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Abstract

We consider a production-inventory system that consists of n stages. Each
stage has a finite production capacity modelled by an exponential server.
The downstream stage faces a Poisson demand. Each stage receives returns
of products according to independent Poisson processes that can be used to
serve demand. The problem is to control production to minimize discounted
(or average) holding and backordering costs. For the single-stage problem
(n = 1), we fully characterize the optimal policy. We show that the optimal
policy is base-stock and we derive an explicit formula for the optimal base-
stock level. For the general n-stage problem, we show that the optimal policy
is characterized by state-dependent base-stock levels. In a numerical study,
we investigate three heuristic policies: the base-stock policy, the Kanban
policy and the fixed buffer policy. The fixed-buffer policy obtains poor results
while the relative performances of base-stock and Kanban policies depend
on bottlenecks. We also show that returns have a non-monotonic effect on
average costs and strongly affect the performances of heuristics. Finally,
we observe that having returns at the upstream stage is preferable in some
situations.

Keywords: Inventory control, Product returns, Multi-echelon systems,
Queueing, Markov decision process

1. Introduction

The importance of product returns is growing in supply chains. Cus-
tomers often can return products a short time after purchase, due to take-
back commitments of the supplier. For instance, the proportion of returns is
particularly important in electronic business where customers can not touch
a product before purchasing it. Customers might also return used products
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a long time after purchase. This type of return has increased in recent years
due to new regulations on waste reduction, especially in Europe. Some indus-
tries also encourage returns for economical and marketing reasons. Though
different in nature, these two types of returns are similar from an inventory
control point of view since they constitute a reverse flow which complicates
decision making.

The inventory control literature on product returns is quite abundant
(see e.g. Fleischmann et al. (1997); Ilgin and Gupta (2010); Zhou and Yu
(2011)). However, most of the literature focusses on single-echelon systems
with infinite production capacity. In this paper, we fill this gap by considering
a n-stage production/inventory system with finite production capacity and
product returns at each stage (see Figure 1). The flow of returns at the
finished good (FG) inventory may result from remanufacturing, recycling,
repairing or simply returning new products. The flows of returns at the work-
in-process (WIP) inventories can also result from disassembly operations. For
instance, the Kodak company reuses only some parts of cameras like circuit
board, plastic body and lens aperture (Toktay et al., 2000).
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Figure 1: A two-stage production/inventory system with returns.

More precisely, we adopt a queueing framework to model production ca-
pacity. Items are produced by servers one by one and each unit requires a
random lead-time to be produced. We assume that each stage consists of a
single exponential server and an output inventory. The downstream stage
faces a Poisson demand. Each stage receives returns of products, accord-
ing to independent Poisson processes, that can be used to serve demand.
The problem is then to control production at each stage, in order to mini-
mize discounted/average holding and backordering costs. We also study the
single-stage problem which has not been studied in the literature. In what
follows, we review the literature on single-echelon and multi-echelon systems
with returns, before presenting in detail our contributions.
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The literature on single-echelon systems is quite mature. Heyman (1977)
considers an inventory system with independent Poisson demand and Poisson
returns. Unsatisfied demands are backordered. Heyman assumes zero lead-
times and linear costs for both manufacturing and remanufacturing. These
strong assumptions imply that the optimal production policy is a make-
to-order policy and that the optimal disposal policy is a simple threshold
policy: when the inventory level exceeds a certain disposal threshold R, every
returned item is disposed upon arrival. An explicit expression for the optimal
disposal threshold is also derived. For a lost sale problem with exponential
service times, Poisson demand and returns, Zerhouni et al. (2010) investigate
the impact of ignoring dependency between demands and returns.

Fleischmann et al. (2002) consider a similar setting with deterministic
manufacturing lead-time and fixed order cost. Again, remanufacturing lead-
time and remanufacturing costs are neglected. They extend results standing
for a system without returns by showing that the optimal policy is (s,Q) for
the average-cost problem. For the periodic review version with a stochastic
demand either positive or negative in each period, Fleischmann and Kuik
(2003) show the average-cost optimality of an (s, S) policy. Simpson (1978)
and Inderfurth (1997) consider a periodic-review problem where returns are
held in a separate buffer until they are remanufactured or disposed of. When
the remanufacturing lead-time is equal to the production leadtime and the
costs are linear, they show that a three-parameter policy is optimal.

Apart from these optimal control papers, several heuristic policies have
been investigated in the literature. Van der Laan et al. (1996b) model the re-
manufacturing shop as an M/M/c/(c+N) queue with c parallel servers and
introduce the (sp, Qp, N) policy where sp is the reorder point, Qp the order
quantity and any return is disposed whenever the number of products wait-
ing for repair equals N . Van der Laan et al. (1996a) extend this policy with
the (sp, Qp, sd, N) policy where returns are disposed when the stock level is
above sd. Van der Laan and Salomon (1997) consider a model with correlated
demand process and return process. They compare an (sp, Qp, Qr, sd) push-
disposal policy with an (sp, Qp, sr, Sr, sd) pull-disposal policy to coordinate
manufacturing and remanufacturing decisions. For the push-disposal policy,
returned products are remanufactured with batch size Qr. For the pull-
disposal policy, remanufacturing is initiated only when the finished good in-
ventory is below sr and the remanufacturable inventory is above Sr. Teunter
and Vlachos (2002) complement the numerical study of the above model.

