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Abstract 

We consider a production-inventory system with product returns that are announced 
in advance by the customers. Demands and announcements of returns occur 
according to independent Poisson processes. An announced return is either actually 
returned or cancelled after a random return leadtime. We consider both lost sale and 
backorder situations. Using a Markov decision formulation, the optimal production 
policy, with respect to the discounted cost over an infinite horizon, is characterized 
for situations with and without advance return information. We give insights in the 
potential value of this information. Also some attention is paid to combining advance 
return and advance demand information. Further applications of the model as well as 
topics for further research are indicated.  
 

Keywords : Reverse logistics; Inventory control; Stochastic dynamic programming; 

Advance return information 

 

 

1

mailto:samuel.vercraene@grenoble-inp.fr
mailto:samuel.vercraene@grenoble-inp.fr


 

 

2

1. Introduction  

During the last 15 years a lot of attention has been paid to so called closed-loop 

supply chains, reverse logistics, product recovery, both in practice, as in academic 

literature, see e.g. Dekker et al. (2004) and Rubio et al. (2008). In this context, also 

attention has been paid to forecasting the reverse flows. Available publications use 

delivery/purchase information to forecast returns, see e.g. (Yuan and Cheung, 1998), 

sometimes taking into account information on actual returns, see e.g. de Brito and 

van der Laan (2009).   
 

In this paper we neglect the use of the above information, but focus on return 

information supplied by the owner/user of a product after the initial delivery, purchase 

of this product. We study situations where customers have to announce the return of 

a product. Advance Return Information/Advance Supply Information (ARI/ASI) is 

among others required in practice for warranty returns, commercial returns, buy back 

contract returns, returns due to wrong delivery. An important reason for the above is 

to prevent unnecessary or incorrect returns. See e.g. Boykin (2001) for a general 

description of the Return Material Authorization process and the support offered for 

this process by SAP. Other examples of using ARI concern information related to the 

end of lease contracts, when the lessee has to indicate some time before whether or 

not (s)he will continue the contract or buy the leased product. 

 

A number of authors paid already attention to the value of advance information in the 

context of product recovery, including the recent contribution by Khawam and 

Hausman (2009) with an up-to-date review of the literature in this field. Our paper 

differs from the above paper  in a number of aspects including the origin of supply 

uncertainty, a finite production capacity, a continuous review of the inventory 

position, random leadtimes and lost sales. 

 

We adopt a make-to-stock queue framework to model production capacity and 

uncertainty with respect to production, returns and demand. A make-to-stock queue 

refers to a make-to-stock system where the supply process is modeled by servers 

producing units one by one. Make-to-stock queues have been used to investigate 

issues such as stock allocation (de Véricourt et al, 2002), production scheduling 

(Zhao et al, 2008), dynamic pricing (Gayon et al., 2009b) and multi-echelon 

coordination (Veatch and Wein, 1994). A few make-to-stock papers include product 



returns (see e.g. Heyman, 1977, Gayon and Dallery, 2007). However, none of them 

investigates the use of ARI. Our modeling of imperfect ARI is close to the modeling of 

imperfect Advance Demand Information (ADI) introduced by Gayon et al (2009a). In 

the latter paper, the customer announces his intention to buy a product but the actual 

ordering takes place after a stochastic demand leadtime, with a cancellation 

probability. In this paper, we assume that the customer announces his intention to 

return a product where the actual return occurs after a stochastic return leadtime, 

with a return cancellation probability. ADI and ARI have opposite impacts on 

production control. For ADI, production is planned when there are many pending 

orders. For ARI, production is not planned when there are many pending returns. 

Because of the increasing use of ADI, we also pay some attention to the combined 

use of ARI and ADI. 

 
The rest of the paper is setup as follows. First, we describe the situation that we 

study as well as the objective function to be optimized. Next, we derive the optimal 

production policy for lost sales situations for an infinite horizon. Via numerical 

experiments we determine the sets of parameter values for which ARI may be useful. 

Next we show that the model developed for the lost sales situations can be amended 

to deal with backlog situations. We also derive the optimal production policy when 

both ARI and ADI are used. Then we explain how our model can be used for other 

applications than product returns. Finally we briefly summarize our main findings and 

indicate some interesting extensions of the model presented here.    

2. Problem description  

In this paper we focus on situations where individual products are produced and 

returned. Products that are returned are as good as new, and are stored in the stock 

of serviceable products together with the products that the company produces new.  

 

We consider an M/M/1 make-to-stock queue for a single item (see Figure 1). The 

company can decide at any time to produce this item. The production time is 

exponentially distributed with mean 1/ µ . After having been produced, products are 

stored in the serviceable products inventory. Demand for the serviceable products 

follows a Poisson process with rateλ . For the moment being, we assume lost sales: 

Demand that cannot be fulfilled immediately is lost. We will also consider backorder 

situations (see Section 4).  
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Besides the single server production mode, the company has an alternative 

procurement mode where the company receives products from another source that is 

not under her direct control. These products can not be distinguished from the 

products produced by the single server. We assume that the company has some 

advance information on the alternative procurement process.  

 

The alternative source considered hereafter is customers that can return products, 

although, as we shall indicate in Section 5, the following also holds for other 

alternative sources. Before returning a product, the customer must announce that he 

will return the product. The announcements occur according to a Poisson process 

with rate δ , independently of the demand process. However, not every announced 

return becomes an actual return. Reasons for this in practice include forgetting to 

return, not at home at the moment of planned pickup, mind change. We assume that 

there is a probability  that an announced return is actually returned. There is a 

probability  that an announced return is cancelled. All actual returns have to 

be accepted and a return can not be disposed. Therefore, to guarantee the stability 

of the on-hand stock of serviceable products, we assume that

p

1q = − p

pδ λ< .  

 

We further assume that the time L  that elapses between the announcement of a 

return and its actual receipt (or cancellation) is exponentially distributed with rateγ . 

This time does not depend on the number of announced returns. Note that a number 

of the earlier mentioned examples from practice concern situations with a predefined 

maximum return time. However, in practice, companies deviate from this time for all 

kinds of reasons, for instance to keep important customers. We make here the same 

approximation as many other authors, including Yuan and Cheung (1998).  

