)-policy and they

use quasi-birth-death processes to model the remanufacturable and serviceable inventories. The authors

provide a quasi-optimization method to compute the optimal replenishment level. Aras et al. (2006)

propose a new model for hybrid systems with a constant manufacturing lead time and a remanufacturing

process that depends on the quality of returns. In this model, the remanufacturing lead time and

cost are uniformly distributed between minimum and maximum values. Two policies are compared:

priority-to-manufacturing (remanufacturing station is only used when the manufacturing facility is not

su�cient to satisfy all demands) and priority-to-remanufacturing (replenishment orders are placed �rst

with the remanufacturing facility). The authors show the bene�ts of coordinating manufacturing and

remanufacturing.

To summarize, we note that there is a lot of literature on hybrid manufacturing-remanufacturing

systems but only few papers that deal with a shared capacity for manufacturing and remanufacturing.

All of these papers deal with deterministic demand and returns. To the best of our knowledge, the

research presented in this paper is the �rst one that studies a stochastic model with shared capacity

for manufacturing and remanufacturing. Our model is close to the one of Teunter (2004). Like in

his research, we consider a shared resource for both manufacturing and remanufacturing with �nite

manufacturing and remanufacturing capacities. While Teunter (2004) considers a deterministic setting,

we assume random (exponential) processing times for manufacturing and remanufacturing and random

(Poisson) processes for demand and returns. Furthermore, contrary to Teunter (2004) who investigates

the optimal lot-sizes for (P, 1) and (1, R)-policies, we do not restrict our research to certain classes of

policies but we investigate the optimal policy to control the system. However, unlike Teunter, we do not

include setup times and costs in our problem.
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3 Notations and assumptions

We consider a single-product system with product returns (Figure 1). Returned products require reman-

ufacturing operations (always successful) before they can be sold. Manufacturing and remanufacturing

operations are executed by a single shared resource. The single server can perform only one operation

at the same time: remanufacturing or manufacturing, or be idle. New products are manufactured one

by one, and returns are remanufactured one by one too. Switching times and costs are neglected. Raw

materials for manufacturing are assumed to be always available. We consider a situation with preemption:

the server can stop a job at any time and she or he can resume the job immediately or after a while.

All returns have to be accepted. Each return can be remanufactured into a serviceable product

and disposal is not allowed. Customer demands can be ful�lled by either newly manufactured or

remanufactured products. All demand has to be ful�lled. If a customer order is not immediately satis�ed,

it is backlogged. Two inventories are distinguished: the remanufacturable inventory of product returns,

and the serviceable inventory of new and remanufactured products. There are no capacity limitations

for the inventories.

Figure 1: Schematic representation of a hybrid manufacturing-remanufacturing system with one shared
server

We use a continuous-time in�nite horizon model with Markovian assumptions: demands and returns

follow independent Poisson processes while manufacturing and remanufacturing times are exponentially

distributed. We further assume linear holding and backlogging costs.

We use the following notation:

• b: backlog cost (per product per unit of time).

• cN : manufacturing cost (per product).

• cR: remanufacturing cost (per product).

• hR: remanufacturable holding cost (per product per unit of time).

• hS : serviceable holding cost (per product per unit of time).

• X(t): remanufacturable on-hand inventory level at time t.

• X: average remanufacturable on-hand inventory level.
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• Y (t): serviceable net inventory level at time t.

• Y : average serviceable net inventory level.

• Y +: average serviceable on-hand inventory level.

• Y −: average number of backlogs.

• α: discount factor.

• δ: average return rate (returned products per unit of time).

• λ: average demand rate (products per unit of time).

• µN : average manufacturing rate (products per unit of time).

• µR: average remanufacturing rate (products per unit of time).

Moreover, we introduce the following additional notation:

• ρN = λ−δ
µN

: Manufacturing utilization (percentage of time spent on average by the server on

manufacturing).

• ρR = δ
µR

: Remanufacturing utilization (percentage of time spent on average by the server on

remanufacturing).

• ρserver = δ
µR

+ λ−δ
µN

= ρR + ρN : Server utilization (percentage of time that the server is busy).

• τ = δ
λ : Percentage of demand satis�ed by remanufactured returns.

To ensure the stability of the system, we have to assume that

τ < 1 (1)

and

ρN + ρR = ρserver < 1 . (2)

Equation (1) ensures that the serviceable inventory will not increase to in�nity and (2) ensures that all

demand can be satis�ed by the single server.

To control the system, we have to decide when the server should manufacture new products, when the

server should remanufacture returns and when the server should be idle. Let AC(π) be the undiscounted

average costs per unit of time under policy π. Our objective is to �nd the optimal policy that minimizes

the average cost. We have

AC(π) = cN (λ− δ) + cRδ + hRX + hSY + + bY − . (3)

Observe that quantities X, Y + and Y − depend on the chosen policy π, though it is not explicitly written

in order not to overload notations. The quantity cN (λ − δ) represents the manufacturing cost for the

demand that cannot be satis�ed by remanufactured products (we have to satisfy all demands) and does

not depend on the policy used. The quantity cRδ represents the remanufacturing cost (we have to

remanufacture all returns, there is no disposal) and does not depend on the policy used. The quantities
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hRX, hSY +, bY − are respectively the average holding cost related to the inventory of product returns,

the average holding cost related to the serviceable inventory of new and remanufactured products and

the average backlog cost, which depend on the policy used. The optimal policy that minimizes the

total undiscounted average cost per unit of time does not depend on cN and cR. Therefore, we can set

cN = cR = 0 without loss of generality.

4 Structure of the optimal policy

4.1 Markov decision process formulation

We model the system by a continuous-time Markov decision process (MDP) (see e.g. Puterman, 1994).

In state (X(t), Y (t)), the system incurs a cost rate C(X,Y ) = hRX+hSY
+ +bY −. Policy π speci�es for

the server when to manufacture, when to remanufacture and when to be idle. The discounted expected

cost over an in�nite horizon of policy π, with initial state (x, y) and discount rate α > 0, is given by

vπα(x, y) = E

[∫ +∞

0

e−αtC(X(t), Y (t))dt |(X(0), Y (0)) = (x, y), π

]
. (4)

The objective is to �nd the optimal policy π∗ that minimizes the expected discounted-cost vπα(x, y)

over an in�nite horizon. We denote by v∗α(x, y) the optimal value function:

v∗α(x, y) = min
π
vπα(x, y) . (5)

The optimal policy for the average-cost problem minimizes

AC∗ = min
π

lim
T→+∞

E
[∫ T

0
C(X(t), Y (t))dt |(X(0), Y (0)) = (x, y), π

]
T

. (6)

The undiscounted average-cost optimal policy has the same structure as the optimal policy for the

discounted-cost problem and can be obtained as the limit of the discounted-cost optimal policy by

letting α go to 0 (Weber and Stidham, 1987).