The literature on multi-echelon systems with returns is much more lim-
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ited. In their seminal work (without returns), Clark and Scarf (1960) studies
a series inventory system with n stages, periodic review, linear holding and
backorder cost, no setup cost and stochastic demand at the downstream
stage. They prove that a base-stock policy is optimal. DeCroix et al. (2005)
extend the results of Clark and Scarf (1960) to the case where demand can
be negative. They also propose a method to compute a near optimal policy,
explain how to extend their model when returns occur at different stages
and compare the base-stock policies to fixed-buffer policies. DeCroix (2006)
combines the multi-echelon structure of DeCroix et al. (2005) and the re-
manufacturing structure of Inderfurth (1997). DeCroix and Zipkin (2005)
and Decroix et al. (2009) consider assemble-to-order systems with returns of
components or finished product.

In production-inventory systems, replenishment is modelled in a different
way than in pure inventory systems. Items are produced by servers one by
one, or possibly by batches. Each unit, or batch, requires a random lead-
time to be produced. Hence replenishments are capacitated in production-
inventory systems. In line with this approach, Veatch and Wein (1992) con-
sider a n-stage system with exponential server at each stage. Otherwise, their
assumptions are similar to Clark and Scarf (1960). They prove that the op-
timal policy is never a state-dependent base-stock policy. In another paper,
Veatch and Wein (1994) studies the case n = 2. They investigate several
classes of policies and compare them to the optimal policy. They conclude
that the base-stock policy is generally the best heuristic. However, when the
downstream station is the bottleneck, the Kanban policy is better. Dallery
and Liberopoulos (2003) investigates a generalized Kanban policy being a
mix between Kanban and base-stock policy. In a deterministic environment,
several papers have investigated capacitated production and/or remanufac-
turing (see e.g. Nahmias and Rivera (1979); Teunter (2001, 2004); Li et al.
(2007)).

In this paper, we extend the model of Veatch and Wein (1992) by includ-
ing Poisson returns at each stage. We show that the optimal policy is still a
complex state-dependent base-stock policy and we derive several monotonic-
ity results for the base-stock levels. Interestingly, the single-echelon problem
has not been treated in the literature, when including Poisson returns. In
this case, the optimal policy reduces to a simple base-stock policy and we are
able to derive an explicit formula for the optimal base-stock level for both
average-cost and discounted-cost problems. Such explicit formulas are very
rare in inventory control theory, especially when returns are included. When
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service times, inter-arrival times and inter-return times are not exponential
but have general i.i.d. distributions, we explain how to compute the optimal
base-stock level by using results from the newsvendor problem.

The optimal policy of the n-stage problem has a complex form and might
be difficult to implement in practice. To counter this, we evaluate the per-
formances of three classes of heuristic policies (fixed buffer, base-stock and
Kanban) which are reasonable with respect to the optimal policy structure.
The fixed-buffer policy obtains poor results while the relative performances
of base-stock and Kanban policies depend on bottlenecks, consistently with
Veatch and Wein (1996). Moreover, we observe that return rates strongly
affect the relative performances of heuristics.

Section 2 describes in detail the n-stage problem. Section 3 provides a full
characterization of the optimal policy for the single-stage system. Section 4
shows that the optimal policy for the n-stage system is a state-dependent
base-stock policy. Section 5 investigates the performances of three heuristic
policies. Finally, we conclude and discuss avenues for research in Section 6.

2. Assumptions and notations

We consider a n-stage production/inventory system in series which sat-
isfies end-customer demand (see Figure 2). Station Mi, i ∈ {1, . . . , n}, pro-
duces items one by one. The production lead-time of station Mi is exponen-
tially distributed with rate µi. Preemption is allowed and works as follows.
The processing of a job at station Mi can be interrupted at any point in time
and continued latter. Because of the memoryless property of the exponential
distribution, continuing a job is equivalent to restarting it from the begin-
ning. Produced items are stocked in a buffer Bi just after Mi. The end buffer
Bn sees customer demands arriving according to a Poisson process with rate
λ. We assume that backorders are allowed. At time t, the on-hand inventory
at Bi (1 ≤ i < n) is denoted by Xi(t) and the net on-hand inventory at Bn is
denoted by Xn(t). When buffer Bi (1 ≤ i < n) is empty, Mi+1 can not start
to produce.
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Figure 2: The n-stage M/M/1 make-to-stock queue with product returns.