 

Once received, a return is stored in the serviceable stock and can be sold. The state 

of the system can be described by ( ( ), ( ))X t Y t  where ( )X t  denotes the on-hand 

stock of new and returned products at time , and  denotes the number of 

returns that have been announced but still have not been received or cancelled at 

time . 

t ( )Y t

t
 

Insert Figure 1 
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l

We consider unit production cost, , unit lost sale cost , unit return cost  that 

only has to be paid for actual returns, and unit inventory holding cost per unit of time, 

. We assume that  in order to have an incentive to produce. The objective of 

the decision maker is to find a production control policy 

pc lc rc

hc pc c<

π  minimizing the expected 

discounted cost over an infinite time horizon. The discount rate is denoted byα . The 

production control policy specifies, for each state of the system, when to produce. 

We define  as the expected total discounted cost associated with policy( , )v x yπ π , 

for initial state ( (0), (0)) ( , )X Y x= y .  

 

We seek to find the optimal policy *π
 

minimizing , where we let 

 denote the optimal value function. We restrict our analysis to 

stationary Markovian policies since there exists an optimal stationary Markovian 

policy (Puterman, 1994). In the following, we characterize the optimal policy for the 

case where ARI is used and for the case where ARI is ignored.  

( , )v x yπ

**( , ) ( , )v x y v x yπ=

3. Lost sales situations  

3.1. Optimal policy when ARI is used  

When ARI is taken into account, decisions are based on both the on-hand stock of 

serviceable products, ( )X t , and the number of announced returns, . The 

situation can be modeled as a continuous-time Markov Decision Process (MDP). In 

order to uniformize this MDP (Lippman, 1975), we assume that the number of 

announced returns is bounded by

( )Y t

M . This is not a crucial assumption since our 

results hold for any M . We choose a uniformization rate + +C Mλ µ δ γ= + . The 

optimal value function can be shown (Puterman, 1994) to satisfy the optimality 

equations 

*( , ) *( , ), ( , )v x y Tv x y x y= ∀  

where the operator T  is a contraction mapping defined as 

[ ]0 1 2 3 4
1( , ) ( , ) ( , ) ( , ) ( , ) (1 ) ( , )hTv x y c x T v x y T v x y T v x y pT v x y p T v x y

C
µ λ δ γ γ

α
= + + + + + −

+
(1)  

with 
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0[ ]

0

1

2

3

4

( , ) min ( , ), ( 1, )

( 1, ) 0
( , )

( , ) 0

( , 1)
( , )

( , )

( 1, 1) ( ) ( , )
( , )

( , ) 0

( , 1) ( ) ( , ) 0
( , )

p

l

r

T v x y v x y v x y c

v x y if x
T v x y

v x y c if x

v x y if y M
T v x y

v x y if y M

y v x y c M y v x y if y
T v x y

Mv x y if y

yv x y M y v x y if y
T v x y

M

⎡ ⎤= + +⎣ ⎦
− >⎧

= ⎨ + =⎩
+ <⎧

= ⎨ =⎩
⎧ + − + + − >

= ⎨
=⎩

− + − >
=

( , ) 0v x y if y
⎧
⎨ =⎩

 

Operator  is related to the production decision. Operator  is associated with the 

demand. Operator  corresponds to the announcements of the returns. Finally, 

operator  (resp. ) is related to an announcement that will (resp. will not) actually 

lead to a return. Considering operator , we notice that the optimal production 

control policy is entirely determined by the sign of 

0T 1T

2T

3T 4T

0T

( )*( , ) pv x y c∆ +  

where . In order to characterize the optimal policy, we 

prove that 
 

( , ) ( 1, ) ( , )v x y v x y v x y∆ = + −

*v belongs to the following set U  of real-valued functions.  

 
Definition 1 If v , then for all U∈ ( , )x y :  

C.1   ( , ) ( 1, )v x y v x y∆ ≤ ∆ +

C.2  ( , ) ( , 1),v x y v x y y M∆ ≤ ∆ + ∀ <

C.3  ( , 1) ( 1, ),v x y v x y y M∆ + ≤ ∆ + ∀ <

C.4  ( , ) lv x y c∆ ≥ −
 

Lemma 1 If , then Tv . Moreover the optimal value function  belongs to 

. 

v U∈ U∈ *v

U
 

The proof of Lemma 1, based on an induction argument, is given in Appendix A.1 at 

the end of this paper. As  satisfies C.1, we can define the threshold 

 such that 

*v

( ) min | *( , ) 0pS y x v x y c⎡ ⎤= ∆ + >⎣ ⎦ *( , ) 0pv x y c∆ + ≤  (i.e. it is optimal to 

produce) if and only if  is below this threshold. Conditions C.2 and C.3 imply a 

slope of  between 0 and 1 (

x

( )S y ( ) 1 ( 1) ( )S y S y S y− ≤ + ≤ ), i.e. an additional 

announced return leads to at most a one unit decrease of the threshold.  

 



Theorem 1 There exists a switching curve  such that it is optimal to produce if 

and only if 

( )S y

( )x S y< . Moreover, the switching curve has the following property:  

( ) 1 ( 1) ( )S y S y S y− ≤ + ≤  

 

Figure 2 illustrates the optimal policy when using ARI with respect to when to 

produce and when not to produce, for a given set of parameter values. 

 

Insert Figure 2 
 

3.2. Optimal policy when ARI is ignored  

When ARI is ignored, the decision maker does not take into account the announced 

returns to make production decisions. Then the state of the system can be described 

by the single variable ( )X t . The physical returns to the stock occur according to a 

Poisson process with rate pδ . This is due to the property that the output process of 

an M/M/∞ queue is a Poisson process with rate equal to the arrival rate (Gross and 

Harris, 1998). Hence, when ARI is ignored, the system behaves like an M/M/1 make-

to-stock queue with independent Poisson demand and returns (see Figure 3) where 

the parameter γ  can be omitted. 