After uniformizing the MDP using rate u = λ+δ+µR+µN and normalizing u+α = 1, we transform

the continuous-time MDP into a discrete MDP (Lippman, 1975; Puterman, 1994). The optimal value

function v∗α satis�es the following optimality equation:

v∗α = Tv∗α (7)

with the operator T de�ned, for any value function v, by

Tv(x, y) = C (x, y) + λv (x, y − 1) + δv (x+ 1, y) + (µR + µN )v (x, y) + Tserverv (x, y) (8)
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and

Tserverv (x, y) = min {0; µN∆yv(x, y); 1x>0.µR∆Rv(x, y)} , (9)

∆yv(x, y) = v(x, y + 1)− v(x, y) ,

∆Rv(x, y) = v(x− 1, y + 1)− v(x, y) = −∆xyv(x− 1, y) ,

1x>0, the indicator function for x > 0 .

In the following subsections, several structural properties of the optimal policy are detailed for some

speci�c sets of system parameters values.

4.2 Structural results for hR ≥ hS and µR

(
1 + hR

b

)
≥ µN

In this section, we show that the optimal policy is a 3PR base-stock policy (see de�nition 1 below) when

hR ≥ hS and µR
(
1 + hR

b

)
≥ µN . At �rst sight, the condition hR ≥ hN may not seem to be often ful�lled

in practice. However, when remanufacturing implies a disassembly operation, products that are returned

can take far more space than the individual components that we want to reuse, incurring large storage

costs. In practice, components are often not disassembled before remanufacturing starts, in order to

avoid (further) damage. This may be the case, for instance, with car wrecks or photocopy machines.

The second condition µR
(
1 + hR

b

)
≥ µN is weaker than the condition µR ≥ µN which simply states that

it is faster to remanufacture a return (in average) than to manufacture a new product.

De�nition 1. A Push Preemptive Priority on Returns (3PR) base-stock policy is such that :

• When there are returns (x > 0), remanufacturing has always priority over the production of new

products. If a return occurs while the server is manufacturing a new product, then the server stops

immediately manufacturing and switches to remanufacturing returns, until the remanufacturable

inventory is empty (x = 0). When the server is idle at the moment a return arrives, the server

immediately starts remanufacturing this return.

• When there are no returns left (x = 0), the server manufactures if and only if the serviceable

inventory y is below a certain base-stock level S.

The following matrix displays one example of the optimal policy structure, where each element in the

matrix corresponds to the optimal decision for the server. Letters I, R andM refer respectively to �idle�,

�remanufacturing� and �manufacturing�. Because we cannot display huge matrices, we only provide a

representative extract of the total decision matrix. This matrix was computed with a value iteration

algorithm (see e.g. Puterman, 1994).

To show that the optimal policy is a 3PR base-stock policy, we need to de�ne the following set of

value functions V.

De�nition 2. A value function v belongs to V if for all (x, y)

(P1) ∀x > 0, ∆Rv(x, y) ≤ 0.

(P2) ∀x > 0, µR∆Rv(x, y) ≤ µN∆yv(x, y).
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Figure 2: Optimal policy when hR ≥ hS and µR
(
1 + hR

b

)
≥ µN (based on the instance with parameter

values λ = 1, δ = 0.4, µR = 2, µN = 1, hR = 2, hS = 1, b = 10)

(P3) ∆yv(x, y) ≤ ∆yv(x, y + 1).

In the appendix, we show that the optimal value function v∗α belongs to V. The proof is based on the

property that any sequence of value functions (vn) de�ned as vn+1 = Tvn will converge to the optimal

value function v∗α, the unique solution of the optimality equation v∗α = Tv∗α (Puterman, 1994). Hence,

to prove that v∗α ∈ V, it su�ces to prove that if v ∈ V, then Tv ∈ V.

The properties of the optimal value function results in properties of the optimal policy. Property

(P1) ensures that, for x > 0, it is better to remanufacture than doing nothing. Property (P2) ensures

that, for x > 0, it is better to remanufacture than to manufacture. Property (P3) ensures that, when

x = 0, it is better to manufacture below a certain threshold (base-stock policy).

Theorem 1. If hR ≥ hS and µR
(
1 + hR

b

)
≥ µN , then the optimal value function v∗α belongs to V.

Moreover, the optimal discounted-cost (or average-cost) policy is a 3PR base-stock policy.

The proof of Theorem 1 is given in the appendix. We can explain Theorem 1 as follows. If hR ≥ hS ,
then it is logical to remanufacture returns to save inventory costs. Giving priority to remanufacturing

is due to µR
(
1 + hR

b

)
≥ µN . To understand this, we rewrite the condition µR

(
1 + hR

b

)
≥ µN as

b+hR

µN
≥ b

µR
. We can interpret this inequality as follows: if there is a shortage and if we remanufacture,

it takes on average 1
µR

time units to satisfy the shortage and it costs b (due to the shortage) during this

period. If we manufacture, it takes on average 1
µN

time units to satisfy the shortage and it costs hR + b

during this period (because by manufacturing a new product, one returned product is still kept in the

remanufacturable inventory). Since b+hR

µN
≥ b

µR
, it is better to remanufacture.

4.3 Structural results for µR = µN

In this section, we focus on the properties of the optimal policy when the remanufacturing rate is equal

to the manufacturing rate. In practice, µR = µN holds for instance if the remanufacturing operation

is the same as the manufacturing operation. For example assembling two new components or two used

components requires about the same amount of time.

When µR = µN and hS ≤ hR, we have already shown that the optimal policy is a 3PR base-stock

policy in Theorem 1. When µR = µN and hS > hR, the structure of the optimal policy is more complex

and is illustrated in Figure 3.
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Figure 3: Optimal policy for µR = µN and hS > hR (based on the instance: λ = 1; δ = 0.7;µR =
1.1;µN = 1.1;hR = 2;hS = 3; b = 100)

When µR = µN = µ, we can rewrite the operator T as follows

Tv(x, y) = C (x, y) + λv (x, y − 1) + δv (x+ 1, y) + µTsv (x, y) (10)

with Tsv(x, y) =

min{v(x, y), v(x, y + 1)} if x = 0

min{v(x, y), v(x− 1, y + 1), v(x, y + 1)} if x > 0
(11)

The following notations will be useful to derive the optimal policy: ∆xv(x, y) = v(x+ 1, y)− v(x, y),

∆yv(x, y) = v(x, y + 1) − v(x, y) and ∆xyv(x, y) = v(x + 1, y) − v(x, y + 1). We will also combine

these notations. For instance, we have ∆y∆yv(x, y) = ∆yv(x, y + 1) − ∆yv(x, y) and ∆x∆xyv(x, y) =

∆xyv(x + 1, y) −∆xyv(x, y). In order to prove that the optimal policy follows the pattern of Figure 3,

we introduce a second set of value functions W.