Returns of products occur at buffer Bi according to an independent Pois-
son process with rate δi. When a return is accepted in buffer Bi, it can be
used immediately as a new product (we neglect the remanufacturing lead-
time). Another way to see these n return flows is to consider a situation
where there is a single flow of returns for the whole system (rate

∑n

i=1 δi)
and, after an inspection, returned products are routed to the inventory Bi

with probability pi = δi/(
∑n

i=1 δi).
The system is stable if we have the following conditions on the parameters.

n
∑

i=1

δi < λ, (1a)

λ < µj +

n
∑

i=j

δi, ∀j ∈ {1, . . . , n}. (1b)

Condition (1a) requires that the demand rate must be larger than the
total return rate. Condition (1b) requires that all echelon have to be able to
serve the demand. These two conditions can be aggregated into the following
inequalities

n
∑

i=1

δi < λ < min
j∈{1,...,n}

{

µj +

n
∑

i=j

δi

}

. (2)

The system incurs in state X(t) = (X1(t), . . . , Xn(t)) a cost rate

c(X) =
n−1
∑

i=1

hiXi + hnX
+
n + bX−

n

where hi is the inventory holding cost per unit in stock per unit of time at
buffer Bi, b is the backorder cost per unit of waiting demand per unit of time,
x+ = max[0, x] and x− = max[0,−x]. The unit return cost is cri at stage i.
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As the optimal policy is independent of cri , we set without loss of generality
cri = 0 for i ∈ {1, . . . , n}.

A production policy π specifies when to produce for each stage. The
discounted expected cost over an infinite horizon of a policy π, with initial
state x = (x1, . . . , xn) and discount rate α > 0, is

vπα(x) = E





+∞
∫

0

e−αtc(X(t))dt|X(0) = x



 .

Our objective is to find the optimal policy, denoted by π⋆, that minimizes
the expected discounted cost vπα(x) over an infinite horizon. We denote by
v⋆α(x) the optimal value function:

v⋆α(x) = min
π

vπα(x).

We are also interested in the average-cost problem

g⋆ = min
π

lim
T→∞

Eπ
x

[

T
∫

0

c(X(t))dt

]

T
.

There is a strong link between the discounted-cost problem and the average-
cost problem. The average-cost optimal policy can be obtained as the limit
of the discounted-cost optimal policy when α goes to zero. Moreover, the
optimal average cost g⋆, is the limit of αv⋆α(x) when α goes to 0, for each
x. To justify these two properties, we use the results of Weber and Stidham
(1987) which apply to problems with infinite state space and unbounded
costs.

3. A full characterization of the optimal policy for the single-stage
problem (n = 1)

Before considering the n-stage problem, we analyze the single-stage prob-
lem (see Figure 3), for which we are able to fully characterize the optimal
policy. Veatch and Wein (1996) and Dusonchet and Hongler (2003) have
investigated the single-stage problem. In this section, we extend their results
to a single-stage problem including product returns.
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Figure 3: The single-stage M/M/1 make-to-stock queue with product returns (n = 1).

For the single-stage problem, we denote the system parameters by λ, µ,
δ, h, b, α (demand rate, production rate, return rate, holding cost, backorder
cost, discount rated). The net on-hand inventory is denoted by x and the
cost rate is c(x) = hx+ + bx−. The problem is again to control production
in order to minimize discounted or average costs.

3.1. Structure of the optimal policy

The problem of finding the optimal control policy can be formulated as
a continuous-time Markov Decision Process (MDP). After uniformizing the
MDP with rate τ = λ + µ + δ, we can transform the continuous-time MDP
into a discrete time MDP (Puterman, 1994). The optimal value function v⋆α
satisfies the following optimality equations:

v⋆α(x) = Tv⋆α(x), ∀x

with

Tv(x) =
1

τ + α
[c(x) + µmin[v(x), v(x+ 1)] + λv(x− 1) + δv(x+ 1)]. (3)

Theorem 1. The optimal value function v⋆α(x) is convex in x. The optimal
policy for the discounted-cost problem (respectively the average-cost problem)
is base-stock: there exists a base-stock level z⋆α (respectively z⋆) such that it is
optimal to produce if the stock level is smaller than z⋆α (respectively z⋆) and
to idle production otherwise.

Proof. We first prove that operator T preserves convexity. Consider a convex
value function v, such that ∆v(x) = v(x+1)−v(x) is non-decreasing in x. By
assumption, the cost rate c(x) is also convex. As mentioned by Koole (1998),
the function min[v(x), v(x + 1)] is also convex. The functions v(x − 1) and
v(x + 1) are also convex. Finally Tv, as a non-negative linear combination
of convex functions, is also convex.
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As operator T is a contraction mapping, the fixed point theorem in a
Banach space (Puterman, 1994) ensures that any sequence of value functions
(vn) defined as vn+1 = Tvn will converge to the optimal value function v⋆α,
the unique solution of the optimality equations v⋆α = Tv⋆α.

If we take a null value function v0, it is clear that v0 is convex. By
induction, we conclude that v⋆α is convex. This property allows to define the
threshold z⋆α = min[x : ∆v⋆α(x) > 0] such that ∆v⋆α(x) ≤ 0 (produce) when
x < z⋆α and ∆v⋆α(x) > 0 (idle) when x ≥ z⋆α. For the average-cost problem, it
suffices to use the property that the discounted-cost policy converges to the
average-cost policy when α goes to 0 (Weber and Stidham, 1987).

3.2. Steady-state probabilities

In this subsection, we derive the steady state probabilities when the con-
trol policy is base-stock with a base-stock level z. In this case, the net on-
hand inventory X(t) evolves according to a continuous-time Markov chain
(Figure 4).