 

Insert Figure 3 
 

For this system, Zerhouni et al. (2009) show that the optimal policy is a base-stock 

policy with a single parameter  such that it is optimal to produce if and only if 

. When a base-stock policy is applied, the dynamics of the system is rather 

simple. For a given base-stock level , the on-hand stock 

*S

*x S<

S ( )X t  evolves as a 

continuous-time Markov chain (see Figure 4).  

 

Insert Figure 4 
 

It is straightforward to derive the steady-state probability ( )x Sπ  to be in state  when 

the base-stock level is . Let 

x

S 1 /( )pρ λ µ δ= +  and 2 /pρ δ λ= . We have 
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11
1 01 2

0 1
1 2 1 2 0

( )1( ) , ( ) .
1 1 ( )

xS
S

x S x S

S if x
S S

S if x S
ρ πρ ρπ ρ π

ρ ρ ρ ρ π

− −+

− −

⎧⎛ ⎞ ≤−
= + = ⎨⎜ ⎟− − >⎝ ⎠ ⎩

S
 

Then the average cost  with respect to a base-stock level can be expressed 

as 

( )C S S

1

0
0 1

1
1 1 1 1 2

0 0 11 2
1 1

( ) ( ) ( ) ( )

1 (( ) ( )
1 (1 ) (

S

r l p x h x
x x

S S
S

r l p h

C S p c c S c S c x S

S S Sp c c S c c S

δ λ π µ π π

ρ ρ ρ ρ ρδ λ π µ π ρ
ρ ρ

− +∞

= =

− +
−

−

= + + +

⎛ ⎞ ⎛− − − + +
= + + + +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

∑ ∑

2
2

2

1 (1 ) )
1 )

ρ
ρ

⎞−
⎟− ⎠

 

When 1 1ρ ≤ , Zerhouni et al. (2009) show that this average cost is convex. In this 

case, any convex optimization procedure can be used to find the optimal base-stock 

level. When 1 1ρ > , Zerhouni et al. (2009) show that the average cost is bounded 

above by ( ) 1
( ) / ln /u l hS c cλ µ λ µ

−
= − + ⎡ ⎤⎣ ⎦ .  In this case, an exhaustive search of the 

optimal base-stock level on the set { }0, , uS  can be executed. 

3.3. Comparing the two policies  

In a numerical study, we investigate the value of using ARI by comparing the results 

obtained for the two policies introduced in sections 3.1 and 3.2.  

We focus on the average cost criterion. The average cost optimal policy can be 

shown to be the limit of the discounted cost optimal policy when the discount rate α  

goes to 0, by theorems 7.2.3 and 7.5.6 of Sennott (1999). Therefore the structures of 

the optimal policies are similar to the ones introduced in sections 3.1 and 3.2.  

 
We denote by  and  the optimal average costs when using ARI 

and not using ARI. In order to compare the two policies, we look at the percentage 
cost increase for not using ARI, defined as 

(g ARI ) )(g no ARI

( ( ) ( )) / ( )g g no ARI g ARI g ARI∆ = −  

3.3.1. Computational procedure 

To compute the optimal average costs, we use a value iteration algorithm (Puterman, 

1994). The iteration is terminated when a six digit accuracy is achieved. To 

implement this algorithm, we need to truncate the state space. We repeat the value 

iteration algorithm with larger and larger state spaces until the cost is no longer 

sensitive to increasing the state space, with a six digit accuracy. With a standard PC, 

computing the optimal policy takes in general less than a minute. However, it also 
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may take several hours, e.g. for large return leadtimes or when the system 
approaches instability of inventory (i.e. when pδ  is close to λ ). The data to produce 

the figures can be found in the online appendix. 

3.3.2. Experimental design 

The model presented in Section 2 includes 9 parameters ( , , , , , , , , )r p h lc c c c pλ µ δ γ . 

However, in this numerical study, we concentrate on varying 5 

parameters ( , , , , )lc pµ δ γ . Without losing generality, we can set 1λ =  and  

since this is equivalent to choosing the time and monetary unit to be used in the 

calculations. 

1hc =

 

In the following, we show that we can set 0rc =   and 0pc =  when we investigate the 

added value of ARI. Consider Problem A with parameter values 

( , , , , , , , , )r p h lc c c c pλ µ δ γ  and Problem B with parameter values 

( , , , , , , , , )r h p lc c c c pλ µ δ γ . Assume that the parameter values are identical for both 

problems except for the production cost, lost sale cost and return cost: 

, 0,l l p p rc c c c c= − = = 0

)

 

 

Property 1  

i. When ARI is used (resp. ARI is not used), the optimal production policy for 

problems A is also optimal for problem B. 

ii. We have the following relation between the optimal average cost of problem 

A, ,  and the optimal average cost of problem B, (g ARI ( )g ARI ,   

( ) ( ) ( )

( ) ( ) ( )

A B
r p p

A B
r p

g ARI g ARI p c c c

g no ARI g no ARI p c c c

δ λ

pδ λ

= + − +

= + − +
 

iii. The percentage cost increase for problem A, g∆ , is smaller than the one for 

problem B, g∆  

 

The proof is detailed in Appendix A.2. For the remaining parameters ( , , , , )lc pµ δ γ , 

we have considered the following values: {1,10,100}lc ∈ , {0,0.25,0.5,0.75,0.95}δ ∈ , 

{0.1,0.5,0.75,1,1.25,1.5,1.75, 2}γ ∈ , {0.5,0.75,1,1.25,1.5,1.75, 2,10}µ ∈ , 

. {0,0.25,0.5,0.75,1}p∈
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We did numerical experiments for the 4800 possible combinations of the above 

values for 1λ = , ,   and 1hc = 0rc = 0pc = .  

3.3.3. Discussion results  

When does ARI make sense, i.e. when does ARI result in "significantly" smaller 

average cost when compared with not using ARI, and when not?  

 

The maximum over all scenarios is 4.5 %, which is observed for the following 

combination of parameter values:

g∆

1, 0.75, 0.1, 100, 1lc pµ δ γ= = = = = . Observe that, 

thanks to Property 1, this result remains valid for any positive return cost  and any 

combination of   and  such that (

rc

pc lc ) {1,10,100}l pc c− ∈ .  