De�nition 3. A value function v belongs to W if for all (x, y)

(P2) ∆xv(x, y) ≥ 0 (equivalent to Property (P2) in V when µR = µN )

(P3) ∆y∆yv(x, y) ≥ 0

(P4) ∆x∆yv(x, y) ≥ 0

(P5) ∆y∆xy ≤ 0

(P6) ∆x∆xy ≥ 0

In Koole (1998), Property (P3) is called convexity, Property (P4) is called supermodularity and

properties (P5) and (P6) are called superconvexity. Properties (P4) and (P6) together imply Property

(P3) (Koole, 1998). In the appendix, we show that the optimal value function v∗α belongs to W. This

result is not straightforward since operator Tserver has not been studied in the literature so far. The

closest operator is probably the one considered by Ha (1997) who considers the dynamic scheduling of a

make-to-stock system.
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The properties satis�ed by the optimal value function yield properties of the optimal policy. Property

(P2) ensures that, for x > 0, it is better to remanufacture than to manufacture. When x = 0, Property

(P3) ensures the existence of a threshold level S(0) = min{y : ∆yv
∗
α(0, y) ≥ 0} such that it is optimal to

manufacture when y < S(0) and to idle otherwise. When x > 0, Property (P5) ensures the existence of

a threshold level S(x) = min{y : −∆xyv
∗
α(x − 1, y) ≥ 0} such that it is optimal to remanufacture when

y < S(x) and to idle otherwise. Property (P6) implies that S(x + 1) ≥ S(x) when x > 0 and Property

(P2) implies that S(1) ≥ S(0).

Theorem 2. If µR = µN , then the optimal value function v∗α belongs to W. Moreover, the optimal

discounted-cost (or average-cost) policy have the following structural properties. There exists a switching

curve S(x) such that :

1. When x = 0, it is optimal to manufacture new products when y < S(0) and to idle otherwise.

2. When x > 0, it is optimal to remanufacture when y < S(x) and to idle otherwise.

3. For all x ≥ 0, S(x) ≤ S(x+ 1).

The proof of Theorem 2 is given in the appendix.

5 Evaluation and optimization of 3PR base-stock policies

In the previous section we showed that the optimal policy belongs to the class of 3PR base-stock policies

when hR ≥ hS and µR
(
1 + hR

b

)
≥ µN (see Theorem 1). In this section, we �rst explain how to compute

e�ciently the steady-state probabilities under 3PR base-stock policies. Then we provide a more e�cient

method than stochastic dynamic programming to compute the optimal policy.

For a given 3PR base-stock policy, the two-dimensional stochastic process (X(t), Y (t)) can be

modelled by a continuous-time two-dimensional Markov chain, more precisely a quasi-birth-death process

(QBD). We refer to Neuts (1981, chapter 3) and Latouche and Ramaswami (1993) for a formal de�nition

of QBD. In Table 1, we show the system states and output transition rates for each area of the Markov

chain. For x = 0 and y ≥ S, the server is idle. For x = 0 and y < S, the server is manufacturing new

products. For x > 0, the server is remanufacturing product returns.

(x, y) x = 0 x > 0

y ≥ S

y < S

Table 1: Output rates for each area of the Markov chain
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Because of the repeating structure of the Markov chain, if we have the steady-state probabilities

for any particular base-stock S, then we can deduce the steady-state probabilities for all base-stock

levels. Indeed, the two-dimensional stochastic process (X(t), Y (t) − S) is independent of S. Therefore,

for a given instance, we need to compute probabilities only for this stochastic process and then we can

derive easily probabilities for any base-stock level. This property will be very useful in the optimization

procedure.

For all i ∈ N and j ∈ Z, we denote the steady-state probability of the state (i, j) by πi,j . For a given

base stock level S, the steady-state equations related to the Markov chain are

(λ+ δ)π0,j = λπ0,j+1 + µRπ1,j−1 for j > S

(λ+ δ)π0,S = λπ0,S+1 + µRπ1,S−1 + µNπ0,S−1 for j = S

(λ+ δ + µN )π0,j = λπ0,j+1 + µRπ1,j−1 + µNπ0,j−1 for j < S

(λ+ δ + µR)πi,j = λπi,j+1 + µRπi+1,j−1 + δπi−1,j for i ≥ 1

(12)

To compute the steady-state probabilities, we need to truncate the state space. To do so, we increase

the state space until the steady-state probabilities are no longer sensitive to further increasing the state

space. We denote by Xmax, Ymin and Ymax respectively the maximum remanufacturable inventory level,

the minimum serviceable inventory level and the maximum serviceable inventory level in the truncated

state space. In the following section, we detail the method used to compute them.

5.1 Algorithm to compute the steady-state probabilities

There are many methods to solve a QBD. We refer to Latouche and Ramaswami (1993) and van

Leeuwaarden and Winands (2006) for an overview. Here we adopt the matrix-geometric approach (see

chapter 3 in Neuts, 1981), which is usually used in problems that deal with our type of QBD (see e.g.

Song et al., 1999; Chang and Lu, 2008, 2010).

Firstly, we note that after truncation, there are (Xmax + 1)× (Ymax − Ymin + 1) di�erent states. For

k = 0 . . . Xmax, we denote by pk the line-vector (πk,Ymin
, . . . , πk,Ymax

).

To compute the steady-state probabilities, we derive the generator matrix Q related to the Markov

chain. Based on (12), we know that matrix Q is a block-tridiagonal matrix of size (Xmax + 1)
2 ×

(Ymax − Ymin + 1)
2
. There are 4 types of blocks: B1, A0, A1 and A2, which are detailed in the appendix.

Q =



B1 A0 0 . . . 0 0 0

A2 A1
. . .

. . . 0 0 0

0
. . .

. . .
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . .

. . . 0

0 0 0
. . .

. . . A1 A0

0 0 0 . . . 0 A2 A1 +A0
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The steady-state probabilities satisfy the following global balance and normalization equations
πQ = 0 (13a)∑
i,j

πi,j = 1 (13b)

with π the line-vector of steady-state probabilities and 0 the line-vector null.