Figure 4: Markov chain in the backorder case with returns case.

Define the ratios ρ1 = λ
µ+δ

and ρ2 = δ
λ
where ρ2 will be referred to as

the return ratio. To ensure the stability of the number of backorders and
the inventory level, we assume that ρ1 < 1 and ρ2 < 1. Let p(i) be the
steady-state probability to be in state i. We have

p(i) =

{

ρz−i
1 p(z) if i ≤ z,

ρi−z
2 p(z) if i ≥ z.

(4)

Using the normalization condition,
∑∞

i=−∞ p(i) = 1, we obtain

p(z) =
(1− ρ1)(1− ρ2)

1− ρ1ρ2
.
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3.3. Average-cost problem

When computing the average cost, me must distinguish two cases: z ≥ 0
and z ≤ 0. These two cases are symmetrical (interchange h and b, µ1 and µ2

and replace z by −z). The average on-hand inventory X̄+ and the average
number of backlogs X̄− are given by

X̄+ =

+∞
∑

i=0

ip(i)

=

{
∑z

i=0 iρ
z−i
1 p(z) +

∑+∞
i=z+1 iρ

i−z
2 p(z) if z ≥ 0,

∑+∞
i=1 iρ

i−z
2 p(z) if z ≤ 0,

=







z + p(z)
[

ρ1
(1−ρ1)2

(ρz1 − 1) + ρ2
(1−ρ2)2

]

if z ≥ 0,

p(z)
ρ−z+1

2

(1−ρ2)2
if z ≤ 0,

X̄− = −
0

∑

i=−∞

ip(i)

=

{

−p(z)
∑0

i=−∞ iρz−i
1 if z ≥ 0,

−p(z)
∑z−1

i=−∞ iρz−i
1 − p(z)

∑0
i=z iρ

i−z
2 if z ≤ 0,

=







p(z)
ρz+1

1

(1−ρ1)2
if z ≥ 0,

−z + p(z)
[

ρ2
(1−ρ2)2

(

ρ−z
2 − 1

)

+ ρ1
(1−ρ1)2

]

if z ≤ 0.

After some algebraic operations, the average cost g(z) = hX̄+ + bX̄− can be
expressed as

g(z) =







h
{

z + p(z)
[

ρ1
(1−ρ1)2

(

−1 + h+b
h
ρz1
)

+ ρ2
(1−ρ2)2

]}

if z ≥ 0,

b
{

−z + p(z)
[

ρ2
(1−ρ2)2

(

−1 + b+h
b
ρ−z
2

)

+ ρ1
(1−ρ1)2

]}

if z ≤ 0,
(5)

and
{

g(z + 1)− g(z) =
(1−ρ2)[h−(h+b)ρz+1

1
]+h(1−ρ1)ρ2

1−ρ1ρ2
if z ≥ 0,

g(z − 1)− g(z) = −
(1−ρ1)[b−(b+h)ρ−z+1

2
]+b(1−ρ2)ρ1

1−ρ2ρ1
if z ≤ 0.

The quantity ∆g(z) = g(z+1)−g(z) is increasing in z, which implies that g(·)
is convex. Hence the average cost is minimized for z⋆ = min[z : ∆g(z) > 0].
This property implies the following theorem.
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Theorem 2. The average-cost optimal base-stock level z⋆ is

z∗ =











































ln
(

1−ρ1ρ2
1−ρ2

h
h+b

)

ln ρ1







 ≥ 0 if 1−ρ1ρ2
1−ρ2

h
h+b

≤ 1,









−
ln
(

1−ρ2ρ1
1−ρ1

b
b+h

)

ln ρ2









≤ 0 else.

Based on Theorem 2, we can easily establish several properties of the
optimal base-stock level. First, z⋆ is a decreasing function of the return rate
δ. When the return rate is increasing, it is better off diminishing the base-
stock level in order to limit excess inventory. When δ = 0, we re-obtain the
result obtained by Veatch and Wein (1996) in a system without returns:

z⋆ =

⌊

ln h
h+b

ln λ
µ

⌋

if δ = 0.

When δ goes to λ, ρ2 goes to 1 and z⋆ goes to infinity. In presence of returns,
the base-stock level can take any negative integer value. Without returns,
the optimal base-stock level is always non-negative.

3.4. Discounted-cost problem

It is more complex to compute analytically the optimal base-stock level in
the discounted cost case. Denote by vzα(x) the expected discounted cost when
the base-stock level is z, the initial inventory level is x and the discount rate
is α. The following lemma establishes an explicit formula for the discounted
cost.

Lemma 1.

vzα(z) =







h
α

(

z + αB
[

β1

(1−β1)2

(

−1 + h+b
h
βz
1

)

+ β2

(1−β2)2

])

if z ≥ 0,

b
α

(

−z + αB
[

β2

(1−β2)2

(

−1 + b+h
b
β−z
2

)

+ β1

(1−β1)2

])

if z ≤ 0.
(6)
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where

B =
1

α

(1− β1)(1− β2)

1− β1β2
,

β1 =
α + λ+ δ + µ−

√

(α+ λ+ µ+ δ)2 − 4λ(µ+ δ)

2(µ+ δ)
,

β2 =
α + λ+ δ −

√

(α+ λ+ δ)2 − 4λδ

2λ
.