 

In 91% of the examined scenarios, 1%g∆ <  and in 97% of the scenarios, .  2%g∆ <

Whether ARI is useful depends on the exact combination of the parameter values. 

We have observed that is non-monotonic with respect to all parameters. Figure 5 

shows the influence of 1/

g∆

γ  (i.e. the average time between the announcement of a 

return and the actual receipt of the return or decline of the return by the customer) on 

for some values of p. We observe that the relative benefit for using ARI tends to 

be insignificant when 1/

g∆

γ  is either small or large. When 1/ γ  is small, the 

explanation is simple: Returns are announced right before they arrive and ARI is 

useless. When 1/ γ  is large, returns are announced far in advance. Due to the 

exponential distribution choice for the return leadtime, when the expected value of 

the return leadtime increases, so does the variance and this makes ARI less useful. 

For intermediate values of 1/ γ , using ARI is most beneficial. We obtain similar 

results for the other combinations of parameter values examined in this paper. 

 

Insert Figure 5 
 

The previous observations hold for exponential return leadtimes but do they also 

pertain to other return leadtime distributions? To be able to compute the optimal 

policy, we need to consider leadtime distributions that are combinations of 

exponential distributions. Hereafter, we consider a return leadtime L  distributed 

according to an Erlang- k  distribution. Let 1 kL L L= + +  where  are 1, , kL L
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independently and exponentially distributed with rate kγ . Then the expected value of 

L  is 1/ γ  and its standard deviation is 1/ kγ . Figure 6 plots the effect of 1/ γ  for 

some values of k . We observe that the benefit of ARI is increasing with . This is 

logical since the variance of the return leadtime is decreasing with  and the ‘quality’ 

of ARI is getting better. We also observe that the benefit of ARI remains maximal for 

intermediate values of 1/

k

k

γ . This may not be the case in general and especially for 

large values of k  for which the standard deviation is smaller. Computing the optimal 

policy for large values of k  is intractable due to the curse of dimensionality. When  

goes to infinity, the return leadtime is converging to the constant leadtime

k

1/L γ= . In 

this case, the decision maker has, at time t , exact information on the timing of all  

returns in the time window [ ],t t L+ . Increasing the horizon of visibility L  will 

necessarily decrease the average cost. Hence, the benefit of ARI should be 

nondecreasing with the return leadtime, when deterministic.  

 

 Insert figure 6 
  

Figure 7 shows the influence of p  on g∆  for different values of δ . When pδ  goes 

to λ  or to 0, we observe that g∆ goes to 0. When pδ  goes toλ , returns are 

sufficient to satisfy the demand and it is no more necessary to produce. With or 

without ARI, the optimal policy consists in not producing all the time and ARI is again 

useless. When 0pδ = , there are no actual returns and ARI is useless. The curves in 

Figure 7 show irregularities which are due to the discrete nature of the base-stock 

levels. To make this relation clear, we plotted g∆ and the optimal base-stock level  

for the situation without ARI (Figure 8). We observe that the irregularities in the curve 

 coincide with changes in the optimal base-stock level.  

*S

g∆

 

Insert figures 7 and 8 
 

Now we look at the influence of γ  and  on the optimal policy. Figure 9 

(respectively 10) plots the state-dependent base-stock level  as a function of 

p

( )S y y   

for different values of  γ   (respectively ). We observe in Figure 9 that   is 

nonincreasing with the return rate 

p ( )S y

γ . The larger the return lead time, the more we 

should produce. Moreover, when the return lead time is very short (γ =100), the 
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optimal policy consists in producing when 4x y+ <  where  is precisely the optimal 

base-stock level when not using ARI. In this case, announced returns can be 

considered to be already in stock. In Figure 10, we observe that   is 

nonincreasing with the return probability 

4

( )S y

p . It seems logical that we produce less 

when there is a higher probability that returns arrive. When 0p = , there is no return 

at all and the base-stock level  is independent of ( )S y y .  

 

Insert figures 9 and 10 
 

4. Backorder situations  

4.1. Optimal policy when ARI is used  

We also consider situations with backorders (with linear backorder cost per unit of 

time) instead of lost sales. The model formulation is slightly different but leads to 

similar results. In this case, on-hand stock 

bc

( )X t  is replaced by net stock ( )X t  with 

( ) max 0, ( )X t X+ ⎡= ⎣ t ⎤⎦ , the on-hand stock of serviceable products, and 

( ) max 0, ( )X t− ⎡= −⎣ X t ⎤⎦ , the number of backorders. For the discounted cost problem, 

the optimal value function  satisfies the optimality equation:  *v

*( , ) *( , ), ( , )v x y T v x y x y= ∀  

where operator  is defined as T

10 2 3
1( , ) ( , ) ( , ) ( , ) ( , ) (1 ) ( , )h bTv x y c x c x T v x y T v x y T v x y pT v x y p T v x y

C
µ λ δ γ γ

α
+ −⎡ ⎤= + + + + + + −⎣ ⎦+ 4

Operators  are defined as in Section 3 and operator 0 2 3 4, , , ,T T T T C 1T  is defined as 

1 ( , ) ( 1, )T v x y v x y= −  

We define a set of functions U  satisfying all conditions of U  except Condition C.4. 

Then the proof is similar to the one of Lemma 2 and the optimal value function can 

be shown to satisfy conditions C.1, C.2 and C.3. We conclude that Theorem 1 can be 

extended to the case with backorders.   

 

Theorem 2 There exists a switching curve ( )S y  such that it is optimal to produce if 

and only if ( )x S y< . Moreover, the switching curve has the following property:  
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( ) 1 ( 1) ( )S y S y S y− ≤ + ≤  

 

Note that the switching curve ( )S y  can take negative values in the backorder case. 

This occurs when the number of announced returns is large. In this case, it can be 

optimal not to produce, even if there are orders waiting to be satisfied. 