Equation (13a) is equivalent to the following set of equations
p0B1 + p1A2 = 0 (14a)

pk−1A0 + pkA1 + pk+1A2 = 0 if 1 ≤ k < Xmax (14b)

pXmax−1A0 + pXmax
(A0 +A1) = 0, (14c)

Now, we de�ne recursively the following matrices Rk

RXmax
= −A0 (A0 +A1)

−1
,

Rk = −A0 (A1 +Rk+1A2)
−1

for 1 ≤ k < Xmax ,

R0 = Id .

(15)

We can show that (see e.g. chapter 3 in Neuts, 1981)

pk = p0

k∏
i=0

Ri for 0 ≤ k ≤ Xmax . (16)

In this way, we obtain the following set of equations (equivalent to (13a) and (13b))
p0 (B1 +R1A2) = 0 (17a)

p0

Xmax∑
k=0

(
k∏
i=0

Ri

)
1′ = 1 (17b)

with 1 the line-vector which contains only 1, and 1′ the transpose of this vector.

Now, we only need to solve (17) to determine the steady-state probabilities. Solving these equations

requires to invert matrices of size (Ymax − Ymin + 1)
2
. This is much faster than solving (13) that requires

to invert matrices of size (Xmax + 1)
2 × (Ymax − Ymin + 1)

2
.

Once we have the steady-state probabilities, it is straightforward to compute the total average cost

AC of the system as follows:

AC = hSY + + bY − + hRX

=

Xmax∑
x=0

Ymax∑
y=1

y πx,y hS +

Xmax∑
x=0

−1∑
y=Ymin

(−y)πx,y b+ hR
ρ2R

1− ρR
.

(18)

Because of the 3PR base-stock policy, the remanufacturing stage behaves like an M/M/1 queue with an

utilization rate of ρR and we know that the average number of jobs in the queue is
ρ2R

1−ρR .
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5.2 Optimization procedure

The algorithm described above allows us to compute e�ciently the steady-state probabilities and the

average cost for a given base-stock level. The following theorem shows how to compute the optimal

base-stock level S∗, with very few little extra computational e�orts.

Theorem 3. The total average cost function AC(·) is convex in the base stock level S. If we denote by

F (·) the cumulative distribution function of the random variable S−Y , then the optimal base-stock level

is given by

S∗ = min

{
S : F (S) >

b

hS + b

}
. (19)

Proof. This proof is adapted from equations (5) and (6) in Veatch and Wein (1996). S is the base-stock

level. We consider the random variable S − Y . Functions f(.) and F (.) are respectively its probability

density function and its cumulative distribution function. We have

AC(S) = b

−1∑
k=−∞

(−k)P (Y = k) + hS

+∞∑
k=1

kP (Y = k)

= b

+∞∑
k=S+1

(k − S) f (k) + hS

S−1∑
k=−∞

(S − k)f (k) .

Then

AC(S + 1)−AC(S) = b

+∞∑
k=S+2

(k − S − 1) f (k) + hS

S∑
k=−∞

(S + 1− k)f (k)

− b
+∞∑

k=S+1

(k − S) f (k)− hS
S−1∑
k=−∞

(S − k)f (k)

= −b+ (hS + b)F (S) .

Since the cumulative distribution function F (.) is non-decreasing, the function AC(S + 1) − AC(S)

is non-decreasing in S. Therefore, AC(.) is convex in S. Moreover, the optimal base-stock level is given

by

S∗ = min

{
S : F (S) >

b

hS + b

}
.

Once steady-state probabilities have been computed for a given base-stock level with the QBD method

(e.g. S = 0), we can use a dichotomic algorithm to compute the optimal base-stock level with (19). The

QBD method with dichotomy search has been implemented in MATLAB (version 7.9). Using a double-

core 2 Ghz processor, it took between less than one second and about one minute to �nd the optimal

base-stock level for a given instance, with an average time of one second based on 1024 instances.
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6 Insights into the structure of the optimal policy

In this section we want to show how the structure of the optimal policy depends on the values of the

system parameters. To compute the optimal policy for a given instance, we used stochastic dynamic

programming (Puterman, 1994). Four di�erent situations are investigated:

1. Situation I : hR ≥ hS and µR
(
1 + hR

b

)
≥ µN .

2. Situation II : hR ≥ hS and µR
(
1 + hR

b

)
< µN .

3. Situation III : hR < hS and µR
(
1 + hR

b

)
< µN .

4. Situation IV : hR < hS and µR
(
1 + hR

b

)
≥ µN .

Figure 4 illustrates for which values of µR and hS the four situations hold. When ρserver ≥ 1, the

system is unstable and the number of backlogged demands goes to in�nity. For this �gure, we assume

that the unstable region is not too big in order to have the four situations in the stable region. For this,

we need that δ
1−ρN < µN

1+hS/b
. In the numerical study that follows, we assume that this condition is

always satis�ed.

Figure 4: The four situations in (µR, hR) graph

For each of the four di�erent situations we plot an example of the optimal policy (see Figure 5). For

situation I, we have proved in Theorem 1 that the optimal policy is a 3PR base-stock policy.

For situation II, the shape of the optimal policy can be explained as follows. It is always better to

remanufacture rather than idle the server, since it reduces both the backorder costs and the holding

costs (because hR ≥ hS). As a consequence, when the remanufacturable inventory is not zero, the

server is never idle and either manufactures or remanufactures. As the return �ow is not su�cient to

satisfy all the demand, we know that there is a region where the server should manufacture. As the

manufacturing rate is higher than the remanufacturing rate (µN > µR), it is better to manufacture when

the serviceable inventory is low in order to diminish backlog costs. We also observe that the switching
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(a) Situation I (λ = 1, δ = 0.4, µR = 2, µN =
1, hR = 2, hS = 1, b = 10)

(b) Situation II (λ = 1; δ = 0.4;µR = 1;µN =
2;hR = 2;hS = 1; b = 10)

(c) Situation III (λ = 1; δ = 0.4;µR =
1;µN = 2;hR = 1;hS = 2; b = 10)

(d) Situation IV (λ = 1; δ = 0.4;µR =
2;µN = 1;hR = 1;hS = 2; b = 10)

Figure 5: Structure of the optimal policy for the four situations

curve, which delimitates when to manufacture and when to remanufacture, is slightly decreasing in the

remanufacturable inventory in order to reduce remanufacturable inventory holding costs.

In situation III, we still have µN > µr but now hR < hS . The structure of the optimal policy is

very close to the one for situation II except that the server is idle when the serviceable inventory is high

enough in order to limit serviceable inventory holding costs. We also observe that the switching curve,

which delimitates when to remanufacture and when to be idle, is increasing in the remanufacturable

inventory. This entails reduction of remanufacturable inventory holding costs.