The proof of this lemma is provided in appendix.
When α goes to 0, β1 goes to ρ1, β2 goes to ρ2 and αB goes to p(z). There-

fore αvzα(z) goes to the average cost g(z), given in Equation (5), consistently
with Weber and Stidham (1987).

We have v⋆α(z
⋆
α) = minz v

z
α(z). Similarly to the average-cost problem, we

have
{

vzα(z + 1)− vzα(z) =
1
α

(1−β2)[h−(h+b)βz+1

1
]+h(1−β1)β2

1−β1β2
if z ≥ 0,

vzα(z − 1)− vzα(z) = − 1
α

(1−β1)[b−(b+h)β−z+1

2
]+b(1−β2)β1

1−β2β1
if z ≤ 0.

The quantity ∆vzα(z) = vzα(z + 1) − vzα(z) is increasing in z and again z⋆α =
min[z : ∆vzα(z) > 0].

Theorem 3. The optimal base-stock level z⋆α of the discounted problem is

z⋆α =











































ln
(

1−β1β2

1−β2

h
h+b

)

ln β1







 ≥ 0 if 1−β1β2

1−β2

h
h+b

≤ 1,









−
ln
(

1−β2β1

1−β1

b
b+h

)

ln β2









≤ 0 else.

Theorem 3 is consistent with Theorem 2: When α goes to 0, z⋆α goes to
z⋆. Theorem 3 is also consistent with the results of Dusonchet and Hongler
(2003) who consider the case without returns (δ = 0).

3.5. General distributions

In this subsection only, we relax the assumption of exponential distri-
butions and simply assume that service times, inter-arrival times and inter-
return times are identically and independently distributed. In this case, the
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optimal policy can be very complicated and we focus on the class of base-
stock policies. Consider a base-stock policy with base-stock level z. Let X(t)
be the net on-hand inventory level at time t and define N(t) = z − X(t).
The probability distribution of N(t) is independent of z. Denote by p(i) the
steady-state probability of N(t) and by F (i) =

∑i

x=−∞ p(x) the cumulative
distribution function. The average cost is then

g(z) = hE(X+) + bE(X−) = hE(z −N)+ + bE(z −N)−

= h
z

∑

i=0

(z − i)p(i) + b
∞
∑

i=z

(i− z)p(i).

We recognize the objective function of a newsboy problem where the order
quantity is z, the stochastic demand is N , the shortage cost is b and the
holding cost is h. The optimal order quantity for the newsboy model is

z⋆ = min

[

z : F (z) >
b

h+ b

]

. (7)

In the special case of an M/M/1 make-to-stock queue with Poisson returns,
(7) yields to Theorem 2. For other distributions, numerical methods or sim-
ulation can be used to compute F (·).

When considering a lost-sale version of our problem, it can be shown
that the optimal policy is base-stock. However, it is not possible to derive
closed-form expressions for the optimal base-stock level.

4. A partial characterization of the optimal policy for the n-stage
problem

The n-stage problem is more complex to analyze and it seems intractable
to fully characterize the optimal policy. In this section, we provide some
characteristics of the optimal policy, before investigating the performances
of several heuristics, in the next section.

Again, the n-stage problem can be formulated as a continuous-time Markov
Decision Process (MDP). After uniformizing the MDP with rate

τ = λ+

n
∑

i=1

(µi + δi),
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we can transform the continuous-time MDP into a discrete time MDP (Puter-
man, 1994). The optimal value function v⋆α satisfies the following optimality
equations:

v⋆α(x) = Tv⋆α(x), ∀x

with

Tv(x) = 1
τ+α

[c(x) + λv(x− en) +
∑n

i=1(δiv(x+ ei) + µiTiv(x))] ,

T1v(x) = min[v(x), v(x+ e1)],

Tiv(x) =

{

min[v(x), v(x− ei−1 + ei)] if xi−1 > 0,
v(x) else,

∀i ∈ {2, . . . , n}.

In the optimality equations, let ei = (0, . . . , 0, 1, 0, . . . , 0) be for vectors of
dimension n with the “1” in the ith position. In order to derive structural
properties of the optimal policy, we will show that the optimal value function
belongs to the following set of value functions V .

Definition 1. A value function v belongs to V if for all x + di,x + dj ∈
N

n−1 × Z, and for all 0 ≤ i < j ≤ n

v(x) + v(x+ di + dj) ≤ v(x+ di) + v(x+ dj), (8)

with d0 = e1, dk = ek+1 − ek for all k ∈ {1, . . . , n− 1}, and dn = −en.

In Koole (2006), the property presented in equation (8) is called multi-
modularity in direction i and j and denoted by MM(i, j).

The following theorem shows that the optimal value function satisfies this
property and consequently provides a characterization of the optimal policy.