4.2. Optimal policy when ARI is ignored  

When ARI is ignored, the optimal policy is again a base-stock policy and the optimal 

base-stock level can be computed explicitly (for details, see Gayon and Vercraene, 

2011).  If we let W S X= − , the average cost can be written as 

( ) ( ) ( ) ( ) ( )h bC S c E X c E X hE S W bE S W+ − += + = − + − −  

It is precisely the objective function of a newsboy problem with stochastic demand 

.  Let  denote the probability distribution function (p.d.f.) ofW .  The optimal 

base-stock level  is then 

W WF

*S { }* min : ( ) /( )W h h bS z F z c c c= > +  

As the Markov chain ( )X t  has a simple birth-death structure, the p.d.f. of W  can be 

easily derived: 

1 2

1 2
1

2 1

1 2

(1 ) 0
1

( )
(1 )1 0

1

z

W z

if z
F z

if z

ρ ρ
ρ ρ

ρ ρ
ρ ρ

−

+

⎧ −
≤⎪ −⎪= ⎨

−⎪ − ≥⎪ −⎩

 

We finally obtain an explicit formula for the optimal base-stock level. When 

, the optimal base-stock level is nonpositive and is given by (0) /( )W b hF c c c≥ + b

( )

1

1 2*

2

1ln
1

ln

b h

b

c c
c

S

ρ
ρ ρ

ρ

⎡ ⎤⎛ ⎞+−
⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

 

When , the optimal base-stock level is nonnegative and is given 

by 

(0) /( )W b hF c c c≤ + b

( )

1 2

2*

1

1ln
1

ln

h

h b

c
c c

S

ρ ρ
ρ
ρ

⎢ ⎥⎛ ⎞−
⎢ ⎥⎜ ⎟− +⎝ ⎠⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4.3. Comparing the two policies  

Similarly to the lost sales case, we can compute the percentage cost increase for not 

using ARI in backorder situations. We keep the same system parameter values for 

( , , , , , , , )r p hc c c pλ µ δ γ  and we vary the backorder cost  in{1 . Interestingly, 

the percentage cost increase  is higher in backorder situations and attain 23% for 

the following combination of parameter values:

bc ,10,100}

g∆

10, 0.5, 1, 1, 1bc pµ δ γ= = = = = . For 

this instance, the optimal policy without ARI works in a make-to-order fashion 

(produce if and only if the net stock is negative). Such a situation does not occur in 

lost sales situation. In 78% of the examined scenarios, 1%g∆ <  and in 96% of the 

scenarios, . The other insights discussed in Section 3.3.3 for lost sales 

situations pertain to backorder situations. Due to space limitation, we have not 

reported these results.  

5%g∆ <

5. Combining ARI and ADI 

So far, only returns where announced in advance. In this section, we extend our 

analysis to include Advance Demand Information (ADI). Following the framework of 

Gayon et al. (2009a), we assume now that customers place orders according to a 

Poisson process with rate λ . After a demand lead time exponentially distributed with 

rate ν , an order becomes due with probability a  or is cancelled with probability 

.    The state of the system can now be described by a triplet ((1 )a− ( ), ( ), ( ))X t Y t Z t  

where ( )Z t  is the number of orders that have been announced but that are not due 

yet (or cancelled) at time . We assume that the number of orders t ( )Z t  is bounded 

by . In what follows, we focus on lost sales situations but the analysis can be 

extended to backorder situations. 

N

 

We choose an uniformization rate + +D M Nλ µ δ γ ν= + + . The optimal value 

function *v  satisfies the optimality equations *v Tv= *  where T  is defined as 

0 2 3 4

1 5 6

( , , ) ( , , ) ( , , ) (1 ) ( , , )1( , , )
( , , ) ( , , ) (1 ) ( , , )

hc x T v x y z T v x y z pT v x y z p T v x y z
Tv x y z

D T v x y z aT v x y z a T v x y z
µ δ γ γ

α λ ν ν

+ + + + −⎡ ⎤
= ⎢ ⎥+ + + + −⎣ ⎦

Operators  are defined as in Section 3 and operator 0 2 3 4, , ,T T T T 1 5 6, ,T T T  are defined 

as 
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[ ]
[ ]

1

5

6

( , , 1)
( , , )

( , , )

( 1, , 1) ( ) ( , , ) 0, 0
( , ) ( , , 1) ( ) ( , , ) 0, 0

( , , ) 0

( , , 1) ( ) ( , , ) 0
( , )

( , , ) 0

l

l

v x y z if z N
T v x y z

v x y z c if z N

z v x y z N z v x y z if z x
T v x y z v x y z c N z v x y z if z x

Nv x y z if z

zv x y z N z v x y z if z
T v x y

Nv x y z if z

+ <⎧
= ⎨ + =⎩
⎧ − − + − > >
⎪= − + + − >⎨
⎪ =⎩

− + − >⎧
=

=⎨
⎩

=  

Operator 1T  is associated to the announcement of customer orders. Operator  

(resp. ) is related to actual demands (resp. cancellations). The optimal production 

control is entirely determined by the sign of 

5T

6T

( )*( , , ) pv x y z c∆ +  where 

. In order to characterize the optimal policy, we 

prove that 

( , , ) ( 1, , ) ( , , )v x y z v x y z v x y z∆ = + −

*v
 
belongs to the following set V  of real-valued functions.  

 
Definition 2 If v , then for all V∈ ( , , )x y z :  

C.1   ( , , ) ( 1, , )v x y z v x y z∆ ≤ ∆ +

C.2  ( , , ) ( , 1, ),v x y z v x y z y M∆ ≤ ∆ + ∀ <

C.3  ( , 1, ) ( 1, , ),v x y z v x y z y M∆ + ≤ ∆ + ∀ <

C.4  ( , , ) lv x y z c∆ ≥ −

<

<

C.5  ( , , ) ( , , 1),v x y z v x y z z N∆ ≥ ∆ + ∀

C.6  ( , , ) ( 1, , 1),v x y z v x y z z N∆ ≤ ∆ + + ∀
 

We show in Appendix A.3 that the optimal value function *v  belongs to V  by 

combining the proof when only ARI is used (Lemma 1, Section 3) and the proof when 

only ADI is used (Lemma 1 in Gayon et al. (2009a)). It implies that the optimal policy 

as the following characteristics. 