In situation IV (Figure 5d), it is the reverse of situation III since it is better to remanufacture when the

serviceable inventory is low enough. This is due to smaller remanufacturing leadtimes (µR > µN ). The

switching curve, which delimitates when to remanufacture and idle, is decreasing in the remanufacturable

inventory since the higher x is, the lower the remanufacturing replenishment leadtimes will be.

Finally, we note that in all situations if there are backorders (y < 0), the server is never idle in order

to diminish backorder costs as well as holding costs.

7 Some simple heuristic threshold policies

For situation I, we have proved in Theorem 1 that the optimal policy belongs to the class of 3PR base-

stock policies. In this section we introduce new simple heuristic policies for the three other situations

and compare their performance with the optimal policy.
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These heuristic policies, called RM, IRM and IR, are presented in Table 2 and have been designed

for respectively situations II, III and IV. We have on purpose chosen very simple policies de�ned by at

most two thresholds. One could imagine more complex heuristic policies with more policy parameters.

However the interest would be limited. On one hand, it would reproduce somehow the complexity of the

optimal policy and would be relatively di�cult to implement in practice. On the other hand, the time

to �nd the optimal policy parameters is exponential within the number of policy parameters. In Table

2, we also remind the shape of 3PR which is a special case of RM and IR.

Heuristic names Illustration Details

RM (designed for sit-
uation II)

If x = 0, manufacture when y <
SRM
2 and idle the server otherwise.

If x > 0, remanufacture when y ≥
SRM
1 and manufacture otherwise.

IRM (designed for
situation III)

If x = 0, manufacture when y <
SIRM
2 and idle the server other-

wise. If x > 0, manufacture when
y < SIRM

1 , remanufacture when
SIRM
1 ≤ y < SIRM

2 and idle the
server when y ≥ SIRM

2 .

IR (designed for situ-
ation IV)

If x = 0, manufacture when y <
SIR
2 and idle the server otherwise.

If x > 0, remanufacture when y <
SIR
1 , and idle the server otherwise.

3PR (optimal for sit-
uation I)

3PR is a special case of RM and IR
if we set respectively SRM

1 = −∞,
SRM
2 = S3PR and SIR

1 = +∞,
SIR
2 = S3PR

Table 2: Heuristic policies

Hereafter we compare these heuristic policies with the optimal policy. For each heuristic policy,

we compute the optimal values of the policy parameters and the corresponding optimal average cost.

In the rest of the paper, the policy parameters are optimized and simply denoted by SRM1 etc. The

relative cost di�erence is de�ned by the relative average cost increase (AC(heuristic policy)-AC(optimal

policy))/AC(optimal policy) that results from using a heuristic policy (RM, IRM, IR and R) instead of

the optimal policy.

Figures 6 and 7 show respectively the e�ect of µR and hR on the cost performances of RM, IRM, IR

and 3PR. The dashed vertical lines indicate when the system goes from one situation to another.
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(a) λ = 1, δ = 0.1, µN = 1.3, hR = 8, hS = 1, b = 20

(b) λ = 1, δ = 0.5, µN = 3, hR = 1, hS = 10, b = 20

Figure 6: Performance of the heuristic policies as a function of µR

In situation I, the �gures show that 3PR is optimal, in accordance with Theorem 1, and that IR

and RM are also optimal, as they generalize 3PR. For the three other situations, we observe that the

3PR policy is no longer optimal and can result in a very poor performance. This is expected because

the 3PR policy suggests to remanufacturing whenever possible. In situations with low remanufacturing

rates (II and III), it is better to reduce the backlog by quickly manufacturing new products. When

the remanufacturing holding cost is small (III and IV), it is preferable to keep returned products in the

relatively cheap remanufacturable inventory when the serviceable inventory is su�ciently high.

In situation II, �gures 6 and 7 show that RM is the best heuristic policy and has a very good

performance with a maximum relative cost increase smaller than 2 %. This is due to the very close

structure of the RM policy to the optimal one in situation II. Though we have not been able to prove it,

it is intuitively clear that the optimal policy never idles the server when x > 0, in agreement with the

RM policy. It is also reasonable that the optimal policy uses the fastest server mode when the serviceable

inventory is low, as does the RM policy.

In situation IV, IR works very well with a relative cost increase smaller than 0.1 % on the tested

instances. This is again due to the structural closeness of the IR policy with the optimal one in situation
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(a) λ = 1, δ = 0.1, µR = 1, µN = 1.3, hS = 8, b = 20

(b) λ = 1, δ = 0.5, µR = 1.5, µN = 3, hS = 10, b = 20

Figure 7: Performance of the heuristic policies as a function of hR

IV. The IR policy never manufactures when the remanufacturable inventory is not zero, although the

optimal policy may do so. However we believe that has little e�ect on the costs because the manufacturing

rate is lower than the remanufacturing rate.

It is much more di�cult to design simple e�cient heuristic policies for situation III, due to the

complex structure of the optimal policy which can not be imitated with a simple threshold policy. None

of the heuristic policies work well systematically, and the relative cost increase can be larger than 25 %

on our test bed. Finally, we observe that there exist instances for which all heuristic policies have poor

performances (see Figure 7b: when hR ' 2, the relative cost increase is greater than 10 %).

8 Conclusion and further research

We have studied a make-to-stock queue with product returns and a remanufacturing stage where

manufacturing and remanufacturing are performed by one single server. To the best of our knowledge,

this problem has never been studied before in a stochastic environment. For a speci�c set of system

parameters values, we were able to characterize completely the optimal policy which is a 3PR base-stock
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policy. In the class of 3PR base-stock policies, we have provided an e�cient method to compute the

steady-state probabilities and the optimal policy. We also partially characterized the optimal policy

when the remanufacturing rate is equal to the manufacturing rate. Additionally, we have given some

insights into the optimal policy structure in the general case. Based on these insights, we have introduced

three simple threshold policies (RM, IRM and IR) and compared them to the 3PR base-stock policy and

to the optimal policy. The performances of these heuristic policies are very good in some situations.

However none of them has a good performance for all situations and there exist situations where none

of the heuristic policies performs well. Therefore implementing the optimal policy seems desirable.

There are several ways to extend our model. Firstly, we can consider more general distributions for

manufacturing and remanufacturing times. Secondly, we could include to possibility to dispose products.