Theorem 4. The optimal value function v⋆α belongs to V and the discounted-
cost optimal policy is a state-dependent base-stock policy. There exists n
switching surfaces z⋆i (x) such that

• Produce at M1 if and only if x1 < z⋆1(x). Moreover z⋆1(x)− 1 ≤ z⋆1(x+
e2) ≤ z⋆1(x).

• For all i ∈ {2, . . . , n}, produce at Mi if and only if xi < z⋆i (x). Moreover
z⋆i (x) ≤ z⋆i (x+ ei−1).
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Proof. The proof is again by induction (see proof of Theorem 1). The oper-
ator T is a linear combination of operators that propagate MM(i, j) for all
0 ≤ i < j < n (Koole, 2006). As a result, if a value function v is in V , then
the value function Tv is also in V . By induction, we conclude that v⋆α ∈ V .

Koole (2006) shows that multimodularity MM(i, j) for all 0 ≤ i < j ≤ n
implies the following properties for all i, j ∈ {1, . . . n}:

(a) v(x+ ei)− v(x) ≤ v(x+ ei + ej)− v(x+ ej),

(b) v(x+ ej)− v(x+ ei) ≥ v(x+ ej + ei)− v(x+ 2ei),

Property (a) is called supermodularity and denoted by Super(i, j). Property
(b) is called superconvexity and denoted by SuperC(i, j).

As v⋆α ∈ V , we can define the threshold z⋆i (x) for all i ∈ {1, . . . , n}.
The threshold z⋆1(x) = min[x1|v(x+ e1)− v(x) > 0] is well defined since v is
Super(1, 1). In the same way, the threshold z⋆i (x) = min[xi|v(x+ei−ei−1)−
v(x) > 0] for all i ∈ {2, . . . , n} is also well defined since v is SuperC(i−1, i).

The monotonicity results on the switching curves are also implied by the
fact that v⋆α ∈ V . For instance, Super(1, 2) ensures that z⋆1(x + e2) ≤ z⋆1(x)
and SuperC(1, 2) ensures that z⋆1(x)−1 ≥ z⋆1(x+e2). The other monotonicity
results are obtained in a similar way.

Note that in Theorem 4, the switching surface z⋆i does not depend on xi.
We write it as a function of x to simplify the notations.

The structure of the optimal policy pertains to the average-cost problem
as explained at the end of Section 2. With lost sales instead of backorders,
it can be shown similarly that the optimal policy has the same structure.
Figure 5 illustrates Theorem 4 on a numerical example with two stages. The
computational procedure to obtain this curve is explained in appendix.
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Figure 5: An illustration of the average cost optimal policy with n = 2 (µ1 = 0.5, µ2 = 0.8,
δ1 = 0.3, δ2 = 0.3, λ = 1, h1 = 1, h2 = 2, b = 4). Number i means that station Mi

produces in this region.

5. Heuristic policies

We can observe on Figure 5 that, the optimal policy of the multi-echelon
problem has a complex form and might be difficult to implement in practice.
To counter this, we evaluate the performances of three simple and classi-
cal heuristic policies: the fixed buffer policy, the base-stock policy and the
Kanban policy. To be numerically tractable, we limit our study to the case
with two stages (n = 2). In this case, each heuristic can be described by
two parameters z1 and z2. The production control of each class of policies is
detailed in Table 1 and illustrated in Figure 6.

Policy Produce at station M1

when
Produce at station M2

when x1 > 0 and
Fixed-buffer x1 < z1 x2 < z2
Base-stock x1 + x2 < z1 x2 < z2
Kanban x1 + x+

2 < z1 x2 < z2
Optimal x1 < z⋆1(x2) x2 < z⋆2(x1)

Table 1: Production control policies.
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and

(a) Optimal policy

and

(b) Fixed-buffer policy

and

(c) Base-stock policy

and

(d) Kanban policy

Figure 6: Illustration of policies. Number i means that station Mi produces in this region.

In each class of policies, we compute the optimal average-cost policy pa-
rameter values (details on the computational procedure are given at the end
of the appendix) for all combinations of the following values:

λ = {1}, µ1 = {1, 1.5, 2}, µ2 = {1, 1.5, 2},

δ1 = {0, 0.3, 0.6, 0.8}, δ2 = {0, 0.3, 0.6, 0.8},

h1 = {1}, h2 = {0.5, 1, 10}, b = {0.5, 1, 10, 100}.

If we restrict to systems satisfying the stability condition (2), we obtain
results for 912 instances summarized in Table 2. In this table, ∆g is the
% cost increase for using a heuristic policy (with parameters set optimally)
instead of the optimal policy.
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Fixed-buffer Base-stock Kanban
% of instances where the heuristic is
the best

0.6 68.0 31.4

Average ∆g (%) 29.0 3.8 9.8
Minimum ∆g (%) 0.60 0.0 0.0
Maximum ∆g (%) 590 51.4 150
% of instances with ∆g ∈ [0%; 1%[ 0.4 45.6 25.4
% of instances with ∆g ∈ [1%; 5%[ 14.2 31.4 26.6
% of instances with ∆g ∈ [5%; 10%[ 5.6 11.2 13.7
% of instances with ∆g > 5% 79.8 11.8 34.3

Table 2: Quantitative comparison of heuristics.