 

Theorem 3 There exists a switching curve ( , )S y z  such that it is optimal to produce if 

and only if ( , )x S y z< . Moreover, the switching curve has the following properties:  

( , ) 1 ( 1, ) ( , )
( , ) ( , 1) ( , ) 1

S y z S y z S y z
S y z S y z S y z

− ≤ + ≤

≤ + ≤ +
 

 

The first (respectively second) property of the switching curve in Theorem 3 

corresponds to the property for the switching curve when only ARI (respectively ADI) 
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is used. We can easily adapt Theorem 3 to backorder situations. It suffices to remove 

condition C.4 in the definition of set V . 

 

In Figure 11, we show illustrative results depicting the impact of ARI alone, ADI alone 

and joint ARI and ADI. The results indicate that the benefits of ARI and ADI are 

complementary. The benefit due to ADI is more significant for the instances we have 

tested.  

 

Insert Figure 11 
 

6. Other applications 

In this paper we focused on the value of ARI for situations with returns. There are 

many more situations where using advance supply information (ASI) may be 

profitable, which are not related to return flows. The model presented in this paper 

can be applied to some other situations, after minor changes.  

 

One other application concerns production planning in situations where, apart from 

the primary process for generating a certain product P1, the production of other 

products P2, P3,… via other processes may result in P1 as well, as an undesired co- 

or by-product (production with a variable quality yield). Such a situation can among 

others be found in the process industries, where complete batches from one process 

can not have the desired quality from the point of view of this process, but can have 

the correct quality for another application for which normally a separate second 

production process is started on another facility, where customers buy complete 

batches one by one. In this case an announcement corresponds with the 

announcement of the startup of a batch for product P2, P3,… where δ  indicates the 

arrival process of the above announcements. In this case, L  denotes the time 

between the above announcements and the moment that the results of the related 

quality measurements become available.  

 

The presented model can also be useful for companies that don't produce but buy 

from an external supplier with limited capacity. Some of these companies 

simultaneously try to buy individual (un)used products via e.g. the internet, spot 

markets, auctions, where it is uncertain whether or not a company will receive the 

desired products because bids by other companies may be higher. Examples are 
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airlines, transportation companies with big truck fleets, which follow the above 

strategy for expensive parts like engines, requiring a negligible effort to make them 

as good as new. In this case, δ  indicates the arrival process of interesting 

announcements for which the company always bids (e.g. announcements by other 

companies in the same sector that decide to replace part of their fleet earlier than 

expected and due to this are confronted with obsolete stocks that they want to sell) 

whereas L  denotes the time between the announcement/bid and the result of the 

bid.  

7. Summary and conclusions  

In this paper, we have examined the potential value of using imperfect advance 

supply information from a number of autonomous external sources for a company 

supplying one item, where the company also has one own production facility under 

complete control. We focused on the information that becomes available after 

products have been sold or lease contracts have started.  

 

For both lost sales and backorder situations, we have characterized the optimal 

policy with and without ARI. In case of lost sales, it was shown that for the many sets 

of parameter values studied, using ARI as indicated in this paper can result in a cost 

reduction of 5% at most, but in 91% of the examined scenarios, the cost reduction 

was less than 1% and in 97% of the scenarios less than 2%. Although this may not 

seem much, as always we should compare this reduction with the net profit of a 

company, due to which the gain may be considerable. In general, our research 

shows that  ARI, as used in this paper, seems to be most advantageous in situations 

where return times are not very short or very long, where the probability that an 

announced return becomes an actual return is also not very high or very low.  When 

backorders are allowed, it was shown that the cost reduction can be higher, up to 

23%. We have extended our analysis when both ARI and ADI are available. We also 

have indicated that our model can not only be useful in situations with returns from 

customers, but also in many other situations, like in situations with co- and by-

products as well as for fleet owners. 

 

Our model can be extended in several ways. One extension (for both lost sales and 

backorder situations) is to include an admission control for returns. When a customer 

announces the intended return of a product, the decision maker decides whether or 

not to accept the potential return. One reason for rejecting a return is e.g. to avoid 
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excess inventory. Then, the optimal policy is expected to consist of two switching 

curves, R(y) and S(y) such that it is optimal to accept a return (resp. to produce) if 

and only if the on-hand stock of serviceable products is below R(y) (resp. S(y)). It is 

also possible to consider several types of returns and to investigate how to 

coordinate production and admission of the different return flows. Another extension 

would be to study the effect of the price offered for returns. 
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n

As operator T  is a contraction mapping (Puterman,1994), the fixed point theorem 

ensures that the sequence of value functions 1nv Tv+ =  converges to , for any , 

and in particular if  is the null value function which belongs to U . In the following, 

we show that operator T  preserves conditions of U , i.e. if v

*v 0v

0v

U∈ , then Tv . By 

induction, we can then conclude that  

U∈

*v U∈ . 

 

Define . Operator  can be rewritten as follows. min | ( , ) 0yS x v x y c⎡= ∆ + ≥⎣ p ⎤⎦ 0T

0

( 1, )
( , )

( , )
y

y

v x y if x S
T v x y

v x y if x S
+ <⎧

= ⎨ ≥⎩
 



We can then compute . vT0∆
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1

0

( 1, )
1( , )

( , )

y

yp

y

v x y if x S
if x ScT v x y
if x Sv x y

∆ + <⎧
⎪

−
= −−∆ = ⎨

⎪ ≥∆⎩

 

As  satisfies condition C.4  (v lcyxv −≥∆ ),( ) and lp cc < , we immediately obtain that 

 satisfies condition C.4  (vT0 lcyxvT −≥∆ ),(0 ). 