It could mean to reject a return at the moment it is submitted or to dispose a remanufacturable product

or even to dispose a serviceable product. The description of the optimal policy would require three

additional switching curves to include these three options. Thirdly, it would be interesting to study

the problem with setup costs. This requires to add additional state variables to represent the state of

the server. Computing the optimal policy remains numerically tractable. However, it is unlikely that

structural results could be derived for the optimal policy, because even in the special case without returns,

the (s, S) structure of the optimal policy is conjectured but has not been proven properly in a Markov

decision process framework. Finally, our model assumes that preemption is allowed. The optimality of

the 3PR base-stock policy, for a speci�c set of system parameters values, is no more guaranteed when

preemption is not allowed. Indeed preempting the manufacturing of new products is interesting when

the remanufacturing rate is higher than the manufacturing rate. The approach to forbid preemption is

similar to the one to include setup costs and requires to add a variable representing the state of the server.

Again the structure of the optimal policy is expected to be signi�cantly more complex and it is unlikely

to characterize the optimal policy theoretically. However, it would be interesting to test numerically if

the 3PR policy is a good approximation for the optimal policy.
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A Appendix

A.1 Proof of Theorem 1

In all this section, we assume that hR ≥ hS and µR
(
1 + hR

b

)
≥ µN and v ∈ V. Moreover, we assume

that v ∈ V. As v satis�es property (P1) and (P2), we can rewrite operator T as

Tv(x, y) = C (x, y) + λv (x, y − 1) + δv (x+ 1, y) + µRTRv (x, y) + µNTNv (x, y) (20)

with

TRv(x, y) =

v(x, y) if x = 0

v(x− 1, y + 1) if x > 0
(21)

TNv(x, y) =

min {v(x, y); v(x, y + 1)} if x = 0

v(x, y) if x > 0
(22)

In the following proof we will either use this formulation or the one given in (8).

Property (P1)

Hereafter, we assume that x > 0. We have

∆RTv(x, y) = Tv(x− 1, y + 1)− Tv(x, y)

= ∆RC(x, y) + λ∆Rv(x, y − 1) + δ∆Rv(x+ 1, y)

+ (µR + µN )∆Rv(x, y) + Tserverv(x− 1, y + 1)− Tserverv(x, y)

Since v satis�es properties (P1) and (P2), we have Tserverv(x, y) = µR∆Rv(x, y) and then

∆RTv(x, y) = Tv(x− 1, y + 1)− Tv(x, y)

= ∆RC(x, y) + λ∆Rv(x, y − 1) + δ∆Rv(x+ 1, y)

+ µN∆Rv(x, y) + Tserverv(x− 1, y + 1)

The �rst term equals

∆RC(x, y) = hS
(
(y + 1)+ − y+

)
+ b

(
(y + 1)− − y−

)
+ hR (x− 1− x) (23)

=

hS − hR if y ≥ 0

−b− hR if y < 0
(24)

and is always nonpositive when hR ≥ hS . The second, third and fourth third term are nonpositive since

v satis�es (P1). The �fth term, Tserverv(x − 1, y + 1), is nonpositive by de�nition of Tserver (see (9)).

We conclude that ∆RTv(x, y) ≤ 0, for any x > 0, and Tv satis�es property (P1).

23



Property (P2)

We will show that the following quantity is nonpositive.

µR∆RTv(x, y)− µN∆yTv(x, y)

=
(
µR∆RC(x, y)− µN∆yC(x, y)

)
(25)

+ λ
(
µR∆Rv(x, y − 1)− µN∆yv(x, y − 1)

)
+ δ
(
µR∆Rv(x+ 1, y)− µN∆yv(x+ 1, y)

)
(26)

+ µR
(
µR∆RTRv(x, y)− µN∆yTRv(x, y)

)
+ µN

(
µR∆RTNv(x, y)− µN∆yTNv(x, y)

)
(27)

We have

µR∆RC(x, y)− µN∆yC(x, y) =

µR(hS − hR)− µNhS if y ≥ 0

µR(−b− hR) + µNb if y < 0

that is nonpositive since hR ≥ hS and µR
(
1 + hR

b

)
≥ µN . Hence, (25) is nonpositive. As v satis�es

property (P2), (26) is also nonpositive. (27) will be denoted A and is equal to

A = µR

(
µR
(
TRv(x− 1, y + 1)− TRv(x, y)

)
− µN

(
TRv(x, y + 1)− TRv(x, y)

))
+ µN

(
µR
(
TNv(x− 1, y + 1)− TNv(x, y)

)
− µN

(
TNv(x, y + 1)− TNv(x, y)

))
To show that A is nonpositive, we distinguish two cases: x > 1 and x = 1.

First case: Assume that x > 1. From equations (21) and (22), we have that TRv(x − 1, y + 1) =

v(x− 2, y + 2), TRv(x, y) = v(x− 1, y + 1), TNv(x− 1, y + 1) = v(x− 1, y + 1) and TNv(x, y) = v(x, y).

Hence

A = µR

(
µR
(
TRv(x− 1, y + 1)− TRv(x, y)

)
− µN

(
TRv(x, y + 1)− TRv(x, y)

))
+ µN

(
µR
(
TNv(x− 1, y + 1)− TNv(x, y)

)
− µN

(
TNv(x, y + 1)− TNv(x, y)

))
= µR

(
µR∆Rv(x− 1, y + 1)− µN∆yv(x− 1, y + 1)

)
+ µN

(
µR∆Rv(x, y)− µN∆yv(x, y)

)
As v satis�es (P2), A is the sum of two nonpositive terms and is also nonpositive.

Second case: Assume that x = 1. Then TRv(x− 1, y+ 1) = v(x− 1, y+ 1), TRv(x, y) = v(x− 1, y+ 1),

TNv(x− 1, y + 1) = min {v(x− 1, y + 1); v(x− 1, y + 2)} and TNv(x, y) = v(x, y). Hence

A = µR

(
µR
(
v(x− 1, y + 1)− v(x− 1, y + 1)

)
− µN

(
v(x− 1, y + 2)− v(x− 1, y + 1)

))
+ µN

(
µR
(

min {v(x− 1, y + 1); v(x− 1, y + 2)} − v(x, y)
)
− µN

(
v(x, y + 1)− v(x, y)

))
= −µRµN

(
v(x− 1, y + 2)− v(x− 1, y + 1)

)
+ µN

(
µR
(

min {v(x− 1, y + 1); v(x− 1, y + 2)} − v(x, y)
)
− µN∆yv(x, y)

)
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As v satis�es property (P2), we have −µN∆yv(x, y) ≤ −µR∆Rv(x, y) and

A ≤ −µRµN
(
v(x− 1, y + 2)− v(x− 1, y + 1)

)
+ µN

(
µR
(
v(x− 1, y + 2)− v(x, y)

)
− µR∆Rv(x, y)

)
= µRµN

(
− v(x− 1, y + 2) + v(x− 1, y + 1) + v(x− 1, y + 2)− v(x, y)−∆Rv(x, y)

)
= µRµN

(
v(x− 1, y + 1)− v(x, y)− v(x− 1, y + 1) + v(x, y)

)
= 0

We conclude that, for any x > 0, A ≤ 0. Finally, µR∆RTv(x, y) ≤ µN∆yTv(x, y) for all x > 0 and

Tv satis�es property (P2).