We observe that the base-stock policy is generally the best heuristic and
outperforms other policies in 68% of cases, with a ∆g less than 10% in 88%
of cases. The fixed-buffer policy is the worst by far and is outperformed by
other policies in 99.4% of cases. The Kanban policy is the best heuristic in
31.4%.

When station M1 is the bottleneck (µ2/(µ1 + δ1) ≪ 1), the base-stock
policy generally performs better than the Kanban policy. It is the reverse
when station M2 is the bottleneck. These results are consistent with Veatch
and Wein (1994) who treat the problem without returns. In Figure 7, we
consider the influence of δ1 on the performance of base-stock and Kanban
policies. We have chosen an instance such that Station 1 is the bottleneck
when δ1 is small and Station 2 is the bottleneck when δ1 is large. Expectedly,
we observe that the base-stock policy performs better when Station 1 is the
bottleneck and the Kanban policy performs better when Station 2 is the
bottleneck.
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In Figure 8, we observe that return rates have a non-monotonic effect on
average costs. To explain this behavior, let’s rewrite the stability condition
(2) as

λ− µ1 − δ2 < δ1 < λ− δ2,

λ− µ2 < δ2 < λ− δ1.

When δ1 (resp. δ2) goes to λ − δ2 (resp. to λ − δ1), the total average on-
hand inventory goes to infinity, so does the average cost. On the other hand,
when δ1 (respectively δ2) decreases to λ−µ1−δ2 (respectively to λ−µ2), the
average number of backorders goes to infinity, so does the average cost. These
phenomenons do not appear when production is uncapacitated (Fleischmann
et al., 2002).

19



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.2  0.4  0.6  0.8  1

A
ve

ra
ge

 c
os

t

δ1+δ2

p1=1
p1=0
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On the same figure, we observe that when the return rate is high (δ1+δ2 ≥
0.9), it is preferable to return products in the first stage. In this case, returned
products have to stay a long time in the system before being consumed by
demand. So the system prefers to keep returns in the queue with the lowest
holding cost (h1 < h2). When the return rate is smaller (δ1 + δ2 ≤ 0.9), it is
preferable to have returns at stage 2 in order to satisfy the demand quickly.

6. Conclusions and future research

In this paper, we consider a n-stage production-inventory system with
returns. Unlike most of the literature on inventory control with returns, we
assume that production is capacitated. To model production capacity, we
adopt a queuing framework.

Interestingly, the single-echelon make-to-stock queue problem has not
been treated in the literature, when including Poisson returns. In this case,
the optimal policy reduces to a simple base-stock policy and we are able to
derive an explicit formula for the optimal base-stock level for both average-
cost and discounted-cost problems.

For the n-stage problem, we show that the optimal policy is characterized
by n switching surfaces with several monotonicity properties. Based on this
characterization, we investigate the performances of three heuristics for the
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case n = 2. The fixed-buffer policy obtains poor results while the relative
performances of base-stock and Kanban policies depend on bottlenecks. We
also show that returns have a non-monotonic effect on average costs and
strongly affect the performances of heuristics. Finally, we observe that having
returns at the upstream stage is preferable in some situations.

In this paper, we have assumed that returns where always accepted in
the system. A first avenue for research is to control arrivals of returns. A
return can be either accepted with an acceptance cost or rejected with a
rejection cost. For the single-stage problem, the optimal policy is likely to
be an (R, S) policy stating to accept returns when the inventory level is
below R and to produce when the inventory level is below S. For the n-stage
problem, the optimal policy should be characterized by n production/idle
switching surfaces and n accept/reject switching surfaces. Another avenue
for research is to model explicitly the remanufacturing process. In this case,
returned products are first kept in a remanufacturable inventory, before being
remanufactured.
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Appendix A. Proof of Lemma 1

We have

vzα(z) = E

[
∫ ∞

0

e−αtc(X(t))dt|X(0) = z

]

=

∫ ∞

0

e−αtE [c(X(t))|X(0) = z] dt

=

∫ ∞

0

e−αt

{

∑

y

c(y)P [X(t) = y|X(0) = z]

}

dt

=
∑

y

{

c(y)

∫ ∞

0

e−αtP [X(t) = y|X(0) = z]dt

}

.

Let py(t) = P [X(t) = y|X(0) = z] be the transient probability to be in state
y at time t, when the initial state is z. Let p̃y(α) be the Laplace transform
of py(t):

p̃y(α) =

∫ ∞

0

e−αtpy(t)dt.

Then

vzα(z) =
∑

y

c(y)

∫ ∞

0

e−αtpy(t)

=
∑

y

c(y)p̃y(α).