 

We can now prove that  satisfies conditions C.1, C.2 and C.3 of U . All the 

inequalities below are obtained by using the assumption that 

vT0

Uv∈ . 
2

2
0

2

( 1, ) 0 2
( 1, ) 0 2

( , )
( 1, ) 0 1

( , )

y

p y

p y

y

v x y if x S
v x y c if x S

T v x y
v x y c if x S

if x Sv x y

⎧∆ + ≥ < −
⎪−∆ + − ≥ = −⎪∆ = ⎨∆ + + ≥ = −⎪
⎪ ≥∆⎩

 

0 0 1

1

0 0

( 1, 1) ( 1, ) 0 1
( , 1) ( , ) ( , 1) 0 1,

1, 10 0
( , 1) ( , )

( 2, ) ( 1, 1) 0 2
( 1,

( 1, ) ( , 1)

y

p y y

y y

y

y

p

v x y v x y if x S
T v x y T v x y v x y c if x S x S

if x S x S

v x y v x y if x S

v x y v x y f x S
c v x y

T v x y T v x y

+

+

⎧
⎪
∆ + + −∆ + ≥ < −⎪
⎪∆ + −∆ = ∆ + + ≥ = − =⎨
⎪ = − = −≥⎪
⎪∆ + −∆ ≥⎩

∆ + −∆ + + ≥ < −
− −∆ +

∆ + −∆ + =

1

1

1

1

1) 0 2, 2
0 2

( 1, ) ( , 1) 0 1,
( 1, ) 0 1, 1
( 1, ) ( , 1) 0

y y

y y

y y

p y

y

if x S x S
if x S x S

v x y v x y if x S x S
v x y c if x S x S
v x y v x y f x S

+

+

+

+

⎧
⎪ + ≥ = − = −⎪
⎪ = − = −⎪
⎨∆ + −∆ + ≥ = − =⎪
⎪∆ + + ≥ = − = −
⎪
∆ + −∆ + ≥ ≥⎪⎩

, 1

y

0

We conclude that  belongs to U . vT0

 

Similarly, we prove that  belongs to U . vT1

1

2
2

1

( 1, )
( , )

0

( 1, ) 0 0
( , )

0 0 0

l

l l

v x y c if x
T v x y

c c if x

v x y if x
T v x y

if x

∆ − ≥ − >⎧
∆ = ⎨− ≥ − =⎩

⎧∆ − ≥ >
∆ = ⎨

≥ =⎩

 



1 1

1 1

( 1, 1) ( 1, ) 0 0
( , 1) ( , )

0 0 0

( , ) ( 1, 1) 0 0
( 1, ) ( , 1)

0 0 0

v x y v x y if x
T v x y T v x y

if x

v x y v x y if x
T v x y T v x y

if x

∆ − + −∆ + ≥ >⎧
∆ + −∆ = ⎨ ≥ =⎩

∆ −∆ − + ≥ >⎧
∆ + −∆ + = ⎨ ≥ =⎩

 

 

We also obtain that . UvT ∈2

2

2
2

2 2

2 2

2 2

( , 1)
( , )

( , )

( , 1) 0
( , )

( , ) 0

( , 2) ( , 1) 0 1
( , 1) ( , )

0 1

( 1, 1) ( , 2)
( 1, ) ( , 1)

l

l

v x y c if y M
T v x y

v x y c if y M

v x y if y M
T v x y

v x y if y M

v x y v x y if y M
T v x y T v x y

if y M

v x y v x y
T v x y T v x y

∆ + ≥ − <⎧
∆ = ⎨∆ ≥ − =⎩

⎧∆ + ≥ <
∆ = ⎨

∆ ≥ =⎩
∆ + −∆ + ≥ < −⎧

∆ + −∆ = ⎨ = −⎩
∆ + + −∆ + ≥

∆ + −∆ + =
0 1

( 1, 1) ( , 1) 0
if y M

v x y v x y if y M
< −⎧

⎨ 1∆ + + −∆ + ≥ = −⎩

 

and that . Moreover, we prove that UvT ∈3 lcMyxvT −≥∆ ),(3 . 

3

2 2
2

3 2

3 3

( 1, 1) ( ) ( , ) 0
( , )

( , ) 0

( ( 1, 1) ) ( ) ( , ) 0 0
( , )

( , ) 0 0
( , 1) ( , )
( ( 1, ) ( 1, 1)) ( )( ( , 1)

l

l

r

y v x y M y v x y Mc if y
T v x y

M v x y Mc if y

y v x y c M y v x y if y
T v x y

M v x y if y
T v x y T v x y

y v x y v x y M y v x y v

∆ + − + − ∆ ≥ − >⎧
∆ = ⎨ ∆ ≥ − =⎩

⎧ ∆ + − + + − ∆ ≥ >
∆ = ⎨

∆ ≥ =⎩
∆ + −∆

∆ + −∆ + − + − ∆ + −∆
=

3 3

( , )) ( 1, ) ( , 1) 0 0
( 1)( ( 1, ) ( , 1)) ( ( , 1) ( , )) 0 0

( 1, ) ( , 1)
( ( 2, 1) ( 1, )) ( 1)( ( 1, ) ( , 1)) 0 0

( 1)( ( 1, ) ( , 1

x y v x y v x y if y
y v x y v x y M v x y v x y if y

T v x y T v x y
y v x y v x y M y v x y v x y if y

M y v x y v x y

+ ∆ + −∆ + ≥ >⎧
⎨ + ∆ + −∆ + + ∆ + −∆ ≥ =⎩

∆ + −∆ +

∆ + − −∆ + + − − ∆ + −∆ + ≥ >
=

− − ∆ + −∆ + )) 0 0if y
⎧
⎨ ≥ =⎩

 

We also show that . Moreover, we prove that 4T v U∈ 4 ( , ) lT v x y M c∆ ≥ − . 

4

2 2
2

4 2

4 4

( , 1) ( ) ( , ) 0
( , )

( , ) 0

( , 1) ( ) ( , ) 0 0
( , )

( , ) 0 0
( , 1) ( , )
( ( , ) ( , 1)) ( 1)( ( , 1) ( , )) 0

l

l

l

y v x y M y v x y Mc if y
T v x y

M v x y Mc if y

y v x y M y v x y if y
T v x y

M v x y if y
T v x y T v x y

y v x y v x y M y v x y v x y if

∆ − + − ∆ ≥ − >⎧
∆ = ⎨ ∆ ≥ − =⎩

⎧ ∆ − + − ∆ ≥ >
∆ = ⎨

∆ ≥ =⎩
∆ + − ∆

∆ −∆ − + − − ∆ + −∆ ≥
=

4 4

0
( 1)( ( , 1) ( , )) 0 0

( 1, ) ( , 1)
( ( 1, 1) ( , )) ( )( ( 1, ) ( , 1)) ( , 1) ( , ) 0 0

( ( 1, ) ( , 1)) ( 1)( ( , 1) ( , )) 0 0

y
M y v x y v x y if y

T v x y T v x y
y v x y v x y M y v x y v x y v x y v x y if y

M v x y v x y y v x y v x y if y

>⎧
⎨ − − ∆ + −∆ ≥ =⎩

∆ + −∆ +

∆ + − − ∆ + − ∆ + −∆ + + ∆ + −∆ ≥ >⎧
= ⎨ ∆ + − ∆ + + + ∆ + −∆ ≥ =⎩
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As  is a positive linear combination of operators , T iT 4,,1,0=i , it comes that Tv  

satisfies conditions C.1, C.2, and C.3.  To show that Tv  satisfies C.4, it is slightly 

more tricky.  