Property (P3)

From (20), we have

∆yTv(x, y + 1)−∆yTv(x, y) = λ(∆yv(x, y)−∆yv(x, y − 1)) + δ(∆yv(x+ 1, y + 1)−∆yv(x+ 1, y))

+ µR(∆yTRv(x, y + 1)−∆yTRv(x, y))

+ µN (∆yTNv(x, y + 1)−∆yTNv(x, y))

As v satis�es (P3), the �rst line is nonpositive. By de�nition of operator TR (see (21)), we have

∆yTRv(x, y + 1)−∆yTRv(x, y) =

∆yv(x, y + 1)−∆yv(x, y) if x = 0

∆yv(x− 1, y + 2)−∆yv(x− 1, y + 1) if x > 0

which is nonpositive since v satis�es (P3). Remains to show that TNv also satis�es property (P3). When

x > 0, we have immediately from the de�nition of TN (see (22))

∆yTNv(x, y + 1)−∆yTNv(x, y) = ∆yv(x, y + 1)−∆yv(x, y)

which is again nonpositive since v satis�es (P3). When x = 0, operator TN can be seen as the acceptance

operator TAC(y) in Koole (1998) which propagates convexity in y.

We conclude that (∆yTv(x, y + 1)−∆yTv(x, y) ≤ 0) and Tv satis�es (P3).

A.2 Proof of Theorem 2

Let v ∈ W and let assume that µR = µN = µ. We will show that Tv ∈ W. Since v satis�es (P2), we

have when x > 0

Tsv(x, y) = min{v(x, y), v(x− 1, y + 1), v(x, y + 1)} = min{v(x, y), v(x− 1, y + 1)} (28)

In the following proof, we will use one or the other expression of Tsv(x, y).
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Property (P2)

We would like to show that ∆xTv(x, y) ≥ 0 for all (x, y). We have

∆xTv(x, y) = ∆xC(x, y) + λ∆xv(x, y − 1) + δ∆xv(x+ 1, y)

+ µ∆xTsv(x, y)

The �rst line is nonpositive since ∆xC(x, y) = hR ≥ 0. By de�nition of Ts (see (28)), we have when

x = 0

∆xTsv(x, y) = min{v(x+ 1, y), v(x, y + 1)} −min{v(x, y), v(x, y + 1)}

If min{v(x+1, y), v(x, y+1)} = v(x+1, y), then ∆xT1v(x, y) ≥ v(x+1, y)−v(x, y) = ∆xv(x, y) ≥ 0. Else

∆xT1v(x, y) ≥ v(x, y + 1) − v(x, y + 1) = 0. We conclude that ∆xTsv(x, y) ≥ 0 when x = 0. Similarly,

we can show that ∆xTsv(x, y) ≤ 0 when x > 0. Finally, ∆xTv(x, y) ≥ 0 for all (x, y) and Tv satis�es

(P2).

Property (P4)

We want to show that the following quantity is nonnegative:

∆y∆xTv(x, y) = ∆y∆x{C (x, y) + λv (x, y − 1) + δv (x+ 1, y)}

+ µ∆y∆xTsv (x, y) .

It is straightforward to check that the �rst term is nonnegative. To show that ∆y∆xTsv (x, y) ≥ 0, we

distinguish two cases: x = 0 and x > 0.

First case: Assume that x = 0. Unfortunately, we can not reuse the results of the literature and we

will have to distinguish four subcases.

∆y∆xTsv(x, y) =Tsv(x+ 1, y + 1)− Tsv(x, y + 1)− Tsv(x+ 1, y) + Tsv(x, y)

= min[v(x+ 1, y + 1), v(x, y + 2)]−min[v(x, y + 1), v(x, y + 2)]

−min[v(x+ 1, y), v(x, y + 1)] + min[v(x, y), v(x, y + 1)]

If min[v(x+ 1, y + 1), v(x, y + 2)] = v(x+ 1, y + 1) and min[v(x, y), v(x, y + 1)] = v(x, y), then

∆y∆xTsv(x, y)

= v(x+ 1, y + 1)−min[v(x, y + 1), v(x, y + 2)]−min[v(x+ 1, y), v(x, y + 1)] + v(x, y)

≥ v(x+ 1, y + 1)− v(x, y + 1)− v(x+ 1, y) + v(x, y) = ∆y∆xv(x, y) ≥ 0

If min[v(x+ 1, y + 1), v(x, y + 2)] = v(x, y + 2) and min[v(x, y), v(x, y + 1)] = v(x, y + 1), then

∆y∆xTsv(x, y)

= v(x, y + 2)−min[v(x, y + 1), v(x, y + 2)]−min[v(x+ 1, y), v(x, y + 1)] + v(x, y + 1)

≥ v(x, y + 2)− v(x, y + 2)− v(x, y + 1) + v(x, y + 1) = 0
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If min[v(x+ 1, y + 1), v(x, y + 2)] = v(x+ 1, y + 1) and min[v(x, y), v(x, y + 1)] = v(x, y + 1), then

∆y∆xTsv(x, y)

= v(x+ 1, y + 1)−min[v(x, y + 1), v(x, y + 2)]−min[v(x+ 1, y), v(x, y + 1)] + v(x, y + 1)

≥ v(x+ 1, y + 1)− v(x, y + 1)− v(x, y + 1) + v(x, y + 1) = −∆xv(x, y + 1) ≥ 0

If min[v(x+ 1, y + 1), v(x, y + 2)] = v(x, y + 2) and min[v(x, y), v(x, y + 1)] = v(x, y), then

∆y∆xTsv(x, y)

= v(x, y + 2)−min[v(x, y + 1), v(x, y + 2)]−min[v(x+ 1, y), v(x, y + 1)] + v(x, y)

≥ v(x, y + 2)− v(x, y + 1)− v(x, y + 1) + v(x, y + 1) = ∆y∆yv(x, y) ≥ 0

Second case: Assume that x > 0. Fortunately, we can reuse the results of Koole (1998). He shows that

the jockeying operator Tsv(x, y) = min[v(x, y), v(x−1, y+ 1)] propagates properties (P4), (P5) and (P6)

altogether. Hence, when x > 0, ∆y∆xTsv (x, y) ≥ 0.

Property (P5)

The proof is similar to the one of Property (P5). The only issue is to show that the following quantity

is nonpositive when x = 0.