In order to compute p̃y(α), we write the differential equations on transient
probabilities:

p′y = −(λ + δ)py + λpy+1 + δpy−1 if y > z,

p′y = −(λ + δ)py + λpy+1 + (µ+ δ)py−1 if y = z,

p′y = −(λ + µ+ δ)py + λpy+1 + (µ+ δ)py−1 if y < z,

where p′y(t) denotes the first derivative of py(t). By taking the Laplace trans-
form of the previous set of differential equations, we obtain

(α + λ+ δ)p̃y = λp̃y+1 + δp̃y−1 if y > z, (A.1)

(α + λ+ δ)p̃y = 1 + λp̃y+1 + (µ+ δ)p̃y−1 if y = z, (A.2)

(α + λ+ µ+ δ)p̃y = λp̃y+1 + (µ+ δ)p̃y−1 if y < z. (A.3)
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(A.1) and (A.3) are second-order linear recurrence and have the following
solutions

{

p̃y(α) = A1α
z−y
1 +B1β

z−y
1 if y ≤ z,

p̃y(α) = A2α
y−z
2 +B2β

y−z
2 if y ≥ z,

(A.4)

where α1, β1 are the roots of the characteristic equation

(µ+ δ)x2 − (α + λ+ µ+ δ)x+ λ = 0, (A.5)

and α2, β2 are the roots of another characteristic equation

λx2 − (α + δ + λ)x+ δ = 0. (A.6)

Solving quadratic equations (A.5) and (A.6) gives

α1

β1
=

α + λ+ δ + µ±
√

(α+ λ+ µ+ δ)2 − 4λ(µ+ δ)

2(µ+ δ)
,

and

α2

β2
=

α+ λ + δ ±
√

(α + λ+ δ)2 − 4λδ

2λ
.

We observe that αi > 1 and 0 < βi < 1 for i = 1, 2.
On one hand, we have

∑

y p̃y(α) = 1/α since
∑

y py(t) = 1. On the other
hand, we have

∑

y

p̃y(α) =
z

∑

y=−∞

(A1α
z−y
1 +B1β

z−y
1 ) +

+∞
∑

y=z+1

(A2α
y−z
2 +B2β

y−z
2 ).

The convergence of
∑

y p̃y(α) implies that A1 = A2 = 0.
Using (A.4) when y = z gives p̃z(α) = B1 = B2 = B and we get

{

p̃y(α) = Bβz−y
1 if y ≤ z,

p̃y(α) = Bβy−z
2 if y ≥ z.

Then (A.2) gives

B =
1

α + λ+ δ − (µ+ δ)β1 − λβ2
.
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As β1, β2 respectively satisfy the quadratic equations (A.5) and (A.6), we
have

λ− (µ+ δ)β1 = α
β1

1− β1

, δ − λβ2 = α
β2

1− β2

.

Then

B =
1

α + α β1

1−β1
+ α β2

1−β2

=
1

α

(1− β1)(1− β2)

1− β1β2

.

Finally, for z ≥ 0 we obtain

vzα(z) = −b
0

∑

i=−∞

ip̃i(α) + h
+∞
∑

x=0

ip̃i(α)

= −b
0

∑

i=−∞

iβz−i
1 B + h

z
∑

i=0

iβz−i
1 B + h

+∞
∑

i=z+1

iβi−z
2 B

=
h

α

{

z + αB

[

β1

(1− β1)2

(

−1 +
h+ b

h
βz
1

)

+
β2

(1− β2)2

]}

,

and for z ≤ 0 we obtain

vzα(z) =
b

α

{

−z + αB

[

β2

(1− β2)2

(

−1 +
b+ h

b
β−z
2

)

+
β1

(1− β1)2

]}

.

Appendix B. Computational procedure

To compute the optimal policy, we truncate the state space in three di-
rections. Let Γ1 and Γ+

2 two positive integers and Γ−
2 a negative integer :

0 ≤ x1 ≤ Γ1 and Γ−
2 ≤ x2 ≤ Γ+

2 .

We can then apply a value iteration algorithm (Puterman, 1994) to this
truncated state. We increase the state space until the average cost is no
more sensitive to the truncation level.

In order to evaluate a heuristic policy with parameters (z1, z2), we apply
the same procedure except that we must change the production operators.
For all heuristics, the control is similar at stage 2 and operator T2 is be
replaced by

T̃2v(x) =

{

v(x− e1 + e2) if x1 > 0, and x2 < z2,
v(x) else.
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At stage 1, the control policy depends on the policy. For base-stock policy,
Kanban policy and fixed-buffer policy, operator T1 is respectively replaced
by

T̃BS
1 v(x) =

{

v(x+ e1) if x1 + x2 < z1,

v(x) otherwise,

T̃KB
1 v(x) =

{

v(x+ e1) if x1 + x+
2 < z1,

v(x) otherwise,

T̃ FB
1 v(x) =

{

v(x+ e1) if x1 < z1,

v(x) otherwise.

Denote by Cπ(z1, z2) the average cost of policy π, with π = Kanban, fixed-
buffer, base-stock. For each class of policies, we want to find the parameters
z⋆1 , z

⋆
2 minimizing C(z1, z2). This optimization problem is a non linear prob-

lem with integer variables that might be long to solve since evaluating a
given policy might already takes time. Therefore, we make the plausible
assumption that the function C(z1, z2) is unimodal. This assumption has
been checked on several instances. Based on the unimodularity assumption,
we can solve efficiently the problem with the maximal gradient with con-
stant step method. This method is very efficient here because we can start
the optimization with an approximate value of z⋆1 and z⋆2 , resulting from the
calculation of the optimal policy.
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