From optimality equations, we have: 

[ ]0 1 2 3 4
1( , ) ( , ) ( , ) ( , ) ( , ) ( , )hTv x y c T v x y T v x y T v x y p T v x y p T v x y

C
µ λ δ γ γ

α
∆ = + ∆ + ∆ + ∆ + ∆ + ∆

+
 

Using the fact that li cvT −≥∆  for 2,1,0=i  and li cMvT −≥∆  for 4,3=i , we obtain 

( , ) l l l l l
l

c c c Mpc MqcTv x y c
C M

µ λ δ γ γ
µ λ δ γ

− − − − −
∆ ≥ ≥

+ + + +
−  

and Tv  satisfies C.4. Finally, we conclude that Tv  belongs to U . 

A.2. Proof of Property 1 

i. For problem A and production policy π , we adopt the following notations: rate of 

lost sales ( uns
πλ ), rate of demands that are satisfied by produced items ( prod

πλ ),rate of 

demands that are satisfied by returned items ( ret
πλ ), average inventory level ( I π ),  

average cost ( gπ ). Note that ret pπλ δ=  is policy independent while the other 

quantities are policy dependent. For problem B and production policy π , we adopt  

similar notations with a bar.  A demand is either lost or satisfied. When it is satisfied, 

it can be by a produced item or by a return. Therefore we have the following balance 

equation  

uns prod ret
π π πλ λ λ λ= + +  

The average cost for instance A can then be related to the average cost for problem 

B: 

0

( ) ( )

( ) ( )

uns l prod p r h uns l uns p r h

uns l p h p r p

K

g c c pc c I c p c pc c

c c c I c p c c g K

Iπ π π π π π

ππ π

λ λ π δ λ λ λ δ δ

λ λ δ
= >

= + + + = + − − + +

= − + + + − = +

π

 

Where K is a positive constant since, by assumption, pλ δ> .  Therefore, a policy 

minimizing gπ  also minimizes g
π

.  

ii. Follows directly from the proof of i. As g g K
ππ = +  and the optimal policies are 

identical for A and B, we have immediately the desired relations between the average 

costs. 

iii.  
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( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

g no ARI g ARI g no ARI K g ARI Kg
g ARI g ARI K

g no ARI g ARI g
g ARI

− + −
∆ = =

+

−
≤ = ∆

−

 

A.3. Proof of Theorem 3 

The structure of the proof is similar to the one of Theorem 1. We have 

to prove that T  propagates condition C.1 to C.6. We can prove it by combine the 

proof when only ARI is used (Lemma 1, Section 3) and the proof when only ADI is 

used (Lemma 1 in Gayon et al. (2009a)).   

 

In the proof of Lemma 1, we show that operators  propagate conditions 

C.1, C.2, C.3 and C.4. Gayon et al. (2009a) show that operators 

0 2 3 4, , ,T T T T

0 1 5 6, , ,T T T T  

propagate conditions C.1, C.4, C.5 and C.6. Remains to prove that operators 

 propagate conditions C.5 and C.6, and that 2 3 4, ,T T T 1 5 6, ,T T T  propagate conditions 

C.2 and C.3. The proof of these propagation results is trivial because the state 

transitions involved in the operators are not involved in the conditions.  
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Figure 1: Inventory system with return flow and ARI 
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Figure 2: The structure of the optimal policy when 
( 1, 1, 0.25, 0.75, 0, 0, 1, 10, 0.25)r p h lc c c c pλ µ δ γ= = = = = = = = =  
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Figure 3: Inventory system with return flow and without ARI 
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Figure 4: Markov chain for the system without ARI 
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Figure 5: The effect of the expected return leadtime on the value of using ARI 
( 1, 1, 0.25, 0, 0, 1, 100)r p h lc c c cλ µ δ= = = = = = =  
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Figure 6: The effect of the expected return leadtime on the value of using ARI for 
Erlang-  distributions k ( 1, 2, 0.5, 0, 0, 1, 10, 1r p h lc c c c p )λ µ δ= = = = = = = =   

 

 

25



0%

1%

2%

3%

0 0.2 0.4 0.6 0.8 1
Return probability (p)

R
el

at
iv

e 
co

st
 in

cr
ea

se
 ( ∆

g)

δ=0.25
δ=0.5
δ=0.9

 
Figure 7: The effect of the expected return leadtime on the value of using ARI 

( 1, 1, 0.8, 0, 0, 1, 100)r p h lc c c cλ µ γ= = = = = = =  
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Figure 8: The effect of the expected return leadtime on the value of using ARI 

( 1, 1, 0.25, 0.8, 0, 0, 1, 100)r p h lc c c cλ µ δ γ= = = = = = = =  
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Figure 9: The effect of the return rate γ  on the optimal policy 

( 1, 2, 0.5, 0, 0, 1, 100, 1r p h lc c c c p )λ µ δ= = = = = = = =  
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Figure 10: The effect of the return probability p  on the optimal policy 

( 1, 2, 0.5, 1, 0, 0, 1, 100r p h lc c c c )λ µ δ γ= = = = = = = =  
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(a) ( 1)ν =  
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(b) ( 1)γ =  

Figure 11: The effect of ARI versus ADI 
( 1, 1, 0.5, 0, 0, 1, 100)r p h lc c c cλ µ δ= = = = = = =  
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