∆y∆xyTsv(x, y) =Tsv(x+ 1, y + 1)− Tsv(x, y + 2)− Tsv(x+ 1, y) + Tsv(x, y + 1)

= min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]−min[v(x, y + 2), v(x, y + 3)]

−min[v(x+ 1, y), v(x, y + 1)] + min[v(x, y + 1), v(x, y + 2)]

If min[v(x, y + 2), v(x, y + 3)] = v(x, y + 2) and min[v(x+ 1, y), v(x, y + 1)] = v(x, y + 1),

∆y∆xyTsv(x, y) = min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]− v(x, y + 2)

− v(x, y + 1) + min[v(x, y + 1), v(x, y + 2)]

≤ v(x, y + 2)− v(x, y + 2)− v(x, y + 1) + v(x, y + 1) = 0

If min[v(x, y + 2), v(x, y + 3)] = v(x, y + 2) and min[v(x+ 1, y), v(x, y + 1)] = v(x+ 1, y),

∆y∆xyTsv(x, y) = min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]− v(x, y + 2)

− v(x+ 1, y) + min[v(x, y + 1), v(x, y + 2)]

≤ v(x+ 1, y + 1)− v(x, y + 2)− v(x+ 1, y) + v(x, y + 1)

= ∆y∆xyv(x, y) ≤ 0
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If min[v(x, y + 2), v(x, y + 3)] = v(x, y + 3) and min[v(x+ 1, y), v(x, y + 1)] = v(x, y + 1),

∆y∆xyTsv(x, y) = min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]− v(x, y + 3)

− v(x, y + 1) + min[v(x, y + 1), v(x, y + 2)]

≤ v(x, y + 2)− v(x, y + 3)− v(x, y + 1) + v(x, y + 2)

= −∆y∆yv(x, y) ≤ 0

If min[v(x, y + 2), v(x, y + 3)] = v(x, y + 3) and min[v(x+ 1, y), v(x, y + 1)] = v(x+ 1, y),

∆y∆xyTsv(x, y) = min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]− v(x, y + 3)

− v(x+ 1, y) + min[v(x, y + 1), v(x, y + 2)]

≤ v(x+ 1, y + 2)− v(x, y + 3)− v(x+ 1, y) + v(x, y + 1)

= ∆xyv(x, y + 2)−∆xyv(x, y) ≤ 0

Property (P6)

The proof is similar to the one of properties (P4) and (P5). The only issue is to show that the following

quantity is nonnegative when x = 0.

∆x∆xyTsv(x, y) =Tsv(x+ 2, y)− Tsv(x+ 1, y + 1)− Tsv(x+ 1, y) + Tsv(x, y + 1)

= min[v(x+ 2, y), v(x+ 1, y + 1)]−min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]

−min[v(x+ 1, y), v(x, y + 1), v(x+ 1, y + 1)] + min[v(x, y + 1), v(x, y + 2)]

If min[v(x+ 2, y), v(x+ 1, y + 1)] = v(x+ 2, y) and min[v(x, y + 1), v(x, y + 2)] = v(x, y + 1),

∆x∆xyTsv(x, y) = v(x+ 2, y)−min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]

−min[v(x+ 1, y), v(x, y + 1), v(x+ 1, y + 1)] + v(x, y + 1)

≥ v(x+ 2, y)− v(x+ 1, y + 1)− v(x+ 1, y) + v(x, y + 1)

= ∆x∆xyv(x, y) ≥ 0

If min[v(x+ 2, y), v(x+ 1, y + 1)] = v(x+ 1, y + 1) and min[v(x, y + 1), v(x, y + 2)] = v(x, y + 1),

∆x∆xyTsv(x, y) = v(x+ 1, y + 1)−min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]

−min[v(x+ 1, y), v(x, y + 1), v(x+ 1, y + 1)] + v(x, y + 1)

≥ v(x+ 1, y + 1)− v(x+ 1, y + 1)− v(x, y + 1) + v(x, y + 1) = 0

If min[v(x+ 2, y), v(x+ 1, y + 1)] = v(x+ 2, y) and min[v(x, y + 1), v(x, y + 2)] = v(x, y + 2),

∆x∆xyTsv(x, y) = v(x+ 2, y)−min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]

−min[v(x+ 1, y), v(x, y + 1), v(x+ 1, y + 1)] + v(x, y + 2)

≥ v(x+ 2, y)− v(x+ 1, y + 1)− v(x+ 1, y + 1) + v(x, y + 2)

= ∆xyv(x+ 1, y)−∆xyv(x, y + 1)

≥ ∆xyv(x, y)−∆xyv(x, y + 1) ≥ 0
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If min[v(x+ 2, y), v(x+ 1, y + 1)] = v(x+ 1, y + 1) and min[v(x, y + 1), v(x, y + 2)] = v(x, y + 2),

∆x∆xyTsv(x, y) = v(x+ 1, y + 1)−min[v(x+ 1, y + 1), v(x, y + 2), v(x+ 1, y + 2)]

−min[v(x+ 1, y), v(x, y + 1), v(x+ 1, y + 1)] + v(x, y + 2)

≥ v(x+ 1, y + 1)− v(x, y + 2)− v(x+ 1, y + 1) + v(x, y + 2) = 0

A.3 Blocks of matrix Q

We use the notation N = Ymax − Ymin. Each block is a (N + 1)2 square-matrix.

Block B1 is de�ned by

B1 =



∆0 u0 0 . . . 0 0 0

λ ∆1 u1
. . . 0 0 0

0
. . .

. . .
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . . uN−2 0

0 0 0
. . .

. . . ∆N−1 uN−1

0 0 0 . . . 0 λ ∆y


with

um =

{
µN for 0 ≤ m ≤ S − 1

0 for S ≤ m ≤ N

∆m =


−µN − δ for m = 0

−λ− µN − δ for 1 ≤ m ≤ S − 1

−λ− δ for S ≤ m ≤ N

Block A0 is de�ned by A0 = δId with Id is the identity matrix.

Block A1 is de�ned by

A1 =



a 0 0 . . . 0 0 0

λ b
. . .

. . . 0 0 0

0
. . .

. . .
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . .
. . .

. . . 0

0 0 0
. . .

. . . b 0

0 0 0 . . . 0 λ c


with

a = −δ − µR ,

b = −λ− δ − µR ,

c = −λ− δ .
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Block A2 is de�ned by

A2 =



0 µR 0 . . . 0 0 0

0 0 µR
. . . 0 0 0

0 0 0
. . .

. . . 0 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0
. . .

. . . 0 µR 0

0 0 0
. . . 0 0 µR

0 0 0 . . . 0 0 0